319 Academic Research Building
265 South 37th Street
Philadelphia, PA 19104
Research Interests: time series analysis
Education
PhD, Columbia University, 1966; MA, Columbia University, 1964; AB, Dartmouth College, 1961
Recent Consulting
Expert witness, probability analysis, U.S. Postal Service and State of New Jersey, 1993-94; Expert witness, statistical analysis, Sprague and Sprague, Philadelphia, 1994; Expert witness, statistical analysis, Duane, Morris & Heckscher, Philadelphia, 1995-97
Academic Positions Held
Wharton: 1977-present (Chairperson, Statistics Department, 1990-2002). Previous appointments: Carnegie Mellon University, Stanford University, New York University
Other Positions
Program Director for Statistics and Probability, National Science Foundation, 1984-85
Written permission of instructor and the department course coordinator required to enroll in this course.
This course provides an introduction to the wide range of techniques available for statistical modelling and forecasting of time series. Regression methods for decomposition models, trends and seasonality, spectral analysis, distributed lag models, autoregressive-moving average modeling, forecasting, exponential smoothing, and ARCH and GARCH models will be surveyed. The emphasis will be on applications, rather than technical foundations and derivations. The techniques will be studied critically, with examination of their usefulness and limitations. This course may be taken concurrently with the prerequisite with instructor permission.
This is a course in econometrics for graduate students. The goal is to prepare students for empirical research by studying econometric methodology and its theoretical foundations. Students taking the course should be familiar with elementary statistical methodology and basic linear algebra, and should have some programming experience. Topics include conditional expectation and linear projection, asymptotic statistical theory, ordinary least squares estimation, the bootstrap and jackknife, instrumental variables and two-stage least squares, specification tests, systems of equations, generalized least squares, and introduction to use of linear panel data models.
Topics include system estimation with instrumental variables, fixed effects and random effects estimation, M-estimation, nonlinear regression, quantile regression, maximum likelihood estimation, generalized method of moments estimation, minimum distance estimation, and binary and multinomial response models. Both theory and applications will be stressed.
This course provides an introduction to the wide range of techniques available for statistical modelling and forecasting of time series. Regression methods for decomposition models, trends and seasonality, spectral analysis, distributed lag models, autoregressive-moving average modeling, forecasting, exponential smoothing, and ARCH and GARCH models will be surveyed. The emphasis will be on applications, rather than technical foundations and derivations. The techniques will be studied critically, with examination of their usefulness and limitations.
This course provides an introduction to the wide range of techniques available for statistical modelling and forecasting of time series. Regression methods for decomposition models, trends and seasonality, spectral analysis, distributed lag models, autoregressive-moving average modeling, forecasting, exponential smoothing, and ARCH and GARCH models will be surveyed. The emphasis will be on applications, rather than technical foundations and derivations. The techniques will be studied critically, with examination of their usefulness and limitations. This course may be taken concurrently with the prerequisite with instructor permission.
Written permission of instructor, the department MBA advisor and course coordinator required to enroll.
Wharton professors look back at how COVID-19 upended our lives five years ago, impacting business and the economy in lasting ways.…Read More
Knowledge @ Wharton - 2025/03/11