AMCS5999 - Independent Study
Independent Study allows students to pursue academic interests not available in regularly offered courses. Students must consult with their academic advisor to formulate a project directly related to the student’s research interests. All independent study courses are subject to the approval of the AMCS Graduate Group Chair.
AMCS9999 - Ind Study & Research
Study under the direction of a faculty member.
CIS0099 - Ugrad Resrch/Ind Study
An opportunity for the student to become closely associated with a professor (1) in a research effort to develop research skills and techniques and/or (2) to develop a program of independent in-depth study in a subject area in which the professor and student have a common interest. The challenge of the task undertaken must be consistent with the student's academic level. To register for this course, the student must submit a detailed proposal, signed by the independent study supervisor, to the SEAS Office of Academic Programs (111 Towne) no later than the end of the "add" period. Prerequisite: A maximum of 2 c.u. of CIS 0099 may be applied toward the B.A.S. or B.S.E. degree requirements.
CIS1400 - Intro Cognitive Science
How do minds work? This course surveys a wide range of answers to this question from disciplines ranging from philosophy to neuroscience. The course devotes special attention to the use of simple computational and mathematical models. Topics include perception, learning, memory, decision making, emotion and consciousness. The course shows how the different views from the parent disciplines interact and identifies some common themes among the theories that have been proposed. The course pays particular attention to the distinctive role of computation in such theories and provides an introduction to some of the main directions of current research in the field. It is a requirement for the BA in Cognitive Science, the BAS in Computer and Cognitive Science, and the minor in Cognitive Science, and it is recommended for students taking the dual degree in Computer and Cognitive Science.
CIS5200 - Machine Learning
This course covers the foundations of statistical machine learning. The focus is on probabilistic and statistical methods for prediction and clustering in high dimensions. Topics covered include linear and logistic regression, SVMs, PCA and dimensionality reduction, EM and HMMs, and deep learning. Elementary probability, calculus, and linear algebra. Basic programming experience.
CIS5220 - Deep Learning/Data Sci
Deep learning techniques now touch on data systems of all varieties. Sometimes, deep learning is a product; sometimes, deep learning optimizes a pipeline; sometimes, deep learning provides critical insights; sometimes, deep learning sheds light on neuroscience or vice versa. The purpose of this course is to deconstruct the hype by teaching deep learning theories, models, skills, and applications that are useful for applications.
CIS5450 - Big Data Analytics
In the new era of big data, we are increasingly faced with the challenges of processing vast volumes of data. Given the limits of individual machines (compute power, memory, bandwidth), increasingly the solution is to process the data in parallel on many machines. This course focuses on the fundamentals of scaling computation to handle common data analytics tasks. You will learn about basic tasks in collecting, wrangling, and structuring data; programming models for performing certain kinds of computation in a scalable way across many compute nodes; common approaches to converting algorithms to such programming models; standard toolkits for data analysis consisting of a wide variety of primitives; and popular distributed frameworks for analytics tasks such as filtering, graph analysis, clustering, and classification. Recommended: broad familiarity with probability and statistics, as well as programming in Python. Additional background in statistics, data analysis (e.g., in Matlab or R), and machine learning is helpful (example : ESE 5420).
CIS5970 - Master's Thesis Research
For students working on an advanced research leading to the completion of a Master's thesis.
CIS5990 - Master's Indep Study
For master's students studying a specific advanced subject area in computer and information science. Involves coursework and class presentations. A CIS 5990 course unit will invariably include formally gradable work comparable to that in a CIS 500-level course. Students should discuss with the faculty supervisor the scope of the Independent Study, expectations, work involved, etc.
CIS6200 - Adv Top in Mach Learning
This course covers a variety of advanced topics in machine learning, such as the following: statistical learning theory (statistical consistency properties of surrogate loss minimizing algorithms); approximate inference in probabilistic graphical models (variational inference methods and sampling-based inference methods); structured prediction (algorithms and theory for supervised learning problems involving complex/structured labels); and online learning in complex/structured domains. The precise topics covered may vary from year to year based on student interest and developments in the field.
CIS7000 - Cis-Topics
One time course offerings of special interest. Equivalent to a CIS 5XX level course.
CIS8950 - Teaching Practicum
Enrollment for students participating in Teaching Practicum.
CIS8990 - PhD Independent Study
For doctoral students studying a specific advanced subject area in computer and information science. The Independent Study may involve coursework, presentations, and formally gradable work comparable to that in a CIS 5000 or 6000 level course. The Independent Study may also be used by doctoral students to explore research options with faculty, prior to determining a thesis topic. Students should discuss with the faculty supervisor the scope of the Independent Study, expectations, work involved, etc. The Independent Study should not be used for ongoing research towards a thesis, for which the CIS 9990 designation should be used.
CIS9950 - Dissertation
For Ph.D. candidates working exclusively on their dissertation research, having completed enrollment for a total of ten semesters (fall and spring). There is no credit or grade for CIS 9950.
CIS9990 - Thesis/Diss Research
For students pursuing advanced research to fulfill PhD dissertation requirements.
COGS1001 - Intro Cognitive Science
How do minds work? This course surveys a wide range of answers to this question from disciplines ranging from philosophy to neuroscience. The course devotes special attention to the use of simple computational and mathematical models. Topics include perception, learning, memory, decision making, emotion and consciousness. The course shows how the different views from the parent disciplines interact and identifies some common themes among the theories that have been proposed. The course pays particular attention to the distinctive role of computation in such theories and provides an introduction to some of the main directions of current research in the field. It is a requirement for the BA in Cognitive Science, the BAS in Computer and Cognitive Science, and the minor in Cognitive Science, and it is recommended for students taking the dual degree in Computer and Cognitive Science.
COGS3998 - Senior Thesis
This course is a directed study intended for cognitive science majors who have been admitted to the cognitive science honors program. Upon admission into the program, students may register for this course under the direction of their thesis supervisor.
COGS3999 - Independent Study
Departmental permission required
EAS8980 - PhD CPT
PhD Student Curricular Practical Training (CPT) credit. Graduate students in Engineering who meet the USCIS eligibility criteria may apply for academic credit for the purposes of F-1 curricular practical training (CPT). In order to be eligible for CPT, students must have already completed one academic year (September to May) of course work, full-time at Penn, but have not completed all of their degree requirements.
https://grad.seas.upenn.edu/student-handbook/academic-options/curricular-practical-training/
ESE8990 - PhD Independent Study
For students who are studying a specific advanced subject area in electrical engineering. Students must submit a proposal outlining and detailing the study area, along with the faculty supervisor's consent, to the graduate group chair for approval. A maximum of 1 c.u. of ESE 8990 may be applied toward the MSE degree requirements. A maximum of 2 c.u.'s of ESE 8990 may be applied toward the Ph.D. degree requirements.
GCB9950 - Dissertation
Ph.D. students enroll in this course after passing their candidacy exam. They work on their dissertation full-time under the guidance of their dissertation supervisor and other members of their dissertation committee.
LING1005 - Intro Cognitive Science
How do minds work? This course surveys a wide range of answers to this question from disciplines ranging from philosophy to neuroscience. The course devotes special attention to the use of simple computational and mathematical models. Topics include perception, learning, memory, decision making, emotion and consciousness. The course shows how the different views from the parent disciplines interact and identifies some common themes among the theories that have been proposed. The course pays particular attention to the distinctive role of computation in such theories and provides an introduction to some of the main directions of current research in the field. It is a requirement for the BA in Cognitive Science, the BAS in Computer and Cognitive Science, and the minor in Cognitive Science, and it is recommended for students taking the dual degree in Computer and Cognitive Science.
PHIL1840 - Intro Cognitive Science
How do minds work? This course surveys a wide range of answers to this question from disciplines ranging from philosophy to neuroscience. The course devotes special attention to the use of simple computational and mathematical models. Topics include perception, learning, memory, decision making, emotion and consciousness. The course shows how the different views from the parent disciplines interact and identifies some common themes among the theories that have been proposed. The course pays particular attention to the distinctive role of computation in such theories and provides an introduction to some of the main directions of current research in the field. It is a requirement for the BA in Cognitive Science, the BAS in Computer and Cognitive Science, and the minor in Cognitive Science, and it is recommended for students taking the dual degree in Computer and Cognitive Science.
PSYC1333 - Intro Cognitive Science
How do minds work? This course surveys a wide range of answers to this question from disciplines ranging from philosophy to neuroscience. The course devotes special attention to the use of simple computational and mathematical models. Topics include perception, learning, memory, decision making, emotion and consciousness. The course shows how the different views from the parent disciplines interact and identifies some common themes among the theories that have been proposed. The course pays particular attention to the distinctive role of computation in such theories and provides an introduction to some of the main directions of current research in the field. It is a requirement for the BA in Cognitive Science, the BAS in Computer and Cognitive Science, and the minor in Cognitive Science, and it is recommended for students taking the dual degree in Computer and Cognitive Science.
PSYC4998 - Mentored Research
Mentored research involving data collection. Students do independent empirical work under the supervision of a faculty member, leading to a written paper. Normally taken in the junior or senior year.
PSYC4999 - Honors Mentored Research
The Honors Program has been developed to recognize excellence in psychology among Penn undergraduates and to enhance skills related to psychological research. The 4998 credit signifies an Honors Independent Study, completed as part of the Honors Program. The honors program involves: (a) completing a year-long empirical research project in your senior year under the supervision of a faculty member (for a letter grade). This earns 2 cu's. (b) completing a second term of statistics (for a letter grade) before graduation. (c) participating in the year-long Senior Honors seminar (for a letter grade). This seminar is designed especially for Psychology Honors majors; this receives a total of 1 cu. (d) participating in the Undergraduate Psychology Research Fair in the Spring semester, at which honors students present a poster and give a 15-minute talk about their research. (e) a total of 15 cu's in psychology is required. Students will be selected to be part of the Honors Program in the Spring of their junior year (see application process online)
STAT9950 - Dissertation
Dissertation