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It has been known since Basu (1975) and Stattman (1980) that high price ratio stocks

(e.g., price-earnings ratios, price-book ratios) earn lower returns than their peers. While one-

month differences between Growth and Value stocks have declined over time (Schwert, 2003;

Fama and French, 2020), return differences at longer horizons have remained substantial

(Delao, Han, and Myers, 2024)1 and play a large role in accounting for the level of prices

(van Binsbergen et al., 2023; Cho and Polk, 2024). Given that a stock’s price is the risk-

adjusted value of expected future cash flows, these realized return differences imply that high

price ratio stocks have low risk exposure, overly high expected cash flows, or a mix of both.

There is a long-standing debate over whether cross-sectional return differences are driven

by risk exposure or incorrect cash flow expectations.2 Our innovation is twofold.

First, using professional forecasts of both returns and cash flows, we decompose cross-

sectional differences in the level of price ratios. While one-month or one-year returns may

be relevant for traders, the level of price ratios is arguably of equal or greater relevance

for understanding the allocation of resources across firms (e.g., why are some firms valued

at five times earnings while others are valued at fifty times earnings?). To the best of our

knowledge, we are the first to quantify the fraction of cross-sectional dispersion in price ratios

that is explained by high price ratio stocks having lower subjective return expectations and

the fraction that is explained by high price ratio stocks having overly high subjective cash

flow expectations. We find that both components play a non-trivial role, however, incorrect

cash flow expectations are the quantitatively larger component.

Second, we document that errors in subjective cash flow expectations are “stubborn” in

the sense that they are insensitive to recent earnings surprises. On average, high price ra-

tio stocks have high subjective cash flow expectations which are not met by future realized

earnings. However, these negative earnings surprises do not lead to a large immediate revi-

sion in subjective expectations of future cash flows nor to a large immediate price change.
1Table I also confirms that long-term return differences are large even for 1999-2020.
2See Fama and French (1995) and Daniel and Titman (1997) for early evidence and Hou, Karolyi, and

Kho (2011) and Koijen, Lustig, and Van Nieuwerburgh (2017) for more recent explanations.
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Instead, earnings surprises predict a sequence of gradual adjustments in subjective cash flow

expectations and prices over the next several years. This aligns with the literature on post

earnings announcement drift but emphasizes that these stubborn expectations play an im-

portant role in the level of prices, not just one-month to one-year alphas around quarterly

earnings announcements.3 In particular, the presence of stubborn expectations helps to ex-

plain how errors in cash flow expectations can have a large impact on the level of prices,

as it becomes riskier for informed traders to bet against these expectations. The intuition

follows the famous adage, often attributed to Keynes, that “markets can remain irrational

longer than you can remain solvent.”

For our empirical analysis, we utilize a cross-sectional version of the Campbell-Shiller

decomposition.4 Using professional forecasts, we find that 43.3% of dispersion in price-

earnings ratios is accounted for by high price ratio firms having higher expected four-year

earnings growth and 12.7% of dispersion is accounted for by high price ratio firms having

lower expected four-year returns.5 Thus, both higher expected earnings growth and lower

expected returns help to explain high valuation stocks. Interestingly, while Greenwood and

Shleifer (2014) show that expected returns are positively correlated with price ratios in the

aggregate time series, in the cross-section investors correctly expect lower returns for high

price-ratio firms.6 The remaining dispersion is explained by expectations of future price-

earnings ratios, which reflect expectations of earnings growth and returns beyond four years.

For comparison, realized four-year earnings growth and negative returns account for 9.9%

and 32.0% of price-earnings ratio dispersion, respectively. This means that, empirically, high

price ratio firms are primarily characterized by lower future returns than their peers, rather
3For example, Chan, Jegadeesh, and Lakonishok (1996) and Skinner and Sloan (2002) show significant 3-

to 12-month return differences across portfolios sorted by earnings surprises.
4Because this decomposition is derived from an identity, it holds even if expectations differ from the

objective distribution.
5For concision, we shorten “subjective expected earnings growth” and “subjective expected returns” to

simply “expected earnings growth” and “expected returns.” Any time we refer to FIRE (full-information
rational expectations) beliefs, we clearly specify that we are using the FIRE-implied distribution.

6Dahlquist and Ibert (2024), Bastianello (2024), Büsing and Mohrschladt (2023), and Couts et al. (2024)
also find evidence that expected returns are negatively related to price ratios.
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than by higher future earnings growth. Thus, investors overestimate the earnings growth of

high price ratio firms, which leads to consistent disappointment in earnings growth for these

firms. While investors do expect lower returns for high price ratio firms, they understate the

magnitude of this relationship. Consistent with the fact that investors are disappointed by

realized earnings growth, the realized returns on high price ratio firms are even lower than

investors expected.

Given these errors in expectations, a natural question is how prices and expectations

adjust over time as future earnings are realized. Under FIRE (full-information rational

expectations), realized earnings being higher than expected should lead to an almost 1-for-

1 immediate revision in expected future earnings and should not predict any subsequent

revisions in earnings expectations. Empirically, we find that earnings surprises predict an

immediate revision in expected earnings of only 0.11 to 0.14 and predict a sequence of

additional revisions of 0.09 to 0.12 in each of the subsequent years. To confirm that this

gradual adjustment is not merely an artifact of the subjective expectations data, we show

that returns follow a similar path both qualitatively and quantitatively. Earnings surprises do

not translate 1-for-1 into immediate returns. Instead, earnings surprises predict a sequence

of returns of 0.12 to 0.15 in the current year and each of the subsequent years.

While we mainly focus on cross-sectional dispersion in price ratios, we can extend these

tests to understand anomaly returns. Focusing on portfolios sorted by 20 different anomalies

from Hou, Xue, and Zhang (2015), we consistently find that earnings surprises result in only

minor revisions to future earnings expectations, in line with our results for high and low

price ratio stocks. Further, we find that realized one-year returns on anomalies are much

higher than investors expected and that errors in earnings expectations are large enough to

account for the entirety of these unexpected anomaly returns. In fact, we find that one-year

earnings surprises are larger than the one-year unexpected returns, again indicating that

earnings surprises do not immediately translate 1-1 into one-year returns.

How do these findings fit with FIRE and non-FIRE models? While evidence of errors in
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expectations obviously points against FIRE, the more surprising result is that standard FIRE

models struggle to match the magnitude of the empirical relationship between price-earnings

ratios and future returns. While risk premia related to growth options or adjustment costs

(Berk, Green, and Naik, 1999; Zhang, 2005) can generate return differences between high and

low price-earnings ratio stocks, we find that these models predict a relationship that is an

order of magnitude smaller than what we observe in the data. In contrast, we find that several

common behavioral models struggle to match our evidence of stubborn expectations. For

example, if agents extrapolate from current earnings growth or have diagnostic expectations

of earnings growth, then prices should be highly sensitive to recent realized earnings, and

earnings surprises should translate into large immediate returns.

To explain our empirical findings, we show that constant-gain learning generates volatile

prices and reversals (i.e., high price ratios predicting lower future returns) while still match-

ing our evidence of stubborn expectations. In the spirit of Nagel and Xu (2022), we propose

a model in which agents learn about mean earnings growth, and we make a small but qualita-

tively important change by including temporary shocks to the level of earnings. Relative to a

FIRE benchmark, constant-gain learning with temporary level shocks increases the volatility

of prices and returns substantially due to waves of optimism/pessimism about future earn-

ings. Because of the temporary level shocks, these errors in expectations are stubborn and

prices only adjust gradually as future earnings are realized, as earnings surprises are largely

attributed to the temporary level shocks.7 Expanding the model to include risk premia

based on cash flow timing à la Lettau and Wachter (2007) allows the model to also match

our results on subjective returns expectations and improves the model’s ability to match the

persistence and cross-sectional dispersion of price ratios.

We then estimate and quantitatively test our constant-gain learning model. We set

the constant-gain parameter to match previous studies on constant-gain learning (Milani,
7In models of learning about mean earning growth without these temporary level shocks, such as Lewellen

and Shanken (2002) and Nagel and Xu (2022), the agent believes log earnings follow a random walk. Because
of this, prices adjust at least 1-1 to earnings surprises.
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2007; Malmendier and Nagel, 2016; Nagel and Xu, 2022) and estimate the remaining 5

parameters solely using realized earnings growth and average aggregate returns. Despite not

using any cross-sectional information, the model successfully replicates our decomposition

results. Both in terms of magnitudes and timing, the model outperforms standard FIRE

models in matching the realized dynamics of price-earnings ratios, earnings growth, and

returns and outperforms common behavioral models in matching the dynamics of subjective

expectations. Further, the model matches several untargeted aggregate and cross-sectional

asset pricing moments.

The quantified structural model allows us to extend our empirical results in two ways.

First, we can go beyond the four-year horizon to estimate that expected earnings growth and

expected returns for all horizons account for two-thirds (65.7%) and one-third (34.3%) of

price-earnings ratio dispersion, respectively. This is largely due to errors in earnings growth

expectations, which account for half (50.8%) of all price-earnings ratio dispersion.

Second, we examine how constant-gain learning interacts with risk premia related to

cash flow timing to drive expected earnings growth and expected returns. Their combined

effect is crucial for generating realistic price volatility, dispersion in price-earnings ratios

and persistence in price-earnings ratios. For example, compared to an economy with no

learning and no risk premia, introducing only risk premia has little impact on the dispersion

in price-earnings ratios and introducing only learning increases the dispersion by a factor of

2.1. However, introducing both increases the dispersion by a factor of 4.5. This highlights

the benefit of unifying non-FIRE earnings growth expectations and risk premia related to

cash flow timing, as the interaction magnifies the sensitivity of prices to changes in beliefs.

Broadly, this paper contributes to the growing literature using subjective expectations

to understand asset prices.8 In the cross-section, errors in firm-level professional earnings

forecasts have been strongly linked to future returns (La Porta, 1996; Frankel and Lee, 1998;
8Amromin and Sharpe (2014); Greenwood and Shleifer (2014); Piazzesi, Salomao, and Schneider (2015);

Cassella and Gulen (2018); Delao and Myers (2021); Nagel and Xu (2022); Bordalo et al. (2024a); and Gandhi
et al. (2024) utilize survey expectations for aggregate outcomes such as returns, cash flows and yields.
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Da and Warachka, 2011; So, 2013; Weber, 2018, Bouchaud et al., 2019, van Binsbergen,

Han, and Lopez-Lira, 2022).9 We differ from these studies in two important ways. First and

foremost, we focus on explaining cross-sectional differences in the level of price ratios, rather

than short-term returns. While understanding short-term returns or fluctuations in price

ratios is important, understanding the level of a firm’s price ratio is of first-order importance

for a firm owner or a policy maker interested in allocations. We document stubborn errors

in subjective cash flow expectations, which do not translate immediately into large one-

period returns, but do play a substantial role in generating large differences between firms

in the level of price ratios. Second, by utilizing expectations of both earnings growth and

returns, we quantify the relative importance of these two expectations in accounting for

cross-sectional dispersion in price-earnings ratios and returns.10 This decomposition sheds

light on the relative importance of risk (discount rates) and mispricing in stock prices.

Our structural model builds on the literature on learning about mean consumption or cash

flow growth (Lewellen and Shanken, 2002; Collin-Dufresne, Johannes, and Lochstoer, 2016;

Nagel and Xu, 2022) and incorporates risk premia related to cash flow timing, similar in spirit

to Lettau and Wachter (2007). We provide new evidence supporting these types of learning

models using the cross-sectional dynamics of stocks and show that incorporating learning

about temporary shocks to the level of earnings generates distinct qualitative predictions

for the timing of earnings growth surprises and returns. We also highlight that learning

about cash flows naturally complements risk premia related to cash flow timing. Even if the

objective timing of cash flows is relatively similar across all firms (Chen, 2017), these risk

premia can still play an important role in stock prices so long as investors believe there is a
9Further, Kozak, Nagel, and Santosh (2018) and Engelberg, Mclean, and Pontiff (2018) find that short

legs of multiple long-short anomaly strategies comprise stocks with more optimistic earnings forecasts and
Engelberg, McLean, and Pontiff (2020) find that anomaly short legs comprise stocks with more optimistic
return forecasts. Similarly, Décaire and Graham (2024) use subjective expectations to study fluctuations in
price ratios, and Bordalo et al. (2024b) use errors in earnings expectations to explain the level and fluctuations
in anomaly returns such as HML and RMW.

10This differs from the implied cost of capital approach (Chen, Da, and Zhao, 2013; Hommel, Landier,
and Thesmar, 2023) in which discount rates are inferred using earnings expectations for observable horizons
and assumptions about long-term industry growth or GDP growth.
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large difference in the timing of cash flows. In other words, as argued in Jensen (2024), once

we depart from FIRE, the compensation for risk that investors require should be disciplined

by data on investors’ believed risks, not the objective risks.

The rest of the paper is organized as follows. Sections I and II discuss the decomposition

and data utilized in our empirical exercises. Section III shows the results of the decompo-

sition of price-earnings ratio dispersion and compares these findings to the predictions of

several FIRE models. Section IV shows the evidence of stubborn expectations, discusses

how this relates to several non-FIRE models, and extends our results to anomaly returns.

Section V discusses robustness tests. Section VI proposes a structural model of stubborn

expectations and volatile prices based on constant-gain learning. Section VII quantifies and

tests the structural model, estimates the infinite horizon decomposition of price-earnings ra-

tio dispersion, and analyzes the interaction of learning and risk premia in generating realistic

cross-sectional asset price moments.

I. Decomposing the cross-section of price ratios

While a large amount of the asset pricing literature has focused on the cross-section of short-

term returns, relatively less attention has been paid to the cross-section of prices or price

ratios.11 In particular, we want to understand what can account for the large empirical

dispersion in price ratios across stocks, e.g., why do some stocks trade at 50 times earnings

while others only trade at 10 times earnings?

To understand dispersion in stock price ratios and how this dispersion relates to subjective

cash flow growth expectations and subjective discount rates, we focus on a cross-sectional

version of the Campbell-Shiller decomposition. In terms of notation, E∗
t [·] denotes subjective

expectations. All other operators use the objective probability distribution. For example,

V ar (·) and Cov (·, ·) denote the observable variance or covariance of variables.
11See Cochrane (2011) for a discussion, “When did our field stop being ‘asset pricing’ and become ‘asset

expected returning’?”
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For any stock or portfolio of stocks i, the one-year ahead return ri,t+1 can be approximated

in terms of the price-earnings ratio pxi,t, future earnings growth ∆xi,t+1, and the future price-

earnings ratio, all in logs:

ri,t+1 ≈ κ+∆xi,t+1 + ρpxi,t+1 − pxi,t, (1)

where κ and ρ < 1 are constants.12 To understand cross-sectional dispersion in price-

earnings ratios, let p̃xi,t be the cross-sectionally demeaned price-earnings ratio of portfolio

i and let ∆x̃i,t+1 and r̃i,t+1 be the cross-sectionally demeaned earnings growth and returns.

Rearranging equation (1) and applying subjective expectations E∗
t [·], we see that a higher

than average price-earnings ratio must be explained by higher than average expected earnings

growth, lower than average expected returns, or a higher than average expected future price-

earnings ratio,

p̃xi,t ≈
h∑

j=1

ρj−1E∗
t [∆x̃i,t+j]−

h∑
j=1

ρj−1E∗
t [r̃i,t+j] + ρhE∗

t

[
p̃xi,t+h

]
. (2)

Importantly, equation (2) does not require that expectations are rational. Because this

equation is derived from an identity, it holds under any subjective probability distribution.

To measure the relative contribution of subjective cash flow growth expectations and

subjective discount rates to the dispersion in price-earnings ratios, we decompose the variance

of p̃xi,t into three components:

1 ≈

Cov

 h∑
j=1

ρj−1E∗
t [∆x̃i,t+j ] , p̃xi,t


V ar

(
p̃xi,t

)︸ ︷︷ ︸
CFh

+

Cov

−
h∑

j=1

ρj−1E∗
t [r̃i,t+j ] , p̃xi,t


V ar

(
p̃xi,t

)︸ ︷︷ ︸
DRh

+ ρh
Cov

(
E∗

t

[
p̃xi,t+h

]
, p̃xi,t

)
V ar

(
p̃xi,t

)︸ ︷︷ ︸
FPXh

.

(3)

Note that V ar
(
p̃xi,t

)
is the average squared cross-sectionally demeaned price-earnings ratio,

which means it measures the average cross-sectional dispersion in price-earnings ratios. The
12Note that this approximation still holds even for non-dividend paying firms. Appendix B discusses the

log-linearization in more detail including the role of the payout ratio.
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coefficients CFh and DRh give a quantitative measure of how much dispersion in price-

earnings ratios is accounted for by dispersion in earnings growth expectations and how much

is accounted for by dispersion in discount rates. Applying the decomposition to multiple

horizons h provides information about the timing of expected earnings growth and discount

rates. Additionally, the terms in equation (3) can be interpreted as the coefficients from

univariate regressions with time fixed effects, e.g., a one unit increase in pxi,t is associated

with a CF1 unit increase in expected one-year earnings growth.

When we estimate equation (3) using professional forecasts, we will use expectations

of price growth E∗
t [∆pi,t+j] as a proxy for expectations of returns E∗

t [rt+j]. Empirically,

realized price growth and returns are closely related with a correlation of 0.997 to 0.999 for

the j = 1, ..., 4 horizons that we study in our analysis. However, to ensure that the use of

this proxy does not impact the results, we also estimate an exact decomposition based on

price growth in Appendix C.1. Because this alternative decomposition is an exact identity,

it also addresses any concerns that cross-sectional differences in payout ratios between high

and low price-earnings ratio firms may impact the approximation error in equation (3). As

shown in Tables I and AI, the results of this exact decomposition closely match the results

from equation (3). Further, Delao, Han, and Myers (2024) show that payout ratios do not

account for cross-sectional differences in price-earnings ratios, i.e., high price-earnings ratios

are not associated with higher or lower dividend-earnings ratios.

II. Data

The firm-level realized earnings and prices are collected from Compustat and CRSP. The

firm-level expected earnings and prices are collected from I/B/E/S (Institutional Brokers’

Estimate System) and Value Line. To perform the decomposition from Section I, we sort

these firms into the classic Value and Growth portfolios.13 Specifically, for each month t,
13We focus on these portfolios to connect to a long literature studying Value and Growth portfolios.

Additionally, by aggregating firms into portfolios, we can study cash flow growth and discount rates without
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we construct five value-weighted portfolios sorted by book-to-market.14 For these portfolios,

we measure the expectations at time t for earnings growth, price growth, and the future

price-earnings ratio over the next four years. We also track the realized buy-and-hold future

earnings growth, returns, and price-earnings ratios over the next four years. The main

sample, which contains expectations of both earnings growth and price growth, ranges from

1999 to 2020. For robustness tests, we also use a long sample which ranges from 1982 to

2020 and contains earnings growth expectations. The subsections below provide more detail

on the firm-level variable measurements.

A. Realized data

The sample of stocks consists of all common stocks (share code 10 and 11) listed on NYSE,

AMEX, and NASDAQ. We obtain monthly prices, returns, and shares outstanding from

the Center for Research in Security Price (CRSP). The firm-level accounting variables are

constructed from the quarterly Compustat database. Following Davis, Fama, and French

(2000) and Cohen, Polk, and Vuolteenaho (2003), we define book value as stockholders’

book equity, plus deferred taxes and investment tax credit if available, minus the book

value of preferred stock. If stockholders’ book equity is not available at Compustat, we

define it as the book value of common equity plus the par value of preferred stock, or the

book value of assets minus total liabilities in that order. Depending on availability, we

use redemption or par value for the book value of preferred stock. To be consistent with

the I/B/E/S’s definition of earnings, we define earnings as Compustat net income (item

NIq) excluding non-I/B/E/S items, which comprise extraordinary items and discontinued

operations (item XIDOq), special items (item SPIq), and non-recurring income taxes (item

NRTXTq). This aligns with the measure of earnings proposed in Hillenbrand and McCarthy

needing to drop firms with negative future earnings or negative forecasted earnings, whereas studies of
firm-level implied cost of capital are generally forced to exclude these firms.

14The book-to-market ratio is measured using the market-cap in the portfolio formation month and the
total book value from the most recent four quarters. To account for potential data errors, we exclude firms
with book-to-market ratios over 100 or below 0.01.
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(2022). At every month, annual earnings at the firm level are defined as the sum of quarterly

earnings from the most recent four quarters.15 The main sample includes all firms which have

observable returns ri,t+j, earnings growth ∆xi,t+j, and price-earnings ratios pxi,t+j in future

years j = 1, 2, 3, 4. We require a future observation so that we can calculate forecast errors

for the subjective expectations. However, for robustness, in Appendix C.4, we drop this

requirement and estimate a decomposition using delisting returns to reinvest any delisting

firms and find similar results.

B. Subjective expectations

The subjective earnings and short-term price expectations are extracted from the I/B/E/S

Database. The Summary Statistics of the I/B/E/S Database contains the median forecasts

for EPS (earnings per share) since 1976 for shorter horizons and 1982 for longer horizons

for U.S. publicly traded firms and the median forecasts for prices at the 12-month horizon

since 1999. I/B/E/S gathers their forecasts from hundreds of brokerage and independent

analysts who track firms as part of their investment research work. Because the forecasts are

not anonymous, analysts have a strong incentive to accurately report their expectations.16

Furthermore, research on I/B/E/S suggests that financial companies’ trades are consistent

with their own analysts’ forecasts and recommendations, which adds to the evidence that

reported forecasts genuinely reflect the beliefs of the companies.17 More importantly, market

participants take seriously these analyst forecasts and trade in line with them, with stock

prices increasing (decreasing) shortly after upward (downward) revisions in analyst earnings

forecasts (Kothari, So, and Verdi 2016).

The long-term price expectations are obtained from the three-to-five-year price targets

from the Value Line Investment Survey. Value Line is an independent investment research
15To account for possible data errors or extreme outliers, we winsorize annual earnings cross-sectionally

at the 1% level.
16See Mikhail, Walther, and Willis (1999) and Cooper, Day, and Lewis (2001).
17Bradshaw (2004) shows that individual earnings forecasts are correlated to Buy/Sell recommendations,

while Chan, Chang, and Wang (2009) show that financial companies’ own stock holding changes are signifi-
cantly positively related to recommendation changes.
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and financial publishing firm. The price targets cover approximately 1,700 actively traded

U.S. companies every period, approximately 90% of the US publicly listed firms market

value.18 Value Line does not have any investment banking relation with the analyzed firms,

nor any other obvious reason for providing biased forecasts. To the best of our knowledge,

this is the only widely available survey containing firm-level price forecasts at long horizons.

We construct monthly earnings expectations for every firm in I/B/E/S at different hori-

zons by using the EPS forecasts for up to three Annual Fiscal Periods (FY1-FY3) and the

Long-Term Growth measure (LTG) meant to forecast earnings growth over the next “three-

to-five years.” For each month, we first interpolate across the different horizons in the annual

fiscal periods to estimate an expectation over the next twelve months. We repeat this proce-

dure to calculate two-year expectations. To estimate the three-year expectations, we use the

two-year expectations and compound them with the long-term growth forecasts. We repeat

this procedure to get four-year earnings expectations. We exclude from the main sample

the following firms: a) firms without a LTG forecast, b) firms that do not have sufficient

forecasts to calculate a 12-month interpolated forecast E∗
t [∆xi,t+1], and c) firms that do

not have sufficient forecasts in the next year to calculate a 12-month interpolated forecast,

E∗
t+1 [∆xi,t+2].19

To estimate the price expectations, we obtain the one-year price expectations from the

price target in I/B/E/S. We then calculate the four-year price expectation as the three-to-five

year price targets from Value Line. We exclude from the main sample those firms missing

either a one-year or a three-to-five year price forecast. Since analysts update earnings and

price forecasts every month, our expectation data are also in monthly frequency. The main

sample covers on average 79.7% of the total market size of firms listed for at least four years

in CRSP.
18Value Line is an industry standard to the extent that it has been documented that a large portion of

investment newsletters herds towards Value Line recommendations (Graham, 1999).
19This last point ensures that for every firm in the main sample we can calculate revisions E∗

t+1 [∆xi,t+2]−
E∗

t [∆xi,t+2]. This allows us to study how expectations of future earnings growth are revised after earnings
growth surprises.
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III. Empirical decomposition

Table I and Figure 1 show the results of decomposition (3) applied both in a FIRE (Full

Information Rational Expectations) benchmark and using the subjective expectations. The

results show the fraction of price-earnings ratio dispersion that is explained by cumulative

earnings growth expectations
h∑

j=1

ρj−1E∗
t [∆x̃i,t+j] at h = 1, 2, 3, and 4 years, as well as the

fraction that is explained by cumulative return expectations
h∑

j=1

ρj−1E∗
t [r̃i,t+j].

We first apply the decomposition under the FIRE benchmark using realized values and

compare the results with several FIRE models of risk premia. Overall, we find that these

FIRE models struggle to match the decomposition results for realized earnings growth and

returns. We then compare this FIRE benchmark with a decomposition using subjective

expectations. In Section IV, we examine in more detail the dynamics of these subjective

expectations, compare them with several behavioral and learning models, and extend our

analysis to anomaly returns.

A. FIRE Benchmark

Let EFIRE
t [·] denote expectations under FIRE. Because forecast errors ∆x̃i,t+j−EFIRE

t [∆x̃i,t+j]

are uncorrelated with time t variables under FIRE, we know that Cov
(
EFIRE

t [∆x̃i,t+j] , p̃xi,t

)
=

Cov
(
∆x̃i,t+j, p̃xi,t

)
. The same logic also applies to FIRE expectations of future returns and

future price-earnings ratios. Thus, the FIRE columns of Table I show the estimates of

CFh, DRh, FPXh for each year h = 1, 2, 3, 4 using the covariance of p̃xi,t with realized fu-

ture earnings growth, returns, and price-earnings ratios. For every coefficient, we report the

Driscoll-Kraay standard errors, which account for very general forms of spatial and serial

correlation, as well as the block-bootstrap standard errors, following the Martin and Wagner

(2019) procedure.

Empirically, high price-earnings ratios are associated with lower future returns and slightly

higher future earnings growth. The first column of Table I shows that 10.3% of dispersion
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Figure 1. Expected and realized decomposition of price-earnings ratios. This
figure illustrates the earnings growth and returns components of the cross-sectional decomposition of p̃xi,t

in equation (3). The light bars show the contribution of realized earnings growth and realized returns to
the dispersion of price-earnings ratios obtained in the FIRE columns of Table I. The dark bars show the
contribution of expected earnings growth and expected returns to the dispersion of price-earnings ratios
obtained in the Expected columns of Table I. Each bar shows Driscoll-Kraay 95% confidence intervals.

in price-earnings ratios is accounted for by differences in one-year future earnings growth

and 14.3% is accounted for by differences in one-year future returns. The remaining 74.6%

is accounted for by the future price-earnings ratio.20 At first glance, the statistically sig-

nificant DR1 may be surprising given that the value premium has generally been found to

be insignificant over recent years (Gonçalves and Leonard, 2023). This is because the value

premium is simply measured as the difference in average returns between the highest and

lowest price ratio portfolios, which is equivalent to regressing returns onto a dummy variable.

Regressing returns onto price-earnings ratios utilizes more information and shows that there

are predictable differences in returns between portfolios even in the recent 1999-2020 sam-

ple.21 Gonçalves and Leonard (2023) find a similar result, showing that regressing returns
20Note that the three coefficients CFh, DRh and FPXh are not mechanically set to equal one. However,

the sum of these coefficients is very close to unity, summing to 0.992, 0.983, 0.975 and 0.969 for each of the
four yearly decompositions, which shows that equation (3) holds very tightly, and any potential deviations
from the approximation (2) are not correlated with firms’ price-earnings ratios.

21For example, the average low-minus-high return spread between our lowest price ratio portfolio and
highest price ratio portfolio is insignificant. However, regressing this return spread onto the difference in
price-earnings ratios (p̃xL,t − p̃xH,t) gives a significant relationship even at the 1% confidence level.
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onto price-to-fundamentals ratios gives significant results despite the insignificant average

value premium.

Continuing with the FIRE results, we see that DRh accounts for a larger and larger

share of price-earnings ratio dispersion as we extend to longer horizons. As shown in the

h = 4 column of Table I, differences in future four-year returns account for nearly a third of

all price-earnings ratio dispersion (32.0%).22 In comparison, the contribution of future cash

flows CFh remains fairly flat at around 0.1 at all horizons.

The large role of returns in explaining price ratio dispersion poses a quantitative challenge

for traditional FIRE asset pricing models. Even models designed to generate a short-term

value premium (i.e., low expected returns for high price ratio stocks) struggle to generate

enough dispersion in expected returns to match our findings. In Table II, we simulate three

FIRE models for the value premium (Berk et al., 1999; Zhang, 2005; Lettau and Wachter,

2007) using their benchmark specifications and calculate the model-implied CFh and DRh.

As shown by the value of DRh, in these models, differences in expected returns only account

for a small fraction of the dispersion in price-earnings ratios.

Specifically, the three models imply that future returns over the next four years should

account for less than 6% of dispersion in price-earnings ratios while, empirically, we find

that they account for 32%. In the data and (to some extent) in the models, DRh increases

as we include more horizons. Thus, we also calculate in the model the maximum amount

of dispersion that can be explained by returns DR∞ and find that it is still an order of

magnitude smaller than what we observe in the data using just the first four years of realized

returns. These results highlight the importance of a quantitative framework. While there

are certainly FIRE models in which high price ratio stocks have lower exposure to systematic

risk, it is difficult to generate a risk premium that is quantitatively large enough to match

the observed relationship between price-earnings ratios and future returns.
22These results are consistent with Delao, Han, and Myers (2024), who use a longer sample (1963-2020)

to show that at least 43.6% of dispersion in price-earnings ratios are reflected in differences in returns after
ten years.
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Table II

Decompositions in FIRE Asset Pricing Models
This table calculates the variance decomposition for the price-earnings ratio in different asset pricing models and reports the
implied cash flow and discount rate components for one year (CF1, DR1) and four years (CF4, DR4), as well as the infinite-
horizon DR∞. The first, second, and third rows show the results for models of risk premia. These three models are the model
of growth options in Berk et al. (1999), the model of costly reversibility of capital in Zhang (2005), and the model of duration
risk in Lettau and Wachter (2007). The last row shows the values measured in the data. All models are solved and estimated
using the original author calibrations and simulated over a 20-year sample.

Models CF1 CF4 DR1 DR4 DR∞

Berk, Green, & Naik 1999 (Growth Options) 0.61 0.85 0.01 0.03 0.04
Zhang 2005 (Costly Reversibility of Capital) −0.31 0.69 −0.01 −0.03 −0.03
Lettau & Wachter 2007 (Duration Premium) 0.03 0.24 0.02 0.06 −0.04

Observed Data (Main Sample) 0.10 0.10 0.14 0.32 n.a.

Why do these models struggle to generate large DRh? Broadly, these models cover three

distinct mechanisms for generating a value premium. However, all three can be thought

of as settings in which agents exhibit preferences for the timing of cash flows. In Berk

et al. (1999) and Zhang (2005), existing projects (or capital) cannot be adjusted easily in

response to aggregate shocks. Instead, firms primarily adjust their choices about initiating

new projects or installing new capital when aggregate shocks occur. Thus, firms whose

value primarily comes from future potential projects (capital) rather than existing projects

(capital) carry a lower risk premium, as they can more easily respond to aggregate shocks.

In Lettau and Wachter (2007), aggregate shocks are partly reversed over time, reducing the

exposure of longer-horizon cash flows to aggregate risk. Firms whose value mostly comes

from future cash flows rather than current cash flows therefore carry a lower risk premium.

Because agents have rational expectations and know the objective parameters in these

models, each firm’s risk premium is tied to the objective timing of its cash flows. High

price ratio stocks can only carry a low risk premium if they objectively have much more

backloaded cash flows (i.e., much higher cash flow growth) than their peers. Thus, these

models inherently struggle to match the empirical results, in which firms only differ slightly

in their objective future cash flow growth but differ substantially in their objective future
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returns.23 Appendix E discusses the three models and the simulations in more detail. In

Section VI, we propose a model that incorporates this type of preference for the timing of

cash flows but, importantly, we do not impose FIRE. In the quantified model, we find that

these preferences play an important role in generating cross-sectional dispersion in price

ratios because agents believe that firms differ substantially in their future cash flow growth,

even though the objective differences in future cash flow growth are minimal.

B. Subjective Expectations

The subjective columns of Table I and Figure 1 show the results of the decomposition when

we use subjective expectations of earnings growth, returns, and future price-earnings ratios

rather than assuming FIRE. Given that price forecasts are only available at the one-year

and four-year horizon, we show DRh and FPXh for h = 1, 4 and CFh for all horizons

h = 1, 2, 3, 4. Comparing the subjective results to the FIRE results, there are two important

findings.

First, investors substantially overestimate the extent to which high price-earnings ratio

stocks will have high future earnings growth. Differences in expected one-year earnings

growth account for nearly a third (33.1%) of all dispersion in price-earnings ratios and

differences in expected four-year earnings growth account for 43.3% of all price-earnings

ratio dispersion. Given that realized one-year and four-year earnings growth only account

for 10.3% and 9.9% of the dispersion, respectively, this means that high price-earnings ratios

are consistently associated with disappointment in future earnings growth. Rephrased, more

than a third of all dispersion in price-earnings ratios is accounted for by the fact that current

price-earnings ratios significantly negatively predict future forecast errors (as shown in the

“Error” columns). The final row of Table I shows that our earnings growth results are

qualitatively and quantitatively similar over the longer 1982-2020 sample.
23In general, these models would require extremely large risk aversion in order for the primary effect of

differences in future cash flow growth (i.e., CFh) to be dominated by the secondary effect that differences in
cash flow growth generate differences in discount rates (i.e., DRh). These levels of risk aversion would imply
that these models would no longer match the aggregate equity premium.
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Second, investors understand that expensive stocks will have lower returns (i.e., a high

price-earnings ratio is associated with lower expected returns), but they underestimate the

magnitude of the relationship. As shown in the second row of Table I, differences in expected

one-year returns account for 3.3% of dispersion in price-earnings ratios and differences in ex-

pected four-year returns account for 12.7%. This contrasts sharply with previous findings

for aggregate return expectations, which positively comove with aggregate price ratios (Am-

romin and Sharpe, 2014; Greenwood and Shleifer, 2014; Delao and Myers, 2021). Consistent

with the fact that investors overestimate future earnings growth for high p̃xi,t, we find that

they consistently overestimate the returns for high p̃xi,t. In other words, while investors

expect lower returns for high p̃xi,t stocks, the realized returns are even worse than expected.

Combined, these two findings emphasize that the mistakes in investors’ expectations are

about magnitudes, not directions. Investors understand that high price-earnings ratios are

associated with higher future earnings growth and lower future returns, but they overestimate

the magnitude of the earnings growth relationship and underestimate the magnitude of the

return relationship. This highlights the benefit of using a quantitative decomposition which

captures magnitudes as well as correlations to study these expectations.

IV. Stubbornness in expectations

The results of Section III indicate that errors in earnings growth expectations account for

a notable amount of dispersion in price-earnings ratios. Given that we observe earnings

expectations at multiple horizons, in Section IV.A we examine how earnings expectations

are revised as future earnings are realized. The key finding is that earnings expectations

are “stubborn,” meaning that positive earnings growth surprises actually lower expected

next period earnings growth, as earnings are forecasted to return to their previous levels.

This can be more easily understood when we frame the result in levels rather than growth.

We show that earnings surprises only lead to small revisions in expected x̃i,t+2, x̃i,t+3, and
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x̃i,t+4. In Section IV.B, we discuss how these stubborn expectations differ from expectation-

formation models such as Hirshleifer, Li, and Yu (2015), Bordalo et al. (2024a), Lewellen

and Shanken (2002) and Nagel and Xu (2022), in which expectations for future earnings

are sensitive to recent realizations. In Section IV.C, we extend these results to 20 different

anomaly returns.

A. Gradual adjustment to surprises

To understand the response to earnings surprises, we regress revisions in expectations on the

earnings surprise x̃i,t+1 − E∗
t [x̃i,t+1]. To give a benchmark, we first consider the regression

x̃i,t+h − E∗
t [x̃i,t+h] = αh + γh (x̃i,t+1 − E∗

t [x̃i,t+1]) + εt+h (4)

for h = 2, 3, 4 years. We estimate γ2 = 0.91∗∗∗, γ3 = 0.89∗∗∗, and γ4 = 0.89∗∗∗, and the black

dashed line of Figure 2 shows these results for realized future earnings.

We then estimate the revision in expectations after an earnings surprise,

E∗
t+j [x̃i,t+h]− E∗

t+j−1 [x̃i,t+h] = α∗
h,j + γ∗

h,j (x̃i,t+1 − E∗
t [x̃i,t+1]) + ηh,t+j (5)

for 1 ≤ j < h. The coefficient γ∗
h,j captures how much earnings surprises at t + 1 predict

forecast revisions at time t + j.24 Under FIRE, these revisions should happen immediately

and there should be no further predictable revisions nor predictable forecast errors, i.e.,

γ∗
h,1 = γh and γ∗

h,j = 0 for j > 1.

Columns 1-3 of Table III Panel A show the results for γ∗
h,j. Figure 2 shows the cumulative

sum of the γ∗
h,j coefficients, i.e., how much E∗

t+j [x̃i,t+h] − E∗
t [x̃i,t+h] responds to x̃i,t+1 −

E∗
t [x̃i,t+1]. Rather than an immediate large revision, we find a sequence of gradual revisions

over the next three years. After a one unit positive earnings surprise, earnings are expected

to largely revert back to their previous levels, as shown by the first green line of Figure
24This is the complement of Coibion and Gorodnichenko (2015) regressions. Rather than studying how

a single revision predicts future forecast errors over time, this regression tests how a single forecast error
predicts a sequence of future revisions. To measure these revisions, in Table III and Figures 2 and 5, we
restrict our portfolios to firms for which revisions are observed for h = 2, 3, 4 which only reduces the total
market value in our portfolios by 1.8%. This restriction is not imposed for any other tables.
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Figure 2. Revisions after an earnings surprise. This figure illustrates the gradual revision
in expectations of future earnings following an earnings surprise at t + 1. Each solid line represents the
revised expected path of earnings, E∗

t+j [x̃i,t+h] − E∗
t [x̃i,t+h], after a one unit earnings surprise, x̃i,t+1 −

E∗
t [x̃i,t+1]. The line Revision at t+1 represents the coefficients γ∗

h,1, Revision at t+2 shows the cumulative
sum

∑2
j=1 γ

∗
h,j , and Revision at t+3 shows the cumulative sum

∑3
j=1 γ

∗
h,j . The dashed line shows the

benchmark γh from equation (4), representing the impact of earnings surprises on future realized earnings.

2. Expectations of x̃i,t+2, x̃i,t+3, x̃i,t+4 are only revised upwards by 0.14, 0.11, and 0.11

respectively. Because of this small revision, in the following year (t + 2), investors are on

average positively surprised by the x̃i,t+2 earnings and revise their expectations for x̃i,t+3

and x̃i,t+4 by an additional 0.12 and 0.09. This small revision means that investors are again

positively surprised in period t+3 by x̃i,t+3 and revise their expectations for x̃i,t+4 by another

0.11.

A natural question is whether this stubborn adjustment to new information is unique

to analyst forecasts or if it extends to market prices more broadly. To investigate this, we

examine how stock returns respond to earnings surprises using the following specification:

r̃i,t+j = λj + θj (x̃i,t+1 − E∗
t [x̃i,t+1]) + υt+j (6)

where θj captures the extent to which contemporaneous and future returns respond to earn-

ings surprises. Table III Panel B shows the results. Returns do, indeed, respond to earnings

surprises, but the reaction is gradual. In line with the gradual adjustment of earnings fore-
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Table III

Gradual adjustment of expectations
Panel A shows the gradual adjustment of expectations about future earnings x̃i,t+h after an earnings surprise at t + 1, i.e.,
the coefficients γ∗

h,j estimated using equation (5). For example, the first row shows γ∗
2,1, the effect of an earnings surprise

x̃i,t+1 − E∗
t [x̃i,t+1] on the revisions to two-year earnings E∗

t+1 [x̃i,t+2]− E∗
t [x̃i,t+2]. The second row shows γ∗

3,1 and γ∗
3,2, the

effect of an earnings surprise x̃i,t+1 − E∗
t [x̃i,t+1] on revisions about x̃i,t+3 occurring in years t + 1 and t + 2. Panel B shows

the estimated coefficient θj from equation (6) which estimates the reaction of returns r̃i,t+1, r̃i,t+2, and r̃i,t+3 after an earnings
surprise at t+1. The sample period is 1999 to 2020. Superscripts indicate Driscoll-Kraay significance at the 1% (∗∗∗), 5% (∗∗),
and 10% (∗) level.

Panel A: Earnings revisions

j = 1 j = 2 j = 3(
E∗

t+j − E∗
t+j−1

)
[x̃i,t+2] 0.14∗

(0.07)(
E∗

t+j − E∗
t+j−1

)
[x̃i,t+3] 0.11∗∗∗ 0.12∗∗∗

(0.03) (0.04)(
E∗

t+j − E∗
t+j−1

)
[x̃i,t+4] 0.11∗∗∗ 0.09∗∗ 0.11∗∗∗

(0.03) (0.03) (0.03)

Panel B: Returns

r̃i,t+j 0.13∗∗ 0.15∗∗∗ 0.12∗∗∗

(0.05) (0.05) (0.03)

casts by 9 to 14pp each year, we see a gradual return of 12 to 15pp each year after the earnings

surprise. This pattern of gradual returns provides strong evidence that the stubborn adjust-

ment to earnings information extends beyond analyst forecasts to market prices themselves,

suggesting a broader phenomenon of gradual information incorporation in financial markets.

Another natural question is whether these stubborn expectations could be due to certain

analysts not updating their forecasts. The fact that returns follow a similar pattern already

points against the idea that this is a mechanical feature of the analyst data. However, to

show this point more directly, in Section V, we repeat the exercise excluding any analyst

forecasts that are unchanged from their prior value, and we find nearly identical results. This

is because our tests deal with one-year revisions in expectations, E∗
t+j [x̃i,t+h]−E∗

t+j−1 [x̃i,t+h].

While analysts may not update their forecasts every month, it is rare for an analyst to leave

a forecast unchanged for an entire year.

Overall, our results align with a long literature on post earnings announcement drift
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(PEAD). However, our results emphasize that this gradual adjustment over multiple years is

relevant for understanding the level of prices and price ratios, not just one-month to one-year

returns around quarterly earnings announcements. For example, we can already see evidence

of stubborn expectations in the decomposition of price-earnings ratios in Table I. As shown

in Column 3 of Table I, one-year earnings growth surprises substantially exceed one-year

unexpected returns. Specifically, while 22.8% of the p̃xi,t dispersion is reflected in one-year

earnings growth forecast errors, only 11.0% appears in one-year unexpected returns. In other

words, disappointment in one-year earnings growth does not translate into an equally large

disappointment in one-year returns. This statistically significant 11.8% difference suggests

that investors respond stubbornly to earnings disappointment, i.e., stock prices adjust less

than 1 for 1 to negative earnings surprises.

B. Connection to expectation-formation models

How do these findings compare to common behavioral or learning models of cash flow expec-

tation formation? Agents may overstate the persistence of growth (e.g., Hirshleifer, Li, and

Yu 2015), or have diagnostic expectations of growth (e.g., Bordalo et al. 2024a). We also

consider models in which agents are learning about the mean of an i.i.d. growth process (e.g.,

Lewellen and Shanken 2002 and Nagel and Xu 2022). These mechanisms can all potentially

explain the result from Section III that investors’ cash flow growth expectations overstate the

objective relationship between current price-earnings ratios and future earnings growth.25

However, as detailed in Appendix F, these models all imply large immediate returns and

revisions in expected earnings after an earnings surprise. In the analyst forecast data, a

positive earnings surprise lowers expected next period growth, as earnings are expected to

largely revert to their previous level. In contrast, these models imply that a positive earnings

surprise should raise expected next period earnings growth, meaning that the expected level
25In Appendix F, we also discuss the diagnostic expectations model of Bordalo et al. (2019). Because this

model features diagnostic expectations about earnings levels, rather than earnings growth, it predicts that
high price-earnings ratio stocks have low one-year earning growth expectations, which is not consistent with
our Section III findings.
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of future earnings increases more than 1 for 1 with a positive earnings surprise, i.e., γ∗
h,1 >

1. Similarly, the data shows that a one unit earnings surprise is only associated with a

moderate contemporaneous return, which aligns with the fact that expected earnings are

only moderately revised. In these models, a positive surprise x̃i,t+1−E∗
t [x̃i,t+1] raises current

returns more than 1 for 1 , i.e., θ1 > 1, as the earnings surprise raises the expected level of

all future cash flows more than 1 for 1.

In Section VI, we modify the constant-gain learning model of Nagel and Xu (2022) by

including temporary shocks to the level of earnings and show that this generates stubborn

earnings expectations and gradual returns.26 This is only a small modification, but it is im-

portant for explaining why rational arbitrageurs would not offset these errors in expectations.

While the model of Section VI focuses on a single representative agent, Appendix I.1 gen-

eralizes the model to allow for rational arbitrageurs. In this extended model, non-stubborn

errors in expectations have limited impact on asset prices, as they are largely traded away by

the rational arbitrageurs. If non-stubborn earnings expectations are too high, arbitrageurs

know these expectations will on average be disappointed in the next period, leading to a large

revision in expectations and a large one-period return from shorting the asset. In compari-

son, biases due to stubborn expectations have a large impact on prices. If stubborn earnings

expectations are too high, arbitrageurs know that the next period return from shorting the

asset will be small, as prices gradually adjust over many periods. If arbitrageurs have short-

ing costs or liquidity costs, then they prefer to bet against stocks whose returns are realized

quickly.

Importantly, our results do not mean that the biases studied in these previous papers

are not relevant for explaining return predictability or other patterns in asset prices. They

simply indicate that if one is interested in explaining the level of prices or price ratios, then

biases due to stubborn expectations are particularly relevant. In line with the old adage that
26In this modification, earnings surprises are largely attributed to temporary shocks to the level of earn-

ings. This aligns with evidence of overconfidence (see Daniel and Hirshleifer (2015) for a summary), as
overconfident investors will place less weight on new public information and will stick tightly to their prior
beliefs.
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“markets can remain irrational longer than you can remain solvent,” errors in expectations

that are stubborn may be more difficult for informed traders to bet against, as they may

have to wait years for prices to correct.

C. Extending to anomaly returns

This section shows that the evidence on stubbornness in earnings expectations (i.e., that

earnings surprises lead to small revisions) is not limited to cross-sectional differences in

valuation ratios. Instead, this pattern is reflected across a wide range of one-year cross-

sectional anomalies.

To demonstrate this, we use our high and low price-earnings ratio portfolios from the

previous section, as well as 20 other annual anomalies documented in Hou, Xue, and Zhang

(2015).27 We also calculate a representative anomaly that sorts stocks based on the 20

different variables and uses the average ranking across these variables in the sorting and in

the regressions. For each anomaly, we sort stocks into five equal-value portfolios based on

the anomaly variable, and then measure earnings expectations and revisions for each of the

portfolios.28 Using the regression specified in equation (5), we estimate γ∗
2,1, which is the

revision in two-year earnings expectations after a t+ 1 earnings surprise.

As illustrated in Figure 3, we find that for most anomalies, positive earnings surprises

x̃i,t+1−E∗
t [x̃i,t+1] result in only minor revisions to future earnings expectations E∗

t+1 [x̃i,t+2]−

E∗
t [x̃i,t+2] . Across all anomalies, this coefficient is small and significantly less than one.

This means that positive earnings surprises actually decrease expected next period growth

E∗
t+1 [∆x̃i,t+2] as earnings are forecasted to largely return to their previous levels. Since we

do not need return expectations to perform this test, we repeat the test over the longer

1982-2020 sample for robustness and find similar results in Table AIX.
27Beyond the price-earnings ratio, we find 21 anomalies documented in Hou, Xue, and Zhang (2015) which

are applicable to annual returns. We then drop the size anomaly because the analyst forecasts are provided
primarily for large firms and are thus not suited to cover portfolios over this anomaly.

28To perform these tests, stocks are required to have one-year expected and realized earnings growth,
returns, and price-earnings ratios. We also require that stocks have a current two-year earnings expectation
E∗

t [x̃i,t+2] and a future one-year earnings expectation E∗
t+1 [x̃i,t+2] for our test of revisions.
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Figure 3. Revisions in anomaly expected future earnings. This figure shows the effect
of earnings surprises on revisions for each set of anomaly portfolios. Each bar shows the coefficient from
regressing the revision in expected earnings E∗

t+1 [x̃i,t+2] − E∗
t [x̃i,t+2] on the earnings surprise x̃i,t+1 −

E∗
t [x̃i,t+1]. The coefficients are shown in ascending order. Individual anomalies are shown in blue. In green,

we show the Representative Anomaly (RA) that sorts stocks based on their average ranking across all of
the individual anomalies, as well as the results for the portfolios used to study cross-sectional variation in
price-earnings ratios (P/X).

Section IV.A illustrated how this stubbornness in expectations affects market prices

through the slow adjustment of returns. Here, we quantify how this sluggish adjustment

contributes to the returns of specific anomaly portfolios. Consider an anomaly variable ãi,t,

such as profitability or investment, which predicts next-year returns. To facilitate compar-

isons, we normalize ãi,t to have unit variance and positive covariance with future returns.

From equation (1), we have that

Cov (r̃i,t+1 − E∗
t [r̃i,t+1] , ãi,t)︸ ︷︷ ︸

σa,r

≈ Cov (x̃i,t+1 − E∗
t [x̃i,t+1] , ãi,t)︸ ︷︷ ︸

σa,x

+ ρCov
(
p̃xi,t+1 − E∗

t

[
p̃xi,t+1

]
, ãi,t

)︸ ︷︷ ︸
σa,px

. (7)

Note that unexpected earnings growth ∆x̃i,t+1−E∗
t [∆x̃i,t+1] is identical to unexpected earn-

ings x̃i,t+1 − E∗
t [x̃i,t+1]. For robustness, Appendix C.1 shows an exact decomposition based

on price growth, which gives very similar results.
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Table IV

Unexpected anomaly returns
This table measures and decomposes unexpected anomaly returns. The Representative Anomaly is the average ranking of each
stock across 20 different anomalies, and p̃xi,t is the demeaned price-earnings ratio. For each anomaly variable, we sort stocks
into five equal-value portfolios based on the anomaly variable. Each column shows the coefficients of regressing each of the
dependent variables on a specific anomaly variable. Both anomaly variables are scaled to have unit variance and to positively
comove with future returns. The three dependent variables are the unexpected return r̃i,t+1 −E∗

t [r̃i,t+1], the earnings forecast
errors x̃i,t+1 − E∗

t [x̃i,t+1], and the price-earnings ratio forecast errors ρ
(
p̃xi,t+1 − E∗

t

[
p̃xi,t+1

])
. The sample period is 1999

to 2020. Driscoll-Kraay standard errors and block-bootstrap standard errors are calculated for each coefficient. In both cases,
we use a lag equal to the maximum lag with any significant residual autocorrelation. Superscripts indicate Driscoll-Kraay
significance at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level.

Representative Anomaly p̃xi,t

r̃i,t+1 − E∗
t [r̃i,t+1]

0.034∗∗∗ 0.033∗∗

[0.013] [0.016]
[0.013] [0.016]

x̃i,t+1 − E∗
t [x̃i,t+1]

0.064∗∗∗ 0.069∗∗∗

[0.020] [0.010]
[0.020] [0.014]

ρ
(
p̃xi,t+1 − E∗

t

[
p̃xi,t+1

]) −0.032∗∗∗ −0.038∗∗

[0.009] [0.017]
[0.009] [0.015]

Under FIRE, we would have σa,r, σa,x, σa,px = 0, i.e., any predictable anomaly returns

would be fully anticipated and ãi,t would not predict forecast errors. For example, a higher

ãi,t might be related to higher risk exposure and investors would require higher returns on

these stocks as compensation. If expectations deviate from FIRE, then positive values of σa,r

indicate that investors understate the relationship between ãi,t and future returns. In other

words, the high returns on high ãi,t stocks are not fully anticipated. In comparison, σa,x and

σa,px reflect the extent to which unexpected returns are explained by predictable errors in

one-year earnings growth expectations and expectations of the future price-earnings ratio,

respectively. A relatively large σa,x indicates that unexpected returns of high ãi,t stocks can

be largely explained by unexpectedly high earnings.

For each of the 21 anomaly variables, we measure forecast errors for one-year returns,

earnings, and price-earnings ratios, and regress each on the anomaly variable to estimate the
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decomposition in equation (7). Table IV shows that the results for the representative anomaly

are qualitatively and quantitatively similar to those for the p̃xi,t portfolios in Section III.B.

The first row shows that a one standard deviation increase in either of the anomaly variables is

associated with a roughly 3pp increase in unexpected returns (0.034 and 0.033, respectively).

This increase in unexpected returns is more than accounted for by the roughly 6pp increase

in unexpected earnings (0.064 and 0.069, respectively). Since expectations of future earnings

are only modestly revised in response to an earnings surprise, as shown in Figure 3, these

surprises do not immediately translate 1-1 into unexpected returns. Rephrased, prices do

not move 1-1 with the earnings surprise, meaning that the 6pp earnings surprise also leads

to the price-earnings ratio being roughly 3pp lower than expected.

Figure 4 shows the results for each of the 22 anomalies (the 20 individual anomalies, our

price-earnings ratio portfolios and the representative anomaly). For almost every anomaly,

we find positive σa,r, meaning that investors do not fully anticipate the high returns on high

ãi,t stocks. Further, most anomalies (17 out of 22) are associated with large positive one-year

earnings forecast errors, as shown by the magnitude of σa,x. Appendix Table AX provides

the full decomposition for each anomaly.

Comparing σa,r and σa,x across anomalies, we see that anomalies with higher σa,r generally

have higher σa,x, i.e., larger unanticipated returns are associated with larger one-year earnings

surprises, and σa,x is generally larger than σa,r, i.e., earnings surprises translate less than 1-1

into unexpected returns. This means that our findings on the dynamics of earnings surprises

and returns from Section IV.A also extends to most anomaly portfolios. Rephrased, many

anomaly returns can be accounted for by prices gradually responding to errors in earnings

expectations.

To summarize, consistent with the results from Section IV.A, we find only moderate re-

visions to earnings surprises in anomaly portfolios. Our results highlight that unexpected

returns are positively associated with earnings surprises but with a less-than-proportional

relationship. This evidence, once again, points against models in which unexpected realized
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Figure 4. Unexpected anomaly returns and earnings surprises. This fig-
ure shows the decomposition results (σa,r, σa,x) for each anomaly ãi,t. The x-axis shows σa,r =

Cov (r̃i,t+1 − E∗
t [r̃i,t+1] , ãi,t), which measures how much the anomaly variable predicts unexpected returns.

The y-axis shows σa,x = Cov (∆x̃i,t+1 − E∗
t [∆x̃i,t+1] , ãi,t), which measures how much the anomaly vari-

able predicts one-year earnings growth forecast errors. The anomalies are shown in blue. In red, we show
the FIRE benchmark, which is that σa,r and σa,x should equal 0 for all anomalies. In green, we show a
Representative Anomaly (RA) that sorts stocked based on their average ranking across all of the individual
anomalies, as well as the results for the portfolios used to study cross-sectional variation in price-earnings
ratios (P/X). Each anomaly variable ãi,t is scaled to have unit variance and to positively comove with future
returns.

returns are highly sensitive to recent earnings surprises and highlights the benefit of quanti-

tative decompositions which allow for these types of comparisons. In Section VI, we propose

a model that can replicate these dynamics of earnings surprises and unexpected returns.

V. Robustness checks

We perform a number of robustness checks for the main results from Sections III and IV.

First, in addition to the Driscoll-Kraay and block-bootstrap standard errors reported in

Table I, we also calculate the significance of our results under a worst-case scenario for

overlapping observations. Specifically, in Appendix C.2, we perform Bauer and Hamilton

(2018) simulations, which account for trends and potential small-sample bias, and assume a
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worst-case scenario for overlapping observations in which residuals are MA(47). Note that

this substantially overstates the measured persistence of our residuals. We find that all of

the earnings growth and return coefficients which are significant at the 5% level in Table I

remain significant at the 5% level in Table AIII, even under this worst-case scenario.

Second, we estimate an exact decomposition to remove the approximation in equation

(3). Table AI shows that this exact decomposition gives nearly identical results to Table I.

Third, in Table AIV, we address the concern that dispersion in price-earnings ratios may

potentially be driven by fluctuations in one-year earnings rather than cross-sectional differ-

ences in prices. We find that the dispersion in price-earnings ratios is nearly identical to the

dispersion in price-to-smoothed-three-year-earnings ratios.29 Further, we show that the de-

composition results are not changed in any noticeable way when we repeat the decomposition

for price-to-smoothed-three-year-earnings ratios.

Fourth, we address potential survivorship bias. For our main estimation, we require that

stocks have observed future prices and future earnings, as this allows us to study forecast

errors in subjective expectations. However, in Table AV, we remove this requirement and

calculate future portfolio outcomes by reinvesting delisted stocks based on the delisting

return. We find almost no change in our results.

Finally, we assess whether the evidence on the gradual adjustment of earnings expec-

tations can be attributed to infrequent updating by analysts or stale forecasts. Table III

Panel B shows that we find a similar gradual adjustment in returns, which already points

against the idea that gradual adjustment is purely a mechanical feature of the analyst data.

However, to address this more thoroughly, we follow Bouchaud et al. (2019) and construct al-

ternative consensus forecasts using detailed analyst-by-analyst data from the I/B/E/S Detail

History File. Specifically, we include only those price forecasts and earnings forecasts that

were explicitly updated within the current quarter.30 This avoids any mechanical staleness
29The standard deviation of cross-sectionally demeaned price-earnings ratios is 30.1% and the standard

deviation of cross-sectionally demeaned price-to-three-year-earnings ratios is 32.6%. This demonstrates that
smoothing the denominator does not reduce the cross-sectional dispersion in price ratios.

30The reason why we do not make this our benchmark specification is that an analyst may choose not to
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Figure 5. Evidence of stubborn expectations using only actively updated fore-
casts. These figures replicate Figures 2 and 3 shown in Section IV. To eliminate the possibility that revisions
to expected earnings are driven by stale forecasts, the consensus expectations are constructed exclusively
from those individual earnings forecasts that were actively updated each quarter.

in the data and ensures that all included forecasts reflect recent revisions.

Using this alternative consensus forecast, we re-estimate the impact of earnings surprises

on the revision of expectations in our main ˜pxi,t portfolios and the other 20 anomalies. Figure

5 reveals that the magnitude of the gradual adjustment in forecast revisions is consistent

with the results in Figures 2 and 3. Tables AVI and AVII show the detailed estimates. This

indicates that the documented stubbornness cannot be attributed to stale forecasts. We also

calculate the subjective and realized decompositions using the alternative consensus forecasts

and find no material differences in the main results, as demonstrated by Table AVIII.

The key reason why this change has such a limited impact on our results is because

we are studying fairly long horizons. Our shortest horizon test is the one-year forecast

revision. While staleness can occur at the monthly level, annual forecast revisions—which

underpin our analysis—are infrequently stale, with most analysts providing updates within

this timeframe. Combined, these results confirm that the gradual adjustment of expectations

and our decomposition results are robust to concerns about staleness in forecasts.

update her forecasts specifically because her beliefs have not changed. In that scenario, dropping the analyst
would be removing useful information about expectations.
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VI. Model of stubborn expectations and volatile prices

In this section, we introduce a structural model of cash flow expectations and discount rates.

The main component of the model is gradual learning about cash flow growth. To match our

results on subjective return expectations, we also include risk premia related to cash flow

timing à la Lettau and Wachter (2007).

The quantified model fulfills three key purposes. First, quoting Brunnermeier et al.

(2021), “Research focus should be on motivating, building, calibrating, and estimating models

with non-RE beliefs rather than on merely rejecting RE models. To make further progress,

we need structural models of belief dynamics that can compete with RE models in explaining

asset prices and empirically observed beliefs.”31 This model intends to be a step in this

direction. It provides a quantitative model that generates realistic asset pricing moments

and outperforms the FIRE models of Table II in matching the empirical decomposition

results. Second, the model demonstrates that stubborn errors in expectations increase price

volatility, even though these two features seem opposed at first glance. Third, the quantified

model allows us to extend the decomposition in equation (3) beyond the four-year horizon

to estimate the full role of subjective expected earnings growth and subjective discount rates

in accounting for the dispersion in price-earnings ratios.

A. Cash flows and the stochastic discount factor

Throughout this section, we use lowercase letters to denote log values, z ≡ log (Z). For each

firm i, the log cash flow xi,t has an aggregate and a firm-level component,
31Note that they use RE as a shorthand for full information rational expectations and specifically highlight

learning about parameters as a promising form on non-RE models to explore: “For example, models of
Bayesian learning relax the RE assumption that agents know the model of the world and its parameter
values”.
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xi,t = xagg
t + x̃i,t (8)

xagg
t = ϕxagg

t−1 + ut (9)

x̃i,t = git+ vi,t. (10)

The aggregate component is an AR(1) process, which can be thought of as business-cycle

fluctuations. The firm-level component is a firm-specific trend git plus noise to capture

potential cross-sectional differences in growth rates. The shocks ut, vi,t are uncorrelated and

have variances σ2
u, σ

2
v .

The agent has a log stochastic discount factor

mt+1 = −rf − 1

2
γ2σ2

u − γut+1 (11)

which depends on the aggregate shock ut+1.

B. Subjective cash flow expectations

Objectively, the value of gi is identical across firms, gi = ḡ.32 However, the agent does not

know each firm’s gi and forms her subjective expectation E∗
t [gi] using constant-gain learning,

E∗
t [gi] = E∗

t−1 [gi] + β
(
∆x̃i,t − E∗

t−1 [∆x̃i,t]
)

(12)

E∗
t [vi,t] = (1− β)

(
∆x̃i,t − E∗

t−1 [∆x̃i,t]
)

(13)

where β is the constant-gain parameter. Specifically, after observing the surprise ∆x̃i,t −

E∗
t−1 [∆x̃i,t], she attributes portion β to firm-specific growth and portion (1− β) to the noisy

shock vi,t. Her expectation for the future growth of the firm-level component is then

E∗
t [∆x̃i,t+1] = E∗

t [gi]− E∗
t [vi,t] . (14)

Her expectation for the future level of the firm-level component is
32Given that our empirical analysis focuses on price-earnings ratios, we normalize ḡ to 0 without loss of

generality.
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E∗
t [x̃i,t+n] = x̃i,t + nE∗

t [gi]− E∗
t [vi,t] . (15)

C. Prices and subjective risk premia

Sections VI.A and VI.B lay out all of the elements and assumptions of the model. In

this subsection, we simply combine the agent’s beliefs and the stochastic discount factor to

calculate the price for various claims. Appendix A gives the details for all of the equations.

To start, let P (n)
t be the price of an n-period aggregate strip, i.e., a claim that pays Xagg

t+n

in n periods. The aggregate strip price is

P
(n)
t = E∗

t

[(
n∏

j=1

Mt+j

)
Xagg

t+n

]

= exp

{
−nrf − γσ2

u

1− ϕn

1− ϕ
+

1

2
σ2
u

1− ϕ2n

1− ϕ2
+ ϕnxagg

t

}
. (16)

The realized return on the strip is

R
(n)
t+1 =

P
(n−1)
t+1

P
(n)
t

= exp

{
rf + γσ2

uϕ
n−1 − 1

2
σ2
uϕ

2(n−1) + ϕn−1ut+1

}
(17)

and the subjective expected return on the strip is

E∗
t

[
R

(n)
t+1

]
= exp

{
rf + γσ2

uϕ
n−1
}
. (18)

The first term (rf ) reflects the risk-free rate and the second term (γσ2
uϕ

n−1) reflects the

subjective risk premium, i.e., the compensation agents require for exposure to risk.

Equation (18) shows the main feature of subjective risk premia in this model: longer

horizon strips carry a lower annual subjective risk premium γσ2
uϕ

n−1. Equation (9) shows

that aggregate shocks are persistent but not permanent. This means that short horizon cash

flows are disproportionately sensitive to the aggregate shock.33 Because of this, the annual

risk premium is higher for short horizon cash flows. This is similar to the mechanism in

33Specifically, the covariance of the log cumulative stochastic discount factor log
(∏n

j=1 Mt+j

)
with the

aggregate cash flows xagg
t+n is 1−ϕn

1−ϕ γσ2
u, which increases with horizons but not proportionally.
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Lettau and Wachter (2007).

Each firm i can be viewed as a collection of strips. Specifically, since shocks to the firm-

level component vi,t are uncorrelated with the aggregate shock, we can express the firm’s

price as

Pi,t =
∞∑
n=1

E∗
t

[(
n∏

j=1

Mt+j

)
Xagg

t+nX̃i,t+n

]
=

∞∑
n=1

P
(n)
t exp

{
1

2
σ2
v + E∗

t [x̃i,t+n]

}
. (19)

The subjective expected return on firm i is then simply a weighted average of the subjective

expected return on the individual strips,

E∗
t [Ri,t+1] = E∗

t

[
Xagg

t+1X̃i,t+1 + Pi,t+1

Pi,t

]
=

∞∑
n=1

wi,t,nE
∗
t

[
R

(n)
t+1

]
(20)

where the weight wi,t,n =
exp{nE∗

t [gi]}P
(n)
t∑∞

n=1 exp{nE∗
t [gi]}P

(n)
t

captures how much of the firm’s value in equa-

tion (19) comes from its horizon n cash flows.

The realized return for firm i is

Ri,t+1 =
Xagg

t+1X̃i,t+1 + Pi,t+1

Pi,t

=
∞∑
n=1

wi,t,nR
(n)
t+1

E∗
t+1

[
X̃i,t+n

]
E∗

t

[
X̃i,t+n

] . (21)

In addition to depending on a weighted average of realized strip returns R
(n)
t+1, the realized

firm return also depends on the change in the expected future firm-level component. From

equations (12), (13), and (15), this change in expectations can be expressed entirely in terms

of the surprise about one-period growth ∆x̃i,t+1 − E∗
t [∆x̃i,t+1], as for n ≥ 2 we have that

E∗
t+1

[
X̃i,t+n

]
E∗

t

[
X̃i,t+n

] = exp {nβ (∆x̃i,t+1 − E∗
t [∆x̃i,t+1])} . (22)

D. Model implications

Below, we discuss three qualitative implications from the model that are relevant to our

empirical findings.

First, increases in E∗
t [gi] raise the firm’s price in two ways: increasing the expected future

cash flows and decreasing the subjective risk premium. From equation (19), a higher expected
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gi naturally increases the value of the firm by increasing the value of future expected cash

flows. What is less straightforward is that raising E∗
t [gi] lowers the subjective risk premium.

As shown in equation (18), longer horizon cash flow strips carry a lower risk premium in

this model, as their annualized return is less sensitive to the aggregate shock ut+1. A higher

value for E∗
t [gi] means that more of the firm’s value comes from its longer horizon cash

flows and therefore the weights wi,t,n in equation (20) are more concentrated on the longer

horizon E∗
t

[
R

(n)
t+1

]
. In line with the findings in Table I, this means that both higher expected

earnings growth and lower expected returns will help to explain high price-earnings ratios.

Second, if the constant-gain parameter β is small, then expectations are “stubborn.”

After an earnings surprise x̃i,t+1 − E∗
t [x̃i,t+1] (which is equivalent to ∆x̃i,t+1 − E∗

t [∆x̃i,t+1]),

expectations of future earnings are only slightly revised as shown in equation (22). Because

expected future earnings are only slightly revised, the earnings surprise does not translate into

a large immediate return, as shown in equation (21). Rather than being highly sensitive to

recent surprises, the agent largely attributes the surprise to the noisy level shock vi,t+1. This

result is in line with the findings in Table III and highlights how the inclusion of temporary

shocks substantially changes the model’s predictions relative to the models discussed in

Section IV.B.

Third, the presence of stubborn errors in expectations increases price volatility. If agents

had full-information rational expectations (i.e., agents knew the parameters gi = ḡ), then

all firms would have the same price and there would be no predictable differences in returns

between firms. However, because of errors in earnings expectations, the prices of some

firms will rise or fall relative to others due to waves of optimism or pessimism about the

firm’s underlying growth parameter gi. Because errors in expectations are stubborn, these

deviations in prices away from the FIRE benchmark can be long-lived and a price that is

above the FIRE benchmark will predict a gradual sequence of lower returns.

It is important to note that these model implications are the result of two mechanisms:

slow updating of future cash flow expectations in response to surprises and a preference for
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the timing of cash flows. While the model represents these two mechanisms by parame-

ter learning and non-permanent aggregate shocks, there are other mechanisms that could

potentially deliver similar implications.

Constant-gain learning about gi delivers slow updating of future cash flow expectations

if the parameter β is small, consistent with the evidence in Table III and prior estimates

(Orphanides and Williams, 2005 and Milani, 2007). This approach closely resembles learn-

ing from experience, as shown in Malmendier and Nagel (2016), and can also accommodate

learning about a latent, time-varying growth component (see Appendix I.2, where we es-

timate this feature and find similar results). The preference for timing is generated from

persistent but non-permanent aggregate shocks, which cause short-term cash flows to be

disproportionately discounted relative to long horizon cash flows. Importantly, this result

depends on perceived, not objective, risk differences. Using survey-based subjective risk

measures (Jensen, 2024), we confirm in Appendix G that low price-earnings portfolios are

indeed perceived as riskier than high price-earnings portfolios.

Ultimately, we choose to focus on constant-gain parameter learning and differences in

perceived risk, as this provides a parsimonious description of these mechanisms and allows

us to estimate the model parameters without targeting any of our empirical results from

Section III. As shown in the model estimation in Section VII, we take the gain β from

previous work on constant-gain learning and set risk sensitivity γ to match the aggregate

equity premium. As a result, we can fully utilize the empirical decomposition results of Table

I to evaluate the quantitative realism of our model.

VII. Quantitative performance and full decomposition

A. Estimation

To make a fair comparison to the models mentioned in Section III, we do not use any

information from the decomposition results to estimate the model parameters. Instead, we
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Table V

Model estimation
This table shows the value of the six parameters of the model. The parameters for the aggregate cash flow process (ϕ, σu)
are derived directly from the autocorrelation and standard deviation of the S&P 500 annual earnings growth. The firm-level
volatility σv is derived directly from the standard deviation over time of the portfolio-level annual earnings growth. The risk-free
rate rf and risk sensitivity γ are set to match the average one-year Treasury yield and average aggregate equity return during
the sample period. The constant-gain learning parameter β is taken from Malmendier and Nagel (2016). All moments are
estimated over the full sample period of 1982 to 2020.

Parameter Value Moments
Cash flow process

ϕ 0.83 AC(∆xagg
t+1)

σu 0.34 σ
(
∆xagg

t+1

)
σv 0.10 σ (∆xi,t+1)

SDF
rf 4.6% Risk-free rate
γ 1.61 Average aggregate return

Learning

β 1.8%
Constant-gain learning

(Malmendier and Nagel, 2016)

set all of the parameters based on time-series moments and previous estimates of the learning

gain β, then evaluate how well the model matches the cross-sectional decompositions as well

as a number of other moments.34

The model only has six parameters, which are all shown in Table V. The parameters

for cash flows (ϕ, σu, σv) are all estimated directly from realized earnings growth for our full

sample of 1982-2020. For the aggregate process, the standard deviation and autocorrelation

of S&P 500 earnings growth imply a persistence ϕ = 0.83 and a volatility σu = 0.34. The

volatility of individual shocks σv = 0.10 is obtained from the volatility over time of the

portfolio-level earnings growth. Appendix H.1 shows the exact formulas mapping these

empirical moments to the model parameters. The constant-gain parameter is obtained from

Malmendier and Nagel (2016) as β = 0.018. Note that this is nearly identical to the gain

estimated in Milani (2007) of 0.0183.35 For the agent’s stochastic discount factor, the risk-
34The model is simulated yearly over 500 periods for 300 firms. To avoid being impacted by the initial

value of the expectations E∗
0 [gi], we calculate all moments after t = 150.

35These papers estimate the constant-gain parameter on a quarterly frequency. We show in Appendix H.2
that this estimation is quantitatively very similar to an estimation using an annual frequency. Conceptually,
we are simply imposing that all updating occurs at the end of the year rather than allowing for small amounts
of updating within the year.
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Figure 6. Empirical decomposition and model decomposition. This figure evaluates the
decomposition of p̃xi,t dispersion in the model across multiple horizons. The light bars show the contribution
of realized earnings growth and realized returns to the dispersion of price-earnings ratios obtained in the
FIRE columns of Table I. The dark bars show the contribution of expected earnings growth and expected
returns to the dispersion of price-earnings ratios obtained in the Expected columns of Table I. Each bar
shows Driscoll-Kraay 95% confidence intervals. The black dots show the values of both the realized and
expected decomposition implied by the model.

free rate rf = 4.6% and the sensitivity to risk γ = 1.61 are set to match the average one-year

Treasury yield and average aggregate stock return of 10.5% for 1982-2020.

B. Model performance

B.1. Price ratio decomposition

After quantifying the model, we now evaluate the joint dynamics of price-earnings ratios,

earnings growth, and returns. Figure 6 shows the price-earnings ratio decomposition results

from Figure 1, along with their 95% confidence intervals. For comparison, the black dots show

the values implied by our model. Overall, the model successfully matches both the objective

decomposition of price-earnings ratio dispersion (i.e., comovement of price ratios with future

earnings growth and future returns) and the subjective decomposition (i.e., comovement of

price ratios with expected earnings growth and expected returns) at every horizon.

In the model, high price-earnings ratios are associated with significantly higher expected
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earnings growth and moderately lower expected returns. Figure 6 shows that a one unit

increase in p̃xi,t is associated with a 0.30 (0.39) increase in expected one-year (four-year)

earnings growth and a 0.03 (0.11) decrease in expected returns. Because of the temporary

shocks to the level of earnings vi,t, realized one-year future earnings growth is partly pre-

dictable. In line with the data, a one unit increase in the model price-earnings ratio predicts

a 0.14 increase in realized one-year earnings growth and this coefficient is unchanged as

we increase the horizon to four years. The relationship between price-earnings ratios and

expected earnings growth is quantitatively much larger than the relationship between price-

earnings ratios and realized future earnings growth, meaning that high price-earnings ratios

predict disappointment in future earnings growth. As a result, the relationship between

price-earnings ratios and realized negative returns is larger than expected, 0.10 (0.39) at the

one-year (four-year) horizon. Overall, this parsimonious model is able to closely match all

14 moments from the decomposition.

The fact that the model matches our decomposition results at multiple horizons highlights

its success both in terms of magnitudes and in terms of timing. While the difference in

expected and realized one-year earnings growth is large, this does not translate into a large

difference between expected and realized one-year negative returns. Instead, agents are slow

to adjust their beliefs and the disappointment in earnings growth leads to much lower than

expected returns at longer horizons.

Because of this slow adjustment of prices, the model is able to simultaneously match the

large one-year earnings growth disappointment shown in Figure 6 and the high empirical

persistence of p̃xi,t, which is 0.77 in the data and 0.76 in the model. In general, these

two facts are difficult to match for models in which growth expectations are sensitive to

recent realizations (e.g., overstating the persistence of growth or diagnostic expectations

of growth), as disappointing earnings growth for high p̃xi,t firms would cause their price-

earnings ratios to quickly fall. Further, our model is still consistent with previous cross-

sectional evidence of overreaction. Using the Coibion and Gorodnichenko (2015) regression,
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we find that revisions in expected long-term growth E∗
t [gi] − E∗

t−1[gi] negatively predict

forecast errors gi − E∗
t [gi] with a coefficient of −0.5, which is quantitatively similar to the

empirical coefficients estimated in Bordalo et al. (2019) of −0.20 to −0.31. However, the

model predicts that these revisions in expectations do not lead to large immediate changes

in prices.

C. Price volatility and other moments

On top of the 14 untargeted moments shown in Figure 6, Table VI shows that the model

performs well in matching a wide array of additional asset pricing moments. Perhaps the

most surprising of these results is that the model generates realistic differences in returns

r̃i,t across firms (i.e., the cross-sectional standard deviation) and realistic volatility over time

in firms’ r̃i,t. This is almost entirely driven by errors in agents’ expectations. Under a

FIRE benchmark in which agents know the parameters gi = ḡ, the cross-sectional standard

deviation of r̃i,t and the idiosyncratic volatility of r̃i,t are both reduced by a factor of 5: from

5.6% to only 0.9% and from 5.5% to only 1.1%.

Beyond evaluating realized returns, the three panels of Table VI test the model’s ability to

match moments of price-earnings ratios, realized earnings growth, expected earnings growth,

and expected returns. First, despite not using any price information in the estimation other

than the average aggregate equity return, Panel A shows that the model generates realistic

dynamics for the aggregate price-earnings ratio. The unconditional mean, volatility and

autocorrelation of the log price-earnings ratio in the model (2.31, 43.2%, and 0.81) are

consistent with the observed values (2.98, 42.5%, and 0.74) and the model generates volatile

aggregate returns.

Second, while no information on cross-sectional dispersion was used in the estimation,

Panel B shows that the model performs well in matching the empirical dispersion of nearly

all of our variables.36 In other words, constant-gain learning with temporary shocks can suc-
36The empirical dispersion is measured as the median cross-sectional standard deviation for each variable.
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Table VI

Model evaluation
This table evaluates the model by comparing the untargeted aggregate and cross-sectional moments in the model simulations
with those observed in the data. Panel A shows the mean, standard deviation and autocorrelation of the aggregate price-earnings
ratio as well as the standard deviation of aggregate stock returns. Panel B shows the cross-sectional standard deviations of
price-earnings ratios, future earnings growth and returns, and expected earnings growth and returns. Panel C shows the
idiosyncratic volatility across time of price-earnings ratios, future earnings growth and returns, and expected earnings growth
and returns. All moments in the table are untargeted, except for idiosyncratic realized earnings growth volatility. Aggregate
moments are estimated over the full sample period of 1982 to 2020. The cross-sectional standard deviation and idiosyncratic
volatility moments are estimated over the main sample of 1999 to 2020 due to data availability.

Panel A: Aggregate value
Mean pxt σ (pxt) AC (pxt) σ (rt)

Model 2.31 43.2% 0.81 11.5%
Data 2.98 42.5% 0.74 15.9%

Panel B: Cross-sectional standard deviation
p̃xi,t ∆x̃i,t+1 r̃i,t+1 E∗

t [∆x̃i,t+1] E∗
t [r̃i,t+1]

Model 20.9% 14.1% 5.6% 11.9% 0.8%
Data 22.6% 12.6% 5.7% 14.0% 2.6%

Panel C: Idiosyncratic volatility
p̃xi,t ∆x̃i,t+1 r̃i,t+1 E∗

t [∆x̃i,t+1] E∗
t [r̃i,t+1]

Model 19.7% 14.0% 5.5% 11.7% 0.7%
Data 19.0% 16.6% 6.3% 12.3% 7.4%

cessfully generate large differences across firms in price-earnings ratios and realized earnings

growth, which have model dispersions of 20.9% and 14.1% respectively. Beyond explain-

ing the realized data, we find that the model also accurately captures the large empirical

dispersion in expected earnings growth (11.9%).

We do find that the model understates the cross-sectional dispersion in expected returns.

For the sake of parsimony, in the model, subjective discount rates are entirely driven by

risk premia related to cash flow timing, as shown in equation (20). Expanding the model to

incorporate other risks into discount rates could help to better match this moment. However,

as shown in Figure 6, the model still succeeds in matching the covariance of price-earnings

ratios with expected returns. Thus, while the model does not capture all cross-sectional

differences in expected returns, it does capture the portion that is predictable with price-

earnings ratios, i.e., the portion that is useful for generating large differences in price-earnings
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ratios.

Third, Panel C shows that the model replicates the measured portfolio-level volatili-

ties. Note that these volatilities, which reflect variation in a single portfolio across time,

are distinct from our estimates of dispersion, which capture cross-sectional variation across

portfolios. The only information about portfolio-level volatility utilized in the estimation is

the volatility of realized earnings growth, which means that the model provides an accurate

mapping of how volatility in earnings growth translates into volatility in price-earnings ra-

tios, returns, and expected earnings growth. Similar to our results for dispersion, we find

that the model understates the volatility of expected returns.

In summary, we find that the model not only successfully matches the untargeted de-

composition moments, but also generates realistic aggregate stock market moments as well

as realistic cross-sectional dispersion and portfolio-level volatility. This demonstrates that

a relatively parsimonious structural model of belief formation can feasibly improve upon

FIRE models in terms of quantitatively matching the realized data while also matching the

dynamics of empirically observed beliefs.

D. Full role of objective cash flows, cash flow mistakes, and discount rates

Using the quantified model, we can measure the full role of cash flow growth expectations

and subjective discount rates in accounting for price-earnings ratio dispersion, the persistence

of this dispersion, and dispersion in returns. Table VII Panel C shows the decomposition

in equation (3) when we extend to the infinite horizon. Specifically, it shows the cross-

sectional dispersion V ar
(
p̃xi,t

)
and the two components Cov

(
∞∑
j=1

ρj−1E∗
t [∆x̃i,t+j] , p̃xi,t

)
,

Cov

(
−

∞∑
j=1

ρj−1E∗
t [r̃i,t+j] , p̃xi,t

)
. Additionally, Panel C shows the persistence of p̃xi,t, which

measures whether cross-sectional differences in price-earnings ratios are transitory or long-

lived, and the dispersion in returns r̃i,t.

To start, we focus on the final column, which is our main model parameterization. As
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Table VII

Infinite-horizon decomposition and counterfactual analysis
Each column shows the decomposition implied by the constant-gain learning model using different key parameter choices.
Panel A reports the varying parameters for each specification, with all other parameters fixed at the values from Table V. The
specifications include: (1) no learning or risk sensitivity (β = 0, γ = 0), (2) no learning (β = 0), (3) no risk sensitivity (γ = 0),
and (4) the main specification. For specifications with γ = 0, we set the risk-free rate rf to 10.5% to maintain consistent
average equity returns across all cases. Panel B reports the mean aggregate price-earnings ratio and mean aggregate return
for each specification. Panel C presents the cross-sectional results, showing the variance of r̃i,t, the persistence and variance of
p̃xi,t, and the decomposition of the cross-sectional variance of p̃xi,t using the infinite-horizon version of equation (3):

V ar
(
p̃xi,t

)
= Cov

 ∞∑
j=1

ρj−1E∗
t [∆x̃i,t+j ] , p̃xi,t

+ Cov

−
∞∑
j=1

ρj−1E∗
t [r̃i,t+j ] , p̃xi,t

 .

The fourth and seventh rows of Panel C show the contributions of expected earnings growth
∑∞

j=1 E
∗
t [∆x̃i,t+j ] and subjective

discount rates −
∑∞

j=1 ρ
j−1E∗

t [r̃i,t+j ] in the decomposition. The fifth and eighth rows show the contributions of realized
earnings growth and returns, and the sixth and ninth rows show the contribution of earnings growth and return forecast errors.
The share of the cross-sectional variance of p̃xi,t is shown in parentheses. For ease of reading, all coefficients in Panel C except
for “Persistence p̃xi,t” are scaled by 100.

Panel A: Parameter values

β 0 0 0.018 0.018
γ 0 1.61 0 1.61
rf 10.5% 4.6% 10.5% 4.6%

Panel B: Levels

Mean pxt 2.31 2.31 2.31 2.31

Mean rt+1 10.5% 10.5% 10.5% 10.5%
Panel C: Cross section

Variance r̃i,t 0.01 0.01 0.12 0.31

Persistence p̃xi,t 0.00 0.00 0.54 0.76

Variance p̃xi,t 0.98 0.98 2.07 4.37

Expected earnings growth 0.98 0.98 2.07 2.87
(100%) (100%) (100%) (65.7%)

Realized earnings growth 0.98 0.98 0.78 0.65
(100%) (100%) (37.6%) (14.9%)

Forecast errors 0 0 1.29 2.22
(0%) (0%) (62.4%) (50.8%)

Subjective discount rates 0 0 0 1.50
(0%) (0%) (0%) (34.3%)

Negative realized returns 0 0 1.29 3.72
(0%) (0%) (62.4%) (85.1%)

Negative forecast errors 0 0 -1.29 -2.22
(0%) (0%) (-62.4%) (-50.8%)
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shown in the fourth row of Panel C, the model estimates that differences in expected cash flow

growth account for two-thirds (65.7%) of all dispersion in price-earnings ratios.37 Combined

with the aggregate time series findings of Delao and Myers (2021), this means that both time

series variation in aggregate price ratios and cross-sectional dispersion in price ratios are

both primarily explained by expected cash flow growth. However, unlike the aggregate time

series findings, we also estimate a non-trivial role for subjective discount rates in accounting

for price-earnings ratio dispersion. The seventh row of Panel C shows that low subjective

discount rates for high price-earnings ratio firms accounts for roughly one-third (34.3%) of

all dispersion in price-earnings ratios.

Looking at the breakdown of the 65.7% contribution from expected earnings growth, we

see that this largely comes from forecast errors. The comovement of price-earnings ratios

with realized future earnings growth only accounts for 14.9% of the dispersion, meaning that

the remaining 50.8% comes from price-earnings ratios predicting forecast errors for earnings

growth. As a result, high price-earnings ratios are largely associated with low future returns,

with negative realized returns accounting for 85.1% of all price-earnings ratio dispersion.

Note that at the infinite horizon, forecast errors for earnings growth and forecast errors for

returns are equal (i.e., the forecast error row for earnings growth and negative returns are

exactly opposite). While gradual learning affects how quickly earnings growth surprises are

reflected in unexpected returns, eventually all unexpected earnings growth will appear as

unexpected returns.

Conveniently, we can summarize the relative importance of realized future earnings

growth, errors in earnings growth expectations, and subjective discount rates. The model

estimates that realized earnings growth accounts for roughly 1/6 (14.9%) of price-earnings

ratio dispersion, errors in earnings growth expectations account for 1/2 (50.8%), and subjec-

tive discount rates account for 1/3 (34.3%). Additionally, besides decomposing differences

in price-earnings ratios, the model also decomposes the low realized returns earned by ex-
37This is consistent with the empirical results of Table I, where we find that expected earnings growth

over just the first four years already accounts for 43.3% of all price-earnings ratio dispersion.
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pensive stocks. The estimation implies that 40.3% (34.3/85.1) of the difference in returns

between high and low price-earnings ratio stocks reflects subjective discount rates while

59.7% (50.8/85.1) reflects disappointment in earnings growth.

More broadly, by having a structural model, we can investigate the economic role of

learning and risk sensitivity in driving the cross-sectional dispersion in price-earnings ratios

and returns. The different columns in Table VII Panel C show the dispersion in returns, the

persistence in price-earnings ratios, the dispersion in price-earnings ratios, and the decom-

position results when β and/or γ are set to 0, i.e., learning and/or risk sensitivity are turned

off. In all cases, the initial expected gi is set to ḡ for all firms, which means that the β = 0

scenarios are FIRE (i.e., the agent always knows the true parameters).38 Given that we are

interested in cross-sectional dispersion rather than aggregate levels, in the two cases where

γ = 0 we also raise the risk-free rate from 4.6% to 10.5%. As shown in Panel B, this ensures

that the aggregate level for price-earnings ratios and equity returns are identical across all

four cases and it is only the dispersion that changes. Thus, the two cases where γ = 0 are

equivalent to saying that all firms have the same subjective discount rate of 10.5%.

In the first column, both β and γ are set to 0. In this case, the dispersion in price-

earnings ratios is less than 1/4 the value in our main specification (0.98 compared to 4.37)

and there is almost no dispersion in returns. The dispersion in price-earnings ratios comes

entirely from differences in expected earnings growth, as there are no differences in subjective

discount rates. Price-earnings ratios do not predict earnings growth forecast errors. Instead,

all differences in expected earnings growth are simply due to the noise shocks vi,t. Since these

shocks are i.i.d., the autocorrelation in expected earnings growth is zero, which explains why

the persistence in p̃xi,t is also zero.

In the second column, the model includes risk sensitivity (γ > 0) but keeps β = 0. As

shown in Panel C, only including risk sensitivity has no effect on the results relative to the
38If the prior is not gi = ḡ, then β = 0 is not FIRE and actually represent the most stubborn errors in

expectations possible. This produces highly persistent dispersion in price-earnings ratios, as agents start
with incorrect expectations of gi and never update.
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first column. This highlights that, in our model, variation across firms in expected cash flow

growth and subjective discount rates are both ultimately related to variation across firms

in expected gi. While agents may be sensitive to risk related to cash flow timing, this only

matters if firms are expected to differ in the timing of their cash flows.

In comparison, the third column shows that including learning but keeping γ = 0 does

substantially change the results. The dispersion in price-earnings ratios doubles from 0.98

to 2.07. This largely comes from price-earnings ratios now comoving with future earnings

growth forecast errors. However, there is also the interesting result that the comovement

of price-earnings ratios with realized earnings growth decreases (0.98 to 0.78). The FIRE

expectation for future earnings growth is simply −vi,t. With learning, expected earnings

growth depends on E∗
t [gi], which comoves positively with vi,t, as a positive shock will tend

to increase the guess for gi. Thus, introducing learning means that the price-earnings ratio,

which depends on expected earnings growth, will now be less related to future realized

earnings growth due to the muted response to shocks vi,t. Further, while objective expected

earnings growth has 0 persistence over time, subjective expected earnings growth is persistent

when agents are learning about gi. Because of this, cross-sectional differences in price-

earnings ratios are moderately long-lived, with a persistence of 0.54. The increased dispersion

in price-earnings ratios also leads to a substantial increase in the dispersion of returns, from

0.01 to 0.12.

Finally, the last column shows the interaction from including both risk sensitivity and

learning. While risk sensitivity by itself has no effect, once we incorporate learning, increasing

γ from 0 to 1.61 more than doubles the dispersion in returns (0.12 to 0.31) and price-

earnings ratios (2.07 to 4.37) and makes cross-sectional differences in price-earnings ratios

more persistent. Specifically, including risk sensitivity along with learning increases the

persistence of p̃xi,t from 0.54 to 0.76, helping the model match the empirical persistence of

0.77. Looking at the contribution of subjective discount rates (the seventh row of Panel C),

we clearly see the interaction between risk sensitivity and learning, as dispersion in subjective
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discount rates now contributes 1.50 (34.3%) to the total dispersion in price-earnings ratios.

More surprisingly, we also find an important interaction between risk sensitivity and

learning for the contribution of earnings growth expectations. Given that γ has no impact on

equations (12)-(15), changing γ has no effect on expected earnings growth. Thus, the increase

in comovement between price-earnings ratios and expected earnings growth (2.07 to 2.87) is

entirely due to changes in the price-earnings ratios. Intuitively, incorporating discount rates

that depend on expected cash flow timing increases the sensitivity of price-earnings ratios to

E∗
t [gi] and decreases their sensitivity to transitory shocks vi,t. The increased sensitivity to

E∗
t [gi] is reflected in the larger comovement of price-earnings ratios with expected earnings

growth, and the reduced sensitivity to vi,t is reflected in an even higher persistence of p̃xi,t.

This logic extends to any model with preferences for the timing of cash flows and shows that

while discount rates may not affect expected earnings growth, they can be quantitatively

important for driving the comovement of price ratios with expected earnings growth and

earnings growth forecast errors.

Overall, the fact that dispersion in price-earnings ratios and returns for the full model

(i.e., β > 0, γ > 0) is more than twice as large as any of the other counterfactuals highlights

the natural interaction between preferences for the timing of cash flows and learning about

cash flow growth. We find that this interaction is quantitatively important for matching

the large empirical dispersion in returns and price-earnings ratios and the persistence of

cross-sectional differences in price-earnings ratios.

VIII. Conclusion

We find that subjective expectations have substantial potential to explain the cross-

section of stock price ratios and shed light on the relative importance of expected future

cash flows and discount rates. Using a variance decomposition, we show that cross-sectional

dispersion in price-earnings ratios is primarily explained by predictable errors in subjective
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expectations of earnings growth. Subjective discount rates play a secondary, but non-trivial

role. Disappointment in one-year earnings growth does not immediately lead to an equivalent

disappointment in one-year returns. Instead, earnings growth surprises are reflected grad-

ually in future returns over time. To understand these findings, we provide a quantitative

model which not only outperforms standard FIRE models in matching the dynamics of prices

and realized earnings growth and returns, but also outperforms several behavioral models in

matching the dynamics of prices and expectations. The model features constant-gain learn-

ing about earnings growth and risk premia related to cash flow timing and emphasizes the

importance of slow-moving beliefs in order to match the empirical timing of earnings growth

expectations and realized returns.

These findings for the cross-section of stock prices are consistent with the aggregate time-

series findings of Delao and Myers (2021, 2024) and Bordalo et al. (2023), who emphasize that

aggregate stock prices are largely driven by subjective earnings growth expectations and that

errors in these expectations play a particularly large role in explaining long-term returns.

This harmony between the aggregate time-series and the cross-section indicates that a single

mechanism could potentially explain both dimensions of the data and provides a strong

motivation for further research understanding how investors form cash flow expectations

and discount rates.
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Appendix

A. Model prices and returns

To derive equation (16), we guess and verify a log-affine form for the strip price, P
(n)
t =

exp {A (n) + ϕnxagg
t }. The strip price is then pinned down by P

(0)
t = exp {xagg

t } (i.e., A (0) =

0) and

P
(n)
t = E∗

t

[
Mt+1P

(n−1)
t+1

]
= E∗

t

[
exp

{
−rf − 1

2
γ2σ2

u − γut+1 + A (n− 1) + ϕnxagg
t + ϕn−1ut+1

}]
= exp

{
−rf − 1

2
γ2σ2

u + A (n− 1) + ϕnxagg
t +

1

2

(
ϕn−1 − γ

)2
σ2
u

}
. (A1)

This gives that

A (n) = A (n− 1)− rf − γϕn−1σ2
u +

1

2
ϕ2(n−1)σ2

u

= −nrf − γσ2
u

1− ϕn

1− ϕ
+

1

2
σ2
u

1− ϕ2n

1− ϕ2
. (A2)

The expected and realized strip returns in equations (17)-(18) then simply utilize the for-

mula for P (n)
t . The firm price in equation (19) uses the independence of aggregate and idiosyn-

cratic shocks to simplify E∗
t

[(∏n
j=1 Mt+j

)
Xagg

t+nX̃i,t+n

]
= E∗

t

[(∏n
j=1 Mt+j

)
Xagg

t+n

]
E∗

t

[
X̃i,t+n

]
=

P
(n)
t E∗

t

[
X̃i,t+n

]
.

Given that the firm price is simply a collection of strip prices, the return for a firm is

Ri,t+1 =
X̃i,t+1X

agg
t+1 + Pi,t+1

Pi,t

=
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] (A3)

where the weight is wi,t,n =
P

(n)
t E∗

t [X̃i,t+n]∑∞
n=1 P

(n)
t E∗

t [X̃i,t+n]
=

exp{nE∗
t [gi]}P

(n)
t∑∞

n=1 exp{nE∗
t [gi]}P

(n)
t

from equation (15).
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Applying expectations, we then get equation (20).

B. Connecting returns, earnings growth, and price-earnings ratios

First, we derive the equation for a firm which has zero dividends. For simplicity, we eliminate

the index i in this derivation. In this case, the return is equal to the price growth which

after log-linearization becomes an exact relationship

rt+1 = ∆xt+1 − pxt + pxt+1. (A4)

A high price-earnings ratio pxt must be followed by low future price growth ∆pt+1 (returns

rt+1), high future earnings growth ∆xt+1, or a high future price-earnings ratio pxt+1.

Now, we consider the case where dividends are non-zero. We start with the one-year

return identity of a portfolio

Rt+1 =
Pt+1 +Dt+1

Pt

=

(
Pt+1

Dt+1
+ 1
)

Dt+1

Dt

Pt

Dt

,

where Pt and Dt are the current price and dividends. Log-linearizing around p̄d, we can

represent the price-dividend ratio pdt in terms of future dividend growth, ∆dt+1, future

returns, rt+1, and the future price-dividend ratio, pdt+1, all in logs:

rt+1 ≈ κd +∆dt+1 − pdt + ρpdt+1, (A5)

where κd is a constant, ρ = ep̄d/
(
1 + ep̄d

)
< 1. We can then insert the identity pxt =

pdt + dxt, where dxt is the log payout ratio, into (A5) to obtain

rt+1 ≈ κ+∆xt+1 − pxt + ρpxt+1 (A6)

where we approximate (1− ρ) dxt+1 as a constant given that (1− ρ) is very close to 0.39 Here,

p̄d does not need to be the mean price-dividend ratio of this specific stock or portfolio. In

order to study cross-sectional variation without resorting to portfolio-specific approximation

parameters, we use the average price-dividend ratio of the market for p̄d following Cochrane
39The zero dividend relationship in equation (A4) is a special case of equation (A6) as p̄d goes to infinity.
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(2011).

While the identity relies on the approximation that (1− ρ) dxt+1 is close to a constant,

empirically equation (A6) holds tightly. For horizons of 1 to 4 years, Table I shows that a one

unit increase in pxt is associated with almost exactly a one unit increase in
∑h

j=1 ρ
j−1∆xt+j−∑h

j=1 ρ
j−1rt+j+ρhpxt+h.40 In other words, the approximation error from ignoring the payout

ratio and using a single value for ρ accounts for at most 3.1% of variation in price-earnings

ratios in the decomposition of equation (3). For robustness, the next section uses an exact

relationship instead of equation (3) to ensure the approximation is not driving our results.

C. Robustness Exercises

C.1. Exact decomposition results

In this section, we derive all the main results using an exact decomposition of price-earnings

ratios based on price growth, rather than the approximate decomposition based on returns.

For any stock or portfolio of stocks i, the price-earnings ratio pxi,t can be expressed in terms

of the one-year ahead log price growth ∆pi,t+1, the future earnings growth ∆xi,t+1, and the

future price-earnings ratio:

pxi,t = ∆xi,t+1 +∆pi,t+1 + pxi,t+1. (A7)

This equation is exact and does not contain a log-linearization constant ρ. Applying sub-

jective expectations E∗
t [·], we see that a higher than average price-earnings ratio must be

explained by higher than average expected earnings growth, lower than average expected

price growth, or a higher than average expected future price-earnings ratio,

p̃xi,t =
h∑

j=1

E∗
t [∆x̃i,t+j]−

h∑
j=1

E∗
t [∆p̃i,t+j] + E∗

t

[
p̃xi,t+h

]
. (A8)

Just like the main decomposition, this equation holds under any subjective probability
40For example, at the one-year horizon, a one unit increase in pxt is associated with a 0.103 increase in

∆xt+1, a 0.143 increase in −rt+1, and a 0.746 increase in ρpxt+1. At the four-year horizon, a one unit increase
in pxt is associated with a with a 0.099 increase in

∑4
j=1 ρ

j−1∆xt+j , a 0.320 increase in −
∑4

j=1 ρ
j−1rt+j ,

and a 0.550 increase in ρ4pxt+4.
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distribution and we can decompose the variance of p̃xi,t into three components:

1 =

Cov

 h∑
j=1

E∗
t [∆x̃i,t+j ] , p̃xi,t


V ar

(
p̃xi,t

)︸ ︷︷ ︸
CFh

+

Cov

−
h∑

j=1

E∗
t [∆p̃i,t+j ] , p̃xi,t


V ar

(
p̃xi,t

)︸ ︷︷ ︸
PGh

+
Cov

(
E∗

t

[
p̃xi,t+h

]
, p̃xi,t

)
V ar

(
p̃xi,t

)︸ ︷︷ ︸
FPXh

.

(A9)

The coefficients CFh and PGh give a quantitative measure of how much dispersion in price-

earnings ratios is accounted for by dispersion in expected earnings growth and how much is

accounted for by dispersion in expected price growth. We can now estimate this equation

using the exact expectations of price growth without an approximation.

Table AI shows that the results of this exact decomposition are very similar to the main

decomposition results in Table I. We find that 10.3% of dispersion in price-earnings ratios

is accounted for by differences in one-year future earnings growth and 13.2% is accounted

for by differences in one-year price growth. Just as in the main decomposition, differences

in earnings growth are overestimated, with expected earnings growth accounting for nearly

a third (33.1%) of all dispersion in price-earnings ratios. Differences in price growth are

underestimated, with expected price growth accounting for only 3.3% of all dispersion in

price-earnings ratios. A similar pattern can be observed at longer horizons. Overall, all the

coefficients closely align with those reported in Table I.

We can also estimate an exact version of the unexpected anomaly return decomposition

(7). Just as in the main identity, we normalize all anomalies ãi,t so that they have variance

1 and positively comove with future price growth. From equation (A7), we have the identity

Cov (∆p̃i,t+1 − E∗
t [∆p̃i,t+1] , ãi,t)︸ ︷︷ ︸

σa,p

= Cov (x̃i,t+1 − E∗
t [x̃i,t+1] , ãi,t)︸ ︷︷ ︸

σa,x

+ Cov
(
p̃xi,t+1 − E∗

t

[
p̃xi,t+1

]
, ãi,t

)︸ ︷︷ ︸
σa,px

. (A10)

Here, the values for σa,x and σa,px indicate how much the predictable price growth forecast
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Table AII

Unexpected anomaly price growth (exact decomposition)
This table measures and decomposes unexpected anomaly price growth. The Representative Anomaly is the average ranking
of each stock across 20 different anomalies, and p̃xi,t is the demeaned price-earnings ratio. For each anomaly variable, we sort
stocks into five equal-value portfolios based on the anomaly variable. Each column shows the coefficients of regressing each of
the dependent variables on a specific anomaly variable. Both anomaly variables are scaled to have unit variance and to positively
comove with future price growth. The three dependent variables are the unexpected price growth ∆p̃i,t+1 − E∗

t [∆p̃i,t+1], the
earnings forecast errors x̃i,t+1 − E∗

t [x̃i,t+1], and the price-earnings ratio forecast errors p̃xi,t+1 − E∗
t

[
p̃xi,t+1

]
. The sample

period is 1999 to 2020. Driscoll-Kraay standard errors and block-bootstrap standard errors are calculated for each coefficient.
In both cases, we use a lag equal to the maximum lag with any significant residual autocorrelation. Superscripts indicate
Driscoll-Kraay significance at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level.

Representative Anomaly p̃xi,t

∆p̃i,t+1 − E∗
t [∆p̃i,t+1] 0.031∗∗ 0.030∗

[0.013] [0.016]
[0.013] [0.015]

x̃i,t+1 − E∗
t [x̃i,t+1]

0.064∗∗∗ 0.069∗∗∗

[0.020] [0.010]
[0.020] [0.014](

p̃xi,t+1 − E∗
t

[
p̃xi,t+1

])
−0.033∗∗∗ −0.039∗∗

[0.009] [0.018]
[0.009] [0.015]

errors are explained by predictable errors in next-year earnings expectations and expectations

of the future price-earnings ratio. Table AII shows the results for the representative anomaly

studied in Section IV.C. For nearly every anomaly, we estimate a positive value of σa,p,

meaning that investors do not fully anticipate the high growth on high ãi,t stocks. The

predictable errors in one-year earnings growth expectations are more than large enough to

account for the unexpected one-year price growth (i.e., σa,x is greater than σa,p). In Appendix

D Table AXI we show the exact decomposition results for each of the individual anomalies.

C.2. Overlapping observations and Bauer and Hamilton (2018)

Overlapping forecast horizons can increase the persistence of residuals in Table I. Because of

this, we use Driscoll-Kraay and block-bootstrap standard errors to account for any autocor-

relation. For additional robustness, in this section we also directly calculate the significance
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of each coefficient under the worst-case scenario for overlapping observations.

We do this following the methodology proposed by Bauer and Hamilton (2018). Specifi-

cally, for expected and realized earnings growth and returns, we run simulations to measure

how often we spuriously find a coefficient as large as what we observe in the data. For clarity,

we discuss the simulation for the regression of earnings forecast errors ∆x̃i,t+1 −E∗
t [∆x̃i,t+1]

on price-earnings ratios p̃xi,t, however, the methodology is identical for the other left hand

side variables.

We specify the price-earnings ratio of each portfolio i as an AR(1) process,

p̃xi,t = µi +
(
p̃xi,t−1 − µi

)
+ σiεi,t.

The mean, persistence, and variance are set equal to the observed values over our sample.

Additionally, the initial value of the simulated price-earnings ratio for portfolio i is set equal

to the initial value observed in our data to account for any drift back to the mean which may

generate trends in price-earnings ratios over the sample. For example, if the price-earnings

ratio for the Growth portfolio is substantially above its mean at the beginning of the sample,

then reversion to the mean will create a downward trend in the price-earnings ratio for this

portfolio over time. We then simulate one-period forecast errors under the null hypothesis

that forecast errors are unpredictable.

If subjective expectations change over time, then there will be little overlap in longer

horizon forecast errors. For example, if E∗
t [∆x̃i,t+2] is very different from E∗

t+1 [∆x̃i,t+2], then

there is little similarity between the second term of
∑h

j=1 ρ
j−1 (∆x̃i,t+j − E∗

t [∆x̃i,t+j]) and the

first term of
∑h

j=1 ρ
j−1
(
∆x̃i,t+1+j − E∗

t+1 [∆x̃i,t+1+j]
)
. However, in the worst-case scenario in

which expectations do not change at all over time, then
∑h

j=1 ρ
j−1 (∆x̃i,t+j − E∗

t [∆x̃i,t+j])

will be an MA(h− 1) process. This will cause the forecast errors at longer horizons to be

persistent which increases the probability of spuriously finding a large coefficient between

price-earnings ratios and four-year forecast errors.

For our simulations, we push this worst-case scenario even further by making each period
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one month instead of one year. This means that
∑h

j=1 ρ
j−1 (∆x̃i,t+j − E∗

t [∆x̃i,t+j]) will be

MA(12h− 1) which dramatically increases the persistence. For all of the left-hand side

variables in Table I, we find that this worst-case scenario substantially overstates the observed

variable persistence. We then set the variance of the monthly forecast errors to match the

observed variance of
∑h

j=1 ρ
j−1 (∆x̃i,t+j − E∗

t [∆x̃i,t+j]). We then run 10,000 simulations and

report the probability of spuriously finding a coefficient as large as what we observe in the

data.

Table AIII shows the coefficients for realized and expected earnings growth and returns,

along with their associated p-values from the simulations. As in Table I, the FIRE CF2

and CF3 are not significant at any level. Additionally, under this worst-case scenario, the

FIRE CF4 is not significant at any level. All other coefficients are significant at the 5%

level, which again aligns with the results of Table I. Even after accounting for persistence in

price-earnings ratios, trends, and a worst-case assumption for overlapping observations, the

probability of spuriously generating coefficients as large as what we find in the data is quite

small.

C.3. Smoothed earnings

To show that our decomposition results are not influenced by fluctuations in earnings in

the denominator of price-earnings ratio, we repeat our analysis normalizing prices with a

three-year-smoothed measure of earnings. AIV shows that the results are very similar to

the main decomposition results in Table I. We find that 37.6% of dispersion in price–

to-smoothed-earnings ratios is accounted for by differences in expected four-year earnings

growth and 12.6% is accounted for by differences in four-year returns. Just as our main

results, differences in cash flow growth are overestimated, with errors in expected cash flows

accounting for nearly a third (31.0%) of all dispersion in price–to-smoothed-earnings ratios,

and differences in return are underestimated.
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C.4. Delisting firms

As explained in Section V, we require in the main analysis that firms have an observed future

price and future earnings. This allows us to calculate direct forecast errors for the subjective

expectations. To test whether survivorship bias is impacting the results, we repeat our

analysis without the requirement that firms must have a future observed price and observed

earnings. Instead, when firms exit the sample, we measure the delisting return and reinvest

those funds into the remaining firms in the portfolio. We then calculate earnings growth and

returns under this reinvestment strategy.

As shown in Table AV, the results are quite close to our main estimation in Table I. We

find that 42.7% (4.6%) of dispersion in price-earnings ratios is explained expected (realized)

four-year earnings growth and 16.7% (31.8%) is explained by expected (realized) four-year

returns.

C.5. Removing stale forecasts

The possibility that the observed stubbornness in expectations is mechanically driven by

stale analyst forecasts is not supported by the evidence in Table III Panel B which shows a

similar gradual adjustment in market returns. However, in Section V, we replicate the main

stubbornness results of Figures 2 and 3 using only actively updated forecasts within the

current quarter to form the consensus expectations. Tables AVI and AVII show the detailed

results for Figure 5. Moreover, in Table AVIII we also replicate the main decomposition

results from Table I using this subset of actively updated forecasts.

Our findings remain consistent: as in Table I, a substantial share (46.2%) of the dispersion

in price–earnings ratios is explained by differences in expected four-year earnings growth,

while 16.7% is attributed to differences in four-year returns. Similar to our main results,

errors in expected cash flows account for a significant portion of the dispersion, with one-third

(36.2%) of the total dispersion reflecting overestimation of differences in cash flow growth.

Conversely, differences in returns are underestimated.
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Table AVI

Gradual adjustment of expectations using only actively updated forecasts
Panel A shows the gradual adjustment of expectations about future earnings x̃i,t+h after an earnings surprise at t + 1, i.e.,
the coefficients γ∗

h,j estimated using equation (5). For example, the first row shows γ∗
2,1, the effect of an earnings surprise

x̃i,t+1 − E∗
t [x̃i,t+1] on the revisions to two-year earnings E∗

t+1 [x̃i,t+2] − E∗
t [x̃i,t+2]. The second row shows γ∗

3,1, and γ∗
3,2,

the effect of an earnings surprise x̃i,t+1 − E∗
t [x̃i,t+1] on revisions about x̃i,t+3 occurring in years t + 1 and t + 2. Panel B

shows the estimated coefficient θj from equation (6) which estimates the reaction of returns r̃i,t+1, r̃i,t+2, and r̃i,t+3 after an
earnings surprise at t + 1. To eliminate the possibility that the decomposition results are driven by stale forecasts, consensus
expectations are constructed exclusively from those individual earnings forecasts that were actively updated each quarter. The
sample period is 1999 to 2020. Superscripts indicate Driscoll-Kraay significance at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level.

Panel A: Earnings revisions

j = 1 j = 2 j = 3(
E∗

t+j − E∗
t+j−1

)
[x̃i,t+2] 0.13∗∗

(0.06)(
E∗

t+j − E∗
t+j−1

)
[x̃i,t+3] 0.11∗∗ 0.11∗∗∗

(0.04) (0.04)(
E∗

t+j − E∗
t+j−1

)
[x̃i,t+4] 0.11∗∗∗ 0.08∗∗∗ 0.11∗∗

(0.04) (0.03) (0.04)

Panel B: Returns

r̃i,t+j 0.10∗∗∗ 0.14∗∗∗ 0.09∗∗∗

(0.04) (0.04) (0.03)
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Table AVII

Revisions in expectations using only actively updated forecasts
This table shows the effect of earnings surprises on revisions using only actively updated forecasts. To eliminate the possibility
that the decomposition results are driven by stale forecasts, consensus expectations are constructed exclusively from those
individual earnings forecasts that were actively updated each quarter. For each anomaly ãi,t, we sort stocks into five equal-
value portfolios based on the anomaly variable. Each row shows the coefficient from regressing the revision in future earnings
E∗

t+1 [x̃i,t+2] − E∗
t [x̃i,t+2] on the earnings surprise xi,t+1 − E∗

t [xi,t+1] . The Representative Anomaly (RA) is the average
ranking of each stock across 20 different anomalies. P/X shows the results for the main portfolios used to study cross-sectional
variation in price-earnings ratios. Each anomaly variable ãi,t is scaled to have unit variance and to positively comove with
future returns. The sample period is 1999 to 2020. Driscoll-Kraay standard errors are calculated for each coefficient using a
lag equal to the equal to the maximum lag with any significant residual autocorrelation. Superscripts indicate Driscoll-Kraay
significance at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level.

ãi,t Coefficient ãi,t Coefficient

rdm -0.058 noa 0.159***
[0.060] [0.060]

bm 0.202*** oaa 0.177***
[0.060] [0.057]

cfp 0.243*** ol 0.156**
[0.052] [0.061]

adm 0.049 pia 0.212***
[0.040] [0.075]

nop 0.079 poa 0.134**
[0.049] [0.067]

ia 0.101*** pta 0.043
[0.026] [0.052]

gp 0.258** occ 0.308***
[0.104] [0.07]

ivc 0.013 dur 0.178***
[0.035] [0.063]

ivg 0.144*** cei 0.104
[0.051] [0.068]

ig 0.113*** P/X 0.131**
[0.044] [0.063]

nsi 0.202*** RA 0.221***
[0.043] [0.053]
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D. Extended anomaly results

In Tables AIX, AX, and AXI, we show the detailed results for each of the individual anoma-

lies. Table AIX shows that positive earnings surprises are associated with only a moderate

increase in expected next period earnings. Table AX shows the decomposition of unexpected

returns into earnings surprises and unexpected future price-earnings ratios. Table AXI shows

an exact decomposition of anomaly price growth rather than anomaly returns.

E. FIRE model simulations

For each model, we simulate the cross-section of firms. We set the number of firms based

on the original calculations in each paper. Specifically, we use 50, 5,000, and 200 firms for

Berk et al. (1999), Zhang (2005), and Lettau and Wachter (2007), respectively. We set every

sample to a length of 20 years and we run 1,000 simulations for each model. All parameter

values are taken from the original papers.

For Berk et al. (1999) and Zhang (2005), we sort firms into five portfolios based on their

price-book ratios. For Berk et al. (1999), we treat profits as our measure of earnings and

for Zhang (2005), we treat profits after the cost of new capital and adjustment costs as our

measure of earnings.41 For Lettau and Wachter (2007), the only firm variables are price and

dividends, so we treat dividends as our measure of earnings and sort firms into five portfolios

based on their price-dividend ratios. We then estimate the finite-horizon and infinite horizon

decomposition in equation (3) for each model.

E.1. Berk, Green, and Naik 1999

Each firm has some existing projects which generate cash flows. Each period, the firm draws

a new potential project, which it can pay a fixed cost to undertake. The value of the firm

comes from its existing projects as well as the option to undertake future projects (“growth

options”). As the term “growth options” implies, future earnings growth plays a key role in
41We find nearly identical results if we use profits as our measure of earnings for Zhang (2005).
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Table AIX

Revisions in expectations
This table shows the effect of earnings surprises on revisions. For each anomaly ãi,t, we sort stocks into five equal-value
portfolios based on the anomaly variable. Each row shows the coefficient from regressing the revision in future earnings
E∗

t+1 [x̃i,t+2] − E∗
t [x̃i,t+2] on the earnings surprise xi,t+1 − E∗

t [xi,t+1] . The Representative Anomaly (RA) is the average
ranking of each stock across 20 different anomalies. P/X shows the results for the main portfolios used to study cross-sectional
variation in price-earnings ratios. Each anomaly variable ãi,t is scaled to have unit variance and to positively comove with
future returns. The first and third columns show the result of the regressions using the main sample period of 1999 to 2020.
The second and fourth columns show the result of the regressions using the long sample period of 1982 to 2020. Driscoll-Kraay
standard errors are calculated for each coefficient using a lag equal to the equal to the maximum lag with any significant residual
autocorrelation. Superscripts indicate Driscoll-Kraay significance at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level.

ãi,t
Main Sample Long Sample

ãi,t
Main Sample Long Sample

1999-2020 1982-2020 1999-2020 1982-2020

rdm -0.059 -0.010 noa 0.127** 0.122***
[0.046] [0.041] [0.056] [0.039]

bm 0.194*** 0.179*** oaa 0.188*** 0.167***
[0.060] [0.046] [0.053] [0.035]

cfp 0.218*** 0.196*** ol 0.121** 0.140***
[0.046] [0.039] [0.058] [0.037]

adm 0.043 0.083*** pia 0.144*** 0.113***
[0.029] [0.025] [0.053] [0.036]

nop 0.073** 0.070** poa 0.127* 0.141***
[0.036] [0.030] [0.067] [0.045]

ia 0.104*** 0.137*** pta -0.002 0.016
[0.027] [0.024] [0.028] [0.024]

gp 0.257** 0.223*** occ 0.274*** 0.251***
[0.111] [0.074] [0.081] [0.057]

ivc -0.019 0.053* dur 0.479*** 0.443***
[0.032] [0.031] [0.071] [0.063]

ivg 0.130*** 0.134*** cei 0.082 0.114**
[0.044] [0.033] [0.067] [0.047]

ig 0.062 0.068*** P/X 0.136* 0.214**
[0.040] [0.025] [0.072] [0.091]

nsi 0.168*** 0.143*** RA 0.189*** 0.182***
[0.030] [0.031] [0.049] [0.060]
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Table AX

Unexpected anomaly returns
This table measures and decomposes unexpected anomaly returns using equation (7). For each anomaly ãi,t, we sort stocks
into five equal-value portfolios based on the anomaly variable. The table shows the coefficients of regressing each of the
dependent variables on a specific anomaly variable. The three dependent variables are the unexpected return r̃i,t+1−E∗

t [r̃i,t+1],
the earnings forecast errors x̃i,t+1 − E∗

t [x̃i,t+1], and the price-earnings ratio forecast errors ρ
(
p̃xi,t+1 − E∗

t

[
p̃xi,t+1

])
. The

Representative Anomaly (RA) is the average ranking of each stock across 20 different anomalies. P/X shows the results for the
main portfolios used to study cross-sectional variation in price-earnings ratios. Each anomaly variable ãi,t is scaled to have unit
variance and to positively comove with future returns. The sample period is 1999 to 2020. Driscoll-Kraay standard errors are
calculated for each coefficient using a lag equal to the equal to the maximum lag with any significant residual autocorrelation.
Superscripts indicate Driscoll-Kraay significance at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level.

Decomposition Decomposition

ãi,t σa,r σa,x σa,px ãi,t σa,r σa,x σa,px

rdm 0.009 0.055*** -0.044*** noa 0.019*** -0.039*** 0.057***
[0.006] [0.013] [0.013] [0.007] [0.011] [0.008]

bm 0.013 0.052** -0.041*** oaa 0.022 0.079*** -0.059**
[0.014] [0.023] [0.016] [0.018] [0.029] [0.024]

cfp 0.014 0.011 -0.002 ol 0.015*** 0.070*** -0.051***
[0.014] [0.019] [0.012] [0.005] [0.014] [0.014]

adm 0.018** 0.123*** -0.104*** pia -0.006 -0.011 0.007
[0.007] [0.010] [0.010] [0.011] [0.013] [0.014]

nop 0.018** -0.045*** 0.057*** poa 0.002 0.038*** -0.035***
[0.008] [0.015] [0.013] [0.007] [0.012] [0.010]

ia 0.046*** 0.140*** -0.096*** pta 0.007 -0.003 0.008
[0.016] [0.030] [0.019] [0.007] [0.008] [0.008]

gp 0.008 0.009 0.002 occ 0.019** 0.054*** -0.034***
[0.010] [0.016] [0.015] [0.009] [0.016] [0.012]

ivc 0.011 -0.033*** 0.040*** dur 0.062*** 0.074** -0.013
[0.007] [0.012] [0.009] [0.016] [0.033] [0.020]

ivg 0.013 0.023 -0.012 cei 0.048** 0.028 0.016
[0.010] [0.015] [0.012] [0.021] [0.031] [0.015]

ig 0.019 0.035** -0.018** P/X 0.033** 0.069*** -0.038**
[0.012] [0.014] [0.008] [0.016] [0.010] [0.017]

nsi 0.026** 0.029 -0.004 RA 0.034** 0.064*** -0.032***
[0.012] [0.018] [0.009] [0.013] [0.020] [0.009]
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Table AXI

Individual unexpected anomaly price growth (exact decomposition)
This table measures and decomposes unexpected anomaly price growth for each of the individual anomalies using equation
(A10). For each anomaly variable, we sort stocks into five equal-value portfolios based on the anomaly variable. The table
shows the coefficients of regressing each of the dependent variables on a specific anomaly variable. The three dependent variables
are the unexpected price growth ∆p̃i,t+1−E∗

t [∆p̃i,t+1], the earnings forecast errors x̃i,t+1−E∗
t [x̃i,t+1], and the price-earnings

ratio forecast errors p̃xi,t+1 − E∗
t

[
p̃xi,t+1

]
. The Representative Anomaly (RA) is the average ranking of each stock across

20 different anomalies. P/X shows the results for the main portfolios used to study cross-sectional variation in price-earnings
ratios. Each anomaly variable ãi,t is scaled to have unit variance and to positively comove with future price growth. The
sample period is 1999 to 2020. Driscoll-Kraay standard errors are calculated for each coefficient using a lag equal to the equal
to the maximum lag with any significant residual autocorrelation. Superscripts indicate Driscoll-Kraay significance at the 1%
(∗∗∗), 5% (∗∗), and 10% (∗) level.

Decomposition Decomposition

ãi,t σa,r σa,x σa,px ãi,t σa,r σa,x σa,px

rdm 0.010* 0.055*** -0.045*** noa 0.019*** -0.039*** 0.058***
[0.006] [0.013] [0.014] [0.007] [0.011] [0.009]

bm 0.011 0.052** -0.042*** oaa 0.019 0.079*** -0.060**
[0.014] [0.023] [0.016] [0.018] [0.029] [0.024]

cfp 0.009 0.011 -0.002 ol 0.017*** 0.070*** -0.053***
[0.015] [0.019] [0.012] [0.005] [0.014] [0.014]

adm 0.017** 0.123*** -0.106*** pia -0.004 -0.011 0.007
[0.007] [0.010] [0.011] [0.011] [0.013] [0.014]

nop 0.014* -0.045*** 0.059*** poa 0.002 0.038*** -0.036***
[0.008] [0.015] [0.013] [0.007] [0.012] [0.010]

ia 0.043*** 0.140*** -0.098*** pta 0.005 -0.003 0.009
[0.017] [0.030] [0.020] [0.007] [0.008] [0.009]

gp 0.011 0.009 0.002 occ 0.020** 0.054*** -0.035***
[0.010] [0.016] [0.015] [0.009] [0.016] [0.013]

ivc 0.008 -0.033*** 0.041*** dur 0.062*** 0.074** -0.013
[0.007] [0.012] [0.010] [0.016] [0.033] [0.021]

ivg 0.011 0.023 -0.012 cei 0.045** 0.028 0.016
[0.011] [0.015] [0.012] [0.021] [0.031] [0.016]

ig 0.017 0.035** -0.019** P/X 0.030* 0.069*** -0.039**
[0.012] [0.014] [0.008] [0.016] [0.010] [0.018]

nsi 0.024* 0.029 -0.004 RA 0.031** 0.064*** -0.033***
[0.012] [0.018] [0.009] [0.013] [0.020] [0.009]
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this model. The ratio of the firm’s price to its current earnings reflects how much of the firm’s

value comes from existing projects versus growth options. Firms with high price-earnings

ratios derive most of their value from their expected future projects rather than existing

projects, and future earnings growth accounts for most dispersion in price-earnings ratios

(CF4 = 0.85).

The model features a time-varying risk-free rate which also generates differences in risk

premia.42 Compared to existing projects, the value of growth options is less sensitive to

changes in the risk-free rate, as the firm can endogenously change its decision to exercise

the option (i.e., it only undertakes the potential project if the risk-free rate is low). Because

of this, the agent requires a higher risk premium for firms with low price-earnings ratios.

Quantitatively, the difference in risk premia is only a small part of the dispersion in price-

earnings ratios (DR4 = 0.03, DR∞ = 0.04).

E.2. Zhang 2005

In this model, firm earnings are

Xi,t = ext+zi,t+ptkα
i,t − f − ii,t − h (ii,t, ki,t)

where xt is aggregate productivity, zi,t is idiosyncratic productivity, pt is the aggregate price

level, ki,t is firm-level capital, f is a fixed cost, ii,t is investment in capital, and h (ii,t, ki,t)

is an adjustment cost. Differences across firms are due to differences in their sequence of

idiosyncratic productivity {zi,τ}tτ=0. Because idiosyncratic productivity is AR(1), future

earnings growth is partly predictable and dispersion in price-earnings ratios largely predicts

differences in future earnings growth (CF4 = 0.69).

The model also features differences in discount rates. Because of adjustment costs, it

is costly for firms to lower their capital to the new optimal level after a negative shock

to aggregate productivity xt. Therefore, the agent requires a higher risk premium for firms

with high capital relative to total firm value, as they are more sensitive to negative aggregate
42The risk-free rate is closely tied to the agent’s stochastic discount factor.
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shocks. Quantitatively, these differences in risk premia are small relative to the dispersion

in price-earnings ratios (DR4 = −0.03).43

In order to calculate CFh and DRh, we have to address the issue that model earnings are

often negative, even at the portfolio level, which is not compatible with the Campbell-Shiller

decomposition.44 To use the decomposition, we want to think about an investor that makes

a one-time payment to buy a claim to the company, never pays anything more in the future,

and receives some cash flows in the future. Thus, we will think of an investor that holds

some share θi,t of the company. When the company has positive cash flows, the investor

does not change her share in the company and receives these cash flows. When the company

has negative cash flows, we assume the investor sells a part of her stake in the company

to cover this. Specifically, this investor receives cash flows X̂i,t ≡ θi,t max {Xi,t, 0}, where

θi,t = θi,t−1 (1 + min {Xi,t, 0} /Pi,t). Intuitively, rather than receiving a negative cash flow,

this investor dilutes her claim to the future (on average positive) cash flows. This investor

receives the same return as someone who owned the entire firm and received the negative

cash flows, θi,tPi,t+X̂i,t

θi,t−1Pi,t−1
≡ Pi,t+Xi,t

Pi,t−1
.

E.3. Lettau and Wachter 2007

In this model, each firm receives some share si,t of the aggregate earnings. The value of

si,t goes through a fixed cycle, increasing from s to a peak value of s̄ and then decreasing

back to s. The cross-section of firms is populated with firms at different points in this share

cycle. Because all firms receive a share of the same aggregate earnings, the cross-sectionally

demeaned log earnings growth ∆x̃i,t is simply the log share growth log (si,t)− log (si,t−1).

In the model, the stochastic discount factor is exposed to shocks that are partly reversed
43In the model, high price-earnings ratio firms have low price-capital ratios. A 1% increase in ezi,t does

not change the current capital (ki,t), increases the current earnings by 1%, and increases the current price
by less than 1% since the increase in productivity is persistent but not permanent. Thus, an increase in zi,t
raises the price-capital ratio and lowers the price-earnings ratio. This is why the discount rate component
DRh is slightly negative, as the model predicts that high price-capital ratio firms will have lower future
returns, which means that high price-earnings ratio firms will have higher future returns.

44After a large aggregate shock, nearly all firms will substantially change their capital which requires
paying large adjustment costs.
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over time, which means that the agent requires a lower risk premium for longer horizon cash

flows. Because of this, firms with high price-earnings ratios (i.e., firms with a low current

share si,t) earn slightly lower returns for the first few years (DR4 = 0.06). However, the

quantitatively larger component is that high price-earnings ratio firms experience higher

earnings growth as their share increases (CF4 = 0.24). Over time, the firms with low current

si,t eventually become the firms with high si,t+h and require a higher risk premium, as their

cash flows are now front-loaded. Thus, the discount rate component is small and ambiguous

in terms of sign at long horizons, DR∞ = −0.04 (0.08).

F. Behavioral and learning model predictions

In this section, we discuss how our findings relate to several behavioral and learning models

in which subjective discount rates are constant and the comovement of current price ratios

with future returns is due to non-FIRE beliefs about cash flow growth. When subjective

expected returns are constant, E∗
t [r̃i,t+j] = r̄, equations (1) and (2) imply that realized

returns are

r̃i,t+1 − r̄ ≈ (∆x̃i,t+1 − E∗
t [∆x̃i,t+1]) +

∞∑
j=2

ρj−1
(
E∗

t+1 [∆x̃i,t+j]− E∗
t [∆x̃i,t+j]

)
.

If one-period cash flow surprises x̃i,t+1−E∗
t [x̃i,t+1] (which are equivalent to ∆x̃i,t+1−E∗

t [∆x̃i,t+1])

are positively related to revisions in expected future growth, then one-period cash flow sur-

prises will impact unexpected returns more than 1-1. Empirically, we find that one-period

cash flow surprises are negatively related to revisions in expected future growth, as earnings

are largely expected to return to their previous levels, and thus translate less than 1-1 into

unexpected returns.

Consider the case where agents overstate the persistence of growth. Specifically, the true

persistence of growth is ϕ but agents believe the persistence is ϕ∗ > ϕ. So long as ϕ∗ > 0,

then a positive surprise ∆x̃i,t+1−E∗
t [∆x̃i,t+1] will raise expected future growth and translate

more than 1-1 into realized returns.
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Further, we can consider learning about the mean of an i.i.d. growth process, such

as Nagel and Xu (2022). In this setting, agents form expectations of growth based on a

weighted average of past realized growth. A higher than expected realization for cash flow

growth causes the agent to positively revise her beliefs about mean growth. Because there

are no temporary shocks to the level of cash flows, this increase in expected mean growth

causes the agent to raise her expectations of all future growth. Specifically, Nagel and Xu

(2022) show that the realized unexpected return is

rt+1 − E∗
t [rt+1] =

(
1 +

ρv

1− ρ

)
(∆xt+1 − µ̃t)

where µ̃t is the agent’s current expectation of growth and v is the learning gain parameter.

Given that v > 0, it is immediate that cash flow growth surprises translate more than 1-1

into realized returns.

Finally, we discuss the case of diagnostic growth expectations, as in Bordalo et al. (2024a).

This model proposes that earnings growth is impacted by tangible news τt+1 and intangible

news ηt. Specifically, the process for earnings growth is

∆xt+1 = µ∆xt + ηt + τt+1.

Subjective expectations of growth are

E∗
t [∆xt+j] = µj−1 (µ∆xt + ηt) + µj−1ϵt

ϵt = ϕϵt−1 + θ (µτt + ηt)

where ϵt captures biases in expectations and ϕ is assumed to be less than µ. As stated in

the paper, realized unexpected returns are

rt+1 − r̄ = ∆xt+1 − E∗
t [∆xt+1] +

∞∑
j=2

ρj−1
(
E∗

t+1 [∆xt+j]− E∗
t [∆xt+j]

)
.

The covariance of the price-earnings ratio with future earnings growth surprises and

future unexpected returns is then
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Cov (pxt,∆xt+1 − E∗
t [∆xt+1]) = Cov (pxt,−ϵt)

Cov (pxt, rt+1 − r̄) = Cov

(
pxt,−

[
1 +

ρ

1− ρµ
(µ− ϕ)

]
ϵt

)
=

[
1 +

ρ

1− ρµ
(µ− ϕ)

]
Cov (pxt,∆xt+1 − E∗

t [∆xt+1]) .

Given the paper’s assumption that µ > ϕ, this means that the covariance of price-earnings

ratios with unexpected returns must be a magnified version of the covariance of price-earnings

ratios with earnings growth surprises. In fact, the model implies that for any time t variable,

the comovement of that variable with unexpected returns will be 1 + ρ
1−ρµ

(µ− ϕ) times the

comovement of that variable with earnings growth surprises. Thus, the model cannot match

our finding that the comovement of price-earnings ratios with one-year unexpected returns

is smaller than the comovement of price-earnings ratios with earnings growth surprises.

As an extension, we also consider the model of diagnostic expectations of earnings levels

in Bordalo et al. (2019). In this model, the difference between subjective and objective

expectations of the level of log earnings is

E∗
t [xt+j]− Et [xt+j] = aj

1− (b/a)j

1− b/a

(
f̂ θ
t − f̂t

)
where a, b > 0, f̂t is an objective inference of an underlying component of earnings, and f̂ θ

t is

the biased inference of this component. Simulating the model using the paper’s parameter

values, we find that high price-earnings ratio stocks have lower subjective expected one-

year earnings growth. Further, we find that price-earnings ratios are negatively related to

current f̂ θ
t −f̂t, meaning that high price-earnings ratio stocks have pessimistic expectations of

earnings at all horizons. These predictions do not align with our empirical findings that high

price-earnings ratio stocks have high subjective expected one-year earnings growth and that

high price-earnings ratios are associated with overoptimism in subjective expected earnings

growth.
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G. Subjective risk for our portfolios

One of the main components of our model is that investors perceive lower risk for the high

p̃xi,t firms. While the relation is supported by our main evidence in Table I that high price-

earnings ratios are associated with lower subjective expected returns, we can also look at

more direct measures of subjective risk. In this section we explore the relation between our

portfolios and two subjective risk measures: the absolute risk index assigned to firms by

Value Line, and a cross-sectionally standardized risk index created by Jensen (2024).

The first measure of risk is the “Safety Rank,” directly taken from Value Line. This

measure ranges from 1 to 5, where 5 denotes a high perceived risk, and it equals the average

of the analyst score for price stability and financial strength, two perceived characteristics

for each firm. We take a value–weighted average of this measure across all firms in each

portfolio to obtain our first subjective risk measure. To account for time effects, we also

construct a second standardized measure of risk following Jensen (2024). For each firm, we

define the subjective risk as the average cross-sectional rank of price stability and financial

strength, and then we standardize this measure every period (i.e., we rescale the measure

so that the cross-sectional mean and cross-sectional standard deviation are 0 and 1 in every

period).

Figure A1 shows that our high p̃xi,t portfolios indeed have lower subjective expected risk

using both the direct and the standardized measures of expected risk. The direct measure

of risk is on average 2.90 for the lowest p̃xi,t portfolio and 2.69 for the highest p̃xi,t portfolio,

while the standardized measure is 0.11 for the lowest p̃xi,t portfolio and -0.12 for the highest

p̃xi,t portfolio. As shown by the 95% confidence interval bars, these differences are highly

significant for both measures.

H. Model estimation

This section derives the cash flow parameters ϕ, σu, and σv from the standard deviation

and autocorrelation of aggregate earnings growth σ (∆xagg
t ) and AC (∆xagg

t ) and the average
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Figure A1. Subjective risk across portfolios. This figure plots the average subjective risk
for each of the five main portfolios. The direct measure in blue is the “Safety Rank” measure from Value
Line. This measure ranges from 1 to 5, where 5 is the highest perceived risk. The standardized measure
in red takes the average of the ‘Price Stability’ and ‘Financial Strength’ measures and it is cross-sectionally
rescaled to have mean zero and unit standard deviation. This measure increases with perceived risk. Each
portfolio shows the 95% confidence intervals. The 5 portfolios are shown in ascending order of price-earnings
ratios.

across portfolios of the standard deviation over time of earnings growth σ (∆x̃i,t+1) . We also

relate the constant-gain learning from annual observations used in our model to the evidence

on belief updating from quarterly observations.

H.1. Parameter values

According to equation (9), we can express aggregate earnings growth as:

∆xagg
t = ϕ∆xagg

t−1 − ut−1 + ut. (A11)

Taking covariance of equation (A11) with current earnings growth on both sides results in:

Cov(∆xagg
t ,∆xagg

t−1) = ϕV ar(∆xagg
t−1)− σ2

u

AC(∆xagg
t ) = ϕ− σ2

u

V ar(∆xagg
t )

. (A12)

Taking the variance of equation (A11) on both sides gives:

V ar(∆xagg
t ) = ϕ2V ar(∆xagg

t ) + 2σ2
u − 2ϕσ2

u

V ar(∆xagg
t ) =

2σ2
u

1 + ϕ
. (A13)
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From equations (A12) and (A13), we have:

ϕ = 1 + 2AC (∆xagg
t )

σu =

(
1 + ϕ

2

)1/2

σ (∆xagg
t ) .

Finally, to estimate the individual variance, we use equation (10) to obtain the value for

σv in terms of idiosyncratic earnings growth:

σv =
σ (∆x̃i,t)√

2
.

From the empirical values over the 1982-2020 sample of σ (∆xagg
t ) = 0.353, AC (∆xagg

t ) =

−0.086 and a median portfolio volatility of σ (∆x̃i,t) = 0.140 we infer ϕ = 0.828, σu = 0.337

and σv = 0.099

H.2. Constant-gain parameter

We set our constant-gain parameter based on previous estimates of belief updating from

Malmendier and Nagel (2016). In this section, we show that for small gains β, annual

updating of beliefs based on annual surprises is quite close to quarterly updating of beliefs

based on quarterly surprises.

For intuition, first consider the case of semi-annual updating. In this scenario, the agent

is attempting to learn the parameter µ from a semi-annual variable xt using the updating

rule

E∗
t [µ] = E∗

t−1/2 [µ] + β
(
xt − E∗

t−1/2 [µ]
)
. (A14)

Iterating this equation, we have

E∗
t [µ] = E∗

t−1 [µ] + β
(
xt − E∗

t−1/2 [µ]
)
+ β

(
xt−1/2 − E∗

t−1 [µ]
)

(A15)

= E∗
t−1 [µ] + β

(
xt−1/2 + xt − 2E∗

t−1/2 [µ]
)
− β2

(
xt−1/2 − E∗

t−1 [µ]
)

(A16)

≈ E∗
t−1 [µ] + β

(
xt−1/2 + xt − 2E∗

t−1/2 [µ]
)
. (A17)

Equation (A17) shows that for small values of β, this semi-annual updating rule is closely
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approximated by an annual updating rule using the same gain β and the annual surprise

xt−1/2 + xt − 2E∗
t−1/2 [µ]. This is because the effect of within-year updating depends on

β2, which in our case would be quite small at 0.0003. In other words, the adjustment

for within-year updating is second order compared to the first order change in beliefs

β
(
xt−1/2 + xt − 2E∗

t−1/2 [µ]
)
.

Now, we consider the scenario of quarterly updating. The agent is attempting to learn

the parameter µ from a quarterly variable xt. The agent’s updating rule is

E∗
t [µ] = E∗

t−1/4 [µ] + β
(
xt − E∗

t−1/4 [µ]
)

(A18)

= E∗
t−1 [µ] + β

(
xt−3/4 + xt−1/2 + xt−1/4 + xt − 4E∗

t−1 [µ]
)

−β2
[
3
(
xt−3/4 − E∗

t−1 [µ]
)
+ 2

(
xt−1/2 − E∗

t−3/4 [µ]
)
+ xt−1/4 − E∗

t−1/2 [µ]
]
.(A19)

Once again, this is approximately equal to an annual updating rule based on the annual

surprise xt−3/4 + xt−1/2 + xt−1/4 + xt − 4E∗
t−1 [µ]. The adjustments for within-year updating

are all scaled by β2.

I. Model extensions

I.1. Stubborn errors and rational arbitrageurs

This extension shows that in the presence of rational arbitrageurs with shorting costs, a lower

value of β limits the scope for arbitrageurs to intervene, allowing errors in expectations to

contribute more significantly to price dispersion.

First, consider the model of Section VI without any modifications. From equation (16),

strip prices are simply functions of the aggregate state variable xagg
t . If agents had FIRE

beliefs (i.e., agents knew the true parameters), then all firms would have the same price,

P FIRE
t ≡ exp

{
1
2
σ2
v

}∑∞
n=1 P

(n)
t . Due to errors in expectations (E∗

t [gi] , x̃i,t − E∗
t [vi,t]), prices

deviate from this FIRE benchmark,
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Pi,t

P FIRE
t

= exp {x̃i,t − E∗
t [vi,t]}

(
∞∑
n=1

P
(n)
t exp {nE∗

t [gi]}

)
/

∞∑
n=1

P
(n)
t

= F (xagg
t , E∗

t [gi] , x̃i,t − E∗
t [vi,t]) . (A20)

Let bi,t ≡ Et [∆x̃i,t+1]−E∗
t [∆x̃i,t+1] = −E∗

t [gi]− x̃i,t+E∗
t [vi,t] be the bias in one-period cash

flow expectations. The objective expected return is

Et [Ri,t+1] =
∞∑
n=1

wi,t,nEt

[
R

(n)
t+1

]
Et

E∗
t+1

[
X̃i,t+n

]
E∗

t

[
X̃i,t+n

]


= wi,t,1 exp
{
bi,t + rf

}
+

∞∑
n=2

wi,t,n exp

{
nβbi,t +

1

2
(nβ)2 σ2

v + rf + γσ2
uϕ

n−1

}
= H (xagg

t , bi,t) . (A21)

Importantly, the function H (xagg
t , bi,t) depends on the parameter β, whereas the func-

tion F (xagg
t , E∗

t [gi] , x̃i,t − E∗
t [vi,t]) does not. In an economy without rational arbitrageurs,

changing the stubbornness of errors in expectations (i.e., changing β) does not affect how

E∗
t [gi] and x̃i,t −E∗

t [vi,t] impact the level of prices but does affect how much these errors in

expectations translate into predictable one-period returns.

We now consider risk-neutral rational arbitrageurs. These agents know the true param-

eters and can construct long-short portfolios to profit on mispricing.45 We assume these

agents face a linear shorting cost with parameter η. This means that, in equilibrium, there

cannot be two assets i, j such that Et [Ri,t+1] − Et [Rj,t+1] > η, otherwise the arbitrageurs

would take an infinite long position in i and an infinite short-position in j. It can be shown

that this implies in equilibrium that
∣∣∣Et

[
R̃i,t+1

]∣∣∣ ≤ η/2 for all firms.46

Because of the shorting cost, these rational arbitrageurs do not correct all mispricing

when they are added to the model. From equation (A21), we see that there are threshold
45In the model, the only tradable assets are shares of the firms. Strip prices are simply mathematical

objects to help describe firm prices.
46Given that we have a continuum of firms, there will always be some firm with expected demeaned return

exactly equal to η/2 or −η/2. This means that if any other firm had a demeaned expected return outside
[−η/2, η/2] then it would immediately imply that there is a pair of firms with Et [Ri,t+1]− Et [Rj,t+1] > η.
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biases such that the arbitrageurs do not trade any firms with bi,t ∈
[
b (xagg

t ) , b (xagg
t )
]
. The

key takeaway is that these thresholds depend on β. For lower values of β, objective expected

one-period returns are less sensitive to bi,t and the range of biases where arbitrageurs do not

intervene
[
b (xagg

t ) , b (xagg
t )
]

is wider. As mentioned above, changing β does not alter the

function F (xagg
t , E∗

t [gi] , x̃i,t − E∗
t [vi,t]), so these errors in expectations will still have a large

effect on the level of prices even though they do not lead to large enough objective expected

one-period returns for arbitrageurs to intervene.

As a final point, we can examine the role of the temporary level shocks. Relative to

the belief-formation models of Lewellen and Shanken (2002) and Nagel and Xu (2022), our

non-rational agent attributes part of the earnings growth surprise to temporary shocks to

the level of earnings. Without this feature, her expectations follow

E∗
t [gi] = E∗

t−1 [gi] + β
(
∆x̃i,t − E∗

t−1 [∆x̃i,t]
)

(A22)

E∗
t [x̃i,t+n] = x̃i,t + nE∗

t [gi] (A23)

E∗
t+1

[
X̃i,t+n

]
E∗

t

[
X̃i,t+n

] = exp {(1− β + nβ) (∆x̃i,t+1 − E∗
t [∆x̃i,t+1])} . (A24)

Comparing equations (22) and (A24), revisions would be much more sensitive to surprises,

as nβ is changed to 1− β + nβ. Given equation (21), this means that predictable errors in

expectations would translate much more strongly into predictable one-year returns.

I.2. Time-varying latent component of growth

In this extension, we consider a model in which each firm’s underlying growth is time-varying

rather than a fixed parameter. Specifically, the firm-specific component of earnings growth

is

x̃i,t = zi,t + vi,t

∆zi,t − µ = ϕz (∆zi,t−1 − µ) + εi,t
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where the shocks are independent and have variances σ2
v and σ2

ε , respectively. The agent

attempts to infer the underlying ∆zi,t using constant-gain learning,

E∗
t [∆zi,t − µ] = ϕzE

∗
t−1 [∆zi,t−1 − µ] + β

(
∆x̃i,t − E∗

t−1 [∆x̃i,t]
)

(A25)

E∗
t [vi,t] = (1− β)

(
∆x̃i,t − E∗

t−1 [∆x̃i,t]
)
. (A26)

Her expectation for the future growth of the firm-level component is then

E∗
t [∆x̃i,t+1] = µ+ ϕzE

∗
t [∆zi,t − µ]− E∗

t [vi,t] . (A27)

Her expectation for the future level of the firm-level component is

E∗
t [x̃i,t+n] = x̃i,t + nµ+ ϕz

1− ϕn
z

1− ϕz

E∗
t [∆zi,t − µ]− E∗

t [vi,t] . (A28)

Since we are considering price-earnings ratios, we will normalize µ to 0 for simplicity. In the

case of ϕz = 1 and σε = 0, this extended model collapses back to the main model of Section

VI.

Note that the introduction of a time-varying component of firm-level growth does not

affect the pricing of aggregate strips in equations (16)-(18). Further, given these new def-

initions for expected cash flows, equations (19)-(21) still hold for describing firm prices,

expected returns, and realized returns.

Qualitatively, this model matches the main implications of our main model in Section

VI. A higher expectation of ∆zi,t will raise a firm’s price by increasing the expected future

cash flows and by lowering the subjective risk premium. If the constant-gain β is small,

then earnings surprises will only moderately affect expected future earnings, as shown by

equations (A28)-(A28). Similarly, if the constant-gain β is small, then disappointment in

one-year earnings will only have a small immediate impact on returns, as shown by equations

(21), (A25), (A26), and (A28).

Quantitatively, we find that this extension does not noticeably alter our results. Com-

pared to our main model, this extension provides two additional parameters (ϕz, σε). We

estimate these parameters to best match the decomposition targets shown in Figure 6. The
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result is ϕz = 0.9999 and σε = 0, meaning that the extended model is virtually identical

to the fixed parameter model of Section VI. In other words, for the purposes of explaining

our empirical findings, the main model of Section VI and the extended model with a time-

varying latent component of growth perform equally well. Because of this, we focus on the

more parsimonious fixed-parameter model for our main analysis.


