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1 Introduction

Production functions are one of the oldest concepts in economics (von Thünen 1842, Wicksteed

1894, Cobb & Douglas 1928). As a description of the relationship between inputs and output, they

are of interest in and of themselves and also a vehicle for measuring productivity and technical

change (Solow 1957). More recently, production functions have become a key input into estimat-

ing markups and markdowns in order to assess �rms' market power (Hall 1988, De Loecker &

Warzynski 2012). The production approach to markup estimation recognizes that, given an esti-

mate of the production function, the markup can be recovered from the �rm's cost minimization

problem. To estimate the production function, this large and rapidly growing literature relies on

the procedure initially developed by Olley & Pakes (1996) and further advanced by Levinsohn &

Petrin (2003) and Ackerberg, Caves & Frazer (2015) (henceforth OP, LP, and ACF).

The OP/LP/ACF procedure starts from the observation that there is an endogeneity problem

in estimating production functions. As �rst pointed out by Marschak & Andrews (1944), this

problem arises because the decisions that the �rm makes regarding its inputs depend on its pro-

ductivity, which is unobserved by the econometrician. To resolve this problem, OP turn it on its

head and use the �rm's decisions that are observed by the econometrician to infer its productiv-

ity. The resulting proxy variable approach to production function estimation has quickly become

standard practice.

The inversion from observables to productivity at the heart of the OP/LP/ACF procedure

requires that �rms with the same productivity make the same choices. Yet, there is no reason

to believe this is the case, e.g., if these �rms face di�erent demands in the output market. The

current paper therefore revisits the OP/LP/ACF procedure if invertibility fails. It characterizes

what goes wrong in the OP/LP/ACF procedure and what can still be done.

The point that the OP/LP/ACF procedure cannot accommodate unobserved demand hetero-

geneity has been made before. Foster, Haltiwanger & Syverson (2008) put it as follows:

. . . idiosyncratic demand shocks make the proxies functions of both technology and

demand shocks, thereby inducing a possible omitted variable bias. Put simply, proxy

methods require a one-to-one mapping between plant-level productivity and the observ-

ables used to proxy for productivity. This mapping breaks down if other unobservable

plant-level factors besides productivity drive changes in the observable proxy. (p. 403)

Indeed, to establish invertibility, OP rule out that �rms face di�erent demands and abstract from

competition between �rms.1 LP assume a perfectly competitive industry where �rms act as price

1OP assume that any pro�tability di�erences across �rms are due to di�erences in their capital stocks and
productivities (p. 1273), thereby ruling out that �rms face di�erent demands. Limiting the state variables in the
�rm's investment policy to its own capital stock and productivity moreover abstracts from competition between
�rms (see also Lemma 3 and Theorem 1 in Pakes 1994).
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takers and thus face the same horizontal demand curve (p. 322 and Appendix A). Based on their

results, ACF start from scalar unobservable and strict monotonicity assumptions, and almost all

subsequent literature simply imposes invertibility as a high-level assumption. For this reason, it

may not have fully appreciated the demanding nature of the invertibility assumption.

Unobserved demand heterogeneity is likely to be empirically important. The large literatures on

demand estimation and productivity analysis highlight the considerable heterogeneity in demand

that remains even after controlling for detailed product attributes (Berry, Levinsohn & Pakes 1995)

or honing in on (nearly) homogenous products (Foster et al. 2008). The problem is compounded by

the fact that, in imperfectly competitive environments, a �rm's decisions in equilibrium depend on

its own productivity as well as on the productivities of its rivals. Hence, imperfectly competitive

environments require jointly inverting the decisions of all �rms for the productivities of all �rms.

This many-to-many inverse may not exist (Biondi 2022) or it may be too high-dimensional to be

practical (Ackerberg & De Loecker 2024). Moreover, a �rm's rivals are partially or completely

unobserved in typical datasets used for production function estimation. The decisions of its rivals

have thus to be thought of as shocks to the demand the focal �rm faces.

Invertibility can fail for reasons other than unobserved demand heterogeneity. Changes in �rm

conduct due to mergers and acquisitions or switches from competition to collusion are best thought

of as changes to the ownership matrix. Invertibility can fail if these changes in �rm conduct are

partially or completely unobserved by the econometrician. Finally, invertibility can fail if there is

unobserved variation across �rms or time in input prices, investment opportunities, or �nancial

constraints.

In light of the demanding nature of the invertibility assumption, this paper makes �ve contri-

butions. First, we propose tests for invertibility. Our tests exploit that if invertibility fails, then

productivity becomes a hidden state in a Markov model. The literature on Kalman and particle

�lters in dynamic systems shows that the best guess for the hidden state uses the entire history

of the observables as opposed to just their current value. Invertibility can therefore be tested by

including lags of the observables in the regression in the �rst step of the OP/LP/ACF procedure.

Implementing our tests on an unbalanced panel of Spanish manufacturing �rms and a balanced

panel of US manufacturing industries, we strongly reject invertibility.

We therefore characterize the consequences of a failure of invertibility for the OP/LP/ACF

procedure. The �rst step of the OP/LP/ACF procedure regresses output on observables. If

invertibility fails, then the prediction of output contains an error. Because the prediction is used

to control for lagged productivity in the GMM estimation in the second step, the lagged prediction

error enters into the conditional moment. Building on Doraszelski & Jaumandreu (2024), we show

that this invalidates capital as an instrument and results in biased estimates.

Turning from what goes wrong if invertibility fails to what can still be done, our second
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contribution is to provide a necessary and su�cient condition for the moment condition in the

second step of the OP/LP/ACF procedure to hold for the true production function and some (not

necessarily the true) law of motion for productivity. This condition calls for rethinking how the

OP/LP/ACF procedure is implemented. In particular, it compels us to ensure that any instrument

used in the second step is appropriately included in the regression in the �rst step. Due to the lag

structure of the model, this means including the lead of capital in addition to its current value in

the regression. We provide a series of examples where this simple expedient su�ces to satisfy our

necessary and su�cient condition.

Beyond these examples, our necessary and su�cient condition may be violated. While this

results in biased estimates, our third contribution is to show that rethinking how the OP/LP/ACF

procedure is implemented mitigates the bias. Speci�cally, we show that the moment condition in

the second step implicitly incorporates a �rst-order bias correction provided any instrument used

in the second step is appropriately included in the regression in the �rst step.

Our fourth contribution is to explicitly incorporate a bias correction into the second step of

the OP/LP/ACF procedure. We show that the modi�ed moment condition has a property known

as Neyman orthogonality (Neyman 1959). While our modi�cation remains as straightforward to

implement as the original OP/LP/ACF procedure, Neyman orthogonality renders the asymptotic

distribution of the GMM estimator in the second step invariant to estimation noise and the quality

of the prediction of output from the �rst step. This is particularly advantageous if the regression

in the �rst step includes a large number of covariates. Neyman orthogonality facilitates the use of

a wide range of estimation methods in the �rst step, including traditional nonparametric methods

as well as modern machine learning techniques such as neural networks and random forests. A

Monte Carlo exercise shows that Neyman orthogonality can substantially improve the performance

of the GMM estimator in �nite samples.

Our �fth and �nal contribution is to provide a diagnostic to assess the sensitivity of the

estimates to the size of the prediction error in the �rst step. While our diagnostic has some

similarities to the sensitivity measure in Andrews, Gentzkow & Shapiro (2017), it is not local to

the true model and directly informative about the estimated model. Our diagnostic is neither

necessary nor su�cient for no bias. However, a small value of the diagnostic provides assurance

that small changes in the prediction error do not dramatically alter the estimates.

In sum, this paper examines the OP/LP/ACF procedure if the invertibility assumption fails.

Invertibility fails if there are demand shocks or in imperfectly competitive environments with

partially or completely unobserved rivals or changes in �rm conduct. Whether invertibility fails

can be tested. A failure of invertibility can have a substantial, detrimental impact on the estimates.

Fortunately, much can still be done. We provide a necessary and su�cient condition for the

moment condition in the second step of the OP/LP/ACF procedure to hold for the true production
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function. This condition compels us to ensure that any instrument used in the second step is

appropriately included in the regression in the �rst step. We show that this simple change either

eliminates or mitigates the bias. Going a step further, we modify the moment condition in the

second step to endow it with Neyman orthogonality. Finally, we provide a diagnostic to assess the

sensitivity of the estimates to the size of the prediction error that arises in the �rst step of the

OP/LP/ACF procedure if invertibility fails.

The remainder of the paper is organized as follows. In Section 2, we recall the setup and the

OP/LP/ACF procedure. In Section 3, we develop tests for invertibility. In Section 4, we develop

a necessary and su�cient condition for the moment condition in the second step to hold for the

true production function. We show that ensuring that any instrument used in the second step is

appropriately included in the regression in the �rst step either eliminates or mitigates the bias

that arises if invertibility fails. In Section 5, we modify the moment condition in the second step to

endow it with Neyman orthogonality. In Section 6, we conduct a Monte Carlo exercise to illustrate

what goes wrong in the OP/LP/ACF procedure if invertibility fails and what can still be done.

In Section 7, we provide a diagnostic to assess the sensitivity of the estimates to the size of the

prediction error. We conclude in Section 8.

2 Setup and OP/LP/ACF procedure

Firm i in period t produces output Qit with inputsKit and Vit according to the production function

qit = f(kit, vit) + ωit + εit, (1)

where lower case letters denote logs. Capital kit is a predetermined input that is chosen in period

t−1 whereas vit is freely variable and decided on in period t after the �rm observes its productivity

ωit.
2 Productivity follows a �rst-order Markov process with law of motion

ωit = E [ωit|ωit−1] + ξit = g(ωit−1) + ξit, (2)

where the productivity innovation ξit is by construction mean independent of lagged productivity

ωit−1 and further assumed to be mean independent of any variable included in the �rm's infor-

mation set in period t − 1. The disturbance εit sits between the �rm's output qit as recorded in

the data and the output q∗it = qit − εit = f(kit, vit) + ωit that the �rm planned on when it de-

cided on the variable input vit. It can be interpreted as measurement error or as an unanticipated

shock to output (OP, pp. 1273�1274) and is assumed to be mean independent of the inputs and

2While kit and vit may be vectors, we think of them as scalars for simplicity. The variable input vit may
accordingly be interpreted as a composite of labor and materials such as cost of goods sold.
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other included variables as formalized below.3 While the econometrician observes actual output

qit and the inputs kit and vit, productivity ωit, the disturbance εit, and planned output q∗it remain

unobserved.

Invertibility. The literature following OP relies on invertibility. Invertibility assumes that there

exists a function ωit = h(xit) that maps observables xit = (kit, vit, . . .) into productivity ωit. This

is equivalently to

E [ωit|xit] = ωit.

The observables included in xit depend on the decision of the �rm that is being inverted.4 We

remain agnostic about which variables are included in xit, aside from imposing, without loss of

generality, that the inputs kit and vit are included.

OP/LP/ACF procedure. Estimation proceeds in two steps. Step 1 assumes E [εit|xit] = 0

and �exibly or nonparametrically estimates the conditional expectation

E [qit|xit] = E [f(kit, vit) + ωit + εit| xit] = f(kit, vit) + E [ωit|xit] = f(kit, vit) + ωit = q∗it, (3)

where the �rst equality uses equation (1), the second-to-last equality uses invertibility, and the

last equality uses the de�nition of planned output q∗it. Because E [qit|xit] = q∗it, step 1 separates

actual output qit into planned output q∗it and the disturbance εit = qit − q∗it.

Step 2 of the OP/LP/ACF procedure assumes E [ξit + εit| zit] = 0 for instruments zit =

(kit, kit−1, vit−1, . . .) and estimates the parameters θ = (θf , θg) in the production function f and the

law of motion g by GMM.5 Capital kit is a valid instrument because it is a predetermined input,

and the lagged inputs kit−1 and vit−1 are valid instruments because the productivity innovation

ξit is mean independent of any variable included in the �rm's information set in period t− 1. We

remain agnostic regarding additional instruments in zit.

Using equations (1) and (2) and the de�nition of planned output q∗it, the assumption E [ξit + εit| zit] =
0 implies

E[qit − f(kit, vit)− g(ωit−1)|zit] = E[qit − f(kit, vit)− g(q∗it−1 − f(kit−1, vit−1))|zit] = 0. (4)

Moment condition (4) is infeasible for estimation because lagged planned output q∗it−1 is unob-

served. Substituting E[qit−1|xit−1] from step 1 for q∗it−1, step 2 therefore proceeds by estimating

3Mundlak & Hoch (1965) refer to ωit and εit as the transmitted, respectively, untransmitted component of pro-
ductivity. The untransmitted component may include machine breakdowns, labor actions, supply chain disruptions,
and power outages that are not anticipated by the �rm. The interpretation as measurement error accommodates
serial correlation in the disturbance εit.

4OP invert the �rm's demand for investment whereas LP and ACF invert its demand for materials.
5For notational convenience we suppress θ in much of what follows.
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the parameters θ from the moment condition

E [qit − f(kit, vit)− g (E [qit−1|xit−1]− f(kit−1, vit−1)) |zit] = 0. (5)

Throughout the remainder of the paper, we follow OP, LP, and ACF and maintain E [εit|xit] = 0

for observables xit = (kit, vit, . . .) and E [ξit + εit| zit] = 0 for instruments zit = (kit, kit−1, vit−1, . . .).

To avoid cumbersome notation, we adopt the convention that all equalities involving random

variables and conditional expectations are understood to hold almost surely.

3 Tests for invertibility

If invertibility fails and E [ωit|xit] ̸= ωit, then productivity ωit becomes a hidden state in a Markov

model. The literature on Kalman and particle �lters in dynamic systems shows that the best guess

for the unobservables uses the entire history of the observables as opposed to just their current

value. Our tests for invertibility are based on this intuition.

Our �rst proposition shows that invertibility implies a testable mean-independence restriction:

Proposition 1. If E [ωit|xit] = ωit and E [εit|xit, xit−1] = E [εit|xit], then E [qit|xit, xit−1] =

E [qit|xit].

While step 1 of the OP/LP/ACF procedure assumes E [εit|xit] = 0 for observables xit =

(kit, vit, . . .) and step 2 assumes E [ξit + εit|zit] = 0 for instruments zit = (kit, kit−1, vit−1, . . .), this

does not quite imply E [εit|xit, xit−1] = E [εit|xit]. However, the interpretation of the disturbance

εit as an unanticipated shock to output that is outside the �rm's information set in period t implies

E [εit|xit, xit−1] = E [εit|xit] = 0.6 The proof of Proposition 1 is straightforward:

Proof. If E [ωit|xit] = ωit, then

qit = f(kit, vit) + ωit + εit = f(kit, vit) + E [ωit|xit] + εit.

E [εit|xit, xit−1] = E [εit|xit] therefore implies E [qit|xit, xit−1] = E [qit|xit].

Our second proposition shows that invertibility implies a testable conditional-independence

restriction:

Proposition 2. If E [ωit|xit] = ωit and εit ⊥⊥ xit−1| xit, then qit ⊥⊥ xit−1|xit.
6Under the interpretation of the disturbance εit as measurement error, the assumption E [εit|xit, xit−1] =

E [εit|xit] holds if xit−1 does not have predictive power for εit beyond xit.
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Going beyond the �rst-order implication of E [ωit|xit] = ωit in Proposition 1 calls for a stronger

assumption on the disturbance εit. The assumption εit ⊥⊥ xit−1| xit in Proposition 2 means that

any possible dependence between εit and xit−1 is through xit. It is implied by εit ⊥⊥ (xit, xit−1) and

implies E [εit|xit, xit−1] = E [εit|xit]. The proof of Proposition 2 parallels the proof of Proposition

1 and is therefore omitted.

We implement our tests for invertibility on an unbalanced panel of Spanish manufacturing

�rms from 1990 to 2006 (Encuesta Sobre Estrategias Empresariales) and a balanced panel of US

manufacturing industries from 1958 to 2018 (NBER-CES). In both cases, we reject invertibility by

a wide margin. We provide further details on the data and the tests in Appendix A. In the next

section, we turn to the consequences of a failure of invertibility for production function estimation.

4 Failure of invertibility and validity of OP/LP/ACF mo-

ment condition

If invertibility fails and E [ωit|xit] ̸= ωit, then a prediction error ζit = ωit − E [ωit|xit] arises in step

1 of the OP/LP/ACF procedure that is generally non-zero. By construction, the prediction error

satis�es E [ζit|xit] = 0.

To see how the presence of the prediction error ζit a�ects the OP/LP/ACF procedure, recall

that the conditional expectation estimated in step 1 is

E [qit|xit] = f(kit, vit) + E [ωit|xit] = f(kit, vit) + ωit − ζit = q∗it − ζit, (6)

where the �rst equality uses equation (1) and E[εit|xit] = 0, the second equality uses the de�nition

of the prediction error ζit, and the last equality uses the de�nition of planned output q
∗
it. Equation

(6) provides an alternative interpretation of the prediction error as the di�erence between planned

output and its prediction in step 1: ζit = q∗it − E[qit|xit].
Substituting E[qit−1|xit−1] from equation (6), the left-hand side of moment condition (5) in step

2 of the OP/LP/ACF procedure becomes

E
[
qit − f(kit, vit)− g

(
q∗it−1 − ζit−1 − f(kit−1, vit−1)

)
|zit
]
. (7)

Because of the lagged prediction error ζit−1, conditional moment (7) is generally non-zero. To see

this more clearly, consider the special case of an AR(1) process for productivity. If g(ωit−1) =

ρωit−1, then conditional moment (7) evaluates to

E [ξit + εit + ρζit−1|zit] = ρE [ζit−1|zit] , (8)
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where the equality uses E [ξit + εit|zit] = 0.

To further see how this a�ects the GMM estimation, recall that xit−1 = (kit−1, vit−1, . . .) and

zit = (kit, kit−1, vit−1, . . .). The lagged inputs kit−1 and vit−1 hence remain valid instruments because

E [ζit−1|xit−1] = 0 by construction. However, capital kit may no longer be a valid instrument as

E [ζit−1|kit] ̸= 0, as noted by Doraszelski & Jaumandreu (2024). This is because the �rm chooses kit

in period t− 1 with knowledge of ωit−1. What remains of lagged productivity after controlling for

the lagged observables xit−1 may therefore be correlated with kit. This results in biased estimates.

The above discussion foreshadows part of the solution to the problem: adding the lead of capital

kit+1 to the observables xit in step 1 of the OP/LP/ACF procedure ensures that E [ζit−1|kit] = 0

and hence the validity of capital kit as an instrument in step 2. This simple expedient amounts to

rethinking how the OP/LP/ACF procedure is implemented. The remaining question is to what

extent it su�ces beyond the special case of an AR(1) process for productivity.

The following theorem provides a complete answer to this question in the form of a necessary

and su�cient condition.

Theorem 1. Moment condition (5) in step 2 of the OP/LP/ACF procedure holds for the true

production function f 0 and some law of motion g̃ if and only if

E
[
g0(ωit−1)|zit

]
= E [ g̃ (E [ωit−1|xit−1])| zit] , (9)

where g0 is the true law of motion.

We prove Theorem 1 before parsing it:

Proof. Recall that the true production function f 0 and the true law of motion g0 satisfy moment

condition (4).

�Only if � part: Suppose moment condition (5) holds for the true production f 0 and some law of

motion g̃. Then we have

0 = E
[
qit − f 0(kit, vit)− g̃

(
E [qit−1|xit−1]− f 0(kit−1, vit−1)

)∣∣ zit]
= E

[
qit − f 0(kit, vit)− g̃ (E [ωit−1|xit−1])

∣∣ zit] ,
where the last equality uses equation (6). Subtracting from equation (4) implies condition (9).

�If � part: Suppose condition (9) holds. Substituting into equation (4), we have

0 = E
[
qit − f 0(kit, vit)− g̃ (E [ωit−1|xit−1])

∣∣ zit]
= E

[
qit − f 0(kit, vit)− g̃

(
E [qit−1|xit−1]− f 0(kit−1, vit−1)

)∣∣ zit] ,
where the last equality uses equation (6). Hence, moment condition (5) holds for f 0 and g̃.
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Theorem 1 covers the invertibility assumption at the heart of the literature following OP as

a special case. If E [ωit|xit] = ωit, then condition (9) becomes E [g0(ωit−1)|zit] = E [g̃ (ωit−1) |zit]
and is therefore satis�ed with g̃ = g0. Importantly, however, condition (9) can be satis�ed even if

invertibility fails and E [ωit|xit] ̸= ωit.

To understand condition (9), note that it becomes E [g0(ωit−1)|zit] = g̃ (E [ωit−1|xit−1]) if xit−1 ⊊
zit. This is di�cult to satisfy as the left-hand side is a function of zit whereas the right-hand side

is a function of xit−1 ⊊ zit.

We therefore set xit−1 ⊇ zit in what follows. This amounts to rethinking how the OP/LP/ACF

procedure is implemented, as foreshadowed by the special case of anAR(1) process for productivity.

In particular, because kit is included in zit in step 2, we must include kit+1 in xit in step 1.

With this choice of xit−1 ⊇ zit, we further examine condition (9) through a series of examples:

Example 1 (linear law of motion, AR(1) process). If g0(ωit−1) = ρωit−1, then E [ρωit−1|zit] =
E [ρE [ωit−1|xit−1] |zit] by the law of iterated expectations. Condition (9) is therefore satis�ed with

g̃(E[ωit−1|xit−1]) = g0(E[ωit−1|xit−1]). ■

Remarkably, moment condition (5) in step 2 of the OP/LP/ACF procedure holds in Example 1

irrespective of the quality of the estimate of E [qit|xit] in step 1.

Example 2 (quadratic law of motion). If g0(ωit−1) = ρ1ωit−1 + ρ2ω
2
it−1 and Var (ζit−1|zit) = σ2,

then

E
[
ρ1ωit−1 + ρ2ω

2
it−1

∣∣ z] = E
[
ρ1E [ωit−1|xit−1] + ρ2E [ωit−1|xit−1]

2 + ρ2ζ
2
it−1

∣∣ zit] .
Condition (9) is therefore satis�ed with g̃(E[ωit−1|xit−1]) = g0(E[ωit−1|xit−1]) + ρ2σ

2.7 ■

Example 2 is less restrictive on the law of motion but more restrictive on the lagged prediction

error than Example 1. The next example pushes this tradeo� further:

Example 3 (analytic law of motion). If the Taylor series of g0 around E[ωit−1|xit−1] converges

absolutely so that g0(ωit−1) =
∑∞

j=0
g0,(j)(E[ωit−1|xit−1])

j!
ζjit−1, where g

0,(j) is the jth derivative of g0,

then

E

[
∞∑
j=0

g0,(j)(E[ωit−1|xit−1])

j!
ζjit−1

∣∣∣∣∣ zit
]
= E

[
E

[
∞∑
j=0

g0,(j)(E[ωit−1|xit−1])

j!
ζjit−1

∣∣∣∣∣xit−1

]∣∣∣∣∣ zit
]

= E

[
∞∑
j=0

g0,(j)(E[ωit−1|xit−1])

j!
E[ζjit−1|xit−1]

∣∣∣∣∣ zit
]
.

If E[ζjit−1|xit−1] = αj for some constant αj for all j, then condition (9) is satis�ed in this example

7We can relax Var (ζit−1|zit) = σ2 to Var (ζit−1|zit) = h(E[ωit−1|xit−1]) for some function h. In this case,
condition (9) holds with g̃(E[ωit−1|xit−1]) = g0(E[ωit−1|xit−1]) + ρ2h(E[ωit−1|xit−1]).
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with g̃(E[ωit−1|xit−1]) =
∑∞

j=0
g0,(j)(E[ωit−1|xit−1])

j!
αj.

8 ■

Beyond these examples, condition (9) may be violated even if xit−1 ⊇ zit.
9 While this re-

sults in biased estimates, setting xit−1 ⊇ zit mitigates the bias. If xit−1 ⊇ zit, then we have

E [ωit−1|zit] = E [E [ωit−1|xit−1] |zit] by the law of iterated expectations and hence E [ζit−1|zit] =
E [ωit−1 − E [ωit−1|xit−1]| zit] = 0. This mean independence of the lagged prediction error ζit−1

from the instruments zit intuitively eliminates a �rst-order source of bias. The following theorem

formalizes this intuition:

Theorem 2. If xit−1 ⊇ zit and g is di�erentiable, then moment condition (5) in step 2 of the

OP/LP/ACF procedure implicitly incorporates a �rst-order bias correction:

E [qit − f(kit, vit)− g (E [qit−1|xit−1]− f(kit−1, vit−1)) |zit] = E [qit − f(kit, vit)

− g
(
q∗it−1 − ζit−1 − f(kit−1, vit−1)

)
− g′

(
q∗it−1 − ζit−1 − f(kit−1, vit−1)

)
ζit−1

∣∣zit] , (10)

where g′ is the �rst derivative of g.

We note that equation (10) holds for any production function f and any law of motion g for which

the conditional moments exist. The proof of Theorem 2 is in Appendix B.

To appreciate Theorem 2, recall that moment condition (4) is valid even if invertibility fails.

Because lagged planned output q∗it−1 is unobserved, moment condition (4) is infeasible for estima-

tion. Step 2 of the OP/LP/ACF procedure therefore proceeds by substituting E [qit−1|xit−1] from

step 1 for q∗it−1. If invertibility fails, then this substitution introduces the lagged prediction error

ζit−1 = q∗it−1 − E [qit−1|xit−1] into moment condition (5) (see conditional moment (7)). Theorem

2 shows that setting xit−1 ⊇ zit adjusts moment condition (5) toward the valid but infeasible

moment condition (4).

Indeed, comparing the term g (E [qit−1|xit−1]− f(kit−1, vit−1)) in moment condition (5) to the

term g
(
q∗it−1 − f(kit−1, vit−1)

)
in moment condition (4) yields

g (E [qit−1|xit−1]− f(kit−1, vit−1))− g
(
q∗it−1 − f(kit−1, vit−1)

)
= g

(
q∗it−1 − ζit−1 − f(kit−1, vit−1)

)
− g

(
q∗it−1 − f(kit−1, vit−1)

)
= −g′

(
q∗it−1 − ζit−1 − f(kit−1, vit−1)

)
ζit−1 + o(ζit−1), (11)

where the last equality uses a �rst-order Taylor expansion of g around q∗it−1− ζit−1− f(kit−1, vit−1)

8Condition (9) remains valid if we relax the condition that E[ζjit−1|xit−1] = αj for some constant αj for all j to
ζit−1 ⊥⊥ zit|E[ωit−1|xit−1].

9Testing condition (9) is empirically challenging. A necessary condition for it to be satis�ed is that moment
condition (5) in step 2 of the OP/LP/ACF procedure holds at the estimated production function and law of motion.
This can be tested with an overidenti�cation test that corrects for the plug-in nature of the OP/LP/ACF procedure
and clustering in the data.
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and o(ζit−1) denotes the higher-order remainder. Equation (10) in Theorem 2 shows that if xit−1 ⊇
zit, then moment condition (5) implicitly accounts for the term−g′

(
q∗it−1 − ζit−1 − f(kit−1, vit−1)

)
ζit−1.

Moment condition (5) thus di�ers from the valid but infeasible moment condition (4) at most by

higher-order terms. Put di�erently, setting xit−1 ⊇ zit provides a �rst-order bias correction in step

2 of the OP/LP/ACF procedure.

Because setting xit−1 ⊇ zit provides a �rst-order bias correction in step 2 of the OP/LP/ACF

procedure, a violation of condition (9) must be of second order relative to size of the prediction

error. The following theorem formalizes this intuition:

Theorem 3. Let G be a set of functions that includes the true law of motion g0. If xit−1 ⊇ zit

and g0 is twice continuously di�erentiable, then

inf
g̃∈G

∥∥E [g0(ωit−1)|zit
]
− E [g̃ (E [ωit−1|xit−1]) |zit]

∥∥
L,1

≤ τVar (ζit−1) ,

where ∥·∥L,1 is the L1 norm, τ = supωit−1
|g0′′(ωit−1)|, and g0′′ is the second derivative of g0.

The proof of Theorem 3 is in Appendix B.

Theorem 3 ties the violation of condition (9) to the variance of the lagged prediction error ζit−1.

Because Var(ζit−1) = E[(ωit−1−E[ωit−1|xit−1])
2], this variance gets smaller as the observables xit−1

get richer even beyond zit. Theorem 3 therefore suggests to take a kitchen sink approach to the

regression in step 1 of the OP/LP/ACF procedure and add as many relevant covariates as possible.

Adding covariates that speak to demand conditions and �rm conduct may be especially helpful.10

Adding covariates may make the assumption E [εit|xit] = 0 that underpins step 1 of the

OP/LP/ACF procedure more demanding. We advocate replacing xit = (kit, vit, . . .) in the original

procedure by xit = (kit+1, kit, vit, . . .). In the original procedure, the assumption E [εit|xit] = 0 is

justi�ed by stipulating that εit is outside the �rm's information set in period t. This justi�cation

extends to our approach as the �rm is assumed to choose kit+1 in period t. However, adding leads

of other covariates to xit may be more challenging if the �rm eventually learns εit. To guard

against this possibility, we recommend adding current values or lags of other covariates to xit.

Finally, we caution that adding covariates introduces a curse of dimensionality. The resulting

larger mean squared error of the estimate of E[qit−1|xit−1] may counterbalance the bene�t of

the smaller Var(ζit−1) in �nite samples. In the next section, we propose a modi�cation of the

OP/LP/ACF procedure that addresses this problem.

10The recent literature in fact proceeds along this line: �The materials demand function in our setting will take
as arguments all state variables of the �rm (. . . ), including productivity, and all additional variables that a�ect a
�rm's demand for materials. These include �rm location (. . . ), output prices (. . . ), product dummies (. . . ), market
shares (. . . ), input prices (. . . ), the export status of a �rm (. . . ), and the input (. . . ) and output tari�s (. . . ) that
the �rm faces on the product it produces� (De Loecker, Goldberg, Khandelwal & Pavcnik 2016, p. 466). Whether
adding covariates restores invertibility can be assessed using the tests in Section 3.
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Summary. Our analysis calls for rethinking how the OP/LP/ACF procedure is implemented.

Theorem 1 makes a strong case for ensuring xit−1 ⊇ zit. For a linear law of motion, the moment

condition in step 2 of the OP/LP/ACF procedure holds for the true production function f 0 and

the true law of motion g0. For a nonlinear law of motion, recovering the true production function

f 0 requires condition (9) to be satis�ed. A violation of condition (9) results in biased estimates.

In this case, Theorem 2 shows that setting xit−1 ⊇ zit provides a �rst-order bias correction.

Theorem 1 further suggests to be �exible in modeling the law of motion in step 2 as condition

(9) is easier to satisfy if g̃ can come from a larger set G. Theorem 3 �nally suggests to take a

kitchen sink approach to step 1.

Related literature. An alternative to relaxing the invertibility assumption is to forgo step 1 of

the OP/LP/ACF procedure. Instead of substituting E [qit−1|xit−1] for q
∗
it−1 in moment condition

(4), the dynamic panel approach to production function estimation pioneered by Blundell & Bond

(2000) substitutes qit−1 and imposes the linear law of motion g(ωit−1) = ρωit−1 to obtain

E[qit−f(kit, vit)−g(qit−1−f(kit−1, vit−1))|zit] = E[qit−f(kit, vit)−g(q∗it−1−f(kit−1, vit−1))−ρεit−1|zit].

Besides the assumption E [ξit + εit|zit] = 0 maintained in moment condition (4), the dynamic

panel approach requires assuming E[εit−1|zit] = 0. In comparison, our Example 1 requires setting

xit−1 ⊇ zit and assuming E[εit−1|xit−1] = 0 in step 1 of the OP/LP/ACF procedure. Either

assumption can be justi�ed by appealing to the �rm's information set and the timing of decisions,

as discussed above.

Hu, Huang & Sasaki (2020), Brand (2020), and Ponder (2021) generalize the dynamic panel

approach from a linear to a nonlinear law of motion.11 To illustrate the similarities and di�erences

with our approach, consider the quadratic law of motion g(ωit−1) = ρ1ωit−1+ρ2ω
2
it−1. Substituting

qit−1 for q
∗
it−1 in moment condition (4) yields

E[qit − f(kit, vit)− g(qit−1 − f(kit−1, vit−1))|zit] = E[qit − f(kit, vit)

− g(q∗it−1 − f(kit−1, vit−1))− ρ1εit−1 − 2ρ2εit−1(q
∗
it−1 − f(kit−1, vit−1))− ρ2ε

2
it−1|zit].

The generalized dynamic panel approach therefore requires assuming E[εit−1|zit] = 0, E[εit−1ωit−1|zit] =
0, and Var (εit−1|zit) = σ2. In comparison, our Example 2 requires setting xit−1 ⊇ zit and assuming

E[εit−1|xit−1] = 0 and Var(ζit−1|zit) = σ2. Both approaches are similar in that they impose exclu-

sion restrictions on second-order moments of latent variables to ensure that the moment condition

11The estimation strategy in Hu et al. (2020) and Brand (2020) di�ers from their identi�cation strategies. The
latter builds on Hu & Schennach (2008) and relies on the existence of two conditionally independent proxies
for productivity and the invertibility of an integral operator. The implied semiparametric maximum likelihood
estimator involves signi�cant computational challenges that preclude its implementation.
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holds for the true production function.

This similarity extends to the polynomial law of motion g(ωit−1) =
∑∞

j=1 ρjω
j
it−1. In this case,

the generalized dynamic panel approach requires assuming that E[εjit−1|ωit−1, zit] is constant for

all j. This restriction on the joint distribution of εit−1 and ωit−1 may be unpalatable if εit−1 and

ωit−1 are interpreted as the untransmitted, respectively, transmitted component of productivity

(see footnote 3).12 In comparison, our Example 3 requires assuming that E[ζjit−1|xit−1] is constant

for all j.

The key di�erence is that our approach imposes restrictions on the lagged prediction error

ζit−1 rather than the lagged disturbance εit−1. Whereas the magnitude and properties of εit−1 are

inherent in the data generating process, the advantage of our approach is that the magnitude of

ζit−1 can be reduced by adding covariates to the regression in step 1 of the OP/LP/ACF procedure.

Proceeding to add covariates may shrink Var(ζit−1) = E[(ωit−1−E[ωit−1|xit−1])
2] towards zero if we

approach invertibility in the limit. This makes our approach particularly attractive for datasets

with a rich set of observables.

5 Modi�cation of OP/LP/ACF moment condition

Step 1 of the OP/LP/ACF procedure estimates the conditional expectation E[qit−1|xit−1]. To

understand the impact that a noisy estimate in step 1 has on the GMM estimator in step 2, we

use ê(xit−1) to denote the estimate of a nuisance parameter e(xit−1) with true value E[qit−1|xit−1].

We remain agnostic about the estimation method used in step 1.

Replacing E[qit−1|xit−1] by ê(xit−1) in moment condition (5) that underpins step 2 yields

E [qit − f(kit, vit)− g (ê(xit−1)− f(kit−1, vit−1)) |zit] = 0. (12)

Because ê(xit−1) converges to E[qit−1|xit−1] as the sample size increases, we write ê(xit−1) =

E[qit−1|xit−1] + λδ(xit−1), where λ converges to zero as sample size increases and δ(xit−1) is the

direction of the �nite-sample deviation of ê(xit−1) from E[qit−1|xit−1]. The pathwise (or Gateaux)

derivative of the left-hand side of moment condition (12) with respect to the direction δ(xit−1) at

ê(xit−1) = E[qit−1|xit−1] is

∂

∂λ
E
[
qit − f(kit, vit)− g (E[qit−1|xit−1] + λδ(xit−1)− f(kit−1, vit−1))

∣∣zit] ∣∣∣
λ=0

= −E
[
g′ (E[qit−1|xit−1]− f(kit−1, vit−1)) δ(xit−1)

∣∣zit] .
Because this derivative is generally non-zero, moment condition (5) is impacted by the deviation

12If xit−1 ⊆ zit and invertibility holds, then E[εjit−1|ωit−1, zit] = E[εjit−1|zit]. While this facilitates interpreting
the restriction, we focus on the case where invertibility fails.

14



of ê(xit−1) from E[qit−1|xit−1] that arises from estimation noise in step 1.

To eliminate this impact and its adverse consequences for the asymptotic distribution of the

GMM estimator, we modify the moment condition in step 2 as follows:

E [qit − f(kit, vit)− g (ê(xit−1)− f(kit−1, vit−1))

− g′ (ê(xit−1)− f(kit−1, vit−1)) (qit−1 − ê(xit−1))
∣∣zit] = 0. (13)

Our modi�cation explicitly incorporates a feasible version of the �rst-order bias correction that is

implicit in moment condition (5) if xit−1 ⊇ zit (see Theorem 2).

If ê(xit−1) = E[qit−1|xit−1] and xit−1 ⊇ zit, then we have E[qit−1 − ê(xit−1)|zit] = 0 so that

moment condition (13) coincides with moment condition (5). Our modi�cation therefore retains

the identi�cation power of the original OP/LP/ACF procedure when xit−1 ⊇ zit.

However, unlike the original moment condition (5), the modi�ed moment condition (13) is

not sensitive to small deviations of ê(xit−1) from E[qit−1|xit−1], a property known as Neyman

orthogonality (Neyman 1959):

Theorem 4 (Neyman orthogonality). De�ne the set of functions T̃ = {δ(xit−1) = e(xit−1) −
E[qit−1|xit−1] : e ∈ T }, where T is the set of real-valued integrable functions of xit−1. If xit−1 ⊇ zit

and g has a bounded and continuous derivative, then the pathwise (or Gateaux) derivative of

the left-hand side of moment condition (13) with respect to any direction δ ∈ T̃ at ê(xit−1) =

E[qit−1|xit−1] is zero:

∂

∂λ
E [qit − f(kit, vit)− g (E[qit−1|xit−1] + λδ(xit−1)− f(kit−1, vit−1))

− g′ (E[qit−1|xit−1] + λδ(xit−1)− f(kit−1, vit−1)) (qit−1 − E[qit−1|xit−1]− λδ(xit−1))
∣∣zit] ∣∣∣

λ=0
= 0.

The proof of Theorem 4 is in Appendix D.13,14

Neyman orthogonality has received renewed attention in the double-debiased machine learn-

ing literature. Following the arguments in Chernozhukov, Chetverikov, Demirer, Du�o, Hansen,

Newey & Robins (2018) and Chernozhukov, Escanciano, Ichimura, Newey & Robins (2022), as

long as ê(xit−1) converges to E[qit−1|xit−1] at a rate faster than N
−1/4, the GMM estimator based

on moment condition (13) is oracle e�cient. This means that its asymptotic distribution is as

if the true value E[qit−1|xit−1] of the nuisance parameter e(xit−1) is known. The GMM estimator

13The assumption that g has a bounded derivative simpli�es stating Theorem 4. As shown in Appendix D, it
can be replaced by a much weaker assumption.

14We recommend ensuring xit−1 ⊇ zit when implementing our modi�cation of the OP/LP/ACF procedure. With-
out xit−1 ⊇ zit, the modi�ed moment condition (13) entails a �rst-order bias correction toward E[qit−1|xit−1, zit]
instead of E[qit−1|xit−1] and the expectation of the correction term conditional on zit is generally non-zero even if
ê(xit−1) = E[qit−1|xit−1].
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based on moment condition (13) therefore achieves the e�cient asymptotic distribution.

Besides e�ciency, the modi�ed moment condition (13) enjoys further advantages over the

original moment condition (5). First, because Theorem 4 allows for any integrable deviation,

it accommodates a wide range of estimation methods in step 1 of the OP/LP/ACF procedure.

This includes traditional nonparametric methods such as sieve, kernel, and LASSO estimators,

which produce smooth estimates, as well as modern machine learning techniques such as neural

networks and random forests, which may produce non-smooth estimates. Neyman orthogonality

means that small deviations of ê(xit−1) from E[qit−1|xit−1] that can arise from estimation noise,

functional approximation error in sieve estimation, local smoothing bias in kernel estimation, or

regularization bias in LASSO and machine learning methods do not have a �rst-order impact

on the GMM estimator in step 2. As long as ê(xit−1) converges to E[qit−1|xit−1] at a rate faster

than N−1/4, its asymptotic distribution is robust to the choice of estimation method and its

implementation in step 1.15

Second, moment condition (13) eliminates the need to correct standard errors in step 2 to

account for estimation noise in step 1 through techniques such as those in Hahn, Liao & Ridder

(2018).

Unlike general approaches that generate Neyman orthogonality using in�uence functions or

score projections as described in Chernozhukov et al. (2022), moment condition (13) is Neyman

orthogonal by construction. By avoiding introducing high-dimensional nuisance parameters, our

modi�cation remains as straightforward to implement as the original OP/LP/ACF procedure.

Finally, we note that if OLS is used in step 1 of OP/LP/ACF procedure to estimate the

conditional expectation E[qit−1|xit−1], then explicitly including the �rst-order bias correction can

be redundant in some cases. Converting moment condition (13) into an unconditional moment

condition yields

E
[
h(zit)

(
qit − f(kit, vit)− g (ê(xit−1)− f(kit−1, vit−1))

− g′ (ê(xit−1)− f(kit−1, vit−1)) (qit−1 − ê(xit−1))
)]

= 0,

where h(zit) is a vector function of the instruments zit. The �rst-order bias correction is redundant

in a �nite sample if

1

NT

∑
i

∑
t

h(zit)g
′ (ê(xit−1)− f(kit−1, vit−1)) (qit−1 − ê(xit−1)) = 0. (14)

15Achieving this rate of convergence requires properly implementing a nonparametric estimation method to avoid
functional form bias and the validity of smoothness assumptions speci�c to the selected method. Because Neyman
orthogonality is a local property, the �rst-order bias correction in moment condition (13) loses its theoretical
justi�cation if ê(xit−1) deviates substantially from E[qit−1|xit−1].
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Because qit−1 − ê(xit−1) is the residual from the OLS estimation in step 1, equation (14) holds if

h(zit)g
′(ê(xit−1) − f(kit−1, vit−1)) can be expressed as a linear combination of the regressors used

in step 1. This is the case if the law of motion g is linear and the regressors include h(zit). More

generally, if h(zit)g
′(ê(xit−1)− f(kit−1, vit−1)) is well approximated by a linear combination of the

regressors used in step 1, then the left-hand side of equation (14) is almost zero and we expect

the GMM estimator in step 2 to attain near-oracle performance. While our Monte Carlo exercise

in Section 6 illustrates that this can happen, we recommend basing the GMM estimator in step

2 on the modi�ed moment condition (13), as this ensures oracle e�ciency irrespective of whether

equation (14) holds or not. Moreover, if estimation methods other than OLS are used in step

1, then equation (14) generally does not hold and the modi�ed moment condition (13) improves

e�ciency.

6 Monte Carlo exercise

Data generating process. We specify the CES production function

f(kit, vit) =
ν

ρ
ln (α exp(ρkit) + (1− α) exp(ρvit))

and the disturbance εit ∼ N (0, σ2
ε), where α ∈ (0, 1) is a distributional parameter, ρ ≤ 0 and

σ = 1
1−ρ

is the elasticity of substitution, and ν > 0 is returns to scale. We further specify the law

of motion

g(ωit−1) = µω + ρω

(
(1− αω)ωit−1 +

αω

6
ln(ln(1 + exp(6ωit−1)))

)
and the productivity innovation ξit ∼ N (0, σ2

ω), where ρω ∈ (0, 1) and αω ∈ [0, 1]. Our particular

interest lies in comparing the Gaussian AR(1) process for αω = 0 with the nonlinear process for

αω = 1. To facilitate this comparison we calibrate µω, ρω, and σ
2
ω to hold �xed E [ωit], Var (ωit),

and corr (ωit, ωit−1). Figure 1 illustrates the resulting distribution of productivity and overlays the

law of motion for the two processes.

We specify the CES demand

q∗it = δ1i − (1 + exp(−δ2i))pit,

where pit is the output price and δi = (δ1i, δ2i) captures shocks to the demand the �rm faces and

unobserved rivals. This avoids having to specify the imperfectly competitive environment that the

�rm operates in. Abstracting from time-series variation for simplicity, we specify δ1i ∼ N
(
µδ1 , σ

2
δ1

)
and δ2i ∼ N

(
µδ2 , σ

2
δ2

)
.

We denote the price of capital as pKi and the price of the variable input as pVi . Abstracting from

time-series variation, we specify pKi ∼ N
(
µpK , σ

2
pK

)
and pVi ∼ N

(
µpV , σ

2
pV

)
. Assuming short-run
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Figure 1: Distribution of productivity (left axis) and law of motion (right axis). Baseline parame-
terization with Gaussian AR(1) process (αω = 0, left panel) and nonlinear process (αω = 1, right
panel).

parameter α ρ ν E [ωit] Var (ωit) corr (ωit, ωit−1) . . .
value 0.3 -1 0.95 0 0.52 0.7 . . .

. . . µδ1 σ2
δ1

µδ2 σ2
δ2

µpK σ2
pK µpV σ2

pV

. . . 10 52 -1.3543 0.52 0 0.52 0 0.52

Table 1: Baseline parameterization.

pro�t maximization and equating marginal revenue with marginal cost determines vit along with

q∗it, qit, and pit. Note that because vit is a function of kit, p
V
i , ωit, and δi, the �rm's demand for

the variable input cannot be inverted to express ωit as a function of observables: invertibility fails

as long as σ2
δ1
> 0 or σ2

δ2
> 0.

Recall that capital kit+1 is chosen in period t. We assume that capital fully depreciates between

periods and endow the �rm with static expectations regarding ωit+1. Hence, the �rm chooses kit+1

in period t given ωit, δi, p
K
i , and p

V
i as if kit+1 and vit+1 are variable inputs.

16

Table 1 shows our baseline parameterization. The elasticity of substitution is within the range

of estimates in the literature (Chirinko 2008), as are the 90:10 percentile ratio and persistence of

productivity (De Loecker & Syverson 2021). Short-run pro�t maximization implies the markup

µit = Pit

MCit
= 1 + exp(δ2i), with E [lnµit] = 0.25 and Var (lnµit) = 0.0126. We simulate S =

1000 datasets with N = 5, 000 �rms and T = 20 periods.17 We provide further details on the

16Assuming constant returns to scale in production and quadratic adjustment costs to capital, the �rm's dynamic
programming problem that determines investment can be solved in closed form if the �rm is a price-taker in the
output market (Syverson 2001, Van Biesebroeck 2007, Ackerberg et al. 2015). As this is no longer possible if the
�rm has market power, we opt for a di�erent, tractable speci�cation of the evolution of capital.

17We use T0 = 5000 burn-in periods.
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speci�cation in Appendix C.

Estimation. We estimate E [qit|xit] in step 1 of the OP/LP/ACF procedure by OLS using the

complete set of Hermite polynomials of total degree 4 in the variables in xit as regressors. To

illustrate Theorems 1�3, we vary the speci�cation of xit as detailed below. As an alternative to

OLS, we use a neural network estimator with two hidden layers of 128 neurons. We provide further

details on the neural network estimator in Appendix C.

We estimate the parameters θ = (α, ρ, ν, µω, ρω, αω) in step 2 using the complete set of Hermite

polynomials of total degree 4 in the variables in zit =
(
kit, kit−1, vit−1, p

V
i

)
as instruments.18 To

illustrate Theorem 4 and the advantages of Neyman orthogonality in �nite samples, we alterna-

tively base the GMM estimator on moment conditions (5) and (13). We provide further details

on the GMM estimator in Appendix C.

We use three statistics to summarize the results. First, we conduct a Lagrange multiplier test

for the true parameter value θ0. Our test corrects for the plug-in nature of the OP/LP/ACF

procedure and clustering in the data. We provide further details on the Lagrange multiplier test

in Appendix C.

Second, following the production function approach to markup estimation, we use the estimate

of θf to estimate the markup µit =
Pit

MCit
of �rm i in period t as

lnµit + εit = pit + qit − pVi − vit + ln
∂f(kit, vit)

∂vit
.

The right-hand side is the log of the output elasticity minus the log of the expenditure share of

the variable input.19 Noting that the disturbance εit averages out as E[εit] = 0, we refer to the

average of lnµit + εit across �rms and time simply as the average log markup.

Third, because the law of motion is of primary interest in some applications (Aw, Roberts &

Xu 2011, De Loecker 2013, Doraszelski & Jaumandreu 2013), we use the estimate of θg to estimate

g′(0) = ρω

(
(1− αω) + αω

1

2 ln 2

)
as a measure of persistence in the productivity process.

18We treat the price of the variable input pVi as observable to focus on demand shocks as the reason for the
failure of invertibility. The nonidenti�cation result in Gandhi, Navarro & Rivers (2020) assumes invertibility and
therefore does not apply in our setting.

19De Loecker & Warzynski (2012) isolate lnµit on the left-hand side and use the residual from the regression
in step 1 of the OP/LP/ACF procedure to estimate εit on the right-hand side. However, using equation (6), the
residual is qit − E [qit|xit] = εit + ζit. Having εit on the left-hand side thus avoids that ζit taints the correlation of
the estimated markup with a variable of interest such as the �rm's export status or a measure of trade liberalization
(Doraszelski & Jaumandreu 2024).
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Results. We compare three cases for the observables xit in step 1 of the OP/LP/ACF procedure:

� Case 1: xit =
(
kit, vit, p

V
i

)
;

� Case 2: xit =
(
kit+1, kit, vit, p

V
i

)
;

� Case 3: xit =
(
kit+1, kit, vit, pit, p

V
i

)
.

Case 1 is our baseline and corresponds to how the OP/LP/ACF procedure is implemented in the

existing literature. In light of Theorems 1 and 2, case 2 ensures xit−1 ⊇ zit. Case 3 heeds Theorem

3 and pursues a kitchen sink approach by adding the output price as a covariate that speaks to

demand conditions.

Figure 2 shows the results of the OP/LP/ACF procedure with moment condition (5) for the

Gaussian AR(1) process (αω = 0). In case 1, the failure of invertibility causes a massive bias in the

production function and in the average log markup derived from it. Indeed, the average log markup

centers around −0.24 whereas short-run pro�t maximization implies lnµit = ln (1 + exp(δ2i)) > 0.

The failure of invertibility also causes a large bias in the law of motion as summarized by the

measure of persistence g′(0). The Lagrange multiplier test for the true parameter value θ0 rejects

by a wide margin. In short, the failure of invertibility can have a substantial, detrimental impact

on the OP/LP/ACF procedure as implemented in the existing literature.

In cases 2 and 3, the Lagrange multiplier test does not reject. As in Example 1 in Section 4,

ensuring xit−1 ⊇ zit eliminates the bias. The average log markup centers around its true value of

0.25 and the measure of persistence g′(0) centers around its true value of 0.7. The �rst panel of

Table 2 summarizes the results. In addition to the bias, it shows the variance and mean squared

error of the average log markup and the measure of persistence g′(0).

Turning to the nonlinear process (αω = 1), Figure 3 shows the results of the OP/LP/ACF

procedure with moment condition (5). In case 1, the failure of invertibility again causes a massive

bias in the average log markup and the measure of persistence g′(0). The Lagrange multiplier test

for the true parameter value θ0 rejects by a wide margin.

Ensuring xit−1 ⊇ zit greatly reduces the bias in cases 2 and 3. In case 2, the average log markup

centers around 0.30 compared to its true value of 0.25. The measure of persistence g′(0) centers

around its true value of 0.7. The Lagrange multiplier test rejects by a wide margin. Adding the

output price as a covariate that speaks to demand conditions further reduces�and here almost

eliminates�the bias. In case 3, the average log markup centers around 0.25 and the measure of

persistence g′(0) centers around 0.7. The Lagrange multiplier test rejects for just 72 of the 1000

simulated datasets at a signi�cance level of 5%. The second panel of Table 2 summarizes the

results.

As discussed in Section 5, explicitly including the �rst-order bias correction generally mitigates

the adverse impact that a noisy estimate in step 1 has on the GMM estimator in step 2, although

20
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it can sometimes be redundant if OLS is used in step 1. The third panel of Table 2 summarizes

the results of replacing moment condition (5) by moment condition (13) for the nonlinear process

(αω = 1). The results are indeed similar for the two moment conditions.20

However, explicitly including the �rst-order bias correction is not always redundant even if

OLS is used in step 1. To illustrate the advantages of Neyman orthogonality in �nite samples, we

modify the parameterization to E [ωit] = −1.25, Var (ωit) = 22, corr (ωit, ωit−1) = 0.85, σ2
δ1
= 0.52,

µδ2 = −2.5425, σ2
δ2
= 22, and σ2

pK = 22. This implies an increase in the 90:10 percentile ratio and

persistence of productivity and a mean-preserving spread of the log markup (E [lnµit] = 0.25 and

Var (lnµit) = 0.1986).

Figures 4 and 5 show the results of the OP/LP/ACF procedure with moment conditions (5)

and (13) for the nonlinear process (αω = 1). Figure 4 pertains to case 2 and Figure 5 to case 3.

In case 2, there is a large bias with the original moment condition (5). The average log markup

centers around 0.82 compared to its true value of 0.25 and the measure of persistence g′(0) centers

around 0.79 compared to its true value of 0.7. The bias is reduced with the modi�ed moment

condition (13). The average log markup centers around 0.12 and the measure of persistence g′(0)

centers around 0.69. In case 3, the bias is again reduced with the modi�ed moment condition

(13). With the original moment condition (5), the average log markup centers around 0.22 and

the measure of persistence g′(0) centers around 0.70. The Lagrange multiplier tests rejects by a

wide margin. With the modi�ed moment condition (13), the average log markup centers around

0.25 and the measure of persistence g′(0) centers around 0.69. The Lagrange multiplier test rejects

for just 205 of the 1000 simulated datasets at a 5% signi�cance level. The fourth and �fth panels

of Table 2 summarize the results.

Finally, we use a neural network estimator in step 1 as an alternative to OLS. Reverting to

the baseline parameterization with the nonlinear process (αω = 1), the sixth and seventh panels

of Table 2 summarize the results. Comparing the sixth to the second panel of Table 2 shows that

using the neural network estimator increases the variance and thereby the mean squared error

of the GMM estimator in step 2 by an order of magnitude if we base the GMM estimator on

the original moment condition (5). To the best of our knowledge, there is no theory on using

a neural network as a plug-in estimator. In contrast, we achieve much better results if we base

the GMM estimator on the modi�ed moment condition (13). Comparing the seventh to the third

panel shows that using the neural network estimator is comparable to using OLS. As discussed in

20To con�rm, we disrupt the �nite-sample relation in equation (14) by running OLS on a separate dataset and
using the estimates to construct ê(xit−1) for the focal dataset in step 1. For the original moment condition (5),
the mean squared error of the average log markup and the measure of persistence g′(0) nearly doubles in case 3.
In case 2, the mean squared error of the average log markup decreases slightly while the mean squared error of the
measure of persistence g′(0) increases by an order of magnitude. In contrast, there are no meaningful changes for
the modi�ed moment condition (13).
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Section 5, this aligns with the theory on Neyman orthogonality in the double/debiased machine

learning literature as our modi�cation ensures that the GMM estimator in step 2 is oracle e�cient

regardless of the estimation method used in step 1.

7 Sensitivity analysis

While setting xit−1 ⊇ zit provides a �rst-order bias correction, higher-order biases may remain

and adversely a�ect the estimates of θ = (θf , θg) in step 2 of the OP/LP/ACF procedure. In this

section, we develop a diagnostic to assess the sensitivity of the estimates to biases arising from

the failure of invertibility. Our diagnostic remains valid without xit−1 ⊇ zit.

To simplify the analysis, we assume that the nuisance parameter e(xit−1) equals its true value

E[qit−1|xit−1] and abstract from estimation noise. We consider

E
[
qit − f(kit, vit)− g

(
q∗it−1 − λζit−1 − f(kit−1, vit−1)

)
|zit
]
= 0, (15)

where λ ≥ 0 scales the lagged prediction error ζit−1. If λ = 0, then moment condition (15) equals

the valid but infeasible moment condition (4). If λ = 1, then moment condition (15) equals the

original moment condition (5) because ζit−1 = q∗it−1−E[qit−1|xit−1] from equation (6). If, moreover,

xit−1 ⊇ zit, then it also equals the modi�ed moment condition (13) with e(xit−1) = E[qit−1|xit−1],

as discussed in Section 5.

De�ne

mit(θ, λ) = qit − f(kit, vit; θf )− g
(
q∗it−1 − λζit−1 − f(kit−1, vit−1; θf ); θg

)
,

where we make explicit the parameterization of the production function and law of motion. More-

over, de�ne the pseudo-true value of θ as a function of λ as

θ(λ) ∈ argmin
θ

E[h(zit)mit(θ, λ)]
⊤WE[h(zit)mit(θ, λ)],

where the superscript ⊤ denotes the transpose, h(zit) is a vector function of the instruments zit,

and W is the GMM weighting matrix. By construction, θ(0) equals the true parameter value θ0

and θ(1) is the probability limit of the GMM estimator.

Although it is not possible to consistently estimate the bias θ(1) − θ(0), it is possible to

consistently estimate dθ(λ)
dλ

∣∣
λ=1

and thus to assess the sensitivity at the pseudo-true value θ(1). A

small value of dθ(λ)
dλ

∣∣
λ=1

provides assurance that small changes in the prediction error that arises in

step 1 of the OP/LP/ACF procedure if invertibility fails do not dramatically alter the pseudo-true

value θ(1). Indeed, one can show that dθ(λ)
dλ

∣∣
λ=1

is zero in the examples in Section 4 where no

bias arises despite the failure of invertibility. Conversely, a large value of dθ(λ)
dλ

∣∣
λ=1

means that the
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pseudo-true value θ(1) is sensitive and thus warns of potentially large bias in the estimates.

To derive our diagnostic dθ(λ)
dλ

∣∣
λ=1

, we show in Appendix E that the pseudo-true value θ(λ)

under suitable regularity conditions satis�es the �rst-order condition

E

[
∂mit(θ(λ), λ)

∂θ
h⊤(zit)

]
WE[h(zit)mit(θ(λ), λ)] = 0 (16)

where ∂mit(θ(λ),λ)
∂θ

is a dim(θ)× 1 vector. The implicit function theorem implies

dθ(λ)

dλ

∣∣∣
λ=1

= −Γ−1γ, (17)

where Γ is a dim(θ)× dim(θ) matrix and γ a dim(θ)× 1 vector. Using ∂mit

∂θ
, ∂mit

∂λ
, ∂2mit

∂θ∂θ⊤
, and ∂2mit

∂θ∂λ

to abbreviate ∂mit(θ(λ),λ)
∂θ

|λ=1,
∂mit(θ(λ),λ)

∂λ
|λ=1,

∂2mit(θ(λ),λ)
∂θ∂θ⊤

|λ=1, and
∂2mit(θ(λ),λ)

∂θ∂λ
|λ=1, respectively, the

matrix Γ is de�ned as

Γ =

[
E

[
∂2mit

∂θ∂θ⊤
e1h

⊤(zit)

]
WE[h(zit)mit(θ, λ)], . . . ,E

[
∂2mit

∂θ∂θ⊤
edim(θ)h

⊤(zit)

]
WE[h(zit)mit(θ, λ)]

]
+ E

[
∂mit

∂θ
h⊤(zit)

]
WE

[
h(zit)

∂mit

∂θ⊤

]
, (18)

where el is a dim(θ) × 1 vector with a one in the lth position and zeros elsewhere. The vector γ

is de�ned as

γ = E

[
∂2mit

∂θ∂λ
h⊤(zit)

]
WE[h(zit)mit(θ, λ)] + E

[
∂mit

∂θ
h⊤(zit)

]
WE

[
h(zit)

∂mit

∂λ

]
. (19)

To evaluate our diagnostic dθ(λ)
dλ

∣∣
λ=1

, we assume E[εit−1|xit−1, zit] = 0. As we detail in Appendix

E, consistently estimating Γ is straightforward. Consistently estimating γ is complicated by the

fact that
∂mit

∂λ
=
∂g(E[qit−1|xit−1]− f(kit−1, vit−1; θf ); θg)

∂ωit−1

ζit−1

and

∂2mit

∂θ∂λ
=

 ∂2mit

∂θf∂λ

∂2mit

∂θg∂λ

 =

−∂2g(E[qit−1|xit−1]−f(kit−1,vit−1;θf );θg)

∂ω2
it−1

∂f(kit−1,vit−1;θf )

∂θf
ζit−1

∂2g(E[qit−1|xit−1]−f(kit−1,vit−1;θf );θg)

∂ωit−1∂θg
ζit−1


depend on the lagged prediction error ζit−1. The key insight is that assuming E[εit−1|xit−1, zit] = 0

implies

E[ζit−1|xit−1, zit] = E[qit−1 − E[qit−1|xit−1] |xit−1, zit].

Using the law of iterated expectations, we can therefore substitute qit−1 − E[qit−1|xit−1] for ζit−1

28



α ρ ν µω ρω αω

case 1:
bias 0.1306 -0.4932 0.0090 -0.0717 -0.2806 -0.2659
diagnostic 0.1556 -0.0739 0.0077 -0.0013 -0.2118 -0.1771

(0.0111) (0.1106) (0.0009) (0.0088) (0.0358) (0.1018)
case 2:
bias -0.0237 0.0432 -0.0013 -0.0789 -0.0759 -0.2419
diagnostic -0.0034 0.0271 -0.0012 -0.0033 -0.0010 -0.0541

(0.0011) (0.0103) (0.0002) (0.0010) (0.0028) (0.0110)
case 3:
bias -0.0034 -0.0126 -0.0004 -0.0054 -0.0028 -0.0237
diagnostic -0.0003 -0.0004 -0.0002 -0.0003 0.0006 -0.0045

(0.0009) (0.0071) (0.0001) (0.0014) (0.0025) (0.0082)

Table 3: Bias and diagnostic dθ(λ)
dλ

∣∣
λ=1

. Average with standard deviation in brackets. Baseline
parameterization with nonlinear process (αω = 1). Bias and diagnostic use estimate of θ based on
moment condition (5).

in the above expressions and rewrite γ as

γ = E
[
φith

⊤(zit)
]
WE[h(zit)mit(θ, λ)] + E

[
∂mit

∂θ
h⊤(zit)

]
WE [h(zit)ψit] , (20)

where ∂mit

∂λ
and ∂2mit

∂θ∂λ
in (19) are replaced by

ψit =
∂g(E[qit−1|xit−1]− f(kit−1, vit−1; θf ); θg)

∂ωit−1

(qit−1 − E[qit−1|xit−1])

and

φit =

−∂2g(E[qit−1|xit−1]−f(kit−1,vit−1;θf );θg)

∂ω2
it−1

∂f(kit−1,vit−1;θf )

∂θf
(qit−1 − E[qit−1|xit−1])

∂2g(E[qit−1|xit−1]−f(kit−1,vit−1;θf );θg)

∂ωit−1∂θg
(qit−1 − E[qit−1|xit−1]),

 .

respectively. We can therefore consistently estimate γ by the �nite-sample analog to equation (20)

using the estimate of E[qit−1|xit−1] from step 1 and that of θ from step 2.

Table 3 shows our diagnostic dθ(λ)
dλ

∣∣
λ=1

for the baseline parameterization with the nonlinear

process (αω = 1). We average the diagnostic over the S = 1000 datasets from Section 6. For

comparison, we also show the bias θ(1)− θ(0).

In case 1, the diagnostic warns of large biases in the production function parameter α and in

the law of motion parameters ρω and αω. While the diagnostic reliably captures the sign of the

bias, it is an order of magnitude smaller than the bias in the production function parameter ρ. In

case 2, the bias and the diagnostic are both smaller than in case 1, with the exception of the law

of motion parameter αω. The diagnostic accurately re�ects the remaining bias in the production
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function parameter ρ. However, it is an order of magnitude smaller than the bias in α, ρω, and

αω. In case 3, the small biases go hand-in-hand with small values of the diagnostic. Overall, while

the diagnostic does not consistently estimate the bias θ(1)−θ(0), it usefully signals the sensitivity
of the estimates to a failure of invertibility.

Finally, we emphasize that our sensitivity analysis is conducted around the potentially mis-

speci�ed model at λ = 1 as opposed to the true model at λ = 0 and remains valid regardless of the

magnitude of misspeci�cation. Our approach thus di�ers from the sensitivity analysis in Andrews

et al. (2017) that is only valid locally around the true model.

8 Concluding remarks

The OP/LP/ACF procedure for production function estimation hinges on an invertibility assump-

tion. We show that this assumption is testable and strongly rejected in widely used panel data.

A failure of invertibility has important consequences: the prediction of planned output q∗it from

observables xit in step 1 of the OP/LP/ACF procedure contains an error that invalidates capital

kit as an instrument, leading to biased estimates in step 2.

Fortunately, much can still be done. We establish a necessary and su�cient condition for

the moment condition in step 2 of the OP/LP/ACF procedure to hold for the true production

function. This condition compels a rethinking of the OP/LP/ACF procedure: any instrument

used in step 2 must be appropriately included in the regression in step 1 to ensure xit−1 ⊇ zit. At

a minimum, this calls for adding the lead of capital kit+1 to xit. Our condition further suggests to

�exibly model the law of motion in step 2 and to take a kitchen sink approach to the regression

in step 1 by adding as many relevant covariates as possible.

In case our condition is violated, we show that setting xit−1 ⊇ zit provides a �rst-order bias cor-

rection. Explicitly incorporating a bias correction achieves Neyman orthogonality in the modi�ed

moment condition. Neyman orthogonality ensures that the asymptotic distribution of the GMM

estimator in step 2 is invariant to estimation noise from step 1 and is particularly advantageous if

the regression in the step 1 includes a large number of covariates or if modern machine learning

techniques such as neural networks and random forests are used. Monte Carlo simulations con�rm

that Neyman orthogonality can substantially enhance the performance of the GMM estimator in

step 2.

Finally, we recognize that, despite ensuring xit−1 ⊇ zit, higher-order biases may remain. To

gauge their importance for the GMM estimator in step 2, we introduce a diagnostic that measures

the sensitivity of the estimates to the size of the prediction error that arises in step 1 if invertibility

fails.

In sum, the invertibility assumption is demanding and can fail because unobserved demand
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heterogeneity or in imperfectly competitive environments with partially or fully unobserved rivals

or changes in �rm conduct and for other reasons. We provide tools for testing the invertibility

assumption and propose straightforward modi�cations of the OP/LP/ACF procedure that either

eliminate or mitigate the bias that arises from a failure of invertibility. To address the challenges

associated with including a large number of covariates into the regression in step 1, we provide

a modi�ed moment condition that achieves Neyman orthogonality and enhances e�ciency and

robustness. Finally, we hope our diagnostic proves valuable to researchers seeking to assess the

potential biases from a failure of invertibility in their estimates.
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Appendix

A Tests for invertibility

Tests. Delgado & Manteiga (2001) and Cai, Guo & Zhong (2024) develop nonparametric infer-

ence procedures for a mean-independence restriction (Proposition 1), while Shah & Peters (2020)

focus on a conditional-independence restriction (Proposition 2). These procedures presume i.i.d.

data. Instead of adapting them for panel data, we proceed semiparametrically in what follows.

We test E[qit|xit, xit−1] = E[qit|xit] in Proposition 1 using the partially linear regression model

qit = x⊤it−1β + ψ(xit) + eit, (21)

where the superscript ⊤ denotes the transpose and ψ(xit) is a su�ciently �exible function. In

practice, we specify ψ(xit) = r⊤(xit)γ, where r(xit) is the complete set of polynomials of a given

total degree in the variables in xit and γ is a parameter vector. E[qit|xit, xit−1] = E[qit|xit] implies
β = 0. Rejecting H0 : β = 0 is therefore evidence against invertibility. To implement this test, we

use OLS to estimate the partially linear model (21) and conduct a standard F -test with �rm-level

clustering.

Because the partially linear model (21) involves a large number of regressors, the standard

F -test may perform poorly in �nite samples. To address this concern, we use the procedure in

Chernozhukov, Hansen & Spindler (2015) (henceforth CHS) instead of OLS. This allows us to use

LASSO for dimensionality reduction while achieving oracle e�ciency for the estimator of β via

Neyman orthogonalization.

We test qit ⊥⊥ xit−1|xit in Proposition 2 using quantile regression to estimate the partially

linear model (21). Let Qτ (qit|xit) and Qτ (qit|xit, xit−1) denote the τth quantile of qit conditional

on xit and (xit, xit−1), respectively. qit ⊥⊥ xit−1|xit implies β = 0 and is equivalent to Qτ (qit|xit) =
Qτ (qit|xit, xit−1) for all τ ∈ (0, 1). We restrict attention to the median (τ = 0.5) and conduct the

F -test with �rm-level clustering in Parente & Santos Silva (2016).

Data. We implement our tests on two widely used datasets: an unbalanced panel of Spanish

manufacturing �rms from 1990 to 2006 (Encuesta Sobre Estrategias Empresariales, henceforth

ESEE) and the balanced panel of US manufacturing industries from 1958 to 2018 (NBER-CES)

from Becker, Gray & Marvakov (2021).

We follow the data cleaning procedures and variable de�nitions in Doraszelski & Jaumandreu

(2018, 2024) for the ESEE data and in Jaumandreu (2022) and Jaumandreu & Lopez (2024) for

the NBER-CES data. The available variables include output qit, capital kit, labor lit, materials

mit, the price of output pit, the wage wit, and the price of materials pMit (in logs). In addition, the
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total degree 2 total degree 3 total degree 4
industry #obs #�rms OLS CHS Median OLS CHS OLS CHS

1 2365 296 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 1270 147 0.004 0.043 0.046 0.008 0.032 0.012 0.033
3 2168 278 0.000 0.000 0.002 0.000 0.000 0.000 0.000
4 1411 165 0.000 0.004 0.005 0.016 0.006 0.035 0.004
5 1505 197 0.000 0.004 0.012 0.000 0.000 0.000 0.000
6 1206 148 0.000 0.000 0.018 0.001 0.000 0.001 0.000
7 2455 304 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 2368 317 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9 1445 191 0.001 0.000 0.001 0.017 0.000 0.009 0.000
10 1414 174 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 4: p-value for test of H0 : β = 0 with xit = (kit, lit,mit, pit, wit, p
M
it ). ESEE data.

total degree 2 total degree 3 total degree 4
industry #obs #�rms OLS CHS Median OLS CHS OLS CHS

1 2365 296 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 1270 147 0.000 0.001 0.110 0.001 0.000 0.070 0.001
3 2168 278 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 1411 165 0.001 0.000 0.107 0.062 0.000 0.208 0.000
5 1505 197 0.000 0.000 0.004 0.000 0.000 0.000 0.000
6 1206 148 0.000 0.000 0.017 0.000 0.000 0.015 0.000
7 2455 304 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 2368 317 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9 1445 191 0.000 0.000 0.009 0.000 0.000 0.007 0.000
10 1414 174 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 5: p-value for test of H0 : β = 0 with xit = (kit, lit,mit, pit, wit, p
M
it ,mdyit). ESEE data.

ESEE data has a market dynamism variable mdyit that indicates shifts in the demand the �rm

faces (slump, stability, or expansion). Investment is non-zero in the NBER-CES data, so that the

investment variable invit (in logs) is well-de�ned.

Results. Tables 4 and 5 present results for the 10 industries in the ESEE data. We show the

p-value for the test of H0 : β = 0 for di�erent estimators (OLS, CHS, and median regression)

and for di�erent speci�cations of ψ(xit) (total degree 2, 3, and 4).21 In Table 4, we use xit =

(kit, lit,mit, pit, wit, p
M
it ). We reject invertibility by a wide margin in all industries and for all

combinations of estimators and speci�cations of ψ(xit). In Table 5, we add the market dynamism

21Results for median regression are limited to total degree 2 because the Stata package qreg2 fails to converge
for total degree 3 and 4.
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variable mdyit to xit. While we continue to reject invertibility in 8 industries, we cannot reject

invertibility at a 5% signi�cance level in industries 2 and 4 for some combinations of estimators

and speci�cations of ψ(xit). This reinforces that the ability to control for demand is a precondition

for invertibility.

We note that all estimated models in Tables 4 and 5 have an R2 of at least 0.990 and some

have an R2 of 0.998. Insu�cient �exibility in modeling ψ(xit) is thus unlikely to compromise our

results.

Turning to the NBER-CES data, we alternatively use xit = (kit, lit,mit, pit, wit, p
M
it ) and xit =

(kit, lit,mit, pit, wit, p
M
it , invit). The latter follows OP to invert the �rm's demand for investment.

Throughout the p-value for the test of H0 : β = 0 is 0.000 and the R2 exceeds 0.987.

B Failure of invertibility and validity of OP/LP/ACF mo-

ment condition

Omitted proofs.

Proof of Theorem 2. Using ζit−1 = q∗it−1 − E[qit−1|xit−1], we have

E
[
g′
(
q∗it−1 − ζit−1 − f(kit−1, vit−1)

)
ζit−1

∣∣zit]
= E

[
g′ (E[qit−1|xit−1]− f(kit−1, vit−1)) ζit−1

∣∣zit]
= E

[
E[g′ (E[qit−1|xit−1]− f(kit−1, vit−1)) ζit−1|xit−1]

∣∣zit]
= E

[
g′ (E[qit−1|xit−1]− f(kit−1, vit−1))E[ζit−1|xit−1]

∣∣zit]
= 0, (22)

where the second equality uses xit−1 ⊇ zit and the law of iterated expectations, the third equality

uses that g′ (E[qit−1|xit−1]− f(kit−1, vit−1)) is a function of xit−1 because xit−1 = (kit−1, vit−1, . . .),

and the last equality uses E[ζit−1|xit−1] = 0. Finally, using equation (22) and ζit−1 = q∗it−1 −
E[qit−1|xit−1] establishes equation (10).

Proof of Theorem 3. Because g0 ∈ G, we have

inf
g̃∈G

∥∥E [g0(ωit−1)|zit
]
− E [g̃ (E [ωit−1|xit−1]) |zit]

∥∥
L,1

= inf
g̃∈G

E
[∣∣∣E [g0(ωit−1)|zit

]
− E [g̃ (E [ωit−1|xit−1]) |zit]

∣∣∣]
≤ E

[∣∣∣E[g0(ωit−1)|zit]− E[g0(E[ωit−1|xit−1])|zit]
∣∣∣] .
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Using a second-order Taylor expansion of g0 around E[ωit−1|xit−1], we have∣∣∣E[g0(ωit−1)|zit]− E[g0(E[ωit−1|xit−1])|zit]
∣∣∣

=
∣∣∣E [g0′(E[ωit−1|xit−1])ζit−1

∣∣∣zit]+ E
[
g0′′(ω̃it−1)ζ

2
it−1

∣∣∣zit] ∣∣∣
≤

∣∣∣E [g0′(E[ωit−1|xit−1])ζit−1

∣∣∣zit] ∣∣∣+ ∣∣∣E [g0′′(ω̃it−1)ζ
2
it−1

∣∣∣zit] ∣∣∣
≤

∣∣∣E [g0′(E[ωit−1|xit−1])ζit−1

∣∣∣zit] ∣∣∣+ τE
[
ζ2it−1

∣∣∣zit] ,
where ω̃it−1 is some value between ωit−1 and E[ωit−1|xit−1], and the last inequality follows from the

de�nition of τ . As in the proof of Theorem 2, using xit−1 ⊇ zit and the law of iterated expectations

yields E
[
g0′(E[ωit−1|xit−1])ζit−1

∣∣∣zit] = 0. Thus, we have

inf
g̃∈G

∥∥E [g0(ωit−1)|zit
]
− E [g̃ (E [ωit−1|xit−1]) |zit]

∥∥
L,1

≤ E
[
τE
[
ζ2it−1|zit

]]
= τVar(ζit−1).

C Monte Carlo exercise

Data generating process. Marginal revenue is

mrit = − ln (1 + exp(δ2i)) + pit

and marginal cost is

mcit = pVi + vit − f(kit, vit)− ln
∂f(kit, vit)

∂vit
− ωit.

We rewrite mrit = mcit as

δ1i + exp(−δ2i)(f(kit, vit) + ωit)

1 + exp(−δ2i)
− ln (1 + exp(δ2i)) + ln

∂f(kit, vit)

∂vit
− pVi − vit = 0

and solve numerically for vit. With vit in hand, we determine q∗it = f(kit, vit) + ωit, qit = q∗it + εit,

and pit =
δ1i−q∗it

1+exp(−δ2i)
.

As capital fully depreciates between periods and the �rm has static expectations, it chooses

kit+1 in period t given ωit, δi, p
K
i , and pVi whilst anticipating that it optimally chooses ṽit+1 in
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period t+ 1. To maximize its expected pro�t in period t+ 1, in period t the �rm solves

max
kit+1

(
max
ṽit+1

exp(p̃it+1 + q̃∗it+1)− exp(pKi + kit+1)− exp(pVi + ṽit+1)

)
= max

kit+1,ṽit+1

exp(p̃it+1 + q̃∗it+1)− exp(pKi + kit+1)− exp(pVi + ṽit+1)

subject to

q̃∗it+1 = f(kit+1, ṽit+1) + ωit,

q̃∗it+1 = δ1i − (1 + exp(−δ2i))p̃it+1.

The solution is

kit+1 =
1

1− ρ

(
lnα− pKi

)
+

exp(δ2i) + 1

exp(δ2i) + 1− ν

(
ln ν

+

(
ν

(exp(δ2i) + 1)ρ
− 1

)
ln

(
α

(
α

exp(pKi )

) ρ
1−ρ

+ (1− α)

(
1− α

exp(pVi )

) ρ
1−ρ

)

− ln (exp(δ2i) + 1) +
1

exp(δ2i) + 1
ωit +

δ1i
1 + exp(−δ2i)

)
.

Neural network estimator. The neural network uses two hidden layers of 128 neurons and

ReLU activation. We standardize the input data. We train the network using the stochastic

gradient decent (SDG) method on 80% of �rms, setting aside 20% of �rms for validation, to

minimize the mean squared error. We stop the SDG iterations if the mean squared error for the

validation sample does not improve after 10 epoch iterations. We use the trainnet command in

Matlab and set the learning rate to 0.01 and the mini-batch size to 500 observations.

GMM estimator. Corresponding to moment condition (5) in step 2, de�ne the moment function

mit(θ) = qit − f(kit, vit; θf )− g (e(xit−1)− f(kit−1, vit−1; θf ); θg) , (23)

where we replace e(xit−1) by the estimate from step 1. In step 2, we solve the GMM problem

min
θ

(
1

NT

∑
i,t

h(zit)mit(θ)

)⊤

W

(
1

NT

∑
i,t

h(zit)mit(θ)

)
, (24)
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where the superscript ⊤ denotes the transpose, h(zit) is the complete set of Hermite polynomials

of total degree 4 in the variables in zit, and

W =

(
1

NT − 1

∑
i,t

(
h(zit)mit

(
θ0
)
− µ̂

)⊤ (
h(zit)mit

(
θ0
)
− µ̂

))−1

with µ̂ =
1

NT

∑
i,t

h(zit)mit

(
θ0
)
,

is a weighting matrix evaluated at the true parameters values θ0.

Corresponding to moment condition (13), our modi�cation of the OP/LP/ACF procedure

rede�nes the moment function as

mit(θ) = qit − f(kit, vit; θf )− g (e(xit−1)− f(kit−1, vit−1; θf ); θg)

− g′ (e(xit−1)− f(kit−1, vit−1; θf ); θg) (qit−1 − e(xit−1)), (25)

where we replace e(xit−1) by the estimate from step 1. We hold �xedW to facilitate the comparison

between our modi�cation and the original procedure.

Lagrange multiplier (LM) test. We �rst derive the LM test for the original moment function

(23). To account for the plug-in nature of the GMM estimator in step 2, we have to explicitly

specify how e(xit−1) is modelled and estimated in step 1. In our Monte Carlo exercise, we model

e(xit−1) = r⊤(xit−1)τ , where the superscript ⊤ denotes the transpose, r(xit−1) is the complete set

of Hermite polynomials of total degree 4 in the variables in xit−1, and τ is a parameter vector.

Consequently, we de�ne

mit(θ, τ) = qit − f(kit, vit; θf )− g
(
r⊤(xit−1)τ − f(kit−1, vit−1; θf ); θg

)
, (26)

where we make explicit the dependence of the moment function on τ . We estimate τ in step 1 by

OLS as τ̂ = [ 1
NT

∑
i,t r(xit−1)r

⊤(xit−1)]
−1 1

NT

∑
i,t qit−1r(xit−1).

22

Following standard asymptotic arguments, we can show that

Σ̂− 1
2

1√
NT

∑
i,t

h(zit)mit(θ
0, τ̂)

d→ N(0, I),

where Σ̂ = Λ̂Ω̂Λ̂⊤,

Λ̂ =
(
I
∑

i,t h(zit)
[
∂mit(θ

0,τ̂)
∂τ⊤

] [∑
i,t r(xit−1)r

⊤(xit−1)
]−1)

,

22We can alternatively estimate τ as τ̂ = [ 1
NT

∑
i,t r(xit)r

⊤(xit)]
−1 1

NT

∑
i,t qitr(xit). In our simulated datasets,

both current and lagged values are available for all T periods and N �rms.
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with I being the dim(h(zit))× dim(h(zit)) identity matrix, and

Ω̂ =

(
Ω̂11 Ω̂12

Ω̂⊤
12 Ω̂22

)
,

Ω̂11 =
1

NT

T∑
t=1

T∑
t′=1

N∑
i=1

[
mit(θ

0, τ̂)mit′(θ
0, τ̂)h(zit)h

⊤(zit′)
]
,

Ω̂12 =
1

NT

T∑
t=1

T∑
t′=1

N∑
i=1

[
mit(θ

0, τ̂)(qit′−1 − r⊤(xit′−1)τ̂)h(zit)r
⊤(xit′−1)

]
,

Ω̂22 =
1

NT

T∑
t=1

T∑
t′=1

N∑
i=1

[
(qit−1 − r⊤(xit−1)τ̂)(qit′−1 − r⊤(xit′−1)τ̂)r(xit−1)r

⊤(xit′−1)
]
.

Note that Σ̂ incorporates �rm-level clustering and thus allows for arbitrary correlation within �rm

across time in the data. As N → ∞, the LM statistic

SN =
1

NT

(∑
i,t

h(zit)mit(θ
0, τ̂)

)⊤

Σ̂−1

(∑
i,t

h(zit)mit(θ
0, τ̂)

)

converges to a χ2 distribution with dim(h(zit)) degrees of freedom. Let c1−α be the 1−α quantile of

this distribution. Then rejecting H0 : E[h(zit)mit(θ
0, τ 0)] = 0 if SN > c1−α is a valid LM inference

procedure with asymptotic size α.

Turning to the modi�ed moment function (25), Neyman orthogonality renders correcting for

the plug-in nature of the GMM estimator in step 2 super�uous. Consequently, we use a standard

LM test with �rm-level clustering. As N → ∞, the LM statistic

SN =
1

NT

(∑
i,t

h(zit)mit(θ
0, τ̂)

)⊤

Ω̂−1
11

(∑
i,t

h(zit)mit(θ
0, τ̂)

)

converges to a χ2 distribution with dim(h(zit)) degrees of freedom. RejectingH0 : E[h(zit)mit(θ
0, τ 0)] =

0 if SN > c1−α is a valid LM inference procedure with asymptotic size α.

D Modi�cation of OP/LP/ACF moment condition

Omitted proofs.

Proof of Theorem 4. By the de�nition of the derivative, it su�ces to show that for any non-zero
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sequence λn with limn→∞ λn = 0, we have

lim
n→∞

1

λn

[(
E [qit − f(kit, vit)− g (E[qit−1|xit−1] + λnδ(xit−1)− f(kit−1, vit−1))

− g′ (E[qit−1|xit−1] + λnδ(xit−1)− f(kit−1, vit−1)) (qit−1 − E[qit−1|xit−1]− λnδ(xit−1)
∣∣zit])

−

(
E
[
qit − f(kit, vit)− g (E[qit−1|xit−1]− f(kit−1, vit−1))

− g′ (E[qit−1|xit−1]− f(kit−1, vit−1)) (qit−1 − E[qit−1|xit−1])
∣∣zit])] = 0. (27)

Similar to the idea used in the proof of Theorem 2, the law of iterated expectations implies

E [g′ (E[qit−1|xit−1] + λnδ(xit−1)− f(kit−1, vit−1)) (qit−1 − E[qit−1|xit−1])|zit] = 0, (28)

E [g′ (E[qit−1|xit−1]− f(kit−1, vit−1)) (qit−1 − E[qit−1|xit−1])|zit] = 0. (29)

Using equations (28) and (29), equation (27) is equivalent to

lim
n→∞

1

λn
E
[
g (E[qit−1|xit−1] + λnδ(xit−1)− f(kit−1, vit−1))− g (E[qit−1|xit−1]− f(kit−1, vit−1))

∣∣∣zit]
= lim

n→∞
E
[
g′ (E[qit−1|xit−1] + λnδ(xit−1)− f(kit−1, vit−1)) δ(xit−1)

∣∣∣zit] . (30)

It therefore remains to establish equation (30). We do this by showing that both sides of equation

(30) are equal to E

[
g′ (E[qit−1|xit−1]− f(kit−1, vit−1)) δ(xit−1)

∣∣∣∣zit].
Because g′ is bounded and δ is integrable, there exists some η > 0 such that

E

[
sup

λ:|λ|<η

|g′ (E[qit−1|xit−1] + λδ(xit−1)− f(kit−1, vit−1)) δ(xit−1)|

∣∣∣∣∣zit
]
<∞ (31)

almost surely.23 Because g′ is continuous, the dominated convergence theorem therefore implies

that

lim
n→∞

E
[
g′ (E[qit−1|xit−1] + λnδ(xit−1)− f(kit−1, vit−1)) δ(xit−1)

∣∣∣zit]
= E

[
g′ (E[qit−1|xit−1]− f(kit−1, vit−1)) δ(xit−1)

∣∣∣zit] . (32)

23Theorem 4 continues to hold if the assumption that g′ is bounded is relaxed to this condition.
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Turning to the other side of equation (30), the mean value theorem implies that

1

λn
(g (E[qit−1|xit−1] + λnδ(xit−1)− f(kit−1, vit−1))− g (E[qit−1|xit−1]− f(kit−1, vit−1)))

=g′
(
E[qit−1|xit−1] + λ̃nδ(xit−1)− f(kit−1, vit−1)

)
δ(xit−1), (33)

where λ̃n is some value between 0 and λn that implicitly depends on xit−1. Because |λ̃n| ≤ |λn|
and g′ is continuous, we have

lim
n→∞

g′
(
E[qit−1|xit−1] + λ̃nδ(xit−1)− f(kit−1, vit−1)

)
δ(xit−1)

= g′ (E[qit−1|xit−1]− f(kit−1, vit−1)) δ(xit−1) (34)

for all xit−1. Given inequality (31) and equation (34), the dominated convergence theorem implies

that

lim
n→∞

1

λn
E
[
g (E[qit−1|xit−1] + λnδ(xit−1)− f(kit−1, vit−1))− g (E[qit−1|xit−1]− f(kit−1, vit−1))

∣∣∣zit]
= E

[
g′ (E[qit−1|xit−1]− f(kit−1, vit−1)) δ(xit−1)

∣∣∣∣zit] .
This establishes equation (30).

E Sensitivity analysis

Assume f(kit, vit; θf ) is twice continuously di�erentiable in θf and g(ωit−1; θg) is twice continu-

ously di�erentiable in (θg, ωit−1), so that mit(θ, λ) is twice continuously di�erentiable in (θ, λ).

Assume the product of h and the �rst-order derivatives of mit(θ, λ) is always integrable. Then the

dominated convergence theorem implies

∂E[h(zit)mit(θ, λ)]

∂θ⊤
= E

[
h(zit)

∂mit(θ, λ)

∂θ⊤

]
,

∂E[h(zit)mit(θ, λ)]

∂λ
= E

[
h(zit)

∂mit(θ, λ)

∂λ

]
.

Similarly, assume the product of h and the second-order derivatives ofmit(θ, λ) is always integrable.

Then the dominated convergence theorem implies

∂2E[h(zit)mit(θ, λ)]

∂θ∂θ⊤
= E

[
h(zit)

∂2mit(θ, λ)

∂θ∂θ⊤

]
,

∂2E[h(zit)mit(θ, λ)]

∂θ∂λ
= E

[
h(zit)

∂2mit(θ, λ)

∂θ∂λ

]
.

Under these regularity conditions, the pseudo-true value θ(λ) satis�es the �rst-order condition

(16).

Assume the �rst-order condition (16) identi�es θ(λ) for λ in a neighborhood of 1. Then the
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implicit function theorem implies

E

[(
∂2mit

∂θ∂θ⊤
dθ(λ)

dλ

∣∣∣
λ=1

+
∂2mit

∂θ∂λ

)
h⊤(zit)

]
WE [h(zit)mit(θ(λ), λ)]

+ E

[
∂mit

∂θ
h⊤(zit)

]
WE

[
h(zit)

(
∂mit

∂θ⊤
dθ(λ)

dλ

∣∣∣
λ=1

+
∂mit

∂λ

)]
= 0, (35)

where we use ∂mit

∂θ
, ∂mit

∂λ
, ∂2mit

∂θ∂θ⊤
, and ∂2mit

∂θ∂λ
to abbreviate ∂mit(θ(λ),λ)

∂θ
|λ=1,

∂mit(θ(λ),λ)
∂λ

|λ=1,
∂2mit(θ(λ),λ)

∂θ∂θ⊤
|λ=1,

and ∂2mit(θ(λ),λ)
∂θ∂λ

|λ=1, respectively. Equation (35) can be rewritten as

Γ
dθ(λ)

dλ

∣∣∣
λ=1

+ γ = 0,

where Γ and γ are de�ned in equations (18) and (19), respectively. Assume Γ is invertible. Then

equation (17) follows.

Consistently estimating Γ is straightforward because

∂mit

∂θ
=

∂mit

∂θf

∂mit

∂θg

 =

−∂f(kit,vit;θf )

∂θf
+

∂g(E[qit−1|xit−1]−f(kit−1,vit−1;θf );θg)

∂ωit−1

∂f(kit−1,vit−1;θf )

∂θf

−∂g(E[qit−1|xit−1]−f(kit−1,vit−1;θf );θg)

∂θg


and

∂2mit

∂θ∂θ⊤
=

 ∂2mit

∂θf∂θ
⊤
f

∂2mit

∂θf∂θ⊤g(
∂2mit

∂θf∂θ⊤g

)⊤
∂2mit

∂θg∂θ⊤g

 ,

where

∂2mit

∂θf∂θ⊤f
= −∂

2f(kit, vit; θf )

∂θf∂θ⊤f
+
∂g(E[qit−1|xit−1]− f(kit−1, vit−1; θf ); θg)

∂ωit−1

∂2f(kit−1, vit−1; θf )

∂θf∂θ⊤f

−∂
2g(E[qit−1|xit−1]− f(kit−1, vit−1; θf ); θg)

∂ω2
it−1

(
∂f(kit−1, vit−1; θf )

∂θf

)(
∂f(kit−1, vit−1; θf )

∂θf

)⊤

,

∂2mit

∂θf∂θ⊤g
=

∂f(kit−1, vit−1; θf )

∂θf

∂2g(E[qit−1|xit−1]− f(kit−1, vit−1; θf ); θg)

∂ωit−1∂θ⊤g
,

∂2mit

∂θg∂θ⊤g
=

∂2g(E[qit−1|xit−1]− f(kit−1, vit−1; θf ); θg)

∂θg∂θ⊤g
,

do not depend on the lagged prediction error ζit−1. Following standard asymptotic arguments, Γ

can be consistently estimated by the �nite-sample analog to equation (18) using the estimate of

E[qit−1|xit−1] from step 1 and the estimate of θ from step 2.
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