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Abstract

Problem definition: Power systems account for nearly 40% of global emissions. As the world

tries to reduce emissions by increasing renewable penetration, storage technologies are playing

an increasingly important role in matching variable renewable supply with demand. In addition

to the already-popular Lithium-Ion batteries, alternative technologies are being experimented

with, like hydrogen or compressed-air storage. This paper investigates capacity co-investment

and usage of two distinct storage technologies and its impact on costs and renewable penetration.

Methodology/results: In our model, a utility can invest in up to two distinct storage tech-

nologies - an energy-limited, high-efficiency technology like batteries, and a power-limited, low-

efficiency technology like hydrogen - to serve demand while minimizing costs. We introduce the

concept of conflict states - times when there is not enough excess solar energy to fully utilize

both technologies, and one must take priority - and study the impact of operational priority

on renewable penetration. When storage capacities are given, prioritizing batteries maximizes

renewable penetration, due to hydrogen’s lower efficiency. However, when the priority is set

before storage capacities are chosen, e.g., by a regulator, we identify conditions under which the

result is reversed, and renewable penetration is maximized when hydrogen is prioritized.

Managerial implications: Based on real-world calibrations, we: (i) find that utilities can

profitably use hydrogen not just for seasonal storage, as so often evoked, but also for diurnal

storage; (ii) find that prioritizing hydrogen during its early adoption may increase demand met

through storage by up to 19%; and (iii) identify cases when a dual-tech storage strategy leads to

no benefit compared to a single-tech strategy, when it can lead to lower costs, by up to 25-30%,

and when it can even lead to renewable penetration levels that are simply unattainable with a

single technology.
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1 Introduction

In the last decade, the energy sector has experienced a paradigm shift, with a remarkable rise in

investments in renewable energy, notably wind and, even more so, solar power. This surge is not

merely a trend, but a manifestation of a global commitment to tackle the urgent challenges posed

by climate change. In fact, many countries around the world have pledged ambitious renewable

electricity targets well beyond current levels. To mention a few examples: The US is aiming

to generate 100% carbon-free energy by 2035 (Donohoo-Vallett et al. 2023); the EU’s goal is to

increase its renewable share from 22.5% in 2022 to 42. 5% in 2030 and 100% in 2050 (Parliament

of European Union 2023); and China plans to triple its renewable capacity between 2023 and 2030

(Howe 2023).

Among renewable energies, solar energy has seen massive cost reductions: installation prices

went from $5,124 to $876 per kilowatt between 2010 and 2022 (IRENA 2023) making it the cheapest

way to generate energy in many markets. This cost advantage, combined with supportive govern-

ment policies, has propelled solar power to become by far the single largest new source of non-fossil

energy —85% of newly built energy capacity in 2022 was renewable, with solar alone accounting

for more than half at 56% (Haegel and Kurtz 2023).

Yet this rapid transition towards renewables also creates its own set of challenges. The intermit-

tent nature of solar power makes it increasingly difficult to match electricity supply with demand.

Looking at markets characterized by a high solar penetration reveals some of the issues: California’s

struggle with high daytime solar generation followed by peak load (demand) after dark has become

so pronounced that it has received its own name - the duck curve, named after the shape that

the net load graph resembles on sunny days (Denholm et al. 2015). Further south, Chile’s solar

curtailment increased by 86% between 2022 and 2023, following continued growth in the country’s

renewable capacity (Molina 2023), while Ireland curtailed 7-10% of all renewables each year since

2020 (IEA 2023).

To help integrate the growing amount of renewables while mitigating operational challenges,

investments in energy storage technologies have soared in recent years1, with lithium-ion batteries

leading the way due to their high energy density, falling costs, and versatility in applications.

According to Soltani and Skaug (2023), global battery capacity additions for grid storage have

quadrupled from 6GW to 25GW between 2020 and 2022. The synergy between storage and solar

is straightforward - charge in the sunniest hours and discharge when needed, typically after sunset.

Although batteries have become the storage technology of choice, energy storage firms, poli-

cymakers, and researchers have been exploring several alternatives. A popular technology that is

gaining traction is hydrogen storage, with both the US and EU formalizing long-term hydrogen

strategies (Satyapal et al. 2023, Commission of European Union 2020) with billions earmarked for

infrastructure investment. Hydrogen storage uses electrolyzers to convert electrical energy into

1Additional options to help renewable integration are transmission expansion and demand response programs

(Denholm et al. 2021)
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chemical energy, storing surplus renewable energy in the form of hydrogen gas, which can later be

converted back into electricity. An approach for large-scale hydrogen storage that has gained a lot

of momentum is the use of underground salt caverns, which provide a safe storage environment at

a low cost (Caglayan et al. 2020).

Comparing hydrogen storage with battery storage reveals a fundamental difference in energy

management. For batteries, the typical constraint is in how much energy they can hold (expressed

in kilowatt hours, kWh), which can be increased by buying more battery cells, while their power

—how much energy can be transferred per unit of time (expressed in kilowatts, kW) is quite high,

enough for most applications. For hydrogen, it is the reverse: The typical constraint is in power

(kW) which can be increased by buying more electrolyzers, while the amount of energy that can

be held (kWh) is quite large if hydrogen is stored as a gas in salt caverns. This limitation in power

is shared by several other technologies, like compressed-air, or various forms of chemical storage

(ammonia or synthetic gas), henceforth referred to as hydrogen-like technologies.

To investigate how this fundamental difference in storage operations impacts technology invest-

ments, we build a model where a firm, e.g., a utility, must decide how much energy storage capacity

to build in order to store excess solar generation during the day and serve demand at night. The

firm can simultaneously invest in two storage technologies, which differ in their cost of adding one

unit of energy storage capacity (kWh) and power capacity (kW) —a stylized way of capturing the

aforementioned difference between batteries and hydrogen-like technologies. In addition, we also

account for the fact that hydrogen-like technologies are typically less efficient than batteries,2 and

that solar output is stochastic during the day - see Section 3.2.1 for the details.

Our model yields several results. We begin by studying diurnal load-shifting operations - when

excess solar energy is used to serve demand the following night - a setting that, at the time of writing,

frequently occurs in many states in the world. We are able to derive closed-form solutions for the

firm’s storage investment decisions. Based on these, we develop two adjusted cost parameters,

one for each storage technology, with the property that a technology is never invested in when

its adjusted cost is above one - a quick way of gauging profitability and succinctly relating the

key model parameters. Interestingly, we are able to show that even over this diurnal time-frame

hydrogen can be a profitable investment due to its different way of operating than batteries. This

is in contrast to much of the literature, press, and policy proposals that portray hydrogen as a

primarily long-term, seasonal storage solution —see for example Reuß et al. (2017), International

Energy Agency (2019), Uniper (2024).

We then discuss the role played by operational priority - that is, the need to decide which storage

technology takes precedence over the other. This choice matters during what we call conflict states

- i.e., moments when there is not enough excess energy to fully utilize both storage technologies -

and studying the role played by operational priority is one of the objectives of this study. As we

2For example, hydrogen’s efficiency is about 45%-50%, and compressed-air storage’s is around 70%, while lithium-

ion batteries’ efficiency is about 90%.
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are going to demonstrate, operational priority plays another important role in driving profitability,

capacity investments, and how much demand is met via storage.

For example, we show that when operational priority is set, e.g., by a regulator, before capacities

are chosen, prioritizing hydrogen over batteries can maximize renewable penetration under certain

conditions. This occurs despite the fact that hydrogen loses more energy than batteries in the

charge-discharge process due to its lower efficiency. The increase in renewable penetration in these

cases is not because the utility reduces hydrogen capacity to minimize energy loss; in fact, quite

the contrary. We show that the utility builds more hydrogen capacity when it is given operational

priority, not less, and despite increasing the share of the more inefficient technology, renewable

penetration increases. These results highlight the importance of operational priority, which can be

a valuable lever for policy makers not only to promote investments in a given technology in addition

to (or in place of) costlier subsidies, but also as a way to help increase renewable penetration.

We then expand our diurnal model to study seasonal load-shifting - when excess energy is stored

to serve demand weeks or even months later. This lets us answer the question of how batteries and

hydrogen investments will develop over time. In particular, we identify two important technology

tipping points for hydrogen investment and show that its adoption could vary starkly across markets

even when technology costs in said markets are the same.

In the last section of the paper, we calibrate our model with data from three European markets

and their 2030 renewable targets. In line with our analytical results, our numerical analyses show

that before hydrogen is used for seasonal load-shifting, the use of hydrogen is typically called for;

its use will become profitable for diurnal load-shifting —as early as 2027/2028. We also find that,

depending on the cost trajectory, giving hydrogen priority may increase the demand met with

renewables by up to 19%. Lastly, we compare single-technology and dual-technology scenarios.

We identify settings in which having access to both technologies gives no advantage compared to

investing only in one. Conversely, we also show that investing in both techs can reduce costs by

up to 25-30% and, perhaps surprisingly, even allow the utility to reach higher levels of renewable

penetration.

Our paper uses a stylized model to shed light on the combined usage of different storage tech-

nologies. To the best of our knowledge, it is the first paper in the operations literature to study

this topic. Our model allows us to (i) solve for the optimal investment decisions in closed form

for both diurnal and seasonal load-shifting regimes; (ii) identify which parameters are key, like

our adjusted-cost terms, in driving investment choices; (iii) show how operational priority affects

renewable penetration and capacity investments; (iv) identify and characterize two tipping points

for hydrogen adoption; (v) quantify the magnitude of our effects via calibration with real data;

and (vi) obtain high-level insights about the penetration of both technologies in various markets

and the potential (or lack thereof) for reducing costs and increasing renewable penetration when

employing both technologies as opposed to a single one.

Overall, our results inform players in the energy space - utilities, technology companies, and pol-
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icy makers - on the potential advantages of combining different storage technologies, the conditions

under which these advantages materialize, their operational drivers, and how much the benefits

amount to.

2 Literature Review

Our work relates to several streams of literature: It draws on a long history in operations man-

agement in making inventory and capacity decisions under uncertainty, connects with the rapidly

expanding body of sustainable operations, and relates to work in other fields like energy policy,

economics, and electrical engineering.

At a high level, the dynamics of renewable energy storage resemble inventory decisions under

uncertainty, with the caveat that in our setting, uncertainty comes mainly from supply in the form

of intermittent renewable generation, while in the canonical inventory model, uncertainty comes

from consumer demand. Within this vast literature, we want to mention the seminal work of Arrow

et al. (1951) on how to choose the optimal stock-up level under fluctuating demand. For a broad

review of studies on optimal capacity decisions under uncertainty, see instead Song et al. (2020).

In our model, the firm considers to invest simultaneously in two different types of storage

technologies, which is reminiscent of several decisions in the operations literature where a firm has

to optimize inventory or capacity of different kinds, or that differ along one or more attributes.

In this vein, Goyal and Netessine (2007) study the choice of a firm to build capacity of two types

- flexible and dedicated. They show that flexible capacity is not always the optimal choice, and

that both types can coexist. Allon and Van Mieghem (2010), in a dual-sourcing context, show

that the optimal capacity investment is a combination of base-production and surge-production

capacities. Li and Debo (2009) compare the value and capacity impacts of second sourcing versus

sole sourcing. Wu et al. (2023) study when storage inventories should be centralized or decentralized

across multiple locations - where location can be thought of as the differentiating attribute. Our

paper extends the literature by introducing a model where a firm optimizes over two types of

(storage) capacity that differ along three dimensions - cost of storage space (energy), cost of transfer

speed (power), and efficiency.

Among the larger operations literature, there is a growing body of work in sustainable and energy

operations specifically studying questions on renewable power and storage investment that our paper

draws upon. Atasu et al. (2020) provide a great review of the sustainable operations literature at

large, so we focus our attention here on the specific energy operations sub-field. With renewable

power reducing in cost over many years, a lot of attention in the field has been dedicated to

understanding under which circumstances to invest in renewable power, and how the intermittency

of renewables impacts said decision. Drake et al. (2016) and Aflaki and Netessine (2017) study the

investment and operation decision for technologies with heterogeneous emission intensity, comparing

solar or wind power vs. gas generation under carbon pricing. Wu and Kapuscinski (2013) focus
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on how increasing renewable power in a grid can lead to increased curtailment, why it might

decrease emissions, and under which circumstances it can help reduce overall system cost. Going

from grid-level analysis to residential decision making, Sunar and Swaminathan (2021) shows that

households’ investment in their own solar panels can both increase renewable adoption and even

increase the profitability of the utility serving said customers; Babich et al. (2020) investigates

how different subsidy policies accelerate solar investment by households; and Okafor et al. (2023)

uses an analytical model to make the case for a servicizing business model as a way to efficiently

deliver renewable energy to households in developing countries. Beyond the capacity investment

angle, many papers have studied the question of how a shift towards renewable energy affects

market participants. Agrawal and Yücel (2022) and Fattahi et al. (2022) study how to increase

the responsiveness of demand to more volatile generation, while Singh and Scheller-Wolf (2021),

Alizamir et al. (2016), and Guajardo (2018) investigate how utilities have to adapt their tariffs and

business model in response to rooftop/solar energy investments.

Within the energy operations field, the stream of work our paper is most closely related to is that

of stylized modeling of storage operations. Wu et al. (2012) derive a policy to operate a (natural gas)

seasonal energy storage under variable prices by incorporating the future uncertain value of energy

in the focal period’s operational decision; they show how this logic can be applied to multi-day or

multi-season setups. More recently, energy storage is mostly studied in the presence of renewable

generation, as in Zhou et al. (2019), who study the optimal inventory decisions for a battery under

transmission constraints; they show that the profit from operating the storage is concave with

respect to the level of energy stored in the battery. Kaps et al. (2023) studies the joint investment

of renewables and energy storage, identifies lower and upper bounds for the optimal solution, and

shows that solar and batteries can become strategic substitutes at high levels of investment in either

- a result which Peng et al. (2024) confirms and expands upon by characterizing the different modes

of charging/discharging pairs that a battery can operate in, which can be used to approximate its

value. These method insights are expanded on by some empirical papers, such as Karaduman

(2021), which show that storage may be unprofitable in certain market settings from a large-scale

investor perspective even if it increases consumer welfare. Kaps and Netessine (2023) focus on the

aforementioned decentralized case, where households invest in solar and batteries and show that in

Germany, households with such investment reduce their grid demand by nearly half.

Despite the many different facets that the storage operations literature has covered, to the best

of our knowledge, our paper is novel in that we study the investment in two storage technologies.

Additionally, we explicitly model their different power (speed of charge/discharge) vs. energy

(amount of storage) capabilities - a distinction that much of the previous literature has simplified

away. Kaps et al. (2023) only analyzes one storage technology for which they only consider the

energy dimension as they focus on the solar-plus-storage investment dynamic. Hu et al. (2015)

show that considering duration matters in the renewable context, and Peng et al. (2024) highlights

the variability of battery charging and discharging throughout the day, but ours is the first paper
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to explicitly study the power and energy trade-off with multiple storage technologies. The study

of multiple storage technologies has been undertaken in other fields, for example the long-duration

energy storage (LDES) field, but these studies rely on simulations or optimization frameworks,

which are good tools when it comes to incorporating lots of details in the analysis, but lack the

transparency of analytical models, and the understanding that comes with them. Examples of such

papers are the techno-economic optimization models used by Penev et al. (2019), Mayyas et al.

(2022), comparing the cost (savings) of operating batteries and fuel cells in different grids, and

Pellow et al. (2015), analyzing how much energy a reference system of batteries and electrolyzers

could store in a year - both papers consider capacity as exogenously set. In electrical engineering,

some papers have numerically optimized specific configurations of hybrid storage systems for micro-

grid or mobility applications, although typically focusing on e.g., voltage or grid-stability impacts

of an installation, taking again capacities as given. See Hajiaghasi et al. (2019) for a review of

the field. Another area of research studying multiple storage technologies is within the energy

policy field, where large integrated models are used to predict, e.g., decarbonization pathways - but

are based on numerical equilibrium analysis without tractable results, see Bussar et al. (2016) for

an analysis of a hypothetical 2050 European power system with large-scale renewable penetration

relying on batteries, pumped hydro, and hydrogen as storage technologies, or Jafari et al. (2022)

for a review of studies in the energy policy field.

The closest paper to our setup is Günther et al. (2018), who model how two storage technologies

with different power and energy costs can be combined to achieve a given amount of combined

capacity, a process they call hybridization. However, they take this combined capacity goal as given

and focus more on power flow optimization, rather than the longer-term renewable penetration and

cost objectives we study.

In sum, to the best of our knowledge, our paper is the first to develop and solve an analytical

model where a firm optimizes over two types of storage technologies that differ along three dimen-

sions - cost of storage space, cost of transfer speed, and efficiency. We use this model to showcase

several new findings on the optimal storage capacity levels, on the impact of operational priority of

storage on renewable penetration and capacity investments, on the adoption path of hydrogen, and

on the advantages of combining two distinct storage technologies instead of relying only on one.

3 Model

3.1 Preliminaries

We study a setting with the following characteristics: (i) during the day, there is an excess of solar

energy generation (energy generated is higher than demand), the extent of which is stochastic due

to, e.g., variable weather conditions; (ii) at night, due to the absence of solar energy generation,

fossil-fuel backup plants must be run to help meet demand; (iii) there are two distinct, non mutually-

exclusive storage technologies available in the market, with different performance profiles, that can
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be charged in the day and discharged at night to replace fossil-fuel backup generation.

An example of such a setting would be a grid comprised of base-load generation (e.g., nuclear,

geothermal, biomass, hydro), a substantial amount of intermittent renewables, solar in particular,

and gas-peaking plants. For storage, two plausible technology options could be lithium-ion batteries

and hydrogen. As discussed in the introduction, this setting is close to what many countries target

for their electricity systems in the mid-term future.

3.2 Setup

In our model, a utility must decide how much energy storage to build, for the purpose of shifting

energy from times with excess generation to times with excess demand. The utility must serve all

demand over T consecutive, 24-hour periods, minimizing overall costs. Before we can formalize the

utility’s problem, we need to introduce a few key components of the model. We begin by describing

how energy generation and demand evolve over time in the next section; then, describe the two

available storage technologies in Section 3.2.2; and finally, introduce storage allocation policies and

the model timeline in Sections 3.2.4 and 3.2.5.

3.2.1 Energy Generation and Demand

Define the Net Energy Profile as a function that, at any point in time, measures the difference

between all non-fossil energy generated and demand - positive net energy means that energy supply

exceeds demand, negative net energy means that demand exceeds supply.3 Figure 1 shows how

input data (panel a) translate into a net energy profile (panel b), for an average day in Germany

using 2030 projections.

Figure 1: Visualization of Excess Solar Generation in Future Grid with High Solar Penetration.

Net Energy Profile in Panel (b) equals Demand minus Baseload minus Solar from Panel (a).

To keep the analysis tractable while preserving the essence of this pattern, we impose structure

3For readers familiar with the concept of net load (e.g., in the context of California’s duck curve), the net energy

profile can be thought of as being equal to base-load generation minus the net load.
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on the shape of the net energy profile. In any period, we assume that there is a 12-hour interval

(day) during which the net energy profile is weakly positive, followed by a 12-hour interval (night)

during which the net energy profile is negative. More specifically, during the day, excess energy

generation is variable, and it assumes the shape of an isosceles triangle, which captures in a stylized

way the solar generation pattern - low and rising in the morning, peaking in the middle of the day,

waning in the afternoon.4 On the sunniest possible day, the height of the triangle is equal to Q,

and its base spans L hours, with L ≤ 12 - see Figure 2. On any given day t, the height of the

triangle is qt ∼ U [0, Q], with the base of the triangle shrinking proportionally to its height (it is

equal to qt
L
Q); the varying size of the triangle can be thought as capturing variations in weather or

seasons.

During the night, we assume that the net energy profile follows an upside-down triangular

pattern, with a negative peak of magnitude D shortly after the sun sets. In a stylized manner, this

pattern captures the high energy needs that most electricity grids face in the early evening hours,

due to high demand but no solar generation, and the lower energy demand later in the night.5 Total

energy demand at night is D * 12/2 = 6D. The chosen net energy profile is stochastic during the

day and deterministic overnight because inter-day variation in solar output is typically much larger

than inter-day variation in demand. For simplicity and WLOG, we will henceforth set the value

of D to 10; one can think of the available excess renewable power Q as being scaled by the peak

excess demand D —we show in Appendix B.1 how to perform this calibration based on real-life

data.

Figure 2: Example of Net energy profile in the model

3.2.2 Energy Storage Technologies

A defining feature of our model is to consider two distinct storage technologies. Such technologies

differ along three dimensions: (i) round-trip efficiency (henceforth simply efficiency), which repre-

sents the fraction of energy that is not lost during a charge-discharge cycle;6 (ii) module cost, which

4Empirically, daily solar generation resembles a smoothed triangle, see as an example Figure 12 in Appendix B.2.
5The peak in the early evening is chosen for realism, but our results hold regardless of the time of the nightly

peak.
6An efficiency of 90% means that whenever 1kWh of energy is charged, only 0.9kWh can be discharged.
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is the cost of increasing the maximum amount of energy that can be stored in a given technology by

one unit, measured in dollars per kilowatt-hour ($/kWh); and (iii) power cost, which is the cost of

increasing the maximum amount of energy that can be exchanged (charged or discharged) per unit

of time by one unit, and is measured in dollars per kilowatt ($/kW). As a reminder, the relation

between energy and power is that energy is the integration of power over time.7

More specifically, technology B is a high-power, high-efficiency technology: We assume that

this technology has unlimited (or high-enough), free power, perfect efficiency, but costly modules -

each unit of storage capacity (kWh) costs cB > 0. Technology B approximates the characteristics

of lithium-ion batteries: Their power is so high to never be a constraint for load-shifting operations;

their efficiency is extremely high, in the 85-95% range; and higher storage (i.e., energy capacity)

comes at a higher cost - one has to buy more battery cells. By contrast, H is a high-storage, lower-

efficiency technology: We assume that this technology has unlimited (or large-enough) free storage

capacity, less-than-perfect efficiency, e < 1, but costly power - each unit of power capacity (kW)

costs cH > 0. Technology H approximates the characteristics of several existing technologies, such

as compressed air storage, but most notably hydrogen storage: As mentioned in the introduction,

hydrogen can be stored in salt caverns at a very low cost (Papadias and Ahluwalia 2021, Talukdar

et al. 2024); its efficiency is in the 45-50% range; and the expensive aspect of hydrogen are the

electrolyzers that allow the conversion from energy to hydrogen and vice versa. In our model, this

means that for hydrogen-like technologies, higher power capacity comes at a higher cost.

The characteristics of the two technologies in our model have been chosen to approximate

existing storage technologies that are either already popular or considered very promising, and yet

feature fundamentally different characteristics, making the question of their optimal combined usage

both theoretically interesting and practically relevant. Henceforth, we will refer to technologies B

and H simply as batteries and hydrogen, with the understanding that the model can also hold for

other technology pairs. We will continue to use B and H to refer to the installed capacity of the

two technologies (storage and power capacity, respectively).

Having introduced the two storage technologies, we want to note that they interact with the

net energy profile in different ways because of their different characteristics. Technology H, having

limited power, is employed by charging/discharging all excess energy up to its power capacity. This

means that H operates at the base of the triangle - see Figure 3, panel (a) for a charging example.

Technology B, on the contrary, has unlimited power but limited capacity, so in principle the

utility can use it to charge (discharge) any amount of energy at any point in time, so long as its

storage capacity is not full (empty); in our model, technology B is operated to charge energy (serve

demand) at the peak of the triangle; see Figure 3, panel (b), for a charging example. By doing so,

the utility maximizes the energy jointly charged/discharged by both technologies by minimizing

the possibility of overlap - see Figure 3, panel (c). This is what the utility would want to do if

7For example, if an empty storage technology with efficiency 80% and power equal to 1kW continuously charges

for a full hour, it loads up 1kWh of energy, and can discharge 0.8kWh.
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(a) Hydrogen Charging (b) Battery Charging (c) Combined Charging

Figure 3: Operational Difference In Charging Behavior For Both Storage Solutions

it knew the realization of qt at the beginning of period t, which is realistic given that in practice

day-ahead forecasts are very reliable.

3.2.3 Back-Up Generation

Following the literature, we assume that any demand not met through solar or storage is met

through conventional back-up plants (e.g., gas peakers) at a marginal cost g per unit of energy

(Kaps et al. 2023, Peng et al. 2024). We do not model price variability to keep the model tractable.

While this is a simplification, it looks increasingly plausible that in the near future, which our

model aims to capture, price variability will be less prominent. This is because backup plants will

increasingly rely on the same energy source - natural gas - which has the lowest environmental

impact among all other fossil fuels,8 is present in large quantities on the planet, and unlike other

energy sources (e.g., nuclear), can be fired up with relatively short notice. In such a scenario with

a single dominant conventional technology, the shape of the merit order curve will be considerably

flatter compared to the current situation characterized by a diversity of energy sources (nuclear,

coal, lignite, gas, oil), leading to smaller variability in prices.

3.2.4 Operational Priority

For any installed storage capacity pair (B,H) there can be conflict between the two technologies,

that is, there can be some energy that either technologies can charge. This is best explained with

the help of Figure 4, which focuses on charging examples (discharging examples are analogous).

In panel (a), a lot of solar energy is generated during the day, so that capacity of both storage

technologies is fully utilized and there is even some energy that cannot be charged —there is no

conflict. Panel (b), by contrast, shows an example of conflict, that is, when solar energy in the

day is not enough to fully utilize both technologies, and some energy can be captured by either

technology —we call this contended energy. In such cases, it must be decided how the contended

8E.g., natural gas is the only fossil fuel that is considered green by the 2022 European Commission Taxon-

omy(Council of European Union 2022).
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energy is allocated between the two technologies. In some cases, this decision could be made by the

utility, while in other cases, a regulator could pass a regulation to rule that one technology must

take precedence over the other, as an attempt to affect the utility’s investment decision - a scenario

that our paper aims to investigate. To allow for the study of both cases and their implications, we

assume that said priority is set before the utility makes capacity decisions, abstracting away from

who sets the priority,9 as discussed next.

(a) No Conflict (b) Conflict

Figure 4: Distinguishing cases without conflict (when excess renewables ≥ storage capacities) and

with conflict in storage operations

3.2.5 Model Timeline

The model is organized around three stages.

Stage 1: Operational priority is set. We distinguish between two storage priorities: battery-

first and hydrogen-first, where the technology being given priority is always charged and discharged

first.10

Stage 2: The utility decides how much capacity to build of each technology, with the objective

to serve all demand at the lowest expected cost. Storage capacity B will be measured in kWh and

power capacity H will be measured in kW. Demand and renewable capacity are exogenous.

Stage 3: Charging/discharging operations are executed for T , 24-hour consecutive periods,

following the priority determined in Step 1. Any demand at night that cannot be met through

either of the two storage technologies is met through conventional back-up generation.

3.3 Diurnal Load-shifting

Having introduced the main elements of the model, we now proceed to solve it, that is, find the

optimal investment decisions (Stage 2) that minimize the cost of serving demand over the T 24-hour

9The case in which the utility decides on priority before it makes capacity decisions is equivalent to the utility

deciding both priority and capacity at the same time.
10These allocations are appealing in practice due to their simplicity, transparency, ease of implementation, and

verifiability.
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periods (Stage 3) plus the cost of investment, taking operational priority (Stage 1) as given; then,

we will investigate the impact of operational priority.

It is known that multi-period storage problems are very challenging to solve (see e.g., the recent

works of Kaps et al. (2023), Peng et al. (2024), Lauinger et al. (2024)), and studying investment

in two different technologies makes the problem even more challenging. In this paper, we will deal

with this inherent source of complexity by separately studying two settings. Following terminology

by Twitchell et al. (2023), we begin by studying diurnal load-shifting, that is, the case in which all

energy stored during the day can be discharged at night (and is thus never carried to the following

day). Formally, for this case we set Q ≤ Q′ = D12/L = 120/L. This setting is studied in the

present section. The second setting, seasonal load-shifting, deals with the possibility that energy

may need to be carried beyond the first night, and will be studied in Section 3.4.

Under diurnal load shifting, the system is somewhat easier to study for two reasons. First,

because all T periods become stochastically equivalent (no energy is left in storage at the beginning

of each day), which implies that the optimal investment decision is the one that minimizes the

average cost per period. Second, because the amount of energy that can be charged is always lower

than the amount of energy that can be discharged, which allows us to simplify certain expressions.

Formally, the problem of the utility is:

max
H,B
{gEqt [cτ (B|qt) + c3−τ (H|qt)]− cBB − cHH} , B ≥ 0, H ≥ 0, τ ∈ {1, 2}, (1)

where E is the expectation operator, cτ (B|qt) and c3−τ (H|qt) measure the energy charged (and

discharged) in period t, when sunlight realization is qt, by technology B and H respectively, the

priority of each storage technology being identified in the subscript, with τ = 1 corresponding to

battery-first priority. Expected demand met via storage is multiplied by g to measure its cost-

saving impact, since every unit of demand met this way saves g in the cost of burning fossil fuels

in backup plants. The terms above take the following form (see Appendix A.1 for details):

c1(B|qt) = min
[
B,

q2tL

2Q

]
,

c2(H|qt) = emin
[
H, qt −

√
2BQ

L

]L(qt + (qt −min
[
H, qt −

√
2BQ
L

]
))

2Q
,

c1(H|qt) = emin[H, qt]
L(qt + (qt −min[H, qt]))

2Q
,

c2(B|qt) = min
[
B,

(qt −H)2L

2Q

]
.

(2)

3.3.1 Optimal Capacity Investments

Having introduced the problem, we turn to studying the optimal capacity investments. We denote

with X∗ω the optimal capacity investment in technology X if it has operational priority ω - e.g., B∗1

represents the optimal battery capacity under battery-first priority.
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Proposition 1. Optimal Capacity Investments - Diurnal

Under diurnal load-shifting, the optimal capacity investments are:

Battery 1st


B∗1 = QL

2

((
1− cB

g

)+)2
,

H∗2 = Q
(
1−

√
cH

geL/2 +
(
1− cB

g

)2 )+
,

Hydrogen 1st


B∗2 = QL

2

((√
cH

geL/2 −
cB
g

)+ )2
,

H∗1 = Q
(
1−

√
cH

geL/2

)+
,with (a)+ = max(0, a).

(3)

The importance of Proposition 1 is twofold. First, it provides closed-form solutions for optimal

capacities - tractable investment results which are an important building block for many subsequent

analyses. Second, the expressions themselves are revealing of several interesting properties of the

optimal capacity choices.

To begin, remember that Q defines the maximum possible amount of excess solar at any point

in time and L the longest possible duration of excess solar in a day. As it turns out, these two

parameters have very different impact on optimal capacities. Specifically, optimal capacities grow

linearly in Q - this holds for both technologies and both operational priorities. By contrast, optimal

capacities are not linear, and marginally decreasing, in L (with the exception of B∗1). Thus, having

a higher peak of excess energy and having excess energy for longer play two very different roles in

storage sizing.

We also learn that optimal capacities depend on technology costs via two adjusted-cost terms,

hereby defined as cadjB = cB
g and cadjH = cH

geL/2 . Both adjusted-cost terms contain the capacity unit

cost of the respective technology divided by the backup cost g. As one would expect, this means

that all capacities, irrespective of technology and priority, are increasing in back-up cost, however

the relation between capacities and back-up cost is highly non-linear, an effect that we will study

in more detail in Proposition 7. Hydrogen’s adjusted cost, cadjH , is obtained by further dividing cH

by (i) hydrogen’s efficiency e, thereby inflating hydrogen’s unit cost (since e < 1) to account for

the round-trip energy lost; and (ii) the average duration for which excess solar is available L/2,

thereby lowering hydrogen’s unit cost to account for the fact that hydrogen can work at full power

for up to L consecutive hours.

Lastly, we learn that Q, L, cadjB , and cadjH are the only parameters one needs to consider to derive

optimal capacity choices.

Proposition 2. Investment Conditions

• When batteries have priority, the two technologies are invested in under the following iff

conditions:

B∗1 > 0 iff cadjB < 1,

H∗2 > 0 iff

 cadjB > 1⇒ B∗1 = 0 ∧ cadjH < 1,

cadjB < 1⇒ B∗1 > 0 ∧ cadjH < 2cadjB − (cadjB )2.

(4)
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• When hydrogen has priority, the two technologies are invested in under the following iff con-

ditions:

H∗1 > 0 iff cadjH < 1,

B∗2 > 0 iff

 cadjH > 1⇒ H∗1 = 0 ∧ cadjB < 1,

cadjH < 1⇒ H∗1 > 0 ∧ cadjB <
√
cadjH , where cadjH = cH

geL/2 , c
adj
B = cB/g.

(5)

We continue with our result in Proposition 2, which lays out conditions for technologies to be

invested in. Specifically, investment in storage is undertaken when a technology’s adjusted cost

is low enough. That is, when the unit cost is low enough and the backup cost is high enough

—remember that both cadjH and cadjB relate to those two costs. This also means that hydrogen

is more likely to be invested in when excess solar duration, L, is large. Interestingly, a large

excess solar duration L may rule out investment in batteries when hydrogen has priority (see B2
∗),

highlighting the interdependence between the two storage technologies.

At least as interesting is what investment conditions do not depend on: In Proposition 2

there is no sign of Q. Thus, while the duration of the excess renewables, L, plays a role in

promoting (hydrogen) or even deterring (battery) storage investments, Q does not play any role.

Managerially, this means that hydrogen storage will likely be first invested in those markets where

excess renewables are available for longer hours, not necessarily in those with the most renewables

as common wisdom would suggest.

Figure 5: Conditions under which none, one, or both storage technologies are invested in under

the different priorities. Backup-cost g normalized to 1.

We condense these insights from Proposition 2 into the graphical representation of Figure 5,

which provides a quick way to assess where a given technology pair is located within the capacity

investment-space. In Figure 5, we normalize the backup cost to 1, so that the technology costs

are expressed relative to the backup cost. The x-axis plots the adjusted battery cost, cadjB , and
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the y-axis plots the adjusted hydrogen cost cadjH . The graph shows six areas. The first thing to

note is that adjusted costs determine simple and effective adoption thresholds above which storage

technologies are not adopted: Specifically, when a technology’s adjusted cost is higher than 1, no

investment is made in that technology, regardless of its operational priority.

When adjusted costs are less than 1, we can identify three areas of interest: Battery Dominant,

Both Techs, and Hydrogen Dominant. In the Battery (Hydrogen) Dominant area, hydrogen (bat-

teries) are only invested in if they have priority. Only in the Both Techs area are both technologies

invested in under both prioritization schemes, which happens when the adjusted battery cost and

the adjusted hydrogen cost satisfy these conditions: (cadjB )2 < cadjH < 2cadjB − (cadjB )2.

3.3.2 The Impact of the Operational Priority

Having characterized the optimal capacity choices, we now turn to studying the role of operational

priority. As discussed in the introduction, many countries have set goals to vastly improve the

share of demand met with renewable energy in the near future. Thus, we want to study the impact

of operational priority on renewable storage penetration, henceforth simply renewable penetration,

defined as the percentage of nightly demand being met with renewable generation. We begin by

studying this question for the case in which storage capacities are given (i.e., exogenous). Let

cB=1(B,H) = E[c1(B|qt)] + E[c2(H|qt)] be the expected energy charged in a day under battery-

first priority for a given storage capacity pair (H,B). Let cH=1 be the analogous amount under

hydrogen-first priority. We have the following result:

Proposition 3. Effect of Priority on Renewable Penetration (exogenous capacities)

For a fixed capacity pair (B,H), prioritizing battery technology always results in higher renewable

penetration compared to prioritizing hydrogen technology. Formally, cB=1(B,H) ≥ cH=1(B,H).

Proposition 3 establishes that prioritizing batteries over hydrogen always leads to higher renew-

able penetration. The reason is that batteries are more efficient, and therefore, the more energy

is charged into batteries, the less energy is lost in the charging-discharging process and the more

demand is met with renewable energy.

This can be seen mathematically by looking at Equations (6), where we express the amount

of demand served under battery-first and hydrogen-first priority, respectively, for a given set of

investments, as the sum of three terms,11 which capture demand met via batteries using non-

contended energy (left term), via hydrogen using non-contended energy (right term), and via the

prioritized technology using contented energy (term in the middle).

11see Appendix A.3 for a formal definition of all terms and the derivation of the expressions.
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cB=1(B,H)=
1

Q

[∫ q0

0

q2tL

2Q
dqt+

∫ Q

q′
Bdqt︸ ︷︷ ︸

Battery

+

∫ q′

q0

Bdqt︸ ︷︷ ︸
Contended

+ e
(∫ q′

q0

ψ(qt −
√

2BQ

L
,qt)dqt+

∫ Q

q′
ψ(H, qt)dqt

)
︸ ︷︷ ︸

Hydrogen

]

cH=1(B,H) =
1

Q

[∫ q0

0

q2tL

2Q
dqt+

∫ Q

q′
Bdqt︸ ︷︷ ︸

Battery

+ e

∫ q′

q0

Bdqt︸ ︷︷ ︸
Contended

+ e
(∫ q′

q0

ψ(qt −
√

2BQ

L
,qt)dqt+

∫ Q

q′
ψ(H, qt)dqt

)
︸ ︷︷ ︸

Hydrogen

] (6)

We see that while the amount of non-contended energy charged is the same regardless of oper-

ational priority (left and right terms), the amount of contended energy charged (middle term) is

strictly lower when hydrogen has priority (bottom expression) due to its lower efficiency reducing

the energy used to meet demand through storage.

Managerially, the implication of Equations 6 and Proposition 3 is that if capacities are fixed,

batteries (i.e., the more efficient technology) should always be prioritized if one aims to maximize

renewable penetration.

The next proposition investigates the case of endogenous capacities, that is, when operational

priority is set first, for example, by a regulator, and then storage capacities are chosen by the utility

to meet all demand at the lowest cost.

Proposition 4. Effect of Priority on Renewable Penetration (endogenous capaci-

ties)

When capacities are chosen after the operational priority has been set, prioritizing the less efficient

hydrogen technology results in higher renewable penetration if e ≥ ē and cB ∈ (cB, c̄B). Formally,

cB=1(B
∗
1 , H

∗
2 ) < cH=1(B

∗
2 , H

∗
1 ) , if e ≥ ē ∧ cB ∈ (cB, c̄B), where ē =

−5+6
√

1−cadjH +
√

cadjH +4cadjH

1+
√

cadjH +cadjH

,

cB =

√
1
3

√
e2cadjH − 2ecadjH + cadjH + 1

3(c
adj
H + 1− e− cadjH e), c̄B ∈ (1−

√
(1− cadjH )),

√
cadjH ), and g is

normalized to 1.

Proposition 4 shows that considering the impact of operational priority on investment can flip

the result of Proposition 3, and prioritizing batteries can actually decrease renewable penetration

(it does so when e ≥ ē ∧ cB ∈ (cB, c̄B). To better understand this result, we need to understand

how operational priority affects investment decisions. On the one hand, prioritizing hydrogen could

promptmore investment in hydrogen since everything else being equal, hydrogen ends up being used

more often. On the other hand, prioritizing hydrogen could prompt less investment in hydrogen

precisely because hydrogen is used more often, as this means wasting more energy due to its lower

efficiency (recall Equations 6).

The next proposition determines which of these two effects prevails by establishing a clear

relation between operational priority and capacity levels.
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Proposition 5. Operational Priority: Impact On Capacity

Capacity investment in a given technology τ is always greater when it has operational priority,

irrespective of its efficiency. Formally, τ∗1 ≥ τ∗2 , where τ ∈ {H,B}.

Proposition 5 shows that one of the two effects discussed above is always stronger, and priori-

tizing a technology always increases its investment amount. In particular, this means that, given

the right technology parameters, a regulator who wanted to increase investment in hydrogen - to

increase renewable penetration, or for strategic reasons like diversification of the energy portfolio -

could mandate operational priority of hydrogen over batteries instead of spending taxpayers’ money

on subsidies. This also means that the result shown in Proposition 4 - that hydrogen priority can

increase renewable penetration - is not caused by a decrease in hydrogen investment, but rather,

by an increase. This effect occurs especially when hydrogen capacity is very low if not prioritized

(H∗2 ≈ 0, see Appendix A.4 for more details). Conceptually, the initial unit of hydrogen, on average,

can be used L/2 hours per day, leading to eL/2 units of nightly demand being met through renew-

ables, while a marginal unit of battery is used at most 1 time per day. If the hydrogen capacity

that is added when shifting from battery to hydrogen priority (H∗2 −H∗1 ) is used often enough, the

net effect is an increase in renewable penetration, despite hydrogen’s lower efficiency (and batteries

being invested in and used less).

This result is important for policymakers, as it highlights the possibility that prioritizing a less

efficient, non-battery technology like hydrogen over incumbent lithium-ion solutions can actually

increase renewable penetration, in addition to boosting investments in hydrogen. This is particu-

larly likely to occur when utilization is a key factor in whether or not hydrogen is invested in. We

numerically investigate how close multiple hydrogen-like technology currently are to reaching this

condition in Section 5.2.

3.4 Seasonal Load-shifting

We now move to consider the alternative scenario case where renewable capacity is large enough,

Q > Q′ = 120/L, so that excess generation during the day can exceed demand at night, meaning

that if enough capacity is built, stored energy can be used to serve demand weeks or even months

into the future. We call the days where excess generation in the day exceeds demand at night sunny

days, and the other days dark days.

Solving such a seasonal model poses challenges that make it analytically intractable, for the

reasons already discussed in Section 3.3. However, it is possible to use the model presented for

diurnal load-shifting and, with some changes, adapt it to create a scenario with seasons, where

shifting energy from a day to several weeks or months later is valuable, and expressions are still

somewhat tractable. To do so, we assume that within the span of a year, all sunny days occur

sequentially, and are followed by all dark days, thus forming a sunny season and a dark season -

yet, we retain stochasticity of excess generation during each day in each season. We achieve this

by drawing excess energy realization for each day (after investment decisions are made) and then
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re-arranging the days so that all periods with qt > Q′ happen first (sunny season), followed by

all other periods where qt ≤ Q′ (dark season). This is meant to capture real-life seasonality for

countries not close to the equator, where summer days have predictably longer days of sunshine

and higher solar outputs than the rest of the year, but the exact realization for a given day, and

to a lower extent the duration of a given season, are still uncertain - see Appendix B.3 where we

show real-world solar seasonality patterns to support this assumption.

We make two additional, mild assumptions. We assume that seasons are long enough that it is

not financially viable (or technically infeasible) for batteries to charge energy in the sunny season

only to discharge it in the dark season. 12 We also assume that hydrogen will be able to discharge

its energy across the year.13

3.4.1 Optimal Capacity Investments

In the next proposition, we present closed-form investment solutions for seasonal load-shifting —we

use superscript S to denote the optimal capacities under seasonality (see Appendix A.6 for details).

Proposition 6. Optimal Capacity Investments - Seasonal

Under seasonal load-shifting, i.e. Q > Q′, the optimal capacity investments are:

Battery 1st


BS

1 = min
[
QL
2

((
1− cB

g

)+)2
, 60
]
,

HS
2 (B

S
1 ) =

H∗2 (B
∗
1) = Q

(
1−

√
cH

geL/2 +
(
1− cB

g

)2 )+
, if cB > g

(
1−

√
120
LQ

)
,

Q
(
1−

√
cH

geL/2 + 60
QL/2

)+
, if cB ≤ g

(
1−

√
120
LQ

)
,

Hydrogen 1st


BS

2 (H
S
1 ) = min

[
QL
2

((√
cH

geL/2 −
cB
g

)+)
, 60
]
,

HS
1 = H∗1 = Q

(
1−

√
cH

geL/2

)+
.

(7)

The optimal capacity investments shown in Proposition 6 are analogous in structure to the

ones originally introduced in Proposition 1. However, the added complexity of seasonality brings

with it two important considerations. First, battery capacity is limited by nightly demand. This

is because under seasonal load shifting consecutive days of excess generation mean that no charge

beyond nightly demand can be discharged.

Second, if battery has priority, the investment in hydrogen now is piece-wise continuous: If

cB > g(1−
√

120
LQ ), batteries operate as before and the optimal capacity is identical to the diurnal

load-shifting case; but, if cB ≤ g(1−
√

120
LQ ), batteries are sufficiently cheap - and solar sufficiently

12This simply rules out some unrealistic parameter combinations. Indeed, building extra battery capacity so it can

be charged once in the sunny season to hold that energy until it can be discharged once in the dark season would be

unprofitable even decades from now, as using batteries frequently is key to making them profitable.
13That is, yearly efficiency-adjusted charge is no greater than yearly unmet demand, which is realistic, as building

more hydrogen capacity would be hardly profitable.
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available - that seasonality starts limiting the battery’s ability to discharge, which in turn increases

the relative investment in hydrogen14. Importantly, this means that once renewable availability is

large enough to occasionally exceed unmet demand at night, the balance of storage technologies is

(weakly) tipped toward hydrogen due to its ability to accumulate charge across consecutive periods

at no extra cost. As such, Proposition 6 provides a possible analytical justification for why hydrogen

is frequently touted as a seasonal storage solution.

3.4.2 Comparative Statics of Investment

The seasonal load-shifting case brings about interesting effects that are worth discussing. For

this reason, we now turn to studying how investments change when the back-up cost increases.

Remember that the backup cost g shows up in the denominator of both cadjB and cadjH , which are

the sole parameters related to technology costs that affect capacity levels. Hence, an increase in

the backup cost can proxy for cost reduction in both technologies, in addition to proxy for a price

increase in electricity, of course, which are both interesting scenarios to discuss. In this section, we

focus on the case of battery priority, which is probably the more interesting case to study given the

large amount of battery capacity currently installed; we present comparative statics for the case of

hydrogen priority in Appendix A.7 for completeness.

Proposition 7. Comparative Statics

If batteries are operated first, optimal capacity investments changes with respect to back-up cost g

as follows:

∂BS
1

∂g


= 0 , if g < cB,

= LQ cB(g−cB)
g3

, if cB ≤ g < cB/
(
1−

√
120
LQ

)
,

= 0 , if g > cB/(1−
√

120
LQ ),

∂HS
2

∂g



= 0 , if g <
c2BeL

2cBeL−2cH ,

= Q(cBeL(cB−g)+cHg)

g2

√
eL

(
eL(cB−g)2+2cHg

) , if
c2BeL

2cBeL−2cH < g < cB/
(
1−

√
120
LQ

)
,

= cHQ3/2
√
2g
√

egL(cHQ+60eg)
, if g > cB/

(
1−

√
120
LQ

)
.

(8)

Two things are noteworthy from Proposition 7. First, the investment in batteries is marginally

decreasing as back-up costs grow and stops growing altogether (i.e., first derivative is zero) if back-

up cost become sufficiently large because the demand that batteries can serve becomes discharge-

limited when cB = g
(
1 −

√
120
LQ

)
. At that point, further technology improvements will not spur

further investments, which is an interesting threshold to identify for long-term capacity planning.

Second, the impact of back-up cost on hydrogen investment is highly dynamic. Initially, if g <

14If battery is not prioritized (i.e., for BS
2 ) for this to happen we need the following condition to hold cH

e
=

cB
√

120L
Q

+ 60g
Q

+
c2BL

2g
; see derivation in Appendix A.6.
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c2BeL
2cBeL−2cH , an increase in back-up cost exclusively benefits batteries. Afterwards, increases in back-

up cost lead to a (marginally decreasing) increase in hydrogen investment, and once batteries hit

their discharge-limit, there is a jump-discontinuity in the derivative and hydrogen investment grows

faster in back-up costs - which occurs at the threshold g(1−
√

120
LQ ).

Together, these results can be conceived as two technology tipping points for hydrogen: The

first tipping point occurs when one marginal unit becomes profitable next to batteries - which is

not impacted by the degree of seasonality (the condition does not depend on Q). As long as markets

have similar costs, this predicts approximately similar initial adoption of hydrogen across regions.

The second technology tipping point occurs when seasonality limits battery discharge - which varies

across markets, in part depending on their level of renewable investment and determining the scale

of hydrogen adoption.

In Figure 6, we present the different investment regions under seasonal load-shifting, as an

extension to Figure 5 for the diurnal load-shifting case. The two figures are identical for a substantial

portion of the parameter space, but seasonality impacts capacity decision at the limits15.

Figure 6: Conditions under which none, one, or both storage technologies are invested in under

the different priorities.

Figure 6 contains a lot of details. The main insights from the non-seasonality result carry

over, but in this figure, beyond checking whether capacity is positive or not, as done in Figure 10,

we also cover the case when the batteries hit the discharge limit, something unique to seasonal

load-shifting. The main change from Figure 5 is that, under seasonality, there are more cost

combinations where hydrogen is invested in - see regions Both Techs and BT Cap compared to

the Both Techs region from Figure 5. Because of the cap, if battery costs cB are lower than the

threshold 1 −
√
120/L/Q, battery capacity BS

1 hits the discharge cap, which in turn accelerates

15For the conditions that depend on Q, we assumed Q = 20 - the plot has the same structure for other values of

Q ≥ Q′, but the relative magnitude of areas shifts, see Appendix A.7.1 for an introduction of the cases
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hydrogen’s adoption. Additionally, in the top left corner, there is a range of parameters where

batteries are so cheap that even de-prioritized batteries reach that cap BS
2 = 60.

Having studied the seasonal case, it is useful to reflect on what drivers move markets towards

seasonality, as this will impact storage operations. First, having a higher renewable availability

(higher Q), naturally increases the degree of seasonality, as this increases the odds that excess

energy exceeds the nightly demand. However, a second element to consider is the backup cost,

as countries with higher back-up costs will be affected sooner by seasonality (remember that we

normalize everything by the back-up cost g, so graphically, a higher back-up cost is equal to moving

the vertical line (1 −
√
120/L/Q) further right). Importantly, this means that countries with the

highest resource availability won’t necessarily be the first who need to rely on hydrogen, as not using

excess solar in the summer may be optimal if electricity prices (g in the model) are low. However,

in countries where conventional generation is costly, and excess solar in the summer is valuable,

the effects of seasonality will be felt first - batteries reach their discharge cap and hydrogen starts

being invested in.

4 Data

Regions Data. We want to calibrate our analytical results based on current technology and

renewable data from different markets to understand how our analytical results translate into real-

life storage adoption. To do so, we use three sets of data for different regions: i) historical demand,

generation, and power price time-series, ii) future renewable capacity and demand targets, and

iii) storage cost estimates from current day and forecasts until the year 2030. First, we obtain

the demand and generation time-series from two different sources. For Germany and France, we

download 2023 demand, generation, and price data from the European Network of Transmission

System Operators (ENTSO-E )16. For the Spanish island of La Palma, we obtain 2019 data from

Kaps et al. (2023). France and Germany both have ambitious renewable generation targets, but

while the former heavily relies on nuclear power to achieve those, Germany entirely phased out

this firm, non-emitting technology, and plans to scale up solar and wind. In contrast, La Palma’s

demand is largely served by diesel generation with only a little solar but the island is part of a

European Union (EU) initiative to accelerate the transition towards clean energies on islands17.

We detail in Appendix B.1 how we translate the time-series data into our model estimates. We use

the average price in the year as the back-up cost estimates.

For future renewable and demand targets, we use the legislation targets that France (de Transi-

tion Écologique et Solidaire (MTES) 2023) is reviewing and Germany (Bundestag 2022) has passed,

as well as a 100 MW solar capacity target for La Palma. We assume that newly built capacity of any

technology has the same capacity factor/utilization as existing capacity. We summarize the region-

16https://transparency.entsoe.eu/
17https://clean-energy-islands.ec.europa.eu/countries/spain/la-palma
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specific estimates that we use in the model in Table 1. All variables are scaled to the respective

Table 1: Model Parameters and Price Data for Regions at 2030

Unit France Germany La Palma

Peak Excess (Q) MW 12.43 9.24 8.83

Max Excess Duration (L) h 12 12 11

Backup Cost (g) $/MWh 105 105 229

Days with Excess (f) % 70 56 100

regional average nightly demand. France has the highest peak renewable excess at 12.43 (meaning

that on the sunniest day, excess generation is 1.243 times as large as the average nightly demand),

in large part due to over 50 nuclear reactors providing base-load generation: Since demand in our

model is overall demand minus base-load generation, this means that the demand to be covered by

renewables/gas is lower. For comparison, Germany plans to have 215GW of solar by 2030 (France

plans for 60GW) but has lower peak renewable excess as the country has no equivalent non-fossil

base-load generation. Both countries had virtually identical average power prices in 2023 of $10518.
By contrast, La Palma has significantly higher electricity cost, due to the high cost of getting fuel

to the island, and the smaller, less efficient oil power plant providing the energy.

While increased investment in renewables will lead to excess renewable generation most days

during the year, there will still be days in winter when there is no excess generation at all. Days

with Excess represents the fraction of days in a year in which there is excess generation, and it varies

by country. Our projections show that both France and Germany will have no excess generation for

several weeks in winter even in 2030, due to demand being higher than renewable generation. To

account for this, we employ an inflated cost of storage, obtained by dividing the real (un-inflated)

cost by Days with Excess, as storage won’t be discharged during those days in the year. La Palma

is closer to the Equator and, therefore, will have excess generation throughout the year. Please see

Appendix B.1 for a more detailed discussion of the parameter estimation.

Technology Data. For the technology cost estimates, we use the 2023 National Renewable

Energy Lab’s utility-scale lithium-ion battery forecasts (Cole et al. 2023) for battery cost prediction

from 2023 to 2030 and the reversible power-to-gas estimates from Glenk and Reichelstein (2022)

for solid oxide electrolyzer for the same time-frame and assume 50% efficiency in the conversion

process. While both technologies are expected to decline in cost over time, battery’s cost decrease

is expected to be less pronounced compared to hydrogen, due to the former being a relatively more

mature technology. We will mostly focus on hydrogen as a conversion-limited technology but also

provide cost estimates for compressed-air (from Hunt et al. (2023) with cost reductions based on

Dufek et al. (2023)), a more mature technology relative to hydrogen, with lower cost-reduction

18≈ 97AC converted at the 2023 average EUR:USD exchange rate
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potential but higher efficiency (70%). A summary of these estimates is provided in Table 2.

Technology Unit 2023 2024 2025 2026 2027 2028 2029 2030

Battery $/kWh 463 443 388 376 363 351 338 326

Hydrogen $/kW 2,300 1,898 1,566 1,293 1,067 880 726 600

Compressed-Air $/kW 1,898 1,840 1,784 1,730 1,677 1,625 1,576 1,527

Table 2: Unadjusted Storage Technology Cost Projections from 2023 to 2030

5 Numerical Results

5.1 Capacity Investments Based On Priority

We begin the numerical section by investigating how the optimal investment results from Propo-

sition 1 look like, using estimates for storage costs in 2030 from Table 2, under different storage

priorities. In Figure 7, we show the optimal storage investment in Germany and La Palma, distin-

guishing between battery-first (left panel) and hydrogen-first (right panel) priorities.19

(a) Germany (b) La Palma

Figure 7: Optimal Capacity Investments In Battery and Hydrogen as of 2030

In Germany, under battery-first priority, both batteries and hydrogen are profitable for load-

shifting and are invested in, but at moderate capacity levels (see y-axis), partially because winters

are relatively long. This is in line with the observed growth of investments in batteries and com-

mercial projects for hydrogen as of this writing.

Under hydrogen-first priority, results are quite different. With hydrogen operating first, its

optimal investment increases by 16%, while batteries in this setting are not invested in at all as

hydrogen uses most of the excess renewables. This finding underscores that operational priority

can have a decisive impact on whether there is co-existence of technologies (in this case with

19(See Appendix B.4 for the French results, which are similar to Germany’s)
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battery priority) or a winner-takes-all scenario (in this case with hydrogen priority), something

policy-makers should be well aware of.

In La Palma, depicted in Figure 7, panel (b), seasonality is virtually nonexistent and Q < Q′

by 2030 (see Table 1) so we are in an empirical setting with near-perfect diurnal load-shifting

conditions. For battery-first, this translated into a ten-fold higher investment in Batteries compared

to Germany (relative to demand), also aided by the higher electricity prices. Hydrogen investment

are much lower under this priority, but still positive. When priorities are changed to hydrogen-first,

hydrogen investment quadruples and battery investment shrinks but remains positive.

Contrast these results to how press articles, as well as many academic studies, associate hydrogen

with seasonal load-shifting. Our analytical result from Proposition 1 and the numerical calibration

performed here both highlight that hydrogen can be profitably invested in even for diurnal load-

shifting and even when it is not prioritized. The reason for this is that batteries’ marginal value

does not change with the duration of excess renewable generation, giving hydrogen an edge during

days with long hours of excess solar. This can lead to hydrogen investments even before seasonal

load-shifting becomes feasible or profitable.

5.2 Operational Priority Effects on Charges

We now turn our attention to renewable penetration: In particular, we want to empirically investi-

gate the impact that prioritizing conversion-limited technologies, such as hydrogen or compressed-

air, can have on renewable penetration, as a follow-up to Proposition 4.

Figure 8: Change In Renewable Penetration When Operational Priority Is Given to Hydrogen

(a) or Compressed Air (b)

In Figure 8, we plot the change in demand met through renewables when a conversion-limited

technology - hydrogen in the left panel and compressed air in the right panel - is prioritized over

batteries, as a function of storage costs. As with Figure 5, adjusted Battery costs are shown on

the x-axis and adjusted hydrogen/compressed-air costs on the y-axis, so that a cost of 1 for both
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technologies is equivalent to marginal profitability of the first unit with priority. We overlay cost

forecasts on both figures, in red, to highlight which part of the graph is relevant for our purpose.

For battery cost, we use the linear forecasts from Table 2, while for the largely immature hydrogen

technology, we use a range of rates to capture the higher degree of uncertainty around cost -

specifically, from 2026 onward cost declines at a range between 25% and 150% of batteries’ cost

decline. For compressed air, the chosen range is narrower given that the technology is more mature

relative to hydrogen - cost reduction is between 0 and 17%, where 17% is NREL’s highest estimate

for cost reduction by 2030.

Three things are worth commenting on from the analysis. First, we see that the effect size of

prioritizing hydrogen or compressed air can be substantial. In the upper right corner of the figure,

i.e., the area where both technologies are barely profitable, prioritizing hydrogen allows up to 19%

more demand to be met via storage. For compressed air, due to its higher efficiency, this area is

even larger, and so is the increase in demand being met - up to 24%.

Second, the range in which prioritizing hydrogen increases renewable penetration is relatively

small compared to the whole parameter space; however, it is exactly this range that matters in

practice today - the case where both technologies are barely profitable, and hydrogen is quite a

bit more costly than batteries. This can also be seen by the position of the red cones, which, as

explained, show how technology costs are expected to develop until 2030.

Having said that - and this is our third point - it remains difficult to make predictions: Whether

giving priority to a conversion-limited technology results in an increase in renewable penetration

(i.e., overlap between the red cone and the blue area) is highly dependent on which technology will

ultimately prevail (hydrogen, compressed air, or some alternative) and on the rate at which the

conversion-limited technologies become cheaper compared to batteries’ cost decline. Based on the

current cost-estimates, this likely holds true for compressed-air for many years to come, while for

hydrogen it is hard to say, given that there is more uncertainty in its cost forecasts.

5.3 Single vs Dual Technology: Implications on Cost and Renewable Penetra-

tion

We conclude our numerical results section by investigating how much of a difference it makes to

be able to jointly invest in two storage technologies, compared to investing only in one. More

specifically, we want to look at how the cost incurred by the utility to meet demand - storage

investment costs plus the cost of meeting demand with backup plants - changes as a function of the

level of renewable penetration targeted, comparing the two single-technology scenarios (battery-

only and hydrogen-only) with a scenario in which the utility can build both batteries and hydrogen.

To do this, we set the cost of running back-up generators (g) to $100/MWh - approximately the

average wholesale price for Germany and France (as per Table 1) for Figure 9 panels (a) and (b),

and to $200/MWh for Figure 9 panel (c).20

20For the interested reader, Appendix B.5 considers a similar analysis, but only looking at storage investment costs.
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(a) Costs of 2024,

Q = D, g = $100/MWh

(b) Costs of 2030,

Q = 2D, g = $100/MWh

(c) Costs of 2030,

Q = 3D, g = $200/MWh

Figure 9: Average Storage + Backup Cost per MWh, as a Function of Renewable Penetration

Panel (a) in Figure 9 shows that, at 2024 technology costs and maximum excess solar equal to

peak demand (Q = D), load-shifting with any storage technology is not profitable (cost increases

in renewable penetration for all options) even at European wholesale-prices —and in fact, at the

moment, storage technologies are not yet employed for load-shifting purposes. This is in sharp

contrast to panel (b), where at 2030 technology cost and double the excess renewable power,

using energy storage to load-shift can lower costs (plots are below 100). However, the joint usage of

hydrogen and batteries does not lower costs much compared to the best single technology, hydrogen

in this case, if the objective is merely cost minimization. The advantage of dual technology becomes

instead important if the objective is to achieve a relatively high renewable penetration target, in

which case substantial cost reduction in the order of 20-25% can be achieved, although costs may

increase compared to no load-shifting.

Consider now the plots in panel (c), where renewable availability is highest atQ = 3D, and back-

up costs are also high - $200/MWh. Here, we note something new compared to the other panels:

A dual-technology strategy allows the firm not only to achieve lower costs than any single-tech

strategy, but also to reach renewable penetration levels that are simply unattainable with a single

technology (hydrogen stops at 50% and battery at 60%). The reason why no single technology can

obtain high penetration levels differs for each technology. Battery-only is constrained by its inability

to shift energy across seasons - something valuable when excess energy in a day can be higher than

unmet demand at night - as a battery large enough to do that would have a prohibitively high cost.

Hydrogen-only, instead, can shift energy across days, but is constrained by its low efficiency: When

operated in isolation, even for the high renewable generation setup, hydrogen cannot go beyond

50% renewable penetration because it cannot meet a high enough fraction of demand, as too much

energy is lost in the conversion process. By contrast, installing less capacity of both technologies

really works: Their combined strengths outweigh their respective weaknesses, achieving otherwise

unattainable levels of renewable penetration and lowering costs at the same time - an effect that

becomes more noticeable as the seasonality of solar availability increases.
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6 Discussion

Our paper provides a tractable approach to studying co-investment in a storage-constrained tech-

nology (like batteries) and a power-constrained technology (like hydrogen) in order to shift excess

renewable energy across time to replace fossil fuel generation.

To the best of our knowledge, this is the first paper in the operations literature to study

joint investment in two energy storage technologies. Our model allows us to solve for the optimal

investment decisions in closed form under both diurnal and seasonal load-shifting regimes. These

expressions allow us to define adjusted costs for both technologies, which can be used to guide

technology investment and adoption, and allow us to gain insights into the (at times unintuitive)

roles played by different parameters.

Our model also allows us to show the importance of operational priority, which can be set

preemptively by regulators to effectively promote investment in specific storage technologies and

lead to higher renewable penetration, sometimes even when the technology being prioritized is the

least efficient of the two.

Furthermore, we can identify and characterize two tipping points for hydrogen adoption and

quantify the magnitude of our effects via calibration with real data from three markets. Depending

on the cost trajectories, we find that giving hydrogen priority can increase renewable penetration by

up to 19%. We also identify cases when a dual-tech storage strategy leads to no benefit compared

to a single-tech strategy, when it can lead to lower costs, by up to 25-30%, and when it can lead to

renewable penetration levels that are unattainable with a single technology.

Our findings revisit commonly held beliefs around hydrogen storage, for example, we show that

it will turn a profit in diurnal load-shifting regimes years before its use for seasonal load-shifting will

break-even; and that hydrogen storage will likely be first invested in those markets where excess

renewables are available for longer hours, not necessarily in those with the most renewables.

While our model captures several important dimensions of the storage problem, it is a stylized

model designed to capture high-level dynamics, and it thus comes with some limitations. For

example, the model is limited to two technologies, it does not include variable energy prices (back-

up cost) or additional revenue streams for installed storage capacities like frequency regulation, and

it uses simplified assumptions to account for seasonality instead of e.g. empirical patterns or more

flexible distributions for demand and solar patterns.

At the same time, these challenges present ample opportunity for future research: Understand-

ing how merit order curves and variable prices impact the results, how a storage portfolio expands if

more than two technologies are considered, and how auxiliary services provisions shifts the balance

between power and energy limited storage are all relevant, challenging, and open questions.
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A Proofs of Propositions

A.1 Proof of Proposition 1

We first show the optimal capacity investment for batteries, assuming batteries have priority. Fol-

lowing Equation (2), we start with the expected amount of charge. Throughout the appendix, let

q0 =
√

2BQ
L denote the realization of q beyond which Battery cannot store all excess generation.

We furthermore denote q′ =
√

2BQ
L + H as the level of renewable capacity beyond which both

technologies can be fully charged.

Note that in diurnal load-shifting energy discharge is never higher than nightly demand - that

is, we are always charge-constrained. For this reason, we henceforth focus on charging operations

only. As a reminder, cB=1 refers to the energy charged in a day when Battery is prioritized.

cB=1(B) =
( 1

Q

∫ Q

qt=0
min[

q2tL

2Q
,B]dqt

)
,

= B
(
1− 2

3

√
2B

LQ

)
,

∂cB=1(B)

∂B
= 1−

√
2B

LQ
.

(9)

Since πB=1(B,H) = gcB=1(B) + gcH=2(H|B)−BcB −HcH , we have that

B∗1 ⇒ g
∂cB=1(B)

∂B
= cB ⇒ LQ

(1
2
− cB

g
+
c2B
2g2

)
,

=
QL

2
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g

)+)2
.

(10)

Conditional on the battery capacity B and its operational priority, we then optimize the hydrogen

capacity and use ψ(h, qt) as a shorthand to denote the area of a trapezoid of height h with base

Lqt/Q, which is equal to (hLqt)/Q− h2L/(2Q).

cH=2(H|B) =
e

Q

(∫ q′
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(11)

Since: πB=1(B,H) = gcB=1(B) + gcH=2(H|B)−BcB −HcH , we have that:

H∗2 (B) : g
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We now turn to the case with the opposite operational priority, where hydrogen has priority

and proceed analogously to before.

c1(H) =
e

Q
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Conditional on hydrogen capacity H and its operational priority, we optimize battery capacity.
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A.2 Proof of Proposition 2

In this section, we analyze under what conditions, hydrogen and Battery would be invested in and

compute how such investments change with respect to model parameters of interest. We start with

the case where batteries have operational priority.

B∗1 = LQ
(1
2
− cB

g
+
c2B
2g2

)+
B∗1 =

 0 if g < cB, i.e., if c
adj
B < 1.

LQ(12 +
c2B
2g2

)− cB
g if g > cB,

(15)

Note that because Q < Q′, whenever cadjB < 1, i.e., g > cB, Battery charge will never exceed nightly

demand.
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H∗2 (B
∗
1 = 0) = H∗1 = Q

(
1−

√
2cH
geL

)+
,

H∗2 (B
∗
1 = 0) > 0 if 1 >

√
2cH
geL

⇒ g

2
>
cH
eL
⇒ cadjH < 1,

H∗2 (B
∗
1) = Q

(
1−
√
2

√
cH
egL

+ (
1

2
− cB

g
+
c2B
2g2

))+
,

H∗2 (B
∗
1) > 0 if 1 >

√
2

√
cH
egL

+ (
1

2
− cB

g
+
c2B
2g2

)
⇒ cH

eL
< cB −

c2B
2g
,

cH
eL

< cB −
c2B
2g
⇒ cH

geL/2
< 2

cB
g
−
c2B
g2
⇒ cadjH < 2cadjB − (cadjB )2.

(16)

H∗2 > 0 iff

 cadjB > 1⇒ B∗1 = 0 ∧ cadjH = cH
geL/2 < 1,

cadjB < 1⇒ B∗1 > 0 ∧ cadjH < 2cadjB − (cadjB )2,
(17)

We now perform the same analysis of the optimal capacity w.r.t. electricity cost g and renewable

generation capacity Q for the case where hydrogen has priority.

H∗1 = Q
(
1−
√
2

√
cH
geL

)+
,

H∗1 =

 0 if g < 2cH
eL ⇒ cadjH > 1,

Q(1−
√

2cH
Lge ) otherwise

(18)

H∗1 =

 0 if cadjH > 1,

Q(1−
√

2cH
Lge ) otherwise ,

(19)

B∗2 =
(
LQ(

1

2
− cB

g
+
c2B
2g2

)−HL(1− cB
g
− H

2Q
)
)+
,

B∗2(H
∗
1 ) =

Q

2eg2

(√
2cHg − cB

√
eL
)2
,√

2cHg − cB
√
eL > 0⇒ cHg

eL/2
> c2B ⇒ cadjH > (cadjB )2 ⇒ cadjB <

√
cadjH ,

B∗2(H
∗
1 )

= 0 if cB >
√
cadjH ,

> 0, otherwise .

(20)

A.2.1 Separating Parameter Space Into cases

After having analyzed the capacity investments, we want to introduce the idea of how different

combinations of cost parameters lead to different cases of investments. For subsequent parts of the
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paper, it will be interesting to study under which circumstances the four capacities B∗1 , B
∗
2 , H

∗
1 , H

∗
2

are positive. We will normalize the back-up cost g = 1, so all other costs are expressed relative to

the back-up cost.

We repeat the result from Proposition 2 for B∗1 and H∗1 ,

B∗1 = LQ(
1

2
+
c2B
2
),

B∗1 > 0 if cB < 1,

H∗1 = Q(1−
√

2cH
Le

),

H∗1 > 0 if
cH
eL

<
1

2
.

(21)

To begin, we note that if a technology is not invested in when it has priority, it is also not

invested in if it does not have priority. Formally, B∗1 = 0 ⇒ B∗2 = 0 and H∗1 = 0 ⇒ H∗2 = 0.

Moreover, we know that both technologies will be invested in only if cB < 1 and cH
eL < 1

2 .

In this space where both technologies can be invested in, it is interesting to distinguish the cases

when only one technology is invested in, or both technologies are.

H∗2 (B, g = 1) = Q
(
1−
√
2

√
cH
eL

+
B

LQ

)+
,

H∗2 (B
∗
1 , g = 1) = Q

(
1−
√
2

√
cH
eL

+ (
1

2
− cB +

c2B
2

))+
,

WTS H∗2 (B
∗
1 , g = 1) > 0,

cH
eL

< cB − 0.5c2B,

cH
eL/2

< 2cB − c2B,

cadjH < 2cadjB − (cadjB )2, if g = 1,

(22)

Above, we showed that if the efficiency-adjusted cost of hydrogen cH/(eL/2) = is higher than

2cB − c2B, hydrogen is not invested in if batteries have priority. We now perform the same analysis

for battery investment when hydrogen has priority.

B∗2(H, g = 1) =
(
LQ(

1

2
− cB +

c2B
2
)−HL(1− cB −

H

2Q
)
)+
,

B∗2(H
∗
1 , g = 1) =

(
Q
(√cH

e
− cB

√
L√
2

)2)+
,

WTS B∗2(H
∗
1 , g = 1) = 0,

cH
eL

= 0.5 c2B,

cadjH = (cadjB )2

(23)
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If the efficiency-adjusted cost of hydrogen cH/(eL/2) is lower than c
2
B, batteries are not invested in if

hydrogen has priority. Taken together, the conditions we established can be graphically represented

in Figure 5 (which we repeat below in Figure 10) and give rise to the following cases:

1. No Tech as B∗1 = 0, B∗2 = 0, H∗1 = 0, H∗2 = 0,

2. Battery Only as B∗1 > 0, B∗2 > 0, H∗1 = 0, H∗2 = 0,

3. Hydrogen Only as B∗1 = 0, B∗2 = 0, H∗1 > 0, H∗2 > 0,

4. Battery Dominant as B∗1 > 0, B∗2 > 0, H∗1 > 0, H∗2 = 0,

5. Hydrogen Dominant as B∗1 > 0, B∗2 = 0, H∗1 > 0, H∗2 > 0,

6. Both Techs as B∗1 > 0, B∗2 > 0, H∗1 > 0, H∗2 > 0.

Figure 10: Conditions under which none, one, or both storage technologies are invested in under

the different priorities. Backup-cost g normalized to 1.

A.3 Proof of Proposition 3 (and Equation (6))

Depending on the sunshine realization, qt, we can be in one of two situations. When qt is large

enough that excess renewables exceed both storage technologies’ ability to shift energy - see Figure

4, panel (a) - both technologies can be used at their maximum potential: B is fully charged, H

uses its full power whenever possible. This happens when q2tL/(2Q) ≥ c(B|qt) + c(H|qt) ⇒ qt ≥
H +

√
2BQ/L and in these cases, the priority is inconsequential because there is plenty of excess

energy. As introduced in Appendix 1, we denote this threshold with q′ ≜ H +
√

2BQ/L and it

will be useful below. By contrast, when the sunshine realization is low (qt < q′) - see Figure 4 b) -

excess energy is limited, the technologies are in conflict, and there is contended energy - i.e. energy
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that could be charged by either technology. In these cases, the priority is consequential, because it

decides which technology is charged and which one is not.

We now write the expression for expected charge (hence discharge) for the case when battery

has priority, for given positive capacities of B and H. We do isolate the case when there is conflict,

i.e. qt < q′ =, and then further sub-dividing it into contended and not contended energy. As

defined in Appendix A.1, we use ψ(h, qt) as a shorthand to denote the area of a trapezoid of height

h with base Lqt/Q, which is equal to (hLqt)/Q− h2L/(2Q).

E[c1(B|qt)] =
1

Q

(∫ Q

qt=0
min[

q2tL

2Q
,B]dqt

)
=
(∫ q0

qt=0

q2tL

2Q2
dqt +

∫ Q

qt=q0

B

Q
dqt

)
,

=
(∫ q0

0

q2tL

2Q2
dqt +

∫ q′

q0

B

Q
dqt +

∫ Q

q′

B

Q
dqt

)
,

E[c2(H|qt)] =
e

Q

(∫ q′

qt=q0

ψ(qt −
√

2BQ

L
, qt) dqt +

∫ Q

qt=q′
ψ(H, qt) dqt

)
.

(24)

E[c1(H|qt)] =
e

Q

(∫ H

qt=0

q2tL

2Q
dqt +

∫ Q

qt=H
ψ(H, qt) dqt

)
,

=
e

Q

(∫ H

0

q2tL

2Q
dqt +

∫ q′

H
ψ(H, qt)dqt +

∫ Q

q′
ψ(H, qt) dqt

)
,

E[c2(B|qt)] =
(∫ Q

qt=H
min[

(qt −H)2L

2Q2
, B]dqt

)
=

∫ q′

qt=H

(qt −H)2L

2Q2
dqt +

∫ Q

qt=q′

B

Q
dqt.

(25)

From here, we use the assumption of H ≤ q0 for the bounds of integration. The alternative

case, H ≥ q0, is analogous and leads to the same simplification.

cB=1(B,H) =

E[c1(B|qt) + c2(H|qt)] =
(∫ H

0

q2tL

2Q2
dqt +

∫ q0

H

q2tL

2Q2
dqt +

∫ q′

q0

B

Q
dqt +

∫ Q

q′

B

Q
dqt

)
+

e

Q

(∫ q′

q0

ψ(qt −
√

2BQ

L
, qt) dqt +

∫ Q

q′
ψ(H, qt) dqt

)
.

(26)

cH=1(B,H) =

E[c1(H|qt) + c2(B|qt)] =
e

Q

(∫ H

0

q2tL

2Q
dqt +

∫ q0

H
ψ(H, qt)dqt +

∫ q′

q0

ψ(H, qt)dqt +

∫ Q

q′
ψ(H, qt) dqt

)
+∫ q0

H

(qt −H)2L

2Q2
dqt +

∫ q′

q0

(qt −H)2L

2Q2
dqt +

∫ Q

q′

B

Q
dqt.

(27)
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We can then rearrange terms to obtain:∫ q0

H

(qt −H)2L

2Q2
dqt +

∫ q′

q0

(qt −H)2L

2Q2
dqt =

∫ H

0

q2tL

2Q2
dqt +

∫ q0

H

q2tL

2Q2
dqt =

∫ q0

0

q2tL

2Q2
dqt and

e

Q

(∫ q′

q0

ψ(qt −
√

2BQ

L
, qt) =

∫ H

0

q2tL

2Q
dqt +

∫ q0

H
ψ(H, qt)dqt +

∫ q′

q0

ψ(H, qt)dqt +

∫ Q

q′
ψ(H, qt) dqt −

∫ q′

q0

Bdqt.

(28)

And we can group the terms into three groups - battery, hydrogen, and contended energy, which

in principle may go into either storage technology depending on the operational priority chosen,

but that in this case goes into (and out of) batteries since they are given priority.

cB=1(B,H) =
1

Q

(∫ q0

0

q2tL

2Q
dqt +

∫ Q

q′
Bdqt

)
︸ ︷︷ ︸

Battery

+
1

Q

∫ q′

q0

Bdqt︸ ︷︷ ︸
Contended

+ e
1

Q

(∫ q′

q0

ψ(qt −
√

2BQ

L
,qt)dqt+

∫ Q

q′
ψ(H, qt)dqt

)
︸ ︷︷ ︸

Hydrogen

cBattery ≜
1

Q

(∫ q0

0

q2tL

2Q
dqt +

∫ Q

q′
Bdqt

)
cContended ≜

1

Q

∫ q′

q0

Bdqt

cHydrogen ≜
1

Q

(∫ q′

q0

ψ(qt −
√

2BQ

L
, qt) dqt +

∫ Q

q′
ψ(H, qt) dqt

)
=

1

Q

(∫ H

0

q2tL

2Q
dqt +

∫ q0

H
ψ(H, qt)dqt +

∫ q′

q0

ψ(H, qt)dqt +

∫ Q

q′
ψ(H, qt)dqt −

∫ q′

q0

Bdqt

)
(29)

When hydrogen has priority, expected charge (hence discharge) can be rewritten using the same

terms as above - non-contended energy is the same by construction, and contended energy is also

the same, except that now is being multiplied by e, due to hydrogen’s losing 1−e fraction of energy,

inevitably lowering the total amount of demand met through renewables.

cH=1(B,H) =
1

Q

(∫ q0

0

q2tL

2Q
dqt +

∫ Q

q′
Bdqt

)
︸ ︷︷ ︸

Battery

+ e
1

Q

∫ q′

q0

Bdqt︸ ︷︷ ︸
Contended

+ e
1

Q

(∫ q′

q0

ψ(qt −
√

2BQ

L
,qt)dqt+

∫ Q

q′
ψ(H, qt)dqt

)
︸ ︷︷ ︸

Hydrogen

(30)

So, conditional on having a certain pair of capacities (B,H), it is always better to run the more

efficient technology (battery) first.

A.4 Proof of Proposition 4

We want to analyze under which conditions
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cH=1(B
∗
2 , H1∗) > cB=1(B

∗
1 , H

∗
2 ), (31)

that is, hydrogen-first leads to a higher charge - hence higher renewable penetration - than

battery-first.

To start, we use the insights from Propositions 1 and 2 (summarized in Figure 5) and distinguish

the cases where out of the four capacities (B∗1 , H
∗
2 , B

∗
2 , H1∗), at least three are positive. The cases

where no technology or only one technology’s capacities are positive are not relevant to this analysis

as it is trivial to show that in these cases the charge is identical, e.g., cH=1(B
∗
2 , 0) = cB=1(B

∗
1 , 0),

as B∗1 = B∗2 |(H∗1 = 0).

We proceed in in the following four steps:

1. Step 1 - We differentiate 3 relevant sub-cases of capacity investment for which the expression

of the charging difference takes a different form.

2. Step 2 - We show the existence of a set of parameters for which (31) holds.

3. Step 3 - We identify the lowest battery cost under which condition (31) holds, for any other

given set of parameters.

4. Step 4 - We identify an upper bound to the highest battery cost under which (31) holds, for

any other given set of parameters.

Step 1 - Differentiating three Cases of Capacity Investments

We define ∆B,∆T ,∆H as the difference in charge between battery-priority and hydrogen-priority

across the three different cases as shown in Equation 32. The case ∆B occurs when hydrogen is only

invested if it gets priority, the case ∆H occurs when battery is only invested in if it gets priority and

∆T when both technologies are invested in irrespective of their priority. Throughout this analysis

we normalize g to 1, hence all costs are expressed relative to that. As derived in Appendix A.2.1,

we are only interested in the technology cost space cB < 1(cadjB < 1) and cH/e < L/2(cadjH < 1), as

only then at least three of the capacities are positive.

Collectively, the three cases cover the entire cost parameter space of interest as shown in Equa-

tion 32. For notational convenience, we write ∆B(cH , cB, e,Q, L) as ∆B - all functions are dependent

on the model primitives, but not the capacity choices.

∆B = cB=1(B
∗
1 , 0)− cH=1(B

∗
2 , H

∗
1 ), if cH/e ≥ L(cB − 0.5c2B),

∆T = cB=1(B
∗
1 , H

∗
2 )− cH=1(B

∗
2 , H

∗
1 ), if L/2c

2
B ≤ cH/e ≤ L(cB − 0.5c2B),

∆H = cB=1(B
∗
1 , H

∗
2 )− cH=1(0, H

∗
1 ), if cH/e ≤ L/2c2B.

(32)
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Step 2 - Show the existence of a set of parameters for which (31) holds.

We start by showing that under a certain condition, hydrogen priority can lead to higher renewable

discharge, by studying a particular subset in the parameter space. This subset is cH/e = L(cB −
0.5c2B), i.e. when ∆B = ∆T - see Equation 22. This is the set of points where, if hydrogen is

not-prioritized, there is no investment in hydrogen, but any marginal cost reduction in will lead to

positive investment in hydrogen. Formally,
−→
∂ H∗

2 (cH=Le(cB−0.5c2B))
∂cH

= 0 and
←−
∂ H∗

2 (cH=Le(cB−0.5c2B))
∂cH

<

0.
−→
∂ and

←−
∂ indicate the directional derivatives from the left and the right respectively.

We start at cH/e = L(cB − 0.5c2B), because it is the lowest set of values of cH/e for which H∗2

equals zero, leading to a large difference between H∗1 and H∗2 .

WTS∆B ≤ 0,

1

6
(cB − 1)2(2cB + 1)LQ−

Q

(
3
√
2c2B
√
cHeL− 2c2BeL

√
c2BeL− 2

√
2cB
√
cHeL+ 2cH − 2

√
2c

3/2
H (e− 3) + e5/2L3/2

)
6
√
e3L

+

Q

(
−4cH

(√
c2BeL− 2

√
2cB
√
cHeL+ 2cH + 3cB

√
eL

)
+ 4
√
2cB

√
cHeL

(
c2BeL− 2

√
2cB
√
cHeL+ 2cH

)
−
)

6
√
e3L

≤ 0,

Replacing cH/e with L(cB − 0.5c2B),

∆B(cH = eL(cB − 0.5c2B)) =

1

6
LQ
(
2cB

(
2

√
2cB − 2

√
−(cB − 2)c3B +

√
(2− cB)cBe− 3

√
(2− cB)cB

)
−
(√
−(cB − 2)c5B + 1

)
e− 4c3B+(

9− 4
√
2

√
(cB − 2)

(√
−(cB − 2)cB − 1

))
c2B + 1

)
≤ 0,

UL ≜ 2cB

(
2

√
2cB − 2

√
−(cB − 2)c3B +

√
(2− cB)cBe− 3

√
(2− cB)cB

)
−
(√
−(cB − 2)c5B + 1

)
e− 4c3B+(

9− 4
√
2

√
(cB − 2)

(√
−(cB − 2)cB − 1

))
c2B + 1 ≤ 0.

(33)

If, for example, cB = 0.5 and e = 1, the last expression in Equation 33 (henceforth called

UL) is approximately -0.1005, i.e., hydrogen priority results in more demand being met through

renewables than battery priority. We have thus shown that the result holds for some parameter

combinations. We continue by analyzing where (31) holds in this set of cH/e = L(cB − 0.5c2B). For
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that, we take the derivative of UL w.r.t. e to show that it is decreasing in efficiency.

∂ UL

∂e
= −1 + 2cB

√
(2− cB)cB − cB

√
(2− cB)c3B,

∂ UL

∂e
< 0 if ,

(2cB − c2B)
√

(2− cB)cB ≤ 1,

(2cB − c2B) ≤ 1 ∀0 ≤ cB ≤ 1,√
(2− cB)cB ≤ 1 ∀0 ≤ cB ≤ 1.

(34)

Clearly, the derivative is negative for any value of cB < 1 - hence the difference in charge is

decreasing with e. This means that (31) holds (∆B becomes negative) on the considered set of

points for a sufficiently high e. We thus try to identify this threshold ē beyond which (31) still

holds.

WTS UL = 0,

2cB

(
2

√
2cB − 2

√
−(cB − 2)c3B +

√
(2− cB)cBe− 3

√
(2− cB)cB

)
−
(√
−(cB − 2)c5B + 1

)
e− 4c3B+(

9− 4
√
2

√
(cB − 2)

(√
−(cB − 2)cB − 1

))
c2B + 1 = 0,

ē =

cB

(
4

√
2cB − 2

√
(2− cB)c3B + cB

(
−4cB − 4

√
2

√
(cB − 2)

(√
(2− cB)cB − 1

)
+ 9

)
− 6
√
(2− cB)cB

)
+ 1√

(2− cB)c5B − 2
√

(2− cB)cBcB + 1
.

(35)

If hydrogen’s efficiency is higher than ē, at least on the set cH/e = L(cB − 1/2c2B) (31) holds

- i.e., in that case hydrogen priority results in higher overall renewable penetration than battery

priority when capacity investments are made taking into account the operational priority.

Step 3 - Identify the lowest battery cost under which condition (31) holds, for any

other given set of parameters.

After having shown the existence of storage technology parameters under which hydrogen-priority

results in a higher renewable penetration (hence charge) than battery-priority, we now want to

characterize the range for which (31) holds in more detail. To do this, we study how ∆B changes

as cB changes and start by looking at cB = 0 - i.e., the left-most area of the Graph in Figure 5.

∆B(cB = 0) =
Q
(
2
√
2c

3/2
H (e− 1) + e5/2

(
−L3/2

)
+ L
√
e3L
)

6
√
e3L

≥ 0,

−2
√
2c

3/2
H (1− e) + L3/2e3/2(1− e) ≥ 0,

L/2 ≥ cH/e.

(36)
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Clearly, at cB = 0, ∆B is always positive, i.e. (31) never holds. We thus aim to study the

derivative of ∆B w.r.t. cB, because we know that (31) can hold on the critical line where cH/e =

L(cB − 0.5c2B), which, after rearranging terms is equal to cB = 1−
√
1− 2cH

eL .

∂∆B

∂cB
=

1

3
(cB − 1)2LQ+

1

3
(2cB + 1)(cB − 1)LQ+

Q

(
6c2Bc

3/2
H eL− 2

√
2c2H

(√
c2BeL− 2

√
2cB
√
cHeL+ 2cH + 3cB

√
eL

)
+ c3BeL

√
z

)
√
cHe

(
cB
(
cBeL− 2

√
2
√
cHeL

)
+ 2cH

) +

Q
(
− cBcH

(√
2cBeL

(
3
√
c2BeL− 2

√
2cB
√
cHeL+ 2cH + cB

√
eL

)
− 6
√
z

)
+ 4c

5/2
H

)
√
cHe

(
cB
(
cBeL− 2

√
2
√
cHeL

)
+ 2cH

) ,

where z = cHeL
(
cB

(
cBeL− 2

√
2
√
cHeL

)
+ 2cH

)
.

(37)

Despite the expression for ∆B being simpler than the ones for the other ∆’s, the sign of ∂∆B/∂cB

is not readily discernible - we need to find other ways to study it. We thus analyze ∂2∆B/∂cB∂e.

∂2∆B

∂cB∂e
=

2
√
2cH

√
c2BeL− 2

√
2cB
√
cHeL+ 2cH +

√
2cB
√
cHeL− 4cH

2e2
,

=
2
√
2cH(

√
2cH − cB

√
eL) +

√
2cB
√
cHeL− 4cH

2e2
,

=
−2cB

√
2cHeL+ cB

√
2cHeL

2e2
< 0

(38)

Note that ∂2∆B
∂cB∂e < 0, hence the derivative w.r.t. cB is decreasing in e. If we set e to its lowest

possible value e = 2cH/L (we need cH/e < L/2 for hydrogen to be invested in) and show that

even then the derivative w.r.t. cB is non-positive, i.e., (∂∆B
∂cB
≤ 0), then we can conclude that the

derivative is non-positive for any e > 2cH/L.

∂∆B(e = 2cH/L)

∂cB
= (1− cB)cBLQ+

1

3
(1− cB)2LQ−

1

3
(2cB + 1)(1− cB)LQ,

= 0.

(39)

Thus, even for the lowest possible value of e, the derivative is non-positive and for any lower

values of e, we have previously shown that it will be negative. Thus, ∂∆B
∂cB

≤ e for the entire

considered space.

So far we know that ∆B > 0 when the battery cost is zero cB = 0 and as the battery cost cB

increases, ∆B decreases. For suitably large values of efficiency, (e ≥ ē), ∆B then becomes negative.

We now want to find the value cB from which onwards, it becomes negative, i.e. the lower bound

of battery cost for which (31) holds.
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To help with tractability, we combine cH , e and L terms wherever possible to cadjH , which as g

is normalized to 1 is equal to cH/(eL/2). With this simplification, we check when ∆B is zero.

WTS∆B(c
adj
H (g = 1) =

cH
eL/2

) = 0,

1

6
LQ

(
3c2B

(√
cadjH − 1

)
+ (e− 1)

(
(cadjH )3/2 − 1

))
= 0,(

3c2B

(√
cadjH − 1

)
+ (e− 1)

(
(cadjH )3/2 − 1

))
= 0,

We know cB > 0,

cB =

√
1

3

√
e2cadjH − 2ecadjH + cadjH +

1

3
(e(−cadjH )− e+ cadjH + 1).

(40)

So far, we have shown that ∆B ≥ 0 if e ≤ ē holds, or, if both e > ē and cB ≤ cB hold. We

have also shown that there exists an ϵ > 0 such that ∆B < 0 if e > ē and cB ∈ (cB, cB + ϵ).

This concludes our proof to identify the lowest battery cost such that (31) holds. However, we can

increase that ϵ by noting that ∆B is defined until cH/e = L(cB − 0.5c2B). Re-organizing terms, this

is equal to cB = 1−
√
1− cadjH . Because we know that the derivative of ∆B w.r.t. cB is decreasing,

this means that ∆B < 0 if e > ē and cB ∈ [cB, 1−
√

1− cadjH ].

Step 4 - Identify an upper bound to the highest battery cost under which (31) holds,

for any other given set of parameters.

To obtain the result in Step 3, we analyzed ∆B, which has a simpler expression for charge than ∆T ,

as in the ∆B parameter space hydrogen is not invested in if batteries have priority, i.e., H∗2 = 0. To

find an upper bound for the range for which (31) holds, we need to investigate the more challenging

expression ∆T , as hydrogen capacity H∗2 becomes positive for values of cB beyond the critical value

of i.e., cB > 1−
√

1− cadjH ⇒ H∗2 > 0. We know that at the critical point cB = 1−
√
1− cadjH both

expressions are the same and are negative i.e., ∆T (cB = 1−
√
1− cadjH ) = ∆B(cB = 1−

√
1− cadjH ) <

0. However, analyzing ∆T is intractable due to third/fifth degree polynomial expressions for the

optimal capacities.

We thus turn to ∆H . As shown in Appendix A.2.1, if cB ≥
√
cadjH , we are in the parameter

space for ∆H . We now investigate its sign.

In particular, we will show that (31) does not hold if c2B ≥ cadjH , i.e., we are in the hydrogen

dominant case.
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WTS∆H ≥ 0,

cB=1(B
∗
1 , H

∗
2 )− cH=1(0, H

∗
1 ) ≥ 0,

Q(cB − 1)2eL(2
√
eL((cB − 1)2eL+ 2cH) + 2cBL+ L

6eL
−

Q2cH
√
eL((cB − 1)2eL+ 2cH) + (−3(cB − 2)cB − 2)e2L2

6eL
− 1

6
Q(eL−

2
√
2c

3/2
H√

eL
) > 0.

(41)

We proceed by showing that at the highest value of battery cost cB for which the function is

defined cB = 1, the difference is 0, and then, by showing that the partial derivative w.r.t. cB is

negative for all values cB ∈ (0, 1).

∆H(cB = 1) =
Q
(
−2cH

√
eL (2cH) + e2L2

)
6eL

− 1

6
Q

(
eL−

2
√
2c

3/2
H√

eL

)
= 0 ≥ 0. (42)

Here we have shown that at cB = 1, the difference in charge is exactly zero. Next, we want to show

that ∂∆H/∂cB < 0, to proof that the charge difference for smaller values of cB is always positive.

WTS
∂∆H

∂cB
≤ 0,

(cB − 1)LQ
(
−e
√
eL ((1− cB)2eL+ 2cH) + cB

√
eL ((1− cB)2eL+ 2cH) + (1− cB)2e2L+ cHe

)
√
eL ((1− cB)2eL+ 2cH)

≤ 0,(
−e
√
eL ((1− cB)2eL+ 2cH) + cB

√
eL ((1− cB)2eL+ 2cH) + (1− cB)2e2L+ cHe

)
≥ 0,

If cB > e, this trivially holds, we thus investigate the case cB < e,

(1− cB)2e2L+ cHe ≥ (e− cB)
√
eL((1− cB)2eL+ 2cH),

(1− cB)4e4L2 + 2(1− cB)2e3LcH + c2He
2 ≥ (e− cB)2

(
e2L2(1− cB)2 + 2cHeL

)
,

(1− cB)4e3L2 + 2(1− cB)2e2LcH + c2He ≥ (e− cB)2
(
eL2(1− cB)2 + 2cHL

)
.

(43)

To show that this holds we need to separately analyse different cases. For the first case:

2(1− cB)2e2LcH ≥ 2cHL(e− cB)2,

(1− cB)2e2 ≥ (e− cB)2,

(e− ecB) ≥ (e− cB).

(44)

Where we can take the root, as we know all terms that get squared to be positive and which holds
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as we know 0 > e > 1. We continue with the second case.

(1− cB)4e4L2 + c2He
2 ≥ (e− cB)2e2L2(1− cB)2,

(1− cB)4e4L2 ≥ (e− cB)2e2L2(1− cB)2,

(1− cB)2e2 ≥ (e− cB)2,

(e− ecB) ≥ (e− cB).

(45)

By showing that (31) never holds for the ∆H region, we have identified a value of battery cost,√
cadjH , beyond which (31) does not hold. Thus, if e > ē, we know (31) holds if cB < cB < c̄B, for

some c̄B ∈ (1−
√

1− cadjH ),
√
cadjH ).

To conclude, we established the existence of a set, identified by a lower bound on efficiency

(ē, closed form, tight), and a lower bound (cB, closed form, tight) and an upper bound (c̄B, not

tight) on the cost of batteries, such that (31) holds - in that set, operating hydrogen with priority

increases the amount of demand that is met through renewables (relative to battery priority).

A.5 Proof of Proposition 5

To understand the impact of operational priority on capacity investment, we compare the invest-

ments in both technologies under each prioritization - see Appendix A.1 for a derivation of the

optimal capacity results.

We start by comparing the capacity results for Battery. From Proposition 2, we now that if

g < cB, both capacities are 0 and if g > cB but cH/e < L/2c2B, B
∗
2(H

∗
1 ) = 0, thus in those cases, the

result holds trivially. Hence, we have to check the result for the case of g > cB and cH/e > L/2c2B,

for which we know that B∗1 > 0 and B∗2(H
∗
1 ) > 0. Lastly, we need cH/e < L/2, so that H∗1 > 0, as

otherwise both capacities are identical B∗1 = B∗2(H
∗
1 = 0).

B∗1 = LQ
(1
2
− cB

g
+
c2B
2g2

)+
,

B∗2(H
∗
1 ) =

Q

2eg2

(√
2cHg − cB

√
eL
)2
,

WTS B∗1 ≥ B∗2(H∗1 ),

e(g − cB)2L ≥
(√

2cHg − cB
√
eL
)2
,

e(1− cB)2L ≥
(√

2cH − cB
√
eL
)2
,

cH
e
<
L

2
<

cH
c2Be

.

(46)

cH
e < L

2 is the condition for H∗1 > 0, while c2B
L
2 <

cH
e is the condition for H∗2 > 0, i.e. this holds

whenever both battery capacities are positive.
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H∗1 = Q
(
1−

√
2cH
geL

)+
, where Q′ = 120/L,

H∗2 (B
∗
1) = Q

(
1−
√
2

√
cH
egL

+ (
1

2
− cB

g
+
c2B
2g2

))+
,

WTS H∗1 ≥ H∗2 (B∗1),
2cH
geL

≤ 2cH
egL

+ (1− 2cB
g

+
c2B
g2

)
,

0 ≤ (1− 2cB
g

+
c2B
g2

)
,

cB ≤ g.

(47)

We know that if cB ≥ g, B∗1 = 0 in which case H∗1 and H∗2 are identical. Combined with what

we showed in Equation 47, H∗1 ≥ H∗2 irrespective of the relation between cB and g.

A.6 Proof of Proposition 6

We present the optimal capacity investment by building on the results from Proposition 1 and

Appendix A.1. We use the superscript S to denote the capacity investment under seasonality. We

formerly had the following expression for charge and optimal battery investment:

cB=1(B) =
( 1

Q

∫ Q

qt=0
min[

q2tL

2Q
,B]dqt

)
,

B∗1 = LQ
(1
2
− cB

g
+
c2B
2g2

)
,

B∗1 =
QL

2

((
1− cB

g

)+)2
.

(48)

As we are now discharge limited if B > 60 (i.e., battery capacity exceeds nightly demand), we

adjust the optimal battery investment analogously:

cSB=1(B) =
( 1

Q

∫ Q

qt=0
min[

q2tL

2Q
,B, 60]dqt

)
,

BS
1 = min

[QL
2

((
1− cB

g

)+)2
, 60
]
.

(49)

While the investment in hydrogen is not directly impacted by the limitation of the battery,

because of the discontinuity of battery capacity investment if BS
1 = 60, we have to take into

account how this change in battery investment impacts hydrogen capacity. For that, we first check

when this condition is met.
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BS
1 = 60,

LQ
(1
2
− cB

g
+
c2B
2g2

)
= 60,

cB = g
(
1−

√
120

LQ

)
.

(50)

Thus, if cB > g
(
1−

√
120
LQ

)
, the battery capacity investment expression is unchanged and thus

the hydrogen capacity expression remains unchanged. If cB ≤ g
(
1 −

√
120
LQ

)
then BS

1 = 60 and

hydrogen capacity is adjusted. To verify, one can plug-in cB = g
(
1−

√
120
LQ

)
= g
(
1−

√
60

QL/2

)
into

the hydrogen capacity equation.

HS
2 (B

S
1 ) =

H∗2 (B
∗
1) = Q

(
1−

√
cH

geL/2 +
(
1− cB

g

)2 )+
, if cB > g

(
1−

√
120
LQ

)
,

HS
2 (60) = Q

(
1−

√
cH

geL/2 + 60
QL/2

)+
, if cB ≤ g

(
1−

√
120
LQ

)
.

(51)

We now turn to the case when hydrogen has priority. As hydrogen is not affected by the

seasonality, its expression does not change:

HS
1 = H∗1 = Q

(
1−

√
cH

geL/2

)+
. (52)

But for the battery we have to check, as before, under which circumstance it reaches the

discharge-limit of 60:

B∗2(H
∗
1 ) =

QL

2

((√ cH
geL/2

− cB
g

)+ )2
,

B∗2(H
∗
1 ) =

Q

2eg2

(√
2cHg − cB

√
eL
)2
,

Check when B∗2(H
∗
1 ) = 60,

cH
e

= cB

√
120L

Q
+

60g

Q
+
c2BL

2g
.

(53)

Thus batteries have second priority and if cH
e < cB

√
120L
Q + 60g

Q +
c2BL
2g the battery capacity is

the same with and without seasonality BS
2 (H

S
1 ) = B∗2(H

∗
1 ). But if, cH

e > cB

√
120L
Q + 60g

Q +
c2BL
2g

(while cH/e/g < L/2, so that at least some hydrogen is profitable), B∗2(H
∗
1 ) = 60.

BS
2 (H

S
1 ) =


B∗2(H

∗
1 ) =

QL
2

((√
cH

geL/2 −
cB
g

)+)
, if cH

e < cB

√
120L
Q + 60g

Q +
c2BL
2g ,

BS
2 (H

S
1 ) = 60 if cH

e ≥ cB
√

120L
Q + 60g

Q +
c2BL
2g .

(54)
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A.7 Proof of Proposition 7

We present the comparative statics of the investment amounts w.r.t. the back-up cost g by building

on the results from Proposition 6 and Appendix A.6. If not specified otherwise, we assume that

g < cB(c
adj
B < 1) and cH/e < gL/2(cadjH < 1), i.e., that the first marginal unit of each technology

would be profitable.

We commence by analyzing the battery investment that operates with priority for which we

have to distinguish the three cases where BS
1 capacity is zero, less than nightly demand and equal

to nightly demand:

BS
1 = min

[
LQ
(1
2
− cB

g
+
c2B
2g2

)+
, 60
]
,

BS
1 = 0 , ifg < cB,

BS
1 = 60 , ifg ≥ cB/

(
1−

√
120

LQ

)
,

∂BS
1

∂g


= 0 , if g < cB,

= LQ cB(g−cB)
g3

, if cB ≤ g < cB/
(
1−

√
120
LQ

)
,

= 0 , if g > cB/(1−
√

120
LQ ).

(55)

From there, we go to hydrogen if it operates second (HS
2 ) and also test, when it is not invested

in and also how the investment changes as battery capacity BS
1 reaches nightly demand, i.e., 60.

HS
2 (B

S
1 ) =


0 , if g <

c2BeL
2cBeL−2cH ,

Q
(
1−
√
2

√
cH
egL + (12 −

cB
g +

c2B
2g2

))+
, if

c2BeL
2cBeL−2cH ≤ g < cB/

(
1−

√
120
LQ

)
,

Q
(
1−
√
2
√

cH
egL + 60

LQ

)+
, if cB/

(
1−

√
120
LQ

)
≤ g.

∂HS
2 (B

S
1 )

∂g
=



0 , if g <
c2BeL

2cBeL−2cH ,

Q(cBeL(cB−g)+cHg)

g2

√
eL

(
eL(cB−g)2+2cHg

) , if
c2BeL

2cBeL−2cH < g < cB/
(
1−

√
120
LQ

)
,

cHQ3/2
√
2g
√

egL(cHQ+60eg)
, if cB/

(
1−

√
120
LQ

)
≤ g.

(56)

In particular, we want to compare the two derivatives at the point of g = cB/
(
1−

√
120
LQ

)
< g,

where the battery capacity becomes capped.

∂HS
2 (B

S
1 )(cB = g

(
1−

√
120
LQ

)
)

∂g
=


cHQ−2eg(

√
30
√
LQ−60)

√
2g
√

egL(cHQ+60eg)/Q
,

cHQ√
2g
√

egL(cHQ+60eg)/Q
.

(57)

We want to show that it is possible for the derivative of hydrogen capacity w.r.t. backup cost
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(∂HS
2 (B

S
1 )/∂g to be higher when batteries become capped, i.e.,:

WTS
cHQ− 2eg

(√
30
√
LQ− 60

)
√
2g
√
egL(cHQ+ 60eg)/Q

<
cHQ√

2g
√
egL(cHQ+ 60eg)/Q

,

cHQ− 2eg
(√

30
√
LQ− 60

)
< cHQ,

−2eg
(√

30
√
LQ− 60

)
< 0.

(58)

Hence, if back-up cost is sufficiently high, that batteries become capped - the marginal effect of

back-up cost on generation is increasing.

From here, we turn to the case where hydrogen has priority and commence with hydrogen

priority, which is not affected by the seasonality.

HS
1 = Q

(
1−
√
2

√
cH
geL

)+
,

HS
1 > 0 , if g <

2cH
eL

,

∂HS
1

∂g

= 0 , if g < 2cH
eL ,

= Q
√

cH
2eg3L

otherwise.

(59)

For battery investment without priority, we have to distinguish the three cases where BS
2 ca-

pacity is zero, less than nightly demand, and equal to nightly demand:

BS
2 (H

S
1 ) = min

[ Q

2eg2

(√
2cHg − cB

√
eL
)2
, 60
]
,

BS
2 (H

S
1 ) = 0 , if

cH
e
<
c2B
2g
,

BS
2 (H

S
1 ) = 60 , if

cH
e
≥ cB

√
120L

Q
+

60g

Q
+
c2BL

2g
,

∂BS
2 (H

S
1 )

∂g


= 0 , if cH

e <
c2B
2g ,

= −Q
(
cB

(
2cBeL− 3

√
2
√
cHg
√
eL
)
+ 2cHg

)
/
(
2eg3

)
, if

c2B
2g ≤

cH
e < cB

√
120L
Q + 60g

Q +
c2BL
2g ,

= 0 , if cB

√
120L
Q + 60g

Q +
c2BL
2g ≤

cH
e .

(60)

A.7.1 Extending the Separation Of the Parameter Space

Here, we expand on the results from Figure 5 and Appendix A.2.1 by also considering the seasonality

threshold at which the battery is capped. As before, we normalize all costs so to g = 1 so that

battery and hydrogen cost are expressed relative to back-up costs.

As shown in Proposition 6, if cB < g(1−
√

120
LQ ), the battery capacity BS

1 reaches its discharge

cap, which in our normalized case equals the case of cB < 1−
√

120
LQ - note that this is a condition
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irrespective of the cost of hydrogen.

HS
2 (60) = Q

(
1−
√
2

√
cH
eL

+
60

LQ

)+
,

WTS HS
2 (60) = 0,

1

2
=
cH
eL

+
60

LQ
,

cH
e

=
L

2
− 60

Q
.

Because our y-axis in the graph is caHdj = cH/(geL/2):

cH
e
/
L

2
= 1− 120

LQ
.

(61)

Furthermore, if cH
e = cB

√
120L
Q + 60

Q +
c2BL
2 , then BS

2 reaches its cap as well.

cH
e

= cB

√
120L

Q
+

60

Q
+
c2BL

2
,

Considering again the y-axis scaling:

cH
e
/
L

2
= cB

√
480

LQ
+

120

LQ
+ c2B.

(62)

These will be the conditions that further subdivide the parameter space. Subsequently we re-

introduce our previously shown case-separation (see Appendix A.2.1), but further split out those

cases when batteries are capped:

1. No Tech as BS
1 = 0, BS

2 = 0, HS
1 = 0, HS

2 = 0.

2. Battery Only as BS
1 > 0, BS

2 > 0, HS
1 = 0, HS

2 = 0.

3. Hydrogen Only as BS
1 = 0, BS

2 = 0, HS
1 > 0, HS

2 > 0.

4. Battery Dominant as BS
1 > 0, BS

2 > 0, HS
1 > 0, HS

2 = 0.

5. Hydrogen Dominant as BS
1 > 0, BS

2 = 0, HS
1 > 0, HS

2 > 0.

6. Both Techs as BS
1 > 0, BS

2 > 0, HS
1 > 0, HS

2 > 0.

7. BD Cap as BS
1 = 60, 60 > BS

2 > 0, HS
1 > 0, HS

2 = 0.

8. HD Cap as BS
1 = 60, BS

2 = 0, HS
1 > 0, HS

2 > 0,

9. BT Cap as BS
1 = 60, 60 > BS

2 > 0, HS
1 > 0, HS

2 > 0.

10. BS
2 Cap as BS

1 = 60, BS
2 = 60, HS

1 > 0, HS
2 > 0.
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Graphically, this divides the parameter space as shown and discussed in Figure 6 that we

reproduce here in Figure 11. To the right of 1−
√
120/L/Q, the capacity results are as before, but

we are left with the changes cases to the left of the line - the area where B∗1 reaches the discharge

limit.

Figure 11: Conditions under which none, one, or both storage technologies are invested in under

the different priorities. Backup-cost g normalized to 1.

B Additional Results

B.1 Translating Time-Series Into Model-Parameters

We obtain an hourly time-series h ∈ {1, ...,H} of generation for each technology i in a region,

where we denote the hourly generation by technology with γh,i and the vector of all observations

of a technology with γ⃗i. Demand in each period equals the sum of all generation technologies

dh =
∑

i γi,h. We require each region to have at least one generation technology but if a certain

technology does not exist in a region (e.g. nuclear power) we treat it as if its generation was 0 in

each period.

To calculate the excess generation during the day and demand at night, we categorize generation

into three types - i) baseload, ii), intermittent, iii) firm. As baseload, we categorize generation

technologies that cannot be adjusted quickly in their output - notably nuclear, biogass and run-

of-river. We categorize solar and wind as intermittent. All other technologies are firm - i.e. the

adjustable fossil fuel technologies like e.g., gas, coal, and oil plants. We proceed in the following

steps to calculate the parameters.

1. We scale the technologies’ generation and demand to their expected future outputs, by mul-

tiplying available generation vectors by the ratio of future capacity estimates with today’s
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capacity (we denote future values by superscript F), e.g. γ⃗i
F = γ⃗i ∗ CapFi /Capi. This step

is optional; we use 2030 estimates for future capacities in our empirical section. Implicitly,

this assumes that future capacity additions will generate electricity in comparable patterns

as currently installed capacity.

2. We obtain residual demand d⃗r by deducting all firm generation and expected wind output

from demand d⃗r = d⃗F−
∑

i∈firm γ⃗i
F−

∑
h∈H ⃗γWind

F/H. Effectively, this reduces the demand

by the baseload generation that is hard to adjust in the short-term and removes the stochastic

nature of wind - which has no predictable diurnal pattern like solar.

3. We obtain excess power dxh by deducting the residual demand from the solar generation.

d⃗x = γ⃗Fsolar − d⃗r.

4. We split d⃗x into sub-periods day dxdt (7am-7pm) and night dxnt (7pm-7am), by summing over

the hourly demands in each sub-period - t ∈ 1, 2, ...T indexes days. Let DN =
∑
dxnt /T

denote the average (across all dates in the year) cumulative demand in a nightly-subperiod.

Because our model assumes a triangle shape for nightly demand and has a base of 12 (hours),

the empirical height of the nightly triangle hN is equal to hN = DN/12 ∗ 2.

5. We obtain Q as the 99.9th percentile value of d⃗x that we then scale by hN , to account for

the fact that demand and generation in our model is scaled so that average nightly demand

is -10. Q = P99.9(d⃗x)/hN ∗−10, where P99.9 stands for taking the 99.9th percentile of a series

of values.

6. We obtain L by finding the day t ∈ T that has the maximum number of hours with excess

sunshine, i.e., 1dxdt > 0. That maximum is L, i.e., the maximum available duration of excess

solar power.

7. Lastly, we calculate the fraction of the year for which our model is applicable - as there may

be consecutive weeks/months in winter during which no excess is reached during the day - a

fraction of time we want to account for in our model. To do that, for a given year we find

t′ = mint, s.t.d
xd
t > 0 and t′′ = maxt, s.t.d

xd
t > 0 for t = {1, 2, ...365} starting on January 1

(July 1 on the Southern hemisphere). The fraction of days with excess equals (t” − t′)/365.
We use this fraction to adjust the storage cost accordingly as the technologies can only be used

if there is some excess. This way our model can be applied to markets with lower renewable

penetration or high seasonality while only requiring the adjustment of storage costs.
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B.2 Intraday Solar Generation Patterns

In this Appendix, we plot the intraday pattern of solar generation in Germany and France to support

the triangle shaped excess energy profile during the day - comparing sunny (95% percentile of solar

generation), average, and dark (5% th percentile of solar generation) days.

(a) Germany (b) France

Figure 12: Intraday Generation Patterns in Germany (a) and France (b). Mean, 5%th and 95th%

values plotted.

As shown in Figure 12, the intraday generation follows a predictable pattern, where it is in-

creasing in the morning, peaks a little after noon and then decreases in the evening - resembling

the triangle choice we made for the net energy profile and will subsequently investigate further.

Furthermore note that the highest generation days also have more hours of sun-shine, which will

translate into more hours of net-energy surplus.

We further compare the empirical pattern with our modelling choice of a triangle by juxtaposing

it to the cumulative solar generation across the day. In Figure 13 we plot the cumulative generation

per day, averaged across a year of Germany’s solar data. We compare this empirical data with the

cumulative excess energy that our triangle-based net energy profile model would predict. As we

can see, the model approximates the observed patterns well - from the flatter slopes in the morning

and evening to the steeper slope in the middle of the day. In combination, these tests make us

confident in our choice of a triangle model to capture the first-order effects of solar generation on

available net energy.
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Figure 13: Comparing Solar Generation Pattern Between Empirical Data and Triangle Model
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B.3 Seasonality of Solar Generation

In this Appendix, we plot the seasonality of solar generation in Germany and France to support the

way we treat seasonality in our model. As shown in Figure 14, the seasonality of solar generation

in both countries is such that despite considerable variation across days, the winter days have lower

overall generation, while the summer days feature the highest solar generation. This ”ordering” of

solar generation across the year with concurrent high levels of variability motivated our choice to

account for fraction f of days with excess to be able to accommodate low-generation days in winter.

The concentration of high-generation days in the summer further motivated our assumption that

if excess generation can exceed nightly demand (as in Section 3.4), it does so during the summer.

(a) Germany (b) France

Figure 14: Seasonality of 2023 Solar Generation in Germany (a) and France (b)

B.4 Additional Results For Section 5.1

We present the same analysis that we discuss in Section 5.1 (Figure 7) for the French data below

in Figure 15.

As can be seen, the dynamics are fairly similar to the one discussed for Germany, with joint

increases of capacity in the battery-first scenario and an inflection of capacities in the hydrogen-first

scenario.
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Figure 15: Optimal Capacity Investments In Battery and Hydrogen as Storage Costs Decrease

Over Time - France

B.5 Additional Results For Section 5.3

We expand on our analysis from Section 5.3 where we quantified how jointly investing in two storage

technologies compared to utilizing only a single technology changes electricity costs at different

renewable penetration levels. In this Appendix, we will focus on only the storage investment cost

needed to achieve a given target of renewable penetration. This is designed to capture a scenario

where the utility aims to reach a certain renewable penetration (e.g., due to a legislated renewable

portfolio standard) and tries to determine how much storage investment it will require.

In Figure 16, we plot how much meeting a certain fraction of nightly demand via renew-

ables (x-axis) would cost (y-axis) and distinguish among three investment options: ”battery-only”,

”hydrogen-only”, and ”both technologies”.

(a) Costs of 2024, Q=D (b) Costs of 2030, Q=D (c) Costs of 2030, Q=2D

Figure 16: Average Storage Cost For A Given Renewable Penetration, Single vs Joint Storage

Technologies.

In panel (a), we plot the result at 2024 technology cost and maximum excess generation equal
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to demand (Q = D), the situation many markets are in at the time of writing. We see that battery-

only is the dominant choice across the entire feasible renewable penetration range - as it is cheaper

and more efficient than the other investment option. Even if both technologies could be combined,

the optimal solution is still not to invest in hydrogen.

In comparison, panel (b) plots the results when costs decrease to the expected 2030 level. The

presence of cheaper electrolyzers leads to a situation where renewable penetration of up to 15%

is best reached by only relying on hydrogen. For renewable levels beyond that, combining both

storage technologies is the best choice, with a cost reduction of up to 20-25%, though using only

batteries becomes increasingly more cost-competitive, and as good as using both technologies at

around 35%. Beyond that level, cost increases too steeply to make it worth it.

Panel (c) considers the same costs as panel (b), but higher excess renewables (Q = 2D). The

dynamics mimic those from panel (b), with co-investing being the cheapest option for intermediate

renewable penetration targets. Two differences with panel (b) should be noted. First, higher

renewable penetration levels can be achieved (at a lower cost) due to higher availability of solar

energy in excess; and second, with battery-only it is not feasible to target penetration levels higher

than 55% due to load-shifting across seasons being prohibitively costly.

Overall, these plots highlight that co-investing in both techs can lead to substantial cost reduc-

tions, but also that the future mix of storage technologies will depend on many factors - costs of

storage technologies, of course, but also the available renewable power and the policy goals - e.g.

desired renewable targets. As such, energy markets with access to the same technologies may invest

in drastically different storage technologies, depending on renewable build-out, demand, renewable

generation patterns during the day, and the regulatory framework.
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