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We develop and analyze a dynamic model in which firms decide when and where to enter a
growing market. We do not pre-specify the order of entry, allowing instead for the leader and
follower to be determined endogenously. We characterize the subgame perfect equilibria of the
dynamic game and show the times and locations of entry are governed by the threat of preemp-
tion, which leads to premature entry, less extreme locations, and the dissipation of rents. Using
data on gas stations, restaurants, and hotels in isolated markets, we find results consistent with
subgame perfection for gas stations and three-star hotels.

1. Introduction

� Consider a growing market. At each point in time, a firm must decide whether to enter and,
if so, where to position itself within the market. Any gain from being the first entrant generates
incentives for firms to preempt each other. In this article, we account for the threat of preemption
by developing a dynamic model of entry around a model of spatial competition. We characterize
the subgame perfect equilibria (SPE) and show that the threat of preemption leads to premature
entry, less extreme locations, and the dissipation of rents. In short, preemption matters.

Building on Hotelling (1929), the literature on spatial competition attempts to explain an
industry’s structure by analyzing a static game of location choice followed by price competition.
A static game implicitly assumes an unchanging environment, in particular by holding market
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size fixed. As a result, there is a fixed number of firms in the market. Yet, an industry’s structure
changes with market size. Although the market is small, it supports at most one firm. As the mar-
ket grows over time, another firm may enter. In other words, the industry starts with a monopoly
phase which may be followed by a duopoly phase. Fully understanding when firms choose to
enter the market and where they position themselves within it requires a dynamic model.

Adding a time dimension to the model can overturn the principle of maximum differen-
tiation that is central to the literature on spatial competition (see d’Aspremont et al. (1979),
Economides (1984, 1986), and Neven (1985), among others). In a static game of location choice
followed by price competition, a firm has an incentive to differentiate itself from its rival to soften
price competition. In the extreme, this implies that firms locate at opposite ends of the market.
Adding a time dimension to the model can overturn the principle of maximum differentiation be-
cause a more central location benefits the first entrant in two ways. First, a more central location
increases the incumbent’s profits during the monopoly phase. Second, a more central location de-
creases the potential entrant’s profits during the duopoly phase, thereby delaying further entry.1

The first entrant may therefore choose to position itself at or near the center of the market rather
than at its extremes.

Although a small literature considers the timing decision alongside the location decision
(Zhou and Vertinsky, 2001; Lambertini, 2002), it has arguably failed to capture the essence of
a fully dynamic entry process because the employed equilibrium concept, by pre-specifying the
order of entry, rules out the threat of preemption. At the outset of the game, firms commit,
one by one, to a time and location of entry.2 As pointed out by Fudenberg and Tirole (1985)
in their seminal critique of the models of technology adoption in Reinganum (1981b, 1981a),
such a sequential pre-commitment equilibrium (SEQPE) fails to be subgame perfect. To see this,
consider a SEQPE in which firm 1 plans to enter the market at time t1 and location x1 and firm
2 at some later time t2 > t1 and location x2. We show below that the leader’s payoff exceeds the
follower’s payoff. Firm 2 therefore has an incentive to preempt firm 1 by entering sightly before
t1 at location x1, thereby securing itself a payoff arbitrarily close to that of firm 1. Because the
follower has an incentive to become the leader, the SEQPE is not subgame perfect, and the threat
of preemption is operative until payoffs equalize.3

In short, if firms pre-commit to a time and location of entry, preemption is ruled
out by assumption. Although this may be appropriate in some applications, in many oth-
ers, we expect preemption to be critically important for industry structure and dynamics.
To account for the threat of preemption, we specify a fully dynamic entry process and
characterize the SPE of the dynamic game. In contrast to a SEQPE, the roles of leader
and follower are determined endogenously in a SPE. We show that the threat of preemption
governs both the times and the locations of entry in a growing market.

By considering the timing decision together with the location decision, we move beyond
recent theoretical work that highlights preemption and its implications for the timing decision,
such as Smirnov and Wait (2015), who develop a dynamic model with two firms and characterize
the SPE, and Shen and Villas-Boas (2010), who develop a dynamic model of a growing market
and show that the ability of early entry to deter future competitors’ entry leads firms to enter the
market at a rate faster than demand is expanding.

1 The observation that a more central location can deter entry has been made before by Neven (1987) in a version
of the basic game where location choices are made sequentially rather than simultaneously. Because there is no time
dimension in the model, there are no separate monopoly and duopoly phases.

2 Lambertini (2002) assumes that the follower behaves non-strategically and enters at a fixed time. He shows that
the later the follower enters, the closer to the center of the market the leader positions itself. Because there is no fixed
cost of entry, the leader always enters immediately.

3 Riordan (1992) incorporates asymmetries into the model of Fudenberg and Tirole (1985) and shows that, with
two firms, the more efficient firm enters first. Argenziano and Schmidt-Dengler (2013) extend Fudenberg and Tirole
(1985) to more than two firms and show that the time of first entry in a duopoly is a lower bound on the time of first entry
in any oligopoly and that more firms may delay first entry.

C© The RAND Corporation 2024.
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In addition to incorporating the time and location dimensions of the entry decision, we es-
tablish testable predictions that allow us to distinguish between SEQPE and SPE in the data.
Specifically, we show that, conditional on the location of first entry, the rate of market growth
does not affect the threshold for market size at the time of first entry under SEQPE, whereas
the threshold is a decreasing function of the rate of market growth under SPE. In our empiri-
cal application, we study the timing and location decisions of the first entrant for gas stations,
restaurants, hotels, and three-star hotels in geographically isolated markets around highway exits
and intersections, a nearly ideal setting for testing whether SEQPE or SPE better fits the data: A
firm’s location has a direct effect on its profits as traffic patterns favor firms in closer proximity
to highway exits, whereas firms of the same type that are close to each other may cannibalize
sales and incite price competition. Furthermore, highway traffic data provide good measures of
market size and the rate of market growth.

We find that gas stations are consistent with SPE but restaurants and hotels are not. This
finding may be explained by institutional details, in particular the fact that restaurants and ho-
tels combine spatial differentiation with other dimensions of product differentiation (Mazzeo,
2002; Butters and Hubbard, 2023). Indeed, when we isolate spatial differentiation by examin-
ing three-star hotels, the data are again consistent with SPE. Taken together, we conclude that
SPE can be a more natural equilibrium concept than SEQPE for understanding the evolution of
growing markets.

We view our approach of testing an implication of subgame perfection as a complement
to the structural approaches used to detect preemption and measure its implications. In contrast
to the theoretical literature, the empirical literature on preemption is small, with notable contri-
butions by Schmidt-Dengler (2006), Igami and Yang (2016), Zheng (2016), and Fang and Yang
(2019, 2022). Schmidt-Dengler (2006) studies the adoption of MRI scanners by hospitals. Fol-
lowing Fudenberg and Tirole (1985) and the ensuing theoretical literature, he defines preemption
by contrasting SEQPE and SPE in a similar way as we do. One contribution of our article vis-
a-vis Schmidt-Dengler (2006) is that we consider the timing decision together with the location
decision and show that the threat of preemption spills over from the former into the latter.

Later articles depart from Fudenberg and Tirole (1985) to define preemption. Igami and
Yang (2016) consider the decisions of hamburger chains regarding the number of outlets in a
market. Focusing on Markov perfect equilibria (MPE), and thus a subset of SPE, they say that
McDonald’s has a motive to preempt to the extent that its entry probability in a market is lower
in a counterfactual than in the MPE, where the counterfactual aims to force McDonald’s rivals to
behave as if the number of McDonald’s outlets in the market does not matter. Also restricting at-
tention to the timing decision, Fang and Yang (2019, 2022) identify preemption by decomposing
a firm’s marginal benefit of entry in the equilibrium conditions, where shutting down the relevant
term in a counterfactual allows them to measure the implications of preemption. Fang and Yang
(2019) use this approach to study the entry decisions of fast casual taco chains, whereas Fang
and Yang (2022) study the decisions of coffee chains regarding the number of outlets in a mar-
ket. In addition, Zheng (2016) considers the entry decisions of big box retail chains and defines
preemption as a one-period deviation from equilibrium; because a retail chain makes decisions
simultaneously for all markets, it decides on both the timing and location of entry, similar to
our article.

Our approach of testing an implication of subgame perfection does not allow us to conduct
counterfactuals and thus limits what we can learn about the industry being studied. On the other
hand, it incorporates the time and location dimensions of the entry decision and may be less
dependent on the details of the model and the simplifying assumptions added to make the model
computationally tractable.4

4 For example, Zheng (2016) truncates the time horizon at the end of her sample period and assumes that firms
move in alternating periods using a two-stage budgeting process in which they first allocate financial or managerial
resources to groups of markets and then, conditional on this budget allocation, make entry decisions.

C© The RAND Corporation 2024.
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Our article is more generally related to recent empirical applications of the Ericson and
Pakes (1995) framework, including Arcidiacono et al. (2016), Collard-Wexler (2013), and Sweet-
ing (2013). Although the threat of preemption is of course operative in any MPE, these articles
make no attempt to isolate it. Arcidiacono et al. (2016) and Collard-Wexler (2013) consider the
entry and exit decisions of retail chains and ready-mix concrete plants, respectively, assuming
that geographical markets are independent of one another.5 Given this assumption, firms (and
the analyst) can treat each market separately and only the time dimension of the entry decision
matters. Whereas Sweeting (2013) maintains that geographical markets are independent of one
another, in his model, each firm decides on the programming format for each of the radio stations
it owns. Hence, in a given period, a radio station can be out of the market, or if it is in the market,
in different locations in product space, and a firm’s decisions regarding the time and location of
entry of the radio stations it owns are influenced by the threat of preemption.

The remainder of the article is organized as follows. Section 2 introduces the model. Sec-
tion 3 characterizes the SEQPE, and Section 4 the SPE. Section 5 sets up a welfare benchmark
by considering an omnipotent social planner that controls the time and location of entry as well
as firms’ pricing decisions in the product market. Section 6 uses numerical analysis to compare
the outcome of the game under SEQPE and SPE and assess their welfare implications. We show
that the threat of preemption leads to premature entry, less extreme locations, and the dissipation
of rents. The degree of rent dissipation may be far greater under SPE than under SEQPE, and
we provide an example where up to 237 times as much surplus is wasted under SPE than under
SEQPE. Section 7 contains our empirical application. Section 8 concludes. Online Appendix A
contains details on price competition; online Appendices Appendix B, C, and D most proofs; and
online Appendix E details on the data we use in our empirical application.

2. Model

� There are two firms i ∈ {1, 2}. Firm i decides a time ti ≥ 0 and a location xi ∈ [0, 1] to
enter the market. Firms incur a fixed cost of entry F > 0. Time is continuous and the horizon is
infinite. Firms discount future cash flows at an interest rate of r > 0.

Consumers are uniformly distributed on the unit interval.6 They have unit demands and
incur transportation costs b > 0 per unit of distance. A consumer derives a surplus gross of
transportation costs and price of a > 0 from consumption. Suppose that firm i is located at xi and
charges a price pi. Then, the utility of a consumer located at z from buying from firm i is

a − b(z − xi)
2 − pi. (1)

The7 total mass of consumers at time t is m(t ), where m′ > 0. We assume market size grows
at most exponentially at a rate less than r to ensure that the NPV of future cash flows re-
mains bounded.

Taking their locations as given, firms then compete in prices. The marginal cost of produc-
tion is c ≥ 0. We assume a−c

b
> 3 to ensure the market is fully covered. That is, in equilibrium,

each consumer prefers buying from either firm 1 or firm 2 over not buying. Let πM denote a
monopolist’s instantaneous profits when market size is normalized to unity. Similarly, let πD

i de-
note firm i’s instantaneous profits when there are two firms in the market and the market size is
normalized to unity. In online Appendix A, we show that

πM (x) =
{

a − c − b(1 − x)2 if x ≤ 1
2
,

a − c − bx2 if x > 1
2
,

(2)

5 This assumption is shared by Schmidt-Dengler (2006), Igami and Yang (2016), and Fang and Yang (2019, 2022).
6 Tabuchi and Thisse (1995) and Anderson et al. (1997) consider general distributions.
7 By contrast, Hotelling (1929) assumes that the consumer’s utility is a − b|z − xi| − pi. As pointed out by

d’Aspremont et al. (1979), this raises existence issues when firms compete in prices taking their locations as given.
We avoid these issue by specifying quadratic transportation costs.

C© The RAND Corporation 2024.

 17562171, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1756-2171.12462 by U

niversity O
f Pennsylvania, W

iley O
nline L

ibrary on [12/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BOLLINGER ET AL. / 173

TABLE 1 Instantaneous Profits (πD
1 (x1, x2 ), πD

2 (x1, x2 ))

x2 = 1
2

x2 = 1

x1 = 0 ( 25b
144

, 49b
144

) ( b
2
, b

2
)

x1 = 1
2

(0,0) ( 49b
144

, 25b
144

)

πD
1 (x1, x2) =

{
b(x2−x1 )

18
(2 + x1 + x2)2 if x1 ≤ x2,

b(x1−x2 )
18

(4 − x1 − x2)2 if x1 > x2,
(3)

πD
2 (x1, x2) =

{
b(x2−x1 )

18
(4 − x1 − x2)2 if x1 ≤ x2,

b(x1−x2 )
18

(2 + x1 + x2)2 if x1 > x2.
(4)

Note that πM (x) is maximal at x = 1
2
, whereas πD(x1, x2) is maximal at x1 = 0 and x2 =

1 as well as x1 = 1 and x2 = 0. Moreover, πM (x) ∈ [
a − c − b, a − c − b

4

]
and πD

i (x1, x2) ∈[
0, b

2

]
. Consequently, a−c

b
> 3 implies πM (x) > πD

i (x1, x2). Table 1 lists the instantaneous profits
(πD

1 (x1, x2), πD
2 (x1, x2)) for selected combinations of x1 and x2.

The existing literature commonly assumes that firms play a static game of location choice
followed by price competition. In these games, location choices depend on the number of en-
trants. The monopolist prefers to be located in the center (x = 1

2
) of the market rather than at its

extremes (x = 0 or x = 1), because πM (x) is maximal at x = 1
2
. That is, the monopolist wants

to be where demand is. For a duopolist, on the other hand, we have πD
1 (x, x) = πD

2 (x, x) = 0,
as price competition drives profits down to zero if the firms’ products are the same. Moreover,
∂πD

1
∂x1

< 0 and
∂πD

2
∂x2

> 0 if x1 < x2, whereas
∂πD

1
∂x1

> 0 and
∂πD

2
∂x2

< 0 if x1 > x2. Hence, each firm has
an incentive to differentiate its product from that of its rival. In fact, firm i’s best reply to firm j’s
location choice is given by

x◦
i (xj ) =

⎧⎪⎨
⎪⎩

0 if xj > 1
2
,

{0, 1} if xj = 1
2
,

1 if xj < 1
2
.

(5)

Consequently, duopolists prefer to locate at opposite ends of the market, and xi = 0 and xj =
1 is the outcome of a subgame perfect Nash equilibrium of the static game of (sequential or
simultaneous) location choice followed by price competition. This is of course the principle of
maximum differentiation, which stems from the fact that product differentiation alleviates price
competition d’Aspremont et al. (1979).8

Rather than looking at a static game of location choice followed by price competition, we
specify a fully dynamic entry process. Suppose firm 1 enters the market before firm 2. Because
t1 ≤ t2, we call firm 1 the leader and firm 2 the follower. The NPV of the leader’s payoffs is

V1(t1, t2, x1, x2) = V M
1 (t1, t2, x1, x2) + V D

1 (t1, t2, x1, x2) − e−rt1 F, (6)

where

V M
1 (t1, t2, x1, x2) =

∫ t2

t1

e−rtπM (x1)m(t )dt,

V D
1 (t1, t2, x1, x2) =

∫ ∞

t2

e−rtπD
1 (x1, x2)m(t )dt, (7)

8 Economides (1986) considers transportation costs of the form b|z − xi|d and shows that maximum differentiation
results if d > 1.67 but not if 1.26 < d < 1.67. If d < 1.26, there does not exist an equilibrium in the two-stage game of
location choice followed by price competition.

C© The RAND Corporation 2024.

 17562171, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1756-2171.12462 by U

niversity O
f Pennsylvania, W

iley O
nline L

ibrary on [12/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



174 / THE RAND JOURNAL OF ECONOMICS

and the NPV of the follower’s payoffs is

V2(t2, x1, x2) =
∫ ∞

t2

e−rtπD
2 (x1, x2)m(t )dt − e−rt2 F. (8)

Analogous expressions arise if firm 2 enters the market before firm 1.
Before turning to a characterization of the equilibrium, we impose two assumptions on the

size of the market.

Assumption 1. m(0) = 0.

Assumption 2. There exists a T < ∞ such that πD
2 ( 1

2
, 1)m(T ) > rF .

Assumption 1 stipulates that the market takes off at time zero. Assumption 2 ensures that
both firms eventually enter the market. To see this, note that πD

2 ( 1
2
, 1) is the minmax instantaneous

profit of firm 2, which in turn is equal to the minmax instantaneous profit of firm 1. Hence,
Assumption 2 requires that there exists a time T at which the market is so large that the NPV of
the worst-case profits πD

2 ( 1
2
, 1)m(T )/r covers the fixed cost of entry F .

3. Sequential pre-commitment equilibrium

� In SEQPE, at the outset of the game, each firm must irreversibly commit itself to a time
and location at which it enters the market. These decisions are made sequentially. The leader
therefore takes the follower’s reactions into account when making its own decisions. In deriving
the SEQPE, we assume that firm 1 enters before firm 2. Hence, given a SEQPE in which firm
1 is the leader and firm 2 the follower, there is a corresponding SEQPE in which firm 1 is the
follower and firm 2 the leader.

The follower’s problem. The follower solves

max
t2≥0,x2∈[0,1]

V2(t2, x1, x2). (9)

The derivatives of V2 with respect to t2 and x2 are

∂V2

∂t2

= −e−rt2πD
2 (x1, x2)m(t2) + re−rt2 F, (10)

∂V2

∂x2

=
∫ ∞

t2

e−rt ∂πD
2 (x1, x2)

∂x2

m(t )dt. (11)

From this, it is clear that the follower’s timing and location decisions depend solely on its profits
from the duopoly phase.

Let t∗
2 (.) and x∗

2(.) denote a solution to the follower’s problem as a function of x1.

Proposition 1. t∗
2 (x1) = m−1

(
rF

πD
2 (x1,x∗

2 (x1 ))

)
∈ (0, T ) and x∗

2(x1) ∈ x◦
2(x1), as defined in equation (5).

In what follows, we assume without loss of generality that x1 ∈ [0, 1
2
], which implies

πD
2 (x1, 1) ≥ πD

2 (x1, 0). That is, x∗
2(x1) = 0 is weakly dominated by x∗

2(x1) = 1. To simplify the ex-

position, we thus set x∗
2(x1) = 1 and t∗

2 (x1) = m−1
(

rF
πD

2 (x1,1)

)
. Note that t∗′

2 (x1) > 0, because price

competition intensifies as the leader moves toward the center of the market, which in turn reduces
the follower’s instantaneous profits. Hence, the follower has to wait longer until the size of the
market has reached a level that allows for profitable entry.

C© The RAND Corporation 2024.
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The leader’s problem. Taking the follower’s reactions into account, the leader solves

max
t1≥0,x1∈[0, 1

2 ]
V1(t1, t∗

2 (x1), x1, 1). (12)

The derivatives of V1 with respect to t1 and x1 are

∂V1

∂t1

= −e−rt1πM (x1)m(t1) + re−rt1 F, (13)

∂V1

∂x1

=
∫ t∗2 (x1 )

t1

e−rtπM ′(x1)m(t )dt

+e−rt∗2 (x1 )πM (x1)m(t∗
2 (x1))t∗′

2 (x1)

+
∫ ∞

t∗2 (x1 )

e−rt ∂πD
1 (x1, 1)

∂x1

m(t )dt

−e−rt∗2 (x1 )πD
1 (x1, 1)m(t∗

2 (x1))t∗′
2 (x1). (14)

The leader’s timing decision depends on its profits from the monopoly phase. Its location deci-
sion is governed by its profits from the monopoly phase and its profits from the duopoly phase.
Specifically, the leader’s location decision is governed by three considerations. First, by moving
toward the center of the market, the leader increases its profits from the monopoly phase because
πM ′ > 0 (first term). Second, the leader decreases its profits from the duopoly phase because
∂πD

1
∂x1

< 0 (third term). Third, by moving toward the center of the market, the leader deters entry
by the follower because t∗′

2 > 0. This increases the duration of the monopoly phase (second term)
and decreases the duration of the duopoly phase (fourth term). The net effect is positive because
πM (x1) > πD

1 (x1, 1).
Let t∗

1 and x∗
1 denote a solution to the leader’s problem.

Proposition 2. t∗
1 = m−1

(
rF

πM (x∗
1 )

)
∈ (0, T ).

Unfortunately, we cannot say much about the leader’s location decision due to the trade-
off between the monopoly and the duopoly phases. Zhou and Vertinsky (2001) assume that the
market grows linearly without bound and show that the leader chooses either the extreme (x∗

1 = 0)
or the central location (x∗

1 = 1
2
) but never an intermediate one (x∗

1 ∈ (0, 1
2
)). That is, with a linear

market size function, one phase is always much more “important” than the other. By contrast, we
consider a general market size function.

SEQPE. The following proposition shows that, in any SEQPE, the payoff to the leader exceeds
the payoff to the follower.9

Proposition 3. In any SEQPE, V1(t∗
1 , t∗

2 (x∗
1 ), x∗

1, 1) > V2(t∗
2 (x∗

1 ), x∗
1, 1).

Consequently, the follower has an incentive to become the leader, and it is not innocuous
to pre-specify the order of entry. To see this, consider a SEQPE with outcome (t∗

1 , t∗
2 (x∗

1 ), x∗
1, 1).

Because the leader’s payoff exceeds the follower’s, firm 2 could imitate firm 1 by entering at time

9 Proposition 2 allows us to replace the leader’s problem with maxt1∈[0,T ],x1∈[0, 1
2 ] V1(t1, t∗

2 (x1 ), x1, 1), where t∗
2 (x1 ) =

m−1
(

rF
πD

2 (x1,1)

)
by Proposition 1. Because V1 and t∗

2 (.) are continuous functions, a solution exists and therefore a SEQPE

exists. Of course, there may be more than one SEQPE. Note also that πM (x∗
1 ) > πD

2 (x∗
1, 1) implies t∗

1 = m−1
(

rF
πM (x∗

1 )

)
<

m−1
(

rF
πD

2 (x∗
1 ,1)

)
= t∗

2 (x∗
1 ). Hence, our assumption that firm 1 enters before firm 2 is warranted.

C© The RAND Corporation 2024.
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176 / THE RAND JOURNAL OF ECONOMICS

t∗
1 − ε, where ε > 0, at location x∗

1 and secure itself a payoff of V1(t∗
1 − ε, t∗

2 (x∗
1 ), x∗

1, 1). Given
that V1 is continuous, the resulting payoff for firm 2 is arbitrarily close to firm 1’s payoff in the
SEQPE and thus in excess of firm 2’s payoff in the SEQPE. Because the follower has an incentive
to become the leader, the SEQPE is not subgame perfect Fudenberg and Tirole (1985).

4. Subgame perfect equilibrium

� In a SEQPE, firms pre-commit to a time and location of entry, with preemption ruled out
by assumption. We avoid this assumption here by specifying a fully dynamic entry process and
characterizing the SPE of the dynamic game. In contrast to a SEQPE, the roles of leader and
follower are determined endogenously in a SPE. Hence, the threat of preemption is operative and
governs the times and locations of entry in a growing market, as we show below.

To avoid the technical difficulties associated with simultaneous actions in continuous-time
games Simon and Stinchcombe (1989), we follow Gilbert and Harris (1984) and introduce the
concept of decision lags. Let I (t ) denote the common information on the state of the game at
time t. We assume that firm i with decision lag hi > 0 can take an action at time t depending on
the information available at time t − hi, as given by I (t − hi). We further assume that h1 < h2,
so that firm 1 is able to take an action at time t using more recent information than firm 2. We
let the decision lags approach zero while maintaining h1 < h2. In the limit, the delay between
information and action is negligible. Both firms observe I (t ) at time t, but the action taken by
firm 1 is realized first and instantaneously incorporated into the information available to firm
2. Gilbert and Harris (1984) show that the first-mover advantage resulting from decision lags is
trivial; the decision lags merely serve to rule out simultaneous entry when it is not optimal for
both firms to enter at that time.

The follower’s problem. Suppose firm 1 has just entered the market at time t1 in location x1 and
firm 2 has not entered the market yet. That is, firm 1 is the leader and firm 2 the follower. Then,
firm 2 solves

max
t2≥t1,x2∈[0,1]

V2(t2, x1, x2). (15)

Note that we now require t2 ≥ t1 as opposed to t2 ≥ 0 in Section 3, which reflects the dynamic
nature of the entry process: Once time t1 is reached, there is no going back, and the follower
has to choose between entering now or in the future. Let t∗

2 (.) and x∗
2(.) denote a solution to the

follower’s problem as a function of t1 and x1.

Proposition 4. Suppose t1 < ∞. Then t∗
2 (t1, x1) = max

{
t1, m−1

(
rF

πD
2 (x1,x∗

2 (x1 ))

)}
, where

m−1
(

rF
πD

2 (x1,x∗
2 (x1 ))

)
∈ (0, T ), and x∗

2(x1) ∈ x◦
2(x1), as defined in equation (5).

In what follows, we assume without loss of generality that x1 ∈ [0, 1
2
], which implies

πD
2 (x1, 1) ≥ πD

2 (x1, 0). That is, x∗
2(x1) = 0 is weakly dominated by x∗

2(x1) = 1. To simplify the

exposition, we thus set x∗
2(x1) = 1 and t∗

2 (t1, x1) = max
{

t1, m−1
(

rF
πD

2 (x1,1)

)}
. Note that t∗

2 (t1, x1) is

nondecreasing in both of its arguments.

The leader’s problem. Suppose firm 1 is about to enter the market at time t1 and firm 2 has not
entered the market yet. Taking the reactions of the lagging firm 2 into account, the leading firm
1 solves

max
x1∈[0, 1

2 ]
V1(t1, t∗

2 (t1, x1), x1, 1). (16)
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Let X ∗
1 (.) denote the set of solutions to the leader’s problem as a correspondence of

t1. Because V1 and t∗
2 (.) are continuous functions and [0, 1

2
] is a compact set, the Theo-

rem of the Maximum implies that X ∗
1 (.) is nonempty and has a closed graph, and also that

V1(t1, t∗
2 (t1, x∗

1(t1)), x∗
1(t1), 1), where x∗

1(t1) ∈ X ∗
1 (t1), is a continuous function of t1.

To assess the properties of X ∗
1 (.), fix t1 and split [0, 1

2
] into two (possibly empty) sub-

sets X 1(t1) =
{

x1 ∈ [0, 1
2
]
∣∣∣t1 ≥ m−1

(
rF

πD
2 (x1,1)

)}
and X 1(t1) =

{
x1 ∈ [0, 1

2
]
∣∣∣t1 ≤ m−1

(
rF

πD
2 (x1,1)

)}
.

Hence, if the leader enters at time t1 at any location x1 ∈ X 1(t1), then this triggers immediate
entry by the follower, whereas any location x1 ∈ X 1(t1) leads to deferred entry. In what follows,
we refer to immediate entry by the follower as case 1 and to deferred entry by the follower as
case 2.

In online Appendix B, we characterize the two subsets X 1(t1) and X 1(t1) and the solution
to the leader’s problem on each of them. In case 1 (immediate entry by the follower), the leader
maximizes instantaneous profits by locating at the extreme of the market. In case 2 (delayed entry
by the follower), the leader’s location decision is governed by similar considerations to those the
leader faces in a SEQPE. In particular, by moving toward the center of the market, the leader
increases its profits from the monopoly phase, deceases its profits from the duopoly phase, and
increases the duration of the monopoly phase. Although the solution to the leader’s problem on
the set X 1(t1) may not be unique, in Lemma 1 in online Appendix B, we provide conditions under
which the set of solutions X

∗
1(t1) shifts to the left—that is, toward more extreme locations—with

t1.
Because πD

2 (x1, 1) ≤ πD
2 (0, 1) and πD

2 (x1, 1) ≥ πD
2 ( 1

2
, 1), the solution to the leader’s prob-

lem must be given by case 2 (deferred entry by the follower) if t1 ∈
[
0, m−1

(
rF

πD
2 (0,1)

))
=[

0, m−1
(

2rF
b

))
and by case 1 (immediate entry by the follower) if t1 ∈

(
m−1

(
rF

πD
2 ( 1

2 ,1)

)
,∞

)
=(

m−1
(

144rF
25b

)
,∞)

, as can be seen in Table 1. If t1 ∈ [
m−1

(
2rF

b

)
, m−1

(
144rF

25b

)]
, then the solution

may be given by case 1 or case 2 or both. More formally, we therefore have

X ∗
1 (t1) ⊆

⎧⎪⎨
⎪⎩

[0, 1
2
] if t1 ∈ [

0, m−1
(

2rF
b

))
,

{0} ∪ [x̃1(t1), 1
2
] if t1 ∈ [

m−1
(

2rF
b

)
, m−1

(
144rF

25b

)]
,

{0} if t1 ∈ (
m−1

(
144rF

25b

)
,∞)

,

(17)

where x̃1(t1) is the unique solution to t1 = m−1
(

rF
πD

2 (x1,1)

)
, x̃′

1 > 0, x̃1(t1) = 0 at t1 = m−1
(

2rF
b

)
, and

x̃1(t1) = 1
2

at t1 = m−1
(

144rF
25b

)
. This is in line with our intuition: If the leader enters early, the

follower defers entry, irrespective of the leader’s location. Knowing this, the leader faces a trade-
off between the monopoly and the duopoly phases, and we are unable to pinpoint its location.
By contrast, if the leader enters late, the follower enters immediately, irrespective of the leader’s
location. Knowing this, the leader chooses the extreme location. Finally, given intermediate times
of entry, more extreme locations trigger intermediate entry, whereas more central locations lead
to deferred entry by the follower.

Although we are in general unable to pinpoint the leader’s location choice, we are able to
determine how it changes over time. Consider first times of entry in the interval

[
0, m−1

(
2rF

b

))
.

A straightforward implication of Lemma 1 in online Appendix B is that a late first entrant does
not choose a less extreme location than an early first entrant. This is the content of the following
proposition.

Proposition 5. Suppose t1, t ′
1 ∈ [

0, m−1
(

2rF
b

))
and t1 < t ′

1. Then min X ∗
1 (t1) ≥ max X ∗

1 (t ′
1) with

strict inequality if min X ∗
1 (t1) ∈ (

0, 1
2

)
.

Corollary 1 summarizes the implications of Proposition 5 for the follower’s payoff.

C© The RAND Corporation 2024.
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Corollary 1. Suppose t1, t ′
1 ∈ [

0, m−1
(

2rF
b

))
and t1 < t ′

1. Then, maxx1∈X ∗
1 (t1 ) V2(t∗

2 (t1, x1), x1, 1) ≤
minx′

1∈X ∗
1 (t ′1 ) V2(t∗

2 (t ′
1, x′

1), x′
1, 1) with strict inequality if min X ∗

1 (t1) ∈ (
0, 1

2

)
.

Consider next the times of entry in the interval
[
m−1

(
2rF

b

)
, m−1

(
144rF

25b

)]
. Once the leader

chooses to locate at the extreme of the market, it continues to do so, which clarifies the relation-
ship between cases 1 and 2. Because we do not use this fact in our characterization of the SPE,
we omit the argument.

SPE. Define L(t1) to be the payoff of the firm that enters first at time t1, thereby preempting its
rival, and define F (t1) to be the payoff of the firm that enters second and is thus being preempted
by its rival at time t1:

L(t1) = V1(t1, t∗
2 (t1, x∗

1(t1)), x∗
1(t1), 1),

F (t1) = V2(t∗
2 (t1, x∗

1(t1)), x∗
1(t1), 1),

where x∗
1(t1) ∈ X ∗

1 (t1). We sometimes write L(t1; x∗
1(t1)) and F (t1; x∗

1(t1)) to show explicitly how
payoffs depend on time t1 and location x∗

1(t1). Recall that L(.) is a continuous function of t1. By
contrast, F (.) is a correspondence of t1 because X ∗

1 (t1), the set of solutions to the leader’s problem
at t1, is not guaranteed to be a singleton. The correspondence F (.) is nonempty and has a closed
graph. To simplify the exposition, we write F (t1) ≥ y as shorthand for minx1∈X ∗

1 (t1 ) F (t1; x1) ≥ y,
F (t1) < y for maxx1∈X ∗

1 (t1 ) F (t1; x1) < y, and so on.
Consider the subgame starting at time t1. There are two classes of subgames, namely the

ones where some firm has already entered the market and the ones where no firm has entered the
market yet. The first class is easy to deal with because the problem of the remaining firm boils
down to the follower’s problem that we analyzed above. We therefore focus on the second class
in what follows.

To characterize the SPE, we partition the time axis as follows:

• Region 1:
[
0, m−1

(
rF

a−c− b
4

))
,

• Region 2:
[
m−1

(
rF

a−c− b
4

)
, m−1

(
rF

a−c−b

)]
,

• Region 3:
(
m−1

(
rF

a−c−b

)
, m−1

(
2rF

b

))
,

• Region 4:
[
m−1

(
2rF

b

)
, m−1

(
144rF

25b

)]
,

• Region 5:
(
m−1

(
144rF

25b

)
,∞)

.

Recall that the solution to the leader’s problem is given by case 2 (deferred entry by the
follower) in regions 1, 2, and 3 and by case 1 (immediate entry by the follower) in region 5.
In region 4, the solution may be given by case 1 or case 2 or both. Recall further that F (.) is
nondecreasing in regions 1, 2, and 3 by Corollary 1.

In online Appendix C, we show that L(.) is increasing in region 1 and decreasing in regions
3, 4, and 5. Hence, L(.) attains a global maximum in region 2. In what follows, we assume that the
global maximum of L(.) is unique and that L(.) is increasing to the left of the global maximum
and decreasing to the right.

Assumption 3. L(.) is unimodal.

A sufficient condition for Assumption 3 to hold is that there exists x1 such that x1 ∈
X ∗

1 (t1) for all t1 ∈
[
m−1

(
rF

a−c− b
4

)
, m−1

(
rF

a−c−b

)]
. The reason is that, holding x1 fixed, L(t1) =

V1(t1, m−1
(

rF
πD

2 (x1,1)

)
, x1, 1) is strictly quasiconcave in t1. Moreover, Assumption 3 always held

in the numerical examples we studied in Section 6.
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BOLLINGER ET AL. / 179

Define t∗
1 = arg maxt1≥0 L(t1) and further partition region 2 by the global maximum of L(.)

as follows:

• Region 2a:
[
m−1

(
rF

a−c− b
4

)
, t∗

1

)
,

• Region 2b:
[
t∗
1 , m−1

(
rF

a−c−b

)]
.

Regions 2b, 3, 4, and 5. Working backward through time, consider the subgame starting at
time t1 ∈ [

t∗
1 ,∞

)
. In online Appendix C, we show that L(t1) ≥ F (t1) and

L(t1) > max
{
L(t ′

1), F (t ′
1)

}
(18)

for all t ′
1 > t1. Because the payoff to entering first and becoming the leader at time t1 is at least

as large as the payoff to becoming the follower at time t1 and larger than the payoff to becoming
either the leader or the follower at some later time t ′

1, it is optimal for a firm to enter at time t1

and location x1 ∈ X ∗
1 (t1). Moreover, it is optimal to enter irrespective of the opponent’s strategy.

Hence, firm 1 enters as it has a shorter decision lag than firm 2. Note that to the extent that
X ∗

1 (t1) is not a singleton, there may be multiplicity, though this multiplicity has no impact on the
outcome of the SPE because, as we show below, the time of first entry is prior to t1.

Regions 1 and 2a. Consider times of entry in the interval [0, t∗
1 ). Rent equalization occurs if

F (.) cuts L(.) from above at some t1 to the left of the global maximum of L(.). In what follows,
we assume that F (0) > L(0). In essence, this requires that the fixed cost of entry F is sufficiently
large.10 The following proposition shows that L(t∗

1 ) > F (t∗
1 ). Note that it does not presume that

the global maximum of L(.) is unique.

Proposition 6. Let t∗
1 ∈ arg maxt1≥0 L(t1). Then, L(t∗

1 ) > F (t∗
1 ).

It turns out that there may be more than one SPE. Before stating our main theorem, we set
up some notation that allows us to describe the set of SPEs. Define

t̂1 = sup
{
t1 ∈ [0, t∗

1 ]|F (t1) ≥ L(t1)
}
, (19)

where F (t1) ≥ L(t1) is once again shorthand for minx1∈X ∗
1 (t1 ) F (t1; x1) ≥ L(t1), and

T̃1 =
{

t1 ∈ (t̂1, t∗
1 ]

∣∣∣∣ max
x1∈X ∗

1 (t1 )
F (t1; x1) ≥ L(t1)

}
. (20)

The sup here accounts for the possibility that F (.) coincides with L(.) up to (but not including)
some point. The upper bound t∗

1 is necessary because we know that F (.) eventually coincides
with L(.).

We know that t̂1 ∈ (0, t∗
1 ) exists because F (0) > L(0) and F (t∗

1 ) < L(t∗
1 ) by Proposition 6.

By contrast, T̃1 ⊆ (t̂1, t∗
1 ) may be empty. The following proposition summarizes the properties of

t̂1 and T̃1.

Proposition 7. (i) X ∗
1 (t̂1) is a singleton; (ii) F (t̂1) = L(t̂1); (iii) X ∗

1 (t̃1) is not a singleton for any
t̃1 ∈ T̃1; (iv) maxx1∈X ∗

1 (t̃1 ) F (t̃1; x1) = L(t̃1) for all t̃1 ∈ T̃1; (v) T̃1 consists of isolated points.

To illustrate Proposition 7, suppose T̃1 = ∅. Then F (.) cuts L(.) from above at t̂1 and stays
below L(.) to the right of t̂1. By contrast, if T̃1 �= ∅, then F (.) touches L(.) from below at t̃1 ∈ T̃1

to the right of t̂1. In this sense, T̃1 �= ∅ is a knife-edge case.

10 This assumption is made purely for analytical convenience. In fact, as long as we are willing to extend the time
axis below zero (as we do in Section 6), there always exists a t1 < t∗

1 such that F (t1 ) > L(t1 ). The reason is that F (.) is
positive by Assumption 2, whereas limt1→−∞ L(t1 ) = −∞.

C© The RAND Corporation 2024.
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180 / THE RAND JOURNAL OF ECONOMICS

This leads to our main theorem.

Theorem 1. (i) The following strategy is a SPE: If t1 < t̂1, do not enter; if t1 ≥ t̂1 and no firm has
entered the market yet, enter at location max X ∗

1 (t1). (ii) For any t̃1 ∈ T̃1, the following strategy is
a SPE: If t1 < t̃1, do not enter; if t1 ≥ t̃ and no firm has entered the market yet, enter at location
min X ∗

1 (t1).

Recall that we focus on subgames where no firm has entered the market yet. To relate
Theorem 1 to equations (19) and (20), note that minx1∈X ∗

1 (t1 ) F (t1; x1) = F (t1; max X ∗
1 (t1)) and

maxx1∈X ∗
1 (t1 ) F (t1; x1) = F (t1; min X ∗

1 (t1)) because
∂πD

2
∂x1

< 0 if x1 ≤ x2.
We prove part (i) of Theorem 1 and relegate the proof of part (ii) to online Appendix D.

Because we have already dealt with regions 2b, 3, 4, and 5, we focus on regions 1 and 2a in what
follows. Working backward through time, consider the subgame starting at time t1 ∈ [

t̂1, t∗
1

]
. If a

firm enters first at time t1 and location max X ∗
1 (t1) according to the prescribed strategy, then it gets

L(t1). If the firm deviates from the prescribed strategy, then its rival enters first and the firm gets
F (t1; max X ∗

1 (t1)). We have minx1∈X ∗
1 (t1 ) F (t1; x1) ≤ L(t1) for all t1 ≥ t̂1 with strict inequality when-

ever t1 > t̂1 by construction (see equation (19)) and minx1∈X ∗
1 (t1 ) F (t1; x1) = F (t1; max X ∗

1 (t1)).
Hence, the firm has no incentive to deviate from the prescribed strategy. Because it has a shorter
decision lag than firm 2, firm 1 enters.

Continuing to work backward through time, consider the subgame starting at time t1 ∈[
0, t̂1

)
. If a firm does not enter according to the prescribed strategy, then it gets either L(t̂1)

or F (t̂1; max X ∗
1 (t̂1)). If the firm deviates from the prescribed strategy and enters first at

time t1 at location x1 ∈ [0, 1
2
], then it gets at most L(t1) (and L(t1) if x1 ∈ X ∗

1 (t1)). We have
minx1∈X ∗

1 (t̂1 ) F (t̂1; x1) ≥ L(t̂1) by construction and minx1∈X ∗
1 (t̂1 ) F (t̂1; x1) = F (t̂1; max X ∗

1 (t̂1)). More-
over, L(t1) < L(t̂1) for all t1 < t̂1 because L(.) is increasing in region 1 and in region 2a by As-
sumption 3. Taken together, we have

L(t1) < L(t̂1) ≤ F (t̂1; max X ∗
1 (t̂1)). (21)

Hence, the firm has no incentive to deviate from the prescribed strategy.

5. Welfare

� The nature of the game being played has stark welfare implications. Consider an omnipotent
social planner who controls the time and location of entry as well as firms’ pricing decisions in
the product market. The planner’s goal is to maximize social surplus, consisting of gains from
trade net of transportation costs and fixed costs. Let ωM and ωD denote instantaneous social
surplus under a monopoly and a duopoly, respectively. We have

ωM (x) = a − c − b

(
x2 − x + 1

3

)
, (22)

ωD(x1, x2) =
{

a − c − b
3
+ b(x2−x1 )

4
(x1 + x2)2 + bx2(1 − x2) if x1 ≤ x2,

a − c − b
3
+ b(x1−x2 )

4
(x1 + x2)2 + bx1(1 − x1) if x1 > x2.

(23)

These expressions are independent of prices because demand is inelastic; they are derived
in online Appendix A. Note that ωM (x) is maximal at x = 1

2
and ωD(x1, x2) is maximal at

x1 = 1
4

and x2 = 3
4

as well as x1 = 3
4

and x2 = 1
4
. Moreover, ωM (x) ∈ [

a − c − b
3
, a − c − b

12

]
and ωD(x1, x2) ∈ [

a − c − b
3
, a − c − b

48

]
. Two firms are therefore not necessarily better than

one firm.

C© The RAND Corporation 2024.
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The NPV of social surplus is

W (t1, t2, x1, x2) =
∫ t2

t1

e−rtωM (x1)m(t )dt

+
∫ ∞

t2

e−rtωD(x1, x2)m(t )dt − e−rt1 F − e−rt2 F. (24)

We search for the times and locations of entry that maximize social surplus. That is, we solve the
following problem:

max
0≤t1≤t2,0≤x1≤x2≤1,x1∈[0, 1

2 ]
W (t1, t2, x1, x2). (25)

The planner may decide to have one instead of two firms in the market. In this case, the solution to

the above problem is given by t1 = m−1
(

rF

ωM ( 1
2 )

)
and x1 = 1

2
(along with t2 = ∞ and x2 ∈ [ 1

2
, 1]).

6. Numerical analysis

� We use numerical analysis to contrast the outcomes of the game under SEQPE and SPE and
to illustrate their welfare implications. To model a wide range of possible market size functions,
we choose the piecewise linear specification

m(t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if t ≤ 0,
μ1
τ1

t if 0 < t ≤ τ1,

μ1 + 1−μ1
τ2−τ1

(t − τ1) if τ1 < t ≤ τ2,

1 if t > τ2,

(26)

where τ1 > 0 and τ2 > τ1 denote the end of the first and second growth periods, respectively,
and 0 < μ1 < 1 is the market size at the end of the first growth period. Note that market size
is bounded. Moreover, m(.) is concave, linear, or convex in t ∈ [0, τ2] depending on whether
μ1
τ1

� 1−μ1
τ2−τ1

.
The structure of the payoffs allows us to normalize some parameters. First, consumers’

gross surplus a and firms’ marginal cost c appear exclusively in the monopolist’s profit function
as a − c. Hence, without loss of generality we set c = 0. Second, if a, b, and F are multiplied
by some nonzero constant, then this does not affect the follower’s timing decision or the leader’s
location decision. Hence, L(.) and F (.) are homogeneous of degree one in the triple (a, b, F ).
We therefore normalize b = 1. Third, the interest rate r merely determines the time scale and is,
therefore, not of interest by itself. We set r = 0.05 in what follows.

We conduct a search over the 15,000 parameterizations given by all possible combi-

nations of a ∈ {3, 6, 9}, 10 equidistant values of F ∈
(

0,
πD

2 ( 1
2 ,1)

r

)
(see Assumption 2), τ2 ∈

{5, 10, 15, 25, 50}, 10 equidistant values of μ1 ∈ (0, 1), and 10 equidistant values of τ1 ∈ (0, τ2).
That is, we choose τ1 given τ2 such that τ1 < τ2. Finally, as discussed in Section 4, we extend
the time axis below zero. To compute L(.) and F (.), we discretize time with a period length of
� = 0.01.

For each of the parameterizations given above, our computations indicate that L(.) is in-
creasing to the right of t∗

1 and decreasing to the left, thus justifying the simplifying assumption
made in Theorem 1 in Section 4. Unimodality of L(.) in turn ensures that the SEQPE is unique.11

Moreover, our computations lead to a unique SPE in which F (.) cuts L(.) from above at t̂1 and
stays below L(.) to the right of t̂1 in accordance with part (i) of Theorem 1.

11 Recall from Section 3 that, in the SEQPE, the leader enters at time t∗
1 .

C© The RAND Corporation 2024.
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182 / THE RAND JOURNAL OF ECONOMICS

FIGURE 1

EXAMPLE OF A “TOUCHING” EQUILIBRIUM. PAYOFFS (LEFT PANEL), TIMES OF ENTRY (MIDDLE
PANEL), AND LOCATIONS OF ENTRY (RIGHT PANEL)

A dark (bright) line designates the first (second) entrant. Parameters are a = 3, b = 1, c = 0, F = 3.47, r = 0.05, τ1 =
22.73, μ1 = 0.09, and τ2 = 25.

TABLE 2 Parameterizations with tSPE
1 > tW

1

# a F τ1 μ1 τ2 t1 t2 x1 L F C

1 3 3.16 9.09 0.09 10 SPE 5.43 9.32 0.00 4.22 4.22 23.92
W 5.41 ∞ 0.50

2 3 3.16 13.64 0.09 15 SPE 8.27 13.97 0.00 3.32 3.32 18.90
W 8.12 ∞ 0.50

3 3 3.16 22.73 0.09 25 SPE 14.15 23.29 0.00 2.05 2.05 11.81
W 13.53 ∞ 0.50

Note: xSPE
2 = 1 omitted.

Although our 15,000 parameterizations do not contain such a case, it is possible that T̃1 �= ∅

in accordance with part (ii) of Theorem 1. Figure 1 illustrates that there may exist one or more
“touching” equilibria besides the “cutting” equilibrium. As can be seen, F (.) cuts L(.) from above
at t̂1 = −4.52 and F (.) touches L(.) from below at t̃1 = 15.92. Note, however, that T̃1 �= ∅ is a
knife-edge case in the sense that, if the fixed cost of entry F is chosen to be slightly larger than
in the example, F (.) is below L(.) but does not touch it, whereas F (.) is above L(.) if F is chosen
to be slightly smaller.

In what follows, we use superscripts to distinguish between the outcome of the SEQPE, the
outcome of the SPE, and the times and locations of entry chosen by the omnipotent social planner,
indicated with a W superscript. Our first result summarizes the implications of preemption for
the times of entry.

Result 1 (Times of entry). We have tW
1 < tSEQPE

1 and tSEQPE
2 ≤ tSPE

2 < tW
2 . Moreover, in 99.98% of

parameterizations, we have tSPE
1 < tW

1 .

Note that tSPE
1 < tSEQPE

1 by construction of the SPE. Proposition 5 then implies xSEQPE
1 ≤ xSPE

1

(as stated below in Result 2), and hence tSEQPE
2 ≤ tSPE

2 . Table 2 lists the parameterizations with
tSPE
1 > tW

1 , which we describe in greater detail below.
Result 1 says that, from a welfare point of view, the follower enters too early in a SPE as

well as in a SEQPE. By contrast, the leader usually enters too early in the SPE but always too
late in a SEQPE. In fact, we have tSPE

1 < 0 in 99.56% of parameterizations. This demonstrates
the power of preemption: Because the incentive to preempt persists until payoffs are equalized,

C© The RAND Corporation 2024.
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BOLLINGER ET AL. / 183

FIGURE 2

EXAMPLE OF AN INTERMEDIATE LOCATION

Payoffs (left panel), times of entry (middle panel), and locations of entry (right panel). A dark (bright) line designates the
first (second) entrant. Parameters are a = 3, b = 1, c = 0, F = 1.58, r = 0.05, τ1 = 22.73, μ1 = 0.27, and τ2 = 25.

the leader is forced to enter too early in a SPE, usually at a time at which there is not even any
demand yet.

Our second result concerns the locations of entry. The result is in fact analytic, and we report
it here merely for the sake of completeness.

Result 2 (Locations of entry). We have xSEQPE
1 ≤ xSPE

1 and xW
2 ≤ xSEQPE

2 = xSPE
2 = 1.

By contrast, the relationship between xW
1 , xSEQPE

1 , and xSPE
1 is ambiguous. Result 2 says that,

because xSEQPE
1 ≤ xSPE

1 , a SPE entails less extreme locations and thus less product differentiation
than a SEQPE.

Figure 2 presents an example. In the SPE, the first entry occurs at time tSPE
1 = −24.86 and

location xSPE
1 = 0.38 and the second at time tSPE

2 = 22.93 and location xSPE
2 = 1; in the SEQPE,

the first entry occurs at time tSEQPE
1 = 2.53 and location xSEQPE

1 = 0.37 and the second at time
tSEQPE
2 = 22.89 and location xSEQPE

2 = 1. Note that this runs counter to Zhou and Vertinsky’s
(2001) claim that, in a SEQPE, the first entrant chooses either the extreme (x1 = 0) or the central
(x1 = 1

2
) but never an intermediate (x1 ∈ (

0, 1
2

)
) location. Of course, our model is more general

than theirs because Zhou and Vertinsky (2001) assume that market size grows linearly with-
out bound.

Given that both firms enter too early in a SPE but not in a SEQPE, one expects that the
combined payoffs to firms and consumers are lower in a SPE than in a SEQPE. In stating the next
result, we use L and F as shorthand for the payoff to the leader and the follower, respectively,
and C as shorthand for the payoff to consumers. Expressions for instantaneous consumer surplus
under monopoly and duopoly are derived in online Appendix A; the NPV of consumer surplus C
is defined in the obvious way.

Result 3 (Welfare comparison). In 99.89% of parameterizations, we have �SPE ≡ LSPE + F SPE +
CSPE < LSEQPE + F SEQPE + CSEQPE ≡ �SEQPE .

Table 3 lists the parameterizations with �SPE > �SEQPE . These 16 parameterizations have
in common the fact that the market undergoes a long period of sluggish growth followed by a
short period of rapid growth as τ1 is large relative to τ2 and μ1 is small. Moreover, gross surplus
a is low and the fixed cost of entry F is high. Note that the 3 parameterizations with tSPE

1 > tW
1 in

Table 2 reappear in the 16 parameterizations with �SPE > �SEQPE .
The following result quantifies the extent to which rents are dissipated under the two equi-

librium concepts. We use W W as shorthand for W (tW
1 , tW

2 , xW
1 , xW

2 ).

C© The RAND Corporation 2024.
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TABLE 3 Parameterizations with �SPE > �SEQPE

# a F τ1 μ1 τ2 t1 t2 x1 L F C �

1 3 2.53 9.09 0.09 10 SPE 3.30 9.25 0.00 4.62 4.62 23.99 33.23
SEQPE 6.31 9.25 0.00 4.69 4.62 23.91 33.22

2 3 2.53 13.64 0.09 15 SPE 5.16 13.88 0.00 3.63 3.63 18.99 26.25
SEQPE 9.47 13.88 0.00 3.72 3.63 18.89 26.24

3 3 2.53 22.73 0.09 25 SPE 9.23 23.13 0.00 2.25 2.24 11.92 16.41
SEQPE 15.78 23.13 0.00 2.34 2.24 11.80 16.39

4 3 2.84 4.55 0.09 5 SPE 2.17 4.64 0.00 5.63 5.63 30.30 41.55
SEQPE 3.55 4.64 0.00 5.66 5.63 30.25 41.54

5 3 2.84 8.18 0.09 10 SPE 3.34 8.57 0.00 4.50 4.50 24.54 33.54
SEQPE 6.39 8.57 0.00 4.58 4.50 24.45 33.54

6 3 2.84 9.09 0.09 10 SPE 4.44 9.28 0.00 4.42 4.42 23.96 32.80
SEQPE 7.10 9.28 0.00 4.48 4.42 23.88 32.78

7 3 2.84 12.27 0.09 15 SPE 5.21 12.85 0.00 3.57 3.57 19.64 26.78
SEQPE 9.59 12.85 0.00 3.67 3.57 19.53 26.78

8 3 2.84 13.64 0.09 15 SPE 6.82 13.93 0.00 3.47 3.47 18.95 25.90
SEQPE 10.65 13.93 0.00 3.54 3.47 18.85 25.86

9 3 2.84 22.73 0.09 25 SPE 11.86 23.21 0.00 2.15 2.15 11.86 16.16
SEQPE 17.76 23.21 0.00 2.22 2.15 11.75 16.12

10 3 3.16 4.09 0.09 5 SPE 1.95 4.32 0.00 5.42 5.42 30.64 41.49
SEQPE 3.55 4.32 0.00 5.47 5.42 30.59 41.48

11 3 3.16 4.55 0.09 5 SPE 2.68 4.66 0.00 5.38 5.38 30.28 41.03
SEQPE 3.95 4.66 0.00 5.40 5.38 30.23 41.01

12 3 3.16 8.18 0.09 10 SPE 4.02 8.63 0.00 4.30 4.30 24.50 33.10
SEQPE 7.10 8.63 0.00 4.38 4.30 24.41 33.08

13 3 3.16 9.09 0.09 10 SPE 5.43 9.32 0.00 4.22 4.22 23.92 32.37
SEQPE 7.89 9.32 0.00 4.27 4.22 23.84 32.33

14 3 3.16 12.27 0.09 15 SPE 6.21 12.95 0.00 3.40 3.40 19.60 26.41
SEQPE 10.65 12.95 0.00 3.50 3.40 19.48 26.39

15 3 3.16 13.64 0.09 15 SPE 8.27 13.97 0.00 3.32 3.32 18.90 25.54
SEQPE 11.84 13.97 0.00 3.37 3.32 18.81 25.50

16 3 3.16 22.73 0.09 25 SPE 14.15 23.29 0.00 2.05 2.05 11.81 15.91
SEQPE 19.73 23.29 0.00 2.10 2.05 11.71 15.86

Note: xSPE
2 = 1 and xSEQPE

2 = 1 omitted.

Result 4 (Rent dissipation). We have

0.21 <
�SPE

W W
< 1, (27)

0.93 <
�SEQPE

W W
< 1, (28)

0.95 <
W W − �SPE

W W − �SEQPE
< 237. (29)

Hence, up to 79% of rents are dissipated by premature entry in a SPE as opposed to at
most 7% in a SEQPE. This again demonstrates how powerful the incentive to preempt can be.
Comparing rent dissipation under the two equilibrium concepts, Result 4 says that, at least for
some parameterizations, 237 times as much surplus is wasted under the SPE than under the
SEQPE. Tables 4–6 illustrate Result 4. Table 4 shows the parameterizations with the lowest value
of �SPE

W W , Table 5 the ones with the lowest value of �SEQPE

W W , and Table 6 the ones with the highest

value of W W −�SPE

W W −�SEQPE .

C© The RAND Corporation 2024.
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TABLE 4 Examples of Rent Dissipation: Lowest Values of �SPE

W W

# a F τ1 μ1 τ2 t1 t2 x1 L F C �, W �SPE

W W

1 9 3.16 4.55 0.55 50 SPE −66.78 40.91 0.50 0.07 0.03 23.07 23.17 0.21
W 0.15 ∞ 0.50 109.35

2 9 3.16 4.55 0.45 50 SPE −64.96 42.42 0.50 0.05 0.03 21.42 21.50 0.22
W 0.18 ∞ 0.50 99.95

3 9 3.16 4.55 0.64 50 SPE −68.24 38.64 0.50 0.06 0.03 25.68 25.77 0.22
W 0.13 ∞ 0.50 118.76

4 6 3.16 4.55 0.55 50 SPE −58.48 40.91 0.50 0.05 0.03 15.45 15.53 0.22
W 0.22 ∞ 0.50 71.51

5 6 3.16 4.55 0.45 50 SPE −56.66 42.42 0.50 0.05 0.03 14.33 14.41 0.22
W 0.27 ∞ 0.50 65.27

Note: xSPE
2 = 1 omitted.

TABLE 5 Examples of Rent Dissipation: Lowest Values of �SEQPE

W W

# a F τ1 μ1 τ2 t1 t2 x1 L F C �, W �SEQPE

W W

1 3 3.16 22.73 0.09 25 SEQPE 19.73 23.29 0.00 2.10 2.05 11.71 15.86 0.93
W 13.53 ∞ 0.50 16.97

2 3 3.16 13.64 0.18 15 SEQPE 5.92 13.86 0.00 3.82 3.33 19.23 26.37 0.94
W 4.06 ∞ 0.50 28.16

3 3 3.16 12.27 0.09 15 SEQPE 10.65 12.95 0.00 3.50 3.40 19.48 26.39 0.94
W 7.31 ∞ 0.50 28.16

4 3 3.16 8.18 0.27 10 SEQPE 2.37 8.29 0.00 5.19 4.33 25.13 34.66 0.94
W 1.62 ∞ 0.50 36.96

5 3 3.16 9.09 0.27 10 SEQPE 2.63 9.14 0.00 5.14 4.24 24.47 33.86 0.94
W 1.80 ∞ 0.50 36.09

Note: xSEQPE
2 = 1 Omitted.

7. Empirical application

� The nature of the game being played generates testable predictions. In our empirical appli-
cation, we focus on the relationship between market size at the time of first entry and the market
growth rate. Under a SEQPE, by Proposition 2 the threshold for market size at the time of first
entry is

m(tSEQPE
1 ) = rF

πM
1 (xSEQPE

1 )
. (30)

Hence, conditional on the location of first entry, the market growth rate does not affect the thresh-
old for market size at the time of first entry. This is not the case under SPE, however, where the
threat of preemption is operative until rents equalize. Intuitively, as the market growth rate in-
creases, the NPV of the leader’s payoff increases more than the NPV of the follower’s payoff.
Rent equalization therefore requires earlier first entry.

To make this intuition concrete, we specify the exponential market size function m(t ) = eγ t ,
where 0 < γ < r is the rate of market growth. In what follows, we index the outcome of the game
under SPE by γ and restrict attention to the empirically relevant “cutting” equilibria in part (i) of
Theorem 1. Proposition 8 provides a prediction about the relationship between market size at the
time of first entry and the rate of market growth under SPE that we use to test whether SEQPE
or SPE better fits the data in a particular setting.

C© The RAND Corporation 2024.
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TABLE 6 Examples of Rent Dissipation: Highest Values of W W −�SPE

W W −�SEQPE

# a F τ1 μ1 τ2 t1 t2 x1 L F C �, W W W −�SPE

W W −�SEQPE

1 9 3.16 9.09 0.55 50 SPE −64.07 41.82 0.50 0.04 0.03 21.94 22.01 215.40
SEQPE 0.30 41.82 0.50 74.62 0.03 21.94 96.59
W 0.30 ∞ 0.50 96.93

2 9 3.16 4.55 0.36 50 SPE −62.83 43.51 0.50 0.04 0.03 20.25 20.32 219.75
SEQPE 0.23 43.51 0.50 69.95 0.03 20.25 90.23
W 0.22 ∞ 0.50 90.55

3 9 3.16 4.55 0.64 50 SPE −68.24 38.64 0.50 0.06 0.03 25.68 25.77 227.83
SEQPE 0.13 38.64 0.50 92.63 0.03 25.68 118.35
W 0.13 ∞ 0.50 118.76

4 9 3.16 4.55 0.45 50 SPE −64.96 42.42 0.50 0.05 0.03 21.42 21.50 232.49
SEQPE 0.18 42.42 0.50 78.17 0.03 21.41 99.61
W 0.18 ∞ 0.50 99.95

5 9 3.16 4.55 0.55 50 SPE −66.78 40.91 0.50 0.07 0.03 23.07 23.17 236.69
SEQPE 0.15 40.91 0.50 85.89 0.03 23.07 108.99
W 0.15 ∞ 0.50 109.35

Note: xSPE
2 = 1 and xSEQPE

2 = 1 omitted.

Proposition 8. Suppose a−c
b

> 7
2

and γ ′ > γ . If xSPE
1 (γ ′) = xSPE

1 (γ ), then m(tSPE
1 (γ ′)) <

m(tSPE
1 (γ )).

Note that Proposition 8 slightly strengthens our maintained assumption from Section 2 that a−c
b

>

3. Proposition 8 says that under SPE, conditional on the location of first entry, increasing the rate
of market growth decreases the threshold for market size at the time of first entry.

Building on equation (30) and Proposition 8, we test whether SEQPE or SPE better fits the
data by regressing market size at the time of first entry m(t1) on the market growth rate γ while
controlling for the location of first entry x1. This test faces two key challenges. First, as equa-
tion (30) makes clear, we have to measure x1 and how x1 maps into profits, as well as r and F .
This measurement has to be consistent across the markets in our data. Second, the location of first
entry is codetermined with market size at the time of first entry. Anything that we cannot measure
potentially affects both x1 on the right-hand side and m(t1) on the left, thereby creating an endo-
geneity problem. In our application, we argue that whatever we cannot measure and explicitly
control for is either absorbed by fixed effects or can be addressed with instrumental variables.

Although more than two firms may eventually enter a market in our empirical application,
we expect the qualitative predictions of our model to remain unchanged. If a second entrant has to
account for preemption by another firm under SPE, then this will accelerate entry by the second
entrant, which in turn will accelerate entry by the first entrant.

Data and estimation. We study the timing and location of first entry by gas stations, restaurants,
and hotels in geographically isolated markets around highway exits and intersections. We choose
these industries because they vary in the fixed cost of entry and in the extent to which spatial
differentiation matters for profitability.

We use the ESRI Data and Maps 2013 data available through ArcGIS at www.esri.com to
define markets. The data record the latitude and longitude of all highway exits and intersections
in the United States. We visualize the data in panel (a) of Figure 3. To define a market, we group
together any road crossings (i.e., highway exits or intersections) that are within 1500 m of each
other to form a cluster. Each cluster is a market. Panels (b) and (c) illustrate this construction
in a close-up of Durham, NC. In panel (c), we draw circles with radius 1500 m around all road
crossings. If a road crossing lies in the circle drawn around another road crossing, then the two
road crossings belong to the same market. In this example, there are four distinct markets, shown

C© The RAND Corporation 2024.
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FIGURE 3

MARKET DEFINITION

C© The RAND Corporation 2024.
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with color-coded circles. We define the center of a market as the average latitude and longitude
of the road crossings in that market. To avoid urban and sprawling suburban areas without a clear
market center, we drop clusters with width or height exceeding 2500 m. In urban areas, sequential
highway exits and intersections tend to be narrowly spaced and thus tend to form large clusters.
By contrast, the elongated clusters along interstate highways typically fall within the limit of
2500 m.

We obtain the entry dates and locations of gas stations, restaurants, and hotels in each market
from Reference USA’s Historical Business Database for 1997–2006. We use each year’s database
to avoid selection bias, which would be a concern if we used the entry dates and locations for
only the current set of firms. We designate as a first entrant a firm that enters a market that had
no firms of that type in the previous year. The sample contains 704 markets with a first entry by
a gas station, 875 markets with a first entry by a restaurant, 527 markets with a first entry by a
hotel, and 534 markets with a first entry by a three-star hotel.12 Out of these, we have 664 markets
with a second entry by a gas station, 774 markets with second entry by a restaurant, 494 markets
with a second entry by a hotel, and 383 markets with a second entry by a three-star hotel.

For each firm, we calculate its Euclidian distance to the market center. In our model, the
first entrant does not locate farther away from the market center than the second entrant. For
those markets in our data with a second entrant, the distance between the market center and
the first entrant is more than 10% larger than the distance between the market center and the
second entrant in only 6%, 7%, 9%, and 14% of markets for gas stations, restaurants, hotels, and
three-star hotels, respectively.13

Turning to market size and the rate of market growth, we use highway traffic data that we
obtain directly from the Department of Transportation for 1993–2009, the last year the data were
available.14 Using m to index markets and t to index years, we measure market size Smt by annual
average daily traffic (AADT) and the rate of market growth γmt by the annualized growth of

AADT between t − 2 and t + 2 (i.e., γmt =
(

1 + Smt+2−Smt−2

Smt

) 1
4 − 1). We provide details on how

we allocate AADT to markets in online Appendix E.
As our focus is on the relationship between market size at the time of first entry and the

rate of market growth, a potential concern is that market size and the rate of market growth
may be correlated more generally for a variety of reasons. For example, larger markets may
experience slower growth due to capacity constraints and congestion of highways. Moreover,
Proposition 8 assumes an exponential market size function with a constant rate of market growth,
which implies that market size is unrelated to the rate of market growth. To investigate any
underlying correlation between market size and the market growth rate, we use a balanced panel
of markets in which we observe at least one gas station, restaurant, hotel, or three-star hotel for
1993–2006. The final sample includes 259 first entry events for gas stations, 277 for restaurants,
163 for hotels, and 156 for three-star hotels. In Figure 4, we plot the rate of market growth
against the log of market size using a binscatter plot with 20 bins of equal size. Although there
is a negative correlation between size and the growth rate for smaller markets, it disappears for
larger markets. We therefore restrict the subsequent analyses to markets with AADT exceeding
8000 at the time of first entry.15 With this restricted sample (N = 67, 890), we regress the rate of
market growth on the log of market size and state and year fixed effects, using two-way clustering
on state and year. We do not find a statistically significant relationship between the market growth
rate and market size.

We assume that the rate of market growth is not affected by the entry of the firms we study.
That is, we assume that highway traffic does not increase simply because of a gas station, restau-

12 When examining three-star hotels, we ignore hotels of other star levels that may have entered earlier.
13 We allow ourselves a 10% “buffer” in this exercise due to spatial constraints on entry locations.
14 The Federal Highway Administration switched from raw file format in the earlier years to shapefile format in the

later years. As a result, there are no data for 2010.
15 Our results are robust to restricting the analysis further to markets with AADT in excess of 8000 for all years.

C© The RAND Corporation 2024.
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FIGURE 4

RATE OF MARKET GROWTH AND MARKET SIZE

rant, or hotel, which we consider reasonable. Even with this assumption, we must still account for
factors such as entry costs that are likely to affect both the location of first entry and the market’s
size at that time. Beyond including dummies for the number of highways in the market, the type
of the largest road,16 and state and year fixed effects, we collect data on land prices in 2018 from
the American Enterprise Institute and on vegetation in 2001 from the United States Geological
Survey LANDFIRE Data Distribution Site. The latter data are typically used to assess fire risk,
but we use them as shifters of entry costs, as it costs more to build a new establishment in a
dense forest than in a field. Finally, we collect information about the number of other businesses
in the market within 500 and 1000 m of the market center, which may reflect entry costs at these
distances. We provide summary statistics and further details on how we assembled the data in
online Appendix E.

In addition to these controls, we construct two instruments for the location of first entry to
address the aforementioned endogeneity concern. Our instruments capture the geographic partic-
ularities of a market that may shift the location of first entry. First, we use the log of the diagonal
of the bounding box of the market, determined by the maximum difference in the latitudes and
longitudes of the road crossings in the market, to measure how geographically spread out the
road crossings are. We expect more spread out road crossings to push firms farther out. We inter-
act this instrument with dummies for Michigan, Ohio, Texas, North Carolina, Mississippi, and
Georgia, because these states are most represented in the data. This allows the geographic size
of the market (i.e., how spread out it is) to have a different sized effect on first entrant’s location
depending on the state. In the second IV regression, we also use the log distance between the
market center and the eventual second entrant, which may also reflect geographic particularities
of the market.

To test the relationship between market size at the time of first entry and the rate of market
growth, we estimate the model

log Smt = f (γmt ) + α log Dmt + Xmβ + ζs(m) + ξt + εmt, (31)

where Smt is market size at the time of first entry, f (γmt ) is a nonparametric function of the rate
of market growth at the time of first entry, Dmt is the distance between the market center and the

16 The types are interstate, other freeways and expressways and principal arterials, and other (minor arterial, major
collector, minor collector, and local).
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first entrant, and Xm is a vector of controls that includes an intercept, dummies for the number
of highways, dummies for the type of the largest road, the number of other businesses within
500 and 1000 m, and variables for land prices and vegetation (we combine shrub and herb with
forest). We also include state fixed effects ζs(m), where s(m) is the state in which market m is
located, and year fixed effects ξt .17

We expect f (γmt ) to be a constant under SEQPE and a decreasing function under SPE. To
construct the nonparametric function, we bin the rate of market growth in ranges of 3%. To
facilitate estimating equation (31) alternatively by ordinary least squares (OLS) and instrumental
variable (IV), we replace f (γmt ) by a linear function of γmt for our main results in Tables 7–11. We
exclude from the estimation those markets that have a negative growth at the time of first entry.
Throughout, we proceed separately for gas stations, restaurants, hotels, and three-star hotels.

Results. We plot the estimated f (γmt ) in Figure 5 for our four types of firms. For gas stations
and three-star hotels, we see a declining relationship between market size at the time of first entry
and the rate of market growth, consistent with SPE. However, the error bars are large, especially
at higher rates of market growth where we have fewer observations. In contrast, we do not see a
clear decline in market size at the time of first entry for restaurants, although there is a decline
in point estimate moving from 6% to 9% market growth to >9% growth. For hotels, the effect
is flat until moving from 6% to 9% market growth to >9% growth, when the point estimate
actually increases.

In column (1) of Table 7, we show the OLS estimates for gas stations when replacing the
flexible function of growth rate with a linear effect. We find a statistically significant negative
coefficient (at 10% with a two-sided test) on γmt , consistent with SPE. The two IV regressions
then follow in columns (2)–(5), with the first stages in columns (2) and (4) and the second stages
in columns (3) and (5). Once again, we find a statistically significant negative impact of the rate
of market growth (10% and 5%, respectively), with the coefficients not significantly different
from the OLS estimates. As expected, in the first stage of the first IV regression, the diagonal
of the bounding box of the market has a statistically significant positive impact on the distance
between the market center and the first entrant, and this relationship is stronger and weaker for
different states. Because we cluster standard errors by state, we report the Kleibergen–Paap first
stage F statistic for the instruments, showing that we do not have weak instruments Kleibergen
(2002). We also report the Hansen J statistic for the test of over-identifying restrictions, which
we pass easily. In the first stage of the second IV regression, we find a statistically significant
positive impact of the log distance between the market center and the second entrant on the log
distance between the market center and the first entrant. This instrument is very strong, leading
to a Kleibergen–Paap first stage F statistic of over 800.

As expected from Figure 5 results, we do not find a statistically significant relationship be-
tween market size at the time of first entry and the rate of market growth for restaurants in Table 8
and hotels in Table 9. This is notable for two reasons. First, using highway exits and intersections
to define a market is likely most relevant for gas stations, whereas restaurants and hotels may
compete on a wider geographic scale. Second, gas stations have less scope for product differen-
tiation than restaurants and hotels, and thus spatial differentiation is likely more important.

To home in on spatial differentiation and mitigate the impact of other dimensions, we again
repeat our analysis for three-star hotels. The OLS and IV estimates in Table 10 show a statistically
significant negative impact of the rate of market growth (at 5% for all three specifications), again
consistent with SPE.

As an additional check of whether the negative relationship that we find between market size
at the time of first entry and the rate of market growth is not spurious, we conduct a placebo test,
where we randomly assign the entry date for the first entrant to another year between 1998 and

17 Our extensive set of controls reduces the useable sample size. For example, states with only one market are fully
explained by the state fixed effect.
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TABLE 7 Regression Results for Gas Stations

IV 1 IV 2

OLS 1st Stage: 2nd Stage: 1st Stage: 2nd Stage:
Log Market Log Log Market Log Log Market

Variable Size Distance Size Distance Size

Rate of market growth −1.6603* −1.8313 −1.3356* 0.1492 −1.6646**
(0.8865) (1.2771) (0.7758) (0.2395) (0.8390)

Log distance to center (m) −0.0955** 0.0499 −0.0974**
(0.0437) (0.1143) (0.0390)

Land price index 0.0453 0.2399 0.0104 0.0854 0.0458
(0.2972) (0.2761) (0.3073) (0.0941) (0.2809)

Largest road interstate highway 0.7539** 0.7124 0.5697* 0.0967 0.7564**
(0.3378) (0.4598) (0.3176) (0.1052) (0.3163)

Largest road freeway/principle arterial 0.3684** −0.4512* 0.4465*** −0.0068 0.3674**
(0.1725) (0.2270) (0.1514) (0.0272) (0.1662)

Three-road intersection 0.0630 0.2587** 0.0215 −0.0248 0.0636
(0.0987) (0.1120) (0.0932) (0.0173) (0.0934)

Four-road intersection 0.2153 0.0374 0.1933 −0.0126 0.2156
(0.1454) (0.1350) (0.1373) (0.0406) (0.1370)

Five-road intersection 0.3685** 0.3060** 0.2988* 0.0083 0.3695**
(0.1585) (0.1177) (0.1664) (0.0580) (0.1504)

Log diagonal of bounding box (m) 0.3572* −0.0347
(0.1891) (0.0554)

MI X log diagonal of bounding box (m) −0.4749** −0.1163**
(0.1972) (0.0498)

OH X log diagonal of bounding box (m) 0.8688*** 0.0381
(0.2539) (0.0763)

TX X log diagonal of bounding box (m) −0.3850* −0.0112
(0.1972) (0.0527)

NC X log diagonal of bounding box (m) −0.1556 0.0079
(0.1981) (0.0578)

MS X log diagonal of bounding box (m) 0.6081** −0.0844
(0.2970) (0.0698)

GA X log diagonal of bounding box (m) 1.2789*** −0.0038
(0.2362) (0.0599)

Log distance of second entrant to center (m) 1.0114***
(0.0211)

Number of firms within 500 m 0.0021 0.0010 0.0018 −0.0003 0.0021
(0.0029) (0.0030) (0.0027) (0.0006) (0.0028)

Number of firms within 1000 m 0.0016 −0.0023 0.0020 0.0003 0.0015
(0.0015) (0.0016) (0.0015) (0.0004) (0.0014)

Forest coverage 500 m circle (sq. km) −0.9128 1.6131 −1.2056* −0.5134 −0.9089
(0.6151) (1.0717) (0.6918) (0.3561) (0.5812)

Forest coverage 1000 m circle (sq. km) 0.0516 −0.1946 0.0967 0.1713 0.0510
(0.1890) (0.3185) (0.2002) (0.1017) (0.1793)

Field/grass coverage 500 m circle (sq. km) −0.7284 −0.5975 −0.6763 −0.1480 −0.7291
(0.5904) (1.0525) (0.6224) (0.2212) (0.5576)

Field/grass coverage 1000 m circle (sq. km) −0.1001 0.1163 −0.1093 0.0724 −0.0999
(0.2114) (0.2831) (0.2148) (0.0778) (0.2000)

Water coverage 500 m circle (sq. km) −0.3888 0.5812 −0.5444 0.3373 −0.3867
(1.4231) (1.9522) (1.3645) (0.6550) (1.3530)

Water coverage 1000 m circle (sq. km) 0.2305 −0.0371 0.2508 −0.0617 0.2302
(0.4461) (0.7047) (0.4293) (0.1537) (0.4236)

R2 0.240 0.234 0.206 0.967 0.240
N 272 272 268 272 268
Kleibergen–Paap F statistic 73.53 1263.99
Hansen J statistic 4.781 5.65

Note: p < .10 (*), p < .05 (**), p < .01 (***). Standard errors clustered by state.

C© The RAND Corporation 2024.

 17562171, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1756-2171.12462 by U

niversity O
f Pennsylvania, W

iley O
nline L

ibrary on [12/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



192 / THE RAND JOURNAL OF ECONOMICS

TABLE 11 Placebo Results for Gas Stations

IV 1 IV 2

OLS 1st Stage: 2nd Stage: 1st Stage: 2nd Stage:
Log Market Log Log Market Log Log Market

Variable Size Distance Size Distance Size

Rate of market growth −1.0922 2.5708** −0.7747 0.0661 −1.0681
(1.0928) (1.1749) (1.1386) (0.2461) (1.0344)

Log distance to center (m) −0.0197 −0.1538 −0.0299
(0.0446) (0.1795) (0.0411)

Land price index 0.0623 −0.1152 0.0421 −0.0275 0.0608
(0.1109) (0.1371) (0.1048) (0.0212) (0.1047)

Largest road interstate highway 0.5830** 0.4469 0.7407*** 0.1005 0.5950**
(0.2538) (0.3095) (0.2504) (0.0775) (0.2382)

Largest road freeway/principle arterial 0.3770** −0.1139 0.3621** −0.0363 0.3759***
(0.1522) (0.1776) (0.1564) (0.0365) (0.1441)

Three-road intersection 0.1153 0.2178 0.1509 −0.0176 0.1180
(0.1088) (0.1342) (0.1233) (0.0164) (0.1019)

Four-road intersection 0.2055** −0.0236 0.2130** −0.0435 0.2061**
(0.0982) (0.1783) (0.0937) (0.0280) (0.0925)

Five-road intersection 0.2992** 0.4604*** 0.3783** −0.0604 0.3052**
(0.1470) (0.1571) (0.1900) (0.0409) (0.1389)

Log diagonal of bounding box (m) 0.4856*** −0.0599**
(0.1464) (0.0270)

MI X log diagonal of bounding box (m) −0.9095*** −0.0708**
(0.1777) (0.0324)

OH X log diagonal of bounding box (m) 0.4411* 0.0955*
(0.2242) (0.0548)

TX X log diagonal of bounding box (m) −0.2355* −0.0298
(0.1317) (0.0286)

NC X log diagonal of bounding box (m) 0.3345* 0.0859***
(0.1953) (0.0288)

MS X log diagonal of bounding box (m) 0.2133 −0.0258
(0.3791) (0.0818)

GA X log diagonal of bounding box (m) −0.3786 0.1557**
(0.2869) (0.0612)

Log distance of second entrant to center (m) 1.0308***
(0.0140)

Number of firms within 500 m 0.0025 −0.0042 0.0022 −0.0010 0.0025
(0.0027) (0.0050) (0.0027) (0.0007) (0.0025)

Number of firms within 1000 m 0.0032** −0.0008 0.0030*** 0.0004 0.0031***
(0.0012) (0.0019) (0.0011) (0.0002) (0.0011)

Forest coverage 500 m circle (sq. km) −0.4546 −0.1981 −0.4912 −0.2718 −0.4574
(0.6940) (0.9196) (0.7210) (0.1806) (0.6599)

Forest coverage 1000 m circle (sq. km) 0.0509 0.0195 0.0607 0.0784 0.0516
(0.2401) (0.2247) (0.2390) (0.0644) (0.2275)

Field/grass coverage 500 m circle (sq. km) −0.6436 0.5433 −0.6050 −0.2055 −0.6407
(0.9205) (0.9000) (0.9390) (0.1903) (0.8736)

Field/grass coverage 1000 m circle (sq. km) 0.0463 −0.1223 0.0356 0.0368 0.0455
(0.2875) (0.2475) (0.2891) (0.0630) (0.2728)

Water coverage 500 m circle (sq. km) −0.4513 2.9466* −0.0333 0.5285 −0.4196
(1.2044) (1.5148) (1.2653) (0.5778) (1.1498)

Water coverage 1000 m circle (sq. km) 0.2991 −0.9328* 0.1924 −0.1935 0.2910
(0.3169) (0.5326) (0.3390) (0.1487) (0.3039)

R2 0.177 0.227 0.150 0.972 0.177
N 279 279 278 279 278
Kleibergen–Paap F statistic 42.40 1627.38
Hansen J statistic 4.76 5.54

Note: p < .10 (*), p < .05 (**), p < .01 (***). Standard errors clustered by state.
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TABLE 8 Regression Results for Restaurants

IV 1 IV 2

OLS 1st Stage: 2nd Stage: 1st Stage: 2nd Stage:
Log Market Log Log Market Log Log Market

Variable Size Distance Size Distance Size

Rate of market growth −1.0371 0.8568 −1.1947 −0.0800 −1.0389
(1.1491) (1.8118) (1.1623) (0.2842) (1.0881)

Log distance to center (m) −0.0340 0.0621 −0.0329
(0.0458) (0.1975) (0.0444)

Land price index −0.1003 −0.3250 −0.0684 0.0264 −0.1000
(0.2375) (0.3199) (0.2302) (0.0387) (0.2260)

Largest road interstate highway 0.9302*** 0.6281** 0.8141* 0.0530 0.9289***
(0.3216) (0.2858) (0.4315) (0.0404) (0.3065)

Largest road freeway/principle arterial 0.5511*** −0.0709 0.5525*** −0.0153 0.5511***
(0.1154) (0.1815) (0.1081) (0.0212) (0.1096)

Three-road intersection 0.1684* −0.1442 0.1757* 0.0079 0.1685*
(0.0965) (0.1336) (0.1018) (0.0218) (0.0916)

Four-road intersection 0.2850*** 0.1235 0.2634*** 0.0122 0.2847***
(0.1006) (0.1956) (0.0911) (0.0305) (0.0956)

Five-road intersection 0.3064** −0.0163 0.2927** −0.0184 0.3062***
(0.1222) (0.1967) (0.1210) (0.0277) (0.1157)

Log diagonal of bounding box (m) 0.2568* −0.0419
(0.1270) (0.0300)

MI X log diagonal of bounding box (m) 0.1266 −0.0763*
(0.2125) (0.0399)

OH X log diagonal of bounding box (m) 0.0025 −0.0392
(0.2548) (0.0507)

TX X log diagonal of bounding box (m) 0.1253 0.0215
(0.1346) (0.0191)

NC X log diagonal of bounding box (m) 0.3621** −0.0259
(0.1538) (0.0356)

MS X log diagonal of bounding box (m) 2.0985*** 0.1302
(0.4324) (0.0881)

GA X log diagonal of bounding box (m) 0.0530 −0.0625*
(0.1933) (0.0311)

Log distance of second entrant to center (m) 1.0007***
(0.0152)

Number of firms within 500 m −0.0061 −0.0558*** 0.0001 −0.0022 −0.0060
(0.0145) (0.0158) (0.0192) (0.0026) (0.0141)

Number of firms within 1000 m 0.0056* 0.0004 0.0055* 0.0005 0.0056*
(0.0032) (0.0031) (0.0031) (0.0008) (0.0031)

Forest coverage 500 m circle (sq. km) −0.0036 0.9972 −0.1194 0.2059 −0.0049
(0.6884) (0.8599) (0.7752) (0.1800) (0.6561)

Forest coverage 1000 m circle (sq. km) −0.1141 −0.2372 −0.0872 −0.0290 −0.1138
(0.1612) (0.1963) (0.1730) (0.0592) (0.1540)

Field/grass coverage 500 m circle (sq. km) −0.4654 3.1862** −0.7397 0.1585 −0.4686
(0.6112) (1.2555) (0.8535) (0.2329) (0.5823)

Field/grass coverage 1000 m circle (sq. km) −0.0444 −0.8408** 0.0262 −0.0261 −0.0436
(0.1806) (0.3237) (0.2357) (0.0601) (0.1734)

Water coverage 500 m circle (sq. km) −3.3385** −1.7108 −3.1573** 0.2815 −3.3364**
(1.5710) (2.0903) (1.5294) (0.5546) (1.4935)

Water coverage 1000 m circle (sq. km) 0.5949* −0.2055 0.6143* −0.0512 0.5951*
(0.3442) (0.4178) (0.3197) (0.1299) (0.3272)

R2 0.180 0.268 0.168 0.978 0.180
N 286 286 281 286 281
Kleibergen–Paap F statistic 29.49 1922.07
Hansen J statistic 5.51 6.25

Note: p < .10 (*), p < .05 (**), p < .01 (***). Standard errors clustered by state.
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TABLE 9 Regression Results for Hotels

IV 1 IV 2

OLS 1st Stage: 2nd Stage: 1st Stage: 2nd Stage:
Log Market Log Log Market Log Log Market

Variable Size Distance Size Distance Size

Rate of market growth −2.2372 1.8441 −2.3031 −0.0291 −2.2280
(1.5468) (1.3285) (1.6976) (0.2154) (1.4466)

Log distance to center (m) 0.0074 0.0393 0.0029
(0.0609) (0.3297) (0.0585)

Land price index 0.1558 −0.6666*** 0.1768 0.0436 0.1528
(0.1796) (0.1911) (0.2584) (0.0308) (0.1665)

Largest road interstate highway 1.0368*** 0.4164 1.0077*** 0.1768*** 1.0409***
(0.2306) (0.3461) (0.3685) (0.0497) (0.2153)

Largest road freeway/principle arterial 0.5175** −0.1277 0.5230** 0.0464 0.5168**
(0.2317) (0.2562) (0.2235) (0.0351) (0.2170)

Three-road intersection 0.3450** −0.0200 0.3438*** 0.0208 0.3452***
(0.1278) (0.1440) (0.1208) (0.0256) (0.1191)

Four-road intersection 0.3840** 0.4291*** 0.3696 0.0270 0.3860**
(0.1891) (0.1311) (0.2524) (0.0273) (0.1759)

Five-road intersection 0.6594*** 0.0440 0.6517*** −0.0094 0.6604***
(0.1550) (0.1620) (0.1764) (0.0369) (0.1451)

Log diagonal of bounding box (m) 0.3396** −0.0309
(0.1426) (0.0200)

MI X log diagonal of bounding box (m) −0.1871 0.0161
(0.1713) (0.0252)

OH X log diagonal of bounding box (m) 0.2824 0.0462
(0.2102) (0.0443)

TX X log diagonal of bounding box (m) −0.0973 0.0503***
(0.1359) (0.0155)

NC X log diagonal of bounding box (m) 0.2269 0.0213
(0.1397) (0.0311)

MS X log diagonal of bounding box (m) 0.7116*** 0.0297
(0.1701) (0.0482)

GA X log diagonal of bounding box (m) 0.2984 0.0908***
(0.2442) (0.0298)

Log distance of second entrant to center (m) 0.9726***
(0.0168)

Number of firms within 500 m −0.0013 0.0013 −0.0013 0.0000 −0.0013
(0.0029) (0.0021) (0.0026) (0.0003) (0.0027)

Number of firms within 1000 m 0.0004 −0.0004 0.0004 0.0000 0.0004
(0.0016) (0.0008) (0.0014) (0.0001) (0.0014)

Forest coverage 500 m circle (sq. km) 0.0651 2.5703*** −0.0345 0.1007 0.0792
(0.8269) (0.8542) (1.4368) (0.1450) (0.7664)

Forest coverage 1000 m circle (sq. km) −0.1543 −0.4567** −0.1356 −0.0150 −0.1570
(0.1738) (0.2078) (0.2453) (0.0400) (0.1609)

Field/grass coverage 500 m circle (sq. km) 1.4208* 0.0364 1.4066** −0.2373 1.4227**
(0.7551) (1.2515) (0.7094) (0.2729) (0.7044)

Field/grass coverage 1000 m circle (sq. km) −0.3877 −0.0361 −0.3841* 0.0824 −0.3882*
(0.2520) (0.3267) (0.2293) (0.0601) (0.2347)

Water coverage 500 m circle (sq. km) 0.6240 −0.1184 0.6038 0.1287 0.6269
(1.8309) (2.5191) (1.7525) (0.6004) (1.7059)

Water coverage 1000 m circle (sq. km) −0.1016 0.1842 −0.1069 0.0992 −0.1008
(0.3919) (0.4435) (0.3904) (0.1117) (0.3657)

R2 0.241 0.403 0.240 0.984 0.241
N 196 196 193 196 193
Kleibergen–Paap F statistic 19.27 2272.74
Hansen J statistic 6.75 9.03

Note: p < .10 (*), p < .05 (**), p < .01 (***). Standard errors clustered by state.
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TABLE 10 Regression Results for Three-star Hotels

IV 1 IV 2

OLS 1st Stage: 2nd Stage: 1st Stage: 2nd Stage:
Log Market Log Log Market Log Log Market

Variable Size Distance Size Distance Size

Rate of market growth −1.7374** −1.3857** −1.8771** −0.0371 −1.8299**
(0.7858) (0.5758) (0.7677) (0.2831) (0.7162)

Log distance to center (m) −0.1208 −0.2287 −0.1923*
(0.0934) (0.2229) (0.0998)

Land price index 0.5909* −0.2779 0.5623* 0.3756* 0.5719*
(0.3304) (0.4562) (0.3252) (0.2096) (0.3082)

Largest road interstate highway 0.4549 −0.2047 0.5492 0.1431 0.5174
(0.5095) (0.5067) (0.5704) (0.1391) (0.4784)

Largest road freeway/principle arterial 0.2947 −0.5132 0.2476 0.0049 0.2635
(0.5134) (0.3683) (0.4219) (0.1260) (0.4632)

Three-road intersection 0.0310 0.0172 0.0406 0.0019 0.0374
(0.1806) (0.1163) (0.1709) (0.0627) (0.1678)

Four-road intersection 0.0614 0.0989 0.0903 −0.0378 0.0805
(0.1950) (0.2141) (0.1624) (0.0643) (0.1760)

Five-road intersection 0.1514 0.1710 0.2016 0.0781 0.1847
(0.2476) (0.1570) (0.2446) (0.0688) (0.2273)

Log diagonal of bounding box (m) 0.5476*** −0.0688
(0.1293) (0.0660)

MI X log diagonal of bounding box (m) 0.0816 0.1419***
(0.1516) (0.0393)

OH X log diagonal of bounding box (m) −0.1412 −0.0570
(0.1099) (0.0776)

TX X log diagonal of bounding box (m) −0.0753 0.0435
(0.1340) (0.0459)

NC X log diagonal of bounding box (m) 0.2388 0.0165
(0.1789) (0.0615)

MS X log diagonal of bounding box (m) 0.9509** 0.2212*
(0.3599) (0.1279)

GA X log diagonal of bounding box (m) −0.0713 0.1081***
(0.0910) (0.0378)

Log distance of second entrant to center (m) 0.9243***
(0.0665)

Number of firms within 500 m −0.0018 −0.0021 −0.0020 −0.0005 −0.0019
(0.0017) (0.0032) (0.0018) (0.0007) (0.0016)

Number of firms within 1000 m 0.0006 0.0001 0.0006 0.0001 0.0006
(0.0004) (0.0008) (0.0004) (0.0002) (0.0004)

Forest coverage 500 m circle (sq. km) 1.5246 −0.8346 1.4507 0.1327 1.4756
(1.0800) (1.5022) (0.9896) (0.7187) (0.9845)

Forest coverage 1000 m circle (sq. km) −0.4308 0.3594 −0.4080 −0.0068 −0.4157
(0.3207) (0.3647) (0.2900) (0.1467) (0.2936)

Field/grass coverage 500 m circle (sq. km) 3.5179* −0.1188 3.5774** −0.6064 3.5573**
(1.8696) (1.5523) (1.7000) (0.4293) (1.7118)

Field/grass coverage 1000 m circle (sq. km) −1.1475** −0.0687 −1.1731*** 0.0999 −1.1645***
(0.4580) (0.3692) (0.4150) (0.1173) (0.4152)

Water coverage 500 m circle (sq. km) −2.0660 −0.2568 −2.1651 −1.3025 −2.1317
(1.5716) (1.9443) (1.4869) (1.4209) (1.4351)

Water coverage 1000 m circle (sq. km) −0.0997 −0.2357 −0.1176 0.4347* −0.1116
(0.4878) (0.3369) (0.4312) (0.2484) (0.4472)

R2 0.202 0.527 0.192 0.919 0.197
N 174 174 170 174 170
Kleibergen–Paap F statistic 7.84 110.13
Hansen J statistic 7.39 7.413

Note: p < .10 (*), p < .05 (**), p < .01 (***). Standard errors clustered by state.
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2006. In the OLS and IV estimates for gas stations in Table 11, there is no longer a statistically
significant impact of the rate of market growth. The same is true for the restaurants, hotels, and
three-star hotels (not reported due to space constraints).

Our results for market size thresholds resemble those in Bresnahan and Reiss (1990), who
consider a static entry game, first with simultaneous and then with sequential moves. They find
that the breakeven market size of monopoly and duopoly markets for automobile dealers de-
creases with positive market growth (as measured by population growth) and increases with
negative market growth. This further supports our conclusion that SPE can be a more natural
equilibrium concept than SEQPE.

8. Conclusions

� In this article, we contribute to a growing literature in empirical IO by developing and
analyzing a dynamic model of entry around a model of spatial competition. In our model, firms
decide when and where to enter a growing market. In a SEQPE, firms pre-commit to a time and
location of entry, with preemption ruled out by assumption. By contrast, in a SPE, the threat of
preemption is operative until rents equalize. In analyzing how this affects the timing and location
of entry, we show that the threat of preemption leads to premature entry, less extreme locations,
and the dissipation of rents.

In our empirical application, we apply this model to study the timing and location of first
entry by gas stations, restaurants, and hotels in geographically isolated markets around highway
exits and intersections. We show that the nature of the game being played generates testable pre-
dictions for the relationship between market size at the time of first entry and the market growth
rate. We find that gas stations are consistent with SPE but restaurants and hotels are not. This
finding may be explained by institutional details, in particular the fact that restaurants and hotels
combine spatial differentiation with other dimensions of product differentiation. Indeed, when
we isolate spatial differentiation by examining three-star hotels, the data are again consistent
with SPE. Taken together, we conclude that SPE can be a more natural equilibrium concept than
SEQPE for understanding the evolution of growing markets.

References

Anderson, S., Goeree, J., and Ramer, R. “Location, Location, Location.” Journal of Economic Theory, Vol. 77 (1997),
pp. 102–127.

Arcidiacono, P., Bayer, P., Blevins, J., and Ellickson, P. “Estimation of Dynamic Discrete Choice Models in Contin-
uous Time with an Application to Retail Competition.” Review of Economic Studies, Vol. 83 (2016), pp. 889–931.

Argenziano, R. and Schmidt-Dengler, P. “Competition, Timing of Entry and Welfare in a Preemption Game.” Eco-
nomics Letters, Vol. 120 (2013), pp. 509–512.

Bresnahan, T. and Reiss, P. “Entry in Monopoly Markets.” Review of Economic Studies, Vol. 57 (1990), pp. 531–553.
Butters, A. and Hubbard, T. “Industry Structure, Segmentation and Quality Competition in the U.S. Hotel Industry.”

Journal of Industrial Economics, Vol. 71 (2023), 491–537.
Collard-Wexler, A. “Demand Fluctuations in the Ready-Mix Concrete Industry.” Econometrica, Vol. 81 (2013), pp.

1003–1037.
d’Aspremont, C., Gabszewicz, J., and Thisse, J. “On Hotelling’s “Stability in Competition”.” Econometrica, Vol. 47

(1979), pp. 1145–1150.
Economides, N. “The Principle of Minimum Differentiation Revisited.” European Economic Review, Vol. 24 (1984),

pp. 345–368.
Economides, N. “Minimal and Maximal Product Differentiation in Hotelling’s Duopoly.” Economics Letters, Vol. 21

(1986), pp. 67–71.
Ericson, R. and Pakes, A. “Markov-Perfect Industry Dynamics: A Framework for Empirical Work.” Review of Economic

Studies, Vol. 62 (1995), pp. 53–82.
Fang, L. and Yang, N. “Aggressive Growth in Retail: A Trade-off Between Deterrence and Survival?” Working Paper,

University of British Columbia, Vancouver, 2019.
Fang, L. and Yang, N. “Measuring Preemptive Entry in Dynamic Oligopoly Games.” Working Paper, University of

British Columbia, Vancouver, 2022.

C© The RAND Corporation 2024.

 17562171, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1756-2171.12462 by U

niversity O
f Pennsylvania, W

iley O
nline L

ibrary on [12/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



198 / THE RAND JOURNAL OF ECONOMICS

Fudenberg, D. and Tirole, J. “Preemption and Rent Equalization in the Adoption of New Technology.” Review of
Economic Studies, Vol. 52 (1985), pp. 383–401.

Gilbert, R. and Harris, R. “Competition with Lumpy Investment.” Rand Journal of Economics, Vol. 15 (1984), pp.
197–212.

Hotelling, H. “Stability in Competition.” Economic Journal, Vol. 39 (1929), pp. 41–58.
Igami, M. and Yang, N. “Unobserved Heterogeneity in Dynamic Games: Cannibalization and Preemptive Entry of

Hamburger Chains in Canada.” Quantitative Economics, Vol. 7 (2016), pp. 483–521.
Kleibergen, F. “Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression.” Economet-

rica, Vol. 70 (2002), pp. 1781–1803.
Lambertini, L. “Equilibrium Locations in a Spatial Model with Sequential Entry in Real Time.” Regional Science and

Urban Economics, Vol. 32 (2002), pp. 47–58.
Mazzeo, M. “Product Choice and Oligopoly Market Structure.” Rand Journal of Economics, Vol. 33 (2002), pp. 221–

242.
Neven, D. “Two Stage (perfect) Equilibrium in Hotelling’s Model.” Journal of Industrial Economics, Vol. 33 (1985), pp.

317–325.
Neven, D. “Endogenous Sequential Entry in a Spatial Model.” International Journal of Industrial Organization, Vol. 5

(1987), pp. 419–434.
Reinganum, J. “Market Structure and the Diffusion of New Technology.” Bell Journal of Economics, Vol. 12 (1981a),

pp. 618–624.
Reinganum, J. “On the Diffusion of New Technology: A Game Theoretic Approach.” Review of Economic Studies, Vol.

48 (1981b), pp. 395–405.
Riordan, M. “Regulation and Preemptive Technology Adoption.” Rand Journal of Economics, Vol. 23 (1992), pp. 334–

349.
Schmidt-Dengler, P. “The Timing of New Technology Adoption: The Case of MRI.” Working Paper, University of

Mannheim, Mannheim, 2006.
Shen, Q. and Villas-Boas, M. “Strategic Entry Before Demand Takes Off.” Management Science, Vol. 56 (2010), pp.

1259–1271.
Simon, L. and Stinchcombe, M. “Extensive Form Games in Continuous Time: Pure Strategies.” Econometrica, Vol. 57

(1989), pp. 1171–1214.
Smirnov, V. and Wait, A. “Innovation in a Generalized Timing Game.” International Journal of Industrial Organization,

Vol. 42 (2015), pp. 23–33.
Sweeting, A. “Dynamic Product Positioning in Differentiated Product Markets: The Effect of Fees for Musical Perfor-

mance Rights on the Commercial Radio Industry.” Econometrica, Vol. 81 (2013), pp. 1763–1803.
Tabuchi, T. and Thisse, J. “Asymmetric Equilibria in Spatial Competition.” International Journal of Industrial Organi-

zation, Vol. 13 (1995), pp. 213–227.
Zheng, F. “Spatial Competition and Preemptive Entry in the Discount Retail Industry.” Working Paper no. 16–37,

Columbia University, New York, 2016.
Zhou, D. and Vertinsky, I. “Strategic Location Decisions in a Growing Market.” Regional Science and Urban Eco-

nomics, Vol. 31 (2001), pp. 523–533.

Supporting information

Additional supporting information may be found online in the Supporting Information section at
the end of the article.

Figure 1: 2001 vegetation data. Blue = water, purple/red/black = developed, yellow = field and
grass, green = forest, brown = shrub and herb
Table 1: 2001 vegetation data summary statistics.
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