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Abstract. A four-year series of subjective probability forecasting tournaments sponsored
by the U.S. intelligence community revealed a host of replicable drivers of predictive
accuracy, including experimental interventions such as training in probabilistic reasoning,
anti-groupthink teaming, and tracking of talent. Drawing on these data, we propose a
Bayesian BIN model (Bias, Information, Noise) for disentangling the underlying processes
that enable forecasters and forecasting methods to improve—either by tamping down bias
and noise in judgment or by ramping up the efficient extraction of valid information from
the environment. The BIN model reveals that noise reduction plays a surprisingly con-
sistent role across all three methods of enhancing performance. We see the BIN method as
useful in focusing managerial interventions on what works when and why in a wide range
of domains. An R-package called BINtools implements our method and is available on the
first author’s personal website.
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1. Introduction
Forecasters must often work under less than optimal
conditions: too little or too much information, as well
as data of uncertain or questionable reliability. Fore-
casters must make their best guesses about whether
an investment will yield a target return, an unusual
tumor warrants surgery, or an adversary is violating
an arms-control treaty (Armstrong 2001, Kahneman
2011, Tetlock and Gardner 2016).

Errors in extracting predictive signals are inevita-
ble, and from a statistical perspective, these errors
can be decomposed into bias and noise. Bias reflects
predictable error. For instance, individuals might
display systematic tendencies to make more false-
positive judgments (more disappointing investments,
unnecessary operations, or unfounded accusations) or
more false-negative judgments (missing more oppor-
tunities to profit, save lives, or call out cheaters). The
research literature on biases is voluminous (Gilovich
et al. 2002, Brighton and Gigerenzer 2015). Bias is
systematic, so it should be possible, at least in prin-
ciple, to identify its direction and magnitude.

Noise is unpredictable, nonsystematic error. By
definition, it is impossible to anticipate the direction
or magnitude of random errors. Kahneman et al.
(2016) argue that the research literature on noise
is much less developed than the literature on bias

because noise is more difficult for human observers,
wired up to detect patterns, to see or even accept. It is
easy to construct causal explanations of bias that
invoke character flaws in the forecasters—hubris, ri-
gidity, prejudice, favoritism—but noise defies causal
explanation or categorization.
Separating noise from bias in probabilistic forecasts

of a single event is difficult, arguably impossible.
However, if we have access to forecasters’ predictions
about multiple events, we can disentangle expected
levels of noise and bias, and treat their relative mag-
nitudes as an open empirical question. To this end, we
introduce the BIN model, a Bayesian approach to
decomposing forecasting accuracy into three compo-
nents: bias, partial information, and noise. Our model
contributes to the literature on Bayesian methods of
cognitive modeling (e.g., Lee 2018) by describing
differences between two groups of forecasters, which
we denote as control and treatment, and hence by
allowing us to carry out useful inference, such as
calculating the posterior probabilities of the treat-
ment reducing bias, diminishing noise, or increas-
ing information.
The remainder of the article applies the model to

data from a multiyear, geopolitical forecasting tour-
nament to explore the mechanisms via which three
experimental interventions—training, teaming, and
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tracking of talent—improved forecasts (Mellers et al.
2014). The BIN model reveals that noise reduc-
tion plays the dominant role in the effectiveness of
each intervention, even that of debiasing training.
Noise is a pervasive obstacle to judgmental accuracy,
and noise reduction may be a more cost-effective
method of boosting accuracy than is previously
thought (Kahneman et al. 2016).

2. Modeling Bias, Information, and Noise
in Forecasts

In messy real-world situations, forecasters are bound
to make mistakes and misinterpret signals from
the environment. We decompose forecasters’ signal-
extraction process into three components: bias, in-
formation, and noise. Bias refers to systematic devi-
ations between forecasters’ interpretation of signals
and the true informational value of those signals—
deviations that can take the form of either over- or
underestimation of probabilities. Partial information
is the informational value of the subset of signals
that forecasters use, relative to full information that
would permit forecasters to achieve omniscience.
Finally, noise is the residual variability that is inde-
pendent of the outcome. To illustrate, we start with a
simple example.

Example 1. A researcher in a multiround game flips a
fair coin twice and forecasters predict the probability
of two heads. There are four equally likely outcomes:
TT, HT, TH, and HH.

Imagine a forecaster with zero bias and zero noise.
Unless the forecaster finds new information, the fore-
caster should treat the four outcomes as equally likely
and predict 0.25, the base rate for the outcome, HH.
Suppose now that the forecaster gets new (partial) in-
formation, and is told the outcome of the first toss
beforemaking a prediction. The forecaster constructs a
revised prediction for HH. If the first toss is a T, the
two-head sequence would be impossible, and the
forecaster would predict 0.0 for HH. If the first toss
is H, the forecaster would predict 0.5 for HH (the
probability of a second H). So, over multiple rounds,
the forecaster would predict 0 or 0.5, with equal
probability, depending on the outcome of the first toss.
This variation is neither noise nor bias. It is attributable
to partial information and produces predictions that
are, on average, the base rate of 0.25.

In this example, the forecaster’s prediction is equally
likely to be 0 or 0.5, so the mean is 0.25, the variance is
0.0625, and the covariance between the predictions
and outcomes is 0.0625. The identical variance and
covariance is no coincidence. If forecasters are ra-
tional Bayesian agents minimizing a proper scoring
function, such as the Brier score, the variance in their

predictions is entirely driven by partial information
(Satopää et al. 2016).
Consider now a more realistic case with bias. In

particular, suppose a biased but noise-free forecaster
thinks a fair coin is unfair, with the probability
of heads being 0.6. A forecaster with no partial in-
formation should always predict 0.6 × 0.6 � 0.36 for
HH, over-shooting the base rate of 0.25. If the fore-
caster observes the first toss, the forecaster would
predict 0.0 or 0.6 for HH, depending on whether the
first toss was a T or H, respectively. On average,
the forecaster’s prediction is now 0.3, which exceeds
the base rate.
Lastly, imagine a noisy but bias-free forecaster.

The forecaster does not realize that the researcher
gave the result of an unrelated coin toss, so, the
forecaster predicts 0.0 or 0.5 for HH, depending on
whether the unrelated toss is a T or H, respectively.
But because this toss is independent of the flips
that determine the outcome, variability in the fore-
caster’s prediction does not correlate with the out-
come. Suppose now that the researcher tells the
forecaster the outcome of two flips, only one of which
determines the outcome. The forecaster then pre-
dicts 1.0 if the researcher reports HH; otherwise, the
forecaster predicts 0.0. The mean of the forecaster’s
predictions is 0.25 (0.25 × 1 + 0.75 × 0) and the vari-
ance is 0.1875 (0.25 × (0.25 − 1)2 + 0.75 × (0.25 − 0)2).
The forecaster’s average prediction is the base rate,
so the forecaster is unbiased. Not all variability in
the forecaster’s predictions, however, covaries with
outcomes. There are eight equally likely cases. In 5/8
of them, the forecaster correctly predicts 0.0; in 1/8,
the forecaster correctly predicts 1.0; and in the remaining
2/8 cases the forecaster’s prediction is incorrect. The
covariance between the forecaster’s predictions and
the outcomes is (5/8) × (0.25− 0) × (0.25− 0) + (1/8)
×(0.25− 1) × (0.25− 1) + (2/8) × (0.25− 1) × (0.25− 0) �
0.0625, which aligns with our earlier noise-free and
unbiased forecasterwho observed thefirst toss. In this
example, partial information is 0.0625 and noise is
0.125 (0.1875 − 0.0625).
Although the components in the BIN model—bias,

noise, and (inevitably partial) information—have an
intuitive definition, there are alternative models that
could capture their effects. Given that ourmain goal is
to disentangle how an intervention improves fore-
casting, we imposed the requirement that our model
describes two groups of forecasters jointly. Only then
can we make significance statements about common
mechanisms by which treatments affect accuracy. For
instance, we can estimate the probability that the
treatment group is 20%more accurate than the control
group, and that 30% of the difference is attributable to
less bias. Even though ourmodel could be applied to a
single group, statistical comparisons of two groups
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would not be possible if the groups were analyzed
independently. We need a joint probability model to
make joint statements about two groups.

Borrowing from the statistical theory of general-
ized linear models (McCullagh and Nelder 1989) and
probit regression (Bliss 1934), we model the binary
event with a hypothetical continuous variable, the
accumulation of all relevant signals along which the
event happens if and only if the variable is positive.
We follow Satopää et al. (2016) and posit a signal
universe that contains all past and future signals of
positive or negative relevance to the event. In this
realm, the event happens if and only if the sum of all
signals is positive.

Forecasters sample and interpret signals with varying
skill and thoroughness. The entire signal universe may
not be available at any given time, and forecasters are
unlikely to predict the future perfectly because they are
missing signals that may become available later. The
unavailable signals represent aleatory uncertainty.

In addition to relevant signals, the universe con-
tains irrelevant signals. Forecasters may sample rel-
evant signals (increasing partial information) or ir-
relevant signals (creating noise). Forecasters may
center signals incorrectly (creating bias). We can
model the accumulation of these signals with con-
tinuous variables that exhibit degrees of bias, partial
information, and noise in their forecasts. These var-
iables summarize forecasters’ (often noisy and bi-
ased) interpretations of how the signals they have
observed relate to the outcome.

There are, of course, many possible sources of noise
in forecasters’ judgments, including the inherent nois-
iness of memory and inference processes in cognitive
systems (Wyart et al. 2012, Kahana et al. 2018), and
noisiness in translating private often vague hunches
into a probability metric (Budescu et al. 2014,
Friedman et al. 2018, Van Der Bles et al. 2020). Our
focus is, however, on the effects of noise, not the
exact causes. To invoke the old distinction between
“lumpers,” who group things into broad categories,
and “splitters,” who divide things into smaller cat-
egories, we play the role of lumpers here. Our model
defines noise as any random variability (on the probit
scale) that does not correlate with the outcome.

There are three benefits to modeling outcomes and
forecasters with continuous variables: (a) we can
represent partial information as the covariance be-
tween forecasters’ interpretations and the outcome-
determining variable; (b) when we introduce mean-
zero noise into forecasters’ interpretations, the variance
of the forecasts increases, but not the mean or partial
information of signal interpretation; (c) when we in-
troduce bias into forecasters’ interpretations, the
mean of forecasts changes, but not the variance or
partial information of signal interpretation. Bias and

noise have distinct roles in forecasters’ judgments
that we can separate.
In statistical terms, the outcome-determining var-

iable and the forecasters’ interpretations of signals are
latent variables because they are not directly observed
by the experimenter. Our first modeling assumption
concerns the distribution of these variables.

Assumption 1. The latent variables that determine the
outcome and the forecasters’ interpretations of signals are
normally distributed.

Continuous latent variables are often modeled as
normally distributed variables (e.g., probit regression
in Bliss 1934, factor analysis and item response the-
ory in Everett 2013). We make this assumption for
analytic tractability. Furthermore, if each forecaster
interprets a large number of independent signals and
those signals are not heavy tailed, the central limit
theorem justifies the normality assumption.
Turning to the technical details of the BIN model,

consider first a single forecaster predicting an un-
known event. Denote this event with Y ∈ {0, 1} such
that Y � 1 if the event happens and Y � 0 if the event
does not. The outcome is determined by a normally
distributed variable Z∗ such that Y � 1(Z∗ > 0), where
the indicator function 1(E) equals 1 if E is true; oth-
erwise, 0. The expected frequency of this event must
align with a given base rate, p∗ ∈ (0, 1), which we can
do, without loss of generality, by fixing Var(Z∗) � 1 and
choosing the mean μ∗ � E[Z∗] such that P(Z∗ > 0) � p∗.
We then have:

p∗ � P Y � 1( ) � P Z∗ > 0
( )

� 1 − P Z∗ ≤ 0
( ) � 1 −Φ −μ∗( ) � Φ μ∗( )

,

where Φ(·) is the cumulative distribution function
(CDF) of a standard normal distribution. Inverting
this function gives us μ∗ � Φ−1(p∗).
A forecaster assigns the probability p0 ∈ (0, 1) to the

event {Z∗ > 0} based on a normally distributed var-
iable Z0 that represents the forecaster’s interpretation
of the signals. The variable Z0 describes the fore-
caster’s bias, noise, and partial information. Themore
Z0 covaries with Z∗, the more information the fore-
caster has about the event. If Z0 and Z∗ are perfectly
correlated, a forecaster with no noise or bias can
deduce the value ofZ∗ and perfectly predict the event.
More frequently, forecasters must work with partial
information. For instance, they may closely follow
news about British politics, which strengthens their
signals, but not enough to predict Brexit with cer-
tainty. Following Satopää et al. (2016), we introduce
partial information in the BIN model with the pa-
rameter Cov(Z0,Z∗) � γ0. The greater γ0, the more Z0
covaries with Z∗ and the better the forecaster.
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Given that both Z0 and Z∗ are on continuous scales,
bias equals the difference between their means. Noise
equals any variability inZ0 that does not covarywithZ∗.
If the mean of the forecaster’s interpretation is
E[Z0] � μ∗ + μ0, then bias is E[Z0] − E[Z∗] � μ0. Noise
is the remaining variability of Z0 after removing all
covariance with Z∗ : Var(Z0) − Cov(Z∗,Z0) � δ0.

To summarize, Z0 and Z∗ follow a multivariate
normal distribution:

Z∗
Z0

( )
∼ N

μ∗
μ∗ + μ0

( )
,

1 γ0

γ0 γ0 + δ0

( )( )
,

where

Outcome : Y � 1 Z∗ > 0
( )

Bias : μ0 � E Z0[ ] − E Z∗[ ]
Information : γ0 � Cov Z0,Z∗( )

Noise : δ0 � Var Z0( ) − Cov Z0,Z∗( )
Bias, μ0, can take on any value between negative and
positive infinity, and causes the forecaster’s inter-
pretation Z0 to be either too high (μ0 > 0) or too low
(μ0 < 0). Noise, δ0, ranges from no noise (δ0 � 0) to
infinite noise (δ0 � ∞); and partial information, γ0,
varies from no information (γ0 � 0) to perfect infor-
mation (γ0 � 1). The information component is boun-
ded by 1 because it represents covariability with Z∗
that only has variance 1. If the expert is unbiased
(μ0 � 0), noise-free (δ0 � 0), andhasperfect information
(γ0 � 1), then Z0 � Z∗ and γ0 � Var(Z0) � Var(Z∗) � 1.

The forecaster reports the probability of the event
{Y � 1}, not the interpretation Z0, so the model de-
scribes this process of converting the interpretation
into a probability prediction. The rational Bayesian
belief of Y given Z0 is E[Y|Z0] � P[Z∗ > 0|Z0]. The
standard results on the conditional distributions of
normal random variables (e.g., Ravishanker and Dey
2001) show:

Z∗|Z0 ∼ N μ∗ + γ0

γ0 + δ0
Z0 − μ∗ − μ0
( )

, 1 − γ2
0

γ0 + δ0

( )
.

Thus,

P Z∗ > 0|Z0
[ ] � 1 −Φ −μ∗ + γ0

γ0+δ0 Z0 − μ∗ − μ0
( )̅̅̅̅̅̅̅̅̅̅̅
1 − γ2

0
γ0+δ0

√
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� Φ

μ∗ + γ0
γ0+δ0 Z0 − μ∗ − μ0

( )̅̅̅̅̅̅̅̅̅̅̅
1 − γ2

0
γ0+δ0

√
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (1)

where the last step follows from the symmetry of the
normal distribution.

Unfortunately, forecasters’ bias and noise are not
identifiable from the probability predictions in Equa-
tion (1). This perfect-rationality equation assumes that

forecasters know the level of bias and noise in their
predictions and automatically self-correct so that
their final conditional probabilities P[Z∗ > 0|Z0] ex-
hibit zero noise or bias. Indeed, the predictions in (1)
are equal (in distribution) to unbiased and noise-free
predictions with γ2

0
γ0+δ0 amount of information. Because

we cannot distinguish between this case and the
original setting in (1), where the predictions were
corrected for bias and noise, the components cannot
be identified.
To identify bias, information, and noise, we only

need to make the plausible, bounded-rationality as-
sumption that the forecaster is not aware of the noise
and bias in the interpretation Z0, and believes that
δ0 � 0 and μ0 � 0.
In theory, this is likelier to holdwhenwe use proper

scoring rules, such as the Brier score, to evaluate fore-
casting accuracy (Brier 1950, Gneiting and Raftery
2007). Proper scoring rules incentivize honest report-
ing. Forecasters trying to minimize their Brier score
should strive to remove any known biases and noise1

from their predictions. Assuming a Brier-score min-
imization mindset, any bias or noise remaining in
final predictions should be bias and noise of which
the forecaster was unaware.
Plugging in this potential for misbeliefs into (1), the

forecaster now predicts:

P Z∗ > 0|Z0
[ ] � Φ

Z0̅̅̅̅̅̅̅̅̅
1 − γ0

√( )
.

The resulting probability prediction can exhibit both
bias and noise and allows us to study the bias, noise,
and partial information in the forecaster’s judgments.
We can extend the BIN model to groups of multi-

ple forecasters, which we call control and treatment
groups and designate their predictions and compo-
nents of accuracy with subscripts of 0 and 1, re-
spectively. As before, each forecaster bases a pre-
diction on different signals aboutZ∗, and the expected
levels of bias, noise, and information are described by
the model components. Allowing each forecaster to
have a different set of parameters would lead to
parameter proliferation. For interpretive and tracta-
bility reasons, we want only one bias, noise, and in-
formation parameter per group of forecasters, which
we can achieve by treating all forecasters of the same
type or group symmetrically and as exchangeable.
Section 5.3 explores relaxing this symmetry assumption.

Assumption 2. Forecasters within each group are
exchangeable.

Under exchangeability, all forecasters in the same
group can make different forecasts based on different
interpretations but have the same expected levels
of bias, noise, and information. Denote the expected
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levels of bias, information, and noise for forecasters
in the control and treatment groups with (μ0, γ0, δ0)
and (μ1, γ1, δ1), respectively. Specifically, the jth fore-
caster in group g ∈ {0, 1} predicts Y � 1(Z∗ > 0) based
on the interpretation Zg,j ∼ N (μ∗ + μg, γg + δg), and
Cov(Zg,j,Z∗) � γg. A summary of the BIN model is:

Outcome :Y � 1 Z∗ > 0
( )

Control group :

Bias :
μ0 � E Z0,j

[ ] − E Z∗[ ]
Information :

γ0 � Cov Z0,j,Z∗( )
Noise :

δ0 � Var Z0,j
( ) − Cov Z0,j,Z∗( )

jth forecaster′s prediction :

p0,j � Φ
Z0,j̅̅̅̅̅
1−γ0

√
( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Treatment group :

Bias :
μ1 � E Z1,j

[ ] − E Z∗[ ]
Information :

γ1 � Cov Z1,j,Z∗( )
Noise :

δ1 � Var Z1,j
( ) − Cov Z1,j,Z∗( )

jth forecaster′s prediction :

p1,j � Φ
Z1,j̅̅̅̅̅
1−γ1

√
( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Thus far,we have described the BINmodel for a single
event.We nowextend themodel tomultiple events by
assuming that predictions and outcomes are inde-
pendent and identically distributed across events.

Assumption 3. Outcomes and predictions are independent
and identically distributed across events.

This assumption has two parts. First, the base rate
and the forecasters’ expected levels of bias, noise,
and partial information are the same across events.
Forecasters can still have varying interpretations for
each event. For easier-to-forecast events, forecasters’
interpretations cluster on the correct side of zero,
with most predictions pointing in the correct direc-
tion. For harder-to-forecast events, the interpreta-
tions spread widely around zero, with predictions
pointing in opposing directions.
Figure 1 illustrates this with two sets of predictions

and interpretations drawn from the BIN model with
p∗ � 0.5, μ0 � 0, γ0 � 0.4, and δ0 � 0. The gray histo-
gram represents an easier-to-forecast event: all fore-
casters’ interpretations are negative, leading to small
probability predictions. Given that this event did
not happen, forecasters are accurate. By contrast,
the black histogram represents a harder-to-forecast
event: the forecasters’ interpretations point in dif-
ferent directions, leading to probability predictions
that are spread almost symmetrically around 0.5. This
event happened, but few forecasters are accurate.
Second, predictions and outcomes are independent

across events, conditional on the expected values of
bias, information, and noise. Put differently, fore-
casters’ predictions of an outcome provide no addi-
tional information about their predictions of other
outcomes, as long as we know the base rate and the
parameters representing forecasters’ bias, noise, and
information. This is analogous to the assumption of
local independence in item response theory (e.g.,
Henning 1989).
To illustrate, consider forecasters with low bias,

low noise, and high information—a profile condu-
cive to accuracy. Conditional on this profile, knowing
these forecasters’ predictions were 25% for, say,
German-Spanish bond yield spreads, tells us nothing

Figure 1. Histograms of Interpretations and Probability Predictions for an Easier-to-Forecast (Gray) and a
Harder-to-Forecast (Black) Event

Notes. The event associated with the black histogram occurred, whereas the event associated with the gray histogram did not. Both sets are
drawn from a model with the same parameters, illustrating its capacity to capture tasks of widely varying difficulty.
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about their predictions about, say, the Syrian civil
war. All we can say is that they are likely to make
predictions that are directionally accurate and rela-
tively extreme (closer to 0.0 and 1.0). The basis for this
claim is knowledge of their high information and
low noise and bias, not of any specific predictions of
earlier events.

Taken together, Assumptions 2 and 3 imply that
our parameters can be interpreted as average levels
of bias, noise, and information within each group of
forecasters and across questions. These assumptions
help us achieve our goal of understanding both groups’
average behavior and making general, not question-
specific, statements about bias, information, and noise.
Although we cannot make statements at the individual-
forecaster level, we can consider different sets of fore-
casters per event and different numbers of forecasters for
each event. Forecasters rarely predict exactly the same
events at the same time, so the exchangeability as-
sumption gives us statistical power.

The BIN model strikes a balance between compu-
tational tractability and realism. Our assumptions
allow us to manage parameter constraints inherent
in modeling partial information (see Section 5.3 for
details) and to compute the likelihood in constant
time (for details, see Section 2 in the supplementary
material). No model is an exact description of real-
ity, and violations of the modeling assumptions can
distort possible inferences. For instance, empirical
data may not follow the normal distribution exactly
(violation of Assumption 1), or there can be some
degree of dependence across events (violation of
Assumption 3). To evaluate the impact of such vio-
lations, we subjected our model to sensitivity ana-
lyses on simulated data with varying degrees of de-
pendence across outcomes and also on latent variables
thatweresimulated fromthe (multivariate) t-distribution
instead of the multivariate normal distribution. In
both cases, our estimation process was not highly
sensitive to violations of the assumptions and could
recover the true parameters with reasonable accu-
racy. These results are presented in Section 4 of the
supplementary material.

3. Model Estimation
We estimate model parameters with Bayesian sta-
tistics that treat parameters as randomvariables.With
any Bayesian model, we need the prior distribution of
the parameters that captures the researcher’s uncer-
tainty about parameters before observing the data
and the likelihood that specifies the probability of
the data as a function of the parameters. We use the
Bayes’ rule to update the prior distribution in light

of the observed data. The updated or posterior
distribution describes all uncertainty in the pa-
rameters after accounting for the researcher’s prior
beliefs and data.
Section 2 describes the likelihood function (with

technical details in Appendix A). For the prior dis-
tribution, we assume a uniform distribution that
posits all parameter configurations across the two
groups of forecasters to be a priori equally likely.
With this assumption, the prior distribution has low
impact on the final posterior inference and the data
drive the final results. Typically, the posterior dis-
tribution cannot be derived analytically. We estimate
it with Markov chainMonte Carlo (MCMC) methods.
The final output is a sample from the joint posterior
distribution of the parameters.
We use this output to compare the parameters of

different groups of forecasters. First, we provide the
posterior means of the bias, noise, and information
parameters. Second, to understand the uncertainty in
the parameters, we give 95% credible intervals. Third,
by comparing components within each draw of the
posterior sample, we can give posterior probabilities
to the parameter estimates of the likelihood of the
treatment group outperforming the control group.
Fourth, we calculate how much the treatments im-
prove accuracy via changes in the expected bias,
noise, and information.
In our model, the expected Brier score of a fore-

caster in group g ∈ {0, 1} is

BrS μg, δg, γg, μ
∗( ) � EY,Zg Y −Φ

Zg̅̅̅̅̅̅̅̅̅
1 − γg

√( )[ ]2{ }
, (2)

where Y � 1(Z∗ > 0), Z∗ ∼ N (μ∗, 1), Zg ∼ N (μ∗ + μg,
γg + δg), and Cov(Zg,Z∗) � γg. We present the ana-
lytical expression of (2) and its derivation in Appen-
dix B. To illustrate how the expected Brier score be-
haves as a function of bias, information, and noise,
Figure 2 fixes μ∗ � 0 and presents the expected Brier
score for different combinations of μg, δg, and γg. The
level of information γg changes from 0.25 in the left
panel to 0.50 in the middle and finally to 0.75 in the
right panel. The x- and y-axes in each panel vary the
levels of bias, μg, and noise, δg, over the ranges [−1 , 1]
and [0, 2], respectively. The expected Brier score is
well behaved: it increases with bias and noise but
decreases with information.
The expected treatment effect is

ΔBrS � BrS μ0, δ0, γ0, μ
∗( ) − BrS μ1, δ1, γ1, μ

∗( )
.

Intuitively, the individual contribution of each pa-
rameter could be isolated by changing that parameter
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and observing the change in the expected Brier score.
Those contributions would be:

Bias : BrS μ0, δ0, γ0, μ
∗( ) − BrS μ1, δ0, γ0, μ

∗( )
Information : BrS μ0, δ0, γ0, μ

∗( ) − BrS μ0, δ0, γ1, μ
∗( )

Noise : BrS μ0, δ0, γ0, μ
∗( ) − BrS μ0, δ1, γ0, μ

∗( )
The problem, however, is that the parameters inter-
act; the effect of any given parameter depends on the
other two parameters. The sum of the contributions
does not necessarily equal the sum of the overall change,
ΔBrS. To solve this problem, parameter changes are
computed sequentially. For instance, the contribu-
tions due to changing bias first, then information, and
finally noise are:

Bias : BrS μ0, δ0, γ0, μ
∗( ) − BrS μ1, δ0, γ0, μ

∗( )
Information : BrS μ1, δ0, γ0, μ

∗( ) − BrS μ1, δ0, γ1, μ
∗( )

Noise : BrS μ1, δ0, γ1, μ
∗( ) − BrS μ1, δ1, γ1, μ

∗( )
These differences form a telescoping sum that equals
the overall change, ΔBrS. But the order of the pa-
rameters matters. For instance, in the previous cal-
culations, we considered the order (μ, γ, δ): bias first,
then information, and noise last. If we had computed
these contributions in a different order, such as (γ, δ, μ),
we would have gotten different contributions, and it
is unclear which order should be preferred.

Fortunately, we can use cooperative game theory to
solve our problem by treating bias, noise, and in-
formation as three teammembersworking together to
improve accuracy. In cooperative game theory, the
common solution is to average all possible orders (in
our case, six). The averages, known as Shapley values
(Shapley 1953), become the component-specific con-
tributions to the overall change, ΔBrS. These values
have desirable properties (see Hart 1989), including
the fact that they sum to the overall change. Appendix C
offers an example of how individual contributions are
calculated and why order matters.

4. Geopolitical Forecasting Data
4.1. Data
This section applies the BIN model to data from the
geopolitical forecasting tournament sponsored by
the Intelligence Advanced Research Projects Activity
(IARPA) in 2011–2015. It includes hundreds of fore-
casting questions and probabilistic predictions made
by thousands of participants in the Good Judgment
Project (GJP). An example question was whether
Serbia would be granted European Union (EU) can-
didacy by December 31, 2011. Forecasting began on
September 1, 2011. The question resolved as “no”
because Serbia did not gain EU candidacy by De-
cember 2011. The question was open for four months.
All GJP data are public.2

To be included in our analysis, a question had to
satisfy two criteria: (i) a binary outcome (yes/no),
and (ii) open no more than 180 days. These criteria
make questions more comparable. To ensure bias
has a consistent interpretation, we standardized the
orientation of the outcomes by rescoring questions so
that “yes” always refers to change from the status
quo. Forecasters are thus predicting probabilities of
change, and bias is either systematic over- or un-
derestimation of change.
Forecasters were encouraged to update predictions

whenever their beliefs changed. Forecasters knew
they would be scored on a Brier metric, and they
received a tutorial on the logic behind this scoring
rule. If they did not update on a given day, we as-
sumed their beliefs had not changed. We treated their
most recent forecasts as their current beliefs about the
event. Given that our model produces many results
on any given day, it is impractical to analyze all time
horizons in depth. Therefore, we present detailed
results on predictions made 30 days prior to outcome
resolution. This puts all forecasters on the same
temporal playing field and ensures at least some
uncertainty at the time of their predictions. We repeat
the analysis for each of the 60 days before resolution

Figure 2. (Color online) Expected Brier Score Under Different Values of Bias, Information, and Noise

Note. The base rate is fixed at p∗ � 0.5.
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dates and summarize those findings. To avoid infinite
probit scores, all predictions of exactly 0 or 1 were
transformed to 0.0001 and 0.9999, respectively.

To explore determinants of accuracy, the research team
randomly assigned forecasters to treatment groups:

• Probability training: Forecasters completed a
tutorial on probabilistic reasoning, drawing on rec-
ommendations from the forecast-elicitation litera-
ture (O’Hagan et al. 2006). They were advised to
consider reference classes; average multiple predic-
tions from different sources; and avoid judgmental
biases such as overconfidence, confirmation bias, or
base-rate neglect. Manipulation checks verified fore-
casters hadmastered the content. The control group had
no training.

• Teaming: Forecasters worked to asynchronous
teams in which they could debate each other’s pre-
dictions. The control group consisted of individuals
who worked independently.

• Tracking: Forecasters’ performance was tracked
over time. At the end of each tournament year, the top
2% forecasters were designated “superforecasters”
and given an opportunity to work together next year
(Mellers et al. 2015). We call this intervention tracking
because of its resemblance to educational policies in
which children with similar abilities are placed in the
same classroom. These forecasterswere not randomly
selected; they earned their positions. There is no
control group, but we use comparison groups such as
regular teams with training.

Our goal is to study how these treatments influence
bias, noise, and information by comparing treatment
to control (or comparison) groups.

IARPA sought to measure the forecasting equiva-
lent of fluid intelligence, as uncontaminated as pos-
sible by specialized knowledge of persons, places, or
political processes. To this end, they chose diverse
questions: from German-Spanish bond yield spreads
to the Syrian civil war to island building in the South
China Sea to Arctic sea-ice mass to Ebola epidemics.
Even though the events were extremely heteroge-
neous, they all belong to a common reference class,
namely changes to the status quo. The BIN model
results must then be interpreted in the context of this
class of events. The base rate here is the frequency
with which change occurs over status quo, and the
BIN components (bias, information, noise) shed light
on forecasters’ skill at predicting change.

Given the heterogeneity in the events, outcomes are
unlikely to show much dependence, so the inde-
pendence part of Assumption 3 seems reasonable. To
test the assumption, we calculated the correlation
between the predictions of one event and those of
another event within each condition of the random-
ized control trials run by the GJP. We excluded a pair
of events whenever the number of forecasters fell

below 50, which left us with more than 1,200 pairs of
events per condition. Across conditions, the average
and median correlations were 0.12 and 0.13, respec-
tively. The interquartile range of the correlations
was [0.0, 0.25]. This suggests that, on average, As-
sumption 3 is a fair approximation to the GJP data.
Although there were mild positive or negative cor-
relations, 97% of the correlations were within the safe
range of our sensitivity analysis.

4.2. Model Validation
Before we apply the BIN model to the GJP data, we
evaluate its potential on simulated data with known
parameter values. Ideally, we would perform an ex-
haustive evaluation over all possible parameter set-
tings. However, our model has 10 parameters that
can take on numerous values. Furthermore, the sizes
of the groups vary across questions, and the num-
ber of questions varies across contexts. An exhaus-
tive evaluation cannot be computed easily or pre-
sented succinctly.
We constructed a controlled simulated environ-

ment that resembles our application to the GJP data.
We based parameter values on estimates of the GJP
data. First, we fixed the base rate of change to 0.21.
Second, we assumed that each comparison group had
75 forecasters, approximately the median number of
forecasters in each condition of the GJP data. Third,
we considered a control group that resembled un-
trained individuals. Specifically, we set μ0 � 0.50,
γ0 � 0.20, and δ0 � 1.00. We then varied the parame-
ters of the treatment group and reported the accuracy
of our estimation. Fourth, we set the covariance in the
forecasters’ interpreted signals to 0.05. Signal inter-
pretations are thus mildly correlated both within and
between groups.
We begin with a hypothetical treatment group:

μ1 � 0.25, γ1 � 0.15, and δ1 � 0.5, which reduced bias,
noise, and information relative to the control group:
μ0 � 0.50, γ0 � 0.20, and δ0 � 1.00. Figure 3 shows the
95% credible intervals for bias, noise, and information
as the number of questions increases from 10 to 200,
adding 10 questions each time and re-estimating
parameters. Horizontal dashed lines indicate true
parameter values. Overall, 95% credible intervals
narrow and gravitate toward the true values as the
number of questions increases. Figure 3 illustrates
the consistency of Bayesian estimation techniques. In
the GJP, forecasters in the treatment and control
groups answered between 87 and 191 questions. The
simulation suggests we have enough data to get
reasonable estimates of the parameters.
Although this is only one simulated data set, we can

obtain a more sensitive evaluation of our estimation
procedure by repeating the analysis on many simu-
lated data sets. In Section 3 of the supplementary
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material, we fix the number of questions to 100 and
generate 1,000 data sets with varying combinations of
μ1 ∈ {−0.5, 0}, γ1 ∈ [0.01, 0.3], and δ1 ∈ [0, 2]. The re-
sults therein show that the root-mean-squared-error
in estimating the true parameter values is always
below 0.14, and in most cases, well below 0.05, sug-
gesting that our method captures true values accu-
rately across a wide range of parameter values.

In addition to the previous tests, we performed out-
of-sample predictive tests on the GJP data. In the
absence of a benchmark model, we compared our
BIN model against three simplified versions. One
removed the noise parameter, one removed the bias,
and one assumed information symmetry within each
group. We discovered that adding noise or bias pa-
rameters improved model fits, whereas allowing in-
formational asymmetry had little effect. Thus, bias
and noise are crucial for modeling the GJP data,
whereas information asymmetry across groups is less
important. Results are presented in Section 9 of the
supplementary material.

4.3. Thirty Days to Resolution: Glossary
Tables 1–3 present predictions 30 days prior to out-
come resolution and pairwise comparisons of control
and treatment groups in each column.3 Table 1 is
divided into the following sections:

• Parameter estimates: We show posterior means
of the parameters of interest and their differences.
Below each mean is the 95% credible interval that
represents the range in which the true parameter
value falls with 95% probability. The credible interval
differs from the classical 95% confidence interval in
that it contains the true parameter value with 95%
probability. Because confidence intervals treat pa-
rameter values as fixed, the value is either in the in-
terval or not, and hence probabilistic statements are

not meaningful. But a Bayesian statistical framework
solves that problem.
• Posterior inferences: This section provides the

posterior probabilities of events. Compared with the
control group, does the treatment group have: (i) less
bias, (ii) more information, and (iii) less noise? In-
tuitively, one can think of these probabilities as the
Bayesian analogs of the p-values in classical hy-
pothesis testing—the closer the probability is to 1, the
stronger the evidence for the hypothesis.
Table 2 links forecasters’ ability to each component.

The sections of Table 2 are:
• Predictive performance: Brier scores of the control

and treatment groups.
• Value of the contribution: Individual contribu-

tions for each treatment.
• Percentage of control group Brier score: Indi-

vidual contributions divided by the expected Brier
score of the control group. These values show, in
percentage terms, how the change in the Brier score
can be attributed to each component.
• Maximumachievable contribution: Transformed

contributions for a hypothetical treatment that in-
duces perfect accuracy (no bias, no noise, full infor-
mation). These values can be seen as theoretical limits
on improvement for a given component (bias, in-
formation, or noise).
Table 3 describes the data used in each comparison:
• Data summary: Number of questions and the me-

dian number of treatment and control group predictions
per question. In each comparison, both groups made
forecasts for the exact same set of questions. The num-
ber of questions varies across conditions because some
treatment conditionswere present in all four years of the
tournament, whereas others were only present in one or
two years. Furthermore, not every forecaster predicted
every question.

Figure 3. (Color online) Shaded Regions Are the 95% Credible Intervals Under Varying Numbers of Questions

Notes. Blue (higher region) represents the control group and red (lower region) represents the treatment group. Dashed horizontal lines are the
true parameter values.
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4.4. Thirty Days to Resolution: Discussion
Posterior estimates in Table 1 show that the base rate
of change is Φ(μ∗) ≈ Φ(−0.88) � 0.189 and that all
groups, except the trained and superteam conditions,
had upward bias or assigned excessive probabilities
to departures from the status quo. Second, the amount
of information varied across groups (from 0.21 to 0.60,
with an information level of 1.0 being equivalent to
omniscience). Third, all groups had noise, and some
had much more than others.

Super teams were the most informed, least noisy,
and least biased. Superforecasters had been selected
based on their prior excellent performance, so their
information, bias, and noise can been seen as rough
approximations of what is achievable—by humans—
within this forecasting environment.

Posterior inferences show how much treatment
groups outperformed control groups on each com-
ponent. First, all treatments reduced noise with an
estimated posterior probability of virtually 1.0.4 Second,
all treatments, except probability training of individuals,
increased information. Posterior probabilities ranged

from 0.97 to 1.00. Third, only teaming reduced bias.
Posterior probabilities ranged from 0.99 to 1.00. Al-
though our methodology can be used to compare the
magnitude of positive or negative bias separately
across groups, we focus on the absolute value of
the bias for simplicity: |μ0| and |μ1|. So, a forecaster
with, for example, μ0 � −0.1 is more biased than one
with μ1 � 0.05.
Our results suggest that reducing noise is easier

than reducing bias. Noise was tamped down via
training, teaming, or tracking, whereas bias was only
reduced by teaming. This finding is not as surpris-
ing as it may initially sound because teams were
warned about groupthink and told that, to maximize
accuracy, they should be actively open-minded and
grapple with dissonant arguments.
We suspect that training improved forecasters’ skill

by giving them a more granular understanding of
uncertainty, which helped them translate vague verbal
hunches like “distinct possibility” and “very likely”
into quantitative values (Friedman et al. 2018). Insofar
as trained individuals were better at recognizing that

Table 3. Summary Statistics for the Good Judgment Project Data

Training Teaming Tracking

Data summary

Individuals:
untrained
vs. trained

Teams:
untrained
vs. trained

Untrained:
individuals
vs. teams

Trained:
individuals
vs. teams

Trained:
teams

vs. supers

Untrained
individuals
vs. supers

Number of questions 191 87 87 191 140 140
Median size of control group 75 68 116 54 70 67
Median size of treatment group 54 77 68 68 52 52

Table 2. Analysis of Predictive Performance for the Good Judgment Project Data

Training Teaming Tracking

Summary statistics

Individuals:
untrained
vs. trained

Teams:
untrained
vs. trained

Untrained:
individuals
vs. teams

Trained:
individuals
vs. teams

Trained:
teams
vs.

supers

Untrained
individuals
vs. supers

Predictive performance
Actual Brier score (control) 0.21 0.18 0.22 0.19 0.14 0.19
Actual Brier score (treatment) 0.19 0.16 0.18 0.14 0.08 0.08

Contributions
Value of the contribution

Reduction in bias 0.00 0.00 0.01 0.01 0.02 0.04
Increase in information 0.00 0.00 0.01 0.01 0.01 0.02
Reduction in noise 0.01 0.02 0.02 0.02 0.03 0.06

Percentage of control group Brier
score

Reduction in bias 0.8% 0.9% 3.7% 6.0% 10.0% 15.0%
Increase in information 0.0% 1.3% 2.0% 3.8% 6.4% 8.1%
Reduction in noise 6.2% 10.0% 8.3% 8.1% 16.9% 23.5%

Maximum achievable contribution
Reduction in bias 33.0% 30.4% 34.5% 31.0% 16.5% 24.5%
Increase in information 16.0% 19.2% 15.3% 19.6% 26.7% 20.2%
Reduction in noise 50.3% 49.8% 49.6% 48.7% 55.9% 54.7%
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forecast of 0.95 implies 19:1 betting odds and 0.9
implies much lower betting odds of 9:1, we should
expect their judgments to be more consistent, and
less noisy.

Not surprisingly, forecasters who invest more cog-
nitive effort in their predictions report probabilities
that better reflect their true beliefs (information). But
there are different ways to encourage cognitive effort
anddifferent paths bywhich greater effort could translate
into accuracy. Teaming is one motivator. Forecasters
working in teams can see each other’s predictions,
which introduces accountability. Extreme predictions
in the wrong direction can cause a forecaster to lose
status. As a result, team members tend to make more
circumspect and less erratic predictions, reducing
their noise.

Tracking selects superforecasters based on their
capacity to deliver consistently lower Brier scores
over time and across topics. Given that it is logically
impossible for noisy forecasters to qualify as super-
forecasters, it is not surprising to find less noise in
their judgments.

Reducing bias, however, may be harder than re-
ducing noise. Even though bias can be caused by
many factors, one plausible explanation is that add-
ing zero mean noise to the forecasters’ interpretations
makes predictions too extreme and overconfident
in the sense that they are often too close to the end-
points of zero and one (Erev et al. 1994). Forecasters
can reduce noise by being more conservative and
avoiding extreme predictions. Reducing bias, how-
ever, is more challenging because it may require
forecasters to estimate the base rate. To do this, they
need to define a reference class and collect informa-
tion on these events, both of which require skill and
effort. Forecasters grappled with base rates as diverse
as the number of African countries with dictators,
time series of Nikkei stock prices, frequencies of
United Nations Security Council arms embargos, and
variations in euro-dollar exchange rates.

Our results, however, suggest that cognitive biases
here are not as irresistible as perceptual illusions
(Arkes 1991, Lerner and Tetlock 1999). First, super-
forecasters showed relatively little bias. Second, team-
ing reduced bias, which may reflect how teams were
instructed to interact—by second-guessing each other
to avoid excessive conformity/herding (Tetlock and
Gardner 2016). Consistent with past work, properly
organized and incentivized groups can check at least
certain cognitive biases (e.g., Kerr et al. 1996).

Posterior probabilities suggest that the interven-
tions decreased bias and noise and increased infor-
mation, but statistical and substantive significance
are not the same thing. To understand the substantive
importance of each change, the percentage of control
group Brier scores in Table 2 provides the normalized

individual contributions, as in Section 4.3. These data
reaffirm that noise reduction is most important to
improving accuracy. Training improves accuracy almost
entirely through noise reduction. Both teaming and
tracking improve accuracy via all three components: in
order of importance, noise, bias, and information.
The maximum achievable contributions in Table 2

should interest organizations that care about fore-
casting accuracy. Inaccuracies are due more to noise
than bias or lack of information. Eliminating noise
would reduce the Brier score of the control group by
roughly 50%; eliminating bias, by roughly 25%; and
increasing information would deliver the remaining
25%. In sum, reducing noise is roughly twice as ef-
fective as reducing bias or increasing information.
Given that our analysis is based on a statistical

model, there is always the risk that the noise term is
capturing unmodeled systematic effects or model
misfits. The BIN model might better fit the treatment
than the control group, creating the misimpression
that the treatment reduces noise. Althoughwe cannot
rule out such possibilities completely, we can render
them implausible by testing across a variety of treat-
ments and by testing themodel on a variety of simulated
and experimental datasets (see Sections 3 and 5 in the
supplementary material).

4.5. Other Horizons
Space constraints prevent us from showing Tables 1–3
for all time horizons. But Figure 4 can show the
waxing and waning of the relative contributions of
bias, noise, and information to the differential Brier
scores of the control and treatment groups from days
one to 60 (with more data in Section 6 of the sup-
plementary material). For any given day, bars rep-
resent differences in expected Brier scores due to
noise, information, and bias. The sumof the bars is the
difference in Brier scores due to the intervention.Note
that all changes decrease from the right (day 60) to the
left (day 1).
The left panel shows that noise reduction is the

main reason that trained teams outperform untrained
teams. Noise effects are bigger than bias or infor-
mation. Noise effects are also larger at longer (30 to
60 days) than shorter horizons (one to 30 days). Bias
reduction contributes more to performance at longer
horizons. The contribution of information does not
change much over time.
The center panel shows the effects of teaming on

trained forecasters. Again, noise reduction is themain
reason that teams outperform individuals. Noise re-
duction drives almost half of the difference in Brier
scores, an effect that remains constant over time. Bias
and information share the remaining portions and
move in opposing directions. Teams reduce bias more
at longer horizons and boost information at shorter
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horizons. As time unfolds, more information becomes
available, and teaming—unlike training in the left
panel—allows forecasters to harness the information.

The right panel presents the contributions of tracking
elite teams (superforecasters) versus trained regular
teams. Relative contributions resemble the pattern
for teaming in the center panel. At day 60, elite teams
have less noise and less bias than regulars. Informa-
tion differences are not large. As the resolution date
draws near, elite teams have less noise, more infor-
mation, and slightly more bias than regulars. And
there is a negative contribution of bias for superfore-
casters around 10 days before the resolution date,
the only occasion when super teams are more biased
than regular teams. Close inspection reveals that both
averages begin above the base rate but average fore-
casts among superforecasters fall below the base rate,
whereas average forecasts among regulars do not. As
the horizon shrinks (less than 10 days), superfore-
casters become more biased than regulars. Why? We
suspect that top performers may have tried too hard to
win by assigning forecasts of 0.0 even though a week
still remained for surprises. This is a response bias
(not a perceptual bias) that is presumably driven by the
superforecaster-status incentives in the tournament.

5. Conclusion
We divide our closing remarks into three categories:
(a) What have we learned from applying the BIN
model to experiments embedded within forecasting
tournaments? (b) Does the BIN model facilitate dis-
coveries that would have been harder using alter-
native models and techniques? (c)What should be the
priorities for further empirical work?

5.1. Key Discoveries and Their Implications
Of the three methods of boosting accuracy—tamping
downnoiseandbiasorrampingupsignaldetection—noise
reduction emerged as the most consistent driver

across the three experimental interventions: training
forecasters in probabilistic reasoning, organizing
them into open-minded teams, and tracking the best
forecasters into elite teams. Interventions that boosted
accuracy also suppress random errors in judgment,
even when the original intent of the investigators
was to do so via other mechanisms. For instance,
the training was originally envisioned as a debiasing
manipulation that would reduce biases, such as base-
rate neglect, by encouraging forecasters to adopt
the outside view (Kahneman 2011). The rationale for
teaming was originally to prevent biases such as
groupthink and failures to pool information. And the
original rationale for tracking was to assemble the
most insightful signal detectors into teams and see
whether these elite teams would be more accurate
than regular teams (Mellers et al. 2015).
These findings raise new questions. If noise re-

duction is indeed the key driver across disparate
experimental interventions, what drives noise re-
duction? Can we isolate which facets of multifaceted
interventions tamped down noise? In retrospect, it
makes sense that debiasing training, which stresses
the value of grounding initial probability judgments
in base rates, would also have the net effect of sta-
bilizing forecasts. It makes sense that teaming would
help forecasters converge on more reliable crowd
judgments (e.g., Farrell 2011). And it makes sense that
tracking top forecasters into elite teams would fa-
cilitate convergence on even more reliable crowd
aggregates. But we should be wary of hindsight bias.
For these themes did not loom large in prior publi-
cations from the GJP, which emphasized the capacity
of training to tamp down bias (Chang et al. 2016) and
the skills of superforecasters as subtle signal detectors
(Mellers et al. 2015).
We focus here on the practical and theoretical signif-

icance of two discoveries the BIN model has revealed
about top performers in forecasting tournaments.

Figure 4. (Color online) Contributions of Noise, Information, and Bias in Reducing Brier Scores at Varying Time Horizons
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First, the results place qualifications on past por-
trayals of top performers (superforecasters) in both
the scientific literature (Mellers et al. 2015) and in
popular books (Tetlock and Gardner 2016). Earlier
work had stressed the insightful ways in which top
performers either extracted subtle predictive clues
that others missed or avoided being gulled by pseudo-
diagnostic cues that othersweremisled into using. Our
data suggest that superforecasters owe their success
more to superior skills at tamping downmeasurement
error, than to unusually incisive readings of the news.
Discipline may matter more than creativity here.

Second, tournaments may over-incentivize top per-
formers, driving them to do things that are subopti-
mal from a Brier-scoring perspective, such as excessive
extremizing as question-closing dates loom. Just be-
cause tournament designers made Brier-score mini-
mization the official goal does not mean that human
players internalized that imperative. Top performers
may want, above all, to come in first, which tempts
them to make overconfident claims. The decision
calculus for top performers may take this form: “If I
adjust my forecast from .05 to 0.005 even though I
believe the probability is 0.05, I will have a slightly
better Brier score (0.000025 vs 0.0025) but I will have
that benefit on the vast majority of 0.05 probability
events that do not materialize (99% of the events for
which the supers’ average forecast five days before
resolution were less than 0.05, did not occur). Those
tiny advantages will accumulate and put me in first
place. Of course, there would be a steep scoring
penalty if these almost-slamdunk events actually
materialize (the remaining 1% of events). That would
degrade my accuracy score. I might even fall into the
lower ranks. But the risk is worth taking for a shot at
being the best.” By contrast, trained teams were more
cautious in their late predictions: none of the events,
for which their average probability forecast five days
before the resolution was less than 0.05, occurred.
Even though competition among forecasters can lead
to less accurate probabilities, there are exceptions
(Pfeifer 2016). We cannot say for sure that this deci-
sion calculus drives the bias bump that the BINmodel
discovered. But it is a parsimonious explanation for
the bump among superforecasters toward the end of
forecasting periods.

5.2. Alternative Analytic Models and
Decompositions: Could We Have Learned the
Same Things from Them?

Our framework connects to other cognitive models,
most notably the Brunswikian lensmodel (e.g., Karelaia
and Hogarth 2008), in which both outcomes and fore-
casters’ predictions depend linearly on a finite set of
predictive cues. The “achievement index” and “con-
sistency” with which a forecaster executes the decision

rule relate to information and noise in our BIN model.
One common use of the lens model studies whether
forecasters’ subjective cue weights correspond to the
objective or true weightings of those cues in the en-
vironment. To calculate these weights, however, re-
searchers must know a lot more about the forecasters
and the world than is often possible (or was possible
in the geopolitical tournaments). For this reason, it is
much easier to apply the lens model in laboratory
settings than in tournaments. The BIN model allows
each forecaster to integrate a large (in principle,
infinite) number of cues into a probability judgment
in ways that need not be known to the researcher. All
that matters is the final judgment, not how the fore-
caster reached it (for more details, see Section 1 in the
supplementary material).
The BIN model also captures key aspects of fore-

casting in Bayesian modeling of subjective proba-
bility judgments (Clemen and Winkler 1999), in-
cluding precision, bias, and dependence. Precision is
forecasters’ skill at discriminating occurrences from
nonoccurrences, which corresponds in the BINmodel
to the information parameter γ. The more informed
the forecaster, the more precisely the can predict
the event.
Dependence is forecasters’ tendency to make sim-

ilar predictions for an event, which corresponds in the
BIN model to the covariance of forecasters’ inter-
pretations. When predictions target the same out-
come, correlations can stem from either shared in-
formation or shared misconceptions. The BIN model
treats the magnitude of the within-event correlations
as an empirical matter. Furthermore, we model the
within-event dependence separately for each group
and across groups. For example, the dependence
within the control group need not equal the depen-
dence in the treatment group or the dependence be-
tween forecasters across groups. These parame-
ters are not of direct interest here but we discuss
them in Appendix A of the main text and Section 7 of
the supplementary material.
Clemen and Winkler (1999) define bias as any type

of miscalibration that is typically inspected by cali-
bration plots that display predictions against em-
pirical frequencies of events. For a recent discussion
on how to interpret and estimate calibration plots
from data, see Attali et al. (2020). If a forecaster is
perfectly calibrated, all points fall on the diagonal—
and deviations imply miscalibration. The BIN model
defines bias as systematic over- or underestima-
tion of probabilities and changes the vertical level
of the points in a calibration plot. However, mis-
calibration can also arise from under- or overcon-
fidence: the forecaster’s predictions are too close too,
or far from, the base rate. In practice, forecasters are
often overconfident (e.g., De Bondt and Thaler 1995).
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Even though noise is typically defined as random
error, it can have systematic effects on the predictions.
As Erev et al. (1994) explain, systematic overconfi-
dence can be introduced by adding zero mean noise
to calibrated predictions, which inflates the variance
of the prediction and makes it deviate too much from
the base rate. Similarly, the BIN model can capture
overconfidence: by increasing the noise level δ, and
making predictions overconfident, which changes the
slope of the points in a calibration plot. Via these
mechanisms, the BIN model can capture many forms
of miscalibration. However, following Gigerenzer
(2018), the model treats under- and overconfidence
not as a bias but as noise, and reserves bias to refer to
systematic over- or underestimation of probabilities.

The most important aspect of the BIN model,
however, is the final decomposition of the Brier score.
Our decomposition differs from previous decom-
positions in several ways (e.g., Murphy 1973, Yates
1982, Murphy and Winkler 1987, Davis-Stober et al.
2015). First, previous work (e.g., Bröcker 2009) has
focused on decomposing proper scoring rules into
calibration (how well probabilities align with em-
pirical frequencies) and resolution (the extremity of
the probabilities). The BINmodel can decompose any
rule, including proper scoring rules such as loga-
rithmic and spherical scoring (e.g., Gneiting and
Raftery 2007) as well as improper scoring rules such
as the absolute deviation. Regardless of the chosen
metric, the BIN decomposition always brings us back
to bias, information, and noise, whose interpretations
do not change and are easy to understand. Second,
previous decompositions have been done on the
probability scale. The unavoidable price of ensuring
that probability predictions stay inside the unit in-
terval (and never fall below zero or rise above one) is
that estimates of bias and noise become logically
intertwined: the larger the bias, the smaller the noise
must be. This confounding makes it difficult, argu-
ably impossible, on a bounded probability scale, to
separate bias from noise. For this reason, the BIN
model estimates components on an unboundedprobit
scale. Third, existing decompositions do not generate
uncertainty estimates of the components or permit
statistical comparisons of treatments. Although un-
certainty could be estimated by bootstrapping tech-
niques, the validity of such an approach would de-
pend on technical conditions that are nontrivial to
verify (e.g., Wasserman 2006, theorem 3.20). By con-
trast, our approach permits valid comparisons based
on Bayesian statistics and a joint probabilistic model of
all outcomes and predictions.

5.3. Limitations and New Research Directions
In principle, the BIN model could be extended to
estimate bias, information, and noise separately for

each individual. This could be achieved by modeling
components in terms of covariates, such as the fore-
casters’ gender, age, self-reported expertise, or the
forecast horizon, or via a hierarchical approach that
models each forecaster’s bias, noise, and information
as draws from a common distribution. In practice,
however, modeling bias, information, and noise at
an individual level requires a dense covariancematrix
of forecasters’ interpretations that captures the allo-
cation of information among forecasters. These allo-
cations must be logically feasible. For instance, two
forecasters cannot each know more than 50% of all
information but not share any information. Ensuring
an allocation is jointly feasible for a group of fore-
casters is combinatorially challenging. Although the
partial information constraints can be managed un-
der the symmetric model in this article, in the gen-
eral case the covariance matrix must belong to the
so-called correlation polytope (Satopää et al. 2016,
proposition 3.1) or at least its semidefinite relaxation
(Satopää et al. 2017). Unfortunately, it is not clear at
this point how we can estimate a covariance matrix
within these constraints. Even though we believe that
such models are attainable, they will require signif-
icant technological innovation.
Future work could also relax the (conditional) in-

dependence assumption. Although our estimation
procedure remains robust under mild to moderate
levels of dependence, in some contexts, such as mac-
roeconomic forecasts, the events may be highly de-
pendent manifestations of a common underlying
process. Here there is unlikely to be a one-size-fits-all
solution. For instance, dependence can be spatial
(e.g., hurricane trajectories) or temporal (e.g., mac-
roeconomic indicators). Only by adapting the model
to the application at hand can one make sound in-
ferences and arrive at reliable results.
Incorporating dependencies is an exciting goal for

future work but it raises serious practical challenges
with human forecasters. Asking people to predict
dependent events reduces the effective sample size
of questions (and increases workload) and makes it
statistically harder to separate true from spurious
effects. As an analogy, consider the testing of stu-
dents. To evaluate their overall understanding of the
course, we would use independent questions, not
questions where the correct answer to one question
hints at the correct answer to another. GJP questions
were by design different and hence are less correlated,
making it appropriate for testing the forecasters’
general forecasting skill under different treatments.
Overall, noise reduction emerged as a key driver of

the Good Judgment interventions to improve fore-
casting, even when the designers of the interventions
did not have noise reduction in mind. So it is natural
to ask how much more important noise reduction
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might become when it is the research objective. We
see at least four lines of work that could be usefully
linked to the BIN model and related frameworks:

a. Disciplining the internal judgment processes of
forecasters by requiring them to participate in noise
audits (Kahneman et al. 2016) or other training ex-
ercises (Chang et al. 2016) that gauge how similarly or
differently they perform highly structured tasks in
which there is no ambiguity about which cues are
informative and which incentives/instructions are
designed to be sources of bias.

b. Aggregating judgments either through institu-
tional interventions such aspredictionmarkets (Wolfers
and Zitzewitz 2004, Atanasov et al. 2017) or statistical
means (Larrick and Soll 2006, Budescu and Chen
2014, Satopää et al. 2014, Prelec et al. 2017). For in-
stance, does crowd averaging operate mainly as a
noise reducer (as classically supposed) but more
complex algorithms deliver benefits via more com-
plex pathways? One of our ongoing projects analyzes
the effects of a variety of forecast aggregators, in-
cluding averaging and prediction markets, on bias,
information, and noise. One of the top-performing
aggregators is based on the BIN model. This aggre-
gator gains its superior performance almost entirely
through improved calibration, suggesting that its
underlying model, namely the BIN model, is a more
appropriate description of the forecast-generating
process than the models underlying other commonly
used aggregators.

c. Interventions aimed at simplifying the external
world by filtering out misleading or low-diagnosticity
sources in the news environment and lightening the
cognitive load on forecasters (Lazer et al. 2018).

d. The most radical of measures, replacing human
judgeswithmachine-learning algorithms, as has been
done already in many domains, such as targeting
restaurants for health inspections (Kang et al. 2013)
and identifying teenagers at highest risk for com-
mitting crimes (Chandler et al. 2011).

Of course, it is possible to have too much of a good
thing. We should factor in the potential costs of these
targeted noise-reduction interventions, including the
risks of inducing too much uniformity in how fore-
casters interpret signals. That said, noise may still
prove to be the easiest source of error to correct, and
organizations looking for cost-effective methods of
boosting accuracy should give noise-reduction tools
serious consideration.

Finally, we acknowledge the need for work on the
BIN model to iterate between real-world settings
emphasized here and controlled laboratory settings
inwhich researchers canmanipulate the diagnosticity
of the informative cues, forecasters’ temptations to
make biased forecasts, and the stochasticity of the
environment. We report extensive statistical simulation

data in the supplementary material and also report an
illustrative human subject demonstration of the ad-
vantages of experimentally manipulating BIN model
components (see Sections 3 and 5 in the supplemen-
tary material, respectively). In particular, using an
iterated prisoner’s dilemma (iPD) game played by
bots programmed to implement strategies varying
from competitive to cooperative, we challenged hu-
man forecasters to predict patterns of play under four
sets of conditions:
a. Control condition in which forecasters had rel-

atively little information, and faced relatively low
levels of systematic (bias) and random (noise) dis-
tortions in the shown rounds of play.
b. Information condition in which forecasters saw

roughly twice as many rounds of play, giving them
more opportunities to detect patterns in bot strategies.
c. Noise condition in which forecasters have the

same information set as the control group but had
to cope with the confusion induced by randomly
changing three defections to cooperation or three
cooperative acts to defection.
d. Bias condition inwhich forecasters had the same

information as the control group but the misperception
errors were introduced asymmetrically, causing coop-
eration to become defection but not the reverse.
We present the data in more detail in the supple-

mentary material but, suffice it to say here, the dem-
onstration pilot studyworked: the BINmodel-estimated
posterior probabilities captured the experimental ma-
nipulations of the forecasting environment.
Field experiments (such as forecasting tournaments)

and laboratory experiments (of the iPD sort) are deeply
complementary methods of testing the BINmodel and
fine-tuning methods of improving forecasting. Labo-
ratory simulation studies actually let us rerun history
and assess the true probability distributions of possible
worlds at each turn in the game, and neutralize the
standard objection to putting probability estimates on
the ostensibly unique or one-off events in IARPA
tournaments (Tetlock 2017). The strongest tests of the
BIN model would show that the same methods im-
prove forecasting work in both simulated worlds and
in the real world, and do so via similar underly-
ing mechanisms.
That said, we should not understate what we can

learn from real-world forecasting tournaments. Let’s
assume, for the sake of argument, that skeptics are
right that it is impossible to separate bias, informa-
tion, and noise in predictions of singular events. After
all, putting aside situations inwhich forecasters either
declare an event impossible (p � 0.0) and the event
occurs or declare an event a sure thing (p � 1.0) and it
does not occur, all other probability assessments of
singular events are indeed indeterminate. For in-
stance, wewill never knowwhetherNate Silver’s 70%
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prediction of a Hillary Clinton victory in 2016 was
accurate or inaccurate due to bias or noise (Kennedy
et al. 2018). We cannot rerun history (as in simula-
tions) andmeasure how closely forecasters’ estimated
distributions of possible worlds correspond to actual
distributions. But the singular-event objection does
not apply even to the real-world tournament data. For
we have applied the BIN model to predictions of
multiple singular events, or to be precise, to a set of
ostensibly singular events within which it proved
possible to separate bias, information, and noise as
drivers of forecasting accuracy. If probability judg-
ments of these events were as meaningless as the
standard objection implies, it should never have been
possible to identify systematic individual difference
correlates of accuracy or experimental interventions
that boost accuracy. The BIN model shows that the
standard objection over-reaches and needs reformu-
lation. More generally, the BIN model provides a
method for understanding the mechanisms behind
interventions intended to improve accuracy in both
artificial and real worlds. Knowing how these inter-
ventions work makes it easier to see what still needs to
be done for even greater accuracy.
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Appendix A. Model Implementation
Suppose there areK outcomes. Denote the kth outcomewith
Yk ∈ {0, 1}, where Yk � 1 if the event happens and Yk � 0
otherwise. This is determined by a normal random variable
Z∗k such thatYk � 1(Z∗k > 0) for all k � 1, . . . ,K. Suppose there
are N0,k and N1,k treated and control forecasters, respec-
tively, making predictions for the kth outcome. Collect their
normally distributed interpretations into vectorsZ0,k � (Z0,1 . . .
Z0,N0,k )′ and Z1,k � (Z1,1 . . .Z1,N1,k )′. Then, Assumptions 1
and 2 give

Z∗k
Z0,k

Z1,k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∼ N

μ∗
μ∗ + μ0
( )

1N0,k

μ∗ + μ1
( )

1N1,k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

1 Σ′
0,k Σ′

1,k

Σ0,k Σ00,k Σ01,k

Σ1,k Σ′
01,k Σ11,k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (3)

where

Σgg,k � Cov Zg,k,Zg,k
( )

� INg,k δg + γg − ρg
( ) + JNg,k×Ng,k

ρg for g ∈ 0, 1{ },
Σg,k � Cov Zg,k,Z∗k

( ) � 1Ng,kγg for g ∈ 0, 1{ },
Σ01,k � Cov Z0,k,Z1,k

( ) � JN0,k×N1,k
ρ01,

Yk � 1 Z∗k > 0
( )

,

pg,j � Φ
Zg,j̅̅̅̅̅̅̅̅̅
1 − γg

√( )
for j � 1, . . . ,Ng,k and g ∈ 0, 1{ },

Ja×a is a a × amatrix of ones, Ia is a a × a identity matrix, and
1a is a vector of a ones. The additional parameters ρ01, ρ1,
and ρ0 describe the covariances of the interpretations across
andwithin each group. Given that these covariances are not
directly linked to the outcome, they can stem from shared
information or noise. These parameters are not of direct
interest in our application but must be included for the sake
of model completeness.

Equation (3) gives the likelihood for the kth event and its
predictions. The joint likelihood of the K events is con-
structed from (3) by assuming the predictions and out-
comes to be (conditional on the model parameters) inde-
pendent and identically distributed across different events.
More specifically, Assumption 3 gives

f Z∗,Z0,Z1|θ( ) � ∏K
k�1

f Z∗k ,Z0,k,Z1,k |θ
( )

, (4)

where θ� (μ∗ μ0 μ1 γ0 γ1 δ0 δ1 ρ0 ρ1 ρ01)′, Z∗ � (Z∗1 . . .Z∗K)′,
Z0 � (Z′

0,1 . . .Z
′
0,K)′, and Z1 � (Z′

1,1 . . .Z
′
1,K)′, and f (Z∗k ,Z0,k,

Z1,k |θ) is the likelihood of (3).
To compute the posterior distribution of the parameters,

we use the likelihood (4) together with a flat, vague prior
distribution on θ; that is, π(θ) ∝ 1. The parameters are then
estimated with a MCMC technique called Hamiltonian
Monte Carlo sampling. This is a standard estimation pro-
cedure in Bayesian statistics that we implement using the
Stan software package (Carpenter et al. 2017). In each case,
the algorithm ran 4, 000 iterations, of which the first 2, 000
were used for burn-in. See Section 10 in the supplemen-
tary material for further convergence diagnostics under
the GJP data. The final output is a sample from the joint
posterior distribution of the parameters (see, e.g., Gelman
et al. 2013 for a description of Bayesian estimation tech-
niques). Joint estimation allows us to make statistical sig-
nificance statements about parameters across the twogroups
of forecasters.

Our implementation is available in the supplementary
material and allows the user to easily modify the prior
distributions. This can be useful if the user has prior
knowledge about the plausible ranges of the parameters. To
provide guidance, consider the information parameter γg in
group g ∈ {0, 1}. This is always between 0 (no information)
and 1 (full information). In practice, it is unlikely that γg is
very close to 1, especially if the forecast horizon is high. The
user may then consider a beta prior distribution that places
relatively more weight on smaller values of γg. Similarly,
even though the noise parameter, δg, is unbounded from
above, it is unlikely that δg is much higher than 1. To
provide intuition, δg � 1 implies that the forecasters have, in
expectation, as many irrelevant signals as there are relevant
signals in the signal universe. If so, forecasters have a very
high and unlikely level of noise. The usermay then consider
an exponential prior distribution that places relativelymore
weight on smaller values of δg. A similar argument can be
made about the bias parameterμg. If the base rate is not very
close to 0 or 1, thenμ∗ is close to 0. As a result, a bias in [−2, 2]
or, say, in [−5, 5] can capture most differences between the
base rate and the forecasters’ systematic bias. The user may
then consider a Gaussian prior distribution that places
relatively more weight on values of μg near 0.
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The exact choice of prior is less important if we use a
reasonably large data set. With more data, the influence of
the prior on the posterior is likely to be “washed away” as
long as the model is well-specified. To illustrate, we rep-
licated the analysis of the GJP data with informative priors
and the results remained essentially identical to the ones
presented in Section 4.3. See Section 8 in the supplementary
material for the results.

Appendix B. Analytical Expression for the
Expected Brier Score

Proposition 1. The value of the expected Brier score is

BrS| μg, δg, γg, μ
∗( ) � Φ μ∗( ) − 2Φ2 µ′ | Ω′( ) + Φ2 µ′′ | Ω′′( )

,

where
1. Φ(·) is the standard Gaussian CDF;
2. Φ2(· | Ω) is the bivariate Gaussian CDF with zero mean

vector and covariance matrix Ω;

3. The vectors µ′ � [μ∗ μ∗+μg̅̅̅̅̅
1−γg

√ ] and µ′′ � μ∗+μg̅̅̅̅̅
1−γg

√ μ∗+μg̅̅̅̅̅
1−γg

√
[ ]

; and

4. The matricesΩ′ �
1 γg̅̅̅̅̅

1−γg
√

γg̅̅̅̅̅
1−γg

√ 1+δg
1−γg

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ andΩ′′ �

1+δg
1−γg

γg+δg
1−γg

γg+δg
1−γg

1+δg
1−γg

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
Proof of Proposition 1. Consider the definition of the ex-
pected Brier score:

BrS μg, δg, γg, μ
∗( ) � EY,Zg Y −Φ

Zg̅̅̅̅̅̅̅̅̅
1 − γg

√( )[ ]2{ }

� EY,Zg Y2 − 2Φ
Zg̅̅̅̅̅̅̅̅̅
1 − γg

√( )
Y

{

+Φ2 Zg̅̅̅̅̅̅̅̅̅
1 − γg

√( )}
.

Given that Y ∈ {0, 1}, the first term is equal to E[Y2] �
E[Y] � Φ(μ∗). To compute the second term, introduce a
standard normal random variable ε and rewrite the term
equivalently as:

EY,Zg Φ
Zg̅̅̅̅̅̅̅̅̅
1 − γg

√( )
Y

{ }
� EZ∗ ,Zg ,ε

P ε <
Zg̅̅̅̅̅̅̅̅̅
1 − γg

√( )
1 Z∗ > 0
( ){ }

,

which is equal to EZ∗,Zg ,ε
{P( Zg̅̅̅̅̅

1−γg
√ − ε > 0)P(Z∗ > 0)}. This

value is equal to the probability that a bivariate normal
random variable given by Z∗Zg − ε

[ ]
is (coordinate-wise)

greater than the zero vector. The mean of this random
variable is µ′ and its covariance matrix is Ω′, implying that

EZ∗,Zg ,ε
P

Zg̅̅̅̅̅̅̅̅̅
1 − γg

√ − ε > 0

( )
P Z∗ > 0
( ){ }

� Φ2 µ′ | Ω′( )
.

The third term is computed similarly to the second one;
instead of introducing just one randomvariable ε, introduce
two independent standard Gaussians ε1 and ε2. The mean
and covariance matrix of the resulting random variable are
µ′′ and Ω

′′, respectively. □

Appendix C. Example with Shapley Values
The following stylized example illustrates how the Shapley
value is used in calculating the individual contributions.

Example 2. Suppose μ∗ � 0 so the base rate is 0.5. Con-
sider calculating the Shapley values for the following groups
of forecasters:

Control group :
Bias : μ0 � 0
Information : γ0 � 0
Noise : δ0 � ∞

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Treatment group :

Bias : μ0 � 0
Information : γ0 � 1
Noise : δ0 � 0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Both groups are unbiased: μ0 � μ1 � 0. The control group
has no information (γ0 � 0) and an extremely high level of
noise (δ0 � ∞). Therefore, purely due to noise, the predic-
tions of this group oscillate between 0.0 and 1.0 with equal
probability and independent of the actual outcome. By
chance, predictions match the outcome half of the time
and the other half of the time the group predicts the op-
posite (0.0 when the outcome is 1, and vice versa). The
expected Brier score then is 0.5 × 0.0 + 0.5 × 1.0 � 0.5. By
contrast, the treatment group is perfectly informed (γ1 � 1)
and has no noise (δ1 � 0). Predictions are perfect, so the
Brier score is always 0.0.

Given that biases are the same for the groups, the order-
specific contributions of bias are zero under all orders of
parameters. Differences in individual contributions then
come from noise and information, and there are two orders:
(δ, γ) and (γ, δ).

Consider (γ, δ) first:
i. Change γ0: Even if we change the control group’s

information parameter γ0 → γ1 � 1, the extreme noise
continues to dominate and the expected Brier score remains
at 0.5.

ii. Change δ0|γ0 � 1: Conditional on full information γ0 �
γ1 � 1, changing the control group’s noise parameter δ0 →
δ1 � 0 makes it unbiased (μ0 � 0), noise-free (δ0 � 0), and
fully informed (γ0 � 1). The control group now predicts the
outcome perfectly and has a Brier score equal to 0.

To summarize, first changing γ0 → γ1 � 1 has no effect
and the Brier score remains at 0.5 but, conditional on
γ0 � γ1 � 1, changing δ0 → δ1 � 0 decreases the Brier score
from 0.5 to 0. The specific contributions of order due to
information and noise then are 0.0 (from 0.5 to 0.5) and 0.5
(from 0.5 to 0.0), respectively.

Consider now the other order, (δ, γ):
i. Change δ0: If we set the control group’s noise pa-

rameter δ0 → δ1 � 0, the control group becomes unbiased
(μ0 � 0) and noise-free (δ0 � 0), but still remains entirely
uninformed (γ0 � 0). Therefore, no variability remains in their
predictions, which always equal the base rate of 0.5, yielding
a Brier score of 0.5×(0.5−0)2+0.5×(0.5− 1.0)2�0.25.

ii. Change γ0|δ0 � 0: Conditional on no noise δ0 � δ1 � 0,
changing the control group’s information parameter γ0 →
γ1 � 1 makes it unbiased (μ0 � 0), noise-free (δ0 � 0), and
fully informed (γ0 � 1). The control group now predicts the
outcome perfectly and the Brier score decreases from 0.25
to 0.0.
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To summarize, first changing δ0 → δ1 � 0 decreases the
Brier score from 0.5 to 0.25 and, conditional on δ0 � δ1 � 0,
changing γ0 → γ1 � 1 decreases the Brier score from 0.25
to 0.0. The specific contributions of order due to noise and
information then are 0.25 (from 0.5 to 0.25) and 0.25 (from
0.25 to 0.0), respectively.

Averaging the order-specific contributions produces
overall contributions due to bias, information, and noise,
namely Shapley values of 0.0 for bias, 1/8 for information
(from (0 + 0.25)/2), and 3/8 for noise (from (0.5 + 0.25)/2).
For this treatment group, reducing noise contributes three
times more to accuracy than does increasing information,
which underscores the value of noise reduction. Even if a
forecaster has perfect information, enough noise can mask
it, and the result will be poor accuracy.

Endnotes
1 In our model, the forecaster classifies signals as either noise or
information, suppresses all signals believed to be noise, and uses
the remaining signals to make a final prediction. A promising
future direction is to explore the forecaster’s subjective uncer-
tainty in classifying signals as noise or information.
2The data can be downloaded at https://dataverse.harvard.edu/
dataverse/gjp.
3 For convergence diagnostics of our MCMC estimation procedure,
see Section 10 in the supplementary material.
4Estimated probabilities of 0.0 or 1.0 are possible because the cal-
culation is based on a finite posterior sample of 4, 000 draws, of which
the first 2, 000 were used for burn-in. The probabilities then represent
the proportion of the final 2, 000 parameter draws in which the
treatment group is superior to the control group. The rounding error
could be reduced by computing a large posterior sample. The results,
however, would not be qualitatively different. For instance, an es-
timated posterior probability of 0.0 could become, say, 0.00001,
leading to the same conclusions.
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Satopää et al: Bias, Information, Noise: The BIN Model of Forecasting
7618 Management Science, 2021, vol. 67, no. 12, pp. 7599–7618, © 2021 INFORMS


	Bias, Information, Noise: The BIN Model of Forecasting
	Introduction
	Modeling Bias, Information, and Noise in Forecasts
	Model Estimation
	Geopolitical Forecasting Data
	Conclusion




