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Abstract

Low-complexity models such as linear function representation play a pivotal role in
enabling sample-efficient reinforcement learning (RL). The current paper pertains
to a scenario with value-based linear representation, which postulates linear real-
izability of the optimal Q-function (also called the “linear Q? problem”). While
linear realizability alone does not allow for sample-efficient solutions in general, the
presence of a large sub-optimality gap is a potential game changer, depending on
the sampling mechanism in use. Informally, sample efficiency is achievable with a
large sub-optimality gap when a generative model is available, but is unfortunately
infeasible when we turn to standard online RL settings.
We make progress towards understanding this linear Q? problem by investigating a
new sampling protocol, which draws samples in an online/exploratory fashion but
allows one to backtrack and revisit previous states. This protocol is more flexible
than the standard online RL setting, while being practically relevant and far more
restrictive than the generative model. We develop an algorithm tailored to this
setting, achieving a sample complexity that scales polynomially with the feature
dimension, the horizon, and the inverse sub-optimality gap, but not the size of the
state/action space. Our findings underscore the fundamental interplay between
sampling protocols and low-complexity function representation in RL.

1 Introduction

Emerging reinforcement learning (RL) applications necessitate the design of sample-efficient solutions
in order to accommodate the explosive growth of problem dimensionality. Given that the state/action
space could be unprecedentedly enormous, it is often infeasible to request a sample size exceeding
the fundamental limit set forth by the ambient dimension in the tabular setting (which enumerates all
combinations of state-action pairs). As a result, the quest for sample efficiency cannot be achieved in
general without exploiting proper low-complexity structures underlying the problem of interest.

1.1 Linear function approximation

Among the studies of low-complexity models for RL, linear function approximation has attracted a
flurry of recent activity, mainly due to the promise of dramatic dimension reduction in conjunction
with its mathematical tractability (see, e.g., Wen and Van Roy (2017); Yang and Wang (2019); Jin et al.
(2020); Du et al. (2020a)). Two families of linear function approximation merit particular attention,
which we single out below. Here and throughout, we concentrate on a finite-horizon Markov decision
process (MDP), and denote by S, A and H its state space, action space, and horizon, respectively.

• Model-based linear representation. Yang and Wang (2019); Jin et al. (2020); Yang and Wang
(2020) studied a scenario when both the probability transition kernel and reward function of the
MDP can be linearly parameterized. This type of MDPs is commonly referred to as linear MDPs.
Letting Ph(· | s, a) be the transition probability from state s when action a is executed at step h,

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.



the linear MDP model postulates the existence of a set of predetermined d-dimensional feature
vectors {ϕh(s, a) ∈ Rd} and a set of unknown parameter matrices {µh ∈ Rd×|S|} such that

∀(s, a) ∈ S ×A and 1 ≤ h ≤ H : Ph(· | s, a) =
(
ϕh(s, a)

)>
µh. (1)

Similar assumptions are imposed on the reward function too. In words, linear MDP posits that
the probability transition matrix is low-rank (with rank at most d) with the column space known a
priori, which forms the basis for sample size saving compared to the unstructured setting.

• Value-based linear realizability. Rather than relying on linear embedding of the model specifica-
tion (namely, the transition kernel and reward function), another class of linear representation
assumes that the action-value function (or Q-function) can be well predicted by linear combina-
tions of known feature vectors {ϕh(s, a) ∈ Rd}. A concrete framework of this kind assumes
linear realizability of the optimal Q-function (denoted by Q?h at time step h from now on), that is,
there exist some unknown vectors {θ?h ∈ Rd} such that

Q?h(s, a) =
〈
ϕh(s, a), θ?h

〉
(2)

holds for any state-action pair (s, a) and any step h. It is self-evident that this framework seeks to
represent the optimal Q-function — which is an |S||A|H-dimensional object — via H parameter
vectors each of dimension d. Throughout this work, an MDP obeying this condition is said to be
an MDP with linearly realizable optimal Q-function, or more concisely, an MDP with linear Q?.

1.2 Sample size barriers with linearly realizable Q?

This paper focuses on MDPs with linearly realizable optimal Q-function Q?. In stark contrast to
linear MDPs that allow for sample-efficient RL (in the sense that the sample complexity is almost
independent of |S| and |A| but instead depends only polynomially on d,H and possibly a certain
sub-optimality gap), MDPs with linear Q? do not admit a similar level of sample efficiency in general.
To facilitate discussion, we summarize key existing results for a couple of settings. Here and below,
f(d) = Ω(g(d)) means that f(d) is at least on the same order as g(d) for d large enough.

• Sample inefficiency under a generative model. Even when a generative model or a simulator
is available — so that the learner can query arbitrary state-action pairs to draw samples from
(Kearns and Singh, 1999) — one can find a hard MDP instance in this class that requires at least
min

{
exp(Ω(d)), exp(Ω(H))

}
samples regardless of the algorithm in use (Weisz et al., 2021b).

• Sample efficiency with a sub-optimality gap under a generative model. The aforementioned
sample size barrier can be alleviated if, for each state, there exists a sub-optimality gap ∆gap

between the value under the optimal action and that under any sub-optimal action. As asserted
by Du et al. (2020a, Appendix C), a sample size that scales polynomially in d, H and 1/∆gap is
sufficient to identify the optimal policy, assuming access to the generative model.

• Sample inefficiency with a large sub-optimality gap in online RL. Turning to the standard episodic
online RL setting (so that in each episode, the learner is given an initial state and executes the
MDP for H steps to obtain a sample trajectory), sample-efficient algorithms are, much to our
surprise, infeasible even in the presence of a large sub-optimality gap. As has been formalized in
Wang et al. (2021b), it is possible to construct a hard MDP instance with a constant sub-optimality
gap that cannot be solved without at least min

{
exp(Ω(d)), exp(Ω(H))

}
samples.

In conclusion, the linear Q? assumption, while succinctly capturing the low-dimensional structure,
still presents an undesirable hurdle for RL. The sampling mechanism commonly studied in RL
literature precludes sample-efficient solutions even when a favorable sub-optimality gap exists.

1.3 Our contributions

Having observed the exponential separation between the generative model and standard online RL
when it comes to the linear Q? problem, one might naturally wonder whether there exist practically
relevant sampling mechanisms — more flexible than standard online RL yet more practical than the
generative model — that promise substantial sample size reduction. This motivates the investigation
of the current paper, as summarized below.

A new sampling protocol: sampling with state revisiting. We investigate a flexible sampling protocol
that is built upon classical online/exploratory formalism but allows for state revisiting (detailed
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in Algorithm 1). In each episode, the learner starts by running the MDP for H steps, and is then
allowed to revisit any previously visited state and re-run the MDP from there. The learner is allowed
to revisit states for an arbitrary number of times, although executing this feature too often might
inevitably incur an overly large sampling burden. This sampling protocol accommodates several
realistic scenarios; for instance, it captures the “save files” feature in video games that allows players
to record player progress and resume from the save points later on. In addition, state revisiting is
reminiscent of Monte Carlo Tree Search implemented in various real-world applications, which
assumes that the learner can go back to father nodes (i.e., previous states) (Silver et al., 2016). This
protocol is also referred to as local access to the simulator in the recent work Yin et al. (2021).

A sample-efficient algorithm. Focusing on the above sampling protocol, we propose a value-based
method — called LinQ-LSVI-UCB — adapted from the LSVI-UCB algorithm (Jin et al., 2020).
The algorithm implements the optimism principle in the face of uncertainty, while harnessing the
knowledge of the sub-optimality gap to determine whether to revisit states. Our algorithm achieves
a sample complexity that scales polynomially in the feature dimension d, the horizon H , and the
inverse sub-optimality gap 1/∆gap, but is otherwise independent of the size of the state/action space.

2 Model and assumptions

We present precise problem formulation as well as a couple of key assumptions. Here and throughout,
we denote by |S| the cardinality of a set S , and adopt the notation [n] := {1, · · · , n}.

2.1 Basics of Markov decision processes

Finite-horizon MDP. The focus of this paper is the setting of a finite-horizon MDP, as represented
by the quintupleM = (S,A, {Ph}Hh=1, {rh}Hh=1, H). Here, S := {1, · · · , |S|} denotes the state
space, A := {1, · · · , |A|} is the action space, H is the time horizon, Ph stands for the probability
transition kernel at time step h ∈ [H] (namely, Ph(· | s, a) is the transition probability from state s
upon execution of action a at step h), whereas rh : S × A → [0, 1] represents the reward function
at step h (namely, we denote by rh(s, a) the immediate reward received at step h when the current
state is s and the current action is a). For simplicity, it is assumed throughout that all rewards
{rh(s, a)} are deterministic and reside within the range [0, 1]. Note that our analysis can also be
directly extended to accommodate random rewards, which we omit here for the sake of brevity.

Policy, value function, and Q-function. We let π = {πh}1≤h≤H represent a policy or action
selection rule. For each time step h, πh represents a deterministic mapping from S to A, namely,
action πh(s) is taken at step h if the current state is s. The value function associated with policy π at
step h is then defined as the cumulative reward received between steps h and H under this policy:

∀(s, h) ∈ S × [H] : V πh (s) := E

[
H∑
t=h

rt(st, at)
∣∣∣ st = s

]
. (3)

Here, the expectation is taken over the randomness of an MDP trajectory {st}Ht=h induced by policy
π (namely, at = πt(st) and st+1 ∼ P (· | st, at) for any h ≤ t ≤ H). Similarly, the action-value
function (or Q-function) associated with policy π is defined as

∀(s, a, h) ∈ S ×A× [H] : Qπh(s, a) := E

[
H∑
t=h

rt(st, at)
∣∣∣ sh = s, ah = a

]
, (4)

which resembles the definition (3) except that the action at step h is frozen to be a. Our normalized
reward assumption (i.e., rh(s, a) ∈ [0, 1]) immediately leads to the trivial bounds

∀(s, a, h) ∈ S ×A× [H] : 0 ≤ V πh (s) ≤ H and 0 ≤ Qπh(s, a) ≤ H. (5)

A recurring goal in reinforcement learning is to search for a policy that maximizes the value
function and the Q-function. For notational simplicity, we define the optimal value function
V ? = {V ?h }1≤h≤H and optimal Q-function Q? = {Q?h}1≤h≤H respectively as follows

∀(s, a, h) ∈ S ×A× [H] : V ?h (s) := max
π

V πh (s) and Q?h(s, a) := max
π

Qπh(s, a),

with the optimal policy (i.e., the one that maximizes V π) represented by π? = {π?h}1≤h≤H .
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2.2 Key assumptions

Linear realizability of Q?. In order to enable significant reduction of sample complexity, it is
crucial to exploit proper low-dimensional structure of the problem. This paper is built upon linear
realizability of the optimal Q-function Q? as follows.

Assumption 1. Suppose that there exist a collection of pre-determined feature maps

ϕ = (ϕh)1≤h≤H , ϕh : S ×A → Rd (6)

and a set of unknown vectors θ?h ∈ Rd (1 ≤ h ≤ H) such that

∀(s, a, h) ∈ S ×A× [H] : Q?h(s, a) = 〈ϕh(s, a), θ?h〉. (7)

In addition, we assume that

∀(s, a, h) ∈ S ×A× [H] : ‖ϕh(s, a)‖2 ≤ 1 and ‖θ?h‖2 ≤ 2H
√
d. (8)

In other words, we assume that Q? = {Q?h}1≤h≤H can be embedded into a d-dimensional subspace
encoded by ϕ, with d ≤ |S||A|. In fact, we shall often view d as being substantially smaller than the
ambient dimension |S||A| in order to capture the dramatic degree of potential dimension reduction.
It is noteworthy that linear realizability of Q? in itself is a considerably weaker assumption compared
to the one commonly assumed for linear MDPs (Jin et al., 2020) (which assumes {Ph}1≤h≤H and
{rh}1≤h≤H are all linearly parameterized). The latter necessarily implies the former, while in
contrast the former by no means implies the latter. Additionally, we remark that the assumption (8) is
compatible with what is commonly assumed for linear MDPs; see, e.g., Jin et al. (2020, Lemma B.1)
for a reasoning about why this bound makes sense.

Sub-optimality gap. As alluded to previously, another metric that comes into play in our theoretical
development is the sub-optimality gap. Specifically, for each state s and each time step h, we define
the following metric

∆h(s) := min
a/∈A?s

{
V ?h (s)−Q?h(s, a)

}
with A?s :=

{
a : Q?h(s, a) = V ?h (s)

}
. (9)

In words, ∆h(s) quantifies the gap — in terms of the resulting Q-values — between the optimal
action and the sub-optimal ones. It is worth noting that there might exist multiple optimal actions for
a given (s, h) pair, namely, the set A?s is not necessarily a singleton. Further, we define the minimum
gap over all (s, h) pairs as follows

∆gap := min
s,h∈S×[H]

∆h(s), (10)

and refer to it as the sub-optimality gap throughout this paper.

2.3 RL under sampling with state revisiting

In standard online episodic RL settings, the learner collects data samples by executing multiple length-
H trajectories in the MDPM via suitably chosen policies; more concretely, in the n-th episode with
a given initial state sn0 , the agent executes a policy to generate a sample trajectory {(snh, anh)}1≤h≤H ,
where (snh, a

n
h) denotes the state-action pair at time step h. This setting underscores the importance of

trading off exploitation and exploration. As pointed out previously, however, this classical sampling
mechanism could be highly inefficient for MDPs with linearly realizable Q?, even in the face of a
constant sub-optimality gap (Wang et al., 2021b).

A new sampling protocol with state revisiting. In order to circumvent this sample complexity
barrier, the current paper studies a more flexible sampling mechanism that allows one to revisit
previous states in the same episode. Concretely, in each episode, the sampling process can be carried
out in the following fashion:
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Algorithm 1: Sampling protocol for an episode with state revisiting.
1 Input: initial state s1.
2 Select a policy and sample a length-H trajectory {(st, at)}1≤t≤H .
3 repeat
4 Pick any previously visited state sh in this episode;
5 Execute a new trajectory starting from sh all the way up to step H , namely, {(st, at)}h≤t≤H ;

here, we overload notation to simplify presentation.
6 until the learner terminates it.

As a distinguishing feature, the sampling mechanism described in Algorithm 1 allows one to revisit
previous states and retake samples from there, which reveals more information regarding these states.
To make apparent its practice relevance, we first note that the generative model proposed in Kearns
and Singh (1999); Kakade (2003) — in which one can query a simulator with arbitrary state-action
pairs to get samples — is trivially subsumed as a special case of this sampling mechanism. Moving
on to a more complicated yet realistic scenario, consider role-playing video games which commonly
include built-in “save files” features. This type of features allows the player to record its progress at
any given point, so that it can resume the game from this save point later on. In fact, rebooting the
game multiple times from a saved point allows an RL algorithm to conduct trial-and-error learning
for this particular game point.

As a worthy note, while revisiting a particular state many times certainly yields information gain
about this state, it also means that fewer samples can be allocated to other episodes if the total
sampling budget is fixed. Consequently, how to design intelligent state revisiting schemes in order to
optimize sample efficiency requires careful thinking.

Learning protocol and sample efficiency. We are now ready to describe the learning process —
which consists of N episodes — and our goal.

• In the n-th episode (1 ≤ n ≤ N ), the learner is given an initial state s(n)
1 (assigned by nature),

and executes the sampling protocol in Algorithm 1 until this episode is terminated.
• At the end of the n-th episode, the outcome of the learning process takes the form of a policy
π(n), which is learned based on all information collected up to the end of this episode.

The quality of the learning outcome {π(n)}1≤n≤N is then measured by the cumulative regret over N
episodes as follows:

Regret(N) :=

N∑
n=1

(
V ?1
(
s

(n)
1

)
− V π(n)

1

(
s

(n)
1

))
, (11)

which is what we aim to minimize under a given sampling budget. More specifically, for any target
level ε ∈ [0, H], the aim is to achieve

1

N
Regret(N) ≤ ε

regardless of the initial states (which are chosen by nature), using a sample size T no larger than
poly

(
d,H, 1

ε ,
1

∆gap

)
(but independent of |S| and |A|). Here and throughout, T stands for the total

number of samples observed in the learning process; for instance, a new trajectory {(st, at)}h≤t≤H
amounts to H − h new samples. Due to the presence of state revisiting, there is a difference between
our notions of regret / sample complexity and the ones used in standard online RL, which we shall
elaborate on in the next section. An RL algorithm capable of achieving this level of sample complexity
is declared to be sample-efficient, given that the sample complexity does not scale with the ambient
dimension of the problem (which could be enormous in contemporary RL).
Remark 1 (From average regret to PAC guarantees and optimal policies.). There is some intimate
connection between regret bounds and PAC guarantees that has been pointed out previously (e.g., Jin
et al. (2018)). For instance, by fixing the initial state distribution to be identical (e.g., s(n)

1 = s for all
1 ≤ n ≤ N ) and choosing the output policy π̂ uniformly at random from {π(n) | 1 ≤ n ≤ N}, one
can easily verify that this output policy π̂ is ε-optimal for state s, as long as 1

N Regret(N) ≤ ε.
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3 Algorithm and main results

In this section, we put forward an algorithm tailored to the sampling protocol described in Algorithm 1,
and demonstrate its desired sample efficiency.

3.1 Algorithm

Our algorithm design is motivated by the method proposed in (Jin et al., 2020) for linear MDPs —
called least-squares value iteration with upper confidence bounds (LSVI-UCB) — which follows
the principle of “optimism in the face of uncertainty”. In what follows, we shall begin by briefly
reviewing the key update rules of LSVI-UCB, and then discuss how to adapt it to accommodate
MDPs with linearly realizable Q? when state revisiting is permitted.

Review: LSVI-UCB for linear MDPs. Let us remind the readers of the linear MDP setting. We
assume that there exist unknown vectors µh(·) = [µ

(1)
h , · · · , µ(d)

h ]> ∈ Rd×|S| and wh ∈ Rd such that

∀(s, a, h) ∈ S ×A× [H] : Ph(· | s, a) =
〈
ϕ(s, a), µh(·)

〉
and rh(s, a) =

〈
ϕ(s, a), wh(s, a)

〉
.

In other words, both the probability transition kernel and the reward function can be linearly repre-
sented using the set of feature maps {ϕ(s, a)}.
LSVI-UCB can be viewed as a generalization of the UCBVI algorithm (Azar et al., 2017) (originally
proposed for the tabular setting) to accommodate linear function approximation. In each episode, the
learner draws a sample trajectory following the greedy policy w.r.t. the current Q-function estimate
with UCB exploration; namely, an MDP trajectory {(snh, anh)}1≤h≤H is observed in the n-th episode.
Working backwards (namely, going from step H all the way back to step 1), the LSVI-UCB algorithm
in the n-th episode consists of the following key updates:

Λh ←
n∑
i=1

ϕ(sih, a
i
h)ϕ(sih, a

i
h)> + λI, (12a)

θh ← Λ−1
h

n∑
i=1

ϕ(sih, a
i
h)
{
rh(sih, a

i
h) + max

a
Qh+1(sih+1, a)

}
, (12b)

Qh(·, ·) ← min

{〈
θh, ϕ(·, ·)

〉
+ β

√
ϕ(·, ·)>Λ−1

h ϕ(·, ·), H
}
, (12c)

with the regularization parameter λ set to be 1. Informally speaking, θh (cf. (12b)) corresponds
to the solution to a ridge-regularized least-squares problem — tailored to solving the Bellman
optimality equation with linear parameterization — using all samples collected so far for step h,
whereas the matrix Λh (cf. (12a)) captures the (properly regularized) covariance of ϕ(·, ·) associated
with these samples. In particular,

〈
θh, ϕ(·, ·)

〉
attempts to estimate the Q-function by exploiting its

linear representation, and the algorithm augments it by an upper confidence bound (UCB) bonus

β
√
ϕ(·, ·)>Λ−1

h ϕ(·, ·) — a term motivated by the linear bandit literature (Lattimore and Szepesvári,
2020) — to promote exploration, where β is a hyper-parameter to control the level of exploration.
The update rule (12c) also ensures that the Q-estimate never exceeds the trivial upper bound H .

Our algorithm: LinQ-LSVI-UCB for linearly realizable Q?. Moving from linear MDPs to
MDPs with linear Q?, we need to make proper modification of the algorithm. To facilitate discussion,
let us introduce some helpful concepts.

• Whenever we start a new episode or revisit a state (and draw samples thereafter), we say that a
new path is being collected. The total number of paths we have collected is denoted by K.

• For each k and each step h, we define a set of indices

Ikh :=
{
i : 1 ≤ i ≤ k | θih is updated in the i-th path at time step h

}
, (13)

which will be described precisely in Algorithm 2. As we shall see, the cardinality of Ikh is equal
to the total number of new samples that have been collected at time step h up to the k-th path.

We are now ready to describe the algorithm. For the k-th path, our algorithm proceeds as follows.
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• Sampling. Suppose that we start from a state skh at time step h. The learner adopts the greedy
policy πk = {πkj }h≤j≤H in accordance with the current Q-estimate {Qk−1

j }h≤j≤H , and observes
a fresh sample trajectory {(skj , akj )}h≤j≤H as follows: for j = h, h+ 1, . . . ,H ,

skj+1 ∼ Pj(· | skj , akj ) with akj = πkj (skj ) := arg max
a

Qk−1
j (skj , a). (14)

• Backtrack and update estimates. We then work backwards to update our Q-estimates and the
θ-estimates (i.e., estimates for the linear representation of Q?), until the UCB bonus term (which
reflects the estimated uncertainty level of the Q-estimate) drops below a threshold determined by
the sub-optimality gap ∆gap. More precisely, working backwards from h = H , we carry out the
following calculations if certain conditions (to be described shortly) are met:

Λkh ←
∑
i∈Ikh

ϕh(sih, a
i
h)ϕh(sih, a

i
h)> + I, (15a)

θkh ←
(
Λkh
)−1 ∑

i∈Ikh

ϕh(sih, a
i
h)
{
rh(sih, a

i
h) +

〈
ϕh+1(sih+1, a

i
h+1), θkh+1

〉}
, (15b)

bkh(·, ·) ← β

√
ϕh(·, ·)>

(
Λkh
)−1

ϕh(·, ·), (15c)

Qkh(·, ·) ← min
{〈
ϕh(·, ·), θkh

〉
+ bkh(·, ·), H

}
. (15d)

Here, we employ the pre-factor

β = cβ

√
dH4 log

KH

δ
(16)

to adjust the level of “optimism”, where cβ > 0 is some suitably large constant. Crucially,
whether the update (15b) — and hence (15d) — is executed depends on the size of the bonus term
bk−1
h+1 of the last attempt at step h+ 1. Informally, if the bonus term is sufficiently small compared

to the sub-optimality gap, then we have confidence that the policy estimate (after time step h) can
be trusted in the sense that it is guaranteed to generalize and perform well on unseen states.

The complete algorithm is summarized in Algorithm 2, with some basic auxiliary functions provided
in Algorithm 3. To facilitate understanding, an illustration is provided in Figure 1.

Two immediate remarks are in order. In comparison to LSVI-UCB in Jin et al. (2020), the update rule
(15b) for θkh employs the linear representation

〈
ϕh+1(sih+1, a

i
h+1), θkh+1

〉
without the UCB bonus

as the Q-value estimate. This subtle difference turns out to be important in the analysis for MDPs
with linear Q?. In addition, LSVI-UCB is equivalent to first obtaining a linear representation of
transition kernel P (Agarwal et al., 2019) and then using it to build Q-function estimates and draw
samples. In contrast, Algorithm 2 cannot be interpreted as a decoupling of model estimation and
planning/exploration stage, and is intrinsically a value-based approach.

3.2 Theoretical guarantees

Equipped with the precise description of Algorithm 2, we are now positioned to present its regret
bound and sample complexity analysis. Our result is this:
Theorem 1. Suppose that Assumption 1 holds, and that cβ ≥ 8 is some fixed constant. Then for any
0 < δ < 1, and any initial states

{
s

(n)
1

}
1≤n≤N , Algorithm 2 achieves a regret (see (11)) obeying

1

N
Regret(N) ≤ 8cβ

√
d2H7 log2 HT

δ

T
(17)

with probability at least 1− δ, provided that N ≥ 4c2βd
2H5 log2 HT

δ

∆2
gap

. In addition, the total number of
state revisits satisfies

K −N ≤
4c2βd

2H5 log2 KH
δ

∆2
gap

. (18)
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Algorithm 2: LinQ-LSVI-UCB with state revisiting.

1 inputs: number of episodes N , sub-optimality gap ∆gap, initial states {s(n)
1 }1≤n≤N .

2 initialization: h = 0, n = 0, θ0
j = 0 and I0

j = ∅ for all 1 ≤ j ≤ H .
3 for k = 1, 2, · · · do
4 call πk ← get-policy().
5 h← h+ 1.
6 if h = 1 then
7 π(n) ← πk−1. // record the up-to-date policy learned in this

episode.
8 n← n+ 1. // start a new episode.
9 if n > N then

10 K ← k − 1 and return. // terminate after N episodes.

11 Set the initial state sk1 = s
(n)
1 .

12 call sampling(). // collect new samples from step h; see Algorithm 3.
/* backtrack and determine whether to revisit a state and redraw new

samples. */
13 Set θkH+1 = 0 and h = H .
14 while h > 0 and bk−1

h+1(skh+1, a
k
h+1) < ∆gap/2 (cf. (15c)) do

15 Ikh ← Ik−1
h

⋃ {k}. // expand Ikh whenever we need to update θkh.
16 Update θkh according to (15b).
17 h← h− 1.
18 call update-remaining(). // keep remaining iterates unchanged; see

Algorithm 3.
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Figure 1: Illustration of IKh for a simple scenario where N = 1, H = 3, and the number of paths is
K = 4. After the 1st path, the sampling process revisits state s1

3 twice (each time drawing one new
sample), and then revisits state s1

2 to draw two samples from there. This episode then terminates as
the conditions are met for all steps. A red superscript indicates new state or new actions, and the
orange line illustrates the sampling process. Here, I4

3 = {1, 2, 3, 4}, I4
2 = {3, 4} and I4

1 = {4},
which record the paths where the linear representations are updated for each respective step.

Theorem 1 characterizes the sample efficiency of the proposed algorithm. Specifically, the theorem
implies that for any 0 < ε < H , the average regret satisfies 1

N Regret(N) ≤ ε with probability
exceeding 1− δ, once the total number T of samples exceeds

T ≥
64c2βd

2H7 log2 HT
δ

ε2
. (19)

Several implications and further discussions of this result are in order.

Efficiency of the proposed algorithm. We highlight several benefits of our algorithm.

• Sample efficiency. While our sample complexity bound (19) scales as a polynomial function
of both d and H , it does not rely on either |S| or |A|. This hints at the dramatic sample size
reduction when |S||A| far exceeds the feature dimension d and the horizon H .
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Algorithm 3: Simple auxiliary functions.
1 Function sampling():

/* sampling from the beginning (if h = 0) or from a revisited state
(if h > 0). */

/* do not update samples prior to step h. */
2 for j = 1, 2, . . . , h− 1 do
3 Set akj = ak−1

j , and skj+1 = sk−1
j+1 .

/* a new round of sampling from step h. */
4 for j = h, h+ 1, · · · , H do
5 Compute Qk−1

j (skj , a) according to (15d).
6 Take akj = arg maxaQ

k−1
j (skj , a), and draw skj+1 ∼ Pj(· | skj , akj ).

7 Function update-remaining():
/* keep the estimates prior to step h unchanged. */

8 for j = 1, 2, . . . , h do
9 Set θkj = θk−1

j .

10 Function get-policy():
/* update the Q-estimates. */

11 for 1 ≤ h ≤ H do
12 Set Qk−1

h (·, ·) according to (15d).
13 πkh(·)← arg maxaQ

k−1
h (·, a).

• A small number of state revisits. Theorem 1 develops an upper bound (18) on the total number of
state revisits, which is gap-dependent but otherwise independent of the target accuracy level ε.
As a consequence, as the sample size T increases (or when ε decreases), the ratio of the number
of state revisits to the sample size becomes vanishingly small, meaning that the true sampling
process in our algorithm becomes increasingly closer to the standard online RL setting.

• Computational complexity and memory complexity. The computational bottleneck of the proposed
algorithm lies in the update of θkh and bkh (see (15b) and (15c), respectively), which consists of
solving a linear systems of equations and can be accomplished using, say, the conjugate gradient
method in time on the order of d2 (up to logarithmic factor). In addition, one needs to search
over all actions when drawing samples, so the algorithm necessarily depends on |A|. In total, the
algorithm has a runtime no larger than Õ(d2|A|T ), and requires O(d2H) units of memory.

Cumulative regret over paths. Due to the introduction of state revisiting, there are two possible
ways to accumulate regrets: over the episodes or over the paths. While our analysis so far adopts the
former (see (11)), it is not difficult to translate our regret bound over the episodes to the one over the
paths. To be more precise, let us denote the regret over paths as follows for distinguishing purposes:

Regretpath(K) :=

K∑
k=1

(
V ?1
(
sk1
)
− V πk1

(
sk1
))
. (20)

A close inspection of our analysis readily reveals the following regret upper bound

Regretpath(K) ≤ 4cβ

√
d2H6K log2 HT

δ
+

4c2βd
2H6 log2 KH

δ

∆2
gap

(21a)

with probability exceeding 1 − δ; see Section B.2 for details. This bound confirms that the regret
over the paths exhibits a scaling of at most

√
K.

Logarithmic regret. Our analysis further leads to a significantly strengthened upper bound on the
regret. As we shall solidify in Section B.2, the regret incurred by our algorithm satisfies

E
[
Regret(N)

]
≤ E

[
Regretpath(K)

]
≤

17c2βd
2H7 log2(KH)

∆2
gap

, (21b)
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largely owing to the presence of the gap assumption. This implies that the expected regret scales
only logarithmically in the number of paths K, which could often be much smaller than the previous
bound (21a). In fact, this is consistent with the recent literature regarding logarithmic regrets under
suitable gap assumptions (e.g., Simchowitz and Jamieson (2019); Yang et al. (2021)).

Comparison to the case with a generative model. We find it helpful to compare our findings
with the algorithm developed in the presence of a generative model. In a nutshell, the algorithm
described in Du et al. (2020a, Appendix C) starts by identifying a “well-behaved” basis of the feature
vectors, and then queries the generative model to sample the state-action pairs related to this basis. In
contrast, our sampling protocol (cf. Algorithm 1) is substantially more restrictive and does not give
us the freedom to sample such a basis. In fact, our algorithm is exploratory in nature, which is more
challenging to analyze than the case with a generative model.

We shall also point out a technical difference between our approach and the algorithm in Du et al.
(2020a). A key insight in Du et al. (2020a) is that: by sampling each anchor state-action pair for
poly(1/∆gap) times, one can guarantee sufficiently accurate Q-estimates in all state-action pairs,
which in turn ensures πk = π? in all future estimates. This, however, is not guaranteed in our
algorithm when it comes to the state revisiting setting. Fortunately, the gap condition helps ensure
that there are at most poly(1/∆gap) number of samples such that πk 6= π?, although the discrepancy
might happen at any time throughout the execution of the algorithm (rather than only happening at
the beginning). In addition, careful use of state revisiting helps avoid these sub-optimal estimates by
resetting for at most poly(1/∆gap) times, which effectively prevents error blowup.

Comparison to prior works under state revisiting. Upon closer examination, the sampling
mechanism of Weisz et al. (2021a) considers another kind of state revisiting strategy and turns out to
be quite similar to ours, which accesses a batch of samples {(sh, ah, sih+1)}i≥1 for the current state
sh with all actions ah ∈ A. where sih+1 represents the i-th attempt to draw sample transition from
sh. Assuming only V ? is linearly realizable, their sample complexity is on the order of (dH)|A|, and
hence its sample efficiency depends highly on the condition that A = O(1). Additionally, Du et al.
(2020b) proposed an algorithm — tailored to a setting with deterministic transitions — that requires
sampling each visited state multiple times (and hence can be accomplished when state revisiting is
permitted); this algorithm might be extendable to accommodate stochastic transitions. Additional
discussions of related works can be found in Section A in the supplementary material.

4 Discussion

In this paper, we have made progress towards understanding the plausibility of achieving sample-
efficient RL when the optimal Q-function is linearly realizable. While prior works suggested an
exponential sample size barrier in the standard online RL setting even in the presence of a constant sub-
optimality gap, we demonstrate that this barrier can be conquered by permitting state revisiting (also
called local access to generative models). An algorithm called LinQ-LSVI-UCB has been developed
that provably enjoys a reduced sample complexity, which is polynomial in the feature dimension,
the horizon and the inverse sub-optimality gap, but otherwise independent of the dimension of the
state/action space.

Note, however, that linear function approximation for online RL remains a rich territory for further
investigation. In contrast to the tabular setting, the feasibility and limitations of online RL might vary
drastically across different families of linear function approximation. There are numerous directions
that call for further theoretical development in order to obtain a more complete picture. For instance,
can we identify other flexible, yet practically relevant, online RL sampling mechanisms that also allow
for sample size reduction? Can we derive the information-theoretic sampling limits for various linear
function approximation classes, and characterize the fundamental interplay between low-dimensional
representation and sampling constraints? Moving beyond linear realizability assumptions, a very
recent work Yin et al. (2021) showed that a gap-independent sample size reduction is feasible by
assuming thatQπ is linearly realizable for any policy π. However, what is the sample complexity limit
for this class of function approximation remains largely unclear, particularly when state revisiting is
not permitted. All of these are interesting questions for future studies.
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