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Abstract. According to household production theory, consumers buy inputs and combine
them to produce final goods from which they derive utility. We use this idea to build a
micro-level model for the quantity demanded by a consumer across product categories.
Our model proposes an intuitive explanation for the existence of negative cross-price
effects across categories and can be estimated on purchase data in the presence of corner
solutions and indivisible packages. We find that, even when reusing the same functional
form as some previous models of demand for substitutes, our model can accommodate
very different patterns of consumer preferences from perfect complementarity to no
complementarity between goods. We estimate the model on purchase data from a panel of
consumers and find that it yields a better fit than a set of benchmarkmodels. We then show
how the demand system estimated can be used to increase the profitability of couponing
strategies by taking into account the spillover effect of coupons on demand for comple-
mentary categories and bymanufacturers tomake decisions regarding the size of packages
by taking into account cross-category consumption. We also use the model to simulate
demand under a shift in the proportions used in joint consumption, which could be
stimulated via marketing efforts.
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1. Introduction
Consumers commonly purchase multiple goods to
consume them jointly. For example, they buy burgers
and buns to make sandwiches, they combine deter-
gent and softener for their laundry, or eat crackers
with dips. From a managerial point of view, cross-
category consumption provides an opportunity for
coordinated promotion and pricing across goods. A
rigorous analysis of optimal marketing strategy, there-
fore,first requires amodel of demand in away that takes
into account the volumes purchased by consumers
across categories.Not surprisingly,modeling demand
across categories has been an important area of re-
search in the marketing literature.

By leveraging household-level data of purchases
made across categories and over time, marketing re-
searchers have built models to estimate demand at the
micro level (Manchanda et al. 1999, Mehta 2007, Song
and Chintagunta 2007, Niraj et al. 2008, Mehta and
Ma 2012, Lee et al. 2013). Many of these econometric
models take a utility-maximization paradigm to obtain
parameters that are invariant to policy changes. In this
paradigm, the starting point is that consumers choose to
buy the quantities of goods that maximize their utility

under a budget constraint. The goal of estimation is,
therefore, to find the parameters of the model that
best explain the purchases observed under the as-
sumption that these purchases are the result of an op-
timizationproblem. From this common setup, twomain
approaches, which specify a parametric form on two
different economic objects, have been developed.
In the first approach, the researcher specifies a func-

tional form for the consumer’s indirect utility and
applies Roy’s identity to derive the demand function,
which relates the parameters of the indirect utility
function to the consumer’s quantity decisions as a
function of prices. The translog indirect utility spec-
ification is often used as it can approximate any function
at a second-degree level and can yield substitution
and/or complementarity effects between goods. In
the second approach, the researcher parameterizes the
consumer’s direct utility function and solves the first-
order conditions (FOCs) to obtain the demand sys-
tem. In that framework, additively separable utility
specifications cannot yield negative cross-price effects
under a linear budget constraint (Chintagunta and
Nair 2011), but they can be achieved using quadratic
specifications with interaction terms (Kim et al. 2010).
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In either approach, however, the model does not
provide any intuitive explanation for the existence of
complementary effects across categories: although
interaction terms can yield negative cross-price ef-
fects, they do not inform the researcher why two
categories are complementary.

In this paper, we develop a new approach that
provides a micro-foundation on how complemen-
tarity is generated across categories as a result of
preferences for joint consumption uses. Our approach
relies on household production theory (Becker 1965,
Muth 1966): the original consumer problem is altered
to distinguish between inputs that can be purchased
and latent final goods that can be consumed and
provide utility.We represent the joint consumption of
multiple inputs by a separate final good: for example,
buns and burgers can be purchased (and consumed
separately), but sandwiches can be produced from
buns and burgers. Formally, the consumer has a
utility function defined on goods consumed (e.g.,
sandwiches, burgers and buns) but can only buy in-
puts (e.g., burgers and buns). He or she decides not only
what inputs to purchase but also what final goods to
produce for his or her own consumption. This con-
ceptual model is equivalent to the original one if we
assume that the final goods are identical to the goods
purchased, but it is more general if we assume that a
broader set of final goods can be produced from the
goods purchased.

We show that this conceptual model is useful to
derive a flexible model of purchases across comple-
ments even if consumption is unobserved because it
allows us to specify a parametric form for the utility
of final goods. While a direct utility on inputs pur-
chased can always be derived from the utility of final
goods, its functional form is not straightforward. In
fact, even an additively separable functional form
for the utility on final goods, which we utilize in our
model specification, can capture very different pat-
terns of preferences for inputs purchased, including
perfect complementarity.

In an empirical application, we estimate our model
on purchase data from a panel of consumers, focusing
on the tortilla chips and Mexican salsa categories. We
find that it fits the data better than a set of benchmark
models based on the deviance information criterion
(DIC) and performs well in predicting purchase in-
cidence and quantity. We also show the usefulness of
our model to determine the optimal distribution of
retailer coupons in a set of counterfactual analyses. We
find that the retailer can make a higher profit by taking
into account the spillover effects of coupons across
categories, which can be measured using our flexible
demand system. We also illustrate how the model can
be used to inform package size decisions by manufac-
turers, thus demonstrating its potential value to both

retailers and manufacturers. In addition, we use the
parameters estimated to simulate demand under a shift
in the proportions used in joint consumption, which
may be possible by marketing that encourages the in-
creased or decreased use of one product with another.
The rest of the paper is organized as follows. In

Section 2, we formalize the economic problem of a
consumer making quantity choices across related
goods and review the econometric models that have
been derived from it in the marketing literature. In
Section 3, we lay out our general model of consumer
behavior based on household production theory and
show its usefulness for empirical work by study-
ing the flexible patterns of consumer preferences it
can imply over goods purchased. In Section 4, we
study the properties of the demand system. In Sec-
tion 5, we introduce stochastic elements in the model
and describe its estimation; we also run a simulation
study to investigate the consequences of ignoring
complementarity between goods across categories.
Section 6 describes an application of our model on
household-level purchase data, and how it can in-
form managerial decisions in the context of retailer
coupons manufacturer, package-size decisions, and in
influencing changes in the proportions used by con-
sumers when combining goods together. Section 7
concludes with a discussion of the main contribu-
tions and limitations of our model and ideas for fu-
ture research.

2. Formalization and Literature
Suppose we want to model the quantities purchased
by a consumer across J goods of interest. In the
simplest microeconomic model, the consumer has a
utility function U defined on the quantities of these
goods x � (x1, . . . , xJ) and the quantity y of an outside
good. After observing the prices p, he or she chooses
to buy the quantities that maximize his or her utility
within his or her budget M. Mathematically, the
consumer problem is represented as

V p,M
( ) � max

x∈X ,y≥0 U x, y
( )

subject to : p x( ) + y ≤ M, (1)
where x belongs to a feasible set X , p(x) is the dollar
amount to be paid to buy the quantities x of inside
goods, and the price of the outside good is normalized
to one. In this maximization problem, U is the direct
utility, V is the indirect utility, and the demand
system x∗(p,M) gives the optimal quantities. From the
observation of prices and the quantities purchased by
consumers, the goal of demand estimation consists in
characterizing the demand function so that one can
measure the effect of prices on demand and/or pre-
dict demand under alternative scenarios with dif-
ferent prices p, budget M, or constraints on the set X .
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Empirically estimating a demand model requires
one to make parametric assumptions. While the pa-
pers byManchanda et al. (1999) and Gentzkow (2007)
focus only on purchase incidence, previous models of
quantity rely mainly on two different approaches by
specifying a functional form either for the indirect
utility V or for the direct utility U. An indicative
summary of previous models is presented in Table 1;
the article by Chintagunta and Nair (2011) provides
an excellent review of that literature.

In the indirect-utility approach, the researcher spec-
ifies a functional form for V. The researcher then ap-
plies Roy’s identity to obtain the demand function:

x∗j � − ∂V/∂pj
∂V/∂M. The estimation problem consists in find-

ing those parameters of V that best fit the data. This
approach has been used to model demand across
substitutable and complementary categories, providing
an integrated framework for purchase incidence, vol-
ume, and brand decisions (Mehta 2007, Song and
Chintagunta 2007, Mehta and Ma 2012). Parameter-
izing the indirect utility V bypasses the problem of
specifying a functional form for the direct utility U
and is thought to be a more flexible approach because
the indirect utility can always be derived from a direct
utility specification, but the reverse is not true. The
translog indirect utility specification is often used as it
can approximate any twice continuously differentiable
function V at a second degree (Mehta 2007, Song and
Chintagunta 2007, Mehta and Ma 2012).

In a second approach pioneered byKim et al. (2002),
the researcher specifies a functional form for the direct
utility U and derives the demand function by solving
the first-order conditions of the consumer problem in

Equation (1). This approach is appealing because it
allows one to accommodate different pricing schemes
and/or constraints present in the real world by
changing the feasible set X and the price function p.
For example, Satomura et al. (2011) allow for multiple
constraints (such as a volume constraint) instead of
a single budget constraint; Lee and Allenby (2014)
capture the indivisibility of demand by including in-
teger constraints on the feasible set. Through these
extensions, researchers have gained a richer under-
standing of the impact of prices and packaging on
demand. To model demand for complements in that
approach, one cannot resort to additively separable
utility functions of the form Ux(x1, . . . , xJ) � ∑J

j�1 φj(xj)
as they can only yield nonnegative cross effects of
prices on demand under a linear budget constraint
(Chintagunta and Nair 2011). However, quadratic
utility specification with interaction terms can yield
negative cross-price effects. Alternatively, Lee et al.
(2013) assume a sequential decision process whereby
consumers make purchase decisions one category
at a time: at each stage, the consumer maximizes a
category-specific utility function that may be affected
by purchase decisions in previous categories through
an effect of inventories. Although this model allows
the authors to capture asymmetric cross-price effects,
it does not derive from the maximization of a joint
utility function, which can restrict its applicability in
counterfactual analyses, especially in measuring the
effect of policy changes on consumer welfare.
We develop a third approach, which relies on house-

hold production theory as introduced by Becker (1965)
and Muth (1966). In this view, households buy inputs

Table 1. Related Literature

Study Modeling approach Integrated utility model Quantity Complementarity Indivisibility

Manchanda et al. (1999) Multivariate probit 3

Dubé (2004) Poisson + logit 3

Chan (2006) Characteristics model 3 3 3

Gentzkow (2007) Discrete choice over bundles 3 3

Mehta (2007) Indirect utility 3 3 3

Song and Chintagunta (2007) Indirect utility 3 3 3

Niraj et al. (2008) Discrete choice over bundles 3 3 3

Liu et al. (2010) Discrete choice over bundles 3 3

Satomura et al. (2011) Direct utility 3 3

Mehta and Ma (2012) Indirect utility 3 3 3

Lee et al. (2013) Sequential decisions 3 3 3

Lee and Allenby (2014) Direct utility 3 3 3

Current study Household production 3 3 3 3

Notes. The third column indicates whether the demand system is derived from one utility maximization (which is necessary for welfare
calculations). The models by Manchanda et al. (1999) and Lee et al. (2013) do not fit that category as they define one separate utility function per
product category, and in Dubé (2004), the quantity chosen depends on an exogenous Poisson process. The fourth column indicates whether
quantity is modeled (Manchanda et al. (1999), Gentzkow (2007), and Liu et al. (2010) only model purchase incidence). The fifth column indicates
whether the model allows for complementarity as defined by the existence of negative cross-price effects between goods. The last column
indicates whether the model recognizes the indivisibility of demand resulting from package constraints. Most models assume that the goods are
infinitely divisible; Dubé (2004) andNiraj et al. (2008) take the package sizes as given andmodel the integer units purchased by the consumer, but
their models cannot be used to analyze the effect of divisibility because they do not model the consumer utility as a function of volumes.
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to produce final goods that they consume: as such,
they are both producers (with a production function
that transforms inputs into final goods) and consumers
(with a utility function defined on final goods). In our
context, we represent the joint consumption of two
(or more) complements as a distinct final good that is
produced and consumed by the household. We apply
this idea to design a demand model for complements
that allows for corner solutions and discrete demand
resulting from indivisible packages. We thus build
complementarity in the consumer’s preferences and
derive the cross-price effects from the primitives: in
that sense, we extend Gentzkow (2007) by allowing
for the choice of quantity instead of just incidence.
Our work is closely related to the latent separability
concept defined by Blundell and Robin (2000), which
is a property of direct utility functions. Like the au-
thors, we recognize that parts of the same input can
be allocated to different final goods. For example,
consumers may eat some burgers by themselves and
combine some with buns to make sandwiches. Unlike
Blundell and Robin (2000), however, we do not re-
quire fewerfinal goods than inputs: in fact,we include
more final goods than inputs. This is because they
seek to reduce the dimensionality of a large demand
system by grouping goods into latent groups and we
aim at flexibly estimating the demand across a small
set of goods.

Our approach is also closely related to the char-
acteristics model by Chan (2006) in which the con-
sumer derives utility from the hedonic attributes that
are present in the goods he or she purchases. In both
approaches, utility is not derived directly from the
goods purchased but from a transformation of these
goods into benefits (consumption uses in our model,
hedonic attributes in the characteristics model); while
the utility specification is additively separable in terms
of these benefits, it is not in terms of the goods pur-
chased because of this transformation. In the model by
Chan (2006), the transformation from goods pur-
chased into benefits is specified a priori by the re-
searcher using available data on the goods’ attributes;
in our approach, the transformation arises as the
solution to an optimal consumption problem as the
consumer decides how to allocate the goods pur-
chased into consumption uses. While the character-
istics model is highly scalable and provides a good
explanation for the existence of complementarity be-
tween items of the same category, its explanatory
power for complements may be limited if the goods
purchased cannot be adequately represented by a
common set of additive attributes, which is likely to
happen if the goods belong to different product cat-
egories. In contrast, our approach provides an expla-
nation for the existence of complementarity between
goods from different categories but is less scalable.

Thus, we focus in this paper on cross-category demand
estimation with a small number of categories, and we
provide thoughts, when possible, that could make our
approachmore scalable in the future. In the next section,
we discuss our model in more depth.

3. Model of Consumer Preferences
We start by laying out the general model of house-
hold production. Then we describe our parametric as-
sumptions and study the implications of the resulting
model for consumer preferences over goods purchased.

3.1. Consumer Problem with Household Production
By considering household production, we make a
conceptual distinction between the inputs that the
consumer can purchase on the market and the final
goods that he or she can consume after producing them
from the inputs. For example, a consumermaybe able to
buy burgers and buns, which are sold separately on the
market, but to eat a sandwich, he or she first needs to
produce it by combining a bun and a burger. In this
example, burgers and buns are inputs, and sandwiches
are final goods. Burgers and buns can also be consumed
separately: as such, they are both inputs and final goods
by themselves. We denote by J the number of distinct
inputs, byK ≥ J the number of distinctfinal goods that
can be produced from the J inputs, by x � (x1, . . . , xJ)
the volumes of inputs purchased, andby c � (c1, . . . , cK)
the quantities of final goods constructed and con-
sumed. Importantly, the consumer first needs to buy
enough inputs to be able to produce the final goods.
To do so, he or she has a budget M that he or she can
spend across the inputs and to buy some quantity y of
an outside goodwhose price is normalized to one. The
consumer enjoys utility from consuming the final
goods and the outside good,which is represented by a
utility function Ũ(c, y). The consumer problem con-
sists in buying the optimal volumes of inputs x and
outside good y, and using the inputs to produce the
optimal quantities of final goods c in a way that
maximizes his or her utility:1

V p,M
( ) � max

c,x,y
Ũ c, y
( )

subject to : p x( ) + y ≤ M

x ∈ X
c ∈ C x( ), (2)

where p(x) is the dollar amount to be paid by the
consumer if he or she buys the volumes of inputs x
and C(x) is the set of final goods that can possibly
be produced from them.2

In this model, the consumer makes the best use of
the inputs x by allocating them into the production of
the optimal quantities of final goods c. Therefore, the
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maximum value that the consumer can derive from
input quantities x and outside good quantity y can be
obtained as

U x, y
( ) � max

c
Ũ c, y
( )

subject to : c ∈ C x( ). (3)
We can thus derive a utility U(x, y) on inputs pur-

chased from the utility of final goods purchased
Ũ(c, y) by solving the optimal allocation problem in
Equation (3). Under this definition of U(x, y), the
consumer problem in Equation (2) can be rewritten
under the original form of Equation (1). From the
point of view of the consumer’s purchase behavior,
our model is thus equivalent to the original prob-
lem considered in Equation (1). However, adding a
production–consumption step allows us to parame-
terize Ũ(c, y) and C(x) instead of U(x, y) in the direct-
utility approach or V(p,M) in the indirect-utility
approach. The relationship between Ũ(c, y), U(x, y),
and V(p,M) is explained in Figure 1. In our approach,
we specify a functional form on Ũ(c, y) and solve the
problem in Equation (2) to derive the demand system
x∗(p,M). It should be noted that, if we assume C(x) to
be the identity correspondence (C(x) � {x} ∀x so that
there is no difference between goods purchased and
goods consumed), then Equation (3) trivially implies
U(x, y) � Ũ(c, y). It is thus obvious that any param-
eterization of U(x, y) in a direct-utility model can
easily be accommodated under our approach by
setting C(x) to be the identity correspondence. In
contrast, Equation (3) implies that a utility function
over goods purchased U(x, y) can always be inferred
from a utility function over goods consumed Ũ(c, y);
however, the derived expression of U may not be
straightforward.

3.2. Parametric Assumptions
We represent the joint consumption of multiple in-
puts as a final good, which is obtained by combin-
ing the inputs in fixed proportions that are known to
the consumer (but unknown to the analyst). Each
input can also be consumed separately, either by
itself or in conjunction with some other goods that
are outside the scope of the analysis. We aggregate
such outside consumption uses and represent them
by a final good that is obtained directly from that
input.3 Therefore, the same input can be used to

produce different final goods, and some final goods
may require multiple inputs. We represent this by a
Leontief production function that can be described
by a J × K input–output table, denoted byA, such that
ajk represents the volume of input j that is required
to make one unit of final good k. For example, the
input–output table may look like the following in the
case of burgers and buns:

A�
)( separate burger separate bun sandwich

burger 1 0 1
bun 0 1 1

.

(4)

The set C(x) of final good quantities c that can be
produced from input volumes x is the set of vectors c
with nonnegative entries and such that

∑
k ajkck ≤ xj

for all j or in matrix form: Ac ≤ x.
Next, we parameterize the utility function for

the final goods consumed and for the outside good
as follows:

Ũ c, y
( ) � Ũc c( ) +Uy y

( ) (5a)

with : Ũc c( ) � ∑K
k�1

ψk log ck + 1( ) (5b)

Uy y
( ) � ψ0 log y

( )
, (5c)

where ψ0, ψ1, . . . , ψK are parameters whose values are
nonnegative.4 The log specification for the utility of
the outside good allows for an income effect and,
hence, for asymmetric cross-price derivatives as we
discuss in Section 4.1. The functional form for Uc in
Equation (5b) is commonly used to parameterize the
utility for goods purchased U(x, y) in direct-utility
models of demand (Satomura et al. 2011, Lee et al.
2013, Lee and Allenby 2014). It has desirable prop-
erties: the log function captures monotonicity and
concavity in its argument, and the intercept added
inside the log allows for corner solutions. It should be
noted that this functional form is additively separa-
ble, which makes it easy to solve the consumer
problem; however, a model in which this form is used
to parameterize U(x, y) would not be able to yield
complementarity between the J goods of interest, as
discussed earlier. By using this functional form to
parameterize Ũ(c, y) instead, our model can actually
capture very different patterns of preferences for
complements as we show in the next section.

3.3. Implications for Consumer Preferences over
Goods Purchased

In this section, we show how our model of prefer-
ences over final goods (c, y) translates into preferences
over goods purchased (x, y). Using Equations (3)

Figure 1. Relationship Between Ũ, U, and V in the
Household-Production Model of Complementarity
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and (5a)–(5c), our parameterization of Ũ(c, y), implies
the following utility for purchased goods U(x, y):

U x, y
( ) � Ux x( ) +Uy y

( ) (6a)

where Ux x( ) � max
c

∑K
k�1

ψk log ck + 1( ) (6b)

subject to :
∑
k
ajkck ≤ xj ∀j (6c)

ck ≥ 0 ∀k . (6d)
Equations (6b)–(6d) define the consumer’s problem of
optimally allocating inputs to construct final goods; it
does not include the input prices or the budget, as it
takes the quantities of inputs as given. This problem is
mathematically very similar to the multiple-constraint
model by Satomura et al. (2011).5 The first-order
conditions of the optimal allocation problem are
as follows:

ψk

ck + 1
+ λk −

∑
j
μjajk � 0 ∀k

λkck � 0 ∀k

μj xj −
∑
k
ajkck

( )
� 0 ∀j

ck, μk, λj ≥ 0,

(7)

where the coefficients λk and μj are Lagrange multi-
pliers corresponding to the nonnegativity constraints
on the quantities of final goods ck and the constraints
on the amount of inputs available, respectively. In
a case with J � 2 inputs, K � 3 final goods, and
A � ( 1 0 1

0 1 a23
), where a23 represents the proportion of

input 2 combined with each unit of input 1 to create
the third final good, we can easily obtain the ex-
pression of the optimal quantities of final goods
consumed as a function of the quantities of goods
purchased:

c∗3 x( ) � min max 0, c int( )
3 x( )

( )
, x1,

x2
a23

( )
c∗1 x( ) � x1 − c∗3
c∗2 x( ) � x2 − a23c∗3 , (8)

where c(int)3 is the solution to a second-degree equation
as shown in Appendix A. The resulting utility over
inputs purchased is then Ux(x) � Uc(c∗(x)), whose
expression cannot be simplified.

Using the expression ofUx, we illustrate in Figure 2
several indicative indifference curves obtained for
different parameter values, holding the outside good
constant and considering two goods for purchase. The
results are quite remarkable: we obtain L-shaped indif-
ference curves characteristic of perfect complementarity

whereby an additional unit of a good does not provide
more utility to the consumer unless it is accompanied by
anadditional unit of the other good (Figure 2(a)), curves
characteristic of independent goods (Figure 2(b)), and
asymmetric curves (Figure 2(c)). Our model can clearly
accommodate very different preferences. In contrast,
we illustrate in Figure 3 some indifference curves
obtained under an alternative specification of Ux that
does not make use of household production but in-
stead contains an interaction term in the log quantities.
The curves are far less flexible under the alternative
specification: for example, perfect complementarity
cannot be obtained becauseUx is strictly increasing in
both x1 and x2 on the entire domain. It would thus be
very difficult to specify a functional form for the
utility on goods purchased Ux(x) in a way that yields
flexible complementarity patterns; in contrast, our
parameterization of Uc(c) has a closed-form expres-
sion and Ux(x) follows directly from it. Thus, setting
up the household production problem greatly facilitates
the problem of specifying a convenient functional form
for the purpose of demand estimation across com-
plementary goods.
The next section elaborates on the properties of the

demand system implied by the model as a function of
the preference parameters.

4. The Demand System
According to themodel laid out in the previous section,
the consumer buys the quantities of inputs that solve
the optimization problem in Equation (2). We thus
obtain a demand system x∗(p,M;ψ,A), where the
demand for each good j is a function of the prices p for
a given value ψ of the consumer’s preference pa-
rameters and given the input–output table A. In this
section, we seek to evaluate the flexibility of our
model to accommodate different demand systems.
We therefore study how different values of ψ imply
different effects of prices on demand. To do this, we
first assume that any continuous quantities can be
purchased: in that case, the consumer problem can be
solved analytically, andwe can derive useful insights.
Then, we study through simulation a demand system
when the goods can only be purchased as indivisi-
ble packages.

4.1. Demand Under Continuous Quantities
Let us assume that the J inputs can be purchased in
any nonnegative, continuous quantities (such that
X � R

J
+) and that prices are linear in quantities (such

that p(x) � ∑
j pjxj). Because any continuous quanti-

ties of inputs can be purchased, the consumer buys
the quantities that are exactly necessary to make the
optimal quantities c∗k of final goods: given that he or
she does not keep inventories, buying more inputs
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Figure 2. Indifference Curves Under the Household Production Model, Using Different Parameter Values

Notes. These plots represent indifference curves over two goods purchased, holding the quantity of outside good y constant and assuming
A � ( 101011 ). Different values of the parameters give very different patterns from no complementarity (subplot a) to perfect complementarity
(subplot d).
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Figure 3. Indifference Curves Under an Alternative Utility Specification

Notes. These plots represent the indifference curves obtained with an alternative utility specification:

Ux x1, x2( ) � ψ1 log x1 + 1( ) + ψ2 log x2 + 1( ) + ψ3 log x1 + 1( ) log x2 + 1( ) .
In contrast to Figure 2, the patterns vary much less with different parameter values.
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would only come at an extra monetary cost. Thus, the
demand for inputs must be such that

x∗j �
∑K
k�1

ajkc∗k ∀j. (9)

In this model with continuous quantities, we can
thus obtain the demand for inputs x∗j by aggregating
the optimal quantities of final goods c∗k . To derive
these optimal quantities c∗k , it is useful to define the full
price fk of each final good k as the dollar amount that
the consumer needs to pay to produce one unit of that
final good by buying all the necessary inputs:

fk �
∑J
j�1

ajkpj. (10)

By using this definition, the consumer problem in
Equation (2) can be simplified and rewritten in terms
of the final goods only:

max
c,y

Ũ c, y
( )

s.t.
∑K
k�1

fkck + y ≤ M. (11)

We show in Appendix B how to solve the first-order
conditions of this revised consumer problem under
our parameterization of Ũ(c, y). Our specification
allows for corner solutions: only those final goods
in a set _ are consumed in a positive quantity. The
expression for the quantities of final goods con-
sumed and for the quantity of outside good are then
as follows:

c∗k � max 0,
ψky∗
ψ0fk

− 1
{ }

where y∗ � ψ0 M +∑
l∈_ fl

( )
ψ0 +∑

l∈_ ψl
.

(12)
As explained in Appendix B, the set_ of final goods k
for which c∗k > 0 can be found by sorting marginal
utilities in decreasing order and comparing them to
themarginal utility of the outside good. Furthermore,
we can compute the derivatives of final good quan-
tities with respect to their full prices for k, k′ in _:

∂c∗k
∂fk′

�
ψk

ψ0+
∑

l∈_ ψl

1
fk
− M+∑l∈_ fl

f 2k
I k � k′( )

[ ]
≤ 0 if k � k′

ψk
ψ0+∑l∈_ ψl

× 1
fk

> 0 if k 	� k′.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(13)

Thus, the full price fk of a final good k has a negative
effect on the quantity consumed ck of that final good.
Furthermore, the concave utility for the outside good
leads to substitution between two final goods k and k′
as the terms ∂c∗k/∂fk′ are negative; in addition, these
cross-price derivatives are asymmetric.6 Next, by
combining Equations (9) and (12), we can calculate

the demand for input goods x∗j as a function of input
prices pj:

x∗j � ∑K
k�1

ajk max 0,
ψky∗
ψ0fk

− 1
{ }

∀j. (14)

From this, we can directly see that the price of an
input j negatively impacts its demand x∗j as, for each
final good k that uses input j (such that ajk > 0), an
increase in pj leads to an increase in fk and, therefore, a
decrease in c∗k . The derivatives of input quantitieswith
respect to their prices are as follows:

∂x∗j
∂pj′

� ∂
∑K

k�1 ajkc
∗
k

( )
∂pj′

� ∑
k
ajk

∑
k′

∂c∗k
∂fk′

× ∂fk′
∂pj′

� ∑
k∈_

∑
k′∈_

ajkaj′k′
∂c∗k
∂fk′

. (15)

From Equation (15), we can make several observa-
tions. First, two inputs j and j′ that are never used
jointly in household production (i.e., for which there
is no k such that ajk > 0 and aj′k > 0) are substitutes as
they feature positive cross-price effects because of the
negative terms ∂ck/∂fk′ , where k 	� k′. Second, if two
goods j and j′ are used jointly in the household pro-
duction of a final good k (such that ajk > 0 and aj′k > 0),
the cross-price derivative ∂x∗j/∂pj′ includes the term
∂c∗k/∂fk, which is negative; thus, our model allows for
negative cross-price effects, which define comple-
ments.7 Third, if two goods j and j′ are exclusively
used for the household production of one final
good k, then they are perfect complements; if they
are used in the same proportions, a one-dollar increase
in the price of good j has the same effect on demand
for good j′ as a one-dollar increase in the price of
good j′; if they are used in different proportions, then
the price effects are weighted by the proportions
of each input in the construction of the joint final
good. Finally, the cross-price derivatives ∂x∗j/∂pj′ are
not symmetric in general because the cross-price
derivatives ∂c∗k/∂fk′ are themselves not symmetric.
Overall, our modeling approach allows for com-

plementarity between two goods if they are used
jointly in the household production of a final good;
the cross-price effects can be asymmetric, and the
concavity of the utility for the outside good also al-
lows for some formof substitution. In the next section,
we study by simulation the demand system under
integer constraints.

4.2. Demand Under Discrete Quantities
When goods can only be purchased in indivisible
packages, the inputs purchased are constrained to
lie on a grid such that xijt ∈ {0, sj, 2sj, 3sj, . . .}, where sj
is the amount of volume contained in one package
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of good j. For example, if buns are sold by packs of
eight, then the consumer can buy 0, 8, or 16 buns, but
not five. Consistent with Lee and Allenby (2014), we
thus set the feasible set as the Cartesian product:
X � ∏

j{0, sj, 2sj . . .}. Furthermore, the price paid for
quantities x is linear in the number of packages:
p(x) � ∑

j pj(xj/sj), where pj is the price of one package.
Given the integer constraints in the consumer prob-
lem, we cannot derive a closed-form expression for
the demand system. Instead, we obtain the optimal
purchase quantities x∗(p,M)by searching on a grid for
the values of x thatmaximize the consumer’s objective
function.8 To investigate the properties of the demand
systemwhen quantities are discrete, wemust then use
simulation. For exposition, we focus on the case in
which J � 2, K � 3, and A � ( 1 0 1

0 1 a23
) for some pos-

itive value of a23 (in Section 5.5, we discuss the ex-
tension to more than two goods). In this case, the two
inputs can be consumed separately (as represented by
final goods 1 and 2) or jointly (as represented by a
composite final good 3), and a23 represents the pro-
portion of input 2 that is combined with one unit of
input 1 when they are consumed jointly.

In Table 2, we provide a summary of the demand
system for various values of the parameters ψ and a23
at different price points, assuming a setup in which
each of the two goods is sold by packs that contain
sj � 10 units of content. We set the consumer budget
equal to $50 and consider two price points for each
good ($0.50 and $1.00 per pack). We add some ran-
dom noise to the parameters ψ to investigate how the
parameter values and prices impact the probability
of purchase incidence for each good, the probability
of purchase co-incidence and the expected quantity
purchased of each good E[xj].

In thefirst set of columns,we consider a case ofperfect
complementarity in which the preference parameters
for separate consumptionsψ1 andψ2 are set to zero but
the utility of a joint consumption is positive (ψ3 > 0).
In this case, the two goods are only purchased to-
gether. If the proportions used for joint consumption
are the same for both inputs (a23 � 1), the quantities
purchased are equal, and a price discount for good 1
has the same effect as a price discount for good 2. If
joint consumption requires twice more volume of
input 2 than input 1 (e.g., a23 � 2), the consumer buys
on averagemore of good 2 than good 1 but not exactly
twice as much because the goods are sold in indi-
visible packages (sometimes he or shemay find it best
to buy one pack of each good).

In the second set of columns, we consider a case of no
complementarity, in which the separate consumptions
bring utility (ψ1 > 0, ψ2 > 0) but the joint consumption
brings no utility (ψ3 � 0). In that case, purchase in-
cidences are independent across the two goods, and
the value of a23 has no effect on demand because the

joint final good is never produced by the consumer. In
addition, a price discount for one good does not affect
the quantity purchased of the other good.
In the last set of columns, we consider a case in which

the separate consumptions and the joint consump-
tion bring utilities (ψ1 > 0, ψ2 > 0, ψ3 > 0). In that case,
purchase incidences are correlated, and a price dis-
count for one good increases the quantity purchased
of both goods, but to a lesser extent for the comple-
mentary good. Overall, the main arguments given in
Section 4.1 also apply when demand is constrained
because of indivisible packages, and we can see that
the demand system can take many forms depending
on the values of the preference parameters ψ1, ψ2, ψ3
and the proportion a23.

5. Econometric Model
In this section, we introduce stochastic elements to
the model, discuss its estimation and the identifica-
tion of its parameters, and perform simulations to
show its robustness when applied to goods that are
not complementary.

5.1. Random Shocks and Consumer Heterogeneity
We nowmake adjustments in the model so that it can
be applied to purchase data, in the absence of con-
sumption data. Let us introduce the subscript i to
refer to a consumer and the subscript t to indicate a
specific purchase occasion. Suppose that we followN
consumers, and each consumer i has Ti purchase oc-
casions on which we observe the prices of packages pijt
that he or she faces and the volumes of goods xijt
that he or she buys. We take a random-utility ap-
proach to rationalize the consumer’s purchase deci-
sions under the consumer problem in Equation (2).
Specifically, we assume that the ψ parameters in con-
sumer i’s utility function Ũcit at time t account for
person-, time-, and final good-specific random shocks:

ψikt � ψikeεikt

where εikt ∼ N 0, σ2k
( )

. (16)
The values ψik represent the stable part of the con-
sumer’s preferences and the shocks εikt, known to the
consumer at time t, capture variation over time. Fur-
thermore, we allow the proportion ai23 used in joint
consumption to be heterogeneous across consumers.
The model only makes sense if the preference pa-
rameters ψik and ai23 are nonnegative: thus, we con-
sider their logarithmic transformation. We collect all
individual-level preference parameters into a vector ωi

andmodel unobserved consumer heterogeneity through
random coefficients:

ωi ∼iid MVN ω̄,V( )
where ωi � log ψi1

( )
, . . . , log ψiK

( )
, log ai23( )[ ]

. (17)
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Thus, in any period t, the consumer solves the con-
sumer problem in which his or her preference pa-
rameters are such that ψikt � ψikeεikt and in which
demand is restricted because each good j is sold in
indivisible packages that contain a volume sj.

5.2. Likelihood and Estimation
The purchase bundle x is chosen by the consumer if it
yields the highest utility among all possible bundles
given the prices and the consumer’s budget and
preferences; otherwise, it is not optimal. To evalu-
ate the probability that the consumer chooses the
bundle x (conditional on the prices p, the consumer’s
preference parametersψ, and the proportion a23 he or
she uses), wemust therefore calculate an integral over
the region of random shocks ϵ such that x is optimal.
Let us define the “optimality function” formally as

m x|p,M,ψ, a23
( ) � I x∗ p,M;ψ, a23

( ) � x
{ }

, (18)
where I{.} is the indicator function and x∗(p,M;ψ, a23)
is the demand under prices p, budget M, and prefer-
ence parameters ψ and a23 as explained in Section 4.2.
Consumer i’s contribution to the likelihood can then
be written as follows:

Li ωi, σ
2( ) � ∏Ti

t�1

∫
ϵit

m xit|pit,Mit, ψikeεikt
{ }

k, ai23
( )

× ∏
k

N εikt|0, σ2k
( )[ ]

dϵit,

(19)

where xit is the observed purchase decision by user i
in trip t, ϵit is a collection of all the shocks εikt, and
N(.|μ, σ2) is the probability density function of the
univariate normal distribution with mean μ and vari-
ance σ2. The integral in Equation (19) cannot be
simplified; thus, we apply data augmentation to
estimate the model. Our estimation algorithm, laid
out in Appendix C, is similar to the “error augmen-
tation” procedure used by Lee and Allenby (2014).
The next section discusses the identification of the
model parameters.

5.3. Identification
The parameters of our model can be identified from
patterns of purchases as a function of prices. The ψk
parameters capture the consumer’s utility for final
goods: as such, they are defined relative to the mar-
ginal utility for the outside good ψ0; we fix their scale
by settingψ0 � 1. Different values ofψk yield different
own- and cross- price effects as discussed in Section 4.
Thus, they are identified by the own- and cross-effects
of prices on purchases; the magnitude of the price
effects are smaller when the ψk parameters are larger.
In the case considered earlier in which the number of

inputs is J � 2, high cross-price effects are picked up
by a higher value of ψ3; a low value of ψ3 indicates no
cross-price effects. Separate from cross-price effects,
the random shocks ϵ are identified by the variance and
correlation in purchase behavior across the J goods.
The proportion used in combining different inputs for
a joint consumption (a23) is identified by the pro-
portions in quantities purchased when there is a joint
purchase. Finally, the variation in purchase behavior
at the individual level can be disentangled from
consumer heterogeneity when the model is estimated
on panel data with multiple observations per con-
sumer. The simulation provided next furthers our
discussion of identification.

5.4. Simulation Study
We ran two sets of simulations to investigate the pos-
sible consequences of ignoring (or allowing for) com-
plementarity between two goods when estimating
demand as a function of prices. For this analysis, we
considered two different versions of our proposed
model. Model 1 is our model that allows for comple-
mentarity with an input–output table A � ( 1 0 1

0 1 a23
).

For Model 2, we shut off any complementarity be-
tween goods by setting A equal to the identity matrix:
consequently, K � 2, there is no joint consumption,
and the cross-price effects between goods purchased
are forced to be zero.
We generated a data set for each of the two models,

using that model as the true data-generating process.
We generated the preference parameters of 200 con-
sumers from a multivariate normal distribution with
a mean ω̄ and a covariance matrix V. We considered
packs of sizes 16 and 10, respectively; unit prices
were drawn from a uniform distribution in the inter-
val [1, 4], and consumer budgets were drawn from
a log-normal distribution.9 For each consumer, we
generated 100 purchase occasions and solved for the
optimal purchase quantities. Each resulting data set
contained the prices observed by consumers and the
quantities purchased of each good; we discarded the
consumption data as this is unobserved in practice.
On both data sets, we estimated Models 1 and 2;

we provide the results in Tables 3 and 4. The first
set of rows indicates our estimates of the average
preference parameters ω̄ along with their posterior
standard error in parentheses. To compare how the
models fit the data, we have reported the DIC of each
model, which penalizes models with a higher com-
plexity; a lower value of the DIC indicates a better fit.
We have also reported, for each good, the hit rate
of the models’ purchase incidence predictions and
the root mean squared error (RMSE) of their vol-
ume predictions (converted in package units) both
in sample and out of sample on another data set
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generated in the same fashion. We have also re-
ported the own- and cross-price elasticities, which
were computed by simulating the aggregate demand
assuming a 10% increase in the price of each good. For
each draw of the parameters from our sampler, we
computed aggregate demand by first solving the
consumer problem at each purchase occasion and then
summing up the quantities purchased across periods
and consumers. We computed the price elasticity of
demand for each draw and reported the mean elastici-
ties across posterior draws along with their poste-
rior standard deviations in parentheses.

We can make several observations from these re-
sults. First, we recovered the true parameters and
price elasticities within their 95% posterior intervals
for each data set when estimating the “true”model. In
both simulations, the true model fits the data best
based on the DIC and other model fit criteria. While
expected, these results confirm that the parameters of
our model can be empirically identified and that our
estimation procedure can recover them.

The estimation results also provide insights about
the effect of capturing or ignoring complementarity
between the goods. In the first data set generated, the
consumer derives utility from the joint consumption
of goods as indicated by the value of ω̄3. This leads to
the existence of negative cross-price effects as shown
by the sign of the true cross-price elasticities. On that
data set, the model that does not allow for comple-
mentarity (Model 2) not only yields zero cross-price
elasticities, but also leads to a significant bias in the
estimation of own-price elasticity for good 2.
Conversely, the second data set was generated

according toModel 2, which does not include utility for
the joint consumption of goods purchased. However, it
should be noted that Model 1, which allows for such
complementarity, accurately estimates the true prefer-
ence parameters for separate consumptions ω̄1 and ω̄2
and yields a very large value for the proportion a23.
Because such a high proportion a23 makes it costly
to buy all the necessary inputs for a joint consump-
tion, the consumer prefers to consume the goods

Table 3. Simulation 1: Estimation Results on Data Generated Under Model 1
(with Complementarity)

Truth
(Model 1)

Model 1
(with complementarity)

Model 2
(without complementarity)

Average log(ψ1) (input 1 by itself) −6.96 −6.99 (0.07) −6.54 (0.06)
Average log(ψ2) (input 2 by itself) −6.40 −6.36 (0.06) −6.02 (0.05)
Average log(ψ3) (joint consumption) −8.06 −7.96 (0.16) —
Average log(a23) (proportion chips/salsa) −0.41 −0.39 (0.12) —
σ21 3.79 3.77 (0.13) 3.41 (0.10)
σ22 3.13 2.99 (0.09) 2.77 (0.07)
σ23 4.61 4.72 (0.30) —
V11 0.44 0.53 (0.07) 0.46 (0.05)
V12 0.30 0.26 (0.05) 0.30 (0.04)
V13 0.12 0.16 (0.07) —
V14 −0.04 −0.03 (0.06) —
V22 0.64 0.56 (0.06) 0.48 (0.05)
V23 0.27 0.20 (0.07) —
V24 −0.07 −0.10 (0.07) —
V33 1.24 0.96 (0.16) —
V34 −0.07 −0.11 (0.11) —
V44 0.49 0.62 (0.12) —

DIC — 41,687 42,221
In sample. . .
hit-rate for good 1 incidence — 82.4% 82.3%
hit-rate for good 2 incidence — 81.2% 81.1%
RMSE for good 1 quantity (packs) — 0.780 0.783
RMSE for good 2 quantity (packs) — 0.834 0.838

Out of sample. . .
hit-rate for good 1 incidence — 82.1% 82.0%
hit-rate for good 2 incidence — 80.5% 80.4%
RMSE for good 1 quantity (packs) — 0.788 0.790
RMSE for good 2 quantity (packs) — 0.846 0.850

Elasticity 1→1 −0.74 −0.75 (0.04) −0.81 (0.04)
Elasticity 1→2 −0.07 −0.08 (0.01) 0.00 (0.01)
Elasticity 2→1 −0.09 −0.09 (0.01) 0.00 (0.01)
Elasticity 2→2 −0.76 −0.78 (0.03) −0.85 (0.04)
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separately rather than jointly, and thus, the demand
system can be reduced to the demand systemofModel 2,
in which the joint consumption does not exist. Conse-
quently, the model yields accurate own-price elasticities
and insignificant cross-price elasticities.

Taken together, these results suggest that our model
yields accurate results even in the absence of comple-
mentarity and that ignoring complementarity across
goods can lead to substantial biases in the estimation of
the own-price elasticities of these goods.

5.5. Extension to J > 2
In this section, we discuss how the model can be
applied to estimate the demand for more than two
goods. In this case, we still need to include J final
goods representing the separate consumption of each

input, and to allow for some slack when the input is
not entirely exhausted through joint consumption
with other inputs. Thus, the first J final goods rep-
resent the separate consumption uses of the inputs,
and the otherfinal goods (J + 1 toK) represent the joint
consumption of at least two inputs. This leads to the
following structure of A:

A � I A2( ), (20)
where I is the J × J identitymatrix, andA2 corresponds
to the proportions used in the joint consumption of
multiple inputs.
If there are J goods, there can be up to 2J − 1 final

goods. For each final good, we need to estimate a
preference parameter ψk as well as parameters giving
the proportions of the necessary inputs. Thus, the

Table 4. Simulation 2: Estimation Results on Data Generated Under Model 2
(Without Complementarity)

Truth
(Model 2)

Model 1
(with complementarity)

Model 2
(without complementarity)

Average log(ψ1)
(input 1 by itself)

−6.53 −6.64 (0.06) −6.63 (0.06)

Average log(ψ2)
(input 2 by itself)

−6.09 −6.12 (0.06) −6.12 (0.06)

Average log(ψ3)
(joint consumption)

— −5.22 (1.43) —

Average log(a23)
(proportion chips/salsa)

— 38.80 (16.92) —

σ21 3.45 3.49 (0.10) 3.49 (0.10)
σ22 2.94 2.89 (0.08) 2.89 (0.08)
σ23 — 1.28 (1.19) —
V11 0.43 0.56 (0.06) 0.54 (0.06)
V12 0.36 0.40 (0.05) 0.40 (0.05)
V13 — 0.05 (0.29) —
V14 — 0.00 (0.34) —
V22 0.58 0.65 (0.07) 0.64 (0.07)
V23 — 0.08 (0.35) —
V24 — 0.00 (0.39) —
V33 — 1.83 (1.13) —
V34 — −0.00 (0.99) —
V44 — 2.04 (1.91) —

DIC — 41,700 40,856
In sample. . .
hit-rate for good 1 incidence — 82.9% 82.9%
hit-rate for good 2 incidence — 81.6% 81.6%
RMSE for good 1 quantity (packs) — 0.771 0.771
RMSE for good 2 quantity (packs) — 0.843 0.843

Out of sample. . .
hit-rate for good 1 incidence — 82.5% 82.5%
hit-rate for good 2 incidence — 81.3% 81.3%
RMSE for good 1 quantity (packs) — 0.782 0.782
RMSE for good 2 quantity (packs) — 0.848 0.848

Elasticity 1→1 −0.81 −0.81 (0.04) −0.81 (0.04)
Elasticity 1→2 0.00 0.00 (0.00) 0.00 (0.00)
Elasticity 2→1 −0.01 0.00 (0.01) 0.00 (0.01)
Elasticity 2→2 −0.81 −0.81 (0.04) −0.81 (0.04)
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number of parameters that need to be estimated in-
creases exponentially with J. Without imposing any
restrictions, extending the model to a case with a large J
would therefore lead to some challenges. First, the
computational burden increases: although our esti-
mation algorithm remains valid, deriving the demand
function requires an evaluation of the utility of each
bundle of inputs, which grows exponentially in J.
Second, the data requirement increases: the researcher
needs more observations to identify all the parameters
of the model. In that regard, it should be noted that the
unrestricted model (with K � 2J − 1 final goods) yields
not only own- and cross-price effects, but also any
N-way interaction effect of prices on demand (for
any N ≤ J), which can be derived from the demand
system given in Equation (14). Thus, the parameters
of such a model would be identified through all these
price effects, whose number also grows exponen-
tially. To reduce the dimensionality and make com-
putation easier, some restrictions likely need to be
imposed. For example, one could use managerial
judgment or prior information on consumption uses
to rule out some final goods (for example, we can eat
burgers with ketchup and burgers with mustard but
not ketchup with mustard). The researcher could also
focus solely onfinal goods that can be produced fromat
most two (or three) different inputs; this would a priori
rule out some interaction price effects. We note that
many extant models have fewer parameters precisely
because they do not allow for interaction effects of
prices on demand. Regardless, we view scalability as
one needed area for future extension of our work.

6. Empirical Application
This section discusses an application of our model to a
data set of purchases made by a panel of consumers in
the tortilla chips and Mexican salsa categories. We first
describe the data, then we present our estimation re-
sults, and finally, we discuss three counterfactual an-
alyses to show how our model can be used to make
improved decisions in the distribution of coupons by
retailers, in packaging by manufacturers, and in influ-
encing changes in the proportions used by consumers
when combining goods together.

6.1. Data
The data were collected by AC Nielsen and are made
of two parts. The first part contains data about a set of
households that report their purchases over time
using a scanner device at home: it provides the in-
formation about all shopping trips made by the
households, the number of units purchased, and the
price paid for each item purchased. Prices are only
observable when a purchase is made; therefore, we
combine the data about households with the second

part of the data, which gives us store-level prices for
each item each week. For our empirical application, we
chose the tortilla chips and Mexican salsa categories,
which are a classic example of complementary goods as
they are often consumed together; we focused on a two-
year time window from 2010 to 2011. We focused, re-
spectively, on the 10- and16-ouncepackage sizes,which
are the predominant formats in these categories. We
aggregated prices to the category level by taking an
average of brand-specific prices weighed by market
share. We restricted the data to households making at
least eight purchases in each of the two categories over
the two-year period as is common in models that esti-
mate heterogeneous effects. Finally, we operationalize
thebudgetM as the total shopping expenditure during
each trip as is commonly done in the literature (Song
and Chintagunta 2007).
The resulting data set contained 251 consumers,

each consumer making 151 shopping trips on aver-
age. Table 5 gives some summary statistics of the data.
Consumers bought multiple units of chips or salsa in
30% of their purchases, which indicates the need for a
model of quantity. Consumers often bought both
goods together as indicated by the high percentage of
purchase co-incidence relative to the marginal per-
centages of incidence. We estimated logit models of
incidence for each category (as reduced-form explo-
ration) to investigate the effect of prices on demand
with and without household-specific fixed effects.
The results are displayed in Table 6 and suggest that
prices have a negative effect on demand within and
across categories. The results also suggest the exis-
tence of heterogeneity across households.

6.2. Estimation Results
We estimated two versions of our model on the data:
our full model of complementary demand based on
household production theory (Model 1) and the re-
stricted model that rules out complementarity by set-
ting A equal to the identity matrix (Model 2) as in
the simulation study. We also estimated a hierar-
chical Bayesian multivariate probit model similar to
Manchanda et al. (1999) (Model 3) on the incidence
data (discarding the quantity information) as a bench-
mark model to evaluate how well our model could
predict purchase incidences. Finally, we estimated
a hierarchical Bayesian Poisson regression for each
product category to model the count of units pur-
chased; both univariate models were combined un-
der Model 4. The multivariate probit model and the
Poissonmodels included an intercept, the price of chips
and the price of salsa as predictors; we used random
coefficients to capture consumer heterogeneity. For
eachmodel,weused aBayesian estimation algorithm to
generate 500,000 draws of the parameters from their

Stourm, Iyengar, and Bradlow: A Flexible Demand Model for Complements
Marketing Science, 2020, vol. 39, no. 4, pp. 763–787, © 2020 INFORMS 777



posterior distribution. We discarded the first 100,000
draws and kept one draw every 100 draws thereafter to
reduce autocorrelation. We ran three separate chains
to assess convergence (Rubin and Gelman 1992).

In Table 7, we have compiled, for each model, our
estimates of the population-level mean parameters
along with the corresponding posterior standard de-
viation in parentheses.We have also reported the DIC
of each model except for Model 3 because its likeli-
hood is not comparable as it was only applied to the
incidence data. Based on the DIC criterion, Model 1
fits the data better than Model 2, which suggests evi-
dence of complementarity between salsa and chips,
and it also fits better than Model 4. We also reported
the hit rate of the models’ purchase incidence pre-
dictions and the RMSE of their volume predictions
(converted in package units) both in sample and out
of sample for each category.10 The incidence hit rates
obtained under Model 1 are better than those ob-
tained under Model 3 even though Model 3 focuses
only on incidence predictions and ignores quantities.
Model 1 makes better incidence predictions than
Model 4 based on the hit rates, but Model 4 makes
slightly better volume predictions. These results are
remarkable given that Model 1 contains only four
consumer-specific parameters (ψ1, ψ2 ψ3 and a23) and
Models 3 and 4 contain six consumer-specific pa-
rameters (two intercepts, two own-price effects, and
two cross-price effects).

Finally, we have reported the own- and cross-
price elasticities along with their standard errors in

parentheses. We note that the negative cross-price
elasticities under Model 1 are statistically significant
and nonnegligible. When comparing the difference in
own elasticities between Models 1 and 2 from this real
data empirical application (Table 7) and those from the
simulation (Table 3), we note a similar pattern:Model 2
tends to overestimate the own-price elasticities.
Our estimates from Model 1 suggest that the pref-

erence parameter for joint consumption (ψ3) is not
larger than the preference parameter for a separate
consumption of salsa (ψ1) or a separate consumption
of chips (ψ2). This may be because people seek variety
by attributing some of the inputs purchased to either
separate or joint consumption uses. In the next sec-
tion, we investigate further the consumption uses as
inferred from our model, which highlights the value
of our direct utility model on final goods consumed
rather than inputs purchased.

6.3. Inferred Consumption
According to our model, the consumer has a con-
sumption plan in mind when deciding to buy the
goods x: he or she plans to allocate these inputs into
different possible uses represented by a bundle c of
final goods (separate consumption of salsa, separate
consumption of chips, joint consumption of salsa
and chips). We remind the reader that a separate
consumption of salsa does not necessarily mean that
the consumer eats salsa by itself but rather that the
consumer consumes salsawithout chips as explained in
Section 3.2: for example, he or she may put salsa inside

Table 5. Description of Purchase Data in the Tortilla Chips and Mexican Salsa Categories

(a) Purchase frequency

Salsa and chips Salsa only Chips only None

Number of observations (%) 1187 (3.1) 2218 (5.9) 2878 (7.6) 31625 (83.4)

(b) Descriptive statistics

Salsa Chips

Price, $ 2.70 2.60
Purchase incidence, % 8.98 10.72
Mean purchase quantity (packs) 1.34 1.32

Table 6. Reduced-Form Evidence of Complementarity Between Tortilla Chips and Salsa

Incidence of salsa Incidence of salsa (with household fixed effects)

Salsa price −0.44 (0.09) −0.63 (0.12)
Chips price −0.29 (0.06) −0.28 (0.08)

Incidence of chips Incidence of chips (with household fixed effects)

Salsa price −0.26 (0.08) 0.02 (0.12)
Chips price −0.74 (0.05) −0.91 (0.07)
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burrito tortillas; similarly, he or she can eat chips
without salsa but with guacamole. While purchases
are observable, the consumption plans are not. How-
ever, we can use the posterior draws obtained from
our Bayesian estimation algorithm to infer those con-
sumption plans under our model. To do this, we
reconstructed the preference parameters ψikt and the
proportions ai23 for each consumer trip and for each
posterior draw, and we solved the optimal con-
sumption problem in Equation (3) given the observed
quantities of goods purchased xijt to determine the
optimal consumption quantities c∗ikt. We then aggre-
gated the consumption plans by taking an average
across draws and trips. We present a breakdown of
those consumption plans in Figure 4.

Because chips and salsa cannot be consumed jointly
unless they are purchased together (under the main-
tained assumption that no inventory is carried between
trips), we must infer that salsa is consumed separately
when the consumer only buys salsa (and similarly for
chips).We thus focus our attention on trips inwhich the
consumer buys both salsa and chips. Out of those trips,
we find that, in 22.5% of cases, the salsa and chips are
consumed entirely separately; in 23.9% (20.0%), the
consumer exhausts all the salsa (chips) by consuming it
with the chips (salsa); in the remaining 33.6%of cases, the
consumer uses, on average, 58.2% of the salsa and 54.4%
of the chips for joint consumption and consumes the rest
of the inputs separately. Overall, these results suggest
a large portion of joint consumption, which one might

Table 7. Estimation Results on Purchase Data in the Mexican Salsa and Tortilla Chips Categories, Including a Multivariate
Probit Model and a Poisson Regression Model as Benchmark Models for Incidence and Quantity

Model 1
(with complementarity)

Model 2
(without complementarity)

Model 3
(HB MV probit)

Model 4
(HB Poisson)

Average log(ψ1) (separate salsa) −6.96 (0.07) −6.53 (0.06) — —
Average log(ψ2) (separate chips) −6.40 (0.07) −6.09 (0.06) — —
Average log(ψ3) (joint consumption) −8.06 (0.17) — — —
Average log(a23) (proportion) −0.41 (0.11) — — —
σ21 3.79 (0.13) 3.45 (0.10) — —
σ22 3.13 (0.10) 2.94 (0.08) — —
σ23 4.61 (0.31) — — —
V11 0.44 (0.05) 0.43 (0.05) — —
V12 0.30 (0.05) 0.36 (0.04) — —
V13 0.12 (0.07) — — —
V14 −0.04 (0.05) — — —
V22 0.64 (0.07) 0.58 (0.06) — —
V23 0.27 (0.08) — — —
V24 −0.07 (0.06) — — —
V33 1.24 (0.20) — — —
V34 −0.07 (0.12) — — —
V44 0.49 (0.10) — — —
Salsa intercept — — −0.24 (0.19) 0.16 (0.47)
Chips intercept — — 0.01 (0.21) 0.29 (0.38)
Salsa price → salsa — — −0.28 (0.06) −0.66 (0.16)
Salsa price → chips — — −0.04 (0.07) −0.13 (0.14)
Chips price → salsa — — −0.13 (0.04) −0.22 (0.09)
Chips price → chips — — −0.44 (0.05) −0.78 (0.09)
Correlation of error terms — — 0.46 (0.01) —

DIC 50,014 50,453 — 54,059
In sample. . .
hit-rate for salsa incidence 85.3% 85.3% 84.6% 83.3%
hit-rate for chips incidence 83.6% 83.6% 82.9% 81.7%
RMSE for salsa quantity (jars) 0.609 0.611 — 0.538
RMSE for chips quantity (bags) 0.658 0.661 — 0.568

Out of sample. . .
hit-rate for salsa incidence 82.6% 82.5% 81.7% 80.2%
hit-rate for chips incidence 79.8% 79.7% 78.3% 76.7%
RMSE for salsa quantity (jars) 0.674 0.677 — 0.588
RMSE for chips quantity (bags) 0.750 0.757 — 0.659

Elasticity salsa → salsa −0.96 (0.04) −1.04 (0.05) −1.14 (0.27) −0.56 (0.33)
Elasticity salsa → chips −0.09 (0.01) 0.00 (0.00) 0.02 (0.27) 0.33 (0.32)
Elasticity chips → salsa −0.10 (0.02) 0.00 (0.00) −0.45 (0.17) −0.14 (0.21)
Elasticity chips → chips −1.01 (0.04) −1.09 (0.04) −1.49 (0.15) −1.37 (0.15)
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expect given the two product categories, but not equal to
one as both are also consumed for other purposes.

6.4. Counterfactuals
Wenow run counterfactual analyses to show how our
model can be used to make improved decisions in the
distribution of coupons to consumers, which is useful
for retailers, and in the choice of package size, which
is important for manufacturers. We also simulate an
alternative scenario in which people mix chips and
salsa in different proportions that could be stimulated
via marketing.

6.4.1. Coupons. Retailers commonly use category-
level coupons by which they offer consumers a dis-
count if they buy an item of any brand within a
product category. Rossi et al. (1996) have shown that a
manufacturer can substantially increase its profit by
tailoring the depth of coupons to each consumer
based on his or her preferences as estimated from his
or her transaction history. Building on their analysis,
we seek to evaluate the importance for retailers to
account for the spillover effect of coupons across cate-
gories when distributing customized coupons to con-
sumers (not simply within the category in which the
coupon is issued). Our model is well suited to simu-
late demand under alternative scenarios in which cou-
pons are distributed because it recognizes both the

discreteness of demand resulting from indivisible pack-
ages and cross-category effects.
Similar to Rossi et al. (1996), we consider a targeted

couponing problem in which the retailer decides the
optimal distribution of coupons to consumers in a
way that maximizes its profit, by determining which
consumers should receive a coupon and what should
be the face values of these coupons. We consider the
problem of distributing coupons for salsa assuming
that no coupons are distributed for chips, and the
reverse problem. The expected profit made by the
retailer across the two categories during the shopping
trip of a consumer is given by the following equation:

E π[ ] � ∑
j
E q∗j rj − Fj × I q∗j > 0

( )[ ]
, (21)

where q∗j is the number of packs bought by the
consumer,11 rj is the retailer’s margin per package in
category j, I(.) is the indicator function, and Fj is the face
value of the coupon distributed to consumer i prior to
that shopping trip (if any). It should be noted that a
coupon can only be used once even if the consumer
buys multiple units: the marginal price of the second
unit is higher than the first unit because the coupon
cannot be redeemed a second time; thus, prices are no
longer linear in quantity if coupons are distributed.
Still, we can determine the optimal quantities q∗j
purchased by the consumer according to our model

Figure 4. Inferred Consumption
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by searching on the grid of feasible demand points,
taking into account the price paid at each point. We do
this to simulate demand at each consumer trip in a series
of counterfactual scenarios inwhich coupons of different
face values are distributed. There is uncertainty about
the optimal quantities in these counterfactual scenar-
ios because we have uncertainty about the consumer’s
preference parameters: we thus solve the consumer
problem for each of the posterior draws we obtained
in our Bayesian estimation procedure, and we eval-
uate the expectation in Equation (21) by taking an
average across them. Calculating profit requires an as-
sumption on the retailer’s costs: consistent with Rossi
et al. (1996), we assume that the retailer’s margin rj on
each package is $0.35. Furthermore, we only consider
coupon face values between $0 and $0.35 in increments
of 5 cents. By comparing the profit made by the retailer
for these different face values, we identify which face
value is optimal at each consumer trip.We repeated this
process using Model 1 and then using Model 2 to in-
vestigate if there are differences in the coupons dis-
tributed when incorporating complementarity.

In Figure 5, we plot the distribution of optimal
coupon face values across all consumer trips under
Model 1 (which takes into account the complemen-
tarity between salsa and chips) and Model 2 (which
ignores it). We observe that the distribution of opti-
mal coupons is shifted to the right when recognizing
complementarity: under Model 1, the optimal face
value of coupons is often higher than under Model 2
for both product categories. We explain these results
as follows. Distributing retailer coupons in the salsa
category can increase demand for that category but
can also come at a cost as consumers who would nor-
mally buy salsa may get a discount without changing
their buying behavior: in that case, the coupon comes as
a windfall to those consumers. In contrast, the spillover
effect on a complementary category should be positive
as salsa coupons can induce more people to buy chips
and do not create a windfall effect for normal chips
buyers. Therefore one underestimates the total effect of
coupons on profit when failing to recognize the spill-
over effect on a complementary category, which leads
one to set face values that are too low.

To quantify the loss of profit when failing to rec-
ognize the cross-category spillover effect of coupons,
we evaluated the aggregate profit made by the retailer
across all trips when usingModel 1 to customize salsa
coupons (or chips coupons) and when using Model 2
instead. We used Model 1 as the reference model to
simulate demand under both targeting scenarios be-
cause Model 1 fits our data best. In addition to profit,
we also calculated the aggregate volume of salsa and
the aggregate volume of chips bought by consumers
and compared them with the baseline scenario when
no coupons are distributed.

The results are reported in Table 8. We find that the
relative increase in profit from distributing custom-
ized salsa coupons (chips coupons) is 5.9% (3.5%)
larger when Model 1 is used to customize the face
values compared with Model 2. An important part
of this profit increase is due to the increase in demand
for the complementary good: while the volume of
salsa (chips) increases by about 4.9% (5.1%), the
volume of its complement increases by about 0.6%
(0.7%), which is quite important considering that the
increase in volume of the complement does not come
at the cost of more coupon redemptions in the com-
plementary category.
Taken together, these results suggest that it may be

important for retailers to take into account the spillover
effect of coupons on demand for a complementary
category when distributing retailer coupons. We have
proposed a methodology to customize these coupons
by using our model of demand, which can be readily

Figure 5. (Color online) Distribution of Coupons
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applied to simulate demand under counterfactual sce-
narioswith discrete packages and the nonlinear in prices
implied by coupons.

6.4.2. Package Size. We now study the effect of the
package sizes set by manufacturers, which is of
managerial importance (Koenigsberg et al. 2010).
While Lee and Allenby (2014) have studied the effect
of pack size on demand within a single category and
have shown that large packages can restrain con-
sumers from making a purchase in that category, our
model allows us to simulate consumers’ reactions
across complementary goods. Measuring this cross-
category effect is important because many manufac-
turers produce complementary goods, and their overall
profit depends on demand across these goods. More-
over, changing a pack size can be costly for a manu-
facturer: a counterfactual analysis based on a structural
model is therefore well suited to study this problem.

We simulated four alternative scenarios in which
the sizes of packages were modified. Specifically, we
considered doubling the size of a salsa jar or reducing
it by half, and similarly for bags of chips.We assumed
that prices were linear in volume such that, when 16-
ounce salsa jars were replaced by 32-ounce (8-ounce)
salsa jars, the unit price of a jar was doubled (reduced
by half). Using our posterior draws of the consumer’s
individual parameters and of their random shocks ε,
we determined the consumer’s purchase decision in

these alternative scenarios for each trip.12 We then
aggregated the volume sold in each category, the
incidence rate, and the overall revenue generated by
taking an average across draws and summing up
across trips. The results are displayed in Table 9.
Within each category, we find that smaller pack-

ages lead to higher rates of purchase incidence, con-
sistent with Lee and Allenby (2014); however, it re-
duces the overall volume as many consumers switch
from buying a big pack to buying a small pack. More
interestingly, decreasing the pack size of one good
increases both the rate of purchase incidence and the
volume of its complementary good as more con-
sumers buy the complementary good for joint con-
sumption. This second result could depend on the
parameter values; it is mostly driven by an increase in
joint purchase incidence in our context. Furthermore,
our results indicate that higher levels of revenue are
achieved with bigger pack sizes; thus, it may be op-
timal for the firm to set high pack sizes and leave some
people out of the market. Naturally, a manufacturer
should also consider its costs and the price negotia-
tions with retailers to set the profit-maximizing sizes,
but our model can form the core of the demand-side
prediction. It is also worth pointing out that prices
do not need to be linear in volume and that manu-
facturers should consider the effect of competition
with other manufacturers, which is absent from our
model. Nevertheless, these counterfactual analyses

Table 9. Change in Package Size

Volume, oz. Incidence rate, % Revenue, $

salsa chips salsa chips

Baseline (16 oz. salsa, 10 oz. chips) 67,456 49,330 8.9 10.5 23,609
Smaller salsa jar (8 oz.) 65,077 50,015 12.4 10.8 23,390
Bigger salsa jar (32 oz.) 70,598 48,093 5.9 10.0 23,813
Smaller chips bag (5 oz.) 68,294 47,350 9.1 14.2 23,272
Bigger chips bag (20 oz.) 65,673 51,625 8.4 7.0 23,880

Table 8. Counterfactual Results: Optimal Couponing

Salsa coupon Chips coupon

Model 1
(with complementarity)

Model 2
(without complementarity)

Model 1
(with complementarity)

Model 2
(without complementarity)

Percentage change in. . .
. . .profit 1.25% 1.18% 1.48% 1.43%
. . .total volume of salsa 4.90% 4.21% 0.66% 0.54%
. . .total volume of chips 0.60% 0.47% 5.14% 4.60%

Notes. This table shows the effect of different couponing strategies on profit and volumes sold. The first column shows the effect of salsa coupons
distributed optimally based on ourmodel that takes into account cross-category complementarity (Model 1). The second column shows the effect
of salsa coupons distributed using the model that ignores complementarity (Model 2). The third and fourth columns similarly show the effect of
chips coupons.
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provide new insights and show the usefulness of our
model in simulating demand in scenarios with dif-
ferent package sizes.

6.4.3. Change inMixing Proportions. Wenow consider
an alternative scenario in which there is a shift in
consumption uses, whereby consumers use different
proportions when mixing chips and salsa together.
We seek to understand what would be the impact on
the demand and on the revenue generated. Specifi-
cally, we have simulated, for each consumer, a 10%
or 20% decrease or increase in the mixing proportion
of salsa per volume of chips (1/a23) when he or she
consumes them jointly while holding the parameters
ψ constant. We have determined the aggregate vol-
umes and revenue in this alternative scenario, andwe
have reported the results in Table 10.

From the results, we note that a higher revenue is
obtained with a higher proportion of salsa per chips
or, conversely, a lower proportion a23 of chips per
salsa. While the direction of this result is expected as
we hold constant the utility parameter ψ3 for a joint
consumption but reduce the number of chips required
for a joint consumption, this analysis allows us to
measure the magnitude of the effect and can help
marketers decide whether it is worthwhile trying to
encourage changes in consumption uses given this
magnitude. Thus, the analysis illustrates the useful-
ness of our approach in measuring changes in de-
mand under alternative household production func-
tions, whereby consumers change the way they
combine inputs together. Such analyses should be of
interest to marketers who may be able to influence
consumption uses through advertising.

7. Conclusion
In this paper, we have proposed a general approach
to modeling micro-level demand for complementary
goods by invoking household production theory.
Under our approach, two goods are complementary
if the consumer enjoys utility from their joint con-
sumption, represented by a final good that he or she
can produce from them. By assumption, he or she

decides not only what goods to purchase, but also
how to allocate them into final goods that represent
consumption uses, which may be joint or separate.
Therefore, the consumption utility is defined over a
set of latent final goods that is larger than the set of
goods purchased. The resulting demand system al-
lows for negative cross-price effects under a linear
budget constraint. Thus, our approach offers an in-
tuitive theoretical foundation for the existence of
negative cross-price effects.
From the point of view of purchase behavior, the

new consumer problem can be reduced to the usual
problem without household production by redefining
the consumer’s utility over goods purchased after
recognizing that the allocation of goods purchased
into consumption uses is optimal. However, laying
out the consumer problem with a household pro-
duction step is useful for empirical work even if
consumption is unobserved because it opens up the
possibility of parameterizing the consumption utility
over the set of final goods, which is larger than the set
of goods purchased. We can then use an additively
separable specification and still accommodate very
different patterns of preferences from no comple-
mentarity to perfect complementarity.
We embedded the household production model of

consumer behavior in a structural model that takes into
account consumer heterogeneity, corner solutions, and
discrete demand because of indivisible packages. We
proposed a Bayesian method to estimate the model on
purchase data in the absence of consumption data. In an
empirical application,we showedhowourmodel could
be used to make improved managerial decisions re-
garding the distribution of coupons by retailers. We
found that a retailer could better target consumers
and make a higher profit by recognizing the spillover
effect of coupons on demand across complementary
categories. We also showed how our model could be
used to make decisions regarding the size of packages
while taking into account the effect on demand across
categories. Finally, we derived insights about con-
sumption patterns by using our model to infer how
the goods purchased are combined into consumption

Table 10. Change in Consumption Proportions

Volume, oz. Incidence rate, % Revenue, $

salsa chips salsa chips

Salsa proportion reduced by 50% 63,659 49,524 8.6 10.3 23,021
Salsa proportion reduced by 20% 66,323 49,533 8.8 10.5 23,470
Salsa proportion reduced by 10% 66,937 49,437 8.9 10.5 23,549
Baseline 67,456 49,330 8.9 10.5 23,609
Salsa proportion increased by 10% 68,024 49,294 8.9 10.6 23,695
Salsa proportion increased by 20% 68,549 49,245 9.0 10.6 23,771
Salsa proportion increased by 50% 69,802 49,024 9.0 10.6 23,926
Salsa proportion increased by 100% 71,056 48,696 9.1 10.7 24,053
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uses, and by simulating demand under alternative
mixing proportions.

The approach we propose opens new ideas for
future research. While we have focused on comple-
mentarity in this paper, we believe that the approach
can be extended to obtain a flexible demand system
for substitutes by changing the consumer’s produc-
tion function, such that two goods are substitutable if
one or the other can be used to fulfill a consumption
need, represented by a final good. In such a model,
substitution between goods would come from the
utility for the inside goods, in addition to the concave
utility for the outside good. Furthermore, while we
have specified our model at the category level in our
empirical application, the model could be extended
to include the choice of brands by combining our
approach with a discrete choice model for brands.
Finally, our approach opens up the opportunity of
modeling demand across complementary categories
while allowing for forward-looking behavior and
flexible consumption. Sun (2005) achieves flexible
consumption within a single category by making the
quantities consumed a decision variable; extending
this approach to a multicategory setting with com-
plementarity requires a consumption utility defined
on quantities consumed and allowing for comple-
mentarity. We have shown in this paper that an ap-
proach based on household product theory can yield
such a consumption utility and believe that nesting
it within a forward-looking model of consumer be-
havior could yield interesting insights about the long-
run effect of promotions across categories.
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Appendix A. Solution to the Consumption Problem
In this section, we derive the solution to the optimal con-
sumption problem given in Equations (6b)–(6d):

Ux x( ) � max
c

∑
k
ψk log ck + 1( )

s.t. ck ≥ 0 ∀k∑
k
ajkck ≤ xj ∀j. (A.1)

In the case with two inputs and one composite such that
A � ( 1 0 1

0 1 a23
), the first-order conditions given in Equa-

tion (7) become

ψ1

c1 + 1
+ λ1 − μ1 � 0 (A.2a)

ψ2

c2 + 1
+ λ2 − μ2 � 0 (A.2b)

ψ3

c3 + 1
+ λ3 − μ1 − μ2a23 � 0 (A.2c)

λ1c1 � 0 (A.2d)
λ2c2 � 0 (A.2e)
λ3c3 � 0 (A.2f)

μ1 x1 − c1 − c3( ) � 0 (A.2g)
μ2 x2 − c2 − c3a23( ) � 0 (A.2h)

ck, μk, λj ≥ 0. (A.2i)
Because Uc is strictly increasing, constraints (A.2g)

and (A.2h) must be binding:

c1 � x1 − c3
c2 � x2 − a23c3.

{
(A.3)

We can simplify the FOC as

ψ1

x1 − c3 + 1
+ λ1 − μ1 � 0 (A.4a)

ψ2

x2 − a23c3 + 1
+ λ2 − μ2 � 0 (A.4b)

ψ3

c3 + 1
+ λ3 − μ1 − μ2a23 � 0 (A.4c)

λ1 x1 − c3( ) � 0 (A.4d)
λ2 x2 − a23c3( ) � 0 (A.4e)

λ3c3 � 0. (A.4f)
FromEquations (A.4d)–(A.4f), there can be three possible

cases: c3 � 0, c3 � U, or 0 < c3 < U, where U � min{x1, x2a23}.
Case 1: c3 � 0 iff ψ3 ≤ ψ1

x1+1 + a23
ψ2
x2+1.

Case 2a: c3 � x1 < x2
a23

iff x1 < x2
a23

and ψ1 + ψ2a23
x2−a23x1+1 ≤

ψ3
x1+1.

Case 2b: c3 � x2
a23

< x1 iff x2
a23

< x1 and
ψ1

x1a23−x2+a23 + ψ2 ≤ ψ3
x2+a23.

Case 3 (interior solution): c3 solves
ψ3
c3+1 �

ψ1
x1−c3+1 +

ψ2a23
x2−a23c3+1.

This leads to a second-degree equation:Ac23 + Bc3 + C � 0,
where

A � a23 ψ1 + ψ2 + ψ3
( )

B � ψ1 + ψ2
( )

a23 − ψ1 + ψ3
( )

x2 + 1( ) − ψ2 + ψ3
( )

a23 x1 + 1( )
C � ψ3 x1 + 1( ) x2 + 1( ) − ψ1 x2 + 1( ) − ψ2a23 x1 + 1( )

(A.5)
Clearly, A > 0. In addition, because ψ3 >

ψ1
x1+1 + a23

ψ2
x2+1,

then B < 0 and C > 0. By unicity of the optimization solu-
tion, there can be at most one root between zero and U;
therefore, it must be the smallest one because it is positive:

c int( )
3 � −B − ̅̅̅̅̅̅̅̅̅̅̅̅̅

B2 − 4AC
√
2A

(A.6)
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Note that, in case 1,C < 0, and therefore, c(int)3 < 0. In cases
2a and 2b, one can show that c(int)3 > U. We can simplify the
solution as

c∗3 � min max 0, c int( )
3

( )
, x1,

x2
a23

( )
. (A.7)

Appendix B. Derivation of the Demand System
In this section, we solve the consumer problem without
integer constraints as defined in Equation (11), Section 4.1:

max
c,y

∑K
k�1

ψk log ck + 1( ) + ψ0 log y
( )

s.t.
∑K
k�1

fkck + y ≤ M

ck ≥ 0 ∀k.
Let us denote by (c∗1 , . . . , c∗K, y∗) the solution to that

problem, which is unique by concavity of the objective
function. In the optimal solution, the outside good must be
consumed in a positive quantity (y∗ > 0). We use the fact
that all the final goods that are consumed in a positive
quantity (such that ck > 0) must have the same ratio of
marginal utility to marginal cost:

• If c∗l > 0, then themarginal-utility-to-price ratio offinal
good l is equal to that of the outside good:

ψl

fl c∗l + 1
( ) � ψ0

y∗ ⇒ c∗l � ψl · y∗
ψ0 · fl − 1 ⇒

ψl

fl
>
ψ0

y∗ .

• On the other hand, if c∗l � 0, then the marginal-utility-
to-price ratio of good l is at most equal to that of the out-
side good:

ψl

fl
≤ ψ0

y∗ .

Therefore, if the final goods are indexed by decreasing
ratio ψk

fk
, then only the first K∗ goods are purchased in some

positive quantity, in which K∗ is such that

ψ1

f1
≥ · · · ≥ ψK∗

fK∗
>
ψ0

y∗ ≥ ψK∗+1
fK∗+1

· · · ≥ ψK

fK
.

Under the assumption that K∗ is known, let us write zl �
cl + 1 andMz � M +∑K∗

k�1 fl. Then (z∗1 , . . . , z∗K∗) are solutions of
the following optimization problem:

max
z,y

∑K
k�1

ψk log zk( ) + ψ0 log y
( )

s.t.
∑K
k�1

fkzk + y ≤ Mz.

Noticing that the objective function is the Cobb–Douglas
utility function, the solution is well known as

z∗k � Mz

fk
× ψk

ψ0 +∑K∗
l�1 ψl

; y∗ � ψ0Mz

ψ0 +∑K∗
l�1 ψl

⇒ c∗k �
ψk M +∑K∗

l�1 fl
( )

fk ψ0 +∑K∗
l�1 ψl

( ) − 1; y∗ �
ψ0 M +∑K∗

l�1 fl
( )
ψ0 +∑K∗

l�1 ψl
.

Additionally, K∗ is such that

ψ1

f1
≥ · · · ≥ ψK∗

fK∗
>
ψ0 +∑K∗

l�1 ψl

M +∑K∗
l�1 fl

≥ ψK∗+1
fK∗+1

· · · ≥ ψK

fK
.

That is,

K∗ � ∑K
k�1

I
ψk

fk
>
ψ0 +∑k

l�1 ψl

M +∑k
l�1 fl

( )
.

Appendix C. Estimation by Markov Chain
Monte Carlo

This section describes our Bayesian estimation algorithm to
estimate the discrete model. We specify the following prior:

ω̄ ∼ MVN ω0,Σ0( )
V ∼ IW ν,Δ( )
σ2 ∼ InvGamma γ, β

( )
, (C.1)

where we chose values that lead to diffuse priors (ω0 � �0K,
Σ0 � 104IK, ν � K + 3,Δ � νIK, γ � 1, β � 1). For clarity of ex-
position, we write

• Σ is the diagonal matrix whose diagonal elements are
σ21, . . . , σ

2
K (variance of ϵit).

•ψ∗
i � [log(ψi1), . . . , log(ψiK)].

• zikt � log(ψikt) � log(ψik) + εikt.
We then have ωi � (ψ∗

i , log(ai23)) and zit � ψ∗
i + ϵit. In our

estimation strategy, we sequentially draw ψ∗
i conditional

on log(ai23) and log(ai23) conditional on ψ∗
i . For that reason,

we decompose the mean of ωi as ω̄ � (ω̄ψ, ω̄a) and its vari-
ance as V � ( Vψψ Vaψ

Vψa Vaa
). Because the integral in Equation (19)

has no closed-form solution, we rely on data augmentation
(Tanner andWong 1987). The general idea is to perform the
numerical integration of a variable by taking draws of that
variable within the sampler. We treat zit as the missing data
that needs to be integrated out as it is mathematically more
convenient than ϵit (although ϵit can be derived easily from
zit and ωi). Our complete algorithm is provided:

1. Initialize ai23 and zit for all consumers i and trips t by
solving the FOC of the continuous consumer problem (i.e.,
without integer constraints).

2. For i � 1 to N,
a. Draw ψ∗

i |{zit}Ti
t�1, log(ai23), ω̄,V,Σ:

Becauseψ∗
i and log(ai23) are parts of vectorωi following a

MVN(ω̄,V),
ψ∗

i |ai23, ω̄,V ∼ µψ,Θψψ

( )
, (C.2)

where

µψ � ω̄ψ + VψaV−1
aa log ai23( ) − ω̄a
[ ]

Θψψ � Vψψ − VψaV−1
aa Vaψ.

Besides, we have

zit|ψ∗
i ∼iid MVN ψ∗

i ,Σ
( )

because zit � ψ∗
i + ϵit. (C.3)

Using conjugacy, we can combine Equations (C.2)
and (C.3) to obtain

ψ∗
i | zit{ }Ti

t�1, ai23, ω̄,V,Σ ∼ MVN S1 Σ−1 ∑Ti

t�1
zit +Θ−1

ψψµψ

[ ]
, S1

( )
,

(C.4)
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where

S1 � TiΣ
−1 +Θ−1

ψψ

[ ]−1
.

b. Draw log(ai23)|{zit}Ti
t�1,ψ

∗
i , ω̄,V:

Because ψ∗
i and log(ai23) are parts of vector ωi following

a MVN(ω̄,V),
log ai23( )|ψ∗

i , ω̄,V

∼ N ω̄a + VaψV−1
ψψ ψ∗

i − ω̄ψ

[ ]
,Vaa − VaψV−1

ψψVψa

( )
.

(C.5)

Besides, we have

Pr xit|zit, log ai23( )( ) � ∏Ti

t�1
m xit|pit, ezit , ai23
( )

. (C.6)

We cannot use conjugacy to derive the conditional dis-
tribution of ai23 from Equations (C.5) and (C.6). Instead, we
perform a Metropolis–Hastings step.

c. For t � 1 to Ti (trips of consumer i),
Draw zit|ψ∗

i , log(ai23),Σ by a Metropolis–Hastings step us-
ing the facts that

zit|ψ∗
i ∼ MVN ψ∗

i ,Σ
( )

Pr xit|zit, ai23( ) � m xit|pit, ezit , ai23
( )

.
(C.7)

3.Draw ω̄|{ωi}Ni�1,V ∼ MVN(S2[V−1 ∑N
i�1 ωi + Σ−1

0 ω0], S2),
where S2 � (NV−1 + Σ−1

0 )−1.
4. DrawV|{ωi}Ni�1,ω̄∼ IW(N+ν,Δ+∑N

i�1(ωi− ω̄)(ωi− ω̄)′).
5. Draw Σ|{zit}i,t, {ωi}Ni�1:

a. For k � 1 to K,
Draw σ2k |{zikt}i,t, {ωi}Ni�1 ∼ InvGamma (γ0 + 1

2
∑N

i�1 Ti,

β0 + 1
2
∑N

i�1
∑Ti

t�1 ε2ikt),
where εikt � zikt − ψ∗ik.

b. Set Σ � diag(σ21, . . . , σ2K).
6. Go to 2.

Endnotes
1We assume that it is not costly to produce final goods from inputs.
2As in the usual consumer problem as laid out in Equation (1), it is
assumed that the consumer does not carry an inventory of inputs
between purchase occasions. We discuss thoughts on dynamic
consumer problems in the future research section.
3 For example, burgers can be consumed just by themselves or with
ketchup (but without buns). If ketchup is outside the scope of the
analysis, then we aggregate together these two uses of burgers and
represent them by a final good for “separate burger” (meaning burger
without bun).
4A negative value of ψk would imply that final good k gives a dis-
utility. In that case, the consumer would never produce that good to
consume it. The same applies if ψk � 0; thus, it is unnecessary to
consider negative values of ψk .
5 Satomura et al. (2011) lay out a direct-utility model in which the
consumer purchases quantities of goods under multiple linear con-
straints, such as a budget constraint and a volume constraint; the
consumer enjoys utility from the consumption of the goods pur-
chased and from outside goods representing the best outside use
of the slack resources (money or volume). Similarly, in our optimal
allocation problem, the consumer faces one linear constraint for
each input (because inputs enter linearly in the production of final
goods) and derives utility from a final good representing their joint

consumption as well as from the slack associated to each input (any
input that is not used for the joint consumption is allocated to the
final good representing the best separate use of that input). In
Satomura et al. (2011), the outside goods are always consumed in
some positive quantity because the utility associated is of the form
log(z). In our model, however, the utility associated to the sepa-
rate consumption uses is of the form log(c + 1), which allows for
corner solutions.
6An alternative specification with a linear utility for the outside
good would lead to ∂c∗k/∂fk′ � 0 for k 	� k′. Ultimately, this would
rule out substitution between any pair of goods j and j′ and would
yield symmetric cross-price effects ∂x∗j /∂pj′ .
7 If goods j and j′ are also used in the production of other final goods k′
that require only one of the two inputs, the terms ∂c∗k/∂fk′ are positive,
whichmay lead to positive cross-price effects: the sign of ∂x∗j /∂pj′ then
depends on the utility for the final good k that uses both inputs, and
on the strength of substitution between the final goods.
8 In our simulations and in our empirical application, we assumed an
upper bound of four packages on quantities purchased within each
category (in our data, a consumer purchasedmore than four packages
in less than 0.1% of the shopping trips), and we evaluated the con-
sumer’s objective function at all feasible points.
9 In both simulations, the parameter values for the distribution of
budgets were set in a way to match the distribution of budgets in the
empirical application: log(Mit) ∼iid N(μ, σ) with μ � 3.72 and σ � 1.1.
Similarly, the values chosen for the parameters ω and V were mo-
tivated by the results obtained in our empirical application.
10For each consumer, we kept 10 trips out of the sample used for
estimation. The hit rate and RMSE were calculated as an average
across posterior draws and across the shopping trips of all consumers.
11 It is equal to the volume xj divided by the size of a pack sj.
12When estimating the model on the data, we enforced a constraint
that no more than four units of each good could be purchased (as
explained in endnote 8). Because we did not want our results to be
driven by the constraint on the number of units, we instead enforced
constraints on volume in these counterfactual analyses. For example,
when dividing the jar size of salsa by two, we assumed that the
consumers could then buy up to eight units. When doubling the size,
we assumed that the consumer could buy up to two units.
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