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Abstract. The kernel two-sample test based on the maximum mean discrepancy (MMD) is one
of the most popular methods for detecting differences between two distributions over general
metric spaces. In this paper we propose a method to boost the power of the kernel test by
combining MMD estimates over multiple kernels using their Mahalanobis distance. We derive
the asymptotic null distribution of the proposed test statistic and use a multiplier bootstrap
approach to efficiently compute the rejection region. The resulting test is universally consistent
and, since it is obtained by aggregating over a collection of kernels/bandwidths, is more powerful
in detecting a wide range of alternatives in finite samples. We also derive the distribution of
the test statistic for both fixed and local contiguous alternatives. The latter, in particular,
implies that the proposed test is statistically efficient, that is, it has non-trivial asymptotic
(Pitman) efficiency. Extensive numerical experiments are performed on both synthetic and real-
world datasets to illustrate the efficacy of the proposed method over single kernel tests. Our
asymptotic results rely on deriving the joint distribution of MMD estimates using the framework
of multiple stochastic integrals, which is more broadly useful, specifically, in understanding the
efficiency properties of recently proposed adaptive MMD tests based on kernel aggregation.

1. Introduction

Given two probability distributions P and Q on a separable metric space X , the two-sample
problem is to test the hypothesis:

H0 : P “ Q versus H1 : P ‰ Q, (1.1)

based on i.i.d. samples Xm :“ tX1, X2, . . . , Xmu and Yn :“ tY1, Y2, . . . , Ynu from the distri-
butions P and Q, respectively. This is a classical problem that has been extensively studied,
especially in the parametric regime, where the data is assumed to have certain low-dimensional
functional forms. However, parametric methods often perform poorly for misspecified models,
especially when the number of nuisance parameters is large, and for non-Euclidean data. This
necessitates the development of non-parametric methods, which make minimal distributional
assumptions on the data, but remain powerful for a wide class of alternatives.

For univariate data, there are several well-known nonparametric tests such as the two-sample
Kolmogorov–Smirnoff (KS) maximum deviation test [59], the Wald-Wolfwotiz runs test [65],
the rank-sum test [46, 67], and the Cramér-von Mises test [1]. Efforts to generalize these
univariate methods to higher dimensions date back to Weiss [66] and Bickel [9]. Thereafter,
several nonparametric methods for multivariate two-sample testing have been proposed over the
years. These include tests based on geometric graphs [7, 10, 11, 19, 25–28, 52–54], tests based
on data-depth [42, 43], the energy distance test [3, 5, 61–63], kernel maximum mean discrepancy
(MMD) tests [13, 22–24, 48, 49, 56, 58, 60, 68], ball divergence [4, 47], projection-averaging [33],
classifier-based tests [34, 44], among others. Recently, distribution-free versions of the energy
distance/kernel tests have been proposed by Deb and Sen [14] and Deb et al. [15], using the
emerging theory of multivariate ranks based on optimal transport.
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2 CHATTERJEE AND BHATTACHARYA

Among the aforementioned methods kernel-based tests have emerged as a powerful technique
for detecting distributional differences on general domains. The basic idea is to quantify the
discrepancy between the two distributions P and Q in terms of the largest difference in expec-
tation between fpXq and fpY q, for X „ P and Y „ Q, over functions f in the unit ball of
a reproducing kernel Hilbert space (RKHS) defined on X . This is called the maximum mean
discrepancy (MMD) between the distributions P and Q (see (2.1) for the precise definition),
which can be conveniently estimated from the data in terms of the pairwise kernel dissimilarities
(see Section 2.1 for details). Another useful property of the MMD is that it takes value zero if
and only if the distributions P and Q are the same. Consequently, the test which rejects H0 for
large values of the estimated MMD is universally consistent (the power of the test converges to 1
as the sample size increases) for the hypothesis (1.1) (see Gretton et al. [23] for further details).

Although the kernel two-sample test is widely used and has found numerous applications, it
often performs poorly for high-dimensional problems [48] and its empirical performance depends
heavily on the choice of the kernel. Kernels are usually parametrized by their bandwidths, and
the most popular strategy for choosing the kernel bandwidth is the median heuristics, where
the bandwidth is chosen to be the median of the pairwise distances of the pooled sample [23].
Despite its popularity there is limited understanding of the median heuristic and empirical
results demonstrate that the median heuristic performs poorly when differences between the
2 distributions occur at a scale that differs significantly from the median of the interpoint
distances [24]. Another approach is to split the data and estimate the kernel by maximizing an
approximate empirical power on the held-out data [24, 41]. This, however, can lead to loss in
power for smaller sample sizes. (For a discussion of other related methods see Section 9.)

In this paper we propose a strategy for augmenting the power of the classical (single) kernel
two-sample test by borrowing strengths from multiple kernels. Specifically, we propose a new
test statistic which combines MMD estimates from r ě 1 kernels using their sample Mahalanobis
distance. The advantage of aggregating across a collection of kernels/bandwidths is that the
test can simultaneously deal with cases which require both small and large bandwidths, and,
hence, detect both global and local differences more effectively. To understand the asymptotic
properties of the test we derive the joint distribution of the vector of MMD estimates under
H0, which can be described using bivariate stochastic integrals, and, as a consequence, derive
the asymptotic distribution of the Mahalanobis aggregated MMD (MMMD) statistic under H0

(Section 3). Moreover, using the kernel Gram matrix representation we develop a multiplier
bootstrap approach that allows us to efficiently compute the rejection threshold for the MMMD
statistic and show that the resulting test is universally consistent (Section 4). Next, we establish
the asymptotic (Pitman) efficiency of the proposed test by deriving its power against local
alternatives in the well-known contamination model (Section 5). In Section 6 we derive the
joint distribution of MMD estimates and, consequently, that of the MMMD statistic, under the
alternative.

In Section 7 we perform extensive simulations to compare our MMMD based test with var-
ious single kernel MMD tests (with bandwidths chosen based on the median heuristic). The
experiments show that the MMMD method outperforms the single kernel tests and also the
graph-based Friedman-Rafsky test [19] across a range alternatives and dimensions, showcas-
ing the efficacy of our aggregation method. In Section 8 we apply the proposed method to
compare images of digits in the noisy MNIST dataset. The MMMD effectively distinguishes
different digits for significantly more noisy images compared to its single kernel counterparts,
again illustrating the advantage of using multiple kernels.

Our results on the joint distribution for multiple kernels are also more broadly useful in
understanding the asymptotic properties of general aggregation strategies. To demonstrate
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this, in Section 9, we propose an asymptotic implementation of the adaptive MMD test re-
cently proposed in [55], and derive its asymptotic local power. Numerical results comparing
the MMMD method and the aforementioned adaptive test are also reported. The codes for
all the experiments can be found in the Github repository https://github.com/anirbanc96/

MMMD-boost-kernel-two-sample.

2. Kernel Maximum Mean Discrepancy and Mahalanobis Aggregation

We begin by recalling the fundamentals of the kernel two-sample test as introduced in Gretton
et al. [23] in Section 2.1. Then in Section 2.2 we describe our proposed test statistic obtained
by combining multiple kernels.

2.1. Kernel Maximum Mean Discrepancy. Suppose X is a separable metric space and
BpX q is the sigma-algebra generated by the open sets of X . Denote by PpX q the collection of
all probability distributions on pX ,BpX qq. Suppose P,Q P PpXq and X „ P and Y „ Q be
random variables distributed as P and Q, respectively. Throughout we will assume that P and
Q are non-atomic. The maximum mean discrepancy (MMD) between P and Q is defined as

MMD rF , P,Qs “ sup
fPF

tEX„P rfpXqs ´ EY„QrfpY qsu , (2.1)

where F is the unit ball of a reproducing kernel Hilbert space (RKHS) H defined on X [2]. Since
H is an RKHS, for every x P X the evaluation map operator ηx : H Ñ R given ηxpfq “ fpxq is
continuous. Thus, by the Riesz representation theorem [50, Theorem II.4] for each x P X there
is a feature mapping ψx P H such that fpxq “ xf, ψxyH, for every f P H, where x¨, ¨yH is the
inner product in H. The feature mapping takes the canonical form ψxp¨q “ Kpx, ¨q, where K :
XˆX Ñ R is a positive definite kernel. This, in particular, implies that Kpx, yq “ xψpxq, ψpyqyH.
Extending the notion of feature map, an element µP P H is defined to be the mean embedding
of P P P pX q if

xf, µP yH “ EX„P rfpXqs, (2.2)

for all f P H. By the canonical form of the feature map it follows that

µP ptq :“

ż

X
ψtpxqdP pxq “ EX„P rψtpXqs “ EX„P rKpt,Xqs. (2.3)

Throughout we will make the following assumption:

Assumption 2.1. The kernel K : X ˆ X Ñ R satisfies the following:

(1) EX„P rKpX,Xq
1
2 s ă 8 and EY„QrKpY, Y q

1
2 s ă 8.

(2) K is characteristic, that is, the mean embedding µ : PpX q Ñ H is a one-to-one (injective)
function.

Assumption 2.1 ensures that µP , µQ P H and MMD defines a metric on PpX q. Then the
MMD can be expressed as the distance between mean embeddings in H (see [23, Lemma 4]):

MMD2 rF , P,Qs “ }µP ´ µQ}2H , (2.4)

where }¨}H is the norm corresponding to the inner product x¨, ¨yH. This implies MMD2 rF , P,Qs “
0 if and only if P “ Q. Expanding the square in (2.4) and using the representation in (2.3) it
follows that (see [23, Lemma 6] for details)

MMD2 rF , P,Qs “ EX,X 1„P rKpX,X 1qs ` EY,Y 1„QrKpY, Y 1qs ´ 2EX„P,Y„QrKpX,Y qs.

https://github.com/anirbanc96/MMMD-boost-kernel-two-sample
https://github.com/anirbanc96/MMMD-boost-kernel-two-sample
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Therefore, based on i.i.d. observations Xm :“ tX1, X2, . . . , Xmu and Yn :“ tY1, Y2, . . . , Ynu, a
natural unbiased estimate of MMD2 rF , P,Qs is given by,

MMD2 rK,Xm,Yns “WXm `WYn ´ 2BXm,Yn , (2.5)

where

WXm :“
1

mpm´ 1q

ÿ

1ďi‰jďm

K pXi, Xjq and WYn :“
1

npn´ 1q

ÿ

1ďi‰jďn

K pYi, Yjq (2.6)

is the average of the kernel dissimilarities within the samples in Xm and Yn, respectively, and

BXm,Yn :“
1

mn

m
ÿ

i“1

n
ÿ

j“1

K pXi, Yjq (2.7)

is the average of the kernel dissimilarities between the samples in Xm and Yn. In the asymptotic
regime where N :“ m` nÑ8 such that

m

m` n
Ñ ρ P p0, 1q, (2.8)

MMD2rK,Xm,Yns is a consistent estimate of MMD2 rF , P,Qs (see [23, Theorem 7]), that is,

MMD2rK,Xm,Yns
P
Ñ MMD2 rF , P,Qs . (2.9)

Hence, the test which rejects H0 in (1.1) for large values of MMD2 rK,Xm,Yns is universally
consistent.

2.2. Aggregating Multiple Kernels. Fix r ě 1 and suppose K1,K2, . . . ,Kr be r distinct
kernels each of which satisfy Assumption 2.1. Denote the vector of MMD estimates as

MMD2 rK,Xm,Yns “
`

MMD2rK1,Xm,Yns, ¨ ¨ ¨ ,MMD2rKr,Xm,Yns
˘J
, (2.10)

where K :“ tK1,K2, . . . ,Kru. In this paper we propose a new test statistic that combines the con-
tributions of the different kernels using the Mahalanobis distance of the vector MMD2 rK,Xm,Yns
as follows:

`

MMD2 rK,Xm,Yns
˘J
S´1

`

MMD2 rK,Xm,Yns
˘

, (2.11)

where is S is a consistent estimate of the limiting covariance matrix of MMD2 rK,Xm,Yns under
H0 (which we denote by ΣH0 “ ppσabqq1ďa,bďr). Note that adjusting by the covariance matrix S
brings the contributions of the individual MMD estimates in the same scale and by selecting a
range of kernels/bandwidths in K one can detect more fine-grained deviations from H0, leading
to significant power improvements as in will be seen in Section 7. (In Appendix E we present
general conditions under which ΣH0 is invertible, which, in particular, hold for the any collection
of Gaussian or Laplace kernels.)

In Corollary 3.1 we compute

σab :“ lim
NÑ8

pm` nq2
`

CovH0

“

MMD2 rK,Xm,Yns
‰˘

ab
(2.12)

“
2

ρ2p1´ ρq2
EX,X 1„P

“

K˝apX,X
1qK˝bpX,X

1q
‰

,

where

K˝apx, yq “ Kapx, yq ´ EX„PKapX, yq ´ EX 1„PKapx,X 1q ` EX,X 1„PKapX,X 1q (2.13)
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is the centered version of the kernel Ka, for 1 ď a ď r. Therefore, a natural empirical estimate
of ΣH0 is the given by Σ̂ “ ppσ̂abqq1ďa,bďr, where

σ̂ab “
2

ρ̂2p1´ ρ̂q2
¨

1

m2

ÿ

1ďi,jďm

K̂˝apXi, XjqK̂
˝
bpXi, Xjq, (2.14)

with

K̂˝apx, yq “ Kapx, yq ´
1

m

m
ÿ

u“1

KapXu, yq ´
1

m

m
ÿ

v“1

Kapx,Xvq `
1

m2

ÿ

1ďu,vďm

KapXu, Xvq (2.15)

being the empirical analogue of K˝a and ρ̂ “ m
m`n . Therefore, choosing S “ Σ̂ in (2.11) we define

the Mahalanobis aggregated MMD (MMMD) statistic as follows:

Tm,n :“
`

MMD2 rK,Xm,Yns
˘J

Σ̂´1
`

MMD2 rK,Xm,Yns
˘

. (2.16)

In Corollary 3.1 we show that Σ̂
P
Ñ ΣH0 , hence (2.9) implies that

Tm,n
P
Ñ

`

MMD2 rK, P,Qs
˘J

Σ´1
H0

`

MMD2 rK, P,Qs
˘

:“ TK. (2.17)

Note that TK “ 0 under H0 and TK ą 0 whenever P ‰ Q. Hence, a test rejecting H0 for ‘large’
values of Tm,n will be universally consistent. However, to construct a test based on Tm,n we need
to chose a cut-off (rejection region) based on the data. The first step towards this to derive the
limiting null distribution of MMD2 rK,Xm,Yns. This is discussed in Section 3.

3. Asymptotic Null Distribution

In this section we derive the limiting distribution of the vector of MMD estimates (2.10) under
H0 and, consequently, that of the proposed statistic Tm,n. In Section 3.1 we recall the definition
and basic properties of multiple Weiner-Itô stochastic integrals as presented in Itô [30]. Using
this framework, we derive the joint asymptotic null distribution of (2.10) in Section 3.2.

3.1. Multiple Weiner-Itô Stochastic Integrals. Recall that X is a separable metric space,
BpX q is the sigma-algebra generated by the open sets of X , and P is a non-atomic probability
measure on X . We denote this probability space by pX ,BpX q, P q.

Definition 3.1. A Gaussian stochastic measure on pX ,BpX q, P q is a collection of random
variables tZP pAq : A P BpX qu defined on a common probability space pΩ,F , µq such that the
following hold:

‚ ZP pAq „ N p0, P pAqq, for all A P BpX q.
‚ For any finite collection of disjoint sets A1, ¨ ¨ ¨ , At P BpX q, the random variables
tZP pA1q,ZP pA2q, . . . ,ZP pAtqu are independent and

ZP

˜

t
ď

s“1

As

¸

“

t
ÿ

s“1

ZP pAsq.

For d ě 1, denote by L2pX d,BpX dq, P dq the space of measurable functions f : X d Ñ R such
that

}f}2 :“

ż

X d

|fpx1, x2, . . . , xdq|
2dP px1qdP px2q . . . ,dP pxdq ă 8.

Define Ed Ď L2pX d,BpX dq, P dq as the set of all elementary functions having the form

fpt1, t2, . . . , tdq “
ÿ

1ďi1,i2,...,idďm

ai1,i2,...,id1tpt1, t2, . . . , tdq P Ai1 ˆ ¨ ¨ ¨ ˆAidu, (3.1)
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where A1, A2, . . . , Am P BpX q are pairwise disjoint and ai1,i2,...,id is zero if two indices are equal.
The multiple Weiner-Itô integral for functions in Ed is defined as follows:

Definition 3.2. (Multiple Weiner-Itô integral for elementary functions) The d-dimensional
Weiner-Itô stochastic integral, with respect to the Gaussian stochastic measure tZP pAq, A P

BpX qu, for the function f P Ed in (3.1) is defined as

Idpfq :“

ż

X d

fpx1, x2, . . . , xdq
d
ź

a“1

dZP pxaq :“
ÿ

1ďi1,i2,...,idďm

ai1,i2,...,idZP pAi1q ˆ ¨ ¨ ¨ ˆ ZpAidq.

The multiple Weiner-Itô integral for elementary functions satisfies the following two properties
[30]:

‚ (Boundedness) For f P Ed, ErIdpfq2s ď d!}f}2 ă 8.

‚ (Linearity) For f, g P Ed, Idpf ` gq
a.s.
“ Idpfq ` Idpgq.

This shows that Id is a bounded linear operator from Ed to L2pΩ,F , µq, the collection of square-
integrable random variables defined on pΩ,F , µq. Since Ed is dense in L2pX d,BpX dq, P dq (by
[30, Theorem 2.1]), using the BLT theorem (see [50, Theorem I.7]) Id can be uniquely extended
to L2pX d,BpX dq, P dq by taking limits. This leads to the following definition:

Definition 3.3. (Multiple Weiner-Itô integral for general L2-functions) The d-dimensional
Weiner-Itô stochastic integral for a function f P L2pX d,BpX dq, P dq is defined as the L2 limit of
the sequence tIdpfnquně1, where tfnuně1 is a sequence such that fn P Ed with limnÑ8 }fn´f} “
0. This is denoted by:

Idpfq :“

ż

X d

fpx1, x2, . . . , xdq
d
ź

a“1

dZP pxaq. (3.2)

As in the case of elementary functions, it can be easily checked that Idpfq satisfies the following
properties:

‚ (Boundedness) For f P L2pX d,BpX dq, P dq, ErIdpfq2s ď d!}f}2 ă 8.

‚ (Linearity) For f, g P L2pX d,BpX dq, P dq, Idpf ` gq
a.s.
“ Idpfq ` Idpgq.

It is also important to note that multiple Weiner-Itô integrals do not behave like classical (non-
stochastic) integrals with respect to product measures, since by definition diagonal sets do not
contribute to Itô integrals. Nevertheless, one can express the multiple Weiner-Itô integral for
a product function in terms of univariate stochastic integrals using the Wick product (cf. [31,
Theorem 7.26]). In the bivariate case, with 2 functions f, g P L2pX 2,BpX 2q, P 2q, this simplifies
to

ż

X

ż

X
fpxqgpyqdZP pxqdZP pyq “

ż

X
fpxqdZP pxq

ż

X
gpyqdZP pyq ´

ż

X
fpxqgpxqdx. (3.3)

3.2. Joint Distribution for Multiple Kernels Under H0. Using the framework of multiple
stochastic integrals we can now describe the limiting joint distribution of the vector of MMD
estimates MMD2rK,Xm,Yns (recall (2.10)) under H0. The proof is given in Section A.1.

Theorem 3.1. Suppose K “ tK1,K2, . . . ,Kru be a collection of r distinct kernels such that Ka
satisfies Assumption 2.1 and Ka P L

2pX 2, P 2q, for 1 ď a ď r. Then under H0, in the asymptotic
regime (2.8),

pm` nqMMD2rK,Xm,Yns
D
Ñ GK :“

1

ρp1´ ρq

´

I2pK
˝
1q, I2pK

˝
2q, . . . , I2pK

˝
rq

¯J

, (3.4)
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where K˝a is defined in (2.13), for 1 ď a ď r. Moreover, the characteristic function of GK at
η “ pη1, η2, . . . , ηrq

J P Rr is given by:

Φ pηq :“ Ereιη
JGKs “

ź

λPΛpηq

exp
´

´ ιλ
ρp1´ρq

¯

b

1´ 2ιλ
ρp1´ρq

, (3.5)

where Λpηq is the set of eigenvalues (with repetitions) of the Hilbert-Schmidt operator HK,η :
L2pX , P q Ñ L2pX , P q defined as:

HK,ηrfpxqs “

ż

X

˜

r
ÿ

a“1

ηaK
˝
apx, yq

¸

fpyqdP pyq. (3.6)

To prove this theorem we first apply the Cramér-Wold device and the asymptotic distribution
of the univariate MMD estimate to show that linear projections of pm ` nqMMD2rK,Xm,Yns
converge to infinite weighted sums of centered χ2

1 random variables. This representation allows
us to compute the characteristic function in (3.5). Then using properties of stochastic integrals
we identify (3.5) with the distribution in (3.4).

Remark 3.1 (Alternative description of the limiting distribution). Note that, for 1 ď a ď r,
by the spectral theorem (see [51, Theorem 6.35]):

K˝apx, yq “
8
ÿ

s“1

λs,aφs,apxqφs,apyq,

where tλs,ausě1 and tφs,ausě1 are, respectively, the eigenvalues and the eigenvectors of the
operator: HKarfpxqs “

ş

X K˝apx, yqfpyqdP pyq. Hence, by the linearity of the stochastic integral,
(3.3), and orthonormality of the eigenvectors,

I2pK
˝
aq “

8
ÿ

s“1

λs,a

ż

X

ż

X
φs,apxqφs,apyqdZP pxqdZP pyq

“

8
ÿ

s“1

λs,a

˜

ˆ
ż

X
φs,apxqdZP pxq

˙2

´

ż

X
φs,apxq

2dx

¸

D
“

8
ÿ

s“1

λs,a
`

Z2
s,a ´ 1

˘

, (3.7)

where Zs,a
D
:“

ş

X φs,apxqdZP pxq. Note that tZs,ausě1,1ďaďr is a collection of Gaussian variables
with

CovpZs,a, Zs1,bq “

ż

X
φs,apxqφs1,bpxqdZP pxq, (3.8)

for 1 ď a, b ď r and s, s1 ě 1. Hence, the limiting distribution of pm`nqMMD2rK,Xm,Yns can
be alternately expressed as (recall (3.4)):

GK
D
“

˜

8
ÿ

s“1

λs,a
`

Z2
s,a ´ 1

˘

¸

1ďaďr

.

Note that the orthonormality conditions imply that for each fixed a P t1, 2, . . . , ru, the collec-
tion tZs,ausě1 is distributed as i.i.d. N p0, 1q. This gives the well-known representation of the
marginal distribution of the MMD estimate as an infinite weighted sum of independent centered
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χ2
1 variables (see [23, Theorem 12]). Jointly these infinite sums are dependent, due to the de-

pendence among the collection tZs,ausě1,1ďaďr for 1 ď a ‰ b ď r with covariance structure as
in (3.8).

Theorem 3.1 allows us to obtain the limiting distribution of any smooth function of finitely
many MMD estimates under H0. In particular, for the MMMD statistic Tm,n in (2.16) we have
the following result:

Corollary 3.1. Suppose ΣH0 :“ ppσabqq1ďa,bďr and Σ̂ :“ ppσ̂abqq1ďa,bďr be as in (2.12) and
(2.14), respectively. Then

σab “
2

ρ2p1´ ρq2
EX,X 1„P

“

K˝apX,X
1qK˝bpX,X

1q
‰

, (3.9)

where K˝a, for 1 ď a ď r, is as defined in (2.13). Moreover, in the asymptotic regime (2.8),

σ̂ab
a.s.
Ñ σab, (3.10)

for 1 ď a, b ď r. Furthermore, under H0,

pm` nq2Tm,n
D
Ñ GJKΣ´1

H0
GK, (3.11)

for GK as in (3.4).

The proof of Corollary 3.1 is given in Appendix A.2. It follows from Theorem 3.1 together
with Slutsky’s theorem and the strong law of large number for U -statistics.

4. Calibration Using Gaussian Multiplier Bootstrap

In order to apply Corollary 3.1 to obtain a valid level α tests based on Tm,n we need to
estimate the quantiles of the limiting distribution in (3.11), which depends on the (unknown)
distribution P . Although the distribution in (3.11) does not have a tractable closed form, we
can efficiently estimate its quantiles based on the samples Xm “ tX1, X2, . . . , Xmu, using the
kernel Gram matrix representation of the MMD estimate and the Gaussian multiplier bootstrap.
Towards this, for each kernel Ka define its Gram matrix based on Xm as:

K̂a “ pKapXi, Xjqq1ďi,jďm ,

and their centered versions as:

K̂
˝

a “ CK̂aC{m “

˜

K̂˝apXi, Xjq

m

¸

1ďi,jďm

, where C “ I ´
1

m
11J, (4.1)

and K̂˝a is as defined in (2.15), for 1 ď a ď r. For ρ̂ :“ m
m`n , denote

EpK,Xmq :“

¨

˚

˚

˚

˚

˝

ZJmK̂
˝

1Zm ´
1

ρ̂p1´ρ̂q TrrK̂
˝

1s

ZJmK̂
˝

2Zm ´
1

ρ̂p1´ρ̂q TrrK̂
˝

2s

...

ZJmK̂
˝

mZm ´
1

ρ̂p1´ρ̂q TrrK̂
˝

ms

˛

‹

‹

‹

‹

‚

, (4.2)

where Zm „ Nmp0,
1

ρ̂p1´ρ̂qIq independent of Xm. In the following theorem we show that distri-

bution of EpK,Xmq conditional on Xm converges to GK as in (3.4).
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Theorem 4.1. Suppose K “ tK1,K2, . . . ,Kru be a collection of r ě 1 distinct kernels such that
Ka satisfies Assumption 2.1,Ka P L

2pX 2, P 2q, and EX„P
“

KapX,Xq
2
‰

ă 8, for 1 ď a ď r. Then
under H0, in the asymptotic regime (2.8),

EpK,Xmq
ˇ

ˇXm
D
Ñ GK,

almost surely, where GK is as defined in (3.4).

The proof of Theorem 4.1 is given in Appendix B. It shows that the asymptotic the distribution
of EpK,Xmq

ˇ

ˇXm is the same as that of pm ` nqMMD2rK,Xm,Yns. Since EpK,Xmq
ˇ

ˇXm is
completely determined by the data Xm, we can use it approximate the quantiles of any ‘nice’
functions GK. To this end, define

T̂m :“ EpK,Xmq
JΣ̂´1EpK,Xmq (4.3)

Now, a direct computation shows that

Var rEpK,Xmq|Xms “

´´

Tr
”

K̂
˝

aK̂
˝

b

ı¯¯

1ďa,bďm
.

Hence, from the proof of Corollary 3.1 (specifically (3.10)) it follows that Var rEpK,Xmq|Xms “

Σ̂
a.s.
Ñ ΣH0 . This combined with Theorem 4.1 implies that under H0,

T̂m | Xm
D
Ñ GJKΣ´1

H0
GK, (4.4)

almost surely. This shows that T̂m has the same limiting distribution as pm`nq2Tm,n under H0

(recall (3.11)), hence, we can use the quantiles of T̂m to calibrate the statistic Tm,n. Specifically,

for α P p0, 1q denote by q̂α,m the α-th quantile of distribution T̂m|Xm and consider the test
function

φm,n “ 1tpm` nq2Tm,n ą q̂1´α,mu. (4.5)

Corollary 3.1, (2.17), and (4.3) now implies the following result:

Corollary 4.1 (Consistency). Suppose the assumptions of Theorem 4.1 hold and φm,n be as de-
fined above. Then limm,nÑ8 EH0rφm,ns “ α. Moreover, for any P ‰ Q, limm,nÑ8 EH1 rφm,ns “
1, that is, φm,n is universally consistent.

The result above shows that the MMMD statistic with cut-off chosen using the multiplier
bootstrap method attains the exact asymptotic level and is universally consistent. In practice,

to compute q̂1´α,m we generate B replicates tT̂
p1q
m , T̂

p2q
m , . . . , T̂

pBq
m u of T̂m, based on B independent

copies of Zm, and choose q̂1´α,m to be the sample α-th quantile of tT̂
p1q
m , T̂

p2q
m , . . . , T̂

pBq
m u.

Remark 4.1. While implementing the test we often replace Σ̂´1 in (2.16) and (4.3), by

pΣ̂ ` λImq
´1, for some suitably chosen regularization parameter λ ą 0. Although the limit-

ing covariance matrix ΣH0 is invertible (see Corollary E.1), hence, Σ̂ is also invertible for large
sample sizes with probability 1, adding a small regularization provides numerical stability in fi-
nite samples. In fact, the conclusions in Corollary 4.1 remain valid, for any choice of λ “ λpXmq

converging almost surely to a deterministic constant λ0 ą 0 (see Section 7 for more details on
the choice of λ in our experiments).
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5. Local Asymptotic Power

In this section we derive the asymptotic power of the test based on Tm,n against local con-

tiguous alternatives. Throughout this section we will assume that X “ Rd and the distributions
P and Q have densities fP and fQ with respect to the Lebesgue measure in Rd. To quantify the
notion of local alternatives, we will adopt the commonly used contamination model:

fQp¨q “ p1´ δqfP p¨q ` δgp¨q, (5.1)

where δ P r0, 1q and g ‰ fP is a probability density function with respect to the Lebesgue
measure in Rd such that the following hold:

Assumption 5.1. The support of g is contained in that of fP p¨q and 0 ă VarX„P r
gpXq
fP pXq

s ă 8.

Under this assumption, contiguous local alternatives are obtained by considering local per-
turbations of the mixing proportion δ as follows (see [39, Chapter 12]):

H0 : δ “ 0 versus H1 : δ “ h{
?
N, (5.2)

for some h ‰ 0 and N “ m` n.

Theorem 5.1. Suppose K “ tK1,K2, . . . ,Kru be a collection of r distinct kernels such that Ka
satisfies Assumption 2.1 and Ka P L

2pX 2, P 2q, for 1 ď a ď r. Then under H1 as in (5.2), in
the asymptotic regime (2.8),

pm` nqMMD2rK,Xm,Yns
D
Ñ GK,h :“

¨

˚

˚

˚

˚

˚

˚

˝

γI2pK
˝
1q ` 2h

?
γI1

´

K˝1

”

g
fP

ı¯

` h2µ1

γI2pK
˝
2q ` 2h

?
γI1

´

K˝2

”

g
fP

ı¯

` h2µ2

...

γI2pK
˝
rq ` 2h

?
γI1

´

K˝r

”

g
fP

ı¯

` h2µr

˛

‹

‹

‹

‹

‹

‹

‚

. (5.3)

where γ “ 1
ρp1´ρq , K

˝
ar

g
fP
spxq :“

ş

X K˝apx, yqgpyqdy,

µa :“ E
„

K˝apX,X
1q

gpXqgpX 1q

fP pXqfP pX 1q



, (5.4)

and K˝a is defined in (2.13), for 1 ď a ď r.

The proof of Theorem 5.1 is given in Section C. The following result is an immediately
consequence of the above result together with the continuous mapping theorem and Corollary
3.1.

Corollary 5.1. Under H1 as in (5.2), in the asymptotic regime (2.8),

pm` nq2Tm,n
D
Ñ GJK,hΣ

´1
H0
GK,h. (5.5)

Using Corollary 5.1 we can derive the limiting local power of the test φm,n in (4.5). Specifically,

suppose FK,h denotes the CDF of GJK,hΣ
´1
H0
GK,h and q1´α be the 1 ´ α-th quantile of the

distribution GJKΣ´1
H0
GK. (Note that GK,0 “ GK.) Since q̂1´α,m|Xm

a.s.
Ñ q1´α, (5.5) implies that

the asymptotic power of φm,n under H1 as in (5.2) is given by

lim
m,nÑ8

EH1rφm,ns “ 1´ FK,hpq1´αq.

This implies, φm,n has non-trivial asymptotic (Pitman) efficiency and is rate-optimal, in the
sense that,

lim
|h|Ñ8

lim
m,nÑ8

EH1rφm,ns “ 1.
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6. Distribution Under Alternative

In this section we derive the asymptotic distribution of MMD2 rK,Xm,Yns under the alter-
native, that is, when P ‰ Q.

For this we write MMD2 rK,Xm,Yns as a two-sample U -statistics as noted in [35],

MMD2 rK,Xm,Yns “
1

mpm´ 1q

1

npn´ 1q

ÿ

1ďi1‰i2ďm

ÿ

1ďj1‰j2ďn

h pXi1 , Xi2 , Yj1 , Yj2q , (6.1)

where hpx, x1, y, y1q “ phapx, x
1, y, y1qq1ďaďr and

hapx, x
1, y, y1q “ Kapx, x

1q ` Kapy, y
1q ´ Kapx, y

1q ´ Kapx
1, yq, (6.2)

for 1 ď a ď r. Using the Hoeffding’s decomposition we can easily derive the joint distribution
of MMD2 rK,Xm,Yns under the alternative. In this case the asymptotic distribution will be a
r-dimensional multivariate normal as in Theorem 6.1 below. To express the limiting covariance
matrix we need the following definitions: For 1 ď a ď r, let

∆p1q
a pxq :“

ż

X
Kapx, x

1qdP px1q ´

ż

X
Kapx, y

1qdQpy1q (6.3)

and

∆p2q
a pyq :“

ż

X
Kapy, y

1qdQpy1q ´

ż

X
Kapx

1, yqdP px1q. (6.4)

Also, denote ∆p1qpxq :“ p∆
p1q
a pxqq1ďaďr and ∆p2qpxq :“ p∆

p2q
a pxqq1ďaďr. Then we have the

following theorem:

Theorem 6.1. Suppose K “ tK1,K2, . . . ,Kru be a collection of r distinct characteristic kernels
and F “ tF1,F2, . . . ,Fru be the unit balls of their respective RHKS. Suppose Ka P L

2pX 2, P 2qX

L2pX 2, Q2q X L2pX 2, P ˆQq, for all 1 ď a ď r. Then for P ‰ Q,

?
m` n

`

MMD2 rK,Xm,Yns ´MMD2 rF , P,Qs
˘ D
ÝÑ Nr p0,ΣH1q ,

where

ΣH1 :“ 4
´

ρVarX„P

”

∆p1qpXq
ı

` p1´ ρqVarY„Q

”

∆p2qpY q
ı¯

. (6.5)

and MMD2 rF , P,Qs “
`

MMD2 rF1, P,Qs , ¨ ¨ ¨ ,MMD2 rFr, P,Qs
˘J

.

The proof of Theorem 6.1 is given in Appendix D. Using Theorem 6.1 we can obtain the
distribution of the statistic Tm,n (recall (2.16)) under H1. For z P Rr, define Am,npzq “ z

JΣ̂´1z.
Then by a Taylor series expansion, Corollary 3.1, and Theorem 6.1,

Tm,n ´MMD2 rF , P,QsJ Σ̂´1MMD2 rF , P,Qs
“ Am,npMMD2 rK,Xm,Ynsq ´Am,npMMD2 rF , P,Qsq

“ 2
`

MMD2 rK,Xm,Yns ´MMD2 rF , P,Qs
˘J

Σ̂´1MMD2 rF , P,Qs `OP p1{Nq,

where N :“ m` n. Hence, using Theorem 6.1 and Σ̂
P
Ñ ΣH0 (by Corollary 3.1),

?
m` n

´

Tm,n ´MMD2 rF , P,QsJ Σ̂´1MMD2 rF , P,Qs
¯

D
Ñ N p0, σ2

H1
q,

where σ2
H1

:“ 4MMD2 rF , P,QsJΣ´1
H0

ΣH1Σ
´1
H0

MMD2 rF , P,Qs, with ΣH1 as defined in (6.5).
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7. Numerical Experiments

In this section, we study the finite-sample performance of the proposed MMMD test, both
in terms of Type-I error control and power, across a range of simulation settings. Specifically,
we will compare the MMMD test with the single kernel MMD test [22] and the graph-based
Friedman Rafsky (FR) test [19]. Throughout we set the significance level α “ 0.05.

For single kernel tests we use the Gaussian and Laplace kernels:

KGAUSSpx, yq “ e´
}x´y}2

σ2 and KLAPpx, yq “ e´
}x´y}
σ ,

with the bandwidth σ is chosen using the median heuristic

σ2 :“ λ2
med “ median

 

}Zi ´ Zj}
2 : 1 ď i ă j ď n

(

,

where Xm Y Yn “ tZ1, Z2, . . . , ZNu is the pooled sample and } ¨ } denotes the Euclidean norm.
We will refer to these tests as Gauss MMD and LAP MMD, respectively.

For the MMMMD statistic we will use multiple Gaussian kernels, multiple Laplace kernels,
or combination of Gaussian and Laplace kernels, with different bandwidths chosen follows:

‚ Gauss MMMD: This is the MMMD statistic with 5 Gaussian kernels with bandwidths

σ “ pσ1, σ2, σ3, σ4, σ5q “ p
1
2 ,

1?
2
, 1,
?

2, 2qλmed. (7.1)

‚ LAP MMMD: This is the MMMD statistic with 5 Laplace kernels with bandwidths

σ “ pσ1, σ2, σ3, σ4, σ5q “ p
1
2 ,

1?
2
, 1,
?

2, 2qλmed. (7.2)

‚ Mixed MMMD: This is the MMMD statistic with 3 Gaussian kernels and 3 Laplace kernels
with same set of bandwidths

σ “ pσ1, σ2, σ3q “ p
1?
2
, 1,
?

2qλmed. (7.3)

In our implementation we choose the regularity parameter λ (recall Remark 4.1) as: λ “ 10´5ˆ

min1ďaďr σ̂aa, for σ̂aa ą 0 as in (2.14). Since λ converges to 10´5 ˆmin1ďaďr σaa almost surely
(recall Corollary 3.1), the results in Corollary 4.1 remain valid. The cutoffs of the tests are
chosen based on the multiplier bootstrap as in (4.5) using B “ 500 resamples.

Finally, for the Friedman Rafsky (FR) test we use the implementation in the R package
gTests, with the 5-MST (minimum spanning tree), which is the recommended practical choice
in [11].

7.1. Dependence on Sample Size. In this section we illustrate how the different tests per-
forming as the sample size varies, with dimension held fixed. Toward this, we fix d “ 2 and
consider

P “ N2p0, I2q and Q “ N2p0, 1.25 ¨ I2q,

and vary the sample sizes over m “ n P t50, 100, 200, 300, 400, 500u. Figure 1 shows the empirical
Type I-error and power of the aforementioned tests. Figure 1(a) shows that all the tests have
good Type I error control. Figure 1(b) shows that the multiple kernel MMMD tests have
better power than the single kernel MMD tests, with the Gauss MMMD and the Mixed MMMD tests
performing the best.
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Figure 1. (a) Empirical type-I errors and (b) powers of the different tests in dimension
d “ 2 with varying sample size.

7.2. Dependence on Dimension. In this section we study the performance of the different
tests as dimension varies in the following 4 settings. We fix sample sizes m “ n “ 100, vary
dimension over d P t5, 10, 25, 50, 75, 100, 150u, and compute the empirical power by averaging
over 500 iterations.

(S1) Gaussian location-scale: Here, we consider P “ Ndp0,Σ0q and Q “ Nd p0.11, 1.15Σ0q,

where Σ0 “ pp0.5
|i´j|qq1ďi,jďd (see Figure 2(a)).

(S2) t-distribution scale: Here, we consider P “ t10p0,Σ0q and Q “ t10 p0, 1.22Σ0q, where t10

is the t-distribution with 10 degrees of freedom and Σ0 is as above (see Figure 2(b)).
(S3) Gaussian and t-distribution mixture: Here, we consider

P “ 1
2Ndp0,Σ0q `

1
2 t10p0,Σ0q and Q “ 1

2Ndp0, 1.22Σ0q `
1
2 t10p0, 1.22Σ0q,

where Σ0 is as above (see Figure 3(a)).
(S4) Gaussian and Laplace mixture: Here, we consider

P “ 1
2Ndp0,Σ1q `

1
2 t10p0,Σ1q and Q “ 1

2Ndp0, 1.3Σ1q `
1
2 t10p0, 1.3Σ1q,

where Σ1 “ pp0.7
|i´j|qq1ďi,jďd (see Figure 3(b)).

The plots show that the multiple kernel MMMD tests have significantly more power than
the single kernel MMD tests and the FR test in all the 4 settings. Overall the Gauss MMMD

and the Mixed MMMD tests perform the best, closely followed by the Lap MMMD. This also shows
the advantage of aggregating kernels across a range of dimensions, from low dimensions to
dimensions that are comparable and even larger than the sample size.

7.3. Mixture Alternatives. In this section we evaluate the performance of the tests for mix-
ture alternatives by varying the mixing proportion. To this end, suppose Σ0 “ pp0.5

|i´j|qq1ďi,jďd
and consider

P “ εNdp0,Σ0q ` p1´ εqt10p0,Σ0q and Q “ εNdp0, 1.25Σ0q ` p1´ εqt10p0, 1.25Σ0q.

Figure 4 shows the empirical power (averaged over 500 iterations) of the different tests as
ε varies over r0, 1s, with sample sizes m “ n “ 100 and dimension d “ 30 (Figure 4(a)) and
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Figure 2. Empirical powers of the different tests as the dimension varies in (a) setting
(S1) and (b) setting (S2).
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Figure 3. Empirical powers of the different tests as the dimension varies in (a) setting
(S3) and (b) setting (S4).

d “ 150 (Figure 4 (b)). In both cases, the MMMD tests outperform the single kernel tests and
the FR test, again illustrating the versatility of the aggregated tests.

7.4. Local Alternatives. Recall that in Section 5 we derived the asymptotic local power of
the MMMD statistic. Here we validate this in the following simulation setting:

P “ Ndp0, Idq and Q “ Nd

´

0, p1` h?
N
qId

¯

, (7.4)
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Figure 4. Empirical powers of the different tests for mixture alternatives as a function
of the mixing proportion for dimension (a) d “ 30 and (b) d “ 150.

where N “ m` n. Figure 5(a) shows the empirical power (averaged over 500 iterations) of the
different tests, for dimension d “ 20, sample sizes m “ n “ 100, as the signal strength varies
over [0,3]. The plots show that the MMMD methods have significantly better local power than
the other tests, illustrating the attractive efficiency property of our aggregation method.
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Figure 5. Empirical powers of the different tests for (a) local alternatives as in (7.4)
and (b) high-dimensional alternatives as in (7.5).

7.5. High-Dimensional Alternatives. To fairly evaluate the performance of kernel tests in
high-dimensions we consider, as suggested by Ramdas et al. [48], pairs of distributions for which
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the Kullback-Leibler (KL) divergence remain constant, as the dimension increases. Specifically,
we consider following

P “ Nd p0, Idq and Q “ Nd

´

p1.25{
?
dq1, Id

¯

. (7.5)

It is easy to check that the KL divergence between P and Q is 1.252

2 , which does not change
with d. In this case for the Gauss MMMD/LAP MMMD tests we use 5 different Gaussian/Laplace
kernels with respective bandwidths σ “ pσ1, σ2, σ3, σ4, σ5q “ p

1
2
?

2
, 1

2 ,
1?
2
, 1,
?

2qλmed. Also, for

the Mixed MMMD test is implemented with 4 Gaussian kernels and 4 Laplace kernels with same
set of bandwidths: σ “ pσ1, σ2, σ3, σ4q “ p

1
2 ,

1?
2
, 1,
?

2qλmed. Figure 5(b) shows the empirical

powers (averaged over 500 iterations) of the different tests as a function of dimension with sample
sizes m “ n “ 100. As expected, the power of all the tests decreases as dimension increases.
However, for the multiple kernel tests the power decrement is much slower and overall they
perform significantly better than the single kernel tests.

8. Real Data Applications

In this section we apply our method to compare images of digits in the noisy MNIST dataset.
Specifically, consider two noisy versions of the MNIST dataset: (1) MNIST with additive Gauss-
ian noise (Section 8.1), and (2) MNIST with reduced contrast and additive noise, where, in
addition to the Gaussian noise the contrast of the images is reduced (Section 8.2). As in the
previous section, we implement the single kernel Gauss MMD and LAP MMD tests with the median
bandwidth, the multiple kernel Gauss MMMD, LAP MMMD, and Mixed MMMD tests with bandwidths
as in (7.1), (7.2), (7.3), respectively, and the FR test using the R package gTests.

8.1. MNIST with Additive Gaussian Noise. In this section we illustrate the performance
of the proposed test in detecting different sets of digits when i.i.d. Gaussian noise with standard
deviation σ is added to each pixel. Figure 6 shows how such noisy data looks for (a) σ “ 0
(which is the clean data with no noise), (b) σ “ 0.6 and (c) σ “ 1.

(a) Clean data (b) Noisy data with σ “ 0.6 (c) Noisy data with σ “ 1

Figure 6. MNIST data with additive Gaussian noise.

To evaluate the proposed method we consider the following sets of digits:

P “ t1, 2, 3u and Q “ t1, 2, 8u,

and vary the standard error σ P p0, 0.2, 0.4, 0.6, 0.8, 1q. For each σ we draw 100 samples with
replacements from the two sets and check if the tests successfully reject H0 at level α “ 0.5.
We repeat this experiment 500 times to estimate the power. Figure 7 shows performance of the
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above mentioned tests, where we plot the power over the index of pair of sets of digits. This
shows that for the clean data and for small noise levels, the singe kernel Gauss MMD performs
comparably with the MMMD tests. However, for larger noise levels the MMMD tests perform
much than the single kernel tests. The FR test also perform well in this case across the range
of the noise level.
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Figure 7. Estimated powers of the tests on noisy MNIST dataset with increasing noise
strength.

8.2. MNIST with reduced contrast and additive Gaussian noise. In this section we
illustrate the performance of the different tests on the noisy version of the MNIST dataset con-
sidered in [6]. (The dataset is publicly available at https://csc.lsu.edu/~saikat/n-mnist/)
Here, in addition to additive Gaussian noise the contrast of the images is also reduced. Specif-
ically, the contrast range is scaled down to half and an additive Gaussian noise is introduced
with signal-to-noise ratio of 12. This emulates background clutter along with significant change
in lighting conditions (see Figure 8 for an example of such a noisy image).

We evaluate the performance of the different test for the following 5 pairs of sets of digits:

(1) P “ t2, 4, 8, 9u and Q “ t3, 4, 7, 9u,
(2) P “ t1, 2, 4, 8, 9u and Q “ t1, 3, 4, 7, 9u,
(3) P “ t0, 1, 2, 4, 8, 9u and Q “ t0, 1, 3, 4, 7, 9u,
(4) P “ t0, 1, 2, 4, 5, 8, 9u and Q “ t0, 1, 3, 4, 5, 7, 9u,
(5) P “ t0, 1, 2, 4, 5, 6, 8, 9u and Q “ t0, 1, 3, 4, 5, 6, 7, 9u.

For each of the 5 cases above, we draw 150 samples with replacements from the two sets and
check if the tests successfully reject H0 at level α “ 0.5. We repeat this experiment 500 times
to estimate the power. Figure 8 shows the power of the different for the above 5 sets. In this
case, the multiple kernel tests and the FR test overall has the highest power across the 5 sets,
followed by the Gauss MMD and the Lap MMD.

9. Broader Scope

The idea of using multiple kernels/bandwidths has recently emerged as a popular alternative
to selecting a single bandwidth, for developing adaptive kernel two-sample tests that do not
require data-splitting. In this direction, Kübler et al. [37] proposed a method which does not

https://csc.lsu.edu/~saikat/n-mnist/
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Figure 8. (a) MNIST dataset with reduced contrast and additive white gaussian noise
and (b) estimated power.

require data splitting using the framework of post-selection inference. However, this method
requires asymptotic normality of the test statistic under H0, hence, is restricted to the linear-
time MMD estimate [23, Section 6], which leads to loss in power when compared to the more
commonly used quadratic-time estimate (2.6). Fromont et al. [20, 21] and, more recently, Schrab
et al. [55] introduced another non-asymptotic aggregated test, hereafter referred to as MMDAgg,
that is adaptive minimax (up to an iterated logarithmic term) over Sobolev balls.

Our aggregation strategy, leads to a test that can be efficiently implemented, enjoy improved
empirical power over single kernel tests for a range of alternatives, and scales well in high di-
mensions. Moreover, instead of minimax optimality, our focus is on establishing the asymptotic
properties of the aggregated test. Towards this, we derive the joint distribution of the MMD
estimates (under both local and fixed alternatives) and, consequently, establish the statistical
(Pitman) efficiency of the proposed test. In fact, our theoretical results apply to general ag-
gregation schemes using which we can obtain the asymptotic efficiency of the aforementioned
MMDAgg test (see Section 9.1). Numerical results comparing the empirical power of the MMMD
test with the MMDAgg test are reported in Section 9.2. Interestingly, MMMD has better power
than MMDAgg for a range of alternatives, which include perturbed uniform distributions in the
Sobolev class, as well as natural mixture and local alternatives. This showcases both the practi-
cal relevance of the Mahalanobis aggregation strategy and the broader scope of our asymptotic
results.

9.1. Local Asymptotic Power of the MMDAgg Test. In this section, we propose an
asymptotic implementation of the MMDAgg test and sketch a heuristic argument that derives
its limiting local power in the contamination model (5.2). The argument can be made rigorous
by using tools from empirical process theory, however, since the purpose of this section is more
illustrative than technical, we have not pursued this direction.

To describe the asymptotic version of the MMDAgg test suppose K “ tK1,K2, . . . ,Kru is
a finite collection of kernels and W :“ tw1, w2, . . . , wru is an associated collection of positive
weights such that

řr
s“1ws ď 1. Moreover, for α P p0, 1q and 1 ď s ď r, let q̂1´α,s,m be the α-th
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quantile of the distribution

E pKs,Xmq :“ ZJmK̂
˝

sZm ´
1

ρ̂p1´ ρ̂q
TrrK̂

˝

ss.

where K̂
˝

s is as defined in (4.1), for 1 ď a ď r, and Zm „ Nmp0,
1

ρ̂p1´ρ̂qIq is independent of

Xm. The idea of the MMDAgg test is to reject H0 if any one of the individual (single-kernel)
test based on the kernels in K rejects H0 for a specially chosen cut-off (see [55, Section 3.5]
for details). Here, we consider an alternative implementation of MMDAgg test based on the
Gaussian multiplier bootstrap discussed in Section 4. To this end, define

u˚α,m :“ arg max

"

u P p0, Lq : P
ˆ

max
1ďsďr

tE pKs,Xmq ´ q̂1´uws,s,mu ą 0|Xm

˙

ď α

*

,

where L :“ min1ďsďr w
´1
s . (Note that the probability in the RHS above is over the randomness

of Zm (conditional on Xm), hence, u˚α,m can be computed from the data by a grid search over
u P p0, Lq.) The MMDAgg test would then reject H0 if

φMMDAgg
m,n,α :“ 1

"

max
1ďsďr

 

MMD2 rKs,Xm,Yns ´ q̂1´wsu
˚
α,s,m

(

ą 0

*

. (9.1)

To describe the asymptotic properties of this test, let qα,s be the α-th quantile of the distribution
1

ρp1´ρqI2pK
˝
sq, for 1 ď s ď r. Then for each fixed u P p0, Lq, by Theorem 3.1, Slutsky’s theorem,

and the continuous mapping theorem, as mÑ8,

max
1ďsďr

tE pKs,Xmq ´ q̂1´uws,s,mu
D
Ñ max

1ďsďr

"

1

ρp1´ ρq
I2pK

˝
sq ´ q1´uws,s

*

.

since q̂1´uws,s,m|Xm
a.s.
Ñ q1´uws,s. Therefore, for each fixed u P p0, Lq, as mÑ8,

P
ˆ

max
1ďsďr

tE pKs,Xmq ´ q̂1´uws,s,mu ą 0|Xm

˙

Ñ P
ˆ

max
1ďsďr

"

1

ρp1´ ρq
I2pK

˝
sq ´ q1´uws,s

*

ą 0

˙

.

Now, since the convergence of the quantiles is uniform, we expect the following to hold as
mÑ8:

u˚α,m
a.s.
Ñ u˚α and q̂1´wsu

˚
α,m,s,m

|Xm
a.s.
Ñ q1´wsu

˚
α,s
,

where

u˚α :“ arg max

"

u P p0, Lq : P
ˆ

max
1ďsďr

"

1

ρp1´ ρq
I2pK

˝
sq ´ q1´uws,s

*

ą 0

˙

ď α

*

.

Hence, under H1 as in (5.2), by Theorem 5.1, Slutsky’s theorem, and the continuous mapping
theorem,

max
1ďsďr

 

MMD2 rKs,Xm,Yns ´ q̂1´wsu
˚
α,s,m

( D
Ñ max

1ďsďr

 

GKs,h ´ q1´wsu
˚
α,s

(

,

where

GKs,h :“ γI2pK
˝
sq ` 2h

?
γI1

ˆ

K˝s

„

g

fP

˙

` h2µs,

and µs is as defined in (5.4). Therefore, the limiting power of the test (9.1) is given by

lim
m,nÑ8

EH1rφ
MMDAgg
m,n,α s “ P

ˆ

max
1ďsďr

 

GKs,h ´ q1´wsu
˚
α,s

(

ą 0

˙

“ 1´ P
`

GKs,h ď q1´wsu
˚
α,s
, for all 1 ď s ď r

˘

“ 1´ FK,hpq1´w1u
˚
α,1
, . . . , q1´wru

˚
α,r
q,

where FK,h is the cumulative distribution function of the vector pGK1,h, GK2,h, . . . , GKr,hq
J.
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9.2. Empirical Comparison. In this section we compare the MMMD test with the MMDAgg
test as implemented in [55].

9.2.1. Perturbed 1-dimensional Uniform Distribution. First we consider a perturbed version of
uniform distribution on r0, 1s as considered [55]. The perturbed density at x P R is given by:

fθpxq “ 1 tx P r0, 1su `
c1

P

ÿ

vPt1,2,...,P u

θvG pPx´ vq

where c1 “ 2.7, θ “ pθ1, θ2, ¨ ¨ ¨ , θP q P t´1, 1uP , P is the number of perturbations, and

Gptq :“ exp

ˆ

´
1

1´ p4t` 3q2

˙

1
 

t P p´1,´1
2q
(

´ exp

ˆ

´
1

1´ p4t` 1q2

˙

1
 

t P p´1
2 , 0q

(

.

It is known that for P large enough the difference between the uniform density and the per-
turbed uniform density lies in the Sobolev ball [40]. Figure 9(a) shows the empirical powers of
the MMDAgg test with Gaussian and Laplace kernels, with bandwidths chosen according to the
increasing weight strategy as in [55]; the empirical powers of the Gauss MMMD, LAP MMMD, and
Mixed MMMD with bandwidth chosen as in (7.1), (7.2) and (7.3), respectively; and the empiri-
cal power of the FR test. The sample sizes are set to m “ n “ 500, the perturbations range
over P “ 1, 2, 3, 4, 5, 6, and the power is computed over 500 repetitions, with a new value of
θ P t´1, 1uP sampled uniformly in each iteration. The plot shows that the MMMD tests have
better finite-sample power than the MMAgg tests, particularly for larger perturbations.
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Figure 9. Empirical powers of the MMMD and MMDAgg tests for (a) the perturbed
uniform distribution, (b) mixture alternatives, and (c) local alternatives.

9.2.2. Mixture and Local Alternatives. Next, we compare the empirical power (by repeating the
experiment 500 times) of the MMMD tests with the MMDAgg tests (based on Gaussian and
Laplace kernels) for the mixtures alternative in d “ 30 as in Section 7.3 and the local alternative
in d “ 20 as in Section 7.4. For the MMMD tests we use bandwidths as in (7.1), (7.2), and
(7.3), while for the MMDAgg tests we consider the increasing weight strategy with collection
of bandwidths Λp´2, 2q as defined in [55, Section 5.3]. For the mixture alternative the MMMD
tests perform slightly better than the MMDAgg tests (see Figure 9(b)), while for the local alter-
native the MMMD tests show significant improvement over the MMDAgg tests (see Figure 9(c)).
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Appendix A. Proof of Theorem 3.1 and Corollary 3.1

To begin with note that the definition of MMD2 in (2.5) can be extended to any measurable
and symmetric function H P L2pX 2, P 2q (not necessarily positive definite) in a natural way as
follows:

MMD2 rH,Xm,Yns “WXm `WYn ´ 2BXm,Yn , (A.1)

where WXm , WYn , and BXm,Yn are as defined in (2.6) and (2.7), respectively, with K replaced
by H. The main ingredient in the proof of Theorem 3.1 is the following result:



24 CHATTERJEE AND BHATTACHARYA

Proposition A.1 ([23, Theorem 5]). For any measurable and symmetric function H P L2pX 2, P 2q,
in the asymptotic regime (2.8),

pm` nqMMD2 rH,Xm,Yns :“
1

ρp1´ ρq

8
ÿ

s“1

λs
`

Z2
s ´ 1

˘

, (A.2)

where tZs : s ě 1u are i.i.d. N p0, 1q and tλsusě1 are the eigenvalues (with repetitions) of the
Hilbert-Schimdt operator HH˝ defined as:

HH˝rfpxqs “

ż

X
H˝px, yqfpyqdP pyq, (A.3)

with H˝px, yq :“ Hpx, yq ´ EX„PHpX, yq ´ EX 1„PHpx,X 1q ` EX,X 1„PHpX,X 1q. Moreover, the
characteristic function of ZpHq at t P R is given by:

ΦZpHqptq :“ E
”

eιtZpHq
ı

“

8
ź

s“1

e
´

ιλst
ρp1´ρq

b

1´ 2ιλst
ρp1´ρq

. (A.4)

Remark A.1. The convergence in (A.2) is a consequence of [23, Theorem 5], while the ex-
pression of the characteristic function in (A.4) follows from [31, Proposition 6.1]. (Note that
Proposition A.1 also follows from the proof of Proposition C.1 in Section C by setting h “ 0).

We now present the proof of Theorem 3.1 in Appendix A.1. The proof of Corollary 3.1 is
given in Appendix A.2.

A.1. Proof of Theorem 3.1. First recall the definition of MMD2rK,Xm,Yns from (2.10).
Note that for η “ pη1, η2, . . . , ηrq

J P Rr,

ηJMMD2rK,Xm,Yns “
r
ÿ

a“1

ηaMMD2rKa,Xm,Yns “ MMD2rHη,Xm,Yns, (A.5)

where Hη :“
řr
a“1 ηaKa. Clearly, Hη is a measurable and symmetric function and Hη P

L2
`

X , P 2
˘

(by Assumption 2.1). Then by Proposition A.1,

Zm,npHηq :“ pm` nqMMD2 rHη,Xm,Yns
D
Ñ ZpHηq “

1

ρp1´ ρq

ÿ

λPΛpηq

λ
`

Z2
λ ´ 1

˘

. (A.6)

where tZλuλPΛpηq are i.i.d. N p0, 1q and Λpηq are the eigenvalues (with repetitions) of the Hilbert-
Schimdt operator:

HH˝η rfpxqs “

ż

H˝ηpx, yqfpyqdP pyq, (A.7)

with

H˝ηpx, yq :“ Hηpx, yq ´ EX„PHηpX, yq ´ EX 1„PHηpx,X
1q ` EX,X 1„PHηpX,X

1q

“

r
ÿ

a“1

ηaK
˝
apx, yq, (A.8)

Hence, the operator HH˝η in (A.7) is same as the operator HK,η defined in (3.6). Then Proposition

A.1, (A.6), and (A.8) implies,

E
”

eιZm,npHηq
ı

Ñ E
”

eιZpHηq
ı

“
ź

λPΛpηq

e
´ ιλ
ρp1´ρq

b

1´ 2ιλ
ρp1´ρq

“ Φpηq, (A.9)
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where Φpηq is as defined in (3.5). Since η P Rr was chosen arbitrarily and Φpηq is continuous at
η “ 0 P Rr (by Lemma F.1), Levy’s continuity theorem [17, Theorem 3.3.17] implies that there
exists a random variable ZK with characteristic function Φpηq such that,

MMD2rK,Xm,Yns
D
Ñ ZK. (A.10)

We now show that the limit ZK in (A.10) can be expressed as GK in (3.4). Towards this, note
that by the linearity of multiple stochastic integrals,

E
”

eιη
JGK

ı

“ E
”

e
ι

ρp1´ρq

řr
a“1 ηaI2pK

˝
a q
ı

“ E
”

e
ι

ρp1´ρq
I2p

řr
a“1 ηaK

˝
a q
ı

“ E
”

e
ι

ρp1´ρq
I2pH˝ηq

ı

, (A.11)

where the last step uses (A.8). Then by [31, Theorem 6.1], I2pH
˝
ηq has characteristic function:

ΦH˝ηpsq :“ E
”

eιsI2pH
˝
ηq
ı

“
ź

λPΛpηq

e´ιλs
?

1´ 2ιλs
(A.12)

where Λpηq is the set of eigenvalues (with repetition) of the bilinear form BH˝η : L2pX qˆL2pX q Ñ
R:

BH˝ηpfP , f2q :“
1

2
E
“

I2pH
˝
ηqI1pf1qI1pf2q

‰

,

for any f1, f2 P L
2pX , P q. Now, using the multiplication formula for stochastic integrals (cf. [31,

Theorem 7.33]) gives,

1

2
E
“

I2pH
˝
ηqI1pf1qI1pf2q

‰

“
1

2

ż

X 2

“

H˝ηpx, yqf1pxqf2pyq ` H˝ηpx, yqf1pyqf2pxq
‰

dP pxqdP pyq

“

ż

X 2

H˝ηpx, yqf1pxqf2pyqdP pxqdP pyq,

where the last equality follows by symmetry of the function H˝η. This shows that the bilinear
form BH˝η has the same set of eigenvalues (with repetitions) as that of the operator HH˝η defined

in (A.8). Hence, combining (A.11) and (A.12) it follows that,

E
”

eιη
JGK

ı

“ ΦH˝η

ˆ

1

ρp1´ ρq

˙

“
ź

λPΛpηq

e
´ ιλ
ρp1´ρq

b

1´ 2ιλ
ρp1´ρq

, (A.13)

where Λpηq is the set of eigenvalues (with repetitions) of the operator HH˝η , which the same as

the operator HK,η (by (3.6)). Note that the RHS of (A.13) equals the function Φpηq defined in
(3.5), which implies that ZK in (A.10) has the same distribution as GK in (3.4). This completes
the proof of Theorem 3.1. l

A.2. Proof of Corollary 3.1. Recall the definition of the centered kernel K˝a from (2.13). Then
it is easy to see that

MMD2 rKa,Xm,Yns “ MMD2 rK˝a,Xm,Yns .

Observe that E rK˝apX1, X2q|X1s “ 0 and hence Cov pK˝apX1, X2qK
˝
bpX1, X3qq “ 0, for X1, X2, X3

i.i.d. from the distribution P . Then by a direct computation it follows that, for 1 ď a, b ď r,

σab “
2

ρ2p1´ ρq2
EX,X 1„P

“

K˝apX,X
1qK˝bpX,X

1q
‰

. (A.14)

This proves (3.9).
Next, we prove (3.10). For all 1 ď a ď r, define

K˝a “ ppK
˝
apXi, Xjq{mqq1ďi,jďm
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where K˝a is defined in Theorem 3.1. Also, recall the definition of K̂
˝

a, for 1 ď a ď r, from (4.1).
Now, observe that for any 1 ď a, b ď r,

ˇ

ˇ

ˇ
Tr

”

K̂
˝

aK̂
˝

b

ı

´ Tr rK˝aK
˝
bs

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
Tr

”

K̂
˝

aK̂
˝

b

ı

´ Tr
”

K˝aK̂
˝

b

ı
ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
Tr

”

K˝aK̂
˝

b

ı

´ Tr rK˝aK
˝
bs

ˇ

ˇ

ˇ

ď }K̂
˝

a}}K̂
˝

a ´K˝a} ` }K
˝
a}}K̂

˝

b ´K˝b} (A.15)

Since K˝a P L
2pX 2, P 2q, by the strong law of large number for U -statistics (see [57, Theorem

5.4.A])

}K˝a}
2 “

1

m2

ÿ

1ďi,jďm

K˝apXi, Xjq
2 a.s.
Ñ EX,X 1„P rK˝apX,X 1qs.

Also, following the proof of Lemma B.4 we have }K̂
˝

a ´ K˝a}
a.s.
Ñ 0. This implies, }K̂

˝

a}
2 a.s.
Ñ

EX,X 1„P rK˝apX,X 1qs. Thus, combining the above conclusions with (A.15) gives,
ˇ

ˇ

ˇ
Tr

”

K̂
˝

aK̂
˝

b

ı

´ Tr rK˝aK
˝
bs

ˇ

ˇ

ˇ
|
a.s.
Ñ 0 (A.16)

Since, for all 1 ď a ď r, K˝a P L
2pX 2, P 2q, then by [57, Theorem 5.4.A],

Tr rK˝aK
˝
bs “

1

m2

ÿ

1ďi,jďm

K˝apXi, XjqK
˝
bpXi, Xjq

a.s.
Ñ EX„P rK˝apX1, X2qK

˝
bpX1, X2qs

“
ρ2p1´ ρq2

2
σab, (A.17)

where the last equality follows from (A.14). Now, recalling (2.14) and applying (A.16) and
(A.17) note that

σ̂ab “
2

ρ̂2p1´ ρ̂q2
¨

1

m2

ÿ

1ďi,jďm

K̂˝apXi, XjqK̂
˝
bpXi, Xjq “

2

ρ̂2p1´ ρ̂q2
Tr

”

K̂
˝

aK̂
˝

b

ı

a.s.
Ñ σab.

This completes the proof of (3.10). The result in (3.11) follows from (3.10) combined with
Theorem 3.1, Slutsky’s theorem, and the continuous mapping theorem.

Appendix B. Proof of Theorem 4.1

Suppose K “ tK1,K2, . . . ,Kru be a collection of r characteristic kernels satisfying the con-
ditions of Theorem 4.1. We will prove Theorem 4.1 by showing that every linear combination
of EpK,Xmq converges to the corresponding linear combination of GK. To this end, suppose
η “ pη1, η2, . . . , ηrq

J P Rr and define Hη “
řr
a“1 ηaKa. Let H˝η “

řr
a“1 ηaK

˝
a be as defined in

(A.8) and tλspH
˝
ηqusě1 be the eigenvalues of the operator HH˝η as in (A.7). Also, define

Ĥ
˝

η “ CĤηC{m,

where Ĥη “ pHηpXi, Xjqq1ďi,jďm and C “ I´ 1
m11J is the centering matrix as defined in (4.1).

Note that

Ĥ
˝

η “

˜˜

Ĥ˝ηpXi, Xjq

m

¸¸

1ďi,jďm

,

where, similar to (2.15),

Ĥ˝ηpx, yq “ Hηpx, yq ´
1

m

m
ÿ

u“1

HηpXu, yq ´
1

m

m
ÿ

v“1

Hηpx,Xvq `
1

m2

ÿ

1ďu,vďm

HηpXu, Xvq. (B.1)
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Recalling the definition of K̂
˝

a from (4.1), observe that

Ĥ
˝

η “

r
ÿ

a“1

ηaK̂
˝

a. (B.2)

Let tλspĤ
˝

ηqu1ďsďm be the eigenvalues of the matrix Ĥ
˝

η. Recall that γ “ 1
ρp1´ρq . Then we have

the following proposition:

Proposition B.1. Suppose tλspH
˝
ηqusě1 and tλspĤ

˝

ηqu1ďsďm be as defined above. Then there
exists a set Q0 P BpX q (not depending on η) with PpQ0q “ 1 such that on the set Q0,

m
ÿ

s“1

λspĤ
˝

ηq
`

W 2
s ´ γ

˘

|Xm
D
Ñ

8
ÿ

s“1

λspH
˝
ηq

`

Z2
s ´ γ

˘

, (B.3)

as mÑ8, where tWs, Zs : s ě 1u are i.i.d. from N p0, γq independent of Xm “ tX1, X2, . . . , Xmu.

The proof of Proposition B.1 is given in Appendix B.1. We first show how this can be used
to complete the proof of Theorem 4.1. To this end, note that by definition, for all s ě 1,
Ws “

?
γW ˝

s , where tW ˝
s : s ě 1u are i.i.d. from N p0, 1q. Define, for s ě 1,

Ŵs “
a

γ̂W ˝
s ,

where γ̂ :“ 1
ρ̂p1´ρ̂q “

mn
pm`nq2

. Now observe that by Lemma B.1 on Q :“ Q1
Ş

Q0,

E

»

–

˜

m
ÿ

s“1

λspĤ
˝

ηqpW
2
s ´ γq ´

m
ÿ

s“1

λspĤ
˝

ηqpŴ
2
s ´ γ̂q

2

¸2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Xm

fi

fl “

m
ÿ

s“1

λspĤ
˝

ηq
2pγ ´ γ̂q2

“ pγ ´ γ̂q2}Ĥ
˝

η}
2 Ñ 0,

and hence on the set Q,
m
ÿ

s“1

λspĤ
˝

ηq

´

Ŵ 2
s ´ γ̂

¯

|Xm
D
Ñ

8
ÿ

s“1

λspH
˝
ηq

`

Z2
s ´ γ

˘

. (B.4)

By the spectral decomposition,

Ĥ
˝

η “ QmΛmQ
J
m,

where Λm “ diagpλspĤ
˝

ηqq1ďsďm and QJmQm “ QmQ
J
m “ I is an orthogonal matrix. Observe

that for Wm “ pŴ1, . . . , Ŵmq
J,

m
ÿ

s“1

λspĤ
˝

ηq

´

Ŵ 2
s ´ γ̂

¯

“WJ
mΛmWm ´ γ̂ TrrĤ

˝

ηs “ Z
J
mĤ

˝

ηZm ´ γ̂ TrrĤ
˝

ηs, (B.5)

where Zm “ QmWm „ Nmp0, γ̂Iq is independent of Xm. This is because Qm is orthogonal and,
hence, Zm|Xm „ Nmp0, γ̂Iq, which implies Zm „ Nmp0, γ̂Iq. By (B.2), (B.5), and recalling the
definition of EpK,Xmq from (4.2) it follows that

m
ÿ

s“1

λspĤ
˝

ηq

´

Ŵ 2
s ´ γ̂

¯

“ ηJEpK,Xmq. (B.6)

Hence, by (B.4) on a set Q with PpQq “ 1, as mÑ8,

ηJEpK,Xmq|Xm
D
Ñ

8
ÿ

s“1

λspH
˝
ηq

`

Z2
s ´ γ

˘ D
“ ZpHηq, (B.7)
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where the last step uses (A.6). From (A.5) and (A.6) we know that ZpHηq is the limiting

distribution of ηJMMD2rK,Xm,Yns. Hence, by Theorem 3.1,
ř8
s“1 λspH

˝
ηq

`

Z2
s ´ γ

˘ D
“ ηJGK.

This implies, by (B.6) and (B.7), on the set Q,

ηJEpK,Xmq|Xm
D
Ñ ηJGK,

as mÑ8. Hence, by the Cramer-Wold device, on the set Q, EpK,Xmq|Xm
D
Ñ GK, as mÑ8.

This completes the proof of Theorem 4.1. l

B.1. Proof of Proposition B.1. The proof of Proposition B.1 is organized as follows. First

we show that the L2 norm of the matrix Ĥ
˝

η converges to the L2 norm of the operator HH˝η

almost surely (proof is given in Appendix B.1.1).

Lemma B.1. There exists a set Q1 P BpX q (not depending on η) with PpQ1q “ 1 such that on
Q1,

}Ĥ
˝

η} Ñ }H˝η}, (B.8)

as mÑ8.

Next, we show that the `-th moment (power sum) of the eigenvalues of Ĥ
˝

η converges to the
`-th moment (power sum) of the eigenvalues of HH˝η , for ` ě 3, almost surely (proof is given in

Appendix B.1.2).

Lemma B.2. There exists a set Q2 P BpX q (not depending on η) with PpQ2q “ 1 such that on
Q2,

m
ÿ

s“1

λspĤ
˝

ηq
` Ñ

8
ÿ

s“1

λspH
˝
ηq
`, (B.9)

for all ` ě 3, as mÑ8.

Finally, we show that if (B.8) and (B.9) holds, then the convergence in (B.3) holds (proof is
given in Appendix B.1.3).

Lemma B.3. Suppose (B.8) and (B.9) holds. Then on the set Q0 “ Q1
Ş

Q2, the convergence
in (B.3) holds.

Since PpQ0q “ 1 and Q0 does not depend on η, the above 3 lemmas combined completes the
proof of Proposition B.1.

B.1.1. Proof of Lemma B.1. Define

H˝η “

ˆˆ

H˝ηpXi, Xjq

m

˙˙

1ďi,jďm

,

where

H˝ηpXi, Xjq :“ HηpXi, Xjq ´ EX„PHηpX,Xjq ´ EX 1„PHηpXi, X
1q ` EX,X 1„PHηpX,X

1q,
(B.10)

First we will show that H˝η and Ĥ
˝

η are asymptotically close.

Lemma B.4. There exists a set R1 P BpX q (not depending on η) with PpR1q “ 1 such that

lim
mÑ8

}Ĥ
˝

η ´H˝η}
2 “ 0. (B.11)
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Proof. Note that

}Ĥ
˝

η ´H˝η}
2 “

1

m2

ÿ

1ďi,jďm

´

Ĥ˝ηpXi, Xjq ´ H˝ηpXi, Xjq

¯2
.

Hence, by (B.1) and (B.10),

}H˝η ´ Ĥ
˝

η}
2 ď 3pT1 ` T2 ` T3q, (B.12)

where

T1 :“
1

m

m
ÿ

i“1

˜

1

m

m
ÿ

v“1

HηpXi, Xvq ´ EX 1„P rHηpXi, X
1qs

¸2

,

T2 :“
1

m

m
ÿ

j“1

˜

1

m

m
ÿ

u“1

HηpXu, Xjq ´ EX 1„P rHηpX
1, Xjqs

¸2

,

T3 :“

˜

1

m2

ÿ

1ďu,vďm

HηpXu, Xvq ´ EX,X 1„P rHηpX,X
1qs

¸2

.

Since Hη “
řr
a“1 ηaKa,

T1 ď C
prq
1

r
ÿ

a“1

η2
a

$

&

%

1

m

m
ÿ

i“1

˜

1

m

m
ÿ

v“1

KapXi, Xvq ´ EX 1„P rKapXi, X
1qs

¸2
,

.

-

. (B.13)

where C
prq
1 ą 0 is a constant depending on r only. By Lemma F.3, for every 1 ď a ď r there

exists a set BKa P BpX q with PpBKaq “ 1 such that

lim
mÑ8

1

m

m
ÿ

i“1

˜

1

m

m
ÿ

v“1

KapXi, Xvq ´ EX 1„P rKapXi, X
1qs

¸2

“ 0.

Define BK “
Şr
s“1 BKa . Clearly, PpBKq “ 1. By Lemma F.3 and (B.13), on the set BK,

limmÑ8 T1 “ 0. Similarly, on the set BK, limmÑ8 T2 “ 0.
Also, by [57, Theorem 5.4.A] there is a set EK (depending K1,K2, . . . ,Kr, but not on η) with

PpEKq “ 1 such that on the set EK, for all 1 ď a ď r,

lim
mÑ8

1

m2

ÿ

1ďu,vďm

KapXu, Xvq ´ EX,X 1„P rKapX,X 1qs “ 0.

Then on the set EK,

T3 ď C
prq
2

r
ÿ

a“1

η2
a

¨

˝

˜

1

m2

ÿ

1ďu,vďm

KapXu, Xvq ´ EX,X 1„P rKapX,X 1qs

¸2
˛

‚Ñ 0, (B.14)

where C
prq
2 ą 0 is a constant depending on r only. Combining (B.13) and (B.14) with (B.12)

shows that (B.11) holds on R1 “ BK
Ş

EK. Since PpR1q “ 1, this completes the proof of Lemma
B.4. �

Now, we compute }H˝η}. By [57, Theorem 5.4.A], there exists a set R2 P BpX q with PpR2q “ 1
such that on the set R2,

}H˝η}
2 “

1

m2

ÿ

1ďi,jďn

H˝ηpXi, Xjq
2
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“

r
ÿ

a“1

η2
a

˜

1

m2

ÿ

1ďi,jďn

K˝apXi, Xjq
2

¸

`
ÿ

1ďs‰tďr

ηaηb

˜

1

m2

ÿ

1ďi,jďn

K˝apXi, XjqK
˝
bpXi, Xjq

¸

Ñ

r
ÿ

a“1

η2
aEX,X 1„P rK˝apX,X 1q2s `

ÿ

1ďa‰bďr

ηaηbEX,X 1„P rK˝apX,X 1qK˝bpX,X 1qs

“ E

»

–

˜

r
ÿ

a“1

ηaK
˝
apX,X

1q

¸2
fi

fl

“ EX,X 1„P
“

H˝ηpX,X
1q2

‰

“
›

›H˝η
›

›

2
. (B.15)

Combining the above together with Lemma B.4 and choosing Q1 “ R1
Ş

R2, the result in
Lemma B.1 follows.

B.1.2. Proof of Lemma B.2. Define

H˝,´η “

ˆˆ

p1´ δijq
H˝ηpXi, Xjq

m

˙˙

1ďi,jďm

where δij “ 1 if i “ j and 0 otherwise. First, we will show that the `-th moment (power sums)
of the eigenvalues of H˝,´η converges to the `-th moment of the eigenvalues of HH˝η , for ` ě 3,
almost surely.

Lemma B.5. Suppose tλspH
˝,´
η q : 1 ď s ď mu are the eigenvalues of H˝,´η . Then there exists a

set E1 P BpX q with PpE1q “ 1 such that on E

lim
mÑ8

m
ÿ

s“1

λspH
˝,´
η q` “

8
ÿ

s“1

λspH
˝
ηq
`,

for all ` ě 3.

Proof. For fixed ` ě 3, observe that,
m
ÿ

s“1

λspH
˝,´
η q` “ tr

”

`

H˝,´η
˘`
ı

“
1

m`

ÿ

1ďi1‰i2‰¨¨¨‰i`ďm

H˝ηpXi1 , Xi2qH
˝
ηpXi2 , Xi3q ¨ ¨ ¨H

˝
ηpXi` , Xi1q. (B.16)

Recalling H˝η “
řr
a“1 ηaK

˝
a, (B.16) can be written as:

m
ÿ

s“1

λspH
˝,´
η q` “

ÿ

j1,¨¨¨ ,j`Pt1,2,...,ru

ź̀

t“1

ηjt

˜

1

m`

ÿ

1ďi1‰¨¨¨‰i`ďm

ź̀

t“1

K˝jtpXit , Xit`1q

¸

. (B.17)

Now, since H˝η P L
2pX 2, P 2q, by the spectral theorem

H˝ηpx, yq “
8
ÿ

s“1

λsφspxqφspyq, (B.18)

where tλ1, λ2, . . .u are the eigenvalues of H˝η and tφ1, φ2, . . .u are the corresponding eigenvectors

which form an orthonormal basis of L2pX , P q. Using the spectral representation in (B.18) and
the orthonormality of the eigenvectors it follows that

8
ÿ

s“1

λspH
˝
ηq
` “

ż

H˝ηpx1, x2qH
˝
ηpx2, x3q ¨ ¨ ¨H

˝
ηpx`, x1qdP px1q ¨ ¨ ¨ dP px`q (B.19)
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“
ÿ

j1,¨¨¨ ,j`Pt1,2,...,ru

ź̀

t“1

ηjtE
“

K˝j1pX1, X2q ¨ ¨ ¨K
˝
j`
pX`, X1q

‰

, (B.20)

(Note that the R.H.S. of (B.19) is finite, since
ř8
s“1 λspH

˝
ηq
` ď }H˝η}

`, by Finner’s inequality [18]

(see also [45, Theorem 3.1])) since H˝η “
řr
a“1 ηaK

˝
a. Hence, using [57, Theorem 5.4A], (B.17),

and (B.20), we can find a set E1 P BpX q with PpE1q “ 1 such that on E1, as mÑ8,

m
ÿ

s“1

λspH
˝,´
η q` Ñ

8
ÿ

s“1

λspH
˝
ηq
`,

for all ` ě 3. This completes the proof of Lemma B.5. �

Now, we will show the (B.9), that is,

lim
mÑ8

m
ÿ

s“1

λspĤ
˝

ηq
` “

8
ÿ

s“1

λspH
˝
ηq
`,

for all ` ě 3, on set Q2 with PpQ2q “ 1. To this end, note that for all ` ě 3,
ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

s“1

λspĤ
˝

ηq
` ´

8
ÿ

s“1

λspH
˝
ηq
`

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

s“1

λspĤ
˝

ηq
` ´

m
ÿ

s“1

λspH
˝,´
η q`

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

s“1

λspH
˝,´
η q` ´

8
ÿ

s“1

λspH
˝
ηq
`

ˇ

ˇ

ˇ

ˇ

ˇ

. (B.21)

On the set E1 as in Lemma B.5, the second term above converges to zero as mÑ8. To bound
the first term, observe that

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

s“1

λspĤ
˝

ηq
` ´

m
ÿ

s“1

λspH
˝,´
η q`

ˇ

ˇ

ˇ

ˇ

ˇ

ď

8
ÿ

s“1

ˇ

ˇ

ˇ
λ`s pĤ

˝

ηq
` ´ λ`s pH

˝,´
η q`

ˇ

ˇ

ˇ
`

8
ÿ

s“1

ˇ

ˇ

ˇ
λ´s pĤ

˝

ηq
` ´ λ´s pH

˝,´
η q`

ˇ

ˇ

ˇ
,

where

‚ λ`1 pĤ
˝

ηq ě λ`2 pĤ
˝

ηq ě . . . ě 0 are the non-negative eigenvalues of Ĥ
˝

η (and similarly for

H˝,´η ) arranged in non-increasing order.

‚ λ´1 pĤ
˝

ηq ď λ`2 pĤ
˝

ηq ď . . . ď 0 are the non-positive eigenvalues of Ĥ
˝

η (and similarly for

H˝,´η ) arranged in non-decreasing order.

(Note that we have set λ˘s to zero whenever appropiate to extend the sequence to infinity.) Now,
recalling the definitions of H˝η and H˝,´η gives,

}H˝η ´H˝,´η } “
1

m2

m
ÿ

i“1

H˝ηpXi, Xiq
2 Ñ 0, (B.22)

on a set Ē2 P BpX q. Therefore, recalling Lemma B.4, by (B.22) and the Hoffman-Wielandt
inequality [29] (see also [36, Theorem 2.2]),

lim
mÑ8

˜

8
ÿ

s“1

´

λ`s pĤ
˝

ηq ´ λ
`
s pH

˝,´
η q

¯2
¸

1
2

ď lim
mÑ8

´

}H˝,´η ´H˝η} ` }Ĥ
˝

η ´H˝η}
¯

“ 0. (B.23)

on the set E2 :“ Ē2
Ş

R1. Moreover, by Lemma B.1, (B.15) and (B.22), on the set Q1,

limmÑ8 }Ĥ
˝

η} “ }H˝η}. Hence, by Lemma B.4 on the set Q1
Ş

E2 there is a constant C ą 0
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such that maxt}Ĥ
˝

η}, }H
˝,´
η }, }H˝η}u ď C. This implies, on the set Q1

Ş

E2,

maxt|λ`s pĤ
˝

ηq|, |λ
`
s pH

˝,´
η q|u ď

C
?
s
, (B.24)

for all s ě 1. Then using (B.23), (B.24), and the dominated convergence theorem,

lim
mÑ8

8
ÿ

s“1

ˇ

ˇ

ˇ
λ`s pĤ

˝

ηq
` ´ λ`s pH

˝,´
η q`

ˇ

ˇ

ˇ
“ 0,

for all ` ě 3, on the set Q1
Ş

E2. Similarly, limmÑ8
ř8
s“1 |λ

´
s pĤ

˝

ηq
` ´ λ´s pH

˝,´
η q`| “ 0, for all

` ě 3, on the set Q1
Ş

E2. Therefore, on the set Q2 :“ Q1
Ş

E1
Ş

E2, from (B.21),

lim
mÑ8

m
ÿ

s“1

λspĤ
˝

ηq
` “

8
ÿ

s“1

λspH
˝
ηq
`,

for all ` ě 3. Since PpQ2q “ 1, this completes the proof of Lemma B.2.

B.1.3. Proof of Lemma B.3. Recall that tλspĤ
˝

ηqu1ďsďm are the eigenvalues of Ĥ
˝

η. For s ą m

define λspĤ
˝

ηq “ 0. Consider, for all m ě 1,

Ym :“
8
ÿ

s“1

λspĤ
˝

ηqpW
2
s ´ γq. (B.25)

Then by [8, Proposition 7.1] observe that

MYm|Xm
ptq :“ E

“

etYm
ˇ

ˇXm

‰

“

m
ź

s“1

exp
´

´γλspĤ
˝

ηqt
¯

b

1´ 2γλspĤ
˝

ηqt
, for all |t| ă

1

8γ

˜

m
ÿ

s“1

λspĤ
˝

ηq
2

¸´ 1
2

.

By definition,
řm
s“1 λspĤ

˝

ηq
2 “

ř8
s“1 λspĤ

˝

ηq
2 “ }Ĥ

˝

η}
2. Taking logarithm and expanding gives,

logMYm|Xm
ptq “ γ2t2}Ĥ

˝

η}
2 `

1

2

8
ÿ

k“3

m
ÿ

s“1

p2γλspĤ
˝

ηqtq
k

k
. (B.26)

Also, Denote ZpH˝ηq “
ř8
s“1 λspH

˝
ηqpZ

2
s ´ γq. Then by Lemma F.2,

logMZpH˝ηq
ptq “ logE exp

`

tZpH˝ηq
˘

“ γ2t2}H˝η}
2 `

1

2

8
ÿ

k“3

8
ÿ

s“1

p2γλspH
˝
ηqtq

k

k
for all |t| ă

1

8γ
p

8
ÿ

s“1

λspH
˝
ηq

2q´
1
2 . (B.27)

Let Q1 and Q2 be as in Lemma B.1 and Lemma B.2, respectively, and define Q0 “ Q1
Ş

Q2.

On Q0, there exists a constant C ą 0 such that }Ĥ
˝

η} ă C (by (B.8)) and }H˝η} ă C (since

H˝η P L
2pX 2, P 2q). Then by (B.26) and (B.27), both MGF’s exists for |t| ď 1

8γC on Q0. Hereafter,

we will assume that the we are on the set Q0. Using
ř8
s“1 λspH

˝
ηq

2 “ }H˝η}
2 ă 8 gives, for all

s ě 1,

ˇ

ˇλspH
˝
ηq
ˇ

ˇ ď
}H˝η}
?
s
ď

C
?
s
. (B.28)

Then notice that for all |t| ď 1
8γC ă

1
8γ }H

˝
η}
´1,

8
ÿ

k“3

8
ÿ

s“1

ˇ

ˇ

ˇ

ˇ

ˇ

p2γλspH
˝
ηqtq

k

k

ˇ

ˇ

ˇ

ˇ

ˇ

ď

8
ÿ

k“3

8
ÿ

s“1

p2γqk}H˝η}
k

p8γqk}H˝η}
ksk{2k

ď

8
ÿ

k“3

8
ÿ

s“1

1

4ks3{2k
ă 8, (B.29)
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and hence the second term in (B.27) is absolutely summable. Similarly, since
ř8
s“1 λspĤ

˝

ηq
2 “

}Ĥ
˝

η}
2 ď C,

ˇ

ˇ

ˇ
λspĤ

˝

ηq

ˇ

ˇ

ˇ
ď

C
?
s
, (B.30)

for all s ě 1, and the second term in (B.26) is also absolutely summable for all |t| ď 1
8γC . Now,

for any N ě 1 and for all |t| ď 1
8γC ,

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“3

8
ÿ

s“1

p2γλspĤ
˝

ηqtq
k

k
´

8
ÿ

k“3

8
ÿ

s“1

p2γλspH
˝
ηqtq

k

k

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

k“3

8
ÿ

s“1

p2γλspĤ
˝

ηqtq
k

k
´

N
ÿ

k“3

8
ÿ

s“1

p2γλspH
˝
ηqtq

k

k

ˇ

ˇ

ˇ

ˇ

ˇ

`

8
ÿ

k“N`1

«ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

s“1

p2γλspĤ
˝

ηqtq
k

k
´

8
ÿ

s“1

p2γλspH
˝
ηqtq

k

k

ˇ

ˇ

ˇ

ˇ

ˇ

ff

. (B.31)

Note that the first term in (B.31) converges to zero as m Ñ 0 on Q0 (by (B.9)). Therefore, it
suffices to show that the second term converges to zero in (B.31). Towards this, note that for
k ě 3, by (B.28) and (B.30),

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

s“1

p2γλspĤ
˝

ηqtq
k

k
´

8
ÿ

s“1

p2γλspH
˝
ηqtq

k

k

ˇ

ˇ

ˇ

ˇ

ˇ

ď
p2γqk|t|k

k

8
ÿ

s“1

"

ˇ

ˇ

ˇ
λspĤ

˝

ηq

ˇ

ˇ

ˇ

k
`
ˇ

ˇλspH
˝
ηq
ˇ

ˇ

k
*

ď
2Ckp2γqk|t|k

k

8
ÿ

s“1

1

sk{2

ď
2Ckp2γqk|t|k

k

8
ÿ

s“1

1

s3{2
.

Then for |t| ď 1
8γC ,

8
ÿ

k“N`1

«
ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

s“1

p2γλspĤ
˝

ηqtq
k

k
´

8
ÿ

s“1

p2γλspH
˝
ηqtq

k

k

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď 4
8
ÿ

s“1

1

s3{2

8
ÿ

k“N`1

1

4kk
,

which converges to zero as mÑ8 and then N Ñ8. This implies the RHS of (B.31) converges
to zero as mÑ8 and then N Ñ8. Thus, by (B.26), (B.27), and Lemma B.1, on the set Q0,

lim
mÑ8

MYm|Xm
ptq “MZpH˝ηq

ptq, for all |t| ă
1

8γC
.

Hence, recalling (B.25), Ym|Xm
D
Ñ ZpH˝ηq on the set Q0. Since PpQ0q “ 1, this completes the

proof of Lemma B.3. l

Appendix C. Proof of Theorem 5.1

Suppose H P L2pX 2, P 2q is a measurable and symmetric function (not necessarily positive
definite) and recall the definition of MMD2 rH,Xm,Yns from (A.1). Note that

MMD2 rH,Xm,Yns “WXm `WYn ´ 2BXm,Yn “W˝
Xm

`W˝
Yn ´ 2B˝Xm,Yn , (C.1)
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where H˝ is as in (2.13) and

W˝
Xm

:“
1

mpm´ 1q

ÿ

1ďi‰jďm

H˝ pXi, Xjq and W˝
Yn :“

1

npn´ 1q

ÿ

1ďi‰jďn

H˝ pYi, Yjq

and

B˝Xm,Yn :“
1

mn

m
ÿ

i“1

n
ÿ

j“1

H˝ pXi, Yjq .

Therefore, to obtain the limiting distribution of MMD2 rH,Xm,Yns we need to derive the joint
distribution of pW˝

Xm
, W˝

Yn
,B˝Xm,Yn

q under H1. To this end, recall the definition of the Hilbert-

Schmidt operator HH˝ from (A.3). This operator has countably many eigenvalues tλsusě1 with
eigenvectors tφsusě1 satisfying:

ż

X
H˝px, yqφspyqdP pyq “ λsφspxq and

ż

X
φspxqφs1pxqdP pxq “ δs,s1 , (C.2)

for s, s1 ě 1 and δs,s1 “ 1 if s “ s1 and zero otherwise. Note that, since EX„P rH˝pX, yqs “ 0,
for all y P X , whenever λs ‰ 0, an application of Fubini’s theorem and (C.2) implies that
EX„P rφspXqs “ 0. Moreover, (see, for example, [16, Theorem 4, Chapter X and Section XI.6]
or [51, Theorem 8.94 and Theorem 8.83])

8
ÿ

s“1

λ2
s “

ż

X 2

H˝px, yq2dxdy “ }H˝}2 ă 8, (C.3)

and the spectral theorem,

H˝px, yq “
8
ÿ

s“1

λsφspxqφspyq, (C.4)

where the convergence is in L2.
The following result gives the joint distribution of pW˝

Xm
, W˝

Yn
,B˝Xm,Yn

q and, hence, that of

MMD2 rH,Xm,Yns under contiguous local alternatives (5.2) in the contamination model (5.1).
The argument is similar to results in [12] on the limiting distribution of degenerate two-sample
U -statistics for parametric contiguous alternatives.

Proposition C.1. Suppose H P L2pX 2, P 2q be a measurable and symmetric function. Then
under H1 as in (5.1) in the asymptotic regime (2.8),

¨

˝

mW˝
Xm

nW˝
Yn?

mnB˝Xm,Yn

˛

‚

D
Ñ

¨

˚

˝

ř8
s“1 λs

`

W 2
s ´ 1

˘

ř8
s“1 λs

´

pW 1
s ` h

?
1´ ρLsq

2
´ 1

¯

ř8
s“1 λsWs pW

1
s ` h

?
1´ ρLsq

˛

‹

‚

, (C.5)

where

‚ tWs,W
1
s : s ě 1u are independent standard Gaussian random variables,

‚ tλsusě1 are the eigenvalues (with repetitions) and the eigenvectors tφsusě1 of the Hilbert-
Schimdt operator HH˝η as in (C.2),

‚ Ls :“ EX„P rφspXqgpXqfP pXq
s, for s ě 1.

Consequently, under H1,

pm` nqMMD2 rH,Xm,Yns
D
Ñ Z̃pHq :“ γ

8
ÿ

s“1

λs

˜

ˆ

Zs `
h
?
γ
Ls

˙2

´ 1

¸

, (C.6)
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where γ “ 1
ρp1´ρq , tZs : s ě 1u are i.i.d. N p0, 1q. Moreover,

ErZ̃pHqs “ h2
8
ÿ

s“1

λsL
2
s “ h2EX,X 1„P

„

H˝pX,X 1q
gpXqgpX 1q

fP pXqfP pX 1q



ă 8 (C.7)

and the characteristic function of Z̃pHq at t P R is given by:

ΦZ̃pHqptq :“ E
”

eιtZ̃pHq
ı

“
e
ιth2

ř8
s“1 λsL

2
s´

ř8
s“1

"

ιγλst`
γh2λ2sL

2
st

2

p1´2ιλsγtq

*

ś8
s“1

?
1´ 2ιγλst

. (C.8)

The proof of Proposition C.1 is given in Section C.1. Here, we show it can be used to complete
the proof of Theorem 5.1. As in (A.5), for η “ pη1, η2, . . . , ηrq

J P Rr,

ηJMMD2rK,Xm,Yns “
r
ÿ

a“1

ηaMMD2rKa,Xm,Yns “ MMD2rHη,Xm,Yns, (C.9)

where Hη :“
řr
a“1 ηaKa. Then by Proposition C.1, under H1,

Zm,npHηq :“ pm` nqMMD2 rHη,Xm,Yns

D
Ñ Z̃pHηq “ γ

8
ÿ

s“1

λs

˜

ˆ

Zs `
h
?
γ
Ls

˙2

´ 1

¸

, (C.10)

where, by (C.6), tλsusě1 are the eigenvalues (with repetitions) and the eigenvectors tφsusě1 of
the operator HH˝η .

Note that by the linearity of the stochastic integral and arguments as in (3.7),

r
ÿ

a“1

ηaI2pK
˝
aq “ I2pH

˝
ηq “

ż

X

ż

X
H˝ηpx, yqdZP pxqdZP pyq

D
“

8
ÿ

s“1

λs
`

Z2
s ´ 1

˘

. (C.11)

where tZsusě1
D
“

 ş

X φspxqdZP pxq
(

sě1
. This also implies,

8
ÿ

s“1

λsEX„P
„

φspXqgpXq

fP pXq



Zs “
8
ÿ

s“1

λsZs

ż

X
φspxqgpxqdx

D
“

8
ÿ

s“1

λs

ż

φspxqgpxqdx

ˆ
ż

X
φspyqdZP pyq

˙

“

ˆ
ż

X
H˝ηpx, yqgpxqdx

˙

dZP pyq

“ I1

ˆ

H˝η

„

g

fP

˙

“

r
ÿ

a“1

ηaI1

ˆ

K˝a

„

g

fP

˙

, (C.12)

where the notations are as defined in Theorem 5.1. Also, by (C.31),

8
ÿ

s“1

λsL
2
s “ EX,X 1„P

„

H˝ηpX,X
1q

gpXqgpX 1q

fP pXqfP pX 1q



“

r
ÿ

a“1

ηaEX,X 1„P
„

K˝apX,X
1q

gpXqgpX 1q

fP pXqfP pX 1q



. (C.13)
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Using (C.11), (C.12) and (C.13) in (C.10) shows that Z̃pHηq
D
“ ηJGK,h where GK,h is as defined

in (5.3). This implies, from (C.9),

ηJMMD2rK,Xm,Yns
D
Ñ ηJGK,h.

Since η P Rr is arbitrary, this completes the proof of Theorem 5.1.

C.1. Proof of Proposition C.1. Fix L ě 1 and define the L-truncated versions of WXm , WYn ,
and BXm,Yn as follows:

W˝pLq
Xm

:“
1

mpm´ 1q

L
ÿ

s“1

ÿ

1ďi‰jďm

λsφspXiqφspXjq “
1

mpm´ 1q

L
ÿ

s“1

λs

¨

˝

˜

m
ÿ

i“1

φspXiq

¸2

´

m
ÿ

i“1

φ2
spXiq

˛

‚,

W˝pLq
Yn

:“
1

npn´ 1q

L
ÿ

s“1

ÿ

1ďi‰jďn

λsφspYiqφspYjq “
1

npn´ 1q

L
ÿ

s“1

λs

¨

˝

˜

n
ÿ

i“1

φspYiq

¸2

´

n
ÿ

i“1

φ2
spYiq

˛

‚,

B˝pLqXm,Yn
:“

1

mn

L
ÿ

s“1

λs

m
ÿ

i“1

n
ÿ

j“1

φspXiqφspYjq. (C.14)

Define Us,m :“ 1?
m

řm
i“1 φspXiq and Vs,n :“ 1?

n

řn
i“1 φspYiq, for 1 ď s ď L and the vectors

U pLqm “ pUs,mq1ďsďL and V pLqn “ pVs,nq1ďsďL. (C.15)

Note that, under H0, by the law of large numbers and (C.2)

1

m

m
ÿ

i“1

φ2
spXiq

P
Ñ EX„P rφspXq2s “ 1 and

1

n

n
ÿ

i“1

φ2
spYiq

P
Ñ EY„P rφspY q2s “ 1.

Hence, recalling (C.14), under H0,

pm´ 1qW˝pLq
Xm

“

L
ÿ

s“1

λs
`

U2
s,m ´ 1

˘

` oP p1q, pn´ 1qW˝pLq
Yn

“

L
ÿ

s“1

λs
`

V 2
s,n ´ 1

˘

` oP p1q, (C.16)

and

?
mnB˝pLqXm,Yn

:“
L
ÿ

s“1

λsUs,mVs,n. (C.17)

Therefore, obtain the joint distribution of pW˝pLq
Xm

,W˝pLq
Yn

,B˝pLqXm,Yn
qJ it suffices to find the joint

distribution of

QpLqm,n :“

˜

L
ÿ

s“1

λs
`

U2
s,m ´ 1

˘

,
L
ÿ

s“1

λs
`

V 2
s,n ´ 1

˘

,
L
ÿ

s“1

λsUs,mVs,n

¸J

. (C.18)

This is derived in the following lemma. Here, 0 denotes the zero vector in RL and I2L denotes
the 2Lˆ 2L identity matrix.

Lemma C.1. Fix L ě 1 and suppose U
pLq
m and V

pLq
n be as defined in (C.15). Then under H1

as in (5.2) the following hold in the asymptotic regime (2.8),
˜

U
pLq
m

V
pLq
n

¸

D
Ñ N2L

ˆˆ

0
θ

˙

, I2L

˙

. (C.19)
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where θ :“ h
?

1´ ρ ¨ pL1, L2 . . . , Lrq
J and Ls as in Proposition C.1. Consequently,

¨

˚

˝

pm´ 1qW˝pLq
Xm

pn´ 1qW˝pLq
Yn?

mnB˝pLqXm,Yn

˛

‹

‚

D
Ñ QpLq :“

¨

˚

˝

řL
s“1 λs

`

W 2
s ´ 1

˘

řL
s“1 λs

´

pW 1
s ` h

?
1´ ρLsq

2
´ 1

¯

řL
s“1 λsWs pW

1
s ` h

?
1´ ρLsq

˛

‹

‚

, (C.20)

where tWs,W
1
s : s ě 1u are independent standard Gaussian random variables.

Proof. To prove (C.19) we will first derive the joint distribution of U
pLq
m , V

pLq
n , and the log-

likelihood ratio, and then invoke LeCam’s third lemma [64, Example 6.7]. For the hypothesis in
(5.1) the likelihood ratio LN is given by:

LN :“
n
ÿ

i“1

log

»

–

´

1´ h?
N

¯

fP pYiq `
h?
N
gpYiq

fP pYiq

fi

fl .

By local asymptotic normality (see, for example, [64, Chapter 7]), LN can be written as:

LN “ 9LN ´
p1´ ρqh2

2
¨ δfP ,g ` oP p1q,

where

9LN “
h
?
N

n
ÿ

i“1

ˆ

gpYiq

fP pYiq
´ 1

˙

and δfP ,g :“

ż

X

ˆ

gpxq

fP pxq
´ 1

˙2

fP pxqdx.

Note that CovrUs,m 9LN s “ 0 and

CovrVs,n 9LN s “ ErVs,n 9LN s “

c

n

N
¨
h

n

n
ÿ

i“1

E
„

φspYiq

ˆ

gpYiq

fP pYiq
´ 1

˙

P
Ñ h

a

1´ ρ ¨ EX„P
„

φspXqgpXq

fP pXq



,

by the law of large numbers and the fact EX„P rφspXqs “ 0 (since we can assume λs ‰ 0).
Hence, by the multivariate central limit theorem, under H0,

¨

˚

˝

U
pLq
m

V
pLq
n

9LN

˛

‹

‚

D
Ñ N2L`1

¨

˝

¨

˝

0Lˆ1

0Lˆ1

´
p1´ρqh2

2 δfP ,g

˛

‚,

¨

˝

IL 0LˆL 0Lˆ1

0LˆL IL θ
01ˆL θJ p1´ ρqh2δfP ,g

˛

‚

˛

‚ (C.21)

where θ is as defined in Lemma C.1 and 0KˆL is the K ˆL zero-matrix, for K,L ě 1. Then by
LeCam’s third lemma [64, Example 6.7] the result in (C.19) follows.

Now, since Q
pLq
m,n (recall (C.18)) is a continuous function of U

pLq
m and V

pLq
n , the result in (C.20)

follows from (C.16), (C.17), (C.21), and the continuous mapping theorem. �

Next, we show that QpLq (as defined in Lemma C.1) converges as LÑ8.

Lemma C.2. Let QpLq be as defined in (C.20). Then as LÑ8,

QpLq
L2

Ñ Q :“

¨

˝

Q1

Q2

Q3

˛

‚:“

¨

˚

˝

ř8
s“1 λs

`

W 2
s ´ 1

˘

ř8
s“1 λs

´

pW 1
s ` h

?
1´ ρLsq

2
´ 1

¯

ř8
s“1 λsWs pW

1
s ` h

?
1´ ρLsq ,

˛

‹

‚

, (C.22)

where tWs,W
1
s : s ě 1u are independent standard Gaussian random variables.
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Proof. Note that
8
ÿ

s“1

Var
“

λspW
2
s ´ 1q

‰

“ 2
8
ÿ

s“1

λ2
s ă 8,

by (C.3). Hence, as LÑ8,

L
ÿ

s“1

λs
`

W 2
s ´ 1

˘ L2

Ñ

8
ÿ

s“1

λs
`

W 2
s ´ 1

˘

“ Q1.

Next, we denote θs :“ h
?

1´ ρLs “ h
?

1´ ρEX„P rφspXqgpXqfP pXq
s. Then by the Cauchy-Schwarz

inequality,

θ2
s ď h2p1´ ρqEX„P rφspXq2sEX„P

„

gpXq2

fP pXq2



“ h2p1´ ρqEX„P
„

gpXq2

fP pXq2



ă 8, (C.23)

since EX„P
“

φspXq
2
‰

“ 1, for all s ě 1, and EX„P r gpXq
2

fP pXq2
s ă 8 by Assumption 5.1. Then

8
ÿ

s“1

Var
“

λsWs

`

W 1
s ` θs

˘‰

“

8
ÿ

s“1

λ2
sErW 2

s sE
”

`

W 1
s ` θs

˘2
ı

“

8
ÿ

s“1

λ2
sp1` θ

2
sq ă 8, (C.24)

by (C.3) and (C.23). Hence, as LÑ8,

L
ÿ

s“1

λsWspW
1
s ` θsq

2 L2

Ñ

8
ÿ

s“1

λsWspWs ` θsq
2 “ Q3.

It remains to establish the convergence to Q2 in (C.22). Tp this end, fix L ě 1 and denote

Q
pLq
2 :“

L
ÿ

s“1

λs

´

`

W 1
s ` θs

˘2
´ 1

¯

.

Then for L1 ą L ě 1,

E
„

´

Q
pL1q
2 ´Q

pLq
2

¯2


ď Var
”´

Q
pL1q
2 ´Q

pLq
2

¯ı

`

´

E
”

Q
pL1q
2 ´Q

pLq
2

ı¯2
. (C.25)

This implies,

Var
”´

Q
pL1q
2 ´Q

pLq
2

¯ı

“

L1
ÿ

s“L`1

Var
”

λs

´

`

W 1
s ` θs

˘2
´ 1

¯ı

“

L1
ÿ

s“L`1

λ2
s Var

”

`

W 1
s ` θs

˘2
ı

“ 2
L1
ÿ

s“L`1

λ2
sp1` 2θ2

sq Ñ 0, (C.26)

as L,L1 Ñ8, using (C.3) and (C.23). Next consider,

ˇ

ˇ

ˇ
E
”

Q
pL1q
2 ´Q

pLq
2

ı
ˇ

ˇ

ˇ
“

L1
ÿ

s“L`1

λsθ
2
s “ h

a

1´ ρ
L1
ÿ

s“L`1

λs

ˆ
ż

X
φspxqgpxqdx

˙2

“ h
a

1´ ρ

ż

X

ż

X

L1
ÿ

s“L`1

λsφspxqφspyqgpyqgpyqdxdy.
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Denote C :“ h
?

1´ ρ and M :“ EX„P r gpXq
2

fP pXq2
s ă 8 (by Assumption 5.1). Then by the Cauchy-

Schwarz inequality,

ˇ

ˇ

ˇ
E
”

Q
pL1q
2 ´Q

pLq
2

ı
ˇ

ˇ

ˇ

2
ď C2M2

ż

X

ż

X

˜

L1
ÿ

s“L`1

λsφspxqφspyq

¸2

fP pxqfP pyqdxdy Ñ 0, (C.27)

as L,L1 Ñ8, since the convergence in (C.4) is in L2. Combining (C.27) and (C.26) with (C.25)

it follows that Q
pLq
2 converges in L2 to Q2. This completes the proof of Lemma C.2. �

Next, we show that pW˝pLq
Xm

,W˝pLq
Yn

,B˝pLqXm,Yn
qJ (recall (C.14)) and pW˝

Xm
,W˝

Yn
,B˝Xm,Yn

qJ are

asymptotically close.

Lemma C.3. As LÑ8,

sup
m,ně1

E

›

›

›

›

›

›

›

¨

˚

˝

pm´ 1qW˝pLq
Xm

pn´ 1qW˝pLq
Yn?

mnB˝pLqXm,Yn

˛

‹

‚

´

¨

˝

pm´ 1qW˝
Xm

pn´ 1qW˝
Yn?

mnB˝Xm,Yn

˛

‚

›

›

›

›

›

›

›

2

Ñ 0.

Proof. Note that by (C.4) and Fubini’s theorem,
¨

˝

pm´ 1qW˝
Xm

pn´ 1qW˝
Yn?

mnB˝Xm,Yn

˛

‚“

¨

˚

˝

1
m

ř

1ďi‰jďmH˝pXi, Xjq
1
n

ř

1ďi‰jďnH
˝pYi, Yjq

1?
mn

řm
i“1

řn
i“1 H

˝pXi, Yjq

˛

‹

‚

“

¨

˚

˝

1
m

ř8
s“1 λs

ř

1ďi‰jďm φspXiqφspXjq
1
n

ř8
s“1 λs

ř

1ďi‰jďm φspYiqφspYjq
1?
mn

ř8
s“1 λs

řm
i“1

řn
j“1 φspXiqφspYjq

˛

‹

‚

(C.28)

where the existence of such infinite sums will be proved in the following. Using EX„P rφspXqs “ 0
for s ě 1, it is easy to show that for s ‰ s1,

E

«˜

ÿ

1ďi‰jďm

φspXiqφspXjq

¸˜

ÿ

1ďi‰jďm

φs1pXiqφs1pXjq

¸ff

“ 0

and using (C.2),

E

»

–

˜

ÿ

1ďi‰jďm

φspXiqφspXjq

¸2
fi

fl “ 4E

«

ÿ

1ďiăjďm

pφspXiqφspXjqq
2

ff

“ 2mpm´ 1q.

Define cm “
a

2mpm´ 1q. Then t 1
cm

ř

1ďi‰jďm φspXiqφspXjqusě1 is a collection of orthonormal

random variables. Hence, by [38, Lemma 6.8] the following infinite sum

8
ÿ

s“1

λs

˜

1

cm

ÿ

1ďi‰jďm

φspXiqφspXjq

¸

exists, which also proves the existence of the infinite sum in (C.28). Moreover,

E
”

pm´ 1q
´

W˝
Xm

´W˝pLq
Xm

¯ı2
ď
m2

c2
m

E

«

8
ÿ

s“L`1

λs

˜

1

cm

ÿ

1ďi‰jďn

φspXiqφspXjq

¸ff2

ď

8
ÿ

s“L`1

λ2
s Ñ 0,



40 CHATTERJEE AND BHATTACHARYA

as LÑ8 (recall (C.3)), uniformly in m,n. Similarly, it can be shown that

pn´ 1q2E
”

WYn ´W˝pLq
Yn

ı2
Ñ 0 and mnE

”

BXm,Yn ´ BpLqXm,Yn

ı2
Ñ 0

as LÑ8, uniformly in m,n. �

Combining Lemmas C.1, C.2, C.3 and using [32, Lemma 6] we get,

¨

˝

pm´ 1qW˝
Xm

pn´ 1qW˝
Yn?

mnB˝Xm,Yn

˛

‚

D
Ñ

¨

˚

˝

ř8
s“1 λs

`

W 2
s ´ 1

˘

ř8
s“1 λs

´

pW 1
s ` θsq

2
´ 1

¯

ř8
s“1 λsWs pW

1
s ` θsq

˛

‹

‚

,

where θs :“ h
?

1´ ρ ¨ EX„P rφspXqgpXqfP pXq
s, for s ě 1. This establishes (C.5). Then (C.1) and the

continuous mapping theorem gives,

pm` nqMMD2 rH,Xm,Yns

“ pm` nqW˝
Xm

` pm` nqW˝
Yn ´ 2pm` nqB˝Xm,Yn

D
Ñ

1

ρ

8
ÿ

s“1

λs
`

W 2
s ´ 1

˘

`
1

1´ ρ

8
ÿ

s“1

λs

´

`

W 1
s ` θs

˘2
´ 1

¯

`
2

a

ρp1´ ρq

8
ÿ

s“1

λsWs

`

W 1
s ` θs

˘

“

8
ÿ

s“1

λs

˜

ˆ

1
?
ρ
Ws ´

1
?

1´ ρ
W 1
s ` hEX„P

„

φspXqgpXq

fP pXq

˙2

´
1

ρp1´ ρq

¸

(C.29)

D
“

1

ρp1´ ρq

8
ÿ

s“1

λs

˜

ˆ

Zs ` h
a

ρp1´ ρqEX„P
„

φspXqgpXq

fP pXq

˙2

´ 1

¸

,

where tZsusě1 are i.i.d. N p0, 1q and the rearrangement of the terms in (C.29) can be justified
by truncation and taking limits. This completes the proof of (C.6).

To show (C.7) note that

ErZ̃pHqs “ h2
8
ÿ

s“1

λsL
2
s “ h2

8
ÿ

s“1

λs

ˆ
ż

X
φspxqgpxqdx

˙2

“ h2

ż

X

ż

X

8
ÿ

s“1

λsφspxqφspyqgpyqgpyqdxdy (C.30)

“ h2

ż

X

ż

X
H˝px, yqgpyqgpyqdxdy (by (C.3))

“ h2EX,X 1„P
„

H˝pX,X 1q
gpXqgpX 1q

fP pXqfP pX 1q



ă 8, (C.31)

where the exchange of expectation and integral in (C.30) is valid by arguments similar to (C.27)
and finiteness of the expectation follows by the Cauchy-Schwarz inequality, Assumption 5.1, and
the fact H˝ P L2pX 2, P 2q. Finally, the expression for the characteristic function in (C.8) follows
from [31, Theorem 6.2], since

8
ÿ

s“1

λ2
sL

2
s “

8
ÿ

s“1

λ2
s

ˆ

EX„P
„

φspXqgpXq

fP pXq

˙2

ă 8,

by arguments as in (C.24). This completes the proof of Proposition C.1. l



BOOSTING THE POWER OF KERNEL TWO-SAMPLE TESTS 41

Appendix D. Proof of Theorem 6.1

For 1 ď a ď r, let

∆̃p1q
a pxq :“ EX 1„P,Y,Y 1„Qrhapx,X 1, Y, Y 1qs ´MMD2rFa, P,Qs (D.1)

and

∆̃p1q
a pyq “ EX,X 1„P,Y 1„QrhapX,X 1, y, Y 1qs ´MMD2rFa, P,Qs. (D.2)

Recalling (6.1), the first-order Hoeffding’s projection for MMD2 rK,Xm, sYns ´MMD2rF , P,Qs
is given by,

Ûm,n “
2

m

m
ÿ

i“1

∆̃p1qpXiq `
2

n

n
ÿ

j“1

∆̃p2qpYjq,

where ∆̃p1qpxq “ p∆̃
p1q
a pxqq1ďaďr and ∆̃p2qpxq “ p∆̃

p2q
a pxqq1ďaďr. Then by [64, Theorem 12.6],

›

›

›

?
m` n

´

MMD2 rK, P,Qs ´MMD2rF , P,Qs ´ Ûm,n
¯›

›

›
“ oP p1q. (D.3)

By the multivariate central limit theorem,
?
m` n Ûm,n

D
Ñ Nrp0,Γq,

where

Γ “ 4
´

ρVarX„P

”

∆̃p1qpXq
ı

` p1´ ρqVarY„Q

”

∆̃p2qpY q
ı¯

“ Σ,

since, recalling (6.3) and (D.1), VarX„P r∆̃
p1qpXqs “ VarX„P r∆

p1qpXqs and, from (6.4) and

(D.2), VarY„Q r∆̃
p2qpY qs “ VarY„Qr∆

p2qpY qs. This together with (D.3) completes the proof of
Theorem 6.1. l

Appendix E. Invertibility of Kernel Matrices

In this section we discuss the invertibility of matrix ΣH0 (recall the definition from (2.12)).
Throughout this section we will assume that the underlying space X “ Rd and the distribution
P satisfy the following:

Assumption E.1. Suppose X “ Rd and the distribution P has a density with respect to the
Lebesgue measure on Rd with full support.

The following proposition gives a set of general conditions under which ΣH0 is non-singular.
In Corollary E.1 we will show that these conditions are satisfied by the commonly used kernels,
such as the Gaussian and Laplace kernels.

Proposition E.1. Suppose Assumption E.1 holds and K “ tK1,K2, . . . ,Kru be a collection of r
distinct characteristic kernels such that:

‚ For every x, y P Rd and 1 ď a ď r,

lim
}z}Ñ8

Kapx, zq “ 0 and lim
}z}Ñ8

Kapz, yq “ 0. (E.1)

‚ For every collection tαa : 1 ď a ď ru there exists a set Γ P R2d with µpΓq ą 0 such that

r
ÿ

a“1

αaKa ‰ 0 for all px, yq P Γ. (E.2)

Then ΣH0 is non-singular.
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Proof. Throughout the proof we will use µ to denote the Lebesgue measure in appropriate
dimensions. Recall from (2.12) that ΣH0 “ ppσabqq1ďa,bďr, where

σab “
2

ρ2p1´ ρq2
E
“

K˝apX,X
1qK˝bpX,X

1q
‰

“
2

ρ2p1´ ρq2
CovrK˝apX,X

1q,K˝bpX,X
1qs,

for X,X 1 „ P . Hence, ΣH0 is singular if and only if there exists α1, α2, . . . , αr P Rr such that
r
ÿ

a“1

αaK
˝
apX,X

1q “ 0 almost surely P 2.

Then by Assumption E.1, there exists a set A Ď R2d with µpAcq “ 0, such that
r
ÿ

a“1

αaK
˝
apx, yq “ 0, (E.3)

for all px, yq P A. Then considering hpx, yq “
řr
a“1 αaKapx, yq gives, for px, yq P A,

hpx, yq “
r
ÿ

a“1

αa
`

ErKapx,X 1qs ` ErKapX, yqs ` K˝apx, yq ´ ErKapX,X 1qs
˘

“

r
ÿ

a“1

αa
`

ErKapx,X 1qs ` ErKapX, yqs ´ ErKapX,X 1qs
˘

(by (E.3))

“

r
ÿ

a“1

αa pfapxq ` gapyqq ` L, (E.4)

where L :“ ´
řr
a“1 αaErKapX,X 1qs, fapxq :“ ErKapx,X 1qs, and gapyq :“ ErKapX, yqs, for 1 ď

a ď r. For any x P Rd consider,

Ax :“
!

y P Rd : px, yq P A
)

.

Denote B :“ tx P Rd : µ pAcxq “ 0u. Then by Fubini’s Theorem, µpBq “ 1. Now, consider x1 P B
and a sequence txNuNě1 in B such that }xN} Ñ 8. Define,

A8 “ Ax1
č

˜

č

ně1

AxN

¸

.

By definition µpAc8q “ 0. Also, if y P A8, then pxN , yq P A and recalling (E.4) we have,

hpxN , yq “
r
ÿ

a“1

αafapxN q `
r
ÿ

a“1

αagapyq ` L, (E.5)

for all N ě 1. Similarly, we also have hpx1, yq “
řr
a“1 αafapx

1q`
řr
a“1 αagapyq`L. This implies,

r
ÿ

a“1

αagapyq “ hpx1, yq ´
r
ÿ

a“1

αafapx
1q ´ L “ hpx1, yq ` Lx1 , (E.6)

where Lx1 :“ ´
řr
a“1 αafapx

1q ´ L is a constant depending on x1. Next, fixing y1 P A8 we get,

r
ÿ

a“1

αafapxN q “ hpxN , y
1q ´

r
ÿ

a“1

bagapy
1q ´ L “ hpxN , y

1q ` Ly1 , (E.7)

where Ly1 :“ ´
řr
a“1 bagapy

1q ´ L is a constant depending on y1. Thus, combining (E.5), (E.6),
and (E.7),

hpxN , yq “ hpx1, yq ` hpxN , y
1q ` Lx1 ` Ly1 ` L, (E.8)
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for all y P A8. Now, since µpA8q “ 1 we can choose a sequence tyMuMě1 in A8 such that
}yM} Ñ 8. Then observe that,

hpxN , yM q “ hpx1, yM q ` hpxN , y
1q ` Lx1 ` Ly1 ` L.

Taking limits asM Ñ8 and thenN Ñ8 and using condition (E.1) it follows that Lx1`Ly1`L “
0. Thus, from (E.8), for all y P A8, hpxN , yq “ hpx1, yq ` hpxN , y

1q. Therefore, taking N Ñ 8

and using (E.1) gives,

hpx1, yq “
r
ÿ

a“1

αaKapx
1, yq “ 0 for all y P A8.

This implies, since x1 is arbitrarily chosen from B and µpBq = 1,

µ

#

x P Rd : µ

#

y P Rd :
r
ÿ

a“1

αaKapx, yq ‰ 0

+

ą 0

+

“ 0.

Therefore, by Fubini’s theorem,

µ

#

px, yq P R2d :
r
ÿ

a“1

αaKapx, yq ‰ 0

+

“ 0,

which contradicts (E.2). Thus, ΣH0 is non-singular whenever (E.1) and (E.2) hold. �

Proposition E.1 gives general conditions under which the matrix ΣH0 is invertible. Clearly,
condition (E.1) is satisfied by most kernels. We will now show that condition (E.2) holds when
K “ tK1,K2, . . . ,Kru is a collection of r distinct Gaussian or Laplace kernels.

Corollary E.1. Suppose Assumption E.1 holds and K “ tK1,K2, . . . ,Kru is a collection of r
distinct Gaussian or Laplace kernels, that is, Ka is either a Gaussian kernel or a Laplace kernel
with bandwidth σa, for 1 ď a ď r, with σ1 ‰ σ2 ‰ ¨ ¨ ¨ ‰ σr ą 0. Then the conditions of
Proposition E.1 hold and, consequently, ΣH0 is non-singular.

Proof. Clearly, condition (E.1) holds for the Gaussian and the Laplace kernels. To show (E.2)
assume for contradiction that there exists α1, α2, . . . , αr such that

µ

#

px, yq P R2d :
r
ÿ

a“1

αaKapx, yq ‰ 0

+

“ 0.

Note that without loss of generality we can assume that αa ‰ 0, 1 ď a ď r. Denote D :“ tx P
Rd : µty P Rd :

řr
a“1 αaKa ‰ 0u “ 0u. By Fubini’s theorem µpDq “ 1. For any x P D denote,

Dx :“

#

y P Rd :
r
ÿ

a“1

αaKa “ 0

+

.

By definition, µpDxq “ 1. Then we can find a sequence tyMuMě1 in Dx such that }yM} Ñ 8

such that
r
ÿ

a“1

αaKapx, yM q “ 0.

Then,
r
ÿ

a“2

αa
Kapx, yM q

K1px, yM q
“ ´α1. (E.9)

Now, we have the following cases:
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‚ Ka is a Gaussian kernel for all 1 ď a ď r: Without loss of generality, suppose σ1 “

arg max1ďaďr σa. Then by the definition of Gaussian kernel, it follows that,

r
ÿ

a“2

αa
Kapx, yM q

K1px, yM q
Ñ 0,

as M Ñ8. This contradicts (E.9).
‚ Ka is a Laplace kernel for some 1 ď a ď r: Without loss of generality, suppose σ1 be

the largest bandwidth among the Laplace kernels. Then by the definition of Gaussian
and Laplace kernels it follows that

r
ÿ

a“2

αa
Kapx, yM q

K1px, yM q
Ñ 0,

as M Ñ8. As in the previous case, this contradicts (E.9).

This completes the proof of Corollary E.1. �

Appendix F. Technical Lemmas

In this section we collect the proofs of various technical lemmas. We begin by showing the
continuity of the characteristic function of the limiting distribution.

Lemma F.1. Let Φpηq be as in (3.4). Then Φp0q “ 1 and Φpηq is continuous at 0 P Rr.

Proof. Note that when η “ 0, the only eigenvalue of the operator HK,η is zero and, hence,
Φp0q “ 1.

For showing continuity at η “ 0, recall that for all η P Rr,
ř

λPΛpηq λ
2 ă 8, since HK,η is a

Hilbert-Schmidt operator. Then by Fubini’s theorem,

E

»

–

¨

˝

ÿ

λPΛpηq

λpZ2
λ ´ 1q

˛

‚

2fi

fl “ E

«

ÿ

λ

λ2pZ2
λ ´ 1q `

ÿ

λ1‰λ2

λ1λ2

`

Z2
λ1 ´ 1

˘ `

Z2
λ2 ´ 1

˘

ff

“
ÿ

λ

λ2EpZ2
λ ´ 1q2

“ 2
ÿ

λ

λ2. (F.1)

By the spectral theorem (see [51, Theorem 6.35]) and recalling (A.8),
ÿ

λPΛpηq

λ2 “
›

›H˝η
›

›

2
.

Clearly, limηÑ0 }H
˝
η}

2 “ 0 and thus by (A.6) and (F.1) and we conclude, ZpHηq
L2

Ñ 0, as η Ñ 0.
Hence, by (A.9) and the Dominated Convergence Theorem,

lim
ηÑ0

Φpηq “ lim
ηÑ0

E
”

eιZpHηq
ı

“ 1.

This shows the continuity of Φpηq at η “ 0 P Rr. �

Next, we compute the MGF of the random variable ZpHq as defined (A.2).
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Lemma F.2. The MGF of ZpHq, as defined in (A.2), exists for all |t| ă ρp1´ρq
8 }H˝}´1 and is

given by,

logMZpHqptq :“ logE
”

etZpHq
ı

“

ˆ

t

ρp1´ ρq

˙2

}H˝}2 `
1

2

8
ÿ

K“3

8
ÿ

s“1

´

2
ρp1´ρqλst

¯K

K

where tλs : s ě 1u are the eigenvalues of the operator HH˝.

Proof. Define γ “ 1
ρp1´ρq . Since

ř8
s“1 λ

2
s ă 8, by [8, Proposition 7.1] we have,

MZpHqptq :“ E
”

etZpHq
ı

“

8
ź

s“1

e´γλst
?

1´ 2γλt
, (F.2)

for all |t| ă 1
8γ p

ř8
s“1 λ

2
sq
´ 1

2 “ 1
8γ }H

˝}
´1 (since }H˝}2 “

ř8
s“1 λ

2
s). Fix t such that |t| ă 1

8γ }H
˝}
´1,

then taking log on both sides of (F.2) and expanding we get,

logMZpHqptq “
8
ÿ

s“1

#

´γλst`
1

2

˜

8
ÿ

k“1

p2γλstq
k

k

¸+

“
1

2

8
ÿ

s“1

8
ÿ

k“2

p2γλstq
k

k
. (F.3)

Using }H˝}2 “
ř8
s“1 λ

2
s and (F.3) we get,

logMZpHqptq “ γ2}H˝}2t2 `
1

2

8
ÿ

s“1

8
ÿ

k“3

p2γλstq
k

k
. (F.4)

Using the bounds |t| ă 1
8γ }H

˝}
´1 and |λs| ď

}H˝}
?
s

for all s P N, where |λ1| ě |λ2| ě ¨ ¨ ¨ (again

using }H˝}2 “
ř8
s“1 |λs|

2) gives,

8
ÿ

s“1

8
ÿ

k“3

|2γλst|
k

k
ď

8
ÿ

s“1

8
ÿ

k“3

|λs|
k

4k}H˝}kk
ď

8
ÿ

s“1

8
ÿ

k“3

1

s
3
2 4kk

ă 8,

Therefore, by Fubini’s Theorem we can interchange the order of the sum in (F.4) to get,

logMZpHqptq “ γ2}H˝}2t2 `
1

2

8
ÿ

k“3

8
ÿ

s“1

p2γλstq
k

k
,

for all |t| ă 1
8γ }H

˝}´1, which completes the proof. �

In the next lemma we show that the row sums of a characteristic kernel is asymptotically
close to its expected value in an L2 sense. This is used in the proof of Proposition B.1.

Lemma F.3. Suppose K P L2pX 2, P 2q is a characteristic kernel satisfying EX„P rK2pX,Xqs ă
8. Then for X1, X2, . . . , Xm i.i.d. from the distribution P ,

lim
mÑ8

1

m

m
ÿ

i“1

˜

1

m

m
ÿ

j“1

KpXi, Xjq ´ EZ„P rKpXi, Zqs

¸2

“ 0,

on a set BK P BpX q such that PpBKq “ 1.

Proof. Let ψ be the feature map corresponding to K. Recalling the definition of mean embedding
µP from (2.3) observe that, for 1 ď i ď m,

1

m

m
ÿ

j“1

KpXi, Xjq ´ EZ„P rKpXi, Zq “

C

ψpXiq,
1

m

m
ÿ

j“1

ψpXjq ´ µP

G

H

(F.5)
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By Cauchy-Schwartz inequality,
C

ψpXiq,
1

m

m
ÿ

j“1

ψpXjq ´ µP

G

ď }ψpXiq}H

›

›

›

›

›

1

m

m
ÿ

j“1

ψpXjq ´ µP

›

›

›

›

›

H

(F.6)

By (F.5) and (F.6),

1

m

m
ÿ

i“1

˜

1

m

m
ÿ

j“1

KpXi, Xjq ´ EZ„P rKpXi, Zqs

¸

ď

˜

1

m

m
ÿ

i“1

}ψpXiq}
2
H

¸›

›

›

›

›

1

m

m
ÿ

j“1

ψpXjq ´ µP

›

›

›

›

›

2

H

“

˜

1

m

m
ÿ

i“1

KpXi, Xiq
2

¸›

›

›

›

›

1

m

m
ÿ

j“1

ψpXjq ´ µP

›

›

›

›

›

2

H

. (F.7)

From (2.3) we have µP ptq “ EX„P rKpt,Xqs and hence, by (2.2),

}µP }
2
H “ xµP , µP yH “ EX 1„P rµP pX 1qs “ EX,X 1„P rKpX,X 1qs. (F.8)

Once again by (2.3) we observe that,
›

›

›

›

›

1

m

m
ÿ

j“1

ψpXjq ´ µP

›

›

›

›

›

2

H

“

C

1

m

m
ÿ

j“1

ψpXjq ´ µP ,
1

m

m
ÿ

j“1

ψpXjq ´ µP

G

H

“
1

m2

ÿ

1ďi,jďm

KpXi, Xjq ´
2

m

m
ÿ

j“1

EZ„P rKpXj , Zqs ` }µP }
2
H

“
1

m2

ÿ

1ďi,jďm

KpXi, Xjq ´
2

m

m
ÿ

j“1

EZ„P rKpXj , Zqs ` ErKpX1, X2qs,

where the last equality follows from (F.8). Notice that E|EZ„P rKpX1, Zqs| ď E|KpX1, X2q| ă 8.
Hence, by the strong law of large numbers for U -statistics [57, Theorem 5.4.A] we conclude that,

lim
mÑ8

›

›

›

›

›

1

m

m
ÿ

j“1

ψpXjq ´ µP

›

›

›

›

›

2

H

“ 0, (F.9)

on a set Bp1qK P BpX q such that PpBp1qK q “ 1. Also, since ErKpX1, X1q
2s ă 8, by the strong law

of large numbers,

lim
mÑ8

1

m

m
ÿ

i“1

KpXi, Xiq
2 Ñ ErK2pX1, X1qs

on a set Bp2qK such that PpBp2qK q “ 1. Using this and (F.9) in (F.7) the proof is completed, by

choosing BK “ Bp1qK

Ş

Bp2qK . �
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