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ABSTRACT. In this article, we consider the spectrum of a Laplacian matrix, also known as Markov matri-
ces where the entries of the matrix are independent but have a variance profile. Motivated by recent works
on generalized Wigner matrices we assume that the variance profile gives rise to a sequence of graphons.
Under the assumption that these graphons converge, we show that the limiting spectral distribution con-
verges. We give an expression for the moments of the limiting measure in terms of graph homomorphisms.
In some special cases, we identify the limit explicitly. We also study the spectral norm and derive the order
of the maximum eigenvalue. We show that our results cover Laplacians of various random graphs includ-
ing inhomogeneous Erdős- Rényi random graphs, sparse W-random graphs, stochastic block matrices and
constrained random graphs.

1. INTRODUCTION

The Laplacian of a graph is used in various areas of combinatorics, statistical physics, and probability.
Given a graph G on N vertices, the Laplacian is given by AN − DN , where AN is the adjacency matrix
and DN , is the degree matrix, that is, a diagonal matrix with i-th diagonal entry being the degree of
the graph. If G is a simple graph then the entries of AN are either 0 or 1. When the entries of AN
are no longer restricted to 0 and 1, the Laplacian is referred to as the Markov matrix. In this article,
we study the behavior of the eigenvalues of the Laplacian when AN is a (generalized) Wigner matrix
where the entries are independent but have a variance profile. These setups come up in random graph
models when edge weights are independent but not identically distributed and the variance depends
on the size of the graph. For example, we can consider the case of inhomogeneous Erdős-Rényi graphs
where the vertex set is [N] = {1, . . . , N} and any two vertices i and j are connected independently with
probability pi,j. Other examples include the adjacency matrix of a configuration model where the edges
are no longer independent. This article aims to study the behavior of the empirical spectral distribution
of the Laplacian matrix under such a variance profile and analyze the behavior of the spectral norm.

A Wigner matrix is a Hermitian random matrix whose entries are i.i.d random variables up to the
symmetry constraint, and have zero expectation and variance 1. It is well known that for Wigner ma-
trices the empirical spectral distribution (ESD) converges weakly almost surely to the semicircle law.
The constant variance condition and the i.i.d requirement has subsequently been relaxed in Erdős et al.
[19], Erdős et al. [20] to show the convergence of ESD to the semicircle law under the setup where entries
can have different variances and each column of the variance profile is stochastic. Wigner matrices with
a variance profile has also been considered in Ajanki et al. [2], Anderson and Zeitouni [3], Chakrabarty
[10], Hachem et al. [21], Shlyakhtenko [33]. Non-symmetric random matrices with variance profiles
were considered in Cook et al. [16]. Zhu [41] introduce a graphon approach to finding the moments of
the limiting distribution of ESD of a Wigner-type random matrix where the entries satisfy a Lindeberg
type assumption and we shall follow the setup of that article. In Wigner matrices with variance pro-
file, generally, the variance matrix is assumed to have some structure and in particular, it was assumed
in Zhu [41] that it gives rise to an empirical graphon which converges to a graphon. In that case, the
limiting spectral distribution can be described in terms of this limiting graphon. In many important
cases, the limit is not Wigner’s semicircle law. The importance of assuming a variance profile lies in the
fact that it can be used to model various stochastic block matrices (Abbe [1]). Under some non-sparsity
assumption (average degree goes to infinity) it is known that the ESD of adjacency of homogeneous
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2 A. CHATTERJEE, R.S. HAZRA

Erdős–Rényi converges to the semicircle law (Tran et al. [36]). The inhomogeneous extension was done
subsequently in Chakrabarty et al. [11], which falls in the setup of the Wigner matrix with a variance
profile.

The graph Laplacian is a counterpart of the continuous Laplacian which is well-known in the theory
of diffusions and also related to a flow in the network. The spectral graph theory is the study of the
properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of
its adjacency or Laplacian matrix. Laplacian matrix has relations with the number of spanning forest
of the graph (through Kirchoff’s theorem), the algebraic connectivity, number of connected components
(through the multiplicity of zeroes). We refer the readers to the monograph Chung [15] for applications
of spectral analysis to graph theory. In recent statistical and machine learning applications, it has found
good use in the spectral clustering techniques (Couillet and Benaych-Georges [17], von Luxburg et al.
[38], Zhou and Amini [40]) and community detection algorithms (Chen et al. [13]).

Fundamental work on random Laplacian matrices was done in Bryc et al. [9] and the convergence of
ESD of Laplacian matrices under the i.i.d. setup was determined. The limiting law turns out to be free
convolution between the semicircle law and the standard Gaussian distribution. The ESD of Laplacian
of sparse Erdős–Rényi is considered in Jiang [23]. The normalized Laplacian in the non-sparse setting
was considered in Chi [14]. The local laws Laplacian of the Erdős–Rényi graph was considered in Huang
and Landon [22]. They showed that the Stieltjes transform of the empirical eigenvalue distribution is
well-approximated by the Stieltjes transform of free convolution of the semicircle law and a standard
Gaussian down to the scale N−1. They also show that the gap statistics and averaged correlation func-
tions coincide with the Gaussian Orthogonal Ensemble in the bulk. Ding and Jiang [18] discusses the
convergence of ESD of adjacency and Laplacian of random graphs, under the assumption that the vari-
ance of entries of N × N adjacency matrix is constant, only depending on N. There have been few
studies on the spectral norm of the Laplacian matrix. Bryc et al. [9] show that for the mean-centered
case the order becomes O(

√
N log N) whereas it changes to O(N) when mean centering is not consid-

ered. The law of large numbers for the spectral norm and the largest eigenvalues under the assumption
of independence was discussed in Ding and Jiang [18]. They restricted the setup such that the entries
satisfy symmetric constraint and the mean and variance depends only on N and not on the index of the
entries and showed that the order remains the same for the mean-centered version. Bordenave et al.
[6] considered the asymmetric setup and showed that the order of growth of the largest singular value
remains O(

√
N log N) tallying with the previous two works. The same rate of growth of the spectral

norm was studied in Ding and Jiang [18], Jiang [24]. We are not aware of any literature which deals with
the fluctuations of the spectral norm in these settings.

Main contribution of the article: As mentioned above, we take AN to be a matrix with indepen-
dent entries but having a variance profile. Our main assumption is similar to that of Zhu [41], that is,
the variance profile matrix gives rise to a graphon WN which converges in the cut-metric to a limiting
graphon W. In Zhu [41] it was shown that the limiting spectral distribution of scaled AN can be iden-
tified through its moments. It is well-known that if Ck is the k-th Catalan number (or 2k-th moment of
limiting spectral distribution of scaled Wigner matrix) then Ck also counts the number of planer trees
on k + 1 vertices. In the homogeneous setting when all the variances are the same, each planar tree con-
tributes 1. In the inhomogeneous setting, each planer tree T has a non-negligible contribution, namely,
it contributes t(T, W), which indicates the number of copies of a planar tree T in graphon W (more
explicitly, see (2.3.2) in the next section).

In the case of Laplacian, the identification of the moments and limit becomes a significantly difficult
problem. One can show that ESD of scaled AN − DN is the same as ESD of AN − D̂N where D̂N is in-
dependent of AN and same in distribution as DN . Since AN is turning out to be a Wigner matrix with a
variance profile, so it is not immediate that scaled AN and D̂N are asymptotically freely independent as
in the i.i.d. setting. It can be shown that when the variance profile or the limiting graphon is multiplica-
tive, then free independence helps us to characterize the limit. We explore the combinatorial expression
of the moments in terms of graph homomorphisms. We show that the moments can be expressed in
terms of a mixture of Gaussian moments and t(T̃, W) where T̃ will a modification of the planar tree and
the expression t(T̃, W) indicate the number of copies of this modified tree in the limiting graphon. We
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are not aware of such existing expressions for the limits of the moments of random Laplacian matrix. It
is well known that the limit in the case of adjacency matrix is known as operator valued semi-circular
law and it has connections to freeness over amalgamation (Mingo and Speicher [28], Nica et al. [30]).
We strongly believe that this connection extends to Laplacian case too but we don’t explore this aspect
in the present article.

We derive various interesting examples, especially in random graphs which fall in our setting, for
example, inhomogeneous Erdős–Rényi, Sparse W-random graphs and constrained random graphs. The
limit is explicitly identified in some special cases when the entries have constant variance and the lim-
iting graphon has a multiplicative structure. We derive the order of the spectral norm when the entries
satisfy a bit more restrictive condition. Inspired by the methodology of Bryc et al. [9], we use strong
Gaussian approximation which imposes some restrictions on the entries of AN . We show that their
methodology can be extended to a large extent to cover the inhomogeneous setting. It would be in-
teresting to derive the fluctuations of the spectral norm in the above setting. We leave this aspect of
analysis for future work.

Outline of the article: The article is arranged in the following way. In Section 2 we introduce the
graphon setting briefly and state the main results about the empirical spectral distribution (Theorem 2.1
and Corollary 2.1). We identify the limiting spectral distribution in the multiplicative setting in Theo-
rem 2.2. Subsection 2.5 is dedicated to the description of the moments of the limiting distribution and we
compute some lower-order moments to give an idea of how the expression can be used. In Theorem 2.3,
Theorem 2.4 we derive almost sure bounds on the spectral norm in the centered case. We discuss some
examples which satisfy our assumptions in Section 3. In Section 4 we show some simulations on how
the LSD looks like for different graphons. Section 5 and Section 6 are dedicated to the proof of the results
on ESD and spectral norm respectively.

Acknowledgment. The research of RSH was supported by the MATRICS grant of SERB. A part of the
work was done by AC for the master dissertation in Indian Statistical Institute, Kolkata.

2. THE SETUP AND THE RESULTS

2.1. Laplacian Matrix. For any symmetric N × N matrix A with eigenvalues λ1, · · · , λN , the empirical
spectral distribution (ESD) of A is defined by the probability measure

ESD(A) =
1
N

N

∑
i=1

δλi

In this paper we would study a particular class of structured random matrices called the generalised
Wigner matrices. A generalised Wigner matrix is a random matrix AN = ((Xi∧j,i∨j))N×N satisfying

• {Xi,j : 1 ≤ i ≤ j ≤ N} are independent real valued random variables;
• E[Xi,j] < ∞, ∀ 1 ≤ i ≤ j ≤ N;
• E[X2

i,j] < ∞, ∀ 1 ≤ i ≤ j ≤ N.

The random variables also depend on N, but for notational simplification we remove the dependency. It
is easy to draw parallel between such matrix and the adjacency matrix of a graph on N vertices having
edge weight Xi,j on the edge between the vertices i and j. As a result we would sometimes use the
term adjacency matrix to denote the generalised Wigner matrices. Correspondingly we can define the
Laplacian of AN as

∆N(i, j) =


AN(i, j) if i 6= j

−
N

∑
k=1,k 6=i

AN(i, k) if i = j.
(2.1.1)

Since the row sum of ∆N is zero and the infinitesimal generators of continuous-time Markov processes
on finite state spaces are given by matrices with row-sums zero. Such matrices are also referred to as
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Markov matrix in literature (see Bryc et al. [9]). This paper is mainly concerned with the mean centered
version of the above matrices, which we denote by

A0
N =

1√
N
(AN −E(AN)) (2.1.2)

∆0
N =

1√
N
(∆N −E(∆N)). (2.1.3)

Define the variance profile matrix corresponding to AN by ΣN = ((σ2
i,j))N×N , where σ2

i,j = E[(Xi,j −
E(Xi,j))

2] > 0 for all 1 ≤ i, j ≤ N. Some kind of convergence assumption on ΣN is necessary for getting
a limit result for the above matrices. We shall assume that the variance profile gives rise to a graphon in
the limit.

2.2. Graphons and Convergence of Graph Sequences. Understanding large networks is a fundamen-
tal problem in modern graph theory and to properly define a limit object, an important issue is to have a
good definition of convergence for graph sequences. The theory of graphons (Lovász and Szegedy [27])
as limits of dense graph sequences aims to provide a solution to this problem.

In our approach, we would define the variance profile matrix ΣN as a graphon sequence. The con-
vergence of empirical spectral distribution is connected to the convergence of this graphon sequence
associated with ΣN . We provide a brief introduction to graphon theory and for more details refer to
Lovász [26].

A graphon is a measurable function W : [0, 1]2 → [0, 1] such that W(x, y) = W(y, x) for all x, y ∈ [0, 1].
LetW to be the space of all graphons. To define the cut-metric onW , let Φ denote the set of all bijective,
Lebesgue measure preserving σ : [0, 1] → [0, 1]. For two graphons W1 and W2, the cut-distance is
defined as

d�(W1, W2) = sup
S,T⊆[0,1]

∣∣∣ ∫
S×T

(W1(x, y)−W2(x, y)) dxdy
∣∣∣,

where S and T ranges over all measurable subsets of [0, 1].
Then the cut metric is given by

δ�(W1, W2) = inf
σ∈Φ

d�(W1, Wσ
2 )

where Wσ
2 = W2(σ(x), σ(y)). This forms a pseudo-metric and hence one says W1 ∼W2 if δ�(W1, W2) =

0. Let W̃ be the space of all equivalence classes. It is known that (W̃ , δ�) is a compact metric space.
Every weighted graph G can be associated with a graphon.

Definition 2.1. Consider a weighted graph G = (V, E, (we)e∈E) and for j ∈ {1, . . . , |V| − 1} define

Ij =

[
j− 1
|V| ,

j
|V|

)
and I|V| =

[
1− 1
|V| , 1

]
.

Then we define the empirical graphon of G as

WG(x, y) =

{
we if e = (i, j) ∈ E(G), (x, y) ∈ Ii × Ij

0 otherwise.

Observe that any empirical graphon WG ∈ W , if the weights lie in [0, 1]. Using the cut metric, we
are able to compare two graphs with different sizes and measure their similarity, which defines a type
of convergence of graph sequences whose limiting object is the graphon. Another way of defining
convergence of graphs is to consider the graph homomorphisms

Definition 2.2. For any graphon W and a finite simple graph F = (V, E) (without loops), define the homomor-
phism density from F to W as

t(F, W) =
∫
[0,1]|V|

∏
{i,j}∈E

W(xi, xj) ∏
i∈V

dxi. (2.2.1)
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It is natural to think two graphon W1 and W2 are similar if they have similar homomorphism densities
from any finite graph G. Let {Wn}n∈N be a sequence of graphons. We say {Wn}n∈N is convergent from
the left if t(F, WN) converges for any finite simple (no loops, no multi-edges, no directions) graph F.

The homomorphism density characterises convergence under the cut metric. Lovász [26, Theorem
11.5] gives a characterisation of convergence in the spaceW . Let {Wn}n∈N be a sequence of graphons in
W0 and let W ∈ W0. Then t(F, Wn)→ t(F, W) for all finite simple graphs F if and only if δ�(Wn, W)→ 0.
We now describe the assumptions needed for our results. They are very similar to the ones mentioned
in Zhu [41].

2.3. Limiting spectral distribution of Laplacian. Let AN be a N × N generalised Wigner matrix with a
variance profile matrix ΣN satisfying the following conditions:

L.1 (Bounded variance) There exists a constant C > 0 such that

Var(Xi,j) ≤ C, ∀1 ≤ i, j ≤ N, N ≥ 1.

Without loss of generality we assume C ≤ 1.
L.2 (Lindeberg’s Condition) for any constant η > 0,

lim
n→∞

1
N2 ∑

1≤i,j≤N
E
[
|Xi,j −E[Xi,j]|21

(
|Xi,j −E[Xi,j]| ≥ η

√
N
)]

= 0. (2.3.1)

L.3 (Graphon convergence) Consider the graph

GΣN =

(
[N], {(i, j) : 1 ≤ i ≤ j}, (σ2

i,j)1≤i≤j≤N

)
and the corresponding empirical graphon WN . We assume there exists a graphon W ∈ W such
that

δ�(WN , W)→ 0.

Remark 2.1. There are multiple examples of random matrices where the above assumptions are satisfied. We
deal later with some examples arising out of random graphs like inhomogeneous Erdős-Rényi, W-sparse random
graphs, constrained random graphs and stochastic block model. In some cases the assumptions were already verified
in Zhu [41].

Before stating the result on convergence of ESD of the centered Laplacian matrix (2.1.3), for the sake
of completeness let us take a look at the result on the matrix AN . To describe the limiting moments
we will need the definition of rooted planar tree and this play a crucial role also in the description of
moments of the Laplacian.

The rooted planar tree is a planar graph with no cycles, with one distinguished vertex as a root, and with
a choice of ordering at each vertex. The ordering defines a way to explore the tree starting at the root.
One of the algorithms used for traversing the rooted planar trees is depth-first search. An enumeration of
the vertices of a tree is said to have depth-first search order if it is the output of the depth-first search.

It was shown in Zhu [41, Theorem 3.2] that under the assumptions L.1–L.3,

lim
N→∞

ESD
(

A0
N
)
= µ weakly almost surely,

where µ denotes the unique probability measure identified by the following moments∫
x2kdµ =

Ck

∑
j=1

t(Tk+1
j , W),

∫
x2k+1dµ = 0, k ≥ 0, (2.3.2)

where Tk+1
j is the jth rooted planar tree with k + 1 vertices and Ck is the kth Catalan number.

Then for the centered Laplacian defined in (2.1.3) we have the following result

Theorem 2.1. Under assumptions L.1–L.3,

lim
N→∞

ESD
(
∆0

N
)
= ν weakly in probability
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where ν is the unique symmetric probability measure on R. Further if there exists an open set U ⊆ [0, 1]2 such
that W > 0 on U, then ν has unbounded support.

2.4. Identification of Limiting Spectral Distribution. The limiting spectral distribution can be identi-
fied with standard distributions under certain simplifications. Along with the assumption of bounded-
ness (L.1) we assume that

L.4 EXi,j = µN and σ2
i,j = σ2

N > 0 for all 1 ≤ i, j ≤ N, N ≥ 1.
L.5 There exists δ > 0 such that

sup
1≤i,j≤N,N≥1

E

[∣∣∣∣Xi,j − µN

σN

∣∣∣∣2+δ
]
< ∞.

Defining {λi(A) : 1 ≤ i ≤ N} as the eigenvalues of a N × N matrix A, we have the following result.

Corollary 2.1. Suppose L.1, L.4 and L.5 holds. Set

F̃N(x) =
1
N

N

∑
i=1

I
{

λi(∆N)− NµN√
NσN

≤ x
}

, ∀x ∈ R.

Then, as N → ∞, F̃N converges to a distribution function F in probability where F denotes the distribution of the
free additive convolution γM of the semicircle law and the standard normal distribution.

The above result identifies the limiting measure in terms of additive free convolution of two mea-
sures. The identification of the limiting measure can be achieved in the case when W has a multiplicative
structure, that is

W(x, y) = r(x)r(y), x, y ∈ [0, 1] (2.4.1)

for some continuous function r : [0, 1] → [0, 1]. The statement is based on the theory of self-adjoint
operators affiliated with a W?-probability space. It is important to note that we do not assume the initial
variances to have a multiplicative structure but the multiplicative structure only appears in the limit. We
recall some definitions mentioned in Chakrabarty et al. [11]. For details of free probability of unbounded
operators we refer to Anderson et al. [4].

Recall (A, τ) is called a W∗ probability space if A is a closed (in weak operator topology) C∗ algebra
of bounded operators on some Hilbert space and τ is a state. A densely defined operator T is said to be
affiliated to A if for every bounded measurable function h, h(T) ∈ A. For an affiliated operator T, its
law L(T) is the unique probability measure on R satisfying

τ(h(T)) =
∫

R
h(x)(L(T))dx.

For two or more self adjoint operators T1, · · · , Tn, a description of their joint distribution is a specification
of

τ(h1(Ti1), · · · , hk(Tik)),

for all k ≥ 1, all i1, · · · ik ∈ {1, 2, · · · , n}, and all bounded measurable functions h1, · · · , hk from R to
itself.

Definition 2.3. Let (A, τ) be a W?-probability space and a1, a2 ∈ A. Then a1 and a2 are freely independent if

τ(p1(ain), · · · , pn(ain)) = 0

for all n ≥ 1, all i1, · · · , in ∈ {1, 2} with ij 6= ij+1, j = 1, · · · , n− 1, and all polynomials p1, · · · , pn in one
variable satisfying

τ(pj(aij)) = 0, j = 1, · · · , n

For operators a1, · · · , ak and b1, · · · , bm affiliated with A, the collections (a1, · · · , ak) and (b1, · · · bm) are freely
independent if and only if

p(h1(a1), · · · hk(ak)) and q(g1(b1), · · · , gm(bm))
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are freely independent for all bounded measurable h1, · · · , hk and g1, · · · , gm, and all polynomials p and q in k
and m non-commutative variables, respectively. It is immediate that the two operators in the above display are
bounded, and hence belong to A.

Now we are ready to state our theorem.

Theorem 2.2. If W is as in (2.4.1), then under L.1-L.3 with the cut-metric convergence in L.3 replaced by

WN
L1→W the limiting measure ν can be identified as,

ν = L
(

r1/2(Tu)Tsr1/2(Tu) + αr1/4(Tu)Tgr1/4(Tu)
)

(2.4.2)

where

α =

(∫ 1

0
r(x)dx

)1/2

Here, Tg and Tu are commuting self-adjoint operators affiliated with a W?-probability space (A, τ) such that, for
bounded measurable functions h1, h2 from R to itself,

τ
(
h1(Tg)h2(Tu)

)
=

(∫ ∞

−∞
h1(x)φ(x)dx

)(∫ 1

0
h2(u)du

)
(2.4.3)

with φ the standard normal density. Furthermore, Ts has a standard semicircle law and is freely independent of
(Tg, Tu).

Such identification was first achieved in the results of Chakrabarty et al. [11] in the case of inhomo-
geneous Erdős-Rényi random graphs. We show that similar limit appears in the general case too.

Remark 2.2. Under such multiplicative structure the limiting spectral distribution of the matrix AN can also
be identified. If we keep the assumption (2.4.1) on the limiting graphon W and the empirical graphon WN corre-
sponding to the variance profile as in Theorem 2.2, then the limiting spectral distribution of the scaled and centered
matrix A0

N is given by

µ = L
(

r1/2(Tu)Tsr1/2(Tu)
)

(2.4.4)

where Tu and Ts are as defined in Theorem 2.2. One should note that the measure µ in 2.4.4 is the same as the
free multiplicative convolution of the standard semicircle law and the law of r(U), where U is a standard uniform
random variable.

2.5. Description of the moments. In this subsection, we briefly describe the moments of the limiting
measure ν. It turns out to be an interesting combinatorial problem to come up with an expression for
the moments. To describe the limiting moments, we need to introduce some notions. Fix k in 2N. Con-
sider the multiset {m1, m2, · · · , mk, n1, n2, · · · nk} ∈ N such that ∑k

p=1(mp + np) = k and m = ∑k
p=1 mp

is even. Then consider a rooted planar tree T on (m
2 + 1) vertices and take ĩ = i1i2 · · · im+1 to be the

depth first search on T. Then we must have im+1 = i1. So for notational simplicity we identify 1 by
m + 1 = 1 + ∑k

p=1 mp. Then consider {s1, · · · , sηs} ⊆ {1, 2, · · · , k} such that the indices in ĩ correspond-

ing to the set {1 + ∑s1
1 mp, · · · , 1 + ∑

sηs
1 mp}, that is {i1+∑

s1
1 mp

, · · · , i1+∑
sηs
1 mp

} represents the sth vertex

of T. Observe that ηs can be equal 0. Now suppose that ∑
ηs
j=1 nsj is even for all vertex s in T. Then define

n̂s =
1
2 ∑

ηs
j=1 nsj (if ηs is 0, then the sum is also 0). Construct a new graph T̃ by attaching n̂s many vertices

to the vertex s of T, for all s ∈ {1, 2, · · · , m
2 + 1}. Only modification that we are doing to T is by adding

leaf nodes. Hence the modified graph is still a tree. An example of such modification at the vertex s is
shown in Figure 1.

For t ∈N, define
mt = E

[
Zt] , Z ∼ N(0, 1).



8 A. CHATTERJEE, R.S. HAZRA

Then define the function

f (T) =

{
∏

m
2 +1

s=1 m2n̂s if 2n̂s is even for all s,
0 otherwise.

(2.5.1)

s

s1s2

s4 s3

T

FIGURE 1. The modification of graph T at vertex s with n̂s = 4

Example 2.1. We provide an example of such an modification. Consider k = 12, m̃ = {mi}12
i=1 such that mi = 2

for i = 1, 2, 4 and 0 otherwise and finally ñ = {ni}12
i=1 such that ni = 2 for i = 1, 2, 5 and 0 otherwise. Then

m = ∑k
i=1 mi = 6. Hence we consider the rooted planar tree T4 as in Figure 2a.

Then consider the depth first search 1→ 2→ 3→ 2→ 4→ 2→ 1 = i1 → i2 → i3 → i4 → i5 → i6 → i7.
Now observe that

1 +
j

∑
i=1

mi =


3 j = 1
5 j = 2, 3
7 otherwise

Observe that by definition i1 = i7 corresponds to the vertex 1. Now let us look at 1st vertex, that is vertex 1.
Observe that i

1+∑
j
l=1 ml

falls on vertex 1 if 4 ≤ j ≤ 12. Then by definition η1 = 9 and the set {s1, · · · , sηs} for

s = 1 is {4, 5, · · · 12}. Then n̂1 = 1
2 ∑9

j=1 nsj = 1. Then we look at vertex 2. Observe that i2, i4, i6 corresponds to

vertex 2. But 2, 4, 6 6∈ {1 + ∑
j
l=1 ml : ∀1 ≤ j ≤ 12}. Hence η2 = 0. Lets look at 4rd vertex. Observe that only

i
1+∑

j
l=1 ml

for j = 2, 3 falls on vertex 4. Then by definition η4 = 2 and the set {s1, · · · , sηs} for s = 4 is {2, 3}.
Then n̂4 = 1. Similarly we can show that n̂3 = 1. The modified graph is as in Figure 2b

One thing to note is that the modification is independent of the labeling of the vertices. It only de-
pends upon the number of overlap certain indices have with the vertices.

2

1

43

(A)

2

1

43

11

31 41

(B)

FIGURE 2. (a) Rooted planar tree T4, (b) Modified tree T̃4
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Let P2k be the multiset of all numbers (m1, · · · , m2k, n1, · · · , n2k) which appear when we expand
(a + b)2k for two non-commutative variables a and b and write it as

(a + b)2k = ∑
(m1,··· ,m2k ,n1,··· ,n2k)∈P2k

2k

∏
i=1

ami bni .

Observe that ∑2k
j=1(mj + nj) = 2k. We identify the moments of the limiting measure ν through the

following formula.

∫
x2kdν = ∑

P2k

C m
2

∑
r=1

t
(

T̃
m
2 +1

r , W
)

f
(

T
m
2 +1

r

)
1{m∈2N∪{0}},

∫
x2k+1dν = 0, ∀k ≥ 0 (2.5.2)

where Tq
r denote the rth rooted planar tree on q many vertices with T̃q

r the corresponding modification
as stated in Section 2.5.

Remark 2.3. Since the expression of moments in (2.5.2) look complicated, we elucidate by calculating the second
and the fourth moments.
First, let us look at the second moment. The possible choices for the vector (m1, m2, n1, n2) are

(2, 0, 0, 0), (1, 0, 1, 0), (0, 1, 1, 0) and (0, 0, 2, 0).

Observe that for the second and third choice, there wont be any contributions since m = m1 + m2 is odd. For the
first choice number of trees is Cm/2 = C1 = 1, that is a single edge (T2

1 ). Since here n1 = n2 = 0, then we don’t
need any modification of the tree. Thus

t
(

T̃2
1 , W

)
=
∫

Wdxdy and f (T1) = 1

Now for the choice (0, 0, 2, 0), m = 0 and hence number of trees are C0 = 1. The tree is basically a single
vertex T1

1 . Then the depth first search would yield just i1 = 1. Observe that 1 + m1 = 1 + m1 + m2 = 1. So
n̂1 = 1

2 (n1 + n2) = 1. Hence the modified tree is same as T2
1 . Thus the contribution becomes

t(T̃1
1 , W) = t(T2

1 , W) =
∫

W(x, y)dx dy and f (T1
1 ) = 1

Hence the second moment is

2
∫

W(x, y)dx dy

Going as in the second moment we can determine the contributory terms in the expression of the fourth moment
and their corresponding contributions. We provide explicit calculations for a few terms, the rest follows similarly.
Let us look at the term corresponding to (2, 0, 0, 0, 2, 0, 0, 0). Here m = 2 and Cm/2 = C1 = 1. So the contribu-
tory rooted planar tree is a single edge (T2

1 ). The depth first search would give the closed walk, i1 → i2 → i3 = i1.
Now observe that

1 +
j

∑
l=1

ml = 3, j = 1, 2, 3, 4.

Then the number of overlaps of the form i
1+∑

j
l=1 ml

with the first vertex is η1 = 4 and the values of such j are

j = 1, 2, 3, 4. Hence
4

∑
j=1

nj = 2 =⇒ n̂1 = 1

Then the modification of the first vertex is given by adding a single edge to the vertex 1. Observe that no such
overlap is possible for the second vertex. Hence there is no modification for the second vertex. So for this case the
modified tree T̃2

1 is given as in Figure 3a and the contribution from this tree would be

t
(

T̃2
1 , W

)
m2
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1

2

11

(A)

2

1

21

(B)

FIGURE 3. Modified trees for the fourth moment

Next let us look at the term corresponding to(1,1,0,0,2,0,0,0). Here m = 2 and Cm/2 = 1. So again the contribu-
tory rooted planar tree is T2

1 . The depth first search is same as the previous case. Observe that here

1 +
j

∑
l=1

ml =

{
2 j = 1
3 j = 2, 3, 4

Then the number of overlaps of the form form i
1+∑

j
l=1 ml

with the first vertex is η1 = 3 and the values of such j are

j = 2, 3, 4. But then it is easy to observe that n̂1 = 0. Hence there is no modification of the first vertex. There is
a single overlap with the second vertex given by i1+m1 . Then n̂2 = 1 and hence we attach a single leaf node to the
second vertex. So here again the modified tree is the same as the previous case, but with different labeling, given in
Figure 3b. Going similarly for the other terms, the fourth moment is given by

(2 + 4m2 + m4)t(T3
1 , W)

where T3
1 is the rooted planar tree on 3 vertices. (Note that there are 2 rooted planar trees on 3 vertices, but the

homomorphism density corresponding to both are equal, hence we can take any one of the trees).

2.6. Spectral Norm of Laplacian. In this subsection we discuss the asymptotics of the spectral norm of
the Laplacian matrix ∆N . In the case when entries are taken to be i.i.d. some results are known. The first
order asymptotics, that is, the order of growth of the Laplacian was described in Bryc et al. [9].

For a N × N matrix M, the spectral norm of M is defined as

‖M‖ = sup
x∈RN

‖x‖2=1

‖Mx‖2

where ‖x‖2 =
√

x2
1 + · · ·+ x2

N for x = (x1, x2, · · · , xN)
T ∈ RN .

Observe that using symmetry of AN and ∆N we have

‖AN‖ = max{λmax(−AN), λmax(AN)}, ‖∆N‖ = max{λmax(−∆N), λmax(∆N)} (2.6.1)

In order to proceed with our results we consider the following assumptions on the entries of AN in line
with the assumptions in Section 2.3.

S.1 (Bounded variance) Let σ2
i,j = Var(Xij) and let A1 = infi,j≥1 σ2

i,j and A2 = supi,j≥1 σ2
i,j. Suppose

A1 > 0 and A2 < ∞. Without loss of generality we can take A2 ≤ 1.
S.2 (Higher moments) There exists δ > 0 and 0 < K < ∞ such that

E
[∣∣Xi,j −EXi,j

∣∣6+δ
]
≤ K, for all i, j ∈N.

S.3 (Graphon convergence) Consider the graph

GΣN =

(
[N], {(i, j) : 1 ≤ i ≤ j}, (σ2

i,j)1≤i≤j≤N

)
and the corresponding empirical graphon WN . Suppose there exists a graphon W ∈ W0 such
that

δ�(WN , W)→ 0.
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The assumption L.3 is restated here as assumption S.3 for convenience. It is needed for the convergence
of the ESD of adjacency matrix AN to a compactly supported probability measure.

Remark 2.4. It can be easily seen that assumption S.2 implies assumption L.2 (Lindeberg’s Condition) for any
constant η > 0, that is

lim
n→∞

1
N2 ∑

1≤i,j≤N
E
[
|Xi,j −EXi,j|21

(
|Xi,j| ≥ η

√
N
)]

= 0, ∀η > 0 (2.6.2)

Under the above set of assumptions we have the following result on spectral norm of the Laplacian
matrix ∆N .

Theorem 2.3. Suppose that A1 = infi,j≥1 σ2
i,j and A2 = supi,j≥1 σ2

i,j, and EXi,j = 0 for all 1 ≤ i ≤ j. Then
under the above set of assumptions we have

lim inf
N→∞

‖∆N‖√
2N log N

≥ A
1
2
1 a.s., and lim sup

N→∞

‖∆N‖√
2N log N

≤ (2A2)
1
2 a.s. (2.6.3)

We are able to identify the in probability limits under an additional assumption, which we state below

S.4 (Uniform row stochasticity) For some 0 < r ≤ 1,

lim
N→∞

sup
i∈N

∣∣∣∣∣ 1
N

n

∑
j=1

σ2
i,j − r

∣∣∣∣∣ = 0.

Recall that by assumption S.1 we have taken A2 ≤ 1, hence we can take 0 < r ≤ 1. Then we have the
following theorem

Theorem 2.4. Under the assumptions S.1-S.4 we have

lim
N→∞

‖∆N‖√
2N log N

=
√

r in probability

where ‖ · ‖ is the spectral norm.

The proof of Theorem 2.4 is similar to the proof of Theorem 2.3 and hence it will be omitted. We also
look at the situation where the entries of the adjacency matrix have non-zero mean, that is ∃N ≥ 1 and
1 ≤ i ≤ j ≤ N such that EAN(i, j) 6= 0. The limit of the spectral norm can be identified under certain
assumptions which we outline below. It is an immediate corollary of Theorem 2.3.

S.5 There exists a constant m ≥ 0 such that

lim
N→∞

‖E∆N‖
N

= m

Under the above additional assumption we have the following corollary,

Corollary 2.2. Under the set of assumptions S.1-S.3, along with the additional assumption S.5, we have

lim
N→∞

‖∆N‖
N

= m, a.s.

3. SOME EXAMPLES

This section is devoted to examples and we show various models, mainly related to random networks
which fall within the purview of the assumptions mentioned in the last section.
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3.1. Inhomogenous Erdős-Rényi graphs. We define the setting of inhomogenous Erdős-Rényi graph
following Chakrabarty et al. [11]. Let f : [0, 1]2 → [0, 1] be a continuous function, satisfying

f (x, y) = f (y, x) ∀x, y ∈ [0, 1]. (3.1.1)

Consider (εN : N ≥ 1) to be a sequence of fixed positive real numbers satisfying

lim
N→∞

εN = 0, lim
N→∞

NεN = ∞ (3.1.2)

Consider the random graph GN on vertices {1, · · ·N} where, for each (i, j) with 1 ≤ i < j ≤ N, an edge
is present between vertices i and j with probability εN f

(
i
N , j

N

)
, independently of other pair of vertices.

In particular, GN is an undirected graph with no self edges and no multiple edges. Boundedness of f
ensures that εN f

(
i
N , j

N

)
≤ 1 for all 1 ≤ i < j ≤ N when N is large enough. Without loss of generality

we assume that εN < 1 for all N ≥ 1. If f ≡ c with c a constant, then GN is the (homogeneous) Erdős-
Rényi graph with edge retention probability εNc. The adjacency matrix is denoted by AN . Clearly, AN
is a symmetric random matrix whose diagonal entries are zero and whose upper triangular entries are
independent Bernoulli random variables, i.e.

AN(i, j) ∼ Ber
(

εN f
(

i
N

,
j

N

))
.

Define ∆N to be the Laplacian of the graph GN corresponding to AN as in definition 2.1.1. The following
theorem, which is a restatement of Theorem 1.2 in Chakrabarty et al. [11] states the existence of limiting
spectral distribution of ∆N under suitable scaling.

Proposition 3.1. Chakrabarty et al. [11, Theorem 1.2] There exists an unique, symmetric probability measure ν
on R such that

lim
N→∞

ESD
(

1√
NεN

(∆N − DN)

)
= ν weakly in probability

where

DN = diag (E∆N(1, 1), · · · , E∆n(N, N))

Furthermore, if f 6= 0, then the support of ν is unbounded.

Proof. Observe that using Lemma 2.1 in Chakrabarty et al. [11] we have

lim
N→∞

L
(

1√
NεN

ESD(∆0
N),

1√
NεN

ESD(∆N − DN)

)
= 0 in probability,

where L is the Levy metric1 and

∆0
N = ∆N −E∆N .

Hence it is enough to look at the limiting spectral distribution of 1√
NεN

ESD(∆0
N). Define BN = 1√

εN
(AN −EAN).

Then 1√
εN

∆0
N is the centered Laplacian corresponding to BN .

Observe that EB(N)
ij = 0 and further it is easy to observe that due to NεN → ∞ and |B(N)

ij | ≤
2√
εN

, we
must have

lim
N→∞

1
N ∑

1≤i,j≤N
E

[∣∣∣B(N)
ij

∣∣∣2 1{∣∣∣B(N)
ij

∣∣∣≥η
√

N
}] = 0, ∀η > 0

1The Lévy–Prokhorov metric L : P(R)2 → [0,+∞) between two probability measures µ and ν is given by

L(µ, ν) = inf{ε > 0|µ(A) ≤ ν(Aε) + ε and ν(A) ≤ µ(Aε) + ε ∀A ∈ B(R)} (3.1.3)

where B(R) denotes the Borel σ-algebra on R and Aε is the ε-neighbourhood of A.
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Hence assumption L.2 is satisfied. Now consider Σ(N) to be the variance profile matrix of BN . Then for
i 6= j

Σ(N)
ij =

εN f
(

i
N , j

N

) (
1− εN f

(
i
N , j

N

))
εN

= f
(

i
N

,
j

N

)
− εN f

(
i
N

,
j

N

)2

and Σ(N)
ii = 0, 1 ≤ i ≤ N. Then observe that using the fact that supN εN < 1 and | f | ≤ 1, we have

Σ(N)
ij < C for some constant C for 1 ≤ i, j ≤ N and for all N ≥ 1. Let WN be the empirical graphon

corresponding to Σ(N). Let

GN =

(
[N], {(i, j) : 1 ≤ i ≤ j} ,

(
f
(

i
N

,
j

N

))
1≤i≤j≤N

)
be the weighted graph on [N] vertices with edge weights βij = f

(
i
N , j

N

)
for edge i 6= j, 1 ≤ i, j ≤ N

and βii = 0, 1 ≤ i ≤ N. Let ŴN be the empirical graphon corresponding to GN . Then we have

WN(x, y) = ŴN(x, y) + o(1) (3.1.4)

where o(1) is uniformly over all (x, y) ∈ [0, 1]2. Now observe that by definition f is also a graphon and
is uniformly continuous in [0, 1]2, hence given η > 0 ∃Nη ∈N such that ∀N ≥ Nη ,∣∣∣∣ f ( i

N
,

j
N

)
− f (x, y)

∣∣∣∣ < η, ∀(x, y) ∈ Ii × Ij ∀1 ≤ i, j ≤ N

Then observe that

‖ŴN − f ‖� = sup
S,T⊆[0,1]

∣∣∣∣∫S×T
ŴN(x, y)− f (x, y)dxdy

∣∣∣∣
≤
∫
[0,1]2

∣∣∣ŴN(x, y)− f (x, y)
∣∣∣ dxdy

=
N

∑
i,j=1

∫
Ii×Ij

∣∣∣ŴN(x, y)− f (x, y)
∣∣∣ dxdy

=
N

∑
i,j=1

∫
Ii×Ij

∣∣∣∣ f ( i
N

,
j

N

)
− f (x, y)

∣∣∣∣ dxdy ≤ η, ∀N ≥ Nη (3.1.5)

Hence we have δ�

(
ŴN , f

)
→ 0. Then using (3.1.4) we have δ� (WN , f )→ 0. Thus assumptions L.1-L.3

are satisfied. Further when f 6≡ 0 there exists an open set U ⊆ [0, 1]2 such that f > 0 on U. The result
follows from Theorem 2.1. �

Under a different situation, we are well equipped to look at the spectral norm of inhomogenous
Erdős-Rényi graph. Instead of the sparse setup of (3.1.2), we consider the dense situation

lim
N→∞

εN = ε∞ (3.1.6)

for some ε∞ ∈ (0, 1). Further we assume that there exists a λ > 0 such that

inf
x,y∈[0,1]2

f (x, y) > λ. (3.1.7)

Once again we consider the matrix BN = ((B(N)
ij ))i,j defined in Proposition 3.1. Using the fact that

|B(N)
ij | ≤

2√
εN

and (3.1.6) we must have

E

[∣∣∣B(N)
ij

∣∣∣7] ≤ 27

ε7/2
N

≤ K
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for some K > 0. Thus assumption S.2 is satisfied. Recall the variance profile matrix of BN given by

Σ(N)
ij = f

(
i
N

,
j

N

)
− εN f

(
i
N

,
j

N

)2

Then using the fact that f is a continuous function from a compact set, lower bounded by λ > 0, we can
easily see that Σ(N)

ij satisfies assumption S.1. Further continuity along with compact support shows that

the function f 2 is uniformly continuous. Using an argument similar to (3.1.5), it can be shown that the
empirical graphon corresponding to Σ(N)

ij converges to

W(x, y) = f (x, y)− ε∞ f (x, y)2

in the cut metric. By definition, W is a well defined graphon, and hence assumption S.3 is satisfied.
Thus we have the following result using Theorem 2.3.

Proposition 3.2. Under the additional assumptions (3.1.6) and (3.1.7), we have

‖∆N‖ = Θ(
√

N log N) a.s.

where h(n) = Θ(g(n)) implies that for all large enough n, c1g(n) ≤ h(n) ≤ c2g(n) for some positive
constants c1 and c2.

3.2. Sparse W-random graphs. Given a graphon W : [0, 1]2 → [0, 1], as stated in the definitions of
Borgs et al. [8] a sequence of sparse random graphs GN can be generated in the following way. We
choose εN to be a sparsity parameter such that supN εN < 1 and εN → 0 and NεN → ∞. Let {Xi :
i ≥ 1} be i.i.d. U[0, 1] consider the random graph GN , where i and j are connected with probability
εNW(Xi, Xj) independently for all i 6= j. The graph GN is called the sparse W-random graph and is
denoted by G(N, W, εN). The adjacency matrix of such random graphs were studied in Zhu [41]. In the
following theorem we show the existence of an unique limiting spectral distribution of the Laplacian
matrix. The proof essentially follows the ideas from Zhu [41] and we present the ideas for completeness.

Proposition 3.3. Let G(N, W, εn) be a sequence of sparse W-random graphs with adjacency matrix AN and the
corresponding Laplacian matrix ∆N . Further assume that W is regular, that is

∫ 1

0
W(x, y)dy = dW , ∀x ∈ [0, 1]

where dW is a constant only depending on the graphon W. Then the empirical spectral distribution of ∆N−E∆N√
NεN

converges in probability to an unique symmetric probability measure ν. Further if there exists an open set U ⊆
[0, 1]2 such that W > 0 on U, then ν have unbounded support.

Proof. The proof will follow from the proof of Zhu [41, Theorem 5.1] as long as we can show the follow-
ing,

L
(

∆N −E∆N√
NεN

,
∆N −E [∆N |X1, · · · , XN ]√

NεN

)
p→ 0 (3.2.1)

Observe that,

EW(X1, X2) =
∫ ∫

W(x, y)dxdy = dW and EW(X1, X2)W(X1, X3) = d2
W (3.2.2)
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By definition,

1
N

Tr
(

E [∆N |X1, X2, · · · , XN ]−E∆N√
NεN

)2

=
εN

N2

 N

∑
i=1

(
N

∑
j=1,j 6=i

(W(Xi, Xj)− dW)

)2

+
N

∑
i=1

N

∑
j=1,j 6=i

(
W(Xi, Xj)− dW

)2


=

εN

N2

N

∑
i=1

(
N

∑
j=1,j 6=i

W(Xi, Xj)− dW

)2

+ O(εN)

=
εN

N2

N

∑
i=1

∑
j 6=k,j,k 6=i

(W(Xi, Xk)− dW)
(
W(Xi, Xj)− dW

)
+ O(εN)

Then by (3.2.2),

E
1
N

Tr
(

E [∆N |X1, X2, · · · , XN ]−E∆N√
NεN

)2

=
εN

N2 E

[
N

∑
i=1

∑
j 6=k,j,k 6=i

(W(Xi, Xk)− dW)
(
W(Xi, Xj)− dW

)]
+ O(εN)

=
εN

N2

N

∑
i=1

∑
j 6=k,j,k 6=i

(
EW(Xi, Xk)W(Xi, Xj)− d2

W

)
+ O(εN) = O(εN)

Finally an application of [5, Corollary A.41] proves (3.2.1). �

3.3. Constrained Random Graph. Constraints in the random graph are very important especially in
the context of Gibbs measure related to the graph. The constraints impose certain dependence in the
graph. Let SN be the set of all simple graphs on N vertices. One of the important classes is the so-
called canonical ensemble which puts a probability distribution on the set of simple graphs in a way that
entropy is maximized and the average degree is equal to a prescribed value. There has been a recent
interest in the breaking of ensemble equivalence study where the canonical ensembles play a crucial
role. We refer to Squartini et al. [34], Touchette [35] for further details. The spectrum of the adjacency
matrix for constrained random graph was derived in Chakrabarty et al. [11] and here we derive similar
results for the Laplacian matrix.

The canonical ensemble measure PN is the unique probability distribution on SN with the following
two properties:

(I) The average degree of vertex i, defined by ∑G∈SN
ki(G)PN(G), equals k?i for all 1 ≤ i ≤ N, where

k? = (k?i ) : 1 ≤ i ≤ N) is a fixed sequence of positive integers of which we only require to be
graphical.

(II) The entropy of PN , defined by −∑G∈SN
PN(G) log PN(G), is maximal.

It is known that because of property (II), PN takes the form

PN(G) =
1

ZN(θ)?
exp

(
−

N

∑
i=1

θ?i ki(G)

)
, G ∈ SN ,

where θ? =
(
θ?i : 1 ≤ i ≤ N

)
is a sequence of real-valued Lagrange multipliers that must be chosen in

such a way that property (I) is satisfied. The normalisation constant ZN(θ
?), which depends on θ?, is

called the partition functions in Gibbs theory. The matching of property (I) uniquely fixes θ?, namely , it
turns out that (Squartini et al. [34])

PN(G) =
N

∏
1≤i<j≤N

(p?ij)
AN [G](i,j)(1− p?ij)

1−AN [G](i,j), G ∈ SN ,
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where AN [G] is the adjacency matrix of G, and p?ij represent a reparametrisation of the Lagrange multipli-
ers, namely,

p?ij =
x?i x?j

1 + x?i x?j
, 1 ≤ i 6= j ≤ N, (3.3.1)

with x?i = e−θ?i . Thus, we see that PN is nothing other than an inhomogenous Erdős-Rényi random
graph where the probability that vertices i and j are connected by an edge equals p?ij. In order to match
property (I), these probabilities must satisfy

k?i =
N

∑
j 6=i,j=1

p?ij, 1 ≤ i ≤ N, (3.3.2)

which constitutes a set of N equations for the N unknowns x?1 , · · · x?N .
In order to state the next result, we need to make some assumptions on the sequence (k?Ni : 1 ≤ i ≤

N). For the sake of simplification the dependence on N would be suppressed from notation.

Proposition 3.4. Let (k?i : 1 ≤ i ≤ N) be a graphical sequence of positive integers. Define

mN = max
1≤i≤N

k?i

Assume that

lim
N→∞

mN = ∞, lim
N→∞

mN/
√

N = 0, (3.3.3)

and consider the graph GkN =

(
[N], {(i, j) : 1 ≤ i < j}, (k?i k?j /mN)1≤i<j≤N

)
and the corresponding empirical

graphon Wk
N . Further assume there exists a graphon W ∈ W0 such that

δ�(Wk
N , W)→ 0.

Let x?i and p?ij be determined by (3.3.1) and (3.3.2). Let ∆N be the Laplacian matrix of an inhomogenous Erdős–
Rényi random graph on N vertices, with p?ij the probability of an edge being present between vertices i and j for
1 ≤ i 6= j ≤ N. Then there exists an unique, symmetric probability measure νk on R such that

lim
N→∞

ESD
(

1√
NεN

(∆N −E(∆N))

)
= νk, weakly in probability (3.3.4)

where εN =
m2

N
∑1≤l≤N k?l

. Further if W is positive on an open set in [0, 1], then support of νk is unbounded.

Proof. Consider AN to be adjacency matrix of the inhomogenous Erdős–Rényi graph defined in the
proposition. Define

σN = ∑
1≤l≤N

k?l ,

It is known that (Squartini et al. [34])

max
1≤l≤N

x?l = o(1),

in which case (3.3.1) and (3.3.2) gives

x?i = [1 + o(1)]
k?i√
σN

, p?ij = [1 + o(1)]
k?i k?j
σN

, as N → ∞ (3.3.5)

with the error term uniform in 1 ≤ i 6= j ≤ N. Then by definition

εN =
m2

N
σN

(3.3.6)
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It follows from (3.3.3) that

lim
N→∞

εN = 0, lim
N→∞

NεN = ∞

Define BN = AN√
εN

, it is easy to observe that

|BN(i, j)−EBN(i, j)| ≤ 2√
εN

The bound above immediately implies BN satisfies the Lindeberg condition. Remember that by defini-
tion the empirical graphon Wk

N is such that

WN(x, y) =


k?i k?j
m2

N
if (x, y) ∈ Ii × Ij, 1 ≤ i 6= j ≤ N

0 if (x, y) ∈ Ii × Ii, 1 ≤ i ≤ N

For 1 ≤ i 6= j ≤ N,

Var(BN(i, j)) =
1

εN
p?ij(1− p?ij)

=
k?i k?j
m2

N

(
1− εN

k?i k?j
m2

N

)
+ o(1).

Define an empirical graphon W̃k
N as

W̃k
N(x, y) =

{
Var(BN(i, j)) if (x, y) ∈ Ii × Ij, 1 ≤ i 6= j ≤ N
0 if (x, y) ∈ Ii × Ii, 1 ≤ i ≤ N

Then by definition, for all 1 ≤ i 6= j ≤ N,

∣∣∣Wk
N(x, y)− W̃k

N(x, y)
∣∣∣ ≤

∣∣∣∣∣∣εN

(
k?i k?j
m2

N

)2
∣∣∣∣∣∣+ o(1) N→∞−→ 0, ∀(x, y) ∈ Ii × Ij (3.3.7)

DCT combined with (3.3.7) gives

δ�(Wk
N , W̃k

N) ≤
∫
[0,1]2

∣∣∣Wk
N(x, y)− W̃k

N(x, y)
∣∣∣ dxdy→ 0.

Thus we have δ�(W̃k
N , W)→ 0. Hence by an appeal to Theorem 2.1 the proof is completed. �

Remark 3.1. A concrete example of a graphical sequence (k?i : 1 ≤ i ≤ N) satisfying (3.3.3)-(3.3.4) can be
constructed from the example considered in Chakrabarty et al. [11, Remark 5.1]. For N ≥ 1, let

k?i = bi1/3c, 1 ≤ i ≤ N

Then Theorem 7.12 from van der Hofstad [37] implies that (k?i : 1 ≤ i ≤ N) is graphical for N large enough.
Since mN = bN1/3c it is immediate that (3.3.3) holds. Define

W(x, y) = (xy)1/3, (x, y) ∈ [0, 1]2

Then using the L1 bound on δ�(Wk
N , W), where Wk

N is as defined in Proposition 3.4, we can show that

δ�(Wk
N , W)→ 0

Among other examples one can consider also the random block matrices and sparse stochastic block
models considered in Zhu [41]. The results for the Laplacian matrices hold under the assumptions stated
in Section 6 and Section 7 of Zhu [41]. To avoid repetitions we skip the results.
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4. SIMULATIONS

This section is devoted to simulation study for a clearer picture of the above results. We consider two
situations, firstly we consider the inhomogenous Erdős-Rényi graph and in the second case, we generate
the elements of adjacency matrices independently having a Gaussian distribution while respecting the
symmetry constant.

For the inhomogenous Erdős-Rényi graph we choose f (x, y) =
√

xy i.e. f is a product of two same
functions r(t) =

√
t in L2[0, 1]. Then, in the Figure 4(A) the eigenvalues of the centered Laplacian matrix

are plotted under the scaling
√

NεN and hence it is clear that the ESD converges to a symmetric distri-
bution. In the simulation N and εN are chosen to be 1000 and 0.25 respectively. In Figure 4 we show a
comparison with the limiting spectral distribution under usual Erdős-Rényi graph with edge retention
probability 0.25.
For the Gaussian case, we consider two graphons W as W(x, y) =

√
xy and W(x, y) = 1

2 (x(1− y) +

(A) LSD of 1√
NεN

∆0
N for Inhomoge-

nous Erdős-Rényi graph
(B) LSD of 1√

NεN
∆0

N for Erdős-Rényi
graph with p = 0.25

FIGURE 4. ESD in both Inhomogenous and Homogenous Erdős-Rényi graph

y(1− x)). Then the elements of the adjacency matrix are generated as X(n)
ij ∼ N

(
0, W

(
i
n , j

n

))
. The

graphons considerd here are uniformly continuous and hence by (3.1.5)the empirical graphon con-
structed using above variance profile converges in the cut norm to W. We consider n = 1000 so that
the adjacency matrix is a 1000× 1000 matrix. In Figure 5 the eigenvalues of the Laplacian matrix under
the scaling

√
n and hence we can observe that ESD converges to a symmetric distribution.

(A) W(x, y) =
√

xy (B) W(x, y) = 1
2 (x(1− y) + y(1− x))

FIGURE 5. ESD of 1√
n ∆n when edge weights are Gaussian

5. PROOF OF THEOREMS 2.1, 2.2 AND COROLLARY 2.1

5.1. Preparatory Lemmas for Theorem 2.1. The proof of Theorem 2.1 rely on several preparatory lem-
mas which are organised in this section. One of the crucial steps in studying the properties of ESD is
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to replace each entry by a Gaussian random variable, which we outline in the following lemma. Let
{Gi,j, 1 ≤ i ≤ j} be a family of i.i.d. standard Gaussian random variables. Define N × N matrices Ag

N
and ∆g

N by

Ag
N(i, j) =

σi∧j,i∨j√
N

Gi∧j,i∨j ∀1 ≤ i, j ≤ N (5.1.1)

∆g
N(i, j) =

{
Ag

N(i, j) if i 6= j
−∑N

k 6=i,k=1 Ag
N(i, k) if i = j

(5.1.2)

Consider a three times continuously differentiable function h : R→ R such that

max
0≤j≤3

sup
x∈R

∣∣∣h(j)(x)
∣∣∣ < ∞

where h(j) denotes the j-th derivative. For a N × N real symmetric matrix M define the Stieltjes trans-
form of the ESD of M as

HN(M) =
1
N

Tr
(
(M− zIN)

−1
)

, z ∈ C \R.

The next result shows that real and imaginary part of Steitjes transform of A0
N and ∆0

N are close to
the Gaussian counterparts. Since one knows that convergence of ESD is equivalent to showing the
convergence of the corresponding Stieltjes transform, one can work with Gaussian random variables.

Lemma 5.1. (Gaussianisation) Let entries of A0
N satisfy the assumptions L.1 and L.2 and Ag

N and ∆g
N be

defined as in 5.1.1 and 5.1.2 then

lim
N→∞

E
[

h
(
RHN

(
∆g

N

))
− h

(
RHN

(
∆0

N

))]
= 0 (5.1.3)

lim
N→∞

E
[

h
(
IHN

(
∆g

N

))
− h

(
IHN

(
∆0

N

))]
= 0 (5.1.4)

whereR and I denotes the real and imaginary parts respectively. Similar statement holds true for A0
N and Ag

N .

The proof of Lemma 5.1 is routine and hence is skipped here and presented in the Appendix. The
next lemma allows for minor tweaks in the diagonal entries of ∆g

N .

Lemma 5.2. Define a N × N matrix by

ĀN(i, j) =
σi,j√

N
Gi∧j,i∨j, 1 ≤ i, j ≤ N (5.1.5)

and let
∆̄N = ĀN − XN (5.1.6)

where XN is a diagonal matrix of order N defined by

XN(i, i) = ∑
k 6=i

ĀN(i, k), 1 ≤ i ≤ N.

Then

lim
N→∞

L
(

ESD
(

∆g
N

)
, ESD (∆̄N)

)
= 0 in probability. (5.1.7)

Proof. Observe that by Bai and Silverstein [5, Corollary A.41]

E
[

L3
(

ESD
(

∆g
N

)
, ESD (∆̄N)

)]
≤ 1

N
E

[
Tr
[
∆g

N − ∆̄N

]2
]

(5.1.8)

Since ∆̄N and ∆g
N differs only in the diagonal entries, then we have

(
∆̄N − ∆g

N

)
i,i
= Ag

N(i, i), implying

1
N

E

[
Tr
[
∆g

N − ∆̄N

]2
]
=

1
N

E

[
N

∑
i=1

Ag
N(i, i)2

]
=

1
N2

N

∑
i=1

σ2
i,i = O

(
1
N

)
→ 0
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The last order coming from L.1. Hence E
[

L3
(

ESD
(

∆g
N

)
, ESD (∆̄N)

)]
→ 0 which show (5.1.8). �

The (diagonal) entries of XN are nothing but the row sums of Ag
N . However the correlation between

an entry of Ag
N and that of XN is small. The following decoupling lemma, shows that it does not hurt

when the entries of XN are replaced by a mean-zero Gaussian random variable of the same variance that
is independent of Ag

N .

Lemma 5.3. Chakrabarty et al. [11, Lemma 2.4] Let (Zi : i ≥ 1) be a family of i.i.d. standard normal random
variables, independent of

(
Gi,j : 1 ≤ i ≤ j

)
. Define a diagonal matrix YN of order N by

YN(i, i) = Zi

√√√√√ 1
N

N

∑
j=1
j 6=i

σ2
i,j, 1 ≤ i ≤ N

and let
∆̃N = ĀN + YN (5.1.9)

Then for every k ∈N

lim
N→∞

1
N

E
(

Tr
[
(∆̃N)

2k − (∆̄N)
2k
])

= 0 (5.1.10)

and

lim
N→∞

1
N2 E

(
Tr2
[
(∆̃N)

k
]
− Tr2

[
(∆̄N)

2k
])

= 0 (5.1.11)

We skip the proof of the above lemma since it is verbatim same as Lemma 2.4 of Chakrabarty et al.
[11]. In the next lemma we show the convergence of ESD of the above defined diagonal matrix YN .

Lemma 5.4. Under the assumptions L.1-L.3, there exists a unique probability distribution ζ on R such that

lim
N→∞

ESD (YN) = ζ weakly in probability

Further if there exists an open set U ⊆ [0, 1]2 such that W > 0 on U, then ζ have unbounded support.

Proof. We would be using method of moments to prove our result. After showing moment convergence
we would show that the limits uniquely determine the distribution. And finally we would show the
unbounded support.

Part 1: Convergence of Moments

Define mN
k to be the kth moment of ESD of YN ,

mN
k =

1
N

Tr
(

Yk
N

)
=

1
N

N

∑
i=1

(
N

∑
j 6=i,j=1

σ2
i,j

N

) k
2

Zk
i

We first show that variance of mN
k goes to zero as N → ∞. Note that using {Zi} is a collection of iid

standard Gaussian random variables we have

Var
(

mN
k

)
= Var

(
Zk

1

) 1
N2

N

∑
i=1

(
N

∑
j 6=i,j=1

σ2
i,j

N

)k

.

Now define

Sk
1 :=

1
N

N

∑
i=1

(
∑
j 6=i

σ2
i,j

N

)k

=
1

Nk+1

N

∑
i=1

∑
j1 ...jk 6=i

σ2
i,j1 . . . σ2

i,jk
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i

j2j1

j4 j3

FIGURE 6. Star graph F4

and

S̃k
1 :=

1
Nk+1

N

∑
i=1

∑
j1 ...jk

σ2
i,j1 . . . σ2

i,jk . (5.1.12)

It immediately follows that ∣∣∣Sk
1 − S̃k

1

∣∣∣ ≤ 1
Nk+1 O(Nk) = O

(
1
N

)
N→∞−→ 0 (5.1.13)

Consider the star graph Fk = (Vk, Ek) with k + 1 vertices and k edges, with the internal node labelled as
i and the leaves labelled as j1, · · · , jk. An example of such a star graph is shown in Figure 6. Then we
have (recall the definition of homomorphism density (2.2.1))

t (Fk, WN) =
∫
[0,1]k+1 ∏

(u,v)∈Ek

WN(xu, xv) ∏
u∈Vk

dxu

=
N

∑
i,j1 ...jk=1

∫
Ii⊗k

l=1 Ijl

σ2
i,j1 . . . σ2

i,j2 dxidxj1 . . . dxjk

=
1

Nk+1

N

∑
i=1

∑
j1 ...jk

σ2
i,j1 . . . σ2

i,jk =: S̃k
1

Using L.3 we have t(Fk, WN)→ t(Fk, W) < ∞, implying

Sk
1

N→∞−→ t(Fk, W). (5.1.14)

Hence,

Var(mN
k ) =

Var
(

Zk
1

)
N

Sk
1

N→∞−→ 0. (5.1.15)

Now we show that E(mN
k ) converges. Observe that

E(mN
k ) =


0 if k is odd,

µk
1
N ∑N

i=1

(
∑j 6=i

σ2
i,j

N

) k
2

if k is even,

where µk is the kth moment of standard Gaussian distribution If k is even, then we have E(mk) = µkS
k
2
1 .

So combining (5.1.14) and (5.1.15), we infer

mN
k

L2−→
{

0 if k is odd

µkt
(

Fk
2
, W

)
if k is even

(5.1.16)

Part 2: Uniqueness of the Limiting distribution
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Before proceeding let us define

ηk =

{
0 if k is odd

µkt
(

Fk
2
, W
)

if k is even
(5.1.17)

then by Lemma B.1 from Bai and Silverstein [5] we can easily see that there exists a probability measure
ζ identified by the moments ηk. To deal with the uniqueness of ζ observe that due to L.1, for all k even
we can find C > 0 such that t(Fk/2, W) ≤ Ck/2. Then for k ∈N

1
2k

η
1
2k
2k �

1
2k

(
2k!
k!

) 1
2k

. (5.1.18)

Using the Sterling’s approximation it is immediate that lim supk→∞
1
2k η

1
2k
2k < ∞. By applying Theorem 1

of Lin [25], the probability measure ζ is uniquely identified by the moment sequence ηk.
Part 3: Unbounded support of µ

Suppose there exists an open U ⊆ [0, 1]2 such that W > 0 on it. For k ∈N define

βk =

{
0 if k is odd

t
(

Fk
2
, W
)

if k is even

Since W > 0 on U, then by definition t
(

Fk
2
, W
)

> 0. Then again using Lemma B.1 from Bai and
Silverstein [5] there exists a probability measure κ having the above moment sequence. By Theorem 1 of
Lin [25], we can say that the moment sequence βk uniquely identifies the probability measure κ. Now
consider X ∼ κ and consider Z ∼ N(0, 1) independently of X. Then it is easy to observe that XZ have
the moment sequence ηk and hence XZ ∼ ζ. It easily follows from here that if we take any M > 0 then
P(XZ > M) > 0 and

sup(supp(XZ)) = sup(supp(ζ)) = ∞

This completes the proof of Lemma 5.4. �

Notations: We now recall some notations from Chakrabarty et al. [11] and we refer the reader to
Nica and Speicher [29] for the combinatorial properties of non-crossing pair partition and Krewaras
complement.

For k ∈N and Π a partition of {1, · · · , 2k}, define

Ψ (Π, N) =
{

i ∈ {1, · · · , N}2k : iu = iv ⇐⇒ u, v belong to the same block of Π
}

For an even positive integer k, NC2(k) is the set of non-crossing pair partitions of {1, 2, . . . , k}. For
σ ∈ NC2(k), its Kreweras complement K(σ) is the maximal non-crossing partition σ̄ of {1̄, . . . , k̄}, such
that σ ∪ σ̄ is a non-crossing partition of {1, 1̄, . . . , k, k̄}. For σ ∈ NC2(k) and N ≥ 1, define

S(σ, N) = {i ∈ {1, . . . , N}k : iu = iv ⇐⇒ u, v belong to the same block of K(σ)} (5.1.19)

and

C(k, N) = {1, . . . N}k \
( ⋃

σ∈NC2(k)

S(σ, N)

)
(5.1.20)

In other words, S(σ, N) is the same as Ψ(K(σ), N). We will use this fact in the upcoming proof.
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5.2. Proof of Theorem 2.1. Combining Lemmas 5.1 and 5.2 we find that ESD(∆0
N) and ESD(∆̄N) have

the same in probability limit. Next we use method of moments on ESD(∆̄N). By Lemma 5.3 it is enough
to look at the moments of ESD(∆̃N) where ∆̃N is as defined in (5.1.9). The rest of the proof is organised
as follows. First we show the L2 convergence of moments of ESD(∆̃N). We work separately for even and
odd moment. Convergence of the even moment is more involved, and the odd moment convergence
follows along similar lines. In case of even moments we appeal to the fact that if X is a random variable
and EX converges to α for some α ∈ R, and EX2 converges to α2, then X converges to α is L2. We
will follow the combinatorial ideas from Zhu [41] and express the expected value of moments in terms
of graph homomorphism and use graphon convergence assumption (L.3) to find the limit. Finally an
appeal to Theorem 1 from Lin [25] would show the uniqueness of the distribution.

5.2.1. Convergence of Moments. Fix k ∈N∪ {0}. We are interested to look at the L2 convergence of kth

moment of ESD(∆̃N) given by
1
N

Tr
[
(∆̃N)

k
]
.

We would deal with the odd and even moments separately. We shall show that the odd moments
converge to 0 and the even moments converge to ∑Pk ∑σ∈NC2(∑ mp) β(σ)E(σ) where Pk is defined in
Section 2.5, β(σ) ≥ 0 and E(σ) will be defined in (5.2.20) and (5.2.21) respectively.

Case 1: k is even
By definition we have

1
N

Tr
(

∆̃k
N

)
=

1
N ∑

m1,m2 ...,mkn1,n2 ...,nk

Tr
(

Ām1
N Yn1

N . . . Āmk
N Ynk

N
)

(5.2.1)

where the sum is over all the terms in the expansion of (ĀN + YN)
k, i.e. we have 2k many terms and

for every choice of m1, n1, . . . , mk, nk we have ∑k
i=1 mi + ni = k. We can take k many expressions in each

term of the expansion, since we allow the exponents to be 0. So enough to look at L2 convergence of
1
N Tr

(
Ām1

N Yn1
N . . . Āmk

N Ynk
N
)
. Let

Mj =
j

∑
p=1

mj + nj, j = 1, · · · , k.

Observe that Mk = k. Take ĩ such that ĩ = (ĩ1, · · · , ĩMk+1) ∈ {1, · · ·N}Mk+1 and ĩ1+Mk = ĩ1. Then

1
N

Tr
(

Ām1
N Yn1

N . . . Āmk
N Ynk

N
)

=
1
N ∑

ĩ

m1

∏
j=1

ĀN(ij, ij+1)
M1

∏
j=m1+1

YN(ij, ij+1) . . .
mk+Mk−1

∏
j=1+Mk−1

ĀN(ij, ij+1)
Mk

∏
j=1+mk+Mk−1

YN(ij, ij+1)

=
1
N ∑

i

m1

∏
j=1

ĀN(ij, ij+1)Y
n1
N (im1+1, im1+1) . . .

∑k
p=1 mp

∏
j=1+∑k−1

p=1 mp

ĀN(ij, ij+1)Y
nk
N (i1, i1)

=
1
N

N

∑
i1,i2,...i∑ mp=1

∑ mp

∏
j=1

ĀN(ij, ij+1)
k

∏
j=1

Y
nj
N

(
i
1+∑

j
p=1 mp

, i
1+∑

j
p=1 mp

)

=
1
N ∑

i1 ...i∑ mp

∑ mp

∏
j=1

Gij∧ij+1,ij∨ij+1

∑ mp

∏
j=1

σij ,ij+1√
N

k

∏
j=1

 1
N ∑

t 6=i
1+∑

j
p=1 mp

σ2
i
1+∑

j
p=1 mp

,t


nj
2

k

∏
j=1

Z
nj
i
1+∑

j
p=1 mp

. (5.2.2)

Here recall that (Zi : i ≥ 1) is a family of i.i.d. standard Normal random variables, independent
of
(
Gi,j : 1 ≤ i ≤ j

)
which are also independent standard Normal random variables. Also above i =
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(i1, i2, . . . i∑ mp) with i1+∑k
p=1 mp

= i1. Using definition of Kreweras complement we have the following

decomposition of (5.2.2)

∑
i1,i2,...,i∑ mp

= ∑
i∈C(∑ mp ,N)

+ ∑
σ∈NC2(∑ mp)

∑
i∈S(σ,N)

(5.2.3)

Now i ∈ S(σ, N) is same as saying i ∈ Ψ (K(σ), N). Observe that

E

[
1
N

Tr
(

Ām1
N Yn1

N . . . Āmk
N Ynk

N
)]

=
1
N ∑

i1 ...i∑ mp

E

[
∑ mp

∏
j=1

Gij∧ij+1,ij∨ij+1

]
∑ mp

∏
j=1

σij ,ij+1√
N
×

k

∏
j=1

 1
N ∑

t 6=i
1+∑

j
p=1 mp

σ2
i
1+∑

j
p=1 mp

,t


nj
2

E

[
k

∏
j=1

Z
nj
i
1+∑

j
p=1 mp

]
. (5.2.4)

Using (5.2.3) let us first look at the sum over S(σ, N). Consider a partition Π of {1, 2, . . . , ∑ mp}, and take

i ∈ Π, then observe that E
[
∏

∑ mp
j=1 Gij∧ij+1,ij∨ij+1

]
does not depend on i, but on the partition Π. Define

Φ(Π) := E

[
∑ mp

∏
j=1

Gij∧ij+1,ij∨ij+1

]
.

First we focus on the factor

E

[
k

∏
j=1

Z
nj
i
1+∑

j
p=1 mp

]
.

from (5.2.4). One easy observation is that it only depends upon the partition Π where i belongs. Now
consider a partition Π and suppose i ∈ Π. For notational simplicity we identify 1 by 1 + ∑k

p=1 mp. Then

consider the blocks where the indices {m1 + 1, m1 + m2 + 1, . . . , 1 + ∑k
p=1 mp} belongs. Then we have

E

[
k

∏
j=1

Z
nj
i
1+∑

j
p=1 mp

]
= E

∏
u∈Π

k

∏
j=1

1+∑
j
p=1 mp∈u

Z
nj
i
1+∑

j
p=1 mp

 = ∏
u∈Π

E


k

∏
j=1

1+∑
j
p=1 mp∈u

Z
nj
lu

 (5.2.5)

Where u denotes a block in Π and lu denotes the corresponding representative element. So now if for
some block u ∈ Π,

k

∑
j=1

1+∑
j
p=1 mp∈u

nj ≡ 1 (mod 2) (5.2.6)

then the expectation in (5.2.5) is 0, and hence in turn the whole expression is 0. So while looking at
∑i∈S(σ,N) in (5.2.3) we would only be looking at the case where for all u ∈ K(σ)

k

∑
j=1

1+∑
j
p=1 mp∈u

nj ≡ 0 (mod 2) (5.2.7)
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holds. Now remember the expectation in (5.2.5) does not depend on the choice of i ∈ S(σ, N), hence can
go out of the sum. So we would be focusing on

1
N ∑

i∈S(σ,N)

Φ(K(σ))
∑ mp

∏
j=1

σij ,ij+1√
N

k

∏
j=1

 1
N ∑

t 6=i
1+∑

j
p=1 mp

σ2
i
1+∑

j
p=1 mp

,t


nj
2

(5.2.8)

Define m = ∑k
p=1 mp. We now use a combinatorial identity from proof of Theorem 1.2 in Chakrabarty

et al. [11].

lim
N→∞

N−(
m
2 +1)Φ(Π)#Ψ(Π, N) =

{
1 if m is even and Π = K(σ) for some σ ∈ NC2(m)

0 otherwise
(5.2.9)

The above follows from standard arguments leading to proof of Wigner’s semicircle law using method
of moments. Observe that if

m ≡ 1 (mod 2), then NC2(m) = ∅ (5.2.10)

where ∅ denotes the null set. Hence we can safely ignore this case. So when considering the sum over
NC2(m) we assume that m is even. Since we are having Π = K(σ), and recalling that Ψ (K(σ), N) =
S(σ, N), then using (5.2.9) we have

1
#Ψ (K(σ), N) ∑

i∈Ψ(K(σ),N)

m

∏
j=1

σij ,ij+1

k

∏
j=1

 1
N ∑

t 6=i
1+∑

j
p=1 mp

σ2
i
1+∑

j
p=1 mp

,t


nj
2

≈ 1

N
m
2 +1 ∑

i∈Ψ(K(σ),N)

m

∏
j=1

σij ,ij+1

k

∏
j=1

 1
N ∑

t 6=i
1+∑

j
p=1 mp

σ2
i
1+∑

j
p=1 mp

,t


nj
2

(5.2.11)

The above follows from #Ψ (K(σ), N) = O
(

N
m
2 +1

)
. 2

Now let us consider the product ∏m
j=1 σij ,ij+1 . Observe that if all coordinates of i were distinct then

i1 → i2 → . . .→ im → i1 forms a closed walk (GW) on m vertices. Now we have i ∈ K(σ), and K(σ) can
have only m

2 + 1 many distinct block implies there are only m
2 + 1 many distinct values in i. Hence we

have the following modification of GW . Glue together the vertices ia and ib which appear in the same
block. Since the previous graph GW was a closed walk, which is a connected graph, then the new graph
(denoted by G = (V, E)) will be connected. Observe V is the blocks in i, that is, the blocks in Π and
E is the edges between them (without repetition). Observe that G only depends upon the positions in
i which are equal and which are not, hence the graph is independent of choice of i ∈ S(σ, N). G only
depends upon the blocks of K(σ).

In the product ∏m
j=1 σij ,ij+1 the number of times the unordered pair (ij, ij+1) would appear is same

as the number of times the edge between ij and ij+1 is traversed in the graph G while following the
previous closed walk. If ij and ij+1 belong in the same block, then the edge between them is basically a
self loop. Since we are looking undirected graph, then the total number of repetition of the edge (ij, ij+1)
is the same as the total number of appearance of (ij, ij+1) and (ij+1, ij) in the product. This takes care of
the symmetry constraint. Then we have

m

∏
j=1

σij ,ij+1 = ∏
e∈E

σte
e (5.2.12)

2≈ implies they are same in the limit.
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where e = (a, b) denotes the edge between vertex a and b and te is the number of times the edge is
repeated in the closed walk. Independence of the graph from i gives

Φ(K(σ)) = E

[
∏
e∈E

Gte
e

]

We consider three exhaustive cases

C.1 ∀e ∈ E, te = 2;
C.2 ∃ e ∈ E such that te = 1;
C.3 ∀e ∈ E, te ≥ 2 and ∃ e ∈ E such that te > 2.

Let us first deal with C.2. Suppose e1 is the edge appearing only once. Then

Φ(K(σ)) = E(Ge1)E

 ∏
e∈E\{e1}

Gte
e

 = 0 since Ge ∼ N(0, 1)

But this would contradict (5.2.9). Hence this case does not happen.

Now let us look at C.3. Using (5.2.12) we have ∑e∈E te = m. By C.3 we have ∑e∈E te > 2|E|, where
|E| denotes the number of edges in G. Since G is a connected graph, then |E| ≥ |V| − 1 = m

2 . Then
∑e∈E te > m. This is a contradiction again and hence this case is also not possible.

In order to deal with C.1 we break it into two sub-cases.
Sub-Case 1: The graph G has a self edge. Then we have a connected graph G having a self loop. Even
if we remove the self loop still the graph remains connected. Say, e1 is the self loop. Then consider the
spanning tree of G which we denote by S, then |E(S)| = m/2, then observe

te1 + ∑
e∈E(S)

te ≤ ∑
e∈E

te

which implies 2 + m
2 × 2 ≤ m since here te = 2 for all e ∈ E. This is a contradiction and it shows that the

graph cannot have a self edge.
Sub-Case 2: We have a connected graph G having no self loop and m

2 + 1 vertices and te = 2, ∀e ∈ E.
Then using ∑e∈E te = m we have |E| = m

2 . Hence G is a tree.

Since the graph G depends only on σ ∈ NC2(m), then we redefine it as G ≡ T(σ) = (V(σ), E(σ)),
where V(= V(σ)) and E(= E(σ)) denotes the vertices and edges respectively.

Consider the sth block of K(σ) and say the representative element is ls and define

γs = #

{
1 ≤ j ≤ k : 1 +

j

∑
i=1

mi ∈
{

sth block
}}

and

{s1, s2, · · · , sγs} =
{

1 ≤ j ≤ k : 1 +
j

∑
i=1

mi ∈
{

sth block
}}

Then, since ia = ib if a, b are in the same block, it is easy to see that

k

∏
j=1

 1
N ∑

t 6=i
1+∑

j
p=1 mp

σ2
i
∑

j
p=1 mp

,t


nj
2

=

m
2 +1

∏
s=1

(
1
N ∑

t 6=ls

σ2
ls ,t

)∑γs
j=1 nsj /2

(5.2.13)
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Observe that from (5.2.7) we have

γs

∑
j=1

nsj =
k

∑
j=1

1+∑
j
p=1 mp∈s

nj ≡ 0 (mod 2).

So define ñs = ∑γs
j=1 nsj /2 and then ∑s ñs = 1

2 ∑k
j=1 nj, where ∑s denotes sum over the blocks of K(σ).

Then

m
2 +1

∏
s=1

(
1
N ∑

t 6=ls

σ2
ls ,t

)∑γs
j=1 nsj /2

=
1

N∑ ñs

m
2 +1

∏
s=1

 ∑
p1 ...pñs 6=ls

σ2
ls ,p1

. . . σ2
ls ,ñs

 (5.2.14)

Then combining (5.2.13) and (5.2.14), (5.2.11) becomes

1

N
m
2 +1 ∑

i∈Ψ(K(σ),N)

m

∏
j=1

σij ,ij+1

k

∏
j=1

 1
N ∑

t 6=i
1+∑

j
p=1 mp

σ2
i
1+∑

j
p=1 mp

,t


nj
2

=
1

N
m
2 +1 ∑

l1 6=... 6=l m
2 +1

∏
(u,v)∈E

σ2
lu ,lv

m
2 +1

∏
s=1

 1
Nñs ∑

p1,...,pñs 6=ls

σ2
ls ,p1

. . . σ2
ls ,pñs

 (5.2.15)

=
1

N1+ ∑ mp+np
2

∑
l1 6=... 6=lm/2+1

p(s,1) ...p(s,ñs) 6=ls
∀s=1... m

2 +1

∏
(u,v)∈E

σ2
lu ,lv

m
2 +1

∏
s=1

ñs

∏
t=1

σ2
ls ,p(s,t)

(5.2.16)

where for a fixed s ∈ {1, · · · , 1 + m/2}, p(s,i) denotes the index pi in (5.2.15). We modify the graph T(σ)
as follows. We take vertex s from T(σ) and join ñs many vertices to it, denote those by {(s, 1), (s, 2), . . . , (s, ñs)},
so that s becomes the internal node of a star graph with the vertices {(s, 1), (s, 2), . . . , (s, ñs)} form-
ing the leaves. An example of the modification is shown in Figure 7. Consider the new graph to be

s

(s, 2)(s, 1)

(s, 4) (s, 3)

T(σ)

FIGURE 7. Star graph around vertex s, with ñs = 4

T̃(σ) =
(

Ṽ(σ), Ẽ(σ)
)

, where |Ṽ(σ)| = 1
2 ∑k

p=1 mp +
1
2 ∑s ñs + 1 = k

2 + 1 and |Ẽ(σ)| = m
2 + ∑s ñs = k

2 .
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Then observe that by construction T̃(σ) is a tree and the homomorphism density t
(

T̃(σ), WN

)
becomes

t
(

T̃(σ), WN

)
=
∫
[0,1]1+∑

mp+np
2

∏
(u,v)∈Ẽ

WN(xu, xv)∏
u

dxu

= ∑
l1 ...lm/2+1

p(s,1) ...p(s,ñs)
∀s=1... m

2 +1

∫
⊗

m
2 +1

j=1 Ilj
⊗

m
2 +1

s=1 ⊗
ñs
t=1 Ip(s,t)

∏
(u,v)∈Ẽ

WN(xu, xv)∏
u

dxu

=
1

N1+ ∑ mp+np
2

∑
l1 ...lm/2+1

p(s,1),...p(s,ñs)
∀s=1,... m

2 +1

∏
(u,v)∈E

σ2
lu ,lv

m
2 +1

∏
s=1

ñs

∏
t=1

σ2
ls ,p(s,t)

(5.2.17)

N→∞−→ t
(

T̃(σ), W
)

:= β(σ) (5.2.18)

where the last limit follows from assumption L.1. The expression from (5.2.16) is redefined as

S1 =
1

N1+ ∑ mp+np
2

∑
l1 6=... 6=lm/2+1

p(s,1) ...p(s,ñs) 6=ls
∀s=1... m

2 +1

∏
(u,v)∈E

σ2
lu ,lv

m
2 +1

∏
s=1

ñs

∏
t=1

σ2
ls ,p(s,t)

Then using (5.2.17) and a counting argument it follows that

∣∣∣S1 − t
(

T̃(σ), WN

)∣∣∣ = O
(

N−1−∑ mp+np
2 N

∑ mp+np
2

)
= O

(
1
N

)
N→∞
−→ 0

Hence using homomorphism density convergence from (5.2.18) we conclude

S1 =
1

N1+ ∑ mp+np
2

∑
l1 6=... 6=lm/2+1

p(s,1) ...p(s,ñs) 6=ls
∀s=1... m

2 +1

∏
(u,v)∈E

σ2
lu ,lv

m
2 +1

∏
s=1

ñs

∏
t=1

σ2
ls ,p(s,t)

N→∞−→ t(T̃(σ), W) (5.2.19)

Recall that by construction T̃(σ) depends only on σ for fixed values of mi, ni for all 1 ≤ i ≤ k. Remember
that we took (5.2.7) holding for all u ∈ K(σ). Hence redefine

β(σ) =

{
t
(

T̃(σ), W
)

if (5.2.7) holds for all u ∈ K(σ)

0 otherwise
(5.2.20)

Also recall that E

[
∏k

j=1 Z
nj
i
1+∑

j
p=1 mp

]
does not depend on choice of i, rather it only depends on σ. Define

E(σ) = E

[
k

∏
j=1

Z
nj
i
1+∑

j
p=1 mp

]
. (5.2.21)
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Note that by the discussion following (5.2.6), E(σ) becomes 0 if (5.2.7) does not hold for all u ∈ K(σ).
Then expectation of (5.2.2) becomes

1
N ∑

i∈S(σ,N)

E

[
∑ mp

∏
j=1

Gij∧ij+1,ij∨ij+1

]
∑ mp

∏
j=1

σij ,ij+1√
N

k

∏
j=1

 1
N ∑

t 6=i
1+∑

j
p=1 mp

σ2
i
1+∑

j
p=1 mp

,t


nj
2

E

[
k

∏
j=1

Z
nj
i
1+∑

j
p=1 mp

]

N→∞−→ β(σ)E(σ) (5.2.22)

where β(σ) and E(σ) depends only on the choice of mi, ni for all i = 1, 2, . . . k and the corresponding
partition σ. (Using (5.2.10) we can safely replace the above expression by 0 when ∑k

1 mp is odd).
Now observe that we have shown convergence of expectation. But our objective was to show L2

convergence. For any i ∈ {1, 2, . . . , N}m define:

Pi =
m

∏
j=1

Gij∧ij+1,ij∨ij+1

m

∏
j=1

σij ,ij+1√
N

k

∏
j=1

 1
N ∑

t 6=i
1+∑

j
p=1 mp

σ2
i
1+∑

j
p=1 mp

,t


nj
2

k

∏
j=1

Z
nj
i
1+∑

j
p=1 mp

and by (5.2.22) we have E
[

1
N ∑i∈S(σ,N) Pi

]
→ β(σ)E(σ). To show that

1
N ∑

i∈S(σ,N)

Pi
L2→ β(σ)E(σ),

it is enough to show that

E


 1

N ∑
i∈S(σ,N)

Pi

2
→ β2(σ)E2(σ).

With that goal observe that

E

 1
N ∑

i∈S(σ,N)

Pi

2

→ β2(σ)E2(σ).

Let us call i, j ∈Nm to be disjoint if no co-ordinate of i matches any co-ordinates of j i.e. min1≤u,v≤m |iu−
jv| ≥ 1. Now observe[

E

[
1
N ∑

i∈S(σ,N)

Pi

]]2

=
1

N2 ∑
i,j∈S(σ,N)

E(Pi)E(Pj)

=
1

N2 ∑
i,j∈S(σ,N)
are disjoint

E(Pi)E(Pj) +
1

N2 ∑
i,j∈S(σ,N)

are not disjoint

E(Pi)E(Pj) (5.2.23)

If i and j are not disjoint then there is at least one common coordinate. Which implies there is a block in
i having same values as some block in j. Then we have

{i, j ∈ S(σ, N) i, j are not distinct} =
m
2 +1⊔
l=1

{i, j ∈ S(σ, N) i, j have exactly l blocks common} (5.2.24)

where
⊔

denotes disjoint union and define for l = 1, 2, . . .
(m

2 + 1
)
,

Hl = {i, j ∈ S(σ, N) : i, j have exactly l blocks common}
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By (5.2.8) we have

E [Pi] = N−
m
2 Φ(K(σ))

m

∏
j=1

σij ,ij+1

k

∏
j=1

 1
N ∑

t 6=i
1+∑

j
p=1 mp

σ2
i
1+∑

j
p=1 mp

,t


nj
2

E

[
k

∏
j=1

Z
nj
i
1+∑

j
p=1 mp

]

≤ MN−
m
2 (5.2.25)

for some 0 < M < ∞, which depends only on σ. Observe that the above bound follows from L.1. Then
using (5.2.25), we have for all l ∈

{
1, 2, . . . ,

(m
2 + 1

)}
,

1
N2 ∑

i,j∈Hl

E(Pi)E(Pj) �
1

Nm+2 ∑
i,j∈Hl

1 � 1
Nm+2 O(Nm+2−k)→ 0 as N → ∞ (5.2.26)

Using (5.2.26) we conclude

lim
N→∞

1
N2 ∑

i,j∈Hl

E(Pi)E(Pj) = 0

Then using (5.2.24) we have

lim
N→∞

1
N2 ∑

i,j∈S(σ,N)
are not disjoint

E(Pi)E(Pj) = lim
N→∞

m
2 +1

∑
l=1

1
N2 ∑

i,j∈Hl

E(Pi)E(Pj) = 0 (5.2.27)

Combining (5.2.27) and (5.2.23) we have

lim
N→∞

1
N2 ∑

i,j∈S(σ,N)
are disjoint

E(Pi)E(Pj) = β2(σ)E2(σ) (5.2.28)

We have

E

[(
1
N ∑

i∈S(σ,N)

Pi

)2]
=

1
N2 ∑

i,j∈S(σ,N)

E(PiPj)

=
1

N2 ∑
i,j∈S(σ,N)
are disjoint

E(Pi)E(Pj) +
1

N2 ∑
i,j∈S(σ,N) are not disjoint

E(PiPj) (5.2.29)

Then for i, j ∈ S(σ, N) such that they have at least one common coordinate, we have

E(PiPj) = N−mΦ̃i,j

m

∏
l=1

σ2
il ,il+1

k

∏
l=1

 1
N ∑

t 6=i
1+∑l

p=1 mp

σi
1+∑l

p=1 mp
,t


nl
2

m

∏
q=1

σ2
jq ,jq+1

k

∏
q=1

 1
N ∑

t 6=j
1+∑

q
p=1 mp

σj
1+∑

q
p=1 mp

,t


nq
2

E

[
k

∏
l=1

Znl
i
1+∑l

p=1 mp
Znl

j
1+∑l

p=1 mp

]
(5.2.30)

where

Φ̃i,j = E

[
m

∏
l=1

Gil∧il+1,il∨il+1
Gjl∧jl+1,jl∨jl+1

]
It is easy to observe that right hand side of (5.2.30) is bounded by some constant depending on σ ∈
NC2(m). Then as before we have E(PiPj) ≤ M̃N−m for some M̃ > 0, depending on σ, this again follows
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similarly as above from L.1. Then second term in (5.2.29) goes to 0 by similar counting argument as in
(5.2.26). Then combining (5.2.28) and (5.2.29) we have

lim
N→∞

E

[(
1
N ∑

i∈S(σ,N)

Pi

)2]
= β2(σ)E2(σ)

Hence we have shown that
1
N ∑

i∈S(σ,N)

Pi
L2→ β(σ)E(σ)

Now we want to show that 1
N ∑i∈C(m,N) Pi → 0 in L2. Observe here m can be odd or even. Define

D = {Π ∈ all partitions of [m] such that Π 6= K(σ), ∀σ ∈ NC2(m)}. Observe that

1
N ∑

i∈C(m,N)

Pi =
1
N ∑

Π∈D
∑

i∈Ψ(Π,N)

Pi

So enough to show
1
N ∑

i∈Ψ(Π,N)

Pi
L2
→ 0 for all Π ∈ D.

With that objective fix Π ∈ D,

E

[(
1
N ∑

i∈Ψ(Π,N)

Pi

)2]
=

1
N2 ∑

i,j∈Ψ(Π,N)

E(PiPj)

=
1

N2 ∑
i,j∈Ψ(Π,N)
are disjoint

E(Pi)E(Pj) +
1

N2 ∑
i,j∈Ψ(Π,N)

are not disjoint

E(PiPj)

Define

E(Π) = {i, j ∈ Ψ(Π, N) : i, j are disjoint}
Hl(Π) = {i, j ∈ Ψ(Π, N) : i, j have exactly l blocks common}

Suppose number of blocks in Π is b(Π). Then observe

{i, j ∈ Ψ(Π, N) : i, j are not distinct} =
b(Π)⊔
k=1

Hk(Π)

Recall that Φ(Π) is independent of choice of i, j ∈ Π, it only depends upon Π. Then

0 ≤ 1
N2 ∑

i,j∈E(Π)

E(Pi)E(Pj) �
1

Nm+2 Φ(Π)2|E(Π)| 1
|E(Π)| ∑

i,j∈E(Π)

1 (5.2.31)

≤
(

1

N
m
2 +1

Φ(Π)#Ψ(Π, N)

)2

→ 0 as N → ∞. (5.2.32)

The last limit follows from (5.2.9). Using above definitions we have

1
N2 ∑

i,j∈Ψ(Π,N)
are not disjoint

E(PiPj) =
1

N2

b(Π)

∑
k=1

∑
i,j∈Hk(Π)

E(PiPj) (5.2.33)

Let us look at the case when we have exactly one block common in i and j. Then |H1(Π)| = O(N2b(Π)−1).
It is easy to see that there exists h > 0, depending on Π such that

E(PiPj) ≤ hN−m, ∀i, j ∈ Ψ(Π, N).
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The above bound follows from the discussion after (5.2.30), replacing K(σ) by Π. Now consider two
cases depending upon the values of b(Π).

Case 1: Let b(Π) ≤ m
2 + 1. Then we have

1
N2 ∑

i,j∈H1(Π)

E(PiPj) � O
(

N−m−2Nm+1
)
= O(N−1)

N→∞−→ 0. (5.2.34)

Case 2: Let b(Π) > m
2 + 1. Observe

E
(

PiPj
)
≤ C

Nm E

[
m

∏
l=1

Gil∧il+1,il∨il+1

m

∏
l=1

Gjl∧jl+1,jl∨jl+1

]
,

for some constant C > 0. Now consider the two closed walks (remember we had im+1 = i1 and jm+1 =
j1)

i1 → i2 → i3 → . . . im → im+1 and j1 → j2 → j3 → . . . jm → jm+1.

Now join them at the common coordinates that is where ip = jq and for some p, q ∈ {1, · · · , m} and glue
together the coordinates of i which are in the same blocks of Π, and do the same for j. Then consider the
graph Ĝ =

(
V̂, Ê

)
and then we have

m

∏
l=1

Gil∧il+1,il∨il+1

m

∏
l=1

Gjl∧jl+1,jl∨jl+1
= ∏

e∈Ê

Gte
e (5.2.35)

and hence

E(PiPj) ≤
C

Nm E

[
∏
e∈Ê

Gte
e

]
(5.2.36)

where te is the number of times the edge e is repeated in the graph Ĝ. Observe that each edge is repeated
at least once, since the two closed walks were connected graph and in the resultant graph we did not
remove any edge. So if E(PiPj) 6= 0, then ∀e ∈ Ê, te ≥ 2. Since i, j ∈ H1(Π), then total number of
distinct block in the combined vector (i, j) would be 2b(Π)− 1. Now by construction the blocks form
the vertices of Ĝ, hence as the graph is connected then |Ê| ≥ 2b(Π)− 2. Then

∑
e∈Ê

te ≥ 2(2b(Π)− 2) > 2
(

2
(m

2
+ 1
)
− 2
)
= 2m,

but by (5.2.35) we have ∑e∈Ê te = 2m. Hence a contradiction which implies that in this case E(PiPj) =
0, ∀i, j ∈ H1(Π).

So we have shown that
1

N2 ∑
i,j∈H1(Π)

E(PiPj)
N→∞−→ 0 (5.2.37)

Similarly we can draw the same conclusion for any l ∈ {1, 2, . . . , b(Π)}. Hence we can conclude by
(5.2.33) that

1
N2 ∑

i,j∈Ψ(Π,N)
are not distinct

E
(

PiPj
) N→∞−→ 0 (5.2.38)

Then combining (5.2.32) and (5.2.38) we have proved the L2 convergence for C(m, N). Hence using
(5.2.1) we have

1
N

Tr
(

∆̃k
N

) L2→∑
Pk

∑
σ∈NC2(∑ mp)

β(σ)E(σ) (5.2.39)
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where Pk is as defined in Section 2.5.

Case 2: k is odd

Recall the expansion of moment expression as in (5.2.1) in the beginning of the previous case.

1
N

Tr
(

∆̃k
N

)
=

1
N ∑

m1,m2 ...,mkn1,n2 ...,nk

Tr
(

Ām1
N Yn1

N . . . Āmk
N Ynk

N
)

(5.2.40)

where the sum is over all the terms in the expansion of (ĀN + YN)
k, that is we have 2k many terms and

for every choice of m1, n1, . . . , mk, nk we have ∑k
p=1 mp + np = k. So in order to show 1

N Tr
(

∆̃k
N

) L2→ 0, it
is enough to show that

1
N

Tr
(

Ām1
N Yn1

N . . . Āmk
N Ynk

N
) L2→ 0

Then due to L.1 we have∣∣∣∣ 1
N

Tr
(

Ām1
N Yn1

N . . . Āmk
N Ynk

N
)∣∣∣∣ � 1

N ∑
i1 ...i∑ mp

∣∣∣∣∣∑
mp

∏
j=1

Gij∧ij+1,ij∨ij+1

∣∣∣∣∣ ∑ mp

∏
j=1

1√
N

∣∣∣∣∣ k

∏
j=1

Z
nj
i
1+∑

j
p=1 mp

∣∣∣∣∣ (5.2.41)

Sub-Case 1: ∑k
p=1 mp is odd

Observe that from (5.2.41),

E

[
1

N2 Tr2 (Ām1
N Yn1

N . . . Āmk
N Ynk

N
)]
� E

[
1

N2+∑ mp ∑
i,j

∑ mp

∏
l=1

Gil∧il+1,il∨il+1

∑ mp

∏
l=1

Gjl∧jl+1,jl∨jl+1

]

E

[
k

∏
l=1

Znl
i
1+∑l

p=1 mp
Znl

j
1+∑l

p=1 mp

]
where i, j are the m dimensional vectors defined in (5.2.2). The last term is uniformly bounded over i, j.
(Since there are finitely such values depending on the partitions of {1, · · · , m}, where m = ∑k

j=1 mj).
Then

E

[
1

N2 Tr2 (Ām1
N Yn1

N . . . Āmk
N Ynk

N
)]
� E

[
1

N2+∑ mp ∑
i,j

∑ mp

∏
l=1

Gil∧il+1,il∨il+1

∑ mp

∏
l=1

Gjl∧jl+1,jl∨jl+1

]

≤ E

[(
1
N

Tr
(

U∑ mp
N

))2]
N→∞−→ 0

where UN is a N × N Wigner matrix having all entries i.i.d. from N(0, 1/N) and satisfying the symme-

try constraint. Observe that 1
N Tr

(
U∑ mp

N

)
is the (∑ mp)th moment of ESD(ZN). The limit follows by the

classical estimates for Wigner matrices with i.i.d. entries (see for example Anderson et al. [4]).

Sub-Case 2: ∑k
p=1 mp is even

Define

P̃i =
1

N∑ mp/2

∑ mp

∏
l=1

Gil∧il+1,il∨il+1

So we have to show

1
N ∑

i
P̃i

k

∏
l=1

Znl
i
1+∑l

p=1 mp

L2−→ 0
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Now take Π to be a partition of {1, · · · , m}, then due to a decomposition similar to (5.2.3) enough to
show that

1
N ∑

i∈Ψ(Π,N)

P̃i

k

∏
l=1

Znl
i
1+∑l

p=1 mp

L2−→ 0

Then observe

E


 1

N ∑
i∈Ψ(Π,N)

P̃i

k

∏
l=1

Znl
i
1+∑l

p=1 mp

2
 =

1
N2 ∑

E(Π)

E(P̃i P̃j)E

(
k

∏
l=1

Znl
i
1+∑l

p=1 mp

)
E

(
k

∏
l=1

Znl
j
1+∑l

p=1 mp

)

+
1

N2 ∑
i and j

are not distinct

E

(
P̃i P̃j

k

∏
l=1

Znl
i
1+∑l

p=1 mp

k

∏
l=1

Znl
j
1+∑l

p=1 mp

)

Now since k is odd, then ∑ mp + np = k is odd, and hence ∑ np is odd. Hence it’s easy to see that the
first term is 0. So we focus on the second term only. Using independence and the uniform bound of

E

(
k

∏
l=1

Znl
i
1+∑l

p=1 mp

k

∏
l=1

Znl
j
1+∑l

p=1 mp

)

we only focus on E(P̃i P̃j). Similar to (5.2.33) it is enough to show that

1
N2 ∑

Hk(Π)

E(P̃i P̃j)→ 0

Consider b(Π) to be number of blocks in Π and remember m = ∑ mp. Let us look at the case when we
have exactly one block common in i and j. Then |H1(Π)| = O(N2b(Π)−1). It is easy to see that there
exists h > 0, depending on Π such that E(P̃i P̃j) ≤ hN−m for all i, j ∈ Ψ(Π, N). This essentially follows
as above in previous case. Now consider two cases depending upon the values of b(Π).

Case 1: b(Π) ≤ m
2 + 1. Then we have 2b(Π)− 1 ≤ m + 1, which implies

1
N2 ∑

i,j∈H1(Π)

E(P̃i P̃j) � O
(

N−m−2Nm+1
)
= O(N−1)

N→∞−→ 0

Case 2: b(Π) > m
2 + 1. Observe

E
(

P̃i P̃j

)
=

1
Nm E

[
m

∏
l=1

Gil∧il+1,il∨il+1

m

∏
l=1

Gjl∧jl+1,jl∨jl+1

]
This case is exactly similar to Case 2 as before. Using the same estimates as in (5.2.36) we can show

1
N2 ∑

i,j∈H1(Π)

E(P̃i P̃j)
N→∞−→ 0.

Similarly can conclude the same for any k ∈ {1, 2, . . . , b(Π)}. Hence we have

1
N2 ∑

i,j∈Ψ(Π,N)
are not distinct

E
(

P̃i P̃j

)
N→∞−→ 0

Then we have shown that (5.2.40) converges to 0 in L2, that is

1
N

Tr
(

∆̃k
N

) L2−→ 0.
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5.2.2. Existence of unique limiting distribution. Before proceeding let us define

βk =

{
∑Pk ∑σ∈NC2(∑ mp) β(σ)E(σ) if k is even

0 if k is odd

then by Lemma B.1 from Bai and Silverstein [5] we can easily see that there exists a probability measure
ν identified by the moments βk. To show uniqueness of ν we invoke again Theorem 1 of Lin [25], that is
show that

lim sup
k→∞

1
2k

β1/2k
2k < ∞ (5.2.42)

For all l ∈ {1, 2, . . . , ∑k
p=1 mp}, define

αl =


nj if l = 1 + ∑

j
p=1 mp, ∀j = 1, . . . , k− 1,

nk if l = 1,
0 otherwise .

Recall that we use 1 + ∑k
p=1 mp as an identifier for 1. Then it is easy to observe that

k

∏
j=1

Z
nj
i
1+∑

j
p=1 mp

= ∏
u∈K(σ)

Z∑l∈u αl
u , ∀i ∈ Ψ(K(σ), N)

where the product is taken over the blocks in K(σ). Hence by definition of E(σ) we have

E(σ) = E

 ∏
u∈K(σ)

Z∑l∈u αl
u

 = ∏
u∈K(σ)

E
[

Z∑l∈u αl
1

]
.

The above equality follows since Zu’s are all i.i.d. N(0, 1) for all u ∈ K(σ). Using the expression for
moments of the Gaussian distribution,

∏
u∈K(σ)

E
[

Z∑l∈u αl
1

]
≤ ∏

u∈K(σ)

(2 ∑l∈u αl)!
2∑l∈u αl (∑l∈u αl)!

≤ 2∑u∈K(σ) ∑l∈u αl

 ∑
u∈K(σ)

∑
l∈u

αl

!

≤ 2kk!

The last inequality follows from ∑k
j=1 nj ≤ k. Observe that by definition of β(σ) it can be easily seen

that there exists a constant C > 0 such that β(σ) ≤ Ck. Recall Cl is the lth catalan number and Ca ≤ Cb
whenever a ≤ b, then taking k ∈ 2N

βk ≤∑
Pk

∑
σ∈NC2(∑ mp)

Ck2kk! ≤∑
Pk

C∑ mp(2C)kk!

≤∑
Pk

Ck(2C)kk! ≤ (4C)kCkk!

The above inequalities follows since ∑k
p=1 mp ≤ k and the sum over Pk can have at most 2k many terms.

Using Sterling’s approximation we have

1
k

β
1
k
k ≤ 4C

1

(k + 1)
1
k

4e−(1+ 1
k )

π
1
k

and subsequently we conclude that

lim sup
k→∞

1
2k

β
1
2k
2k < ∞. (5.2.43)
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Hence the measure ν is uniquely identified by the moments βk. Finally note that the moment generating
function of ν is finite around origin and the odd moments vanish it easily follows that ν is symmetric
around origin.

5.2.3. ν has unbounded support. To prove the unbounded support we shall use the following lemma
from Chakrabarty et al. [11].

Lemma 5.5. Chakrabarty et al. [11, Fact A.5] Suppose that for al n ≥ 1, Zn1 ≥ . . . ≥ Znn are random variables
such that

lim
n→∞

1
n

n

∑
j=1

δZnj = µ weakly in probability, (5.2.44)

for some probability measure µ on R, where δx is the probability measure that puts mass 1 at x. Then,

lim
p→0

lim sup
n→∞

Zn[np] = sup(supp(µ)) almost surely (5.2.45)

where [x] denotes the smallest integer larger than or equal to x.

Since there exists an open set U ⊆ [0, 1]2 such that W > 0 on U, then using Lemma 5.5 and Lemma
5.4 we have

lim
p→0

lim sup
N→∞

λ[Np](YN) = sup(supp(ζ)) = ∞ almost surely (5.2.46)

Since in the following we would be dealing with almost sure statements, then we refrain from writing
almost surely every time. Here [x] denotes the smallest integer larger than or equal to x and λk(Σ)
denotes the kth largest eigenvalue of the matrix Σ. By Weyl’s inequality we have

λ2[Np]−1(YN) ≤ λ[Np](ĀN + YN) + λ[Np](−ĀN)

Now by definition of ĀN , observe that −ĀN satisfies the assumptions of Theorem 1 of Zhu [41], and let

ESD (−ĀN)→ κA

for some unique measure κA on R. Suppose X̃ ∼ κA. Then we have from (2.3.2)

E
[

X̃k
]
=

{
0 k is odd

∑
Ck/2
j=1 t

(
Tk/2+1

j , W
)

k is even

where Tk+1
j denotes the jth rooted planar tree of k + 1 vertices and Ck is the kth Catalan number. Then

observe that

‖X̃‖2k =

(
Ck

∑
j=1

t(Tk+1
j , W)

) 1
2k

≤
(

CkCk
) 1

2k

where ‖ · ‖2k denotes the L2k norm and C is from L.1. It follows that there exists a constant C◦1 ∈ (0, ∞)
such that

lim
k→∞

(
CkCk

) 1
2k

= C
1
2 C◦1 .

Hence we can conclude that there exists a constant C◦ > 0 such that∥∥∥X̃
∥∥∥

2k
≤ C◦, ∀k ≥ 1

Now since
∥∥∥X̃
∥∥∥

k
≤
∥∥∥X̃
∥∥∥

2k
we have ∥∥∥X̃

∥∥∥
k
≤ C◦, ∀k ≥ 1
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Now define f = min
(
|X̃|, C◦ + 1

)
∈ L∞. Then ‖ f ‖p ≤ ‖X̃‖p ≤ C◦. Now since f ∈ L∞ ∩ Lp for some

p ≥ 1, then ‖ f ‖∞ = limp→∞ ‖ f ‖p ≤ C◦. Then we have min
(
|X̃|, C◦ + 1

)
≤ C◦ a.e. which implies

|X̃| ≤ C◦ a.e.

Thus

sup(supp(κA)) ≤ C◦. (5.2.47)

Hence using Lemma 5.5 we have

lim
p→0

lim sup
N→∞

λ[Np](−ĀN) = sup(supp(κA)) ≤ C◦

Fix ε > 0, then there exists η > 0 such that for all p ∈ (0, η ∧ 1
2 ), lim supN→∞ λ[Np](−ĀN) ≤ C◦ + ε. So

for all p ∈ (0, η ∧ 1
2 ) we have

lim sup
N→∞

λ[Np](ĀN + YN) ≥ lim sup
N→∞

λ2[Np]−1(YN)− lim inf
N→∞

λ[Np](−ĀN)

≥ lim sup
N→∞

λ2[Np]−1(YN)− (C◦ + ε)

Now from (5.2.46) it can be easily shown that limp→0 lim supN→∞ λ2[Np]−1(YN) = ∞ and hence we have

sup(supp(ν)) = lim
p→0

lim sup
N→∞

λ[Np](ĀN + YN) = ∞

which implies that ν has unbounded support.

5.2.4. Identification of moments of ν. The proof of the previous result already gave the convergence of
the moments. We briefly browse through the expressions to write them in terms of the description used
in Section 2.5. First, remember that the odd moments are 0. The case for k = 0 is trivial, so fix k in 2N.
Then it is enough to look at the convergence of the terms (recall (5.2.4))

E

[
1
N

Tr
(

Ām1
N Yn1

N . . . Āmk
N Ynk

N
)]

=
1
N ∑

i1 ...i∑ mp

E

[
∑ mp

∏
j=1

Gij∧ij+1,ij∨ij+1

]
∑ mp

∏
j=1

σij ,ij+1√
N

k

∏
j=1

 1
N ∑

t 6=i
1+∑

j
p=1 mp

σ2
i
1+∑

j
p=1 mp

,t


nj
2

E

[
k

∏
j=1

Z
nj
i
1+∑

j
p=1 mp

]
. (5.2.48)

where ∑k
p=1 mp + np = k. Now if ∑k

p=1 mp is odd then

E

[
∑ mp

∏
j=1

Gij∧ij+1,ij∨ij+1

]
= 0

and the corresponding moment becomes 0. So we need only consider ∑k
p=1 mp is even. Once again we

look at the closed walk i1 → · · · im → i1. (Remember that im+1 = i1 and hence we identify 1 by m + 1 for
notational convenience.) Arguing as in the convergence of moments part we can show that it is enough
to look at a closed walk on a tree of m/2 + 1 vertices where each edge is visited twice. We know that
there exists one correspondence between such a walk and a depth first search over a rooted planar tree
having vertices chosen from [N]. Hence consider the rth labelled rooted planar tree Tm/2+1

r,l = (V, E)
with the labelling l = (l1, · · · , lm/2+1) which corresponds to this walk. Then it is easy to see that

E

[
∑ mp

∏
j=1

Gij∧ij+1,ij∨ij+1

]
= E

[
∏
e∈E

G2
e

]
= 1
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and using the notations defined in the setup of Section 2.5 we have

k

∏
j=1

 1
N ∑

t 6=i
1+∑

j
p=1 mp

σ2
i
1+∑

j
p=1 mp

,t


nj
2

=

m
2 +1

∏
s=1

(
1
N ∑

t 6=ls

σ2
ls ,t

)∑
ηs
j=1 nsj /2

and

E

[
k

∏
j=1

Z
nj
i
1+∑

j
p=1 mp

]
= E

 m
2

∏
s=1

Z
∑

ηs
j=1 nsj

ls

 =

m
2

∏
s=1

E

[
Z

∑
ηs
j=1 nsj

ls

]
= f

(
T̃m/2+1

r,l

)
where f is defined in (2.5.1). Hence the contribution of this term is 0 if ∑

ηs
j=1 nsj is odd for some s ∈

{1, 2, · · · , m/2 + 1}. So we consider the situation where ∑
ηs
j=1 nsj is even for all s ∈ {1, 2, · · · , m/2 + 1}.

Then (5.2.48) becomes

1
Nm/2+1

Cm/2

∑
r=1

∑
l1 6=l2 6=···6=lm/2+1

∏
e∈E

(
Tm/2+1

r,l

) σ2
e

m
2 +1

∏
s=1

(
1
N ∑

t 6=ls

σ2
ls ,t

)∑
ηs
j=1 nsj /2

f
(

T̃m/2+1
r,l

)
(5.2.49)

Observing that f does not depend on the labelling of the tree, and going similarly as in (5.2.18) we can
show that

1
Nm/2+1 ∑

l1 6=l2 6=···6=lm/2+1

∏
e∈E

(
Tm/2+1

r,l

) σ2
e

m
2 +1

∏
s=1

(
1
N ∑

t 6=ls

σ2
ls ,t

)∑
ηs
j=1 nsj /2

f
(

T̃m/2+1
r,l

)
→ t(T̃m/2+1

r , W) f (T̃m/2+1
r )

Then combining with (5.2.49) and (5.2.1) we are done. �

Proof of Corollary 2.1. It is easy to observe that λi(A + αIN) = λi(A) + α and λi

(
A
α

)
= 1

α λi(A) for any
N × N matrix A and for any α 6= 0. Then observe that

λi(∆N)− NµN√
NσN

= λi

(
∆N − NµN IN√

NσN

)
Now observe that the centered laplacian is

∆0
N =

∆N − NµN IN + µN JN√
NσN

where JN is the N × N matrix having all entries equal to 1. Define ∆1
N = ∆N−NµN IN√

NσN
. Now by rank

inequality (Bai and Silverstein [5, Theorem A.43]) we have∥∥∥F∆0
N − F∆1

N

∥∥∥ ≤ 1
N

rank
(

∆0
N − ∆1

N

)
=

1
N

rank
(

µN√
NσN

JN

)
= O

(
1
N

)
→ 0 (5.2.50)

where FAN (x) = 1
N ∑N

i=1 I {λi(AN) ≤ x} for any N × N symmetric matrix AN and its eigenvalues
{λi(AN) : 1 ≤ i ≤ N}. Hence it is enough to look at convergence of ESD of ∆0

N .
Now define BN = 1

σN
(AN −EAN) =

1
σN

(AN − µN JN). Then it is easy to see that
√

N∆0
N is the laplacian

corresponding to BN . Now observe that for any η > 0

1
N2 ∑

1≤i,j≤N
E
[
|BN(i, j)|2 1

{
|BN(i, j)| ≥ η

√
N
}]
≤ 1

N2 ∑
1≤i,j≤N

1

ηδN
δ
2

E

[∣∣∣∣AN(i, j)− µn

σN

∣∣∣∣2+δ
]

(5.2.51)

= O
(

N−
δ
2

)
→ 0 (5.2.52)
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Thus BN satisfies assumption L.2. Assumption L.1 is immediate from the given assumptions in the
theorem. Observe that

E
[

BN(i, j)2
]
= 1, ∀1 ≤ i, j ≤ N (5.2.53)

Taking W ≡ 1, a graphon, we can easily see that assumption L.3 is satisfied. Hence by Theorem 2.1 there
exists a symmetric probability measure ν of unbounded support where ESD of ∆0

N converges to weakly
in probability.
Recall from the proof of Theorem 2.1, the moments which identify ν are given by the limits of 1

N Tr (ĀN + YN)
k

for all k ≥ 1 where ĀN is as defined in the Lemma 5.2 with σi,j = 1 ∀i, j and YN is the diagonal N × N

matrix as defined in Lemma 5.3 with σi,j = 1. It is easy to observe that 1
N Tr (ĀN + YN)

k is the kth mo-
ment of ESD(ĀN + YN). Since ν is uniquely identified by it’s moments, then using method of moments,
we can say that ESD(ĀN + YN) =⇒ ν in probability. By the strong law of large numbers, with proba-
bility 1, ESD(YN) =⇒ γ1, where γ1 denotes the standard normal distribution. Also we know that,with
probability 1, ESD(ĀN) =⇒ γ0, where γ0 denotes the semicircle law. Further

sup
N

E

∫
|x|dESD(YN) = sup

N
E

1
N

N

∑
i=1
|Zi| < ∞

where Zi are i.i.d. standard normal. Also E
∫
|x|dESD(ĀN) ≤ 1

N

√
E Tr

(
Ā2

N
)
= 1. Then by Theorem 2.1

of Pastur and Vasilchuk [31] we have ESD(ĀN + YN) converges weakly in probability to γ0 � γ1 = γM.
Hence by uniqueness of ν we must have ν = γM. �

Proof of Theorem 2.2. The case when r ≡ 0 is trivially true. Hence we assume that r > 0 at some point in
[0,1]. By the proof of Theorem 2.1

ESD (ĀN + YN)→ ν, weakly in probability

where ĀN and YN are as defined in Lemma 5.3. Define

ηW
(

i
N

,
j

N

)
= N2

∫
Ii×Ij

W(x, y)dxdy, ∀1 ≤ i, j ≤ N, (5.2.54)

where {Ii} is the partition of [0, 1] as defined in Definition 2.1. Then define the N × N matrix Z̄N as

Z̄N(i, j) =

√√√√ηW
(

i
N , j

N

)
N

Gi∧j,i∨j, 1 ≤ i, j ≤ N

where the collection {Gi,j : 1 ≤ i, j ≤ N} is defined in (5.1.1). Further define the N× N diagonal matrix
YZ

N by

YZ
N(i, i) =

√√√√ 1
N ∑

j 6=i
ηW
(

i
N

,
j

N

)
Zi, 1 ≤ i ≤ N

where Zi for all 1 ≤ i ≤ N are as defined in Lemma 5.3. Observe that

1
N

E Tr (ĀN − Z̄N)
2
=

1
N2

N

∑
i,j=1

(
σi,j −

√
ηW
(

i
N

,
j

N

))2

=
1

N2

N

∑
i,j=1

ηW
(

i
N

,
j

N

)
+

1
N2

N

∑
i,j=1

σ2
i,j −

2
N2

N

∑
i,j=1

σi,j

√
ηW
(

i
N

,
j

N

)
(5.2.55)
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Using (5.2.54) and the fact that |
√

x−√y| ≤ |x− y|/√y for x, y ∈ (0, ∞), we have∣∣∣∣∣ 1
N2

N

∑
i,j=1

σi,j

√
ηW
(

i
N

,
j

N

)
−
∫
[0,1]2

W(x, y)dxdy

∣∣∣∣∣
=

∣∣∣∣∣∣
N

∑
i,j=1

(∫
Ii×Ij

W(x, y)dxdy

)1/2
(∫

Ii×Ij

WN(x, y)dxdy

)1/2

−
(∫

Ii×Ij

W(x, y)dxdy

)1/2
∣∣∣∣∣∣

≤
N

∑
i,j=1

∫
Ii×Ij

|WN(x, y)−W(x, y)| dxdy N→∞−→ 0.

From (5.2.55) we conclude that

1
N

E Tr (ĀN − Z̄N)
2 → 0. (5.2.56)

A similar computation as above shows that

1
N

E Tr
(

YN −YZ
N

)2
→ 0. (5.2.57)

Combining (5.2.56) and (5.2.57), along with Bai and Silverstein [5, Corollary A.41] we have

L
(

ESD (ĀN + YN) , ESD
(

Z̄N + YZ
N

))
P−→ 0.

Define

gi =
∫

Ii

r(x)dx, ∀1 ≤ i ≤ N (5.2.58)

and define the N × N diagonal matrix ỸZ
N as

ỸZ
N(i, i) = α

√
NgiZi, ∀1 ≤ i ≤ N.

By definition in (5.2.58)

1
N ∑

j 6=i
ηW
(

i
N

,
j

N

)
= Ngi(α

2 − gi), ∀1 ≤ i ≤ N.

Thus
1
N

E Tr
((

Z̄N + YZ
N

)
−
(

Z̄N + ỸZ
N

))2
=

1
N

E Tr
(

YZ
N − ỸZ

N

)2

=
1
N

N

∑
i=1

(√
Ngi(α2 − gi)− α

√
Ngi

)2
EZ2

i

=
N

∑
i=1

gi

(
α−

√
α2 − gi

)2

≤
n

∑
i=1

gi
1
α

(
α2 −

(
α2 − gi

)2
)

(5.2.59)

≤
N

∑
i=1

1
α

g3
i → 0.

where (5.2.59) follows from the inequality |
√

x−√y| ≤ |x−y|√
y and the final limit follows since gi ≤ 1/N

for all 1 ≤ i ≤ N. Now for N ≥ 1, define the N × N matrices

GN(i, j) = N−1/2Gi∧j,i∨j, 1 ≤ i, j ≤ N,

RN = Diag
(√

Ng1,
√

Ng2, · · · ,
√

NgN

)
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and
UN = Diag (Z1, · · · , ZN)

Then observe that
Z̄N = RNGN RN ,

and
ỸZ

N = αR1/2
N UN R1/2

N

The proof would follow similarly as the proof of Theorem 1.3 from Chakrabarty et al. [11] if we can
show that for any K ≥ 0 and all k ≥ 1, m1, · · · , mk and n1, · · · , nk ≥ 0,

lim
N→∞

1
N

Tr
(

Rm1
N Un1

NK · · · R
mk
N Unk

NK
)

(5.2.60)

=
∫ 1

0
r∑k

i=1 mi/4(u)du
∫ K

−K

1√
2π

x∑k
i=1 ni e−x2/2dx a.s. (5.2.61)

where for all K ≥ 0, the N × N diagonal matrix UNK is given by

UNK = Diag
(

Z11{|Z1|≤K}, · · · , ZN1{|ZN |≤K}

)
An application of SLLN shows that it is enough to look at the limit of

1
N

N

∑
i=1

(Ngi)
∑k

j=1 mj/4
E

(
Z

∑k
j=1 nj

i 1{|Zi |≤K}

)

=
1
N

N

∑
i=1

(Ngi)
∑k

j=1 mj/4
∫ K

−K

1√
2π

x∑k
i=1 ni e−x2/2dx

Define

m(x) =
∫ x

0
r(t)dt, ∀x ∈ [0, 1]

Then observe that

1
N

N

∑
i=1

(
N
∫

Ii

r(x)dx
)∑k

j=1 mj/4
=

1
N

N

∑
i=1

(
m(i/N)−m(i− 1/N)

1/N

)∑k
j=1 mj/4

It is easy to see that m is uniformly differentiable on [0, 1].3 Hence given ε > 0, for large enough N we
have (

m(i/N)−m(i− 1/N)

1/N

)∑k
j=1 mj/4

= r
(

i
N

)∑k
j=1 mj/4

+ O(ε)

Hence taking N → ∞ we have

1
N

N

∑
i=1

(
m(i/N)−m(i− 1/N)

1/N

)∑k
j=1 mj/4

→
∫ 1

0
r∑k

i=1 mi/4(u)du + O(ε)

Since the above is true for all ε > 0, then we have shown (5.2.60). �

3Let f be defined (and real valued) on [a, b] and the derivative f ′ exists on [a, b] (considering the left and right derivatives at the
boundary points). Then the function f is said to be uniformly differentiable if for all ε > 0, there exists δ > 0 such that whenever
0 ≤ |t− x| ≤ δ, a ≤ x, t ≤ b ∣∣∣∣ f (x)− f (t)

x− t
− f ′(x)

∣∣∣∣ < ε

It follows from Rudin et al. [32, Exercise 5.8] that a function f differentiable on [a, b] is uniformly differentiable if f ′ is continu-
ous on [a, b].
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6. PROOF OF THEOREM 2.3 AND COROLLARY 2.2

Before proving that spectral norm of ∆N scales as
√

N log N, we show that the spectral norm of the
adjacency matrix would scale slower than

√
N log N, which is crucially needed for proving the theorem.

Lemma 6.1. For a N × N generalised Wigner matrix AN satisfying the above stated assumptions S.1-S.3,

‖AN‖√
N log N

a.s.−→ 0

where ‖ · ‖ is the spectral norm.

Proof. Following Theorem 3.2 from Zhu [41] we know that

lim
N→∞

ESD
(

AN
)
= µ weakly almost surely (6.1)

where µ is identified by the moments given in (2.3.2) Then going similar as in proof of (5.2.47) we can
conclude that there exists C0 > 0 such that

sup(supp(µ)) ≤ C◦

Then by Ding and Jiang [18, Lemma 2.8] there exists α ∈ R such that |α| < ∞ and

lim inf
N→∞

λmax(AN)√
N

≥ α almost surely. (6.2)

(Observe that due to above bound on sup(supp(µ)) we can conclude that |α| < ∞). Thus it is enough
to prove the upper bound

lim sup
N→∞

λmax(AN)√
N

≤ 2C1/2
2 almost surely

We omit the proof of the upper bound since it follows similar to the proof of Lemma 2.1 from Ding and
Jiang [18]. �

Proof of Theorem 2.3. The proof follows the line of argument in Bryc et al. [9, Theorem 1.5]. Before pro-
ceeding with the proof in order to make notations clearer we will use AN =

(
X(N)

ij

)
1≤i≤j≤N

to indicate

the dependence on N and similarly σN(i, j) instead of σi,j in corresponding places. Define

DN = diag

(
N

∑
j=1

X(N)
ij

)N

i=1

Then using triangle inequality we have

|‖∆N‖ − ‖DN‖| ≤ ‖AN‖ (6.3)

Hence by Lemma 6.1 it is enough to look at ‖DN‖√
N log N

. Define

TN = max
1≤i≤N

∣∣∣∣∣ N

∑
j=1

X(N)
ij

∣∣∣∣∣ which implies
TN√

N log N
=

‖DN‖√
N log N

Fix 1 ≤ i ≤ N, then using Lemma 2.1 of Bryc et al. [9] (a result on strong Gaussian approximation) there
exists

{
Y(N)

ij : 1 ≤ j ≤ N
}

where Y(N)
ij ∼ N

(
0, σN(i, j)2) and are independent such that ∀α > 0,

P

(∣∣∣∣∣ N

∑
j=1

X(N)
ij −

N

∑
j=1

Y(N)
ij

∣∣∣∣∣ ≥ α
√

N log N

)
≤ C

1 + (α
√

N log N)6

N

∑
j=1

E

∣∣∣X(N)
ij

∣∣∣6
≤ C0

N2(log N)3 (6.4)
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The last inequality follows from assumption S.2. Then it can be concluded that ∀α > 0,

N
max
i=1

P

(∣∣∣∣∣ N

∑
j=1

X(N)
ij −

N

∑
j=1

Y(N)
ij

∣∣∣∣∣ ≥ α
√

N log N

)
≤ C0

N2(log N)3 (6.5)

Now observe that ∣∣∣∣∣ N

∑
j=1

X(N)
ij

∣∣∣∣∣ ≤
∣∣∣∣∣ N

∑
j=1

Y(N)
ij

∣∣∣∣∣+
∣∣∣∣∣ N

∑
j=1

X(N)
ij −

N

∑
j=1

Y(N)
ij

∣∣∣∣∣ (6.6)

Hence we have

P
(

TN ≥ (α + 2ε)
√

A2N log N
)
≤ N

N
max
i=1

P

(∣∣∣∣∣ N

∑
j=1

X(N)
ij

∣∣∣∣∣ ≥ (α + 2ε)
√

A2N log N

)

≤ N
N

max
i=1

P

(∣∣∣∣∣ N

∑
j=1

Y(N)
ij

∣∣∣∣∣ ≥ (α + ε)
√

A2N log N

)

+ N
N

max
i=1

P

(∣∣∣∣∣ N

∑
j=1

X(N)
ij −

N

∑
j=1

Y(N)
ij

∣∣∣∣∣ ≥ ε
√

A2N log N

)
(6.7)

We know that ∑N
j=1 Y(N)

ij ∼ N
(

0, ∑N
j=1 σN(i, j)2

)
. Hence ∑N

j=1 Y(N)
ij

d
=
(

∑N
j=1 σN(i, j)2

)1/2
Z, where Z ∼

N(0, 1). Using Gaussian tail inequality (Mill’s ratio) we have

P

(∣∣∣∣∣ N

∑
j=1

Y(N)
ij

∣∣∣∣∣ ≥ (α + ε)
√

A2N log N

)
= P

|Z| ≥ (α + ε)
√

A2N log N(
∑N

j=1 σN(i, j)2
)1/2


≤ P

(
|Z| ≥

(α + ε)
√

A2N log N
(A2N)1/2

)
(6.8)

= P
(
|Z| ≥ (α + ε)

√
log N

)
≤ 2√

2π(α + ε)
√

log N
exp

(
− (α + ε)2 log N

2

)
≤ C1N−

(α+ε)2
2 (6.9)

for some constant C1 > 0 and all N sufficiently large. Then by (6.7) we have

P
(

TN ≥ (α + 2ε)
√

A2N log N
)
≤ C1N1− (α+ε)2

2 +
C0

N(log N)3 (6.10)

Now taking α = 2 we find that R.H.S. of above equation is O(N−1(log N)−3). Then

∑
N≥1

P
(

TN ≥ (α + 2ε)
√

A2N log N
)
< ∞ (6.11)

Hence by Borel Cantelli Lemma we have for all ε > 0

lim sup
N→∞

TN√
A2N log N

≤ 2 + 2ε a.s.

Hence

lim sup
N→∞

TN√
2N log N

≤ (2A2)
1/2 a.s. (6.12)
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Now define kN = [N/ log N]. Further define

VN =
kNmax
i=1

∣∣∣∣∣ kN

∑
j=1

X(N)
ij

∣∣∣∣∣ (6.13)

Then observe that

TN ≥
kNmax
i=1

∣∣∣∣∣ N

∑
j=kN+1

X(N)
ij

∣∣∣∣∣−VN (6.14)

Now observe that by similar computations as (6.12) we have lim supN→∞ VN/
√

2kN log kN ≤ C almost
surely for some C > 0. Since

√
N log N/

√
kN log kN → ∞. Hence limN→∞ VN/

√
N log N = 0 almost

surely. Then enough to look at

lim inf
N→∞

1√
2N log N

kNmax
i=1

∣∣∣∣∣ N

∑
j=kN+1

X(N)
ij

∣∣∣∣∣ (6.15)

Now then once again for using a Gaussian approximation lemma (Lemma 2.1 of Bryc et al. [9]), for large
enough N we have

kNmax
i=1

P

(∣∣∣∣∣ N

∑
j=1

X(N)
ij −

N

∑
j=1

Y(N)
ij

∣∣∣∣∣ ≥ α
√

N log N

)
≤ C0

N2(log N)3 (6.16)

for
{

Y(N)
ij : 1 ≤ j ≤ kN

}
such that the random variables are independent for fixed 1 ≤ i ≤ kN and

Y(N)
ij ∼ N

(
0, σN(i, j)2). Now

P

(
kNmax
i=1

∣∣∣∣∣ N

∑
j=kN+1

X(N)
ij

∣∣∣∣∣ ≤ (β− ε)
√

A1N log N

)
≤

kN

∏
i=1

P

(∣∣∣∣∣ N

∑
j=kN+1

X(N)
ij

∣∣∣∣∣ ≤ (β− ε)
√

A1N log N

)
(6.17)

Observe the above uses the independence because of i < j. Then for fixed 1 ≤ i ≤ kN we have

P

(∣∣∣∣∣ N

∑
j=kN+1

X(N)
ij

∣∣∣∣∣ ≤ (β− 2ε)
√

A1N log N

)
≤ P

(∣∣∣∣∣ N

∑
j=kN+1

Y(N)
ij

∣∣∣∣∣ ≤ (β− ε)
√

A1N log N

)

+ P

(∣∣∣∣∣ N

∑
j=kN+1

X(N)
ij −

N

∑
j=kN+1

Y(N)
ij

∣∣∣∣∣ ≥ ε
√

A1N log N

)
(6.18)

Now once again observe that ∑N
j=kN+1 Y(N)

ij ∼ N(0, ∑N
j=kN+1 σN(i, j)2). Then

P

(∣∣∣∣∣ N

∑
j=kN+1

Y(N)
ij

∣∣∣∣∣ ≤ (β− ε)
√

A1N log N

)
= P

|Z| ≤ (β− ε)
√

A1N log N√
∑N

j=kN+1 σN(i, j)2


≥ 1−P

(
|Z| >

(β− ε)
√

A1N log N√
(N − kN)A1

)
(6.19)

Now observe that taking 0 < ε < β, we must have for N sufficiently large (β− ε)
√

N
N−kN

≤ (β− (ε/2)).
Thus by using Mill’s ratio for sufficiently large N we have

P

(
|Z| >

(β− ε)
√

A1N log N√
(N − kN)A1

)
≥ P

(
|Z| > (β− ε)

√
N

N − kN

√
log N

)

≥ C
N(β−ε/2)2/2 log N

(6.20)
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for some constant C > 0. Then combining the above equation with (6.16) and (6.18) we have

P

(∣∣∣∣∣ N

∑
j=kN+1

X(N)
ij

∣∣∣∣∣ ≤ (β− 2ε)
√

A1N log N

)
≤ 1− C

N(β−ε/2)2/2 log N
+

C0

N2(log N)3

≤ 1− C2

N(β−ε/2)2/2 log N
(6.21)

for all sufficiently large enough N and some constant C2 > 0. Then using the inequality 1− x ≤ e−x for
any x > 0, we have

P

(
kNmax
i=1

∣∣∣∣∣ N

∑
j=kN+1

X(N)
ij

∣∣∣∣∣ ≤ (β− ε)
√

A1N log N

)
≤ exp

(
− C2

N(β−ε/2)2/2 log N
kN

)

= O
(

exp
(
−C2N1−(β−ε/2)2/2

))
(6.22)

Taking β =
√

2, it can be seen that

∑
N≥1

P

(
kNmax
i=1

∣∣∣∣∣ N

∑
j=kN+1

X(N)
ij

∣∣∣∣∣ ≤ (
√

2− ε)
√

A1N log N

)
< ∞ (6.23)

Then by Borel-Cantelli Lemma we can conclude that

lim inf
N→∞

1√
N log N

kNmax
i=1

∣∣∣∣∣ N

∑
j=kN+1

X(N)
ij

∣∣∣∣∣ ≥ (
√

2− ε)
√

A1, a.s. 0 < ε <
√

2. (6.24)

Hence combining with (6.14) we must have

lim inf
N→∞

TN√
2N log N

≥
√

A1. (6.25)

Then using (6.3) we have (2.6.3). �

Proof of Corollary 2.2. We use the notation of Theorem 2.3. Define a N × N diagonal matrix EN as

EN = EX(N)
ij −

N

∑
j=1

EX(N)
ij 1i=j

Using Theorem 2.3 it is immediate that

lim
N→∞

‖∆̃N‖/N → 0 almost surely,

where ∆̃N = ∆N − EN . Observe that by assumption S.5 we have ‖EN‖
N → m Hence using triangle

inequality we can conclude that

‖∆N‖
N
→ m almost surely.

�

APPENDIX

In the appendix, we provide the proofs of some of the lemma used before. The methods are straight-
forward and hence they are recalled in the appendix. First, we provide proof of Lemma 5.1. We shall
use some notations and results from Chatterjee [12].

Definition 6.1. For any open interval I containing 0, any positive integer n, any function f : In → C which is
thrice differentiable in each coordinate, and 1 ≤ r ≤ 3, let

λr ( f ) = sup
{∣∣∣∂p

i f (x)
∣∣∣ r

p : 1 ≤ i ≤ n, 1 ≤ p ≤ r, x ∈ In
}

(6.26)

where ∂
p
i denotes p-fold differentiation with respect to the ith co-ordinate.
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Lemma 6.2. Chatterjee [12, Theorem 1.1] Let f : In → R be thrice differentiable in each argument. If we set
U = f (X) and V = f (Y), then for any thrice differentiable g : R→ R and any K > 0,

|Eg(U)−Eg(V)| ≤ C1(g)λ2( f )
n

∑
i=1

[
E
(

X2
i 1{|Xi |>K}

)
+ E

(
Y2

i 1{|Yi |>K}

)]
+ C2(g)λ3( f )

n

∑
i=1

[
E
(

X3
i 1{|Xi |≤K}

)
+ E

(
Y3

i 1{|Yi |≤K}

)]
where C1(g) = ‖g′‖∞ + ‖g′′‖∞ and C2(g) = 1

6‖g′‖∞ + 1
2‖g′′‖∞ + 1

6‖g′′′‖∞

Proof of Lemma 5.1. For the proof we shall use a result from Chatterjee [12] which is recalled later as
Lemma 6.2. Consider f , r, n as defined in Definition 6.1. Then observe that

∣∣∣∂p
i R f

∣∣∣ = ∣∣∣R∂
p
i f
∣∣∣ ≤ ∣∣∣∂p

i f
∣∣∣.

Now using the fact that r
p > 0 we have

∣∣∣∂p
i R f

∣∣∣ r
p ≤

∣∣∣∂p
i f
∣∣∣ r

p , hence we have

λr (R f ) ≤ λr ( f ) . (6.27)

Let define X̃ =
(

A0
N(i, j)

)
1≤i<j≤N and Ỹ =

(
Ag

N(i, j)
)

1≤i<j≤N
. Take n = N(N−1)

2 . Then for all x =

(xi,j)1≤i<j≤N ∈ Rn define a real symmetric N × N matrix ∆(x) as

∆(x)(i, j) =

{
xi∧j,i∨j if i 6= j
−∑N

k 6=i,k=1 xi∧k,i∨k if i = j
(6.28)

Define Φ(x) = HN(∆(x)). Observe that ∆(X̃) = ∆0
N and ∆(Ỹ) = ∆g

N . Since E
(

A0
N(i, j)

)
= E

(
Ag

N(i, j)
)
=

0 and E
(
(A0

N(i, j))2) = E
(
(Ag

N(i, j))2
)
= σ2

i,j/N. Hence the assumptions on X̃ and Ỹ for Lemma 6.2
are satisfied. Note that real part of Φ is thrice differentiable as Φ is thrice differentiable. Observe that
∂∆(x)
∂xi,j

is a N×N matrix having−1 at ith and jth diagonals and 1 at (i, j) and (j, i) positions. Using matrix
identities derived in Chatterjee [12] we have

∂Φ
∂xi,j

= − 1
N

Tr

(
∂∆

∂xi,j
K2

)
∂2Φ
∂x2

i,j
= 2

1
N

Tr

(
∂∆

∂xi,j
K

∂∆
∂xi,j

K2

)
(6.29)

∂3Φ
∂x3

i,j
= −6

1
N

Tr

(
∂∆

∂xi,j
K

∂∆
∂xi,j

K
∂∆

∂xi,j
K2

)

where K(x) = (∆(x)− zIN)
−1. These identities along with some standard norm inequlities give us∥∥∥∥∥ ∂Φ
∂xi,j

∥∥∥∥∥
∞

≤ C1

N
,

∥∥∥∥∥ ∂2Φ
∂x2

i,j

∥∥∥∥∥
∞

≤ C2

N
,

∥∥∥∥∥ ∂3Φ
∂x3

i,j

∥∥∥∥∥
∞

≤ C3

N

Then by definition we have

λ2(Φ) ≤ sup

{
‖ ∂Φ

∂xi,j
‖2

∞, ‖ ∂2Φ
∂x2

i,j
‖∞

}
≤ K1

N

λ3(Φ) ≤ sup

{
‖ ∂Φ

∂xi,j
‖3

∞, ‖ ∂2Φ
∂x2

i,j
‖

3
2
∞, ‖ ∂3Φ

∂x3
i,j
‖∞

}
≤ K2

N
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for some K1, K2 > 0. Take U = RΦ(X̃) and V = RΦ(Ỹ). Now using Lemma 6.2, we have, ∀ε > 0

|E[h(U)]−E[h(V)]| ≤

C1(h)λ2(Φ) ∑
1≤i<j≤N

[
E
(
|A0

N(i, j)|21(|A0
N(i, j)| > ε)

)
+ E

(
|Ag

N(i, j)|21(|Ag
N(i, j)| > ε)

) ]

+ C2(h)λ3(Φ) ∑
1≤i<j≤N

[
E
(
|A0

N(i, j)|31(|A0
N(i, j)| ≤ ε)

)
+ E

(
|Ag

N(i, j)|31(|Ag
N(i, j)| ≤ ε)

) ]
Denote E[Xi,j] = µi,j and using λ2(Φ) = O(N−1) we have4

λ2(Φ) ∑
1≤i<j≤N

E

[
|A0

N(i, j)|21(|A0
N(i, j)| > ε)

]
(6.30)

� 1
N2 ∑

1≤i<j≤N
E

[
|Xi,j − µi,j|21(|Xi,j − µi,j| > ε

√
N)

]
→ 0, as N → ∞.

The last limit follows from L.2. Using the definition of Ag
N from (5.1.1) and supi,j σi,j < C0 for some

C0 > 0 (L.1) we have

λ2(Φ) ∑
1≤i<j≤N

E

[
|Ag

N(i, j)|21(|Ag
N(i, j)| > ε)

]
(6.31)

� 1
N2 ∑

1≤i<j≤N
E

[
|Gi,j|21(|Gi,j| >

ε
√

N
C0

)

]
� E

[
|Gi,j|21(|Gi,j| >

ε
√

N
C0

)

]
→ 0 as N → ∞

Now we deal with the factor involving the third derivative. Again using bounds from L.1 we have

λ3(Φ) ∑
1≤i<j≤N

E

[
|A0

N(i, j)|31(|A0
N(i, j)| ≤ ε)

]
� ε

1
N2 ∑

1≤i<j≤N
E

[
|Xi,j − µi,j|2

]
� ε as N → ∞. (6.32)

Similarly for the Gaussian case we have,

λ3(Φ) ∑
1≤i<j≤N

E

[
|Ag

N(i, j)|31(|Ag
N(i, j)| ≤ ε)

]
� ε

1
N2 ∑

1≤i<j≤N
E|Gi,j|2

� ε as N → ∞

Hence for any ε > 0 we have

|E(h(U))−E(h(V))| � ε as N → ∞. (6.33)

We have thus proved 5.1.3. Similarly, one can prove 5.1.4.
�
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