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Abstract. This paper studies price bargaining when both parties have left-digit bias when
processing numbers. The empirical analysis focuses on the auto finance market in the
United States, using a large data set of 35 million auto loans. Incorporating left-digit bias
in bargaining is motivated by several intriguing observations. The scheduled monthly
payments of auto loans bunch at both $9- and $0-ending digits, especially over $100marks.
In addition, $9-ending loans carry a higher interest rate, and $0-ending loans have a lower
interest rate. We develop a Nash bargaining model that allows for left-digit bias from both
consumers and finance managers of auto dealers. Results suggest that both parties are
subject to this basic human bias: the perceived difference between $9- and the next $0-
ending payments is larger than $1, especially between $99- and $00-ending payments. The
proposed model can explain the phenomena of payments bunching and differential in-
terest rates for loans with different ending digits. We use counterfactuals to show a nu-
anced impact of left-digit bias, which can both increase and decrease the payments.
Overall, bias from both sides leads to a $33 increase in average payment per loan compared
with a benchmark case with no bias.

History: Accepted by Matthew Shum, marketing.
Supplemental Material:Data and the online appendix are available at https://doi.org/10.1287/mnsc.2020.3923.

Keywords: bargaining • left-digit bias • auto finance • dealer compensation

1. Introduction
Bargaining is a commonly used price-setting mech-
anism in many markets, such as automobiles and
business-to-business (B-to-B) transactions. Inbargaining,
final prices vary across transactions instead of being set
by one side as fixed posted prices. The two parties in
negotiations evaluate the key variable of interest (e.g.,
price) and reach a bargaining outcome depending on
their relative bargaining power. Most of the empirical
bargaining literature characterizes the perceived value
of the bargaining outcome with a fully rational model
(e.g. Draganska et al. 2010). However, people often use
simple cognitive shortcuts when processing informa-
tion, which makes accounting for bounded rational-
ity important in describing economic behaviors (see
Conlisk 1996 for a review). In a bargaining setting,
decision-makers on both sides are human beings.
Behavioral decision researchers have long recognized
psychological influence in negotiation, such as status
quo bias and reciprocity heuristic (Malhotra and
Bazerman 2008) and focal point effects (Pope et al.
2015). Using online bargaining interactions, Backus
et al. (2020) find behavioral norms play an important
role in the bargaining outcome. Decision-makers may
also be subject to bias when evaluating numbers. For
example, people have the tendency to focus on the

leftmost digit of a number while partially ignoring
other digits (Poltrock and Schwartz 1984, Lacetera
et al. 2012, Strulov-Shlain 2019). With such left-digit
bias, a number with 99-ending (e.g., $299) may be
perceived to be significantly lower than the next round
number (e.g., $300). One consequence of such bias in
the marketplace is the ubiquitous 99-cents pricing
(Basu 2006, Thomas et al. 2010).
In this paper, we empirically study a bargaining

setting where the outcomes are affected by left-digit
bias in addition to bargaining power. When both
parties are influenced by left-digit bias in a negotia-
tion, they will try to push the price toward their fa-
vorite side. For example, while buyers deem a price
with 99-ending as a lower number, sellers perceive a
price a bit higher with 00-ending to be a better deal.
This makes the bargaining outcome different from
when left-digit bias does not play a role. In this study,
we discover several intriguing data patterns using a
large data set with 35 million auto loans in the United
States.1 First, the scheduled monthly payments of
auto loans bunch at both $9- and $0-endings. The
bunching pattern is more pronounced over $100
marks, with more than twice as many loans with $99-
ending and 1.5 times as many loans with $00-ending,
as loans with $01-ending. Second, while the interest
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rate for $9-ending loans is 0.6% higher than the av-
erage, the rate for $0-ending loans is 0.5% lower.
These data patterns are difficult to explain by a stan-
dard economic model without accounting for the in-
fluence of left-digit bias in bargaining. The data pat-
terns are heterogeneous across different consumer
groups. For example, consumers from regions with a
higher minority proportion (African American or
Hispanic) and a lower income are more likely to have
$9-ending loans and pay a higher interest rate than
others with a similar credit profile.

The auto finance market provides a perfect setting
to study price bargaining. With 107 million Ameri-
cans carrying an auto loan,2 the size of the auto fi-
nance market makes this study economically im-
portant. More importantly, in indirect auto lending,
the dealer markup compensation policy leads to ne-
gotiations that cause loan payments to vary across
transactions. In a standard loan arrangement, banks
quote a risk-adjusted interest rate, called the buy rate,
based on the consumers’ risk profile (e.g., credit
score). Auto dealers charge a markup, which repre-
sents their compensation for arranging the loan. Un-
like the bank buy rate, the markup reflects the relative
bargaining power between consumers and finance
managers of auto dealers. Thus, loan payments can be
viewed as the outcome of price negotiations instead of
fixed prices.

We seek to address two main research questions in
this study. The first question is to understand how
including left-digit bias in bargaining explains the
observed bunching and interest rate patterns in the
auto finance market. In particular, we show how bias
from both consumers and finance managers plays a
role in the observed patterns. The second question is
to evaluate the impact of left-digit bias on the bar-
gaining outcome. This is achieved by building and
estimating a bargaining model that incorporates left-
digit bias and exploring the effect of bias on bar-
gaining outcomes through a counterfactual analysis.

To answer our research questions, we propose a
bargaining model that allows for left-digit bias from
both parties and estimate the model using a large-
scale auto loan data set. More specifically, given the
nature of the dealer compensation policy, we let loan
payments arise from a Nash bargaining solution be-
tween individual consumers and finance managers.
The model allows both parties to have potential left-
digit bias when evaluating payment numbers. Note
that the bias is not imposed: Depending on the pa-
rameter estimates, both parties’ perceived payments
can reflect the bias or reduce to a standard bargaining
model without bias. For model estimation, we use
simulated method of moments that match the level of
payments and the proportion of payment ending

digits between actual and model-simulated data.
These moments pin down the parameters associated
with the left-digit bias of consumers and finance
managers and the bargaining power parameters.
Estimation results suggest that left-digit bias exists

not only for consumers but also for finance managers.
For consumers, the average perceived difference be-
tween $9- and $0-ending payments is $1.22 instead of
$1, and the perceived gap is even higher, at $2.01,
between $99- and $00-ending payments. Within each
$10 range, each $1 increase is perceived to be smaller
than $1. The estimated bias for finance managers is
only slightly smaller than that for consumers. Standard
economic studies usually assume that companies are
fully rational entities in making business decisions. In
this setting, however, financemanagers who represent
auto dealers are also human beings, who can be subject
to the same human tendencywith numbers. This study
thus adds to the existing literature that documents
psychological bias among professionals, such as law-
yers (Birke and Fox 1999), professional traders (Coval
and Shumway 2005), dealers in used-car auctions
(Lacetera et al. 2016), andmanagers in amultinational
corporation (Workman 2012). It is worth noting that
the bias for consumers and finance managers is ex-
actly the same type of bias, where a $9-ending number
is perceived to be substantially smaller than the next
$0-ending number. They are, however, on the op-
posite side of bargaining: While consumers prefer to
pay a lower payment ($9-ending), finance managers
prefer to receive a higher payment ($0-ending).
How does incorporating the left-digit bias from

both sides in bargaining contribute to the observed
data patterns? Bias from consumers and finance man-
agers creates a discontinuity in perceived payments at
every $10 mark between $9- and $0-ending, leading to
an excess number of loans at both $9- and $0-ending
payments. In particular, the consumer bias leads to
bunching at $9-ending, andfinancemanager bias leads
to bunching at $0-ending. The interest rate patterns are
driven by the bargaining power for those with $9-
versus $0-ending loans. Lower bargaining consumers,
who will receive a higher interest rate, are more likely
to get $9-ending payments; in contrast, higher bar-
gaining power consumers are more likely to get $0-
ending payments and have a lower interest rate.
With the model estimates, we explore the impact of

left-digit bias on payments using counterfactual analy-
sis. Behavioral biases are typically thought to make
people worse off, and researchers propose ways to de-
bias consumers for a better decision-making strategy
(Larrick 2004). The impact of left-digit bias in bar-
gaining is nuanced. For example, we find that con-
sumer bias can both increase and decrease the pay-
ments compared with a benchmark case with no bias.
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Consumer bias induces two types of effects. The first
effect comes from the nonstandard perceived payment:
The larger perceived difference between $9- and $0-
ending makes it more difficult to increase payments
from a $9-ending number, which can lead to a lower
payment, while the smaller perceived difference within
$10 range makes it easier for finance managers to push
up the payments, which can lead to a higher payment.
The second is a level effect: The perceived payments are
lower with consumer bias (except at the hundreds);
therefore, with the same bargaining power, payments
become higher to achieve the same division of total
surplus from bargaining. The effect of finance manager
bias on payments has a similar logic. When both parties
have the estimated bias, the loan payments will increase
by 0.13%, or $33 per loan, compared with a benchmark
scenario where neither party has the bias.

This paper is related to the literature in bargaining,
numerical cognition, and 9-ending prices, as well as
studies of the bunching phenomenon. The prior lit-
erature uses bargaining models to study automotive
sales and auto financing (Chen et al. 2008, Morton
et al. 2011, Jiang et al. 2020, Larsen 2020), B-to-B
transactions (Draganska et al. 2010, Grennan 2014,
Zhang and Chung 2020), and interactions between
online sellers and buyers (Zhang et al. 2018, Backus
et al. 2019), all of which assume fully rational agents.
This paper contributes to the empirical bargaining
literature by studying how left-digit bias from both
sides influences bargaining outcomes. We show that
considering left-digit bias is essential in explaining
the reduced-form data patterns in bargaining out-
comes. The insights could generalize to other settings
where the bargaining happens between two indi-
viduals and the bargaining outcomes are numeric.

This paper also draws from the literature on nu-
merical cognition and the marketing literature on 9-
ending prices. The numerical cognition literature in
psychology primarily focuses on the differences in
behavioral perception between round and precise
numbers. Past research has shown that buyers may
underestimate the magnitude of precise prices (Thomas
et al. 2010) and that precise numbers signal sellers’
confidence (Jerez-Fernandez et al. 2014). However,
offers at round numbers can symbolize completion
(Yan and Pena-Marin 2017) and willingness to cut
prices (Backus et al. 2019). This paper also relates to
the marketing literature that studies the prevalence of
9-ending prices in retail sales (e.g., Monroe 1973,
Schindler and Kibarian 1996, Stiving andWiner 1997,
Anderson and Simester 2003, Thomas and Morwitz
2005, Strulov-Shlain 2019). Generally, 9-ending prices
are found to increase sales, because consumers round
down the prices or the prices signal a low-price image.
This phenomenon is not limited to prices only. Lacetera
et al. (2012) find a discontinuous drop in used car

priceswhen the odometer crosses 10,000miles, driven
by consumers’ left-digit bias when processing mile-
age. In this paper, we study left-digit bias in a bar-
gaining setting with an economically significant pur-
chase. We find that not only consumers but also finance
managers are subject to such bias.
This paper is also related to the economic literature

that studies the bunching phenomena. Bunching is
commonly observed at the levelwhere discontinuities
in monetary incentives occur, such as income bunching
at the level where the tax rate changes (Saez 2010) and
drug demand bunching at the level where insurance
payments jump (Einav et al. 2015). Bunching can also
be driven by psychological incentives. For example,
Allen et al. (2016) find the finishing times of marathon
races bunch before hour marks, which serve as a
reference point. In the above examples, bunching
occurs because consumers make one-sided decisions
driven by the incentive discontinuity. This paper
studies the bunching phenomenon with consumers
and finance managers bargaining on auto loan pay-
ments. It leads to payments bunching at both $9- and
$0-ending digits with systematically different interest
rates in the opposite direction.
The rest of the paper is organized as follows.

Section 2 introduces the auto finance industry back-
ground and presents reduced-form data patterns. We
describe the bargaining model incorporating left-
digit bias in Section 3 and discuss the model esti-
mation in Section 4. Section 5 presents the estimation
results and findings from the counterfactual analysis.
Finally, Section 6 concludes.

2. Industry Background and Data
The auto finance market is of high economic signifi-
cance. With a $1.2 trillion balance in 2017, auto loans
represent the third-largest consumer credit market
in the United States.3 Consumers typically obtain fi-
nancing through auto dealers (i.e., indirect auto loans).
Cohen (2012) shows that about 80% of auto loans are
originated at a dealer location following the purchase
of a new or used vehicle. Indirect auto loans are a
significant source of profit for dealers.
This paper focuses on cases where consumers get

auto loans from a traditional bank through an auto
dealer. In a typical transaction, the consumer first
chooses a car and negotiates on the car price itself.
After that, she will be brought to the finance man-
ager’s office to arrange auto financing. This paper
aims to study how the monthly payment number is
determined after consumers have selected the loan
amount and the loan length. Why is the monthly
payment a bargained outcome? This is because fi-
nancemanagers add a discretionarymarkup on top of
the bank buy rate, which serves as the dealer com-
pensation for arranging the loan.4 Note that, after loan
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amount and length are determined, the monthly pay-
ment and interest rate have a one-to-one relationship−a
higher interest rate will imply a higher monthly
payment and vice versa.

Because of the markup policy, the finance manager
has an incentive to increase the loan payment so that
the dealer will receive a higher markup. Yet the
consumer can negotiate for a lower payment if she
finds the payment too high. A report by the Center
for Responsible Lending estimates that the average
markup is $714 per transaction using the 2009 auto
industry data, and the markup varies across indi-
vidual consumers. Consistent with these results, we
find that auto loans’ interest rates vary for consumers
with the same credit profile and loan characteristics in
our data.

2.1. Data Description
The empirical analysis of this paper leverages ano-
nymized data on individual credit profiles provided
by Equifax Inc., one of the three major credit bureaus
in the United States. The data sample includes all
nonsubprime auto loans originated from banks or
credit unions in the United States from 2011 to 2014.5

We observe the origination date, loan amount, loan
length, and scheduled monthly payment for each
auto loan in the sample. The annual percentage rate
(APR) can be calculated from these loan attributes.6 To
remove potential outliers, we select auto loans with
loan lengths from two to eight years, loan amount
between $10k and $60k, and APRs above 1.9%. De-
tailed data-cleaning procedures, including how we
calculate the interest rate, are described in Online
Appendix A.1. The data sample includes 35 million
auto loans. Panel A of Table 1 shows some descriptive
statistics of the loan characteristics. The average loan

amount is about $23,000, with a $399 monthly pay-
ment for about five and a half years, and the average
APR is 4.8%.
For consumer characteristics, we observe the credit

score and age of each consumer and the five-digit zip
code of her living place. The credit score is measured
at the month of auto loan origination. We further
obtain some zip-code level data, including the aver-
age household income and racial composition, from
the Census. The racial composition data measure the
proportion of the population that is Caucasian, Af-
rican American, Hispanic, Asian, or others in a zip
code. We use the income and racial composition data
to proxy for the consumer characteristics based on
location. Panel B of Table 1 shows some descriptive
statistics of these variables. An average consumer
in the data sample is 46 years old, has a 726 credit
score, and lives in an area with an average of $83.7k
household income, 73.3% Caucasians, 9.7%Hispanics,
and 8.9% African Americans.

2.2. Reduced-Form Data Analysis
The Bunching Phenomenon. We illustrate the bunch-
ing pattern in monthly loan payments. Scheduled
monthly payments bunch at both $9- and $0-endings.
The bunching pattern is more significant at $100 marks.
Moreover, the level of $9-ending bunching varies sys-
tematically across different consumer groups.
Figure 1 plots the frequency of the monthly pay-

ment ending digit when payments cross $100. Each
bar represents the percentage of loans with ending
digit from $0 to $9. Instead of a uniform distribution
of 10% probability for each number, there are more
loans with $9-ending payments as well as $0-ending
payments.7 When payments cross $100 marks, $9-
ending payments are more than twice as likely and

Table 1. Summary Statistics

Mean 25th percentile Median 75th percentile

Panel A: Loan characteristics

Loan amount $22,965 $15,821 $21,161 $28,115
Loan length (years) 5.4 5 5.8 6
Monthly payment $399 $294 $370 $475
APR 4.8% 3.0% 4.0% 5.5%

Panel B: Consumer characteristics

Credit score (620–850) 726 674 725 778
Age 46 33 45 56
Income $83,749 $56,578 $74,659 $101,062
Caucasian 73.3% 60.3% 78.7% 90.4%
Hispanic 9.7% 2.5% 5.6% 13.1%
African American 8.9% 1.4% 4.0% 10.4%
Asian 4.0% 0.9% 2.0% 4.5%
Other 4.1% 0.9% 2.2% 5.4%
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$0-ending payments are 1.5 times as likely as pay-
ments ending with $01. The bunching pattern is simi-
lar, although less pronounced, at other $10marks, where
$9-ending ($0-ending) payments are 30% (12%) more
likely than $1-ending payments.8

Consumers with $9-ending monthly payments and
those with $0-ending payments have systematically
different consumer characteristics. Panel A in Table 2
shows the ratio of the number of $99-ending over the
next $01-ending loans (e.g., $399/$401) across dif-
ferent consumer groups. The $9-ending bunching is
higher among consumers with lower credit scores,
older ages, and living in areaswith lower incomes and

larger minority populations. Panel B in Table 2 shows
the ratio of the number of $00-ending loans over the
next $01-ending loans (e.g., $400/$401). Opposite to
$9-ending, the $0-ending bunching is higher among
consumers with higher credit scores.

Interest Rates. We find a systematic difference in loan
interest rates with different ending digits. Table 3,
Column 2 shows that the average interest rate for $9-
ending loans is 0.6% higher than the average, while
the interest rate for $0-ending loans is 0.5% lower. The
difference in loan characteristics drives part of the
interest rate gap. For example, Column 3 shows that
consumers with $9-ending payments tend to have
lower credit scores than those with $0-ending pay-
ments, which will lead to a difference in interest rates.
Moreover, there are also systematic differences in
other loan characteristics: On average, loans with $9-
ending payments have a larger loan amount and a
longer loan length compared with those with $0-
ending payments (Columns 4 and 5).
To control for the impact of other relevant factors,

we use regression analysis to further investigate the
difference in interest rates for loans with different
ending digits:

inti �
∑9
j�1

γj · I d paymenti
( ) � j

[ ] + xiβ + εi,

Table 2. Heterogeneous Levels of Payment Bunching at $99- and $00-Endings

Panel A: The ratio of $99-ending loans to $01-ending loans (overall ratio: 2.08)

Credit score 620–660 661–700 701–740 741–780 781–850
2.27 2.21 2.10 2.02 1.90

Age <30 31–40 41–50 51–60 >60
2.03 2.08 2.10 2.09 2.13

Income < $50k $50k–$70k $70k–$90k $90k–$120k > $120k
(zip-level) 2.23 2.07 2.08 2.07 1.97
Caucasian proportion <50% 50%–70% 70%–80% 80%–90% >90%
(zip-level) 2.31 2.14 2.08 2.00 1.98
Hispanic proportion <2% 2%–5% 5%–10% 10%–20% >20%
(zip-level) 2.04 2.04 2.05 2.12 2.24
African American proportion <2% 2%–5% 5%–10% 10%–20% >20%
(zip-level) 1.93 2.05 2.16 2.17 2.36

Panel B: The ratio of $00-ending loans to $01-ending loans (overall ratio: 1.55)

Credit score 620–660 661–700 701–740 741–780 781–850
1.50 1.50 1.54 1.57 1.61

Age <30 31–40 41–50 51–60 >60
1.48 1.55 1.56 1.56 1.59

Income < $50k $50k–$70k $70k–$90k $90k–$120k > $120k
(zip-level) 1.57 1.56 1.54 1.54 1.52
Caucasian proportion <50% 50%–70% 70%–80% 80%–90% >90%
(zip-level) 1.58 1.54 1.52 1.55 1.55
Hispanic proportion <2% 2%–5% 5%–10% 10%–20% >20%
(zip-level) 1.56 1.54 1.53 1.54 1.59
African American proportion <2% 2%–5% 5%–10% 10%–20% >20%
(zip-level) 1.56 1.55 1.55 1.52 1.53

Figure 1. (Color online) Frequency of Monthly Payment
Ending Digit
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where inti is the interest rate of loan i, and I[d
(paymenti) � j] is an indicator variable that equals 1 if
the ending digit of the monthly payment is j ( j is from 1
to 9, with 0 as the normalized factor). The variable xi
includes credit score, loan amount, and loan length.
We also include date and state fixed effects for each
loan. The results are reported in Table 4. To capture
the potential nonlinearity of the relationship between
the interest rate and covariates xi, Columns 1 and 3 use
linear and quadratic terms of these variables, while
Columns 2 and 4 categorize them into bins and use bin
fixed effects. Columns 3 and 4 also include additional
consumer characteristics, including age and zip-code-
level income and ethnicity data.

Across different specifications, $9-ending loans
consistently carry the highest interest rate, about
0.053% higher than $0-ending loans.9 To put the
numbers in perspective, this difference would result
in a $36 higher cost for consumers for a five-year
$25,000 loan with 6% APR. As the coefficients for
$1-ending to $9-ending are all significant and posi-
tive, it implies that $0-ending payments have the
lowest interest rate. Figure 2 visually presents the
regression results from Column 1, which show a clear
gap in the interest rate between $9- and $0-ending
loans. As a side note, while not a focus in this paper,
we see consistent patterns with $5-ending payments:
The interest rate of $4-ending loans is higher than that
of $5-ending loans. This is likely due to $5-ending
payments being perceived as round numbers, simi-
lar to $0-ending payments, and $4-ending payments
are just below a round number, similar to $9-end-
ing payments.

Columns 3 and 4 of Table 4 also include consumer
demographic variables in the regression. Results suggest
that, after controlling for loan characteristics, includ-
ing credit scores, there exists a systematic relationship
between consumer characteristics and loan interest
rates. In particular, consumers of older age and those
from zip codes with a lower income and a higher
minority population are more likely to have a higher

interest rate. Column 5 further interacts the $9-ending
dummy with the consumer demographics variables,
and the results are robust. Since banks do not use
these characteristics when deciding the buy rate, the
interest rate gap reflects the difference in the discre-
tionary dealer markup.10 This pattern is consistent
with studies that found disadvantaged consumers,
such as minority consumers, pay a higher dealer
markup than their white counterparts (Hudson et al.
2001, Cohen 2012).

3. Model
We propose a bargaining model that involves con-
sumers and finance managers of auto dealers. Im-
portantly, it allows for left-digit bias from both parties.
The proposed model can explain the bunching phe-
nomenon and the differential interest rates discussed
in Section 2.2.

3.1. Perceived Payment
With left-digit bias, the perceived payment can be
different from the actual payment. We decompose
the payment number into the hundreds, tens, and
single digits: The hundreds of a payment p is �p�100 �
� p
100� · 100, the tens of apayment p is �p�10 � �p−� p�10010 � · 10,
and the single digit is � p�1 � p − � p�100 − � p�10. For
example, for p� 382, �p�100 � 300, �p�10 � 80, and
� p�1 � 2. Following the prior literature on modeling
left-digit bias (e.g., Lacetera et al. 2012, Strulov-Shlain
2019), let the perceived payment be

p̂ � �p�100 + 1 − θ1( )�p�10 + 1 − θ1( ) 1 − θ2( )� p�1, (1)
whereθ1 captures the perceived bias for the tens digit,
and θ2 allows for increased bias for the single digit.
The bias parameters are defined between 0 and 1.
Note the specification does not impose a bias: When
θ1 � θ2 � 0, there is no bias, and the perceived pay-
ment is the same as the actual. At the other extreme,
all numbers after the hundreds digit are completely
ignored when θ1 � 1, and all the single digits are

Table 3. Characteristics for Loans with Different Ending Digits

Ending digits APR Credit score Loan amount ($1,000) Loan length (years)

(1) (2) (3) (4) (5)

$5 4.785% 725.52 22.97 5.45
$6 4.778% 725.90 22.90 5.44
$7 4.791% 725.66 22.96 5.45
$8 4.804% 725.46 23.04 5.46
$9 4.847% 724.20 23.34 5.54
$0 4.754% 726.23 22.82 5.42
$1 4.761% 726.29 22.84 5.41
$2 4.770% 726.18 22.84 5.41
$3 4.776% 726.10 22.88 5.42
$4 4.787% 725.86 22.93 5.44
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ignored when θ2 � 1. With this specification, the
perceived payment is smaller than the actual, except
when payments are exactly at $100 marks, for ex-
ample, $400, and the perceived and actual payments
are the same.

With the bias, the perceived difference for $1within
the $10 range (when �p�10 does not change) is (1 − θ1)
(1 − θ2). When payments cross each $10 mark (�p�10
changes), there is a discontinuous change with the

perceived difference for $1 between $9- and $0-end-
ing at (1 − θ1)(1 + 9θ2). When payments cross $100
marks (�p�100 changes), the perceived difference for $1
change is even larger. This is illustrated graphically in
Figure 3. The blue lines plot the perceived payment,
which has a kink each time payments cross $10marks,
with a larger gap at $100. The discontinuity in per-
ceived payments is larger if the agent is more biased.
This is illustrated by Figure 3, where the left chart

Table 4. Interest Rate Regression Results

Dependent variable:

APR (%)

(1) (2) (3) (4) (5)

$1-ending 0.0116*** 0.0131*** 0.0130*** 0.0143*** 0.0130***
(0.0018) (0.0018) (0.0018) (0.0018) (0.0018)

$2-ending 0.0185*** 0.0193*** 0.0194*** 0.0200*** 0.0194***
(0.0018) (0.0018) (0.0018) (0.0018) (0.0018)

$3-ending 0.0225*** 0.0237*** 0.0235*** 0.0245*** 0.0235***
(0.0018) (0.0018) (0.0018) (0.0018) (0.0018)

$4-ending 0.0290*** 0.0310*** 0.0290*** 0.0309*** 0.0290***
(0.0018) (0.0018) (0.0018) (0.0017) (0.0018)

$5-ending 0.0174*** 0.0208*** 0.0166*** 0.0200*** 0.0166***
(0.0017) (0.0017) (0.0017) (0.0017) (0.0017)

$6-ending 0.0187*** 0.0219*** 0.0191*** 0.0221*** 0.0191***
(0.0018) (0.0017) (0.0018) (0.0017) (0.0018)

$7-ending 0.0277*** 0.0308*** 0.0275*** 0.0305*** 0.0275***
(0.0018) (0.0017) (0.0018) (0.0017) (0.0018)

$8-ending 0.0365*** 0.0403*** 0.0355*** 0.0393*** 0.0355***
(0.0017) (0.0017) (0.0017) (0.0017) (0.0017)

$9-ending 0.0523*** 0.0614*** 0.0478*** 0.0571*** 0.0422***
(0.0017) (0.0017) (0.0017) (0.0016) (0.0054)

Age (in 100) 0.3476*** 0.3413*** 0.3452***
(0.0029) (0.0028) (0.0030)

Income (in $1 million) −3.371*** −3.3371*** −3.3574***
(zip-level) (0.0110) (0.0108) (0.0116)
African American proportion 1.0671*** 0.9855*** 1.0618***
(zip-level) (0.0035) (0.0034) (0.0037)
Hispanic proportion 1.4828*** 1.3884*** 1.4791***
(zip-level) (0.0056) (0.0055) (0.0058)
$9-ending: Age (in 100) 0.0188**

(0.0081)
$9-ending: Income (in $1 million) −0.1148***
(zip-level) (0.0317)
$9-ending: African American proportion 0.0407***
(zip-level) (0.0091)
$9-ending: Hispanic proportion 0.0291**
(zip-level) (0.0118)
Covariates x Quadratic Categorical Quadratic Categorical Quadratic
Date opened fixed effects Yes Yes Yes Yes Yes
State fixed effects Yes Yes Yes Yes Yes
Observations 34,760,946 34,760,946 34,760,577 34,760,577 34,760,577
R2 0.3002 0.3173 0.3083 0.3246 0.3083

Notes. Covariates X include credit score, loan amount, and loan length. Results from two specifications
are shown: Columns 1, 3, and 5 use linear and quadratic terms, and Columns 2 and 4 categorize each
covariate into bins and use bin fixed effects.

*p < 0.1; **p < 0.05; ***p < 0.01
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assumes a lower bias (θ � 0.1) with smaller gaps
between $9- and $0-ending numbers than the right
chart (θ � 0.15).

The level of left-digit bias can be different for
consumers and finance managers, which is captured
by a separate bias term θc for consumers and θf for
finance managers. Moreover, the bias can be het-
erogeneous across different consumer groups. For
example, minority or lower-income consumers are
more likely to get $9-ending loans than others (see
Table 2), which could be driven by the level of bias.
Note that the level of $9-ending bunching is jointly
determined by bias and bargaining power. We dis-
cuss how to separately identify heterogeneous con-
sumer bias and bargaining power in Section 4.1.

Let the consumer left-digit bias be a function of the
observed consumer characteristics:

θc,i � L xiγ
( )

. (2)
Here L is the logistic function L(x) ≡ e x/(1 + e x)which
ensures the bias term θc to be between 0 and 1, and xi

includes a constant term and a vector of consumer
characteristics: credit score, age, zip-code-level house-
hold income, and the proportion of African Americans
and Hispanics in the population. We allow the constant
term to be different forθc,1 and θc,2, and the rest of the γ
parameters are assumed to be the same for the two
bias terms. Such specification allows the level of bias
toward tens and single digits to be different, but if
some consumers are more biased toward the tens
digit, they are alsomore likely to be biased toward the
single digit.

3.2. Nash Bargaining
We treat the realized monthly payments as the bar-
gaining outcome between consumers and finance
managers. In the auto finance market, there is con-
siderable variation in price conditional on observed
credit profile. Such price dispersion is consistent with
the discretionary dealer markup compensation (see
the industry background in Section 2). We use the
Nash bargaining model to describe how the outcome
arises based on the relative bargaining power be-
tween two parties.11 The Nash bargaining solution
is a convenient way to characterize the outcomewhen
we do not observe information on the actual bar-
gaining process or cases where the bargaining failed.
We assume that, by the time of discussing the loan

arrangement, consumers have already chosen the car
they want to buy and have agreed on the car price
with the dealer. Besides, consumers have decided on
the loan amount and loan length. What is left for
bargaining is the monthly payment, which will de-
termine the loan interest rate.12 More specifically, we
let the monthly payment be the Nash bargaining
outcome between consumers and finance managers
for each loan, conditional on loan amount and length.
Note that, given loan amount and length, loans with
a higher monthly payment will also have a higher
interest rate. We assume that monthly payments instead

Figure 2. (Color online) Interest Rate for Loans with
Different Ending Digits

Figure 3. (Color online) Examples of Perceived Payment with θ � 0.1 (Left) and θ � 0.15 (Right)

Jiang: An Empirical Bargaining Model with Left-Digit Bias
8 Management Science, Articles in Advance, pp. 1–24, © 2021 INFORMS



of interest rates are the focal point of bargaining be-
cause consumers tend to focus on the monthly pay-
ment number, much more so than the interest rate,
when considering auto loans (e.g., Attanasio et al.
2008, Karlan and Zinman 2008, Argyle et al. 2020a).
Moreover, doing so also allows us to specify bias on
the monthly payment numbers to explain the reduced-
form data patterns discussed in Section 2.2.

The key assumption behind the Nash bargaining
solution concept is that, for auto loan i, the monthly
payment pi observed from the data will maximize a
joint-value function as follows:

v pi
( ) � uc pi

( )ωi ·uf pi
( )1−ωi , (3)

whereωi is the consumer’s relative bargaining power,
ranging from 0 to 1, and the finance manager’s bar-
gaining power is 1 − ωi. Here uc(pi) represents the
surplus for the consumer:

uc pi
( ) � ri,c − p̂i θc( ), (4)

where ri,c is the consumer’s reservation value and
p̂i(θc) is the consumer’s perceived payment as defined
in Section 3.1. Then uf (pi) is the surplus for the fi-
nance manager:

uf pi
( ) � p̂i θf

( ) − ri,f , (5)
where p̂i(θf ) is the finance manager’s perceived pay-
ment and ri,f is the finance manager’s reservation
value. To maximize the joint-value function, pi has to
be within the range where both consumers and fi-
nance managers enjoy a positive surplus. The larger
the bargaining power of one party, the larger the
surplus they will gain from the bargaining.

To model the reservation prices, we use the insti-
tutional detail that a bank will offer the finance
managers a bank buy rate based on the loan and
consumer characteristics xi (e.g., credit score). This
bank buy rate determines a monthly payment p(xi).
We assume that finance managers will not accept a
monthly payment lower than p(xi),13 and therefore,

ri,f � p xi( ). (6)
Next, we assume there is a maximum interest rate
that the consumer can obtain from outside sources
(e.g., a personal loan), which determines a monthly
payment p̄(xi). The consumer will not accept a monthly
payment higher than p̄(xi). Therefore, the reservation
price for consumers is

ri,c � p̄ xi( ). (7)
Finally, the relative bargaining power ωi in Equa-
tion (3) can be heterogeneous across different con-
sumer groups. For example, minority or lower-income

consumers may bemore likely to have lower bargaining
power and tend to pay more than others for the same
type of loan. The consumer bargaining power is speci-
fied as

ωi � L xiβ + εi
( )

. (8)

Here L is the logistic function defined the same as
above, and xi includes a constant term and a vector of
consumer characteristics, including credit score, age,
zip-code-level household income, and the propor-
tion of African Americans and Hispanics in the pop-
ulation. The stochastic component εi captures the
heterogeneity in bargaining power beyond what is
explained by xi. We assume that it follows a normal
distribution, that is, εi ∼ N(0, σ2ε). The parameters β
and σε govern the distribution of bargaining power in
the consumer population.14

3.3. Nash Bargaining Solution with Left-Digit Bias
We present the Nash bargaining solution with left-
digit bias. With the bias, the perceived payment p̂
(hence, the joint value function v(p)) is discontinuous
when payment crosses each $10 mark. With the dis-
continuity in the objective function, the solution has
a similar flavor as that of Strulov-Shlain (2019), who
solves the firm’s optimal pricing problem when con-
sumers have left-digit bias in a supermarket setting.
For ease of notation, we omit the consumer subscript i
in describing the Nash solution concept.

Proposition 1. Conditional on bargaining power ω, biases
θc and θf , and reservation values rc and rf , find the ap-
propriate zero-ending number Q � �Q�100 + �Q�10 such
that ω ∈ (ω̄Q+9, ω̄Q−1]. Then the Nash bargaining solution
(for θ’s not too large) is

p �
Q − 1 ω ∈ ω̄Q, ω̄Q−1

[ ]
,

Q ω ∈ ω̄Q+1, ω̄Q
( )

,

p� ω ∈ ω̄Q+9, ω̄Q+1
( ]

,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (9)

where p� is the interior solution when the payment that
maximizes the joint value function lands within a $10
range (i.e., the perceived payment is continuous):

p� � 1 −ω( )rc
1 − θc,1( ) 1 − θc,2( ) +

ωrf
1 − θf ,1
( )

1 − θf ,2
( )

+ �p�100 1 − 1 −ω

1 − θc,1( ) 1 − θc,2( ) −
ω

1 − θf ,1
( )

1 − θf ,2
( )( )

+ �p�10 1 − 1 −ω

1 − θc,2
− ω

1 − θf ,2

( )
.

The range of bargaining power (ω̄Q+9, ω̄Q−1] corre-
sponds to the Nash bargaining solution belonging to
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[Q − 1,Q + 9), where Q is a zero-ending number. We
can calculate the cutoff points defining the bound
ω̄Q−1 and ω̄Q+9 (as well as ω̄Q+1 in Equation (9)) as

ω̄p �
rc

1 − θc,1( ) 1 − θc,2( ) − � p�100 1
1 − θc,1( ) 1 − θc,2( ) − 1

( )
− � p�10 1

1 − θc,2
− 1

( )
− p

rc
1 − θc,1( ) 1 − θc,2( )−

rf
1 − θf ,1
( )

1 − θf ,2
( )

− �p�100 1
1 − θc,1( ) 1 − θc,2( ) −

1
1 − θf ,1
( )

1 − θf ,2
( )( )

− �p�10 1
1 − θc,2

− 1
1 − θf ,2

( )

for payment p. These are the bargaining power points
where the interior solution p� � p. Detailed deriva-
tions appear in Appendix A.1.

Nextwe solve for ω̄Q, which is the bargaining power
cutoff where the payment will switch from Q − 1 to a
point in the segment [Q,Q + 9). We cannot use the
first-order condition to solve ω̄Q because of the utility
discontinuity when the payment crosses $10 marks
from Q − 1 to Q. The cutoff point ω̄Q is the lowest
bargaining power that payment will end up at Q − 1:

ω̄Q � arg minωv pQ−( ) ≥ v pQ+( )
,

where pQ+ is the payment from the range [Q,Q + 9)
that has the highest joint value function, and pQ− is the
payment from the range [Q − 1,Q) that has the highest
joint value function. Note that both pQ+ and pQ− can be
either an interior solution or a corner solution.

When the bias is very large, there could be missing
numbers. For example, in an extreme case, if con-
sumers completely disregard the ending digit so that
Q is perceived to be the same as any number fromQ + 1
toQ + 9, then it isalwaysoptimal toendupwitha9-ending
payment. This is because finance managers gain from
payment moving Q to Q + 9, and consumers are in-
different. Similarly, when the finance manager bias is
very large, there could be missing payments on the
large ending digits. This is because finance managers
do not suffer a loss moving from Q + 9 to Q, but
consumers prefer a lower payment. The adjustment
for the Nash bargaining solution with large bias
appears in Appendix A.1.

Payment Bunching. The bargaining model with left-
digit bias can rationalize the data pattern of payment
bunching. The intuition is that, with a large perceived
difference between $9- and $0-ending payments for
consumers, it is hard for finance managers to increase

payments from$9- to $0-ending or beyond. Therefore,
there are more loans with payments bunched at $9-
ending. Likewise, a large perceived difference for the
finance managers from $0 to $9 makes it hard for
consumers to bargain down from $0-ending pay-
ments. Thiswill lead tomore payments to bunch at $0-
ending. Only when both consumers and finance man-
agers have the left-digit bias, payments can bunch at
both $9- and $0-ending. Intuitively, this is because the
bias from both sides creates friction when payments
go from $9- to $0-ending, as well as from $0- to $9-
ending. Furthermore, it is easy to see that, all else being
equal, the number of $9-ending payments increases as
the consumer bias becomes larger. And similarly, the
number of $0-ending payments increases as the fi-
nance manager bias becomes larger.
We show the connection of left-digit bias and

payment bunching with simulation. First, we simu-
late the case where only consumers have left-digit
bias, θc > 0. Payments are more likely to bunch at $9-
ending, which is shown in the left chart in Figure 4.
Similarly, when only financemanagers have left-digit
bias, θf > 0, payments are more likely to bunch at $0-
ending (middle chart). Finally, when both consumers
and finance managers have left-digit bias, θc > 0 and
θf > 0, payments can bunch at both $9- and $0-end-
ings (right chart).

Differential Interest Rate. The systematic interest rate
difference between $9- and $0-ending loans reflects
the bargaining power difference for consumers with
these loans. Note the bargaining power and left-digit
bias jointly determine the final monthly payment. A
consumer with a large bargaining power ωi can push
the monthly payment closer to the lower bound p(xi)
and away from the upper bound p̄(xi). In addition to
the impact of bargaining power, left-digit bias creates
discontinuities in the joint value function and makes
the final monthly payment different from when the
bias does not exist.
Similar to the intuition for bunching, bias will lead

to the average bargaining power systematically dif-
ferent for loans with $9- and $0-ending payments. In
theory, the model could generate patterns where $9-
ending payments have either a higher or a lower
bargaining power than $0-ending payments. The
exact relationship depends on the bargaining power
and the extent of the bias for consumers and fi-
nance managers.
We use simulation to illustrate the bargaining power

patterns for those who end up with $9- and $0-ending
payments. First,when the consumerbias is large (relative
to the finance manager bias), Panel A of Figure 5 plots
the average bargaining power of simulated payments
with $9- and $0-endings.When the overall bargaining
power is high among consumers (i.e., their ω’s are in
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the region of 0.5−1), the left figure of Panel A shows
that the average bargaining power for $9-ending
loans is lower and the bargaining power for $0-ending
payments is higher. Given that interest rates are
negatively related to the bargaining power, these
results suggest that, when the consumer bargaining
power is high in general, those with $9-ending pay-
ments are more likely to pay a higher interest rate and
those with $0-ending payments are more likely to
pay a lower interest rate. In the region where the
consumer bargaining power is low overall (i.e., their
ω’s are in the region of 0–0.5). We see the opposite
pattern. Consumers with $9-ending payments are
associatedwith higher bargaining power, hence pay a
lower interest rate, and those with $0-ending pay-
ments aremore likely to have lower bargaining power
and a higher interest rate.

In contrast, when the finance manager bias is large
(relative to the consumer bias), Panel B of Figure 5
shows a different pattern. When the consumer bar-
gaining power is high (i.e., theirω’s are in the region of
0.5–1), consumers with $9-ending ($0-ending) pay-
ments are more likely to pay a lower (higher) interest
rate. When the overall consumer bargaining power is
low (i.e., theirω’s are in the region of 0–0.5), we see the
opposite pattern.

To conclude, the relationship between the $9- and
$0-ending loans and their interest rates depends on
the bargaining power and the extent of the biases
from both sides. Note the model is flexible enough to
describe not only the relationship we observe in the
data but also when the relationship is the opposite.

4. Estimation
The data that we use to estimate the proposed model
include the monthly payment pi and the loan and
consumer characteristics xi. The set of model pa-
rameters is Θ � {γ,θf ;β, σε}, where γ governs the
heterogeneous left-digit bias for consumers, θf

captures the bias for finance managers, and β and σε
determine the bargaining power distribution. In this
section, we discuss the estimation strategy and present
a Monte Carlo study.

4.1. Moment Conditions
We use the simulated method of moments (SMM) for
model estimation since it is challenging to derive a
likelihood function with the stochastic term εi en-
tering the joint value function nonlinearly. Another
advantage of using SMM is that consistent estimates
can be obtainedwith a finite number of simulations to
construct the moment conditions.
In the estimation, we draw the unobserved sto-

chastic component of the bargaining power εsimi for
every loan from the distribution N(0, σ2ε), where sim �
1, . . . ,NS. Given εsimi , we simulate the monthly pay-
ment psimi (Θ) based on the observed covariates xi and
model parameters Θ according to the Nash bar-
gaining solution (Equation (9)).15 Let Θ0 be the
true parameters.
We utilize two sets of moments to identify left-digit

bias and bargaining power parameters. The first set of
moments map the distribution of loans with different
ending digits among simulated payments to that
among observed payments:

E I �pi�1 � d1
( ) − 1

NS

∑NS

sim�1
I �psimi Θ0( )�1 � d1
( )⃒⃒⃒⃒⃒xi

[ ]
� 0,

E I �pi�10 + �pi�1 � d10
( ) − 1

NS

∑NS

sim�1

[

I �psimi Θ0( )�10 + �psimi Θ0( )�1 � d10
( )⃒⃒

xi

]
� 0,

(10)
where I(·) is an indicator function that equals 1 if
the logical expression is true, and 0 otherwise.

Figure 4. (Color online) Frequency of Monthly Payment Ending Digit
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The first line in Equation (10) sets the proportion of
single digit at d1 to be the same among the observed
and simulated payments. Let d1 � 9 and 0, respec-
tively. Similarly, the second line sets the proportion of
the tens and single digits at d10 to be the same among
the observed and simulated payments. Let d10 � 99
and 0, respectively. The residual terms are orthogonal
to the observed attributes xi, including a constant
term, credit score, age, income, andAfrican American
and Hispanic proportions, at true model parameters
Θ0. These moment conditions correspond to the level
of bunching at $9- and $0-endings at $10marks aswell
as $100 marks across different consumer groups and
help pin down the bias parameters.

The second set of moment conditions map the
level of payments between the observed and simu-
lated payments:

E pi − 1
NS

∑NS

sim�1
psimi Θ0( )⃒⃒⃒⃒⃒xi

[ ]
� 0,

E pi − p̄
( )2− 1

NS

∑NS

sim�1
psimi Θ0( ) − p̄sim Θ0( )( )2[ ]

� 0, (11)

where pi is the observed payment. The first line in
Equation (11) matches the level of observed and
simulated payments, where the residual term is or-
thogonal to the observed attributes xi, including a

Figure 5. (Color online) Bunching at $9- and $0-Ending Payments and Bargaining Power

Notes. (a) Bunching patterns when the consumer’s bias is larger, and consumer bargaining power is higher (left) and consumer bargaining
power is lower (right). (b) Bunching patterns when the finance manager’s bias is larger, and consumer bargaining power is higher (left) and
consumer bargaining power is lower (right).

Jiang: An Empirical Bargaining Model with Left-Digit Bias
12 Management Science, Articles in Advance, pp. 1–24, © 2021 INFORMS



constant term, age, income, and African American
and Hispanic proportions, at true model parameters
Θ0. This moment condition helps identify bargaining
power parameters β. The second line matches the
observed payments’ variance to that of the simulated
payments, where p̄ and p̄sim are the average monthly
payments for the observed and simulated data, re-
spectively. The second-order moment helps estimate
the variance of the unobserved bargaining power σε.

The estimated Θ̂ set the sample analogue of moments
as close as possible to zero. We use a two-step feasible
generalized method of moments (GMM) estimation
method. In step 1, we let the weighting matrix W be
the identity matrix and compute estimate Θ̂(1). In
step 2, we calculate the optimal weighting matrix

Σ̂ � 1
N

∑N
i�1

g pi, xi, Θ̂ 1( )
( )T·g pi, xi, Θ̂ 1( )

( )( )−1
,

where g(pi, xi, Θ̂(1)) is an N × K matrix that represents
the sample moments (N is the number of loans, and K
is the number of moments). The optimal weighting
matrix takes account of the variances and covariance
between the moment conditions. Model estimates Θ̂
are recomputed with the updated weighting matrix.

After laying out the moment conditions and the
estimation procedure, the next few paragraphs of-
fer an intuitive explanation of how the parameters
are estimated from the above moment conditions.
In particular, we discuss how the heterogeneous
left-digit bias and bargaining power can be sepa-
rately identified.

In the estimation, we compute p̄(xi) and p(xi) in
the first step (details are in Section 5.1). Then pa-
rameters associated with the bargaining power de-
termine how close the realized monthly payment pi
is to p̄(xi) relative to p(xi). If the average payment
of consumers with attributes xi is closer to p(xi) than
other consumers to their reservation values, this im-
plies a larger bargaining power for consumers with
attributes xi. Furthermore, a larger variance of the
unobserved bargaining power σ2ε will lead to a larger
variation of monthly payments from consumers con-
ditional on observed characteristics.

The identification of the left-digit bias parameters
comes from the distribution of the number of loans
ending in different digits, in particular, the bunching
at $9- and $0-endings. As illustrated in Figure 4,
consumer left-digit bias leads to $9-ending bunching,
whilefinancemanager bias leads to $0-ending bunching.
Moreover, if the level of $9-ending bunching for
consumers with specific xi is much higher than others,
it implies that these consumers are likely to be more
biased, and vice versa. In particular, the level of
$9-ending bunching interacted with attributes xi

identifies γ, which specifies the heterogeneous level
of left-digit bias for consumers.
Even though the bargaining power and left-digit

bias jointly determine the final payments, we can
separately identify the two sets of parameters. This is
because we can rely on two types of data patterns—
namely, payment level and bunching—for estima-
tion. For example, suppose Hispanic consumers have
a higher monthly payment than others, all else being
equal, but a low level of $9-ending bunching; then
wewould infer that Hispanic consumers have a lower
bargaining power but are not very biased. On the
other hand, suppose older consumers have a lower
monthly payment than others, all else being equal,
but have a high level of $9-ending bunching; then we
would infer that older consumers have a higher
bargaining power but are very biased. It is important
to model the bargaining power and left-digit bias
together in one framework. This is because bargain-
ing power influences bunching patterns togetherwith
the level of bias, and bias influences the final pay-
ments together with the bargaining power.
This identification argument is consistent with ob-

served heterogeneity in the bias parameters. If one
allows for a flexible unobserved heterogeneity in the
bias term, bargaining power and left-digit bias can-
not be separately identified. For example, consider a
consumer who pays $399, much higher than others
all else being equal. There are numerous ways to ex-
plain the payment level that are observationally equiv-
alent. This consumer may have a high bargaining
power but is very biased by perceiving $399 as $300.
Alternatively, this consumer may have no bias but
have a low bargaining power, which leads to a high
$399 payment. The consumers may also be somewhat
biased by perceiving $399 as a lower payment and
have moderate bargaining power. In fact, there are
numerous combinations of bargaining power and left-
digit bias thatwould rationalize the observed payment
if one were to allow a flexible unobserved bias term.
Following prior literature (e.g., Lacetera et al. 2012,
Strulov-Shlain 2019), we do not model unobserved
heterogeneity in the left-digit bias.

4.2. Monte Carlo Study
We use a Monte Carlo study to show that the pro-
posed estimation strategy can successfully recover
the true parameters. We simulate 100,000 loans by
drawing the attributes according to their respective
distributions from the observed data. For model es-
timation, we include two attributes, African Ameri-
can proportion and Hispanic proportion, to represent
the attributes that influence both the level of bias
and bargaining power. The goal is to demonstrate
that the proposed model can successfully identify
the heterogeneous effects of bias and bargaining
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power separately. Extending to more attributes in
the model is straightforward.

We simulate the monthly payment for each loan
using the “true” parameter values (Table 5, Column 1)
according to the Nash bargaining solution (Equa-
tion (9)).With the simulateddata,we estimate themodel
using the estimation strategy as described in Section 4.1
with the number of simulations NS � 10. The pa-
rameter estimates and standard errors are reported in
Columns 2 and 3 of Table 5. The parameter estimates
are all close to the true values, with small standard
errors, showing that the truemodel parameters can be
recovered with the proposed estimation strategy.

5. Results
In this section, we first describe how we calculate
reservation values for consumers and finance man-
agers. Then we discuss model estimation results for
left-digit bias and bargaining power parameters. For
ease of computation, the model is estimated from a
randomly selected sample of 1 million loans. Using
the model estimates, we conduct counterfactuals to
evaluate the impact of left-digit bias on the bargaining
outcome. Finally, we discuss several alternative ex-
planations for the observed data patterns.

5.1. Reservation Values
In order to estimate the proposed bargaining model,
we need to know the reservation values for the con-
sumers and finance managers (Equations (6) and (7)).
As is typical in empirical bargaining applications,
reservation values are not directly observed in the
data. For finance managers, their reservation values
are determined by the bank buy rate, which is the cost
of the loan for the dealer. We approximate the bank
buy rate by the 2.5th percentile of the interest rates

for a given type of loan. We use quantile regression to
estimate quantiles of the interest rate distribution as
a function of relevant covariates. We include credit
score, loan amount, and loan length, and their square
terms, as well as year-month fixed effects, as cova-
riates. These attributes are used by banks to deter-
mine the risk-adjusted bank buy rates. In contrast,
demographic variables such as age and ethnicity are not
included since banks cannot use them for loan pricing.16

Quantile regression minimizes a sum of asymmetri-
cally weighted absolute residuals by giving different
weights to positive and negative residuals (see Koenker
and Hallock 2001):

minλ

∑
ρτ yi − xiλ
( )

,

where ρτ(u) � τ ·max(u, 0) + (1 − τ) ·max(−u, 0). The
ρτ(u) function weights the positive residual (u > 0)
by τ and the negative residual (u < 0) by 1 − τ. The
estimated τth quantile of interest rates for loans with
characteristic xi is Q(τ) � xi ˆλ(τ). After getting the
Q(τ � 2.5%) to represent the bank buy rate, we cal-
culate the corresponding payment as the finance man-
ager reservation value.17 We do robustness analysis
by using other thresholds. Details are in Online Ap-
pendix A.3.
Similar to the finance manager reservation, we

assume that the consumer reservation value varies
based on the loan characteristics xi only. In particular,
we assume that the consumer reservation values do
not differ by demographics. This is because reser-
vation value and bargaining power cannot be sepa-
rately identified based on the final price alone. For
example, if minority consumers receive higher prices
all else being equal, the higher price can be explained
by minority consumers having a higher reservation
value, which can depend on other sources of funds,
or by minority consumers having a lower bargaining
power. Any potential errors in measuring reserva-
tion values will be attributed to the bargaining power,
which is a function of the demographics. We use
the 97.5th percentile rate Q(τ̄ � 97.5%) to calculate the
consumer reservation values based on observed loan
characteristics xi. We then calculate the corresponding
monthly payments based on the observed loan amount
and loan length (see endnote 17). Online Appendix A.3
shows robustness analysis using other thresholds.

5.2. Estimation Results
We proceed to estimate the main bargaining model
with left-digit bias with the calculated reservation
values for both consumers and finance managers.18

Model estimation results are reported in Table 6. The
table first shows the left-digit bias for consumers.
The constant terms are allowed to differ for the
consumer bias terms θc,1 and θc,2. After transforming

Table 5. Monte Carlo Simulation

True
values Estimates S.E.

(1) (2) (3)

Consumer bias γ
Constant for θc,1 −5.0000 −5.0322 (0.0977)
Constant for θc,2 −3.5000 −3.5028 (0.1502)
African American proportion 0.0500 0.0493 (0.0149)
Hispanic proportion 0.1000 0.1057 (0.0158)

Finance manager bias θf

θf ,1 0.0067 0.0064 (0.0007)
θf ,2 0.0296 0.0297 (0.0047)

Bargaining power β
Constant −0.7500 −0.7674 (0.0129)
African American proportion −1.0000 −1.0249 (0.0296)
Hispanic proportion −0.5000 −0.5090 (0.0280)

Bargaining power sd: log(σε) −0.2000 −0.1138 (0.0595)

Note. S.E., standard errors.
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the estimates of the heterogeneous bias using the
logistic function (Equation (2)), we find the aver-
age θc,1 � 0.0079 and θc,2 � 0.0257 across all con-
sumers.19 To better interpret these parameters, we
calculate the average perceived difference for $1 be-
tween $9- and the next $0-ending payment to be
$1.222, larger than $1. The perceived difference for $1
is even larger, at $2.012, between $99- and the next
$00-ending payment. Within a $10 range, the average
perceived difference for $1 is $0.967. The left-digit
bias is heterogeneous among different consumer
groups. We find a larger bias for consumers with
lower credit scores, older age, and living in areas
with a lower income and higher African American
and Hispanic proportions. These are consistent with
the bunching patterns shown in Table 2.

The table then shows the left-digit bias for fi-
nance managers. We calculate the perceived pay-
ment using the estimated bias parameters. For finance
managers, the perceived difference for $1 is $1.215
between $9- and $0-ending payments and $2.001
between $99- and $00-ending payments. Both are
only slightly smaller than the corresponding per-
ceived gaps for consumers. Results suggest that, even
for finance managers who have rich experience in
negotiations, they are still prone to basic human bias
in the same way as consumers. This result adds to the
existing literature that documents how behavioral
factors can influence professionals or experts in high-
stakes decision making, such as lawyers, professional
traders, used-car dealers, and managers in a multi-
national corporation (Birke and Fox 1999, Coval and
Shumway 2005, Workman 2012, Lacetera et al. 2016;
see Goldfarb et al. 2012 for a review of the behavioral
models on managerial decision making).

It is worth noting that the biases for consumers
and finance managers are exactly the same type of
bias—they all think that a $9-ending number is sub-
stantially smaller than the next $0. The bias manifests
differently in the bunching patterns only because
consumers and finance managers are on the opposite
sides of bargaining. While consumers prefer to pay a
lower payment ($9-ending), finance managers prefer
to receive a higher payment ($0-ending). Consumer
bias contributes to $9-ending bunching since con-
sumers are “reluctant” to go up to the next $10 range.
Finance managers perceive a large drop moving from
$0- to $9-ending, leading to $0-ending bunching (see
Section 3.3 for a detailed discussion).
The rest of the parameters in Table 6 govern the

distribution of bargaining power among consumers.
The range of ωi is between 0 and 1. After the logistics
transformation (Equation (8)), the average bargaining
power for consumers is 0.71. That is, the overall
bargaining power of consumers is larger than that of
finance managers. One possible reason is that, if the
negotiation breaks down, the dealer will lose not only
the markup compensation but also the profit from
selling the vehicle and other follow-up services. An-
other way to interpret the bargaining power results
is that the monthly payments are distributed more
densely toward the lower bound of the range between
p(xi) and p̄(xi).
The bargaining power is heterogeneous across dif-

ferent consumer groups: It tends to be lower among
older consumers and those living in areas with lower
income and higher minority representation. The re-
sults for minority consumers have a strong policy
implication. To better interpret the parameters, we
compare the predicted payments for an African Amer-
ican and a Hispanic consumer with that for a Cauca-
sian consumer while holding the other variables at
the sample average.20 Results show that the African
American consumer pays $442 (1.7%) higher total
payment, and theHispanic consumer pays $603 (2.3%)
higher total payment than the Caucasian consumer,
all else being equal. These numbers are close to that
documented in Cohen (2012), who used class action
litigation data from five lenders to show African
Americans paid between $347 and $508 more in
markup than Caucasians. One possible reason for
the higher markup among African Americans and
Hispanics is that they are less resourceful or less
informed about alternative financing sources. The
higher markup can also be due to the propensity
to discriminate against minority consumers among
finance managers. While we cannot pin down the
mechanism, the results confirm a significant pay-
ment gap for consumers of different races under the
discretionary dealer markup practice.

Table 6. Estimation Results

Estimates S.E.

Consumer bias γ
Constant for θc,1 −4.8431 (0.0251)
Constant for θc,2 −3.6735 (0.0241)
Credit score (in 100) 0.0033 (0.0005)
Age (in 100) 0.0043 (0.0017)
Income (in $1 million) −0.0215 (0.0065)
African American proportion 0.0078 (0.0019)
Hispanic proportion 0.0048 (0.0025)

Finance manager bias θf

θf ,1 0.0079 (0.0002)
θf ,2 0.0250 (0.0006)

Bargaining power β
Constant 0.9868 (0.0068)
Age (in 100) −0.2123 (0.0084)
Income (in $1 million) 1.8947 (0.0349)
African American proportion −0.3993 (0.0098)
Hispanic proportion −0.5338 (0.0125)

Bargaining power sd: log(σε) −0.5913 (0.0344)

Note. S.E., standard errors.
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It is worth noting that, beyond the heterogeneous
consumer bias, the bargaining model itself also con-
tributes to the heterogeneous bunching patterns among
different consumer groups due to the heterogeneous
bargaining power. As shown in Figure 5, when the
consumer’s relative bargaining power is high, which
is the case in our empirical application, lower bar-
gaining power consumers are more likely to get $9-
ending loans. Since African American and Hispanic
consumers have lower bargaining power, they are
more likely to get $9-ending loans even with the same
level of bias. Higher income and higher credit score
consumers, on the other hand, have higher bargaining
power and are less likely to get $9-ending loans.
Therefore, it is important to model the left-digit bias
and bargaining power together in one framework.

The same mechanism can explain the systematic
interest rate difference for $9- and $0-ending loans.
Given that low bargaining power consumers are
more likely to get $9-ending payments, the average
interest rate for the $9-ending loans will be higher
than others. Similarly, consumers with $0-ending loans
have higher bargaining power, and therefore, these $0-
ending loans have a lower interest rate on average.We
simulate the monthly payment using the model esti-
mates and calculate the implied interest rate (see
Online AppendixA.1). The average interest rate for $9-
ending loans is 0.107% higher than that for $0-ending
loans in the simulated data.

With the simulated monthly payments using the
estimation results, Figure 6 plots the number of loans
at each payment level in the actual and simulated
data. The two distributions match well on the level
of payments. In particular, simulated payments also
bunch at $9- and $0-endings. And the levels of bunching
are more significant around $100 marks with $99- and
$00-endings. Actualpayments exhibit a slight increasing

pattern from $1- to $8-ending payments, which could
be accommodated with a perceived payment function
that allows curvature within the $10 range. However,
this model specification is not grounded in prior lit-
erature in behavioral economics and psychology and
may appear ad hoc. Therefore, we use the established
model as in Lacetera et al. (2012) as the main model to
capture left-digit bias. We estimate a version of the
bargaining model with an alternative perceived pay-
ment specification in Appendix A.2.

5.3. Counterfactual
We use the model estimates to explore the impact of
left-digit bias on monthly payments using counter-
factual analysis. Doing so allows us to evaluate the
potential changes in loan payments if left-digit bias no
longer plays a role in bargaining.While there has been
ample literature documenting the consumer response
to 9-ending prices (e.g., Anderson and Simester 2003),
far fewer have dealt with how having the bias in-
fluences the equilibrium outcome.21 We quantify the
changes in payments under several scenarios: when
only consumers or finance managers have left-digit
bias or when both are biased.
To explore the impact of left-digit bias,we construct

a counterfactual scenario where neither consumers
nor finance managers are biased and use it as the
benchmark case. This is done by setting bothθc andθf
to 0.22 The perceived payment functions are linear and
continuous with the perceived payment being the
same as the actual.We draw a set of bargaining power
unobservables εi and simulate the monthly payments
under the benchmark scenario with no bias. Using
the same bargaining power draws, we simulate the
payments when only consumers or finance managers
have the estimated bias and when both are biased.
We first discuss the impact of consumer bias. One

may view bias as a negative factor in the bargaining
process by intuition and conclude that removing such
bias should always benefit consumers. Such intuition
has some ground from the level effect—since the
perceived payments are lower with consumer bias
(except at the hundreds), the payments become higher
to achieve the same division of total surplus with the
same bargaining power. The impact of bias, how-
ever, is more nuanced beyond the level effect. We
show that consumer bias can both increase and de-
crease the payments because of the nonstandard per-
ceived payment.
Why can having the left-digit bias lead to a lower

payment for consumers? This is because consumers
perceive a large difference when payments increase
from a $9-ending number with the bias, especially
over $100. The large perceived gap makes it more
difficult for finance managers to increase the pay-
ments from a $9-ending number. Intuitively, the bias

Figure 6. (Color online) Distribution of Monthly Payments
for Actual and Simulated Data
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creates a psychological hurdle for consumers so that
they are more resistant to payments crossing the
hurdle. Without the bias, some consumers with $9-
ending payments could have received a higher pay-
ment with $0-, $1-, or higher-endings.

On the other hand, the bias can also lead to a higher
payment. Because of the bias, consumers perceive
each $1 to be smaller than actual when the change is
within the $10 range. The smaller perceived gap
makes it easier for finance managers to push up the
payments to a higher number. Therefore, with con-
sumer bias, some payments would increase to a
higher number, for example, $7- to $9-ending. Since
consumer bias can both increase and decrease the
payments, the total effect depends on which of the
two effects prevails.

Similarly, the left-digit bias for finance managers
can also both increase and decrease the payments.
Same as the consumer bias, the level effect (the per-
ceived payments becoming lower with the bias) leads
to a higher payment to achieve the same division of
surplus. Besides the level effect, payments will also
change because of the nonstandard perceived pay-
ment.Within the $10 range, the perceived value for $1
becomes lower for financemanagers so that it is easier
for consumers to bargain down the payments within
the range, which can lead to a lower payment. In
contrast, the perceived gap from $9- to $0-ending

payments becomes larger; therefore, it is more diffi-
cult for consumers to bargain down below a $0-
ending number, which can lead to a higher payment.
When both sides have the left-digit bias, they all

perceive the payments to be lower than actual. With
the same intuition as scenarios with consumer or fi-
nance manager bias only, the level effect leads to an
increase in payments. Beyond the level effect, all the
effects from the nonstandard perceived payments
discussed above can occur. Since the impact of left-
digit bias can go in either direction, we quantify the
overall change in payments with the estimated pa-
rameters. To do so, we compare the payments when
only consumers or only finance managers or both
have the estimated bias to the benchmark casewith no
bias. The changes in payments, which represent the
impact of the bias, are shown in Table 7.
Column 1 shows the change in payments when

consumers are biased. In the aggregate, biased con-
sumers pay 0.049% more, with total payments in-
creased by $446 million (or $12.8 per loan). As dis-
cussed above, the impact of bias can go in either
direction. About 46% of the loans have an increase
in payments, with an average change of 0.26% or
$71.6 per loan. About 18% have a decrease in pay-
ments, with an average change of 0.42% or $115.1 per
loan. Column 2 shows the impact on payments when
finance managers are biased. Overall, dealers will

Table 7. Effect of Left-Digit Bias on Payments

Consumer
bias only

Finance manager
bias only

Bias from
both sides

(1) (2) (3)

Overall
Total payment ($million) 446.09 729.06 1,146.85
Average payment per loan ($) 12.83 20.97 32.99
Percentage change 0.049% 0.080% 0.126%

Among the increased
Average payment per loan ($) 71.65 117.66 65.44
Percentage change 0.264% 0.444% 0.250%

Among the decreased
Average payment per loan ($) −115.14 −71.43 −80.0
Percentage change −0.416% −0.234% −0.116%

By bargaining power
First quartile

Average payment ($) 17.84 15.40 33.19
Percentage change 0.066% 0.057% 0.123%

Second quartile
Average payment ($) 13.89 19.75 32.97
Percentage change 0.053% 0.075% 0.126%

Third quartile
Average payment ($) 11.30 22.75 32.96
Percentage change 0.044% 0.088% 0.128%

Fourth quartile
Average payment ($) 8.31 25.99 32.85
Percentage change 0.033% 0.102% 0.129%
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receive 0.08% more, which amounts to a total of $729
million or $21 per loan with the finance manager bias.
About 28% of the loans increase in payments, with an
average change of 0.44% or $117.7 per loan. Another
16% decrease in payments, with an average of 0.23%
or $71.4 per loan.

When both parties are biased, Column 3 shows that
the average payment will increase by 0.13%. Overall,
consumers will pay $1146.8 million more in total or
$33 per loan than the benchmark case with no bias.
About half of the loans get an increase in payments,
and very few have a decrease. This is primarily driven
by the level effect, where both the consumers and
finance managers perceive the payments to be lower
than actual. With the same bargaining power, the
level effect will lead to an increase in the actual
payment to achieve the same division of surplus.

The effect of left-digit bias is systematically dif-
ferent for consumers of different bargaining power.
We find that the increase in payments for biased
consumers is more significant among lower bar-
gaining power consumers. For example, among those
with the first quantile of bargaining power (0%–25%),
the payment increase is 0.07% compared with the
0.03% increase among those in the fourth quantile of
bargaining power (75%–100%). In fact, the lower
bargaining power consumers are both more likely to
experience an increase as well as a decrease in pay-
ments due to the bias in our empirical setting, but
the payment increase effect prevails. For the finance
manager bias, we see the opposite pattern: Higher
bargaining power consumers aremore likely to get an
increase in payments than those with lower bar-
gaining power. When both parties have the left-digit
bias, the increases in payments are comparable, with
only a slightly higher change among higher bargaining
power consumers.

5.4. Alternative Explanations
Theproposedmodel is built upon the assumptions that
consumers and finance managers negotiate monthly
payments and that both parties have left-digit bias.We
have shownhowthemodel canexplain the reduced-form
data patterns. However, there may be other explana-
tions that can also rationalize the patterns. In this sub-
section, we will discuss several alternative explanations.

Promotional Effect. Auto dealers may run promo-
tions with advertised payments ending at $99 or $00.
This may explain why the bunching phenomenon
exists. However, if this is the reason, there should be
no systematic difference in the interest rates for these
two types of loans. In particular, the interest rate for
$99-ending loans should not be higher than other

loans. Moreover, promotional loans are much more
likely to happen with manufacturer financing, which
we do not include in the sample (see endnote 1). In
addition, we find from data that the bunching phe-
nomenon is quite stable over time. This is in contrast
with auto dealer promotion activities that are peri-
odic in nature.

Consumer Bias Only. One may attempt to come up
with a more flexible function of consumer perceived
payment in lieu of finance manager bias to explain
the data patterns. Suppose the function of consumer
perceived payment has a large drop from $9 to $0 as
well as from $0 to $1; payments can bunch at both $9-
and $0-endings. However, such specification would
imply that the average interest rate for $0-ending
loans should be higher than $1-ending loans, with a
similar logic as the $9-ending loans. This is incon-
sistent with the empirical evidence, as $0-ending
loans actually have the lowest interest rate. Without
allowing finance managers to have the left-digit bias,
it is difficult to rationalize the systematic interest rate
difference between $9- and $0-ending loans and the
payment bunching.

Focal Point Effect. Alternatively, one may attribute
the $0-ending bunching to a focal point effect. Based
on this explanation, the roundedness of the pay-
ments may facilitate negotiations, which will lead to
a higher number of loans with $0-endings. However,
this explanation cannot explain bunching at $9-end-
ing digits. It is also not apparent why the focal point
effectwould systematically lower interest rates for $0-
ending loans.

Installment Loan Effect. Finally, one may wonder if
the data patterns are a result of the installment loan
setting.23 To rule out this potential explanation, we
run a “placebo” test using data from the mortgage
market (also an installment loan) provided by Equifax
Inc. The data set consists of 7.3 million mortgages
originated in 2014 across the United States. Mortgage
loans are typically provided by banks or credit unions
directly and are subject to much tighter regulations.
Therefore, mortgage monthly payments do not come
from a bargaining setting where left-digit bias could
play a role. We find no evidence for the bunching
phenomenon from themortgage data: The proportions
of monthly payments with both $0- and $9-endings
are exactly 10%. Moreover, there is no difference in the
average interest rate for loans with $0- or $9-ending
payments. These results suggest that the data patterns
are not due to the installment loan setting and are
unique to the auto lending industry, where monthly
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payments are a bargaining outcome instead of a
fixed price.

6. Conclusion and Discussion
This paper investigates how left-digit bias affects
bargaining outcomes in the auto finance market. The
proposedmodel relaxes the fully rational assumption
by incorporating the well-established left-digit bias
in a bargaining setting. Although the empirical study
focuses on the auto finance market, the model frame-
work can be applied to other settings where the bar-
gaining happens between two individuals, and the
bargaining outcomes are numeric.

We use a large data set of 35 million auto loans in
this study. We find that not only consumers but also
finance managers are subject to left-digit bias. For
consumers, the average perceived difference for $1 is
$1.22 between $9- and $0-endings and $2.01 between
$99- and $00-ending payments. The estimated level of
bias for finance managers is only slightly smaller. The
two-sided bias in bargaining can explain several in-
teresting data patterns. In particular, the consumer
bias contributes to the bunching at $9-ending pay-
ments, and the finance manager bias contributes to
the bunching at $0-ending payments. In addition,
lower bargaining consumers, who get a higher in-
terest rate, are more likely to get $9-ending payments;
in contrast, higher bargaining power consumers are
more likely to get $0-ending loans and have a lower
interest rate.

Using counterfactual analysis, we find a nuanced
impact of left-digit bias on the bargaining outcome.
For example, contrary to common intuition, con-
sumer bias can actually decrease the payments for
some consumers. This is because the larger perceived
difference between $9- and $0-ending makes it more

difficult to increase payments from a $9-ending number,
which can lead to a lower payment. In otherwords, the
bias acts as a psychological hurdle for consumers so
that they are more resistant to payments crossing the
hurdle. The focus on payments being just below a
round number could come from an actual or mental
budget that consumers allocate for car payments each
month. We argue that such a response is behavioral
because there should not be a sharp difference be-
tween $9- and the next $0-ending payments in terms of
consumers’ ability to meet the payment obligation
each month.
The insights from this study have broad implica-

tions beyond the auto finance market. The study
suggests that left-digit bias exists not only among
consumers but also among employees. This can be
useful for firms to better understand what factors
drive negotiated prices in many other settings, in-
cluding estate sales, auto sales, online retail platforms
(e.g., Taobao.com in China), and B-to-B environments
where price negotiations are common. The result that
consumers’ perceived value has a large drop when
crossing a threshold suggests that $9-ending prices
are stickier than other digits in most retail environ-
ments. Consumers’ sensitivity toward price change
and demand elasticity may vary across different ending
digits in the price.

A. Appendix
A.1. Proof of Proposition 1
In this appendix, we show the proof of the Nash bargaining
solution with left-digit bias. We derive all the components
in Equation (9), including the interior solution p� and the
bargaining power cutoff points ω̄Q−1, ω̄Q, ω̄Q+1, ω̄Q+9. We
then discuss the adjustment to the Nash bargaining solu-
tion when the level of bias is large and there are miss-
ing payments.

Figure A.1. (Color online) Examples of Perceived Payment with ρ � 0.7 (Left) and ρ � 1.4 (Right)

Notes. δ is assumed to be 0. A larger (smaller) δ leads to a larger (smaller) extra gap over $100.
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Interior Solution p�. When the payment that maximizes
the joint value function lands within the $10 range where
the perceived payment is continuous, one can calculate the
Nash bargaining solutionwith the first-order condition.We
rewrite the joint value function (Equation (3)) with the
perceived payment (Equation (1)). Subscript i is omitted for
simplicity. We have

v p
( )� rc−�p�100− 1−θc,1( )�p�10− 1−θc,1( ) 1−θc,2( )�p�1

( )ω×
�p�100+ 1−θf ,1

( )�p�10+ 1−θf ,1
( )

1−θf ,2
( )�p�1− rf

( )1−ω.
We take the first-order derivative:

∂v p
( )
∂p
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Note that �p�1 � p − �p�100 − �p�10. We substitute in �p�1,
and the equation above becomes

∂v p
( )
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( )(
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( ) − rf

)
+ rc − � p�100 − 1 − θc,1( )� p�10 − 1 − θc,1( )(
× 1 − θc,2( ) p − � p�100 − � p�10

( ))
× 1 − ω( ) 1 − θf ,1

( )
1 − θf ,2
( )

.

We rearrange terms and solve for the p� that makes
∂v(p)
∂p � 0:

p� � 1 − ω( )rc
1 − θc,1( ) 1 − θc,2( ) +

ωrf
1 − θf ,1
( )

1 − θf ,2
( ) +

� p�100 1 − 1 − ω

1 − θc,1( ) 1 − θc,2( ) −
ω

1 − θf ,1
( )

1 − θf ,2
( )( )

+ � p�10 1 − 1 − ω

1 − θc,2
− ω

1 − θf ,2

( )
.

Bargaining Power Cutoffs ω̄Q−1, ω̄Q+1, ω̄Q+9. Using the
first-order condition, we can solve all the bargaining power
cutoffs except for ω̄Q in Equation (9). Rearranging terms
from the p� equation above, we can get the corresponding
bargaining power as a function of payment p and the
corresponding � p�100 and � p�10 as follows:

ω̄p �

rc
1 − θc,1( ) 1 − θc,2( ) − � p�100 1

1 − θc,1( ) 1 − θc,2( ) − 1
( )

− � p�10 1
1 − θc,2

− 1
( )

− p

rc
1 − θc,1( ) 1 − θc,2( ) −

rf
1 − θf ,1
( )

1 − θf ,2
( )

−� p�100 1
1 − θc,1( ) 1 − θc,2( ) −

1
1 − θf ,1
( )

1 − θf ,2
( )( )

−� p�10 1
1 − θc,2

− 1
1 − θf ,2

( )

.

The first cutoff ω̄Q−1 can be solved as the bargaining
power where the interior solution equals Q − 1. The solu-
tion depends on whether Q is at the $100 marks or not.
When �Q�10 � 0 (i.e. Q is exactly at the $100 marks), Q − 1
has a different hundreds digit: �Q − 1�100 � �Q�100 − 100 and
the tens digit is 9: �Q − 1�10 � 90. For example, �300�100 �
300, and �299�100 � 200, and �299�100 � 90. When �Q�10 	� 0,
Q − 1 has a lower tens digit but the same hundreds digit:
�Q − 1�100 � �Q�100, �Q − 1�10 � �Q�10 − 10. Let p � Q − 1. We
get the ω̄Q−1 as

ω̄Q−1 �

rc
1−θc,1( ) 1−θc,2( ) − �Q�100 1

1−θc,1( ) 1−θc,2( )−1
( )

− �Q�10−10( ) 1
1−θc,2

−1
( )

− Q−1( )

rc
1−θc,1( ) 1−θc,2( )−

rf

1−θf ,1( ) 1−θf ,2( ) − �Q�100 1
1−θc,1( ) 1−θc,2( )

(
− 1

1−θf ,1( ) 1−θf ,2( )
)

− �Q�10−10( ) 1
1−θc,2−

1
1−θf ,2

( )
if �Q�10 	� 0,

rc
1−θc,1( ) 1−θc,2( ) − �Q�100−100( )

× 1
1−θc,1( ) 1−θc,2( )−1

( )
− 90 1

1−θc,2−1
( )

− Q−1( )

rc
1−θc,1( ) 1−θc,2( ) −

rf

1−θf ,1( ) 1−θf ,2( )
− �Q�100−100( ) 1

1−θc,1( ) 1−θc,2( )
(

− 1
1−θf ,1( ) 1−θf ,2( )

)
− 90 1

1−θc,2
− 1
1−θf ,2

( )
if �Q�10 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Similarly, we can solve for ω̄Q+1 and ω̄Q+9 using the in-

terior solution. SinceQ is a zero-ending number, bothQ + 1
and Q + 9 have the same hundreds and tens digits as Q:
�Q+1�100 � �Q�100, �Q + 1�10 � �Q�10, and �Q + 9�100 � �Q�100,
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�Q+ 9�10 � �Q�10. Let p be Q + 1 and Q + 9, respectively. We
get the corresponding bargaining power cutoff points as

ω̄Q+1 �

rc
1−θc,1( ) 1−θc,2( ) − �Q�100 1

1−θc,1( ) 1−θc,2( )−1
( )

−�Q�10 1
1−θc,2−1
( )

− Q+1( )
rc

1−θc,1( ) 1−θc,2( ) − rf

1−θf ,1( ) 1−θf ,2( )
−�Q�100 1

1−θc,1( ) 1−θc,2( )−
1

1−θf ,1( ) 1−θf ,2( )
( )

− �Q�10 1
1−θc,2 −

1
1−θf ,2

( )
,

ω̄Q+9 �

rc

1−θc,1( ) 1−θc,2( ) − �Q�100 1
1−θc( )2−1

( )
−�Q�10 1

1−θc,2−1
( )

− Q+9( )
rc

1−θc,1( ) 1−θc,2( ) − rf

1−θf ,1( ) 1−θf ,2( )
−�Q�100 1

1−θc,1( ) 1−θc,2( ) − 1

1−θf ,1( ) 1−θf ,2( )
( )

− �Q�10 1
1−θc,2−

1
1−θf ,2

( )
.

Bargaining Power Cutoff ω̄Q. Finally, we solve for ω̄Q,
which is the bargaining power cutoff for payments to go
from Q − 1 to a point in the segment [Q,Q + 9). Conditional
on the bias, this is the lowest bargaining power that pay-
ment will end up at Q − 1. Because of the utility disconti-
nuity fromQ − 1 toQ, the bound ω̄Q does not have a closed-
form solution. It is easy to simulate by comparing the joint
value for payments larger than Q and payments smaller
than Q, which we detail below.

First, we compute the highest joint value when payment
is at least Q. To accomplish this, we find the point pQ+ from
the range [Q,Q + 9) that has the highest joint value. The
point pQ+ could be either an internal solution or a corner
solution at Q. Let v(pQ+) be the value of the joint value
function at pQ+. In simulations, one can compute the joint
value function at these points: the best internal solution
using the first-order condition and the corner solution at Q.
v(pQ+) is the higher of the two values.

Then, we calculate the highest joint value when payment
is below Q. Similarly, we find the point pQ− from the range
[Q − 1,Q) that has the highest joint value. The point pQ− can
be an internal solution or corner solutions at Q − 1 or at
p → Q−, which can happenwhen the joint value increases as
p increases, until when it hitsQwith a discontinuous change
in the perceived payment. Let v(pQ−) be the value of the joint
value function at pQ−. In simulations, one can compute the
joint value function at each of these points: the best internal
solution using the first-order condition, the corner solution
at Q − 1, as well as the corner solution at p → Q−. v(pQ−) is
the highest of the three values.

We compare v(pQ+) and v(pQ−), the highest joint values for
payments larger than Q and smaller thanQ, respectively. If
v(pQ−) is higher, then the Nash bargaining solution is Q − 1;
otherwise, the solution belongs to a point in [Q,Q + 9). The
cutoff point ω̄Q is the lowest bargaining power that the
Nash bargaining solution will end up at Q − 1:

ω̄Q � argminωv pQ−( ) ≥ v pQ+( )
.

Nash Bargaining Solution with Large Bias. When the
level of bias is large, there could be missing payments on
somedigits. As an intuitive example,when consumer bias is
very large, it is less likely for the Nash bargaining solution
to end up at a zero-ending number Q since it hurts the
consumers’ perceived value a lot. Under a large consumer
bias, it may be optimal to arrive at either Q − 1, which the
consumers perceive as a much lower number, or Q + i
where i ≥ 1 so that there is enough gain for the finance
managers to “make up” for the large perceived loss for
consumers in the joint value function. In such cases, there
will be missing payments between Q and Q + i − 1.

The Nash bargaining solution needs to be adjusted when
the bias is large. We can identify and represent missing
payments using the bounds of bargaining power. For ex-
ample, there are missing payments at Q when ω̄Q+1 > ω̄Q,
where ω̄Q+1 and ω̄Q are calculated as above. This is because
there exists no bargaining power ω that falls in the range
for a payment level at Q, ω ∈ (ω̄Q+1, ω̄Q). In such cases, the
Nash bargaining solution can be adjusted as follows:

p �
Q − 1 ω ∈ ω̄Q, ω̄Q−1

[ ]
,

Q + i ω ∈ ω̄Q+1+i, ω̄Q
( )

,
p� ω ∈ ω̄Q+9, ω̄Q+1+i

( ]
,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
where i� argmini(ω̄Q+1+i < ω̄Q), i� 0,1, . . . ,8. The bargaining
power bounds for each payment level are defined the same
as above.

When i � 0, there are no missing payments, and the so-
lution reduces to the case as in Equation (9). When i ≥ 1, the
bargaining power cutoffs from ω̄Q+1 to ω̄Q+i are larger than
ω̄Q, so that there exists no bargaining power ω that falls in
the range for the payment to be at Q to Q + i − 1, which are
the missing payments.

When the finance manager bias is large, one needs to
allow for missing payments on large-ending digits. For
example, if the finance manager bias is very large, it is less
likely for the Nash bargaining solution to end up at Q − 1,
since it hurts the perceived value for financemanagers a lot.
The logic to adjust the Nash bargaining solution is the same
as above. We do not repeat it here.

There are nomissing payments on either the $9-ending or
$0-ending payments in our empirical analysis. In other
words, the biases for consumers and finance managers are
not so large to induce missing payments.

A.2. Alternative Specification for Perceived Payment
In this appendix, we present an alternative specification for
the perceived payment and discuss the results. In the main
model, the perceived payment functional form assumes a
linear relationship within each $10 range such that the
perceived difference from $1 to $2 is the same as from $2 to
$3, and so on. The empirical observation of an increasing
number of loans from $1- to $9-endings motivates a func-
tional form to allow for curvature within the $10 range. The
curvature allows the perceived $1 change in payment to
differ when the payment increases to the next $10 level.

Let the perceived payment be:

p̂ � �p�10 − 101−ρ · �p�10 − p
( )ρ − δ · h rc( ) − h p

( )[ ]
.
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Let �p�10 be the number that rounds up payment p to the
next $10 level. For example, �$389�10 � �$390�10 � $390. The
first part �p�10 − 101−ρ · (�p�10 − p)ρ allows for curvature in
the perceived payment within the $10 range where pa-
rameter ρ captures the level of the bias. The functional form
ensures that this bias goes away when p ends in $0 and that
the perceived payment is monotonic in p.24 Depending on
the parameter ρ, the perceived payment function can be
convex (0 < ρ < 1), concave (ρ > 1), or linear (ρ � 1) within
the $10 range where parameter δ captures the discontinu-
ous change in perceived payment every time payment p
crosses $100 marks. The second part δ · [h(rc) − h(p)] allows
for additional discontinuity in the perceived value when
payments cross $100 marks, where h(p) denotes the hun-
dreds digit for payment p, for example, h($400) � 4 and
h($399) � 3. The two bias parameters ρ and δ can vary for
consumers and finance managers.

To better illustrate the effect of the curvature on the
perceived payment, we plot two examples in Figure A.1.
The length of arrows represents the difference in perceived
value for a $1 change in payment. The curvature of the
perceived value within the $10 range is determined by ρ.
When ρ � 0.7, the perceived difference for $1 increases as
the payment increases to the next $10 level (Figure A.1, left
chart), with the largest perceived difference between $9-
and $0-ending payments. The right chart of Figure A.1 shows
that, with ρ � 1.4, the perceived value for $1 decreases as
payment increases to the next $10 level.

Model estimates under this alternative model specifi-
cation suggest that the consumers aremore sensitive to each
$1 increase as the payment gets closer to the next $10 level.
For consumers, the estimated ρc � 0.8963, which translates
to a $1.27 perceived difference between $9- and $0-ending
payments. There is a further discontinuity when payments
cross $100 marks: the perceived difference for $1 between
$99- and $00-ending loans is $2.05 for consumers. The
implied perceived payment gaps are very close to the es-
timates from the main model. The difference for this al-
ternative specification is the curvature within the $10 range:
the perceived difference for each $1 monotonically increases at

larger ending digits, and it is the smallest from $0- to $1-ending
payments at $0.90. Such curvature can explain the increasing
pattern from $1- to $8-ending digits within the $10 range. The
level of bias is estimated to be similar for finance managers,
consistent with results from the main model.

We simulate themonthly payment for each loan using the
estimation results. Figure A.2 presents the numbers of loans
with each level of simulated payments. Compared with
Figure 6, this model can reproduce the increasing pattern
from $1 to $9 and the bunching at $0- and $9-ending
payments. However, as discussed in the main text, the
curvature model specification is not grounded in prior
literature in behavioral economics and psychology andmay
appear ad hoc. Therefore, we follow prior literature in
modeling the left-digit bias as the main model and only
discuss this as an alternative model specification. It is
reassuring that both models imply very similar perceived
differences between $9- and $0-ending payments and between
$99- and $00-ending payments.We leave it to future research to
experimentally study the potentially different sensitivity to $1
changewithin the$10 rangeandthepsychological explanations
underpinning the phenomenon.

Endnotes
1The data set excludes auto loans frommanufacturing financing (e.g.,
Toyota Financial). Therefore, the data patterns to be described are not
influenced by manufacturer or dealer promotions with bundled
packages including certain vehicles and financing options.
2Federal Reserve Bank of New York, Quarterly Report on Household
Debt and Credit, May 2017 Q1: https://www.newyorkfed.org/
medialibrary/interactives/householdcredit/data/pdf/HHDC2017Q1
.pdf (accessed February 2018).
3Federal Reserve Bank of New York, Quarterly Report on Household
Debt and Credit, May 2017 Q1: https://www.newyorkfed.org/
medialibrary/interactives/householdcredit/data/pdf/HHDC2017Q1
.pdf (accessed February 2018).
4Unlike the bank buy rate, which is determined by the consumer’s
credit profile, themarkup is at the dealer’s discretion and is not tied to
the credit risk. See Jiang et al. (2020) who study the dealer com-
pensation schemes.
5Non-subprime consumers refer to those with at least 620 credit score
at the time of auto loan origination. Subprime lending typically in-
volves additional required information, such as verified employment
and income through providing pay stubs or tax return documents,
beyond the standard credit profile. This information can lead to
additional variation in interest rates. As the required additional in-
formation is unobserved in our data, we exclude subprime consumers
in the analysis to avoid potential bias in the analysis (e.g., a high loan
payment can be due to the consumer being unemployed and not
because of her low bargaining power).
6We use APR and interest rate interchangeably in the paper.
7The data sample includes all auto loans from banks and credit
unions. Some loans may be originated directly from banks or
credit unions and are not subject to the typical markup process in
indirect auto lending. We expect the bunching pattern to be more
significant for loans originated at the dealer location. See Online
Appendix A.1 for details.
8The number of loans with $5-ending also tend to be higher, espe-
cially for payments ending at $25 or $75. This is likely driven by
consumers and finance managers perceiving these $5-ending pay-
ments as “round numbers.”

Figure A.2. (Color online) Monthly Payments for Simulated
Data with Alternative Curvature Specification
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9 For robustness, we have also implemented a machine learning
method, using XGBoost, to predict APR for loans with different
ending digits, and the results are very similar (see Online Appendix
A.2 for details).
10Note that these interest rate differences are conditional on the credit
score and relevant loan characteristics. Unlike age and ethnicity,
income may be used by banks when setting the bank buy rate.
Therefore, lower income consumers may be getting a higher interest
rate due to either a higher bank buy rate or a lower bargaining power.
In this paper, we attribute the difference to the bargaining power
difference since we do not directly observe the bank buy rate.
11Consumers may or may not actually engage in back-and-forth
bargaining with the finance managers. Price dispersion can come
from a form of third-degree price discrimination where the finance
managers will make different offers to different types of consumers.
Price dispersion can also arise from other mechanisms such as search
cost (e.g., Argyle et al. 2020b). See endnote 14 for the interpretation of
bargaining power.
12Consumers could instead face a menu of loan schedules, each
with a unique combination of loan amount, loan length, and monthly
payment. Even in this case, there can still be room for negotiation on
the actual monthly payments, after consumers have selected the loan
amount and length. The identification issue will be further discussed
in Section 4.
13This assumption can be violated if the auto dealer is willing to take a
loss from financing so that it can gain from selling the car and add-on
services. In the data sample, we exclude loans with APRs lower than
1.9% (see the discussion in Online Appendix A.1) to avoid mis-
specifying the reservation prices for those loans.
14We use bargaining power as a “reduced-form”way to measure the
dispersion in final prices conditional on loan characteristics. In
practice, the heterogeneous bargaining power among different
consumer groups can come from many sources, such as difference in
reservation price, search cost, or other potential funding sources.

Dealer attributes, such as the dealership for different car manufac-
turers or the size of the dealer, could also affect the relative bargaining
power. These attributes are not observed in the data and, thus, will be
reflected in the stochastic term εi.
15One needs to know the reservation values for both the consumers
and financemanagers, p̄(xi) and p(xi), to simulate themonthly payment.
Wedescribe the procedure to calibrate the reservation values in Section 4.
16The Equal Credit Opportunity Act (ECOA) prohibits creditors from
discriminating against credit applicants on the basis of race, color,
religion, national origin, sex, marital status, and so on: https://www
.justice.gov/crt/equal-credit-opportunity-act-3 (accessed April 2018).
17Monthly payment can be calculated as a function of loan amount
amounti, loan length ni, and interest rate ri: amounti ·ri ·(1+ri)ni

(1+ri)ni−1 .
18The reservation values, once calculated, are treated as data in the
bargaining model estimation. Although the first step quantile esti-
mation uses a large sample, close to 35 million loans, with small
estimation errors, conceptually the errors in estimating reservation
values should be accounted for in the bargaining model estimation.
To do so, one can bootstrap both steps together. However, doing so is
very computationally intensive. We acknowledge this as a limitation
in the paper.
19Note that the estimated bias can be thought of as a lower bound of
the actual bias to the extent that some loansmay not be an outcome of
the bargaining process where bias plays a role (see Online Appen-
dix A.1).
20 Since the ethnicity data are based on zip codes. We calculate the
payment for the African American (Hispanic) consumer by fixing the
African American (Hispanic) proportion variable to 1. The payment
for the Caucasian consumer is calculated by fixing both African
American and Hispanic proportion variables to 0.

21An exception is Strulov-Shlain (2019), who studies the equilibrium
price with consumer bias in a grocery store setting.
22One might be worried that the counterfactual exercise relies on the
model specification of the left-digit bias. In particular, if the left-digit
bias actually increased the perceived payment, the counterfactual
results may not hold. To address this concern, we conduct a ro-
bustness check where we set θ to 0 for only larger-ending digits (7, 8,
9), where the perceived prices are likely to be lower, and the θ are
kept as is for the other lower-ending digits. The results are similar.
With consumer bias only, the total payment increase is $445.27
million; with finance manager bias only, the total payment increase is
$778.56 million; with bias from both sides, the total payment increase
is $413.34 million.
23An installment loan has a fixed loan amount, loan length, monthly
payment, and APR. Typical installment loans include mortgage, auto
loan, and personal loan. This is in contrast to a revolving loan, which
does not have a fixed loan amount or length, such as a credit card.
24A more general specification is �p�10 − λ · (�p�10 − p)ρ. We choose
λ � 101−ρ to satisfy the following conditions: (1) When ρ � 1, the
perceived payment function is linear and λ � 1. (2) To ensure
payoff monotonicity (i.e., the perceived payment must increase (or
not decrease) as the actual payment increases), λ needs to sat-
isfy 0 < λ < 10 · 9−ρ.
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