When Putting Work Off Pays Off:
The Curvilinear Relationship Between Procrastination and Creativity

Jihae Shin and Adam M. Grant

University of Wisconsin and University of Pennsylvania

Forthcoming in the Academy of Management Journal

Acknowledgments

For their excellent feedback, we thank associate editor Markus Baer, Sigal Barsade, Nancy Rothbard, and three anonymous reviewers.
When Putting Work Off Pays Off:
The Curvilinear Relationship Between Procrastination and Creativity

ABSTRACT

Although it is widely assumed that procrastination is counterproductive, delaying task progress may have hidden benefits for creativity. Drawing on theories of incubation, we propose that moderate procrastination can foster creativity when employees have the intrinsic motivation and opportunity to generate new ideas. In two experiments in the U.S., we tempted participants to engage in varying degrees of procrastination by making different numbers of funny YouTube videos easily accessible while they were supposed to be solving business problems. Participants generated more creative ideas in the moderate rather than low or high procrastination conditions. This curvilinear effect was partially mediated by problem restructuring and the activation of new knowledge. We constructively replicated and extended the curvilinear effect in a field study with Korean employees: procrastination predicted lower task efficiency, but had an inverted-U-shaped relationship with creativity. Employees who procrastinated moderately received higher creativity ratings from their supervisors than employees who procrastinated more or less, provided that intrinsic motivation or creative requirement was high. We discuss theoretical and practical implications for time management, creativity, and motivation in organizations.
People are constantly putting things off (Ferrari, 2001; Ferrari, O’Callaghan, & Newbegin, 2004; Steel, 2007). About 20 percent of the general population is under the influence of chronic procrastination (Hammer & Ferrari, 2002; Harriott & Ferrari, 1996; McCown & Johnson, 1989) and as many as 80 to 95 percent of college students admit to procrastinating (Ellis & Knaus, 1979; Steel, 2010). Procrastination is especially prevalent in the workplace, where there are explicit tasks to be carried out within a given time frame (Ferrari, Johnson, & McCown, 1995; Harris & Sutton, 1983).

The common view on procrastination is that it is counterproductive (Baumeister & Heatherton, 1996; Burka & Yuen, 1983; Ferrari, 1992; Harris & Sutton, 1983; Knaus, 1998; Steel, 2007, 2010). Procrastination is seen as a form of self-regulatory failure (Baumeister & Heatherton, 1996; Knaus, 2000; Senécal, Koestner, & Vallerand, 1995; Wolters, 2003) that results in negative performance and personal outcomes, which needs to be overcome (Burka & Yuen, 1983; Ellis & Knaus, 1979; Knaus, 1998; Steel, 2010). Existing empirical evidence supports this view, as procrastination has been linked to lower work performance (Nguyen, Steel, & Ferrari, 2013; Robb, 1998), lower academic performance (Beswick, Rothblum, & Mann, 1988; Steel, Brothen, & Wambach, 2001), and negative financial outcomes such as overpayment on taxes (Kasper, 2004).

In focusing primarily on the negative consequences of procrastination, scholars have largely overlooked the possibility that procrastination may have advantages. In particular, creativity, defined as the generation of novel and useful ideas (Amabile, 1988, 1996; Oldham & Cummings, 1996), is an aspect of performance that operates through a different set of antecedents and mechanisms than task efficiency (George, 2007; Shalley, Zhou, & Oldham, 2004) or productivity (Van Dyne, Jehn, & Cummings, 2002). This leaves open the possibility
that procrastination does not undermine creativity as it does task efficiency or productivity. In this paper, we explore the possibility that moderate procrastination enhances creativity through facilitating incubation.

Several scholars have raised the idea that procrastination might have benefits for creativity. Van Eerde (2000: 382) writes that “procrastination may lead to better task performance in creative tasks, or tasks involving the search for information.” Also, Harris and Sutton (1983: 994) suggest that “procrastination might lead to positive outcomes for people in highly challenging jobs that require creative thought.” These scholars reason that procrastination may provide extra time in which novel insights can be acquired, and in that sense the time spent procrastinating might not be completely wasted, as it may result in unexpected progress on the avoided task (Van Eerde, 2000, 2003; see also Torrance & Safter, 1991). Further, in a qualitative study of Westinghouse Talent Search winners in adulthood, those engaged in creative work procrastinated regularly (Subotnik, Steiner, & Chakraborty, 1999). Anecdotally, Leonardo da Vinci is known to have been an inveterate procrastinator (Pannapacker, 2009), and there is evidence that Albert Einstein, Thomas Edison, and Frank Lloyd Wright engaged in procrastination (Beerbohm, 1946; McGuirk, 1997; Steel, 2007). Writer Margaret Atwood acknowledges that she often spends “the morning procrastinating and worrying, and then plunges into the manuscript in a frenzy of anxiety around 3:00pm” (Oates, 1983), but she has won numerous awards for her creativity and published more than five dozen books—including *The Handmaid’s Tale*. While these scholarly speculations and anecdotal clues suggest that there may be conditions under which procrastination is conducive to creativity, this idea has yet to be theoretically developed or empirically tested.

In this paper, we develop new insights about the effect of procrastination on creativity,
the incubation processes that mediate this effect, and the boundary conditions that moderate this effect. Whereas creativity researchers have hinted at linear effect, we propose that procrastination has a curvilinear, inverted-U-shaped effect on creativity, mediated by incubation processes and moderated by intrinsic motivation and creative requirement. Drawing on theories of incubation and time, we examine how moderate procrastination may promote problem restructuring and the activation of new knowledge. Since the first few ideas that people generate are often their most conventional ideas (Lucas & Nordgren, 2015), when employees do not procrastinate, they are at risk of foreclosing on relatively obvious initial options. Under moderate procrastination, employees have greater freedom for incubation, which allows them to consider the problem through fresh lenses and access remote knowledge and information. However, when procrastination is high, when employees finally start making progress on the task, their incubation will be constrained, as they will be prone to construing the task narrowly and concretely (Trope & Liberman, 2003), and feel the urge to solve the problem now (Baer & Oldham, 2006; Humphrey, Moon, Conlon, & Hofmann, 2004). We further predict that moderate procrastination will only enhance creativity when employees have the intrinsic motivation or opportunity to be creative, which is when they have a reason to keep the task in the back of their minds while procrastinating moderately.

We test these hypotheses with three studies. In two laboratory experiments, we randomly assign participants to the temptation to engage in different levels of procrastination, assess creativity with independent ratings of final business proposals, and examine the incubation mediating mechanisms by coding the ideas participants explore during brainstorming. In a field study, we constructively replicate the curvilinear relationship between procrastination and creativity with survey data on procrastination from employees at a Korean furniture company.
and supervisor ratings of creativity and task efficiency, and test the boundary conditions of intrinsic motivation and creative requirement.

Our theoretical perspective and empirical findings make important contributions to the literatures on time management, creativity, and motivation. We demonstrate that although it is detrimental to task efficiency, moderate procrastination can enhance creativity, thereby challenging the widespread assumption that procrastination is always counterproductive. In doing so, we identify moderate procrastination as an individual action that can increase creativity in the presence of intrinsic motivation and opportunities to develop novel solutions to problems, answering calls for new research on the behavioral antecedents of creativity (Runco, 2004) and curvilinear relationships more generally (Grant & Schwartz, 2011; Pierce & Aguinis, 2013). Our research is not intended to license procrastination, but rather to normalize it as a potentially productive part of the creative process under special circumstances—where the delays are moderate and the problem is interesting or a new solution is needed.

PROCRASITINATION AND CREATIVITY

Our research explores procrastination in the context of work that is temporally bound by an internal or external deadline. Procrastination is the act of intentionally delaying task progress or completion with the understanding that doing so may come at a cost (Ferrari, 2001; Schraw, Wadkins, & Olafson, 2007; Van Eerde, 2000). Procrastination differs from other forms of delay in two key ways (Steel, 2007). First, it involves the voluntary act of putting off a task, rather than being forced by constraints such as a computer crashing or a flight being delayed. Second, it involves postponing the initiation, advancement, or completion of task with the awareness that there may be a downside to that action.

While some past definitions of procrastination include the idea that procrastination results
in negative outcomes (see Milgram, 1991), it is important to separate the construct of procrastination from its presumed consequences. Rather than assuming that procrastination is always dysfunctional, it is critical to theoretically develop and empirically test the consequences of procrastination. Indeed, procrastination did not always have a negative connotation (Ferrari, 1993). The word ‘procrastination’ comes from the Latin verb ‘procrastinare’, which means “to put off or postpone until another day” (DeSimone, 1993: 10). This word is a combination of the Latin prefix of ‘pro-’ meaning “forward or in favor of” and the root ‘crastinus’ meaning “of tomorrow” (Klein, 1971: 1246). This reveals that the word itself does not contain a subpart that is associated with a negative meaning. Ancient Egyptians had two verbs that have been translated as meaning “to procrastinate”: one referring to “laziness” in completing necessary tasks, but another referring to the useful course of action to avoid “unnecessary work and impulsive effort” (DeSimone, 1993; Ferrari, Johnson, & McCown, 1995: 4). Further, Romans used the term procrastination to refer to “sophisticated decision making regarding when not to act,” such as knowing when to wait for the right time to deploy a war strategy (Ferrari, Johnson, & McCown, 1995: 4). These classic uses of the word reinforce that, in its origin, procrastination was not exclusively seen as a negative behavior. Consequently, some contemporary scholars have argued that the negative connotations of the term procrastination emerged only after the time of the Industrial Revolution; as technology advanced, efficiency and schedule adherence became increasingly important (Ferrari, Johnson, & McCown, 1995; Milgram, 1992). As such, when the primary goal is not efficiency, it is possible that procrastination may have unexpected and unforeseen benefits (Anderson, 2016).

Our focus is on the role of procrastination in creativity—the production of ideas that are both novel and useful (Amabile, 1983, 1996). We are specifically interested in how
procrastination influences the generation of creative ideas, as opposed to the evaluation, development, or implementation of those ideas. While procrastinating, employees are delaying progress on a task in a manner that feels costly, but they may still be thinking about it consciously or processing it subconsciously. Drawing on theories of incubation and time, we propose that moderate procrastination can enhance creativity by facilitating the incubation mechanisms of problem restructuring and activation of new knowledge. Problem restructuring is the process of reframing and organizing one’s mental representation of the task, and the activation of new knowledge refers to discovering novel information or accessing information that has been stored but not previously retrieved from memory (Sio & Ormerod, 2009). It has long been established that creativity often arises from framing a problem differently (Csikszentmihalyi & Getzels, 1971) and drawing upon remote information in solving it (Guilford, 1957).

Incubation Mechanisms

We propose that procrastination influences the timing and extent of incubation. When employees do not procrastinate at all, they start making progress on the task immediately after learning about it, which restricts both problem restructuring and the activation of new knowledge. Recent experiments suggest that idea generation often begins with relatively obvious ideas (Lucas & Nordgren, 2015), which can constrain later creativity (Berg, 2014). Stuck on the initial framing of the task problem and limited to easily accessible knowledge, employees may be prone to linear thinking and end up “seizing and freezing” on an early conventional idea (Kruglanski & Webster, 1996). Indeed, people often rush into tasks by pre-crastinating or “grabbing the ‘low-hanging fruit’” (Rosenbaum, Gong, & Potts, 2014: 1494; see also Rosenbaum et al., 2019, and Wasserman, 2018). This is also known as “plunging-in bias,” where
employees fail to sufficiently understand the problem and explore a range of possible solutions before diving in to implement one (Bhardwaj, Crocker, Sims, & Wang, 2018). Recent research suggests that it is not only individuals who engage in extensive procrastination who struggle to finish tasks on time; individuals who pre-crastinate also encounter difficulties with time management (Vangsness & Young, 2020). Classic research on the Einstellung effect (Luchins, 1940) suggests that people tend to “persist with the same approach to a problem or a series of problems whether or not that approach is productive” (Gersick, 1994: 12). The absence of procrastination may thereby significantly limit incubation, resulting in a less creative outcome.

In contrast, when employees procrastinate moderately, they start making progress on the task later, around the middle of the task timeline. Research on the psychology of time suggests that making progress away from the task introduction and the task deadline can enhance problem restructuring and activation of new knowledge. Moderate procrastination creates psychological distance from the task, establishing both temporal and spatial separation and thereby increasing the likelihood of thinking abstractly about the nature of the problem and why it exists, rather than focusing concretely on how to solve it as presented (Soderberg, Callahan, Kochersberger, Amit, & Ledgerwood, 2015; Trope & Liberman, 2010).

After procrastinating moderately, employees are in a position to think about the task problem away from the bind of the initial framing and the salience of the deadline. They are likely to break free from the existing problem structure (George, 2007) as their minds wander to new and unusual ways of viewing a problem (Baird et al., 2012). Indeed, George (2007: 447) suggests that “time away from active engagement in a particular task allows one to approach it anew upon returning to it and potentially from a different vantage point or mental set from which new information and insights might come to light.” This gives them an opportunity to reframe
the problem and explore a range of potential solutions, both consciously and subconsciously (Van Eerde, 2000, 2003). Accordingly, insofar as it encourages employees to subconsciously or consciously explore different ways of approaching the problem, moderate procrastination can lead employees to generate more creative ideas.

Moderate procrastination is also likely to promote the activation of new knowledge. While procrastinating moderately, employees are less focused on actively solving the problem (Van Eerde, 2003), which means that goal shielding (Shah, Friedman, & Kruglanski, 2002) is weakened and they are more likely to access remote knowledge. In a state of defocused attention, employees are more likely to make unexpected leaps to less obviously relevant information (Dane, 2011; Dijksterhuis & Meurs, 2006; Dijksterhuis & Nordgren, 2006; Wieth & Zacks, 2011). Indeed, in a qualitative study, Subotnik et al. (1999: 154) found that precocious scientists “used procrastination as a form of incubation to stave off a premature choice of a scientific problem or solution.” For example, one scientist explained that “in scientific work, ideas need time to mature. I am often impulsive and my impulses have been wrong,” and described procrastination as a way to “restrain that urge to respond prematurely.” These scientists may have been waiting for the time that remote knowledge and novel information become cognitively accessible. Taken together, these arguments suggest that moderate procrastination helps employees strike a creative balance between imagination-inducing and closure-seeking behaviors.

However, the beneficial effect of moderate procrastination is unlikely to extend to high procrastination. There are both cognitive and affective reasons to expect that high procrastination will constrain incubation. When employees procrastinate extensively, they start making progress on the task only after deadlines begin to loom large. When progress is made close to the task
deadline, incubation may be restricted. From a cognitive perspective, by this point, the goal of completion (Conlon & Garland, 1993) will interfere with both conscious and subconscious incubation processes. Employees are likely to miss out on conscious incubation because their active attention is focused on finding an immediate solution rather than the most creative solution. This puts them in an implementation mindset rather than a deliberative mindset (Gollwitzer & Bayer, 1999): they are likely to devote less energy to restructuring the problem and considering new knowledge. As they race to solve the problem, they are also likely to miss out on subconscious incubation, as they do not have a break or distraction to allow those processes to operate (George, 2007). This will limit them to top-down, convergent processing within the existing problem frame and the knowledge that is already salient (Dijksterhuis & Meurs, 2006; Dijksterhuis & Nordgren, 2006), preventing them from accessing the bottom-up, divergent, higher-capacity processing of subconscious incubation (George, 2007).

In addition, as employees procrastinate longer, the ensuing temporal immediacy is likely to hinder incubation by causing them to construe the problem more concretely rather than abstractly. Evidence indicates that chronic procrastinators tend to construe tasks concretely (Dewitte & Lens, 2000). Further, research shows that temporal immediacy can hinder creativity by leading to more concrete rather than abstract construals (Förster, Friedman, & Liberman, 2004). As the stopping point for the task approaches, employees become more focused on the concrete details of how to solve the problem (Trope & Liberman, 2003), and are less likely to adopt the abstract construals that are so often necessary to discover new ways of structuring the problem and incorporate more remote and diverse sources of information. With moderate procrastination, employees experience enough temporal distance to construe the task abstractly (Soderberg et al., 2015), which allows them to incubate different possibilities for structuring the
problem and activate new knowledge.

From an affective perspective, by the time high procrastinators start contemplating the task, their emotional states are likely to interfere with incubation. It has long been observed that “good things satiate and bad things escalate” (Coombs & Avrunin, 1977: 224). As employees procrastinate more and more, they delay starting the incubation process, while the cost of time pressure may intensify. When employees wait until the last minute before working on the problem, the ensuing time pressure can narrow attentional focus, and has been empirically linked to reduced creativity (Baer & Oldham, 2006). High procrastination is likely to activate goal shielding (Shah et al., 2002), blocking out information that does not appear relevant to completing the task. The urge to solve the given problem as soon as possible (Humphrey et al., 2004) may result in a state of threat rigidity, whereby employees focus on familiar, tried-and-true solutions rather than taking the risk of trying something new (Staw, Sandelands, & Dutton, 1981). Instead of being energized by the prospect of innovation, high procrastinators are likely to be overwhelmed by the details of implementation (McCrea, Liberman, Trope, & Sherman, 2008). High procrastination may thereby constrain incubation, hindering creativity. By comparison, moderate procrastination is likely to promote creative incubation by freeing employees from the constraints of task completion goals, concrete construals, time pressure, and threat rigidity. Without pacing challenges and looming deadlines, they have the flexibility to consciously and subconsciously restructure the problem and activate new knowledge that is remote from the conventional framing of the task.

Hypothesis 1. Procrastination has an inverted-U-shaped effect on creativity, such that moderate procrastination leads to higher creativity than low or high procrastination.
Hypothesis 2. The curvilinear effect of procrastination on creativity is mediated by (a) problem restructuring and (b) activation of new knowledge.

Task and Motivational Moderators

The curvilinear effect of procrastination on creativity has important boundary conditions. To explore these conditions, we draw on theories of self-determination (Ryan & Deci, 2000) and motivational equifinality (Kruglanski, Chernikova, Babush, Dugas, & Schumpe, 2015). Although moderate procrastination may provide employees with the opportunity to incubate, we predict that whether they leverage this opportunity in service of creativity depends on the nature of their motivation and the task at hand. More specifically, we expect that the curvilinear effect of procrastination on creativity is most likely to emerge when employees are intrinsically motivated or working under high creative requirements.

Intrinsic motivation is the desire to work on a task based on interest and enjoyment (Amabile, 1993; Gagné & Deci, 2005). A core premise of self-determination theory is that when employees are intrinsically motivated, they are naturally drawn toward engaging with a task because they find it satisfying and rewarding (Ryan & Deci, 2000). Research suggests that when employees are intrinsically motivated, they approach their tasks with heightened curiosity, cognitive flexibility, and effort and persistence (for a review, see Grant & Berry, 2011). Although intrinsic motivation has been empirically linked to lower procrastination, the two variables are not tightly coupled (Steel, 2007). Intrinsic motivation can fluctuate between tasks and over time (Shin & Grant, 2019; Vallerand, 1997, 2001), and intrinsically motivated employees may still procrastinate when the current task is difficult or daunting (Subotnik et al., 1999) or when they find another activity even more interesting (Pannapacker, 2009). As such, we
do not expect that intrinsic motivation will always prevent procrastination, but that it will affect what happens when their attention is shifted away from the focal task.

Theoretically, one of the fundamental functions of motivation is to direct attention (Mitchell & Daniels, 2003). When employees are procrastinating moderately, their levels of intrinsic motivation will influence whether they direct partial attention toward the focal task. On the one hand, when employees lack intrinsic motivation, they are likely to view time away from the task as an escape from work altogether. They will take their lack of interest as a signal to avoid thinking about the focal task (Martin, Ward, Achee, & Wyer, 1993). On the other hand, self-determination theory suggests that when employees find the delayed task intrinsically motivating, they will be more likely to keep the task problems in the back of their minds while they are procrastinating moderately, as their enthusiasm for the task maintains their interest (Parker, Bindl, & Strauss, 2010) and draws their attention to novelty (Silvia, 2008). In the course of a workday, intrinsically motivated employees may procrastinate by doing mindless tasks that involve low performance pressure and cognitive difficulty, which frees up their energy and attention for incubation (Elsbach & Hargadon, 2006; George, 2007). Intrinsically motivated employees are also more likely to view obstacles as challenges rather than setbacks (Amabile, 1996), which drives them to keep the task in the back of their minds rather than disengaging altogether, allowing for problem restructuring and the activation of new knowledge to occur under moderate procrastination.

However, if intrinsic motivation is lacking, the requirement to be creative may serve as a substitute for channeling moderate procrastination into creativity. Creative requirement is the extent to which an employee’s work allows and necessitates the generation of novel ideas (Morgeson & Humphrey, 2006; Unsworth, Wall, & Carter, 2005). Creativity is a goal for some
managers and in some jobs (Shalley, Gilson, & Blum, 2000), whereas in others it is not expected—and may even be forbidden (Mainemelis, 2010). In general, creative tasks are conducive to intrinsic motivation (Amabile, 1996). Nevertheless, it is possible to be intrinsically motivated when creative requirements are low, and it is possible to lack intrinsic motivation when creative requirements are high (Gagné & Deci, 2005). According to self-determination theory (Ryan & Deci, 2000), intrinsic motivation depends on fulfilling basic psychological motives for autonomy, competence, and relatedness. In the absence of creative requirements, employees may experience intrinsic motivation when they have discretion around what, when, where, how, and with whom to work, when they possess a sense of efficacy or mastery, and when they feel supported by others (Gagné & Deci, 2005). Even in the presence of creative requirements, intrinsic motivation is likely to be stifled if employees lack freedom of choice, feel incompetent, or feel devalued (Ryan & Deci, 2000). These divergences of intrinsic motivation and creative requirements make it possible for them to interact, and we propose that creative requirement will compensate for a lack of intrinsic motivation to promote the curvilinear effect of procrastination on creativity.

Self-determination theory suggests that motivation exists on a continuum of autonomous regulation, with pure intrinsic motivation involving engagement with the task as an end in and of itself, while varying degrees of extrinsic motivation are fueled by a focus on the consequences of the task (Gagné & Deci, 2005). Extrinsic motivation can involve a desire to invest effort in a task because it is central to their value system and self-concept (integrated regulation), it fulfills one of their values or identities (identified regulation), it allows them to enhance self-esteem or prevent guilt (introjected regulation), or it enables them to obtain rewards or avoid punishment (external regulation; Ryan & Deci, 2000). When a job involves high creative requirements,
because novel and useful ideas are valued, employees are more likely to become attached to the goal of being creative (Shalley, 1991). Once they adopt that extrinsic goal, even if employees are not intrinsically motivated by the work itself, they will be concerned with achieving the external, introjected, identified, or integrated rewards of succeeding in generating creative ideas. Even if they are not energized to be creative, they have a reason to do so (Parker et al., 2010).

When employees engage in moderate procrastination, creative requirements will encourage them to keep the problem in the back of their minds, even if they are not intrinsically motivated to do so (Unsworth, 2001). They may not want to continue pondering the task, but they will feel that they should (Bazerman, Tenbrunsel, & Wade-Benzoni, 1998). In pursuit of the intrapsychic, impression management, or tangible rewards associated with developing creative ideas, partial attention is allocated to the task problem while engaging in other activities, allowing problem restructuring and the activation of new knowledge to occur under moderate procrastination. Indeed, research shows that incubation is most likely to yield creative ideas when the task requires divergent thinking (Sio & Ormerod, 2009). Creative requirements will prevent employees from disengaging from the focal task altogether while procrastinating moderately.

We expect that intrinsic motivation and creative requirement will serve as substitutes, not complements or enhancers. According to self-determination theory, autonomous regulation requires either interest or reasons, but not both (Ryan & Deci, 2000). When it comes to different types of motivation, more is not necessarily better: it is the quality, not the quantity, that seems to matter most (Grant, Nurmoohamed, Ashford, & Dekas, 2011; Vansteenkiste, Sierens, Soenens, Luyckx, & Lens, 2009). As Gagné and Deci (2005: 353) summarize, “people tend to be autonomously motivated when a task is either interesting (and thus intrinsically motivating) or
personally important (and thus autonomously extrinsically motivating).” This is known as motivational equifinality, where “one goal is served by several substitutable means” (Kruglanski et al., 2015: 69). Intrinsic motivation is the perceived fusion of means and ends, such that an activity is its own goal (Kruglanski et al., 2018), but in the absence of that fusion, viewing the ends as worthwhile is a substitute (Yeager et al., 2014). Indeed, research suggests that intrinsic motivation for a given behavior and a context supporting that behavior operate as substitutes (Llopis & Foss, 2016). When creative requirement is lacking, it is intrinsic motivation that will induce incubation for moderate procrastinators. When creative requirement is present, even if they are not interested in the means of solving the problem, they are likely to care enough about the ends to keep the task in the back of their minds, enabling reframing of the problem and the activation of new knowledge. Taken together, these arguments suggest that moderate procrastination will promote creativity in the presence of intrinsic motivation and/or creative requirements.

Hypothesis 3. The curvilinear effect of procrastination on creativity is jointly moderated by intrinsic motivation and creative requirement, such that moderate procrastination is beneficial to creativity as long as intrinsic motivation and/or creative requirement is high, but is not beneficial to creativity when both intrinsic motivation and creative requirement are low.

Overview of the Present Research

We test these hypotheses in two experiments and a field study. The experimental method facilitates causal inference and investigates key mediating mechanisms of the curvilinear procrastination-creativity effect, providing internal validity. The field study examines the
Procrastination and Creativity

curvilinear procrastination-creativity relationship in a work organization with boundary
conditions, providing external validity. In Study 1, we test Hypothesis 1, examining whether
tempting participants to engage in moderate rather than low or high procrastination increases
creativity. In Study 2, we replicate the curvilinear effect with a different sample and creativity
task, and test Hypotheses 2a-b by examining the incubation mechanisms of problem
restructuring and activation of new knowledge. In Study 3, we test Hypotheses 1 and 3 in the
field, constructively replicating the curvilinear relationship with self-reported procrastination and
supervisor-rated creativity in a furniture company, and investigate whether this relationship
depends on intrinsic motivation and creative requirement.

STUDY 1 METHOD

Sample, Design, and Procedures

We conducted a laboratory experiment in the behavioral lab of a large U.S. university. The participants were 119 undergraduate students, 77 percent female, with an average age of 20
\((SD = 2.21)\). We paid them $12 for an hour of their time. We randomly assigned participants to
one of three temptation conditions (low procrastination, moderate procrastination, high
procrastination).

The task was to write a business proposal for a student entrepreneur who had just won
$10,000 to start his own online company. In the brainstorming phase of the task, participants
were asked to write down “all the ideas that come to mind” in the space provided. In the proposal
phase, they were asked to choose one idea and write a business proposal on it, which allowed us
to assess creativity.

Procrastination manipulation. We manipulated procrastination indirectly by tempting
participants to engage in different levels of procrastination. We developed a way of encouraging
participants to voluntarily put off the business proposal task in favor of engaging in a potentially costly activity without explicitly directing them to do so. One of the most frequent sites of procrastination is YouTube (Myrick, 2015), with one survey estimating that employees spend 77 minutes a day watching videos that are unrelated to work (Purtill, 2017). To motivate participants to procrastinate, we made funny YouTube videos available for participants to watch instead of working on the business proposal. To prevent demand characteristics that might arise from participants realizing that the true focus of the experiment was on procrastination, we created a cover story—we included the funny videos as part of the student entrepreneur’s bio.

In all three conditions, participants read the bio of Mike Goodman, a student from the Midwest majoring in business who was interested in becoming an entrepreneur. They read that his hobbies include singing, hiking, and playing the piano, and he also has a link to the entertainment industry, as his older brother is a senior producer for Saturday Night Live. A fun fact embedded in the bio was that Mike originally came up with the idea for Jimmy Kimmel’s “Mean Tweets” segments—short, funny video montages where celebrities read nasty tweets about them from strangers out loud.

We included some of Mike’s favorite segments below the bio. Since these videos have been extremely popular—many of them have over 50 million views—we expected that participants might be tempted to put off working on the business proposal task to watch the clips. To induce three different levels of procrastination (low, moderate, high), we made different number of funny videos visible on the task page in each condition. In the low procrastination condition, one video was embedded on the task page. In the moderate procrastination condition, four videos were embedded on the task page. In the high procrastination condition, eight videos were embedded on the task page.
To prevent confounds, across conditions, we gave all participants 30 minutes for the task and held constant the total number and content of funny videos available. For all participants, at the bottom of the task page, there was a link to view more videos, and the number varied by condition in reverse proportion to the number of embedded videos. Thus, across conditions participants had access to nine videos during the task; the key difference was salience and ease of access.

In the moderate procrastination condition, participants were introduced to the task and were presented with the student entrepreneur’s bio, which contained four embedded videos, and the link at the bottom of the page led to five more videos. In the high procrastination condition, the experience was the same, except that eight videos were visible on the page and the link only pointed to one more. In the low procrastination condition, just one video was visible on the page and the link went to eight more.

In a pretest, the average number of videos watched was four in the moderate procrastination condition and one in the low condition. To rule out the possibility that any differences in creativity in the two conditions would be driven by watching four funny videos, we had participants in the low procrastination condition watch four funny videos before they were introduced to the task. That way, if we observed heightened creativity in the moderate procrastination condition, it would be caused by the time spent procrastinating, rather than by the four funny videos watched.

Measures

Creativity of business proposals. We recruited two independent raters to assess the creativity of participants’ business proposals. The raters were two trained research assistants—graduate students in a business school who have taken management and entrepreneurship
courses. We informed them that creativity is defined by the production of novel and useful ideas (Amabile, 1983), but did not disclose the purpose of the experiment, the hypotheses, or the experimental conditions. We provided the task instructions and participants’ business proposals in an Excel file, stripped of all identifying information. These raters were asked to evaluate the final proposals on a 7-point Likert-type scale anchored at 1 = not at all creative, 4 = somewhat creative, and 7 = very creative (Goncalo & Staw, 2006; Grant & Berry, 2011). Since the two raters achieved good reliability (ICC2 = .94, \(p < .001 \)) and agreement (average deviation = .26; LeBreton & Senter, 2008), we averaged the two raters’ scores to form a single measure of creativity for each participant. For example, a business proposal for “an online consultant business for people looking to build tiny houses” was deemed very creative and a business proposal for “start one’s own YouTube channel” was deemed not at all creative.

Quantity vs. quality. To provide initial insight into whether any creativity effects were driven by the quality or quantity of ideas explored during brainstorming, we enlisted two different coders to rate participants’ initial ideas from the brainstorming phase for originality, flexibility, and fluency (Guilford, 1957). They assessed originality—the degree to which ideas explored are unique—by rating the extent to which each idea was unique and uncommon, achieving good reliability (ICC2 = .79, \(p < .001 \)) and agreement (average deviation = .50). They assessed flexibility—the variety of categories of ideas explored—by counting the number of different categories that participants considered (e.g., Lu, Akinola, & Mason, 2017), achieving good reliability (ICC2 = .92, \(p < .001 \)) and agreement (average deviation = .47). We aggregated the two coders’ scores to form single measures of originality and flexibility for each participant, which reflected the quality of ideas explored. They assessed fluency—the sheer number of ideas explored—by counting the number of ideas explored (e.g., De Dreu, Baas, & Nijstad, 2008),
achieving 100% agreement.

Manipulation checks. To ensure that our manipulations were effective in inducing three different levels of procrastination, we tracked how long each participant spent watching the funny videos on the task page. This measure captures how long participants chose to delay making progress on a task that needed to be done. In addition, to ensure that participants perceived watching the funny videos as procrastinating, we asked them to complete four procrastination items adapted from Mann’s decisional procrastination scale (1982) anchored at 1=disagree strongly and 7=agree strongly, focusing on the extent to which they procrastinated in the business idea task, put off the business idea task, asked themselves if they should be working on the task, and spent much of the given time doing something else ($\alpha = .85$). To confirm that they had the opportunity to be creative, drawing on measures of creative requirements and goals (Gong, Wu, Song, & Zhang, 2017; Shalley, 1995; Unsworth et al., 2005), we asked them about the extent to which they considered being creative an important goal and tried to be creative ($\alpha = .78$). To verify that intrinsic motivation was not low, we asked participants how interesting and enjoyable they found the business idea task (Grant, 2008; $\alpha = .90$). Finally, to address the possibility that low or moderate procrastination could yield a sense of progress and thereby prevent negative affect or promote positive affect (Amabile, Barsade, Mueller, & Staw, 2005; see also De Dreu et al., 2008), we asked participants to complete the Discrete Emotions Questionnaire (Harmon-Jones, Bastian, & Harmon-Jones, 2016). We measured activated positive affect with the happiness scale ($\alpha = .94$), deactivated positive affect with the relaxation scale ($\alpha = .94$), deactivated negative affect with the sadness scale ($\alpha = .84$), and activated negative affect with the anxiety scale ($\alpha = .90$).

STUDY 1 RESULTS AND DISCUSSION
Table 1 displays means and standard deviations by condition, and Table 2 shows them across conditions along with correlations. In support of the validity of the procrastination manipulations, an ANOVA showed a significant effect of the procrastination manipulation on the video watching times, $F(2, 113) = 54.34, p < .001$, partial $\eta^2 = .49$. A planned contrast indicated that there was a significant linear trend across conditions, $t(2, 113) = 10.27, p < .001, d = 1.93$. Pairwise comparisons showed that participants in the moderate procrastination condition spent significantly more time watching videos ($M = 468.60$ seconds, $SD = 263.60$) than participants in the low procrastination condition ($M = 53.30$ seconds, $SD = 125.34$), $t(55.78) = 9.00, p < .001, d = 2.41$, and participants in the high procrastination condition spent significantly more time watching videos ($M = 720.75$ seconds, $SD = 404.31$) than the participants in the moderate procrastination condition, $t(59.14) = 3.18, p < .01, d = .83$. Thus, the manipulations led participants in the high procrastination condition to delay the progress in the task longer than participants in the moderate procrastination condition, who in turn delayed the progress in the task longer than participants in the low procrastination condition. Further, they recognized this as procrastination: the conditions varied significantly in self-reported procrastination, $F(2, 116) = 7.33, p < .01$, partial $\eta^2 = .11$, which represented a linear trend, $t(116) = 3.83, p < .01, d = .71$.¹

Further, intrinsic motivation for the task was above the midpoint of the scale ($M = 4.45$) and creative requirement was higher ($M = 5.60$), and neither varied significantly across conditions. There were also no significant differences by condition in happiness, relaxation, sadness, or anxiety. Taken together, these results establish that our manipulation succeeded in

¹ Pairwise comparisons showed a trend for participants in the moderate procrastination condition to report procrastinating more ($M = 3.79, SD = 1.57$) than participants in the low procrastination condition ($M = 3.16, SD = 1.56$), $t(78) = 1.81, p < .10, d = .41$, and participants in the high procrastination condition reported that they procrastinated significantly more ($M = 4.53, SD = 1.67$) than the participants in the moderate procrastination condition, $t(77) = 2.04, p < .05, d = .46$.
varying procrastination while holding intrinsic motivation and creative requirement constant between conditions.

Creativity Effects

An ANOVA showed a significant effect of procrastination on the creativity of the business proposals, $F(2, 116) = 6.96, p < .01$, partial $\eta^2 = .11$. A planned contrast indicated that there was a significant curvilinear trend across conditions: participants in the moderate procrastination condition wrote significantly more creative proposals than those in the low and high procrastination conditions, $t(116) = 3.71, p < .001, d = .69$. Pairwise comparisons showed that participants in the moderate procrastination condition ($M = 4.48, SD = 1.58$) wrote significantly more creative proposals than participants in the low procrastination condition ($M = 3.21, SD = 1.86$), $t(78) = 3.27, p < .01, d = .74$, and the high procrastination condition ($M = 3.36, SD = 1.49$), $t(77) = 3.22, p < .01, d = .73$. Creativity did not differ significantly between the low and high procrastination conditions (see Figure 1). These results provide support for Hypothesis 1.

Exploratory Analyses

To gauge whether the creativity effects were a function of quality or quantity, we analyzed the coders’ ratings of ideas explored during brainstorming on originality, flexibility, and fluency. It is important to note that we do not view these dimensions of ideas as potential mediators, as they are not the psychological processes that transmit the effects of procrastination on creativity; they are behavioral outcomes of those processes. Our objective in conducting these analyses is to gain a more precise understanding of how procrastination influences creative output.

There were no significant differences by condition in fluency, indicating that the quantity
of ideas was not affected by procrastination. However, there were significant differences by condition in originality, $F(2, 113) = 3.67, p < .05$, partial $\eta^2 = .06$. Planned contrasts showed that participants in the moderate procrastination condition generated significantly more original ideas than those in the low and high procrastination conditions, $t(65.40) = 2.52, p = .01, d = .62$. There were also significant differences by condition in flexibility, $F(2, 113) = 3.06, p = .05$, partial $\eta^2 = .05$. Planned contrasts showed that participants in the moderate procrastination condition had significantly higher flexibility than those in the low and high procrastination conditions, $t(113) = 2.36, p < .05, d = .44$.

Regression analyses showed that after controlling for originality and flexibility, the curvilinear effect of procrastination on creativity decreased from $b = -1.21, SE = .33, \beta = .33, t = -3.73, p < .001$ to $b = -.61, SE = .26, \beta = -.58, t = -2.35, p < .05$, and creativity was significantly predicted by originality, $b = 1.04, SE = .12, \beta = .63, t = 8.75, p < .001$. To examine the size and significance of the indirect effect, we employed the bootstrap procedures recommended by Hayes and Preacher (2010). We constructed bias-corrected confidence intervals based on 1,000 random samples with replacement from the full sample. The indirect curvilinear effect of procrastination on creativity through originality was significant (theta = -.56, 95% CI = -1.04, -.13). More specifically, the instantaneous indirect effect through originality was significant and

2 Pairwise comparisons showed that participants in the moderate procrastination condition generated significantly more original ideas ($M = 3.17, SD = 1.19$) than participants in the low procrastination condition ($M = 2.60, SD = .96$), $t(74.11) = 2.35, p < .05, d = .55$, and the high procrastination condition ($M = 2.65, SD = .93$), $t(73.30) = 2.15, p < .05, d = .50$. The originality of ideas did not differ between the low procrastination condition and the high procrastination condition.

3 Pairwise comparisons showed that participants in the moderate procrastination condition demonstrated significantly greater flexibility than the high procrastination condition ($M = 5.01, SD = 2.31$), $t(76) = 2.43, p < .05, d = .56$, but not significantly greater flexibility ($M = 6.21, SD = 2.04$) than participants in the low procrastination condition ($M = 5.39, SD = 2.22$), $t(76) = 1.70, p < .10, d = .39$. Flexibility did not differ between the low procrastination condition and the high procrastination condition.

4 When we entered flexibility separately, it was a significant predictor of creativity, but once we added originality, flexibility dropped below significance.
positive at low procrastination (theta = .97, 95% CI = .25, 1.77), nonsignificant at moderate procrastination (theta = .03, 95% CI = -.21, .24), and significant and negative at high procrastination (theta = -.91, 95% CI = -1.77, -.17). Together, these results suggest that the heightened creativity under moderate procrastination was driven by the quality of ideas explored, not the quantity.

One alternative explanation for our results is that participants may have incorporated the material from the procrastination videos in their idea generation efforts. When we asked participants how they came up with their ideas and where they come from, 16% of participants mentioned that watching the videos influenced their business ideas. Examples include a social media app that would allow a waiting period for mean tweets to be posted so people had a chance to change their minds, an app that would filter out mean online comments, a music business making the mean tweets into songs, a TV series with celebrities doing some of the things people tweeted about them, and a company where people could pay to talk with celebrities. However, the rate of being influenced by watching the videos did not vary significantly by condition (low procrastination: 15%; moderate procrastination: 15%; high procrastination: 18%), $\chi^2 = .17$, $p = .92$. Further, incorporating the video content was actually negatively correlated with creativity, $r = -.20$, $p < .04$, and the effects of our manipulations on creativity are unchanged when we control for whether participants used the video content.

Altogether, although these results are intriguing, they are subject to several limitations. First, it remains to be seen whether the effects can be replicated in different samples with different creativity tasks. Second, although we attempted to hold the number of funny videos constant between the low and moderate conditions by allowing participants in the low procrastination to watch four videos before starting the task, since the other two conditions did
not have access to funny videos prior to the task introduction, it represents a potential confound. Third, we were unable to examine the incubation processes that mediate the curvilinear effect of procrastination.

To address these limitations, we conducted a second experiment. We recruited a new sample of graduate rather than undergraduate students, randomly assigned them to different levels of procrastination by making different numbers of funny YouTube videos easily accessible without allowing any conditions watch them first. The creativity task was to generate a creative idea for how student entrepreneurs can earn money. We measured the hypothesized incubation mechanisms by coding the set of ideas that participants explored during the brainstorming phase before writing their final proposals for problem restructuring and activation of new knowledge.

STUDY 2 METHOD

Sample, Design, and Procedures

We conducted a laboratory experiment in the behavioral lab of a large U.S. university. The participants were 126 graduate students, 58 percent female, with an average age of 25.34 (SD = 4.50). We paid them $12 for an hour of their time. We randomly assigned each experimental session to one of three conditions (low procrastination, moderate procrastination, high procrastination).

The task was to help a student named Mike for an assignment in an entrepreneurship class. The assignment, based on an actual creativity task used in a technology ventures class at Stanford (Seelig, 2009), was to generate as much money as possible in three hours, and he was given $10 seed money to start. For example, they could use the money to buy lemons, sugar, and cups, and then sell lemonade. In the next class, he would have five minutes to present his results and lessons learned. In the brainstorming phase, we asked participants to write down all the ideas
that come to mind in the space provided, which allowed us to assess the extent of problem restructuring and activation of new knowledge during brainstorming. Then, we asked participants to choose their most creative idea and write an email to Mike explaining the idea in detail, which allowed us to assess the creativity of the final proposal.

Procrastination manipulation. We used the same procrastination manipulation as in Study 1, but did not have participants in the low procrastination condition watch videos first. To prevent demand characteristics, we added a cover story: since failure and rejection are common in entrepreneurship, to remind students that everyone faces obstacles, Mike’s professor showed Mean Tweets videos in class. To give participants a taste of Mike’s class, sample videos were embedded on the page with the task instructions. In the low procrastination condition, one funny video was embedded on the task page and a link at the bottom took them to a page with eight more. In the moderate procrastination condition, four videos were embedded on the task page and the link at the bottom directed them to a page with five more. In the high procrastination condition, eight videos were embedded on the task page and the link at the bottom pointed to a page with one more. All participants had 30 minutes for the task.

Creativity Measure

Two trained research assistants coded participants’ proposals for creativity on a 7-point Likert-type scale anchored at 1=not at all creative, 4=somewhat creative, and 7=very creative (Goncalo & Staw, 2006; Grant & Berry, 2011). Once again, they were graduate students in a business school and were unaware of the purpose of the study, the hypotheses, and the experimental conditions. We provided them with the task directions and the emails to Mike in an Excel file, stripped of all identifying information. Since the two raters achieved good reliability (ICC2 = .85, p < .001) and agreement (average deviation = .31), we averaged the two raters’
scores to form a single creativity score for each participant. For example, an email about setting up a photo shoot booth was deemed very creative and an email about setting up a lemonade stand was deemed not at all creative.

Incubation Mediators

We recruited two separate coders to evaluate the extent of problem restructuring and the activation of new knowledge during the brainstorming phase.

Problem restructuring. The initial framing of the main problem was to use the $10 seed funding to earn more money. In actual classes, that often leads students to set up lemonade stands or buy lottery tickets (Seelig, 2009). Yet highly creative students have reframed the problem by relaxing the constraint of investing the seed money and asking how to generate the highest revenue regardless of whether or not the funding is used. For example, one team made restaurant reservations at popular restaurants on Saturday night and earned several hundred dollars selling them, and another filled bicycle tires and collected donations from grateful cyclists. The most successful team realized their most valuable resource was not the money or the time to earn more, but the few minutes in front of their classmates, which they sold for $650 to a company that paid them to make a recruiting commercial (Seelig, 2009).

To measure problem restructuring, in line with prior research (Knoblich, Ohlsson, Haider & Rhenius, 1999; MacGregor, Ormerod, & Chronicle, 2001), the two coders evaluated the extent to which participants were wedded to the initial framing of the problem as investing the $10 or restructured the problem as earning as much money as possible regardless of the seed funding. The coders counted the number of times that each participant restructured the problem as a total percentage of their ideas explored during brainstorming, achieving high reliability (ICC2 = .94, $p < .001$) and agreement (AD = .02), and we averaged their scores.
Activation of new knowledge. To assess the total amount of new knowledge activated during brainstorming (Bowers, Regehr, Balthazard, & Parker, 1990), the coders rated the extent to which each idea explored during brainstorming contained new knowledge compared to the participants’ earlier ideas on a 1-7 scale and summed their ratings. As an example of low activation of new knowledge, a participant proposed one idea of singing or playing an instrument to earn tips on a busy street, and another idea of paying a real musician and a portion of their earnings to perform on a busy street; these two ideas draw upon the same knowledge. As an example of high activation of new knowledge, a participant proposed one idea of buying nail polish and charging people to have their nails painted, and another idea of buying different Kool-Aid flavors and charging people for a taste test with a chance to win money; these two ideas draw on different knowledge. The coders achieved high reliability (ICC2 = .95, p < .001) and agreement (AD = .49), and we averaged their scores.

Manipulation Checks

We once again measured how long each participant spent watching the funny videos on the task page and asked them to complete procrastination items adapted from Mann’s decisional procrastination scale (1982; α = .69). To gain insight into when participants started making progress on the task, we also measured the time at which they entered their first idea during brainstorming.

STUDY 2 RESULTS AND DISCUSSION

Table 3 displays means and standard deviations by condition, and Table 4 shows them across conditions along with correlations. In support of the validity of the procrastination manipulations, an ANOVA showed a significant effect of the procrastination manipulation on the video watching times, $F(2, 121) = 77.62, p < .001$, partial $\eta^2 = .56$. A planned contrast
indicated that there was a significant linear trend across conditions, \(t(2, 121) = 12.41, p < .001, d = 2.26 \). Pairwise comparisons showed that participants in the moderate procrastination condition spent significantly more time watching videos (\(M = 441.52 \) seconds, \(SD = 198.46 \)) than participants in the low procrastination condition (\(M = 70.10 \) seconds, \(SD = 34.85 \)), \(t(43.53) = 11.95, p < .001, d = 3.62 \), and participants in the high procrastination condition spent significantly more time watching videos (\(M = 727.90 \) seconds, \(SD = 368.65 \)) than the participants in the moderate procrastination condition, \(t(59.21) = 4.35, p < .001, d = 1.13 \). Thus, the manipulations led participants in the high procrastination condition to delay the progress in the task longer than participants in the moderate procrastination condition, who in turn delayed the progress in the task longer than participants in the low procrastination condition. Once again, they recognized this as procrastination: the conditions varied significantly in self-reported procrastination, \(F(2, 123) = 6.71, p < .01 \), partial \(\eta^2 = .09 \), which represented a linear trend, \(t(123) = 3.66, p < .001, d = .66 \).\(^5\)

Turning to the time when participants began submitting ideas, the conditions varied significantly in how long they waited to enter their first idea, \(F(2, 123) = 12.78, p < .001 \), partial \(\eta^2 = .18 \), which represented a linear trend, \(t(123) = 5.04, p < .001, d = .91 \). Pairwise comparisons showed that participants in the low procrastination condition submitted their first idea earlier (\(M = 178.37, SD = 64.72 \)) than those in the moderate procrastination condition (\(M = 298.88, SD = 165.68 \)), \(t(53.48) = 4.38, p < .001, d = 1.20 \), who in turn submitted theirs earlier than those in the high procrastination condition (\(M = 457.38, SD = 396.95 \)), \(t(51.66) = 2.34, p < .05, d = .65 \).\(^6\)

\(^5\) Pairwise comparisons showed that participants in the moderate procrastination condition reported that they procrastinated more (\(M = 3.88, SD = 1.74 \)) than participants in the low procrastination condition (\(M = 3.23, SD = 1.22 \)), \(t(73.53) = 2.00, p < .05, d = .47 \), and there was a trend for participants in the high procrastination condition to report procrastinating more (\(M = 4.54, SD = 1.88 \)) than the participants in the moderate procrastination condition, \(t(81.50) = 1.66, p = .10, d = .37 \).

\(^6\) Once again, we examined whether participants used the content from the procrastination videos in their idea.
Creativity Effects

An ANOVA showed a significant effect of procrastination on the creativity of the final proposals, $F(2, 123) = 5.66, p < .01$, partial $\eta^2 = .08$. A planned contrast indicated that there was a significant curvilinear trend across conditions: participants in the moderate procrastination condition wrote significantly more creative proposals than those in the low and high procrastination conditions, $t(123) = 3.21, p < .01, d = .58$. Pairwise comparisons showed that participants in the moderate procrastination condition ($M = 3.21, SD = 1.80$) wrote significantly more creative proposals than participants in the low procrastination condition ($M = 2.42, SD = 1.48$), $t(79) = 2.22, p < .05, d = .50$, and the high procrastination condition ($M = 2.06, SD = 1.53$), $t(80) = 3.17, p < .01, d = .71$. Creativity did not differ significantly between the low and high procrastination conditions (see Figure 2). These results provide support for Hypothesis 1.

Mediating Mechanisms

There were significant differences by condition in problem restructuring, $F(2, 123) = 3.99, p < .05$, partial $\eta^2 = .06$. Planned contrasts showed that participants in the moderate procrastination condition showed significantly higher problem restructuring than those in the low and high procrastination conditions, $t(123) = 2.77, p < .01, d = .50$. Pairwise comparisons showed that participants in the moderate procrastination condition demonstrated significantly higher problem restructuring ($M = .30, SD = .16$) than participants in the low procrastination condition ($M = .20, SD = .17$), $t(82) = 2.87, p < .01, d = .63$, and significantly higher problem restructuring than the high procrastination condition ($M = .22, SD = .20$), $t(82) = 2.08, p < .05, d = .46$. Problem restructuring did not differ significantly between the low procrastination conditions. In this experiment, the videos were less relevant to the creative task: participants were tasked not with dreaming up an online business, but with generating ideas to make money in a short period of time. Out of 126 participants, only three participants wrote that their idea came from watching the videos, ruling out this alternative explanation.
condition and the high procrastination condition.

There were also significant differences by condition in activation of new knowledge, $F(2, 123) = 7.60, p < .01$, partial $\eta^2 = .11$. Planned contrasts showed that participants in the moderate procrastination condition showed significantly higher activation of new knowledge than those in the low and high procrastination conditions, $t(123) = 3.46, p < .01, d = .62$. Pairwise comparisons showed that participants in the moderate procrastination condition showed significantly higher activation of new knowledge ($M = 33.57$, $SD = 8.67$) than participants in the low procrastination condition ($M = 28.69$, $SD = 12.74$), $t(72.26) = 2.05, p < .05, d = .48$, and significantly higher activation of new knowledge than the high procrastination condition ($M = 24.46$, $SD = 10.32$), $t(82) = 4.38, p < .001, d = .97$. Activation of new knowledge did not differ significantly between the low procrastination condition and the high procrastination condition.

In regression analyses, after controlling for problem restructuring and activation of new knowledge, the curvilinear effect of procrastination on creativity decreased from $b = -.98$, $SE = .30$, $\beta = -1.00$, $t = -3.21, p < .001$ to $b = -.64$, $SE = .31$, $\beta = -.65$, $t = -2.05, p < .05$, and creativity was significantly predicted by both problem restructuring, $b = 1.83$, $SE = .84$, $\beta = .20$, $t = 2.18, p < .05$, and activation of new knowledge, $b = .03$, $SE = .02$, $\beta = .21$, $t = 2.09, p < .05$. To assess the size and significance of the indirect effects, we followed the bootstrap procedures recommended by Hayes and Preacher (2010), constructing bias-corrected confidence intervals based on 1,000 random samples with replacement from the full sample. The indirect curvilinear effect of procrastination on creativity through problem restructuring was significant (theta = -.16, 95% CI = -.38, -.01). More specifically, the instantaneous indirect effect through problem restructuring was significant and positive at low procrastination (theta = .36, 95% CI = .12, .88), nonsignificant at moderate procrastination (theta = .02, 95% CI = -.06, .12), and significant and
negative at high procrastination (theta = -.31, 95% CI = -.83, -.08). The indirect curvilinear effect of procrastination on creativity through activation of new knowledge was also significant (theta = -.21, 95% CI = -.44, -.05). More specifically, the instantaneous indirect effect through activation of new knowledge was significant and positive at low procrastination (theta = .31, 95% CI = .08, .75), nonsignificant at moderate procrastination (theta = -.07, 95% CI = -.22, -.00), and significant and negative at high procrastination (theta = -.45, 95% CI = -.92, -.16). From low to moderate procrastination, procrastination increased creativity through facilitating problem restructuring and activation of new knowledge; from medium to high levels of procrastination, procrastination reduced creativity through hindering problem restructuring and activation of new knowledge.

These results support Hypotheses 2a and 2b, indicating that problem restructuring and activation of new knowledge partially mediated the curvilinear effect of procrastination on creativity. However, they raise several important questions. First, just because an effect can be demonstrated in the laboratory does not mean it will stand in the field. It remains to be seen whether any benefits of moderate procrastination are outweighed by the greater number of distractions in organizational settings, and whether the same creativity effects emerge when procrastination is naturally occurring rather than experimentally manipulated. Second, it is also unclear whether the curvilinear effect will hold in other cultures. Third, in both of our experiments, to isolate the effects of procrastination, we held the task constant, making it impossible to examine boundary conditions.

We addressed these limitations in a field study. To examine whether the curvilinear relationship is unique to the U.S., we gathered data from a Korean sample of employees, surveying them on their procrastination levels and their supervisors on their creativity. To
capture natural variance in intrinsic motivation and the opportunity to be creative, we included employees in a range of departments in the company.

STUDY 3 METHOD

Sample and Procedures

We collected data from 170 employees and their direct supervisors at a furniture company in South Korea. Interviews with managers suggested that there was natural variance in the key constructs of procrastination and creativity. This furniture company engaged in various aspects of making and selling furniture, with different kinds of deadlines and opportunities to generate novel and useful solutions to problems. Although there may have been few instances of revolutionary creativity ("Big-C"), it was an appropriate setting in which to examine everyday creativity ("little-c"; Simonton, 2013).

The company had many diverse departments such as strategy, sales, design, marketing, quality management, production management, and customer service. The final sample included employees from each of these departments, all of whom had a ‘9-5’ job in an office environment. We distributed the questionnaire to 250 employees from a representative cross-section of office jobs in the organization, asking them to participate in a confidential academic study about work motivation and job satisfaction. A total of 177 employees completed the surveys, yielding a response rate of 71 percent. In the survey, employees were asked to indicate how much they procrastinated at work. Each employee’s direct supervisor was asked to rate the creativity of the focal employee. We received supervisor responses for 170 employees, spanning strategy, sales, design, marketing, quality management, production management, and customer service roles. The employees were 56 percent male, averaged 31 years of age, and averaged 3.63 years in their current job. There were 27 supervisors, resulting in an average of just over six employees per
Measures

Unless otherwise indicated, all items used a 7-point Likert-type scale anchored at 1=disagree strongly and 7=agree strongly.

Procrastination. Consistent with the personal project methodology for assessing procrastination (Blunt & Pychyl, 2000, 2005; Lay, 1986; Pychyl & Little, 1998), employees reported the extent to which they procrastinated in each of their core tasks. Employees first wrote down their core tasks in their jobs⁷, and subsequently indicated how much they procrastinated in each task on a 7-point Likert-type scale anchored at 1=not at all and 7=to a great extent. We averaged the procrastination scores for each task to form a global measure of procrastination at work for each employee (α = .78).

Creativity. To measure creativity, supervisors rated each employee using the nine-item scale developed by Tierney, Farmer, & Graen (1999), including “Generated novel, but operable work-related ideas” and “Served as a good role model for creativity” (α = .96).

Task efficiency. To test whether the results were unique to creativity, we also measured task efficiency. For each task, supervisors rated the quantitative aspect of performance using an item adapted from Ashford and Black (1996), “This employee achieves high quantity of work output in this task” (α = .83).

Intrinsic motivation. To measure intrinsic motivation at the job level, we used the scale from Grant (2008), which opens by asking employees why they are motivated to do their work, and consists of four items: “Because I enjoy the work itself,” “Because it’s fun,” “Because I find

⁷ Employees wrote down up to five core tasks. We identified five as an appropriate number of core tasks after discussions with the HR manager. This is also consistent with the average number of core tasks for clerical jobs in previous research (Little, Salmela-Aro, and Phillips, 2007; Taber and Alliger, 1995; Wong and Campion, 1991).
the work engaging,” and “Because I enjoy it” (α = .94).

Creative requirement. To measure creative requirement, employees completed scale developed by Morgeson and Humphrey (2006). The items were “My job involves solving problems that have no obvious correct answer,” “My job requires me to be creative,” “My job often involves dealing with problems I have not met before,” and “My job requires unique ideas or solutions to problems” (α = .86).

Control variables. Because extrinsic motivation can also affect creativity (Amabile, 1993), we controlled for employees’ extrinsic motivation using the items from Grant and Berry (2011): “Because I need to earn money,” “Because I need to pay my bills,” “Because I need the income,” and “Because I need to support myself and my family” (α = .84). We also controlled for age, gender, education, job experience, as these factors may influence creativity (Amabile, 1988; Tierney & Farmer, 2002). Education was coded as 1, “middle school”; 2, “high school”; 3, “college”; and 4 “graduate school”, while job experience was measured by the number of months in the current job.

STUDY 3 RESULTS AND DISCUSSION

Means, standard deviations, and correlations for the study variables appear in Table 5. Of the variance in creativity, 80% was at the employee level and 20% was at the supervisor level. To assess nonresponse bias, we compared respondents and non-respondents on the demographic variables of age, gender, and education (Rogelberg & Stanton, 2007). There were no significant differences on any of these variables. Prior to our analysis, we standardized our predictor variables, which include procrastination, intrinsic motivation, creative requirement, extrinsic motivation, age, gender, education, and job experience. We accounted for the nested nature of our data by conducting random coefficient modeling. In Table 6, the third column (Step 3) shows
a regression model with procrastination-squared and procrastination as well as the control variables predicting creativity. The results show that procrastination has an inverted-U-shaped relationship with creativity ($\gamma = -.12, p < .05$), such that creativity is highest at middle ranges of procrastination (see Figure 3). At low to moderate procrastination, each additional unit of procrastination increases creativity; at medium to high levels of procrastination, each additional unit of procrastination reduces creativity. Thus, as one moves away from either side of extremely low and high procrastination toward moderate procrastination, creativity is heightened.

A significant quadratic effect is necessary but not sufficient for establishing an inverted-U-shaped relationship; the slopes need to be significantly positive on the left side of the curve and significantly negative on the right side of the curve, and the turning point needs to occur within the range of the data (Haans, Pieters, & He, 2016). These conditions can be examined with the two-lines test (Simonsohn, 2018). The relationship between procrastination and creativity was significant and positive for low to moderate values of procrastination ($\gamma = .42, p < .05$), and significant and negative for moderate to high values of procrastination ($\gamma = -.26, p < .05$). Because the slopes are determined from the data in the two-lines test, the turning point is within the range of the data. Taken together, these results provide support for Hypothesis 1.

To test Hypothesis 3, we constructed two additional models. Step 4 in Table 6 shows the linear and quadratic two-way interactions, and Step 5 shows a quadratic three-way interaction with procrastination squared, creative requirement, and intrinsic motivation. The quadratic three-way interaction is significant ($\gamma = .10, SE = .05, t = 2.16, p < .05$), such that procrastination has an inverted-U-shaped relationship when intrinsic motivation and/or creative requirement is high, but a negative linear relationship when both intrinsic motivation and creative requirement are low (see Figure 4). The low-low slope is significantly linear ($\gamma = -.20, SE = .08, t = -2.42, p$
< .05) but not significantly curvilinear ($\gamma = -.04$, SE = .07, $t = -.62$, $p > .05$). Meanwhile, the high-high curve is significantly curvilinear ($\gamma = -.21$, SE = .08, $t = -2.64$, $p < .01$) and it is not significantly different from the high creative requirement-low intrinsic motivation curve, $\chi^2 (2) = 5.24$, $p > .05$, or the low creative requirement-high intrinsic motivation curve, $\chi^2 (2) = .09$, $p > .05$ in curvilinearity. Overall, these results provide support for Hypothesis 3, suggesting that moderate procrastination is conducive to creativity as long as employees are intrinsically motivated or expected to be creative, but not when both of these conditions are missing.\(^8\)

As expected, procrastination had a linear negative relationship with task efficiency ($\gamma = -.13$, $p < .01$), but did not have a curvilinear relationship with task efficiency. These results suggest that supervisors do not generally favor employees who neither rush into tasks nor procrastinate until the last minute: the benefits of moderate procrastination apply to creativity but not task efficiency.

GENERAL DISCUSSION

Our laboratory experiments demonstrated that moderate procrastination can causally influence the production of creative ideas through the incubation mechanisms of problem restructuring and activation of new knowledge. Our field study showed that when employees procrastinated moderately on their tasks, their supervisors gave them higher ratings of creativity, as long as they had high intrinsic motivation or high creative requirements. This curvilinear relationship between procrastination and the quality of employees’ ideas did not extend to the quantity of their work: supervisors rated them as exhibiting lower task efficiency on tasks where they procrastinated. These results have important implications for research on time management, creativity, and motivation.

\(^8\) The linear two-way and three-way interactions of procrastination with intrinsic motivation and creative requirement are not significant.
Theoretical Contributions

Our research challenges the dominant view of procrastination as an inherently dysfunctional behavior. Although individuals may anticipate that delays can be costly, we find that moderate procrastination can allow for incubation and promote creativity, provided that individuals are intrinsically motivated or the task allows for the development of new ideas. In doing so, our work complicates traditional assumptions about time management. Existing studies of time management skill emphasize that employees benefit from the capacity to prioritize tasks efficiently, use waiting time efficiently, and stick to deadlines (Macan, 1994; Rapp, Bachrach, & Rapp, 2013). Our research suggests that although these skills are paramount for efficiency, they are not always conducive to creativity. To develop ideas that are novel and useful, employees may need the skills to delay the start, progression, or completion of a task while being aware that there may be a downside to that action.

Our research also offers insight about the role of incubation in creativity. Existing studies suggest that having an incubation period for ideas to germinate sometimes enhances creativity and sometimes does not (Ellwood, Pallier, Snyder, & Gallate, 2009; Sio & Ormerod, 2009). While moderate procrastination and high procrastination both entail incubation periods, we find that only moderate procrastination increases the creativity of the final outcome. Under moderate procrastination, when most of the progress occurs away from the task introduction and the task deadline, employees can continue restructuring the problem and activating new knowledge, which results in a creative outcome. On the other hand, under high procrastination, when most of the progress occurs near the task deadline, employees may feel the urge to finish the task as soon as possible, which hinders problem restructuring and activation of new knowledge, resulting in a less creative outcome. Our findings suggest that the timing of progress matters for effective
incubation, thereby extending knowledge about curvilinear relationships (Grant & Schwartz, 2011; Pierce & Aguinis, 2013). It appears that moderate procrastination allows for effective incubation, which lies between the deficiency of starting right away and the excess of rushing to a deadline.

Further, our investigation enriches knowledge about intrinsic motivation. Although the majority of research has conceptualized intrinsic motivation as an antidote to procrastination, existing empirical evidence indicates that intrinsic motivation explains less than ten percent of the variance in procrastination (Steel, 2007), and in our field study, the two variables were not significantly correlated. Our theoretical perspective and empirical findings suggest that intrinsic motivation does not necessarily prevent procrastination, but it may influence how employees direct their attention while procrastinating. This highlights a complementary role for intrinsic motivation in the creative process, underscoring the value of studying not only how intrinsic motivation affects behavior in focal tasks, but also how it affects attention during off-task activities. Our research emphasizes that intrinsic motivation can operate as a moderator of behavior, not only as a cause of behavior. In addition, we find that when intrinsic motivation is absent, creative requirement can compensate to promote creativity during moderate procrastination. This suggests that creative requirement deserves consideration as a substitute for intrinsic motivation, not merely as an antecedent of it.

Limitations and Future Directions

These contributions must be qualified in light of the limitations of our research. First, since we assessed the mediators and moderators in separate studies, future research is necessary to test the full model. Second, our studies do not directly address how the motives behind procrastination or the choice of activities during procrastination shape its effects. When
employees procrastinate because they are dissatisfied with their initial ideas, is it more beneficial than when they end up delaying due to self-regulatory failure or because they prefer to work under pressure? When employees choose to work on mindless tasks while procrastinating on a creative problem, does that free up cognitive resources (Elsbach & Hargadon, 2006; see also Baird et al., 2012) and minimize the costs of attention residue (Leroy, 2009)? If the alternative activity is highly intrinsically motivating, it may create a contrast effect that renders the delayed task more aversive (Shin & Grant, 2019). However, if the alternative activity is moderately interesting, it may create enthusiasm that spills over into the delayed task, which can increase creativity directly (Baas, De Dreu, & Nijstad, 2008) or by fueling emotional ambivalence (Fong, 2006) in concert with the guilt and anxiety that often accompany procrastination. More research examining the role of different motives behind procrastination and the content of activities during procrastination would be valuable.

Third, problem restructuring and the activation of new knowledge partially mediated the curvilinear effect of procrastination on creativity in our second experiment, raising unanswered questions about additional mechanisms at play. One plausible candidate is the incubation process of selective forgetting, which involves abandoning initial solutions that are unoriginal or impractical (Sio & Ormerod, 2009). It is also feasible that our measures were not extensive enough to detect the full array of subconscious and conscious processes of incubation that fueled creativity. Further, procrastination may influence creativity through mechanisms beyond incubation. Along with facilitating idea generation, moderate procrastination may improve idea selection by freeing up time to reflect on the evaluation criteria of novelty and usefulness, and overcome negative visceral reactions to novelty (Berg, 2016; Mueller, Melwani, & Goncalo, 2012). This also speaks to an explanation for why intrinsic motivation was less important as a
m moderator than creative requirement: intrinsic motivation may encourage a focus on solutions that are novel but not necessarily useful (Grant & Berry, 2011). That said, it is possible that as intrinsic motivation approaches zero, creativity will falter.

Fourth, it would be helpful to have richer theory about the time intervals that qualify as moderate versus high procrastination. Although these will always be contingent on the duration and complexity of the task, it would be useful to develop guidelines for identifying the range in which procrastination is creatively productive. Since our research focused on procrastination in time-bound work, future studies should explore whether the observed effects extend to creativity in tasks without a deadline. Fifth, on a related note, our theory suggests that procrastination will only produce advantages after employees have some exposure to the task or have made some progress on the task, but we did not test how much task exposure or task progress is optimal in our studies. Broader questions about timing also remain unanswered since our field study was cross-sectional and our laboratory experiment focused on a single task. We encourage researchers to use experience-sampling methods to track how the vicissitudes of procrastination and task engagement dynamics such as improvisation and enactment are related to creativity over time. It also remains to be seen whether the lack of emotional effects in our first experiment are due to the fact that we only measured affective states after participants had finished the creative task. Future studies could examine whether working on a task without procrastination creates an initial jolt of positive affect and a motivating sense of progress, whereas moderate procrastination yields greater enthusiasm about the final product and the adrenaline rush under high procrastination creates a surge of interest.

Sixth, whereas we focused on individual procrastination and creativity, there is value in understanding this relationship at the group level (Gino, Argote, Miron-Spektor, & Todorova,
2010; Tadmor, Satterstrom, Jang, & Polzer, 2012). When creativity for a particular project is sequentially interdependent, procrastination from one team member could undermine team creativity, as it might slow down the progress of other team members (Van Eerde, 2015). Conversely, it may be that one team member’s procrastination encourages moderate procrastination by others, which—provided that they are intrinsically motivated or working on creative tasks—could facilitate incubation. It will also be useful to explore whether there are social mechanisms that explain the creative benefits of moderate procrastination. For example, procrastinating may increase the probability that employees collect unexpected insights and useful feedback from weak ties (Perry-Smith, 2006). Finally, beyond the consequences of procrastination, there is a need for research on its organizational antecedents. For example, what is the role of deadlines, and what kind of deadlines would encourage moderate procrastination? Whereas past studies have often been limited by the difficulty of studying procrastination with experimental precision, our research offers a paradigm for manipulating procrastination and measuring the extent of it in the laboratory and online, which may facilitate the exploration of these valuable questions.

Practical Implications and Conclusion

Procrastination is prevalent in the workplace, and it is a major source of stress—research has linked it to feeling ashamed, guilty, and anxious (Sirois, 2014; Sirois & Pychyl, 2013). Since procrastination is often regarded as a form of self-regulatory failure, these negative emotional states often compound the problem, and may lead to a “depression spiral” (Steel, 2007: 70). Given the difficulty of eliminating procrastination completely, there may be ways to harness it creatively. When novel and useful ideas are needed or intrinsic motivation is present, employees may find value in moderately delaying the start, progression, or completion of the task. In
addition, leaders and managers may find ways to encourage creative procrastination, such as
starting the innovation process by describing a problem without immediately asking for solutions
or proposals. However, it would be important to ensure that procrastination does not preclude the
doing of actual work. The point is not to give employees an excuse to procrastinate, but rather to
help them find the self-compassion to recognize that procrastination is not always deadly, which
may help to reduce extended procrastination (Sirois, 2014; Williams, Stark, & Foster, 2008).

In conclusion, although many employees struggle with procrastination, our research
shows that when it comes to creativity, putting work off can sometimes pay off. Good ideas may
come to those who procrastinate. “I racked up years and years of it,” Margaret Atwood says. “If
we're going to do something, might as well be good at it, right? I'd hate to be a failed
procrastinator” (Grant, 2020). In his notebook, da Vinci lamented, “Tell me if anything ever got
done.” Yet as Pannapacker (2009: B4) reflects, “If creative procrastination, selectively applied,
prevented Leonardo from finishing a few commissions—of minor importance when one is
struggling with the inner workings of the cosmos—then only someone who is a complete
captive of the modern cult of productive mediocrity . . . could fault him for it.”
REFERENCES

<table>
<thead>
<tr>
<th>Procrastination</th>
<th>Creativity</th>
<th>Idea originality</th>
<th>Idea flexibility</th>
<th>Idea fluency</th>
<th>Seconds watching videos</th>
<th>Self-reported procrastination</th>
<th>Intrinsic motivation</th>
<th>Creative requirement</th>
<th>Happiness</th>
<th>Relaxation</th>
<th>Sadness</th>
<th>Anxiety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>3.21</td>
<td>2.60</td>
<td>5.39</td>
<td>7.74</td>
<td>53.30</td>
<td>3.16</td>
<td>4.44</td>
<td>5.60</td>
<td>2.90</td>
<td>3.57</td>
<td>1.34</td>
<td>2.53</td>
</tr>
<tr>
<td>(n = 40)</td>
<td>(1.86)</td>
<td>(96)</td>
<td>(2.22)</td>
<td>(3.01)</td>
<td>(125.34)</td>
<td>(1.56)</td>
<td>(1.80)</td>
<td>(1.28)</td>
<td>(1.54)</td>
<td>(1.74)</td>
<td>(.58)</td>
<td>(1.37)</td>
</tr>
<tr>
<td>Moderate</td>
<td>4.48</td>
<td>3.17</td>
<td>6.21</td>
<td>8.38</td>
<td>468.60</td>
<td>3.79</td>
<td>4.51</td>
<td>5.65</td>
<td>2.54</td>
<td>3.60</td>
<td>1.37</td>
<td>2.60</td>
</tr>
<tr>
<td>(n = 40)</td>
<td>(1.58)</td>
<td>(1.19)</td>
<td>(2.04)</td>
<td>(2.57)</td>
<td>(263.60)</td>
<td>(1.57)</td>
<td>(1.47)</td>
<td>(.91)</td>
<td>(1.35)</td>
<td>(1.63)</td>
<td>(.84)</td>
<td>(1.49)</td>
</tr>
<tr>
<td>High</td>
<td>3.36</td>
<td>2.65</td>
<td>5.01</td>
<td>7.66</td>
<td>720.75</td>
<td>4.53</td>
<td>4.41</td>
<td>5.54</td>
<td>2.37</td>
<td>3.50</td>
<td>1.42</td>
<td>2.49</td>
</tr>
<tr>
<td>(n = 39)</td>
<td>(1.49)</td>
<td>(93)</td>
<td>(2.31)</td>
<td>(2.85)</td>
<td>(404.31)</td>
<td>(1.67)</td>
<td>(1.82)</td>
<td>(.92)</td>
<td>(1.36)</td>
<td>(1.72)</td>
<td>(1.15)</td>
<td>(1.44)</td>
</tr>
</tbody>
</table>

Note. Standard deviations are in parentheses.
TABLE 2

Study 1 Means, Standard Deviations, and Correlations Across Conditions

<table>
<thead>
<tr>
<th>Variables</th>
<th>M</th>
<th>SD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Creativity</td>
<td>3.68</td>
<td>1.73</td>
<td>(.95)</td>
<td></td>
</tr>
<tr>
<td>2. Procrastination condition (0=low, 1=moderate, 0=high)</td>
<td>.99</td>
<td>.82</td>
<td>.33***</td>
<td></td>
</tr>
<tr>
<td>3. Originality</td>
<td>2.81</td>
<td>1.06</td>
<td>.69***</td>
<td>.25**</td>
<td>(.97)</td>
<td></td>
</tr>
<tr>
<td>4. Flexibility</td>
<td>5.55</td>
<td>2.23</td>
<td>.27**</td>
<td>.22*</td>
<td>.30***</td>
<td>(.92)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Fluency</td>
<td>7.93</td>
<td>2.81</td>
<td>.12</td>
<td>-.02</td>
<td>.75***</td>
<td>(1.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Time spent watching videos</td>
<td>403.64</td>
<td>392.79</td>
<td>.05</td>
<td>.12</td>
<td>.08</td>
<td>.08</td>
<td>.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Self-reported procrastination</td>
<td>3.82</td>
<td>1.68</td>
<td>-.07</td>
<td>-.01</td>
<td>.05</td>
<td>-.03</td>
<td>-.12</td>
<td>.43***</td>
<td>(.85)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Intrinsic motivation</td>
<td>4.45</td>
<td>1.69</td>
<td>.25**</td>
<td>.03</td>
<td>.13</td>
<td>.04</td>
<td>.12</td>
<td>.04</td>
<td>.06</td>
<td>(.90)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Creative requirement</td>
<td>5.60</td>
<td>1.05</td>
<td>.16</td>
<td>.04</td>
<td>.23*</td>
<td>.09</td>
<td>-.02</td>
<td>.06</td>
<td>.09</td>
<td>.35***</td>
<td>(.78)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Happiness</td>
<td>2.60</td>
<td>1.43</td>
<td>-.00</td>
<td>-.03</td>
<td>-.02</td>
<td>.03</td>
<td>.11</td>
<td>-.08</td>
<td>-.05</td>
<td>.54***</td>
<td>.20*</td>
<td>(.94)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Relaxation</td>
<td>3.55</td>
<td>1.68</td>
<td>-.06</td>
<td>.02</td>
<td>.13</td>
<td>.09</td>
<td>.16</td>
<td>-.04</td>
<td>-.08</td>
<td>.34***</td>
<td>.19*</td>
<td>.50***</td>
<td>(.94)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Sadness</td>
<td>1.38</td>
<td>.88</td>
<td>-.18</td>
<td>-.01</td>
<td>-.17</td>
<td>.02</td>
<td>.15</td>
<td>-.02</td>
<td>.10</td>
<td>-.27**</td>
<td>-.09</td>
<td>-.16</td>
<td>-.24**</td>
<td>(.84)</td>
<td></td>
</tr>
<tr>
<td>13. Anxiety</td>
<td>2.54</td>
<td>1.42</td>
<td>-.05</td>
<td>.03</td>
<td>-.04</td>
<td>.02</td>
<td>-.02</td>
<td>.06</td>
<td>.18</td>
<td>-.12</td>
<td>.07</td>
<td>-.12</td>
<td>-.40***</td>
<td>.42***</td>
<td>(.90)</td>
</tr>
</tbody>
</table>

*Notes. *p < .05, **p < .01, ***p < .001. Cronbach’s alphas for scales appear across the diagonal in parentheses.*
TABLE 3

Study 2 Means and Standard Deviations

<table>
<thead>
<tr>
<th>Procrastination</th>
<th>Creativity</th>
<th>Problem restructuring</th>
<th>Activation of new knowledge</th>
<th>Seconds watching videos</th>
<th>Self-reported procrastination</th>
<th>Seconds before submitting first idea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (n = 42)</td>
<td>2.42 (.48)</td>
<td>.20 (.17)</td>
<td>28.69 (12.74)</td>
<td>70.09 (34.85)</td>
<td>3.23 (1.22)</td>
<td>178.37 (64.72)</td>
</tr>
<tr>
<td>Moderate (n = 42)</td>
<td>3.21 (.80)</td>
<td>.30 (.16)</td>
<td>33.57 (8.67)</td>
<td>441.52 (198.46)</td>
<td>3.88 (1.74)</td>
<td>298.88 (165.68)</td>
</tr>
<tr>
<td>High (n = 42)</td>
<td>2.06 (.53)</td>
<td>.22 (.20)</td>
<td>24.46 (10.32)</td>
<td>727.90 (368.65)</td>
<td>4.54 (1.88)</td>
<td>457.38 (396.95)</td>
</tr>
</tbody>
</table>

Note. Standard deviations are in parentheses.
TABLE 4

Study 2 Means, Standard Deviations, and Correlations Across Conditions

<table>
<thead>
<tr>
<th>Variables</th>
<th>M</th>
<th>SD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Creativity</td>
<td>2.56</td>
<td>1.67</td>
<td>(.85)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Procrastination condition (0=low, 1=moderate, 0=high)</td>
<td>.33</td>
<td>.47</td>
<td>.28**</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Problem restructuring</td>
<td>.24</td>
<td>.18</td>
<td>.29**</td>
<td>.24**</td>
<td>(.94)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Activation of new knowledge</td>
<td>28.91</td>
<td>11.26</td>
<td>.29**</td>
<td>.29**</td>
<td>.33***</td>
<td>(.95)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Time spent watching videos</td>
<td>408.10</td>
<td>359.55</td>
<td>-.18*</td>
<td>.07</td>
<td>-.04</td>
<td>-.21*</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>6. Self-reported procrastination</td>
<td>3.88</td>
<td>1.71</td>
<td>-.15</td>
<td>.00</td>
<td>-.01</td>
<td>-.20*</td>
<td>.54***</td>
<td>(.69)</td>
</tr>
<tr>
<td>7. Time before submitting first idea</td>
<td>310.25</td>
<td>271.95</td>
<td>-.12</td>
<td>-.03</td>
<td>-.23*</td>
<td>.08</td>
<td>.49***</td>
<td>.36***</td>
</tr>
</tbody>
</table>

Notes. *p < .05, **p < .01, ***p < .001. Cronbach’s alphas for scales appear across the diagonal in parentheses.
TABLE 5

Study 3 Means, Standard Deviations, and Correlations at the Job Level

<table>
<thead>
<tr>
<th>Variables</th>
<th>M</th>
<th>SD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Creativity</td>
<td>4.07</td>
<td>.94</td>
<td>.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Procrastination</td>
<td>2.61</td>
<td>1.07</td>
<td>-.09</td>
<td>.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Intrinsic motivation</td>
<td>4.02</td>
<td>1.39</td>
<td>.19*</td>
<td>-.08</td>
<td>.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Creative Requirement</td>
<td>4.40</td>
<td>1.42</td>
<td>.17*</td>
<td>-.14</td>
<td>.51***</td>
<td>.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Task efficiency</td>
<td>4.59</td>
<td>.93</td>
<td>.56***</td>
<td>-.08</td>
<td>.03</td>
<td>.02</td>
<td>.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Extrinsic motivation</td>
<td>4.76</td>
<td>1.30</td>
<td>-.10</td>
<td>-.07</td>
<td>-.27**</td>
<td>-.20**</td>
<td>-.10</td>
<td>.84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Age</td>
<td>31.22</td>
<td>4.47</td>
<td>.22**</td>
<td>-.01</td>
<td>.09</td>
<td>.18*</td>
<td>.24**</td>
<td>.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Gender</td>
<td>1.36</td>
<td>.48</td>
<td>-.22**</td>
<td>-.01</td>
<td>-.14</td>
<td>-.17*</td>
<td>-.11</td>
<td>-.12</td>
<td>-.52***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Male = 1, Female = 2)</td>
<td></td>
</tr>
<tr>
<td>9. Education</td>
<td>3.03</td>
<td>.21</td>
<td>.06</td>
<td>-.06</td>
<td>.20*</td>
<td>.14</td>
<td>-.02</td>
<td>-.11</td>
<td>.11</td>
<td>-.18*</td>
<td></td>
</tr>
<tr>
<td>(in months)</td>
<td>43.54</td>
<td>39.50</td>
<td>.13</td>
<td>.00</td>
<td>.05</td>
<td>.09</td>
<td>.20*</td>
<td>.05</td>
<td>.67***</td>
<td>-.11</td>
<td>-.02</td>
</tr>
</tbody>
</table>

Notes. *p < .05, **p < .01, ***p < .001. Cronbach’s alphas for scales appear across the diagonal in parentheses.
TABLE 6

Study 3 Coefficient Estimates

<table>
<thead>
<tr>
<th>Variables</th>
<th>DV: Creativity</th>
<th>DV: Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Step 1: Control variables</td>
<td>Step 2: Adding procrastination</td>
</tr>
<tr>
<td></td>
<td>γ</td>
<td>SE</td>
</tr>
<tr>
<td>Intercept</td>
<td>4.17</td>
<td>.11</td>
</tr>
<tr>
<td>Intrinsic motivation</td>
<td>.08</td>
<td>.08</td>
</tr>
<tr>
<td>Creative requirement</td>
<td>.05</td>
<td>.08</td>
</tr>
<tr>
<td>Extrinsic motivation</td>
<td>.00</td>
<td>.07</td>
</tr>
<tr>
<td>Age</td>
<td>.03</td>
<td>.11</td>
</tr>
<tr>
<td>Gender</td>
<td>-.27</td>
<td>.09</td>
</tr>
<tr>
<td>Education</td>
<td>.00</td>
<td>.07</td>
</tr>
<tr>
<td>Job experience</td>
<td>.05</td>
<td>.10</td>
</tr>
<tr>
<td>Procrastination</td>
<td>-.10</td>
<td>.06</td>
</tr>
<tr>
<td>Procrastination2</td>
<td>-.12</td>
<td>.05</td>
</tr>
<tr>
<td>Procrastination X Intrinsic motivation</td>
<td>.10</td>
<td>.08</td>
</tr>
<tr>
<td>Procrastination X Creative requirement</td>
<td>.04</td>
<td>.08</td>
</tr>
<tr>
<td>Procrastination X Intrinsic motivation X Creative requirement</td>
<td>.01</td>
<td>.05</td>
</tr>
<tr>
<td>Procrastination2 X Intrinsic motivation</td>
<td>.03</td>
<td>.06</td>
</tr>
<tr>
<td>Procrastination2 X Creative requirement</td>
<td>-.12</td>
<td>.06</td>
</tr>
<tr>
<td>Procrastination2 X Intrinsic motivation X Creative requirement</td>
<td>.10</td>
<td>.05</td>
</tr>
</tbody>
</table>

r^2 .10 .06 .21 .23 .02 .02

r^2 .11 .19 .26 .30 .02 .02

Notes. † $p < .10$, * $p < .05$, ** $p < .01$, *** $p < .001$, all predictors are standardized.
FIGURE 1

Study 1 Creativity Effects
FIGURE 2
Study 2 Creativity Effects

Creativity

Low procrastination Moderate procrastination High procrastination

Procrastination and Creativity 65
FIGURE 3

Study 3 Curvilinear Relationship
FIGURE 4

Study 3 Moderation by Intrinsic Motivation and Creative Requirement
AUTHOR BIOGRAPHIES

Jihae Shin (jshin@bus.wisc.edu) is an assistant professor in the Department of Management and Human Resources at the Wisconsin School of Business at the University of Wisconsin-Madison. She received her Ph.D. from The Wharton School at the University of Pennsylvania. She studies work motivation, creativity, and decision making under uncertainty.

Adam M. Grant (grantad@wharton.upenn.edu) is the Saul P. Steinberg Professor of Management and Professor of Psychology at The Wharton School at the University of Pennsylvania. He studies work motivation, job design, and prosocial and proactive behaviors. He is a precrastinator by disposition, but ended up putting this paper off for a little while.