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1 Introduction

Commuting can be costly to both workers and firms. In 2014, 139 million U.S. workers

made daily commutes to work, averaging 26 minutes each way (Ingraham, 2016).1 Total

opportunity cost of commuting for workers can exceed their hourly wages (Van Ommeren

and Fosgerau, 2009), amounting to thousands of dollars per average worker per year (Perino,

2019), and this before taking into account potential costs on workers’ subjective well-being

(Kahneman and Krueger, 2006). For firms, the daily commute represents a cost imposed

on workers that may affect their effort and productivity. This cost is increasingly salient

to employers of skilled knowledge workers, whose time and incremental productivity are

especially valuable. As anecdotal evidence, major technology firms are taking notice and are

developing strategies to incentivize their employees to live closer to the workplace.2 Despite

this, little is known in the literature about the existence and size of the potential costs of

commuting on productivity. We seek to provide one of the first estimates of these costs,

focusing on inventors who patent for their employers.

Theoretically, the causal effect of commuting on overall inventor productivity is unclear.

On the one hand, there are multiple channels through which commuting can negatively affect

productivity. First, longer commutes could simply force inventors to spend less time at work,

by imposing schedule constraints such as needing to catch the last commuter train home

(Bloom, Kretschmer and Van Reenen, 2009). This would decrease their overall output even

if their hourly productivity remained the same. Second, keeping time spent at work fixed,

longer commutes could increase inventors’ cost of providing effort, and decrease inventor

productivity given previous literature showing that more leisure time and slacking off at

work are substitutes to each other (Shapiro and Stiglitz, 1984; Zenou, 2002; Ross and Zenou,

2008; Zenou, 2009; Van Ommeren and Gutiérrez-i Puigarnau, 2011). Third, longer commutes

1Assumes fifty work weeks in a year, with five work days per week and a round-trip commute each day.
2In 2015, Facebook offered employees working at its Silicon Valley headquarters over $10,000 to move closer
to the office and avoid the lengthy and time-consuming commute between San Francisco to Menlo Park, CA
(Reuters, 2015). Other technology businesses, such as Google, have begun building proximate housing for
employees.

2



may have negative impacts on inventor life quality, which could affect their individual

productivity.3 On the other hand, there could be mitigating health effects, since commuting

could reduce stress for people who prefer to separate their work and family lives (Ashforth,

Kreiner and Fugate, 2000). A longer commute could provide a good amount of time for

brainstorming alone, which has been consistently found to be more effective than group

brainstorming (Furnham, 2000). Furthermore, firms could also mitigate the negative effect

of longer commutes on effort provision by paying a compensating wage to incentivize effort

(Mulalic, Van Ommeren and Pilegaard, 2014). Therefore, estimating the causal effects of

commuting on individual-level inventor productivity is an empirical question. Answering

this question is especially important for inventors, who are more likely to suffer from long

commutes because innovation is geographically concentrated in large cities, and because

innovation is important for longer-term firm and economic growth.

There are historically two main empirical challenges in studying the impact of com-

muting distance on individual-level productivity. The first challenge is data availability, both

because productivity is usually not directly measured in administrative data, and because we

need to know precisely the address information of both the inventor and the firm he or she

works for in order to compute commuting costs. The second empirical challenge is endogenous

location choices made by both inventors and firms. Inventors endogenously choose their

place of residence based on a long list of factors in addition to commuting costs, such as

the quality of local public services, size and price of homes available for sale, accessibility to

amenities such as restaurants and movie theaters, etc. Factors that firms consider in their

office location decisions include office rent and the neighborhood’s productive amenities, in

addition to accessibility. We address both empirical challenges.

We solve the empirical data challenge by first using patents as a direct measure of

inventor productivity. Patents can be a good measure for inventor productivity because

3Kahneman and Krueger (2006) find in a survey that the morning commute came last in terms of generating
positive emotions, below even work itself. Extensive public health surveys link commuting with many
negative health outcomes, including obesity, high cholesterol, high blood pressure, and depression (e.g.,
Crabtree, 2010).
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they are worth millions of dollars each for firms (Pakes, 1985; Kogan et al., 2017) and

produce significant rents for inventors themselves (Toivanen and Väänänen, 2012; Kline

et al., 2019). Patents also contain rich information that allow us to compute their scientific

and economic value (Pakes, 1986; Hall, Jaffe and Trajtenberg, 2001) individually, which

allow us to differentiate between high-worth and average patents in our estimation. In short,

patents provide a measure of inventor productivity that is meaningful both scientifically and

economically.4

In addition to providing a novel measure of individual-level productivity, we leverage a

novel combination of several data sources to measure commuting distance for every inventor.

While patents do contain information on inventor and establishment locations at the city level,

we need precise residential and firm addresses to compute commuting distances. We solve

this data challenge by merging patent data with housing transactions for inventor residential

locations, and with comprehensive proprietary firm establishment location data obtained

from a marketing company. We do so by matching inventor names to homeowner names, and

assignee names to firm names. In summary, we construct a unique firm-inventor-year panel

of U.S. inventors, with information on their precise productivity and commuting distances.

To solve the second empirical challenge of endogenous location choice by firms and

inventors, we exploit workplace relocation events that exogenously shock inventor commuting

costs in a stacked difference-in-differences design. We also control for firm-level endogenous

location choices with firm-location fixed effects and time-varying firm-level controls. In short,

we compare inventors who get shocked farther away to their firm to others who get shocked

closer in, all working at the same pre- and post- office location. We thus focus on inventors

who retained the same home location and continued to work for the same company before

and after a workplace relocation, relying on the fact that many inventors do not re-optimize

by moving their residence or changing their job after a workplace relocation due to labor and

4Productivity here is defined to be the total output of an inventor over a time period such as a year, which is
different from hourly productivity. We believe that our annual measure is the more relevant metric for both
firms and inventors, in part because it’s unlikely for inventors to be paid using hourly rates.
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housing market frictions.5

We find a 5% decrease in inventor productivity measured in raw annual patent counts

for every 10 km increase in commuting distance, or 0.041 patents per year. For patent quality

measures such as average scaled citations, the effect is even larger with a 7% decrease in

inventor productivity for every 10 km increase in commuting distance. These results are

robust to a variety of commuting cost measures and model specifications, are not driven by any

one metropolitan area with particularly long commutes such as the San Francisco Bay Area,

and show no evidence of differential pre-trends between inventors who got opposite-direction

shocks to their new office location. Furthermore, the measured average effect in our sample

is likely a lower bound for the population-level effect since the selected sample of inventors

who stay with their firm after office relocation is more likely to have lower commuting costs,

and because of attenuation bias due to random measurement errors in the matching process.

Taking a conservative lower-bound on the value of an average patent as documented in the

prior literature (e.g. Pakes, 1985; Bessen, 2008), this causal effect translates to at least $4000

(in 2010 dollars) in value lost for the employer per year, and could be an order of magnitude

larger. This productivity loss is economically significant given that the average pre-relocation

commuting distance for inventors in our data is around 20 km, and at least comparable to

estimates of the total commuting cost borne by inventors.6

Our results are of interest to urban and economic geography scholars. First, we empir-

ically verify the predictions of urban efficiency wage models (Zenou, 2002; Ross and Zenou,

2008; Zenou, 2009) where longer commutes lower worker productivity, unless compensated

enough by a sufficiently high wage differential. This effect occurs because longer commutes

5For example, Teradyne Inc., a major high-tech producer of electronic component test equipment, moved its
headquarters from Boston, MA to North Reading, MA in 2006; for the 10 inventors we identify as working
with the company both before and after the relocation, all of them experienced the general impact of the
workplace relocation, but half saw their workplace-home distance increase after the workplace relocation,
while the other half experienced a decrease in that distance. This within-firm within-inventor but across-time
variation in workplace-home distance is at the core of our identification strategy.

6For a back-of-the-envelope calculation, assume that total commuting costs borne by inventors are equal to
their hourly wage for their time spent commuting. They commute 1 hour on average per workday, work 40
hours per week, with a $100,000 salary. Then their annual total commuting costs are $12,500. This number
would decrease if the average salary for inventors is less than $100,000.
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reduce leisure time at home, thus increasing the cost of effort provision at work and incen-

tivizing workers to shirk. The size of the negative effect suggests that the direct commuting

costs for employers are similar in magnitude to the commuting costs for workers modeled

in the canonical monocentric city models (Alonso, 1964; Mills, 1967; Muth, 1969; Duranton

and Puga, 2015), even after taking into account potential wage compensation (Mulalic, Van

Ommeren and Pilegaard, 2014). This effect also suggests that if population density were kept

the same, then larger cities should have lower productivity than smaller cities because their

average commuting time is higher. This theoretical effect is not observed empirically (Combes

et al., 2010) due to mechanisms that produce a positive relationship between city size and

productivity, such as a larger labor pool providing better matching opportunities between

firms and workers (Helsley and Strange, 1990; Lagos, 2000), worker sorting between cities

with higher-ability workers sorting into larger cities (Davis and Dingel, 2014), and knowledge

spillovers within a larger population (Jovanovic and Rob, 1989; Glaeser, 1999; Duranton and

Puga, 2001). Nevertheless, our results imply that any analysis of agglomeration effects must

consider commuting, since the association between higher population density and higher

wages could in part be due to higher productivity from less commuting effects.

We contribute to the vast empirical literature evaluating the costs of commuting (Zax,

1991; Van Ommeren and Fosgerau, 2009) and the recent growing literature that uses firm

relocations as exogenous shocks to worker commuting costs to estimate plausibly causal effects

of commuting on worker outcomes.7 Prior research in this literature has shown suggestive

evidence that longer commutes may lower employee productivity, despite the existence of

potential wage compensation, as found by Mulalic, Van Ommeren and Pilegaard (2014) using

firm relocations in Denmark. Van Ommeren and Gutiérrez-i Puigarnau (2011) show that an

increase in commuting distance is associated with increasing absenteeism from work, and Zax

and Kain (1996) show evidence of workers moving closer to the employer’s new office location

or quitting their job altogether after the employer relocates, suggesting that commuting

7For example, Lorenz and Goerke (2016) investigate and find no causal effect of commuting on body weight.

6



negatively affects productivity.

In addition, this study contributes to a recent literature highlighting the importance

of understanding inventor productivity as a consequence of the their spatial organization.

Given the increasing importance of innovation for firm performance, we need to understand

the role that geography plays in inventor productivity. Recent work continues on a long

literature highlighting the importance of spatial proximity (e.g., Breschi and Lenzi, 2016;

Carlino and Kerr, 2015). We focus specifically on understanding the understudied dimension

of inventor-firm proximity, in contrast to inter-inventor and inter-firm proximity addressed

in prior work. Bernstein, McQuade and Townsend (2017) study how regional declines in

housing markets hurt effect inventor productivity. Much like their study, we exploit a dataset

that links inventor patenting output with their housing records. Other work highlights how

geographic variation in governmental policy decisions effects the innovativeness of inventors

and where inventors choose to live (e.g., Moretti and Wilson, 2017; Glaeser and Hausman,

2019).

Our results are relevant for firms and policy makers due to the significant impacts

innovation has on long-term firm-level outcomes and economic growth. For firms, our findings

suggest that they should consider the commuting distance of their employees in their planning

decisions. The size of the negative effect of commuting on productivity might also help firms

better calculate the benefits and costs of subsidizing or outright building proximate housing

for their employees. The benefit of shorter commutes could be especially large for firms in

the technology sector dependent on skilled labor to generate intellectual property. For public

policy makers, our findings support the importance of considering density for urban planning

policy. While workers incur direct time and monetary costs from commuting, we show that

commuting potentially imposes a further indirect cost on worker productivity, borne both by

the worker and their employer. While Duranton and Turner (2017) find that urban density

has only a small effect on total vehicle miles driven, reduced workplace-home distance can

still generate welfare improvements through increases in worker productivity.
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The rest of the paper is structured as follows. First, we first describe the construction

of the inventor-firm-year panel data sample central to this paper. Second, we present our

empirical strategy leveraging workplace relocations for causual identification, motivated with

a stylized model and discussion of the key endogeneity considerations. Third, we present the

empirical findings. We conclude with a discussion of potential future work. ‘

2 Data

Leveraging a novel combination of several data sources, we construct a unique firm-inventor-

year panel for U.S. firms and inventors between 1997 and 2012. The data contains precise

locations of both the workplace and home of inventors, allowing us to accurately construct

various measures of workplace-home distance for each inventor. Moreover, our setting of

inventors lends itself directly to measuring individual-level contributions to firm productivity,

through measures of patenting output that are linked to both the inventors and their employing

firms. This data then allows us to exploit within-city relocations of the firm offices, serving

as exogenous shocks to the workplace-home distance for each of a firm’s inventors. We now

describe the data sources, matching methodology across these data sources, and variable

construction from these data.

2.1 Direct Measure of Inventor Productivity: Patents

To identify the firms and the inventors for our sample, as well as construct a measure of

individual-level contributions to firm productivity, we start with the universe of utility patents

granted by the U.S. Patent Office (USPTO) between 1975 and 2012. Li et al. (2014) provide a

disambiguated patent database identifying unique inventors across patents and distinguishing

inventors with identical or similar names. Each patent contains the names of the inventors,

the firm (i.e., assignee) that owns the patent and most likely employs the inventor(s), and the

home city and state of each inventor. The city and state directly provided by the USPTO is
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insufficiently precise for the analysis we seek to conduct, so we use this information to obtain

detailed home address data from another dataset.8

We attribute each patent as the output of the listed firm and inventor based on its

application year, which is the year when the invention has been initially filed at the USPTO.

We only consider granted patents, to ensure that claimed inventions satisfy a minimum

quality threshold. However, given the time lag between patent application filings and USPTO

decisions on whether to grant patents, the patent database is necessarily incomplete in

the years leading up to 2012, since some patent applications had not yet been granted.

Assuming that the USPTO’s idiosyncratic time lag is invariant within-industry, this sampling

consideration should impact inventors working in the same business establishment equally

and not bias our estimation results. Between 1997 and 2012, XXX,XXX ultimately granted

patents were filed by XXX,XXX inventors living in the 60 CSAs covered in our paper.

Given that all patents we include in our data are eventually granted, they must have

passed a minimum threshold of quality as determined by the USPTO.9 Therefore, we use raw

annual patent counts by patent application year as our main measure of inventor productivity.

Nevertheless, granted patents do differ in importance and quality (Hall, Jaffe and Trajtenberg,

2005). To adjust for quality, we adopt standard measures used in the innovation literature

(Hall, Jaffe and Trajtenberg, 2001; Bessen, 2008). The first patent quality measure is scaled

citations, which counts the number of forward citations a patent receives, scaled by year and

patent category fixed effects to control for mechanical differences in propensity to cite.10 Two

other measures of patent scientific quality are generality and originality scores, introduced by

Trajtenberg, Henderson and Jaffe (1997). Generality scores measure whether a patent is cited

by subsequent patents from a wide range of technological categories, and originality scores

8We focus on utility patents, which account for more than 90% of all patents granted by the USPTO.
9In an investigation of patent applications filed between 1996 and 2005, Carley, Hedge and Marco (2015) find
that around 55% of all patent applications are eventually granted, suggesting that granted patents do satisfy
some minimum quality threshold.

10Citations are a measure of a patent’s scientific quality since legally, the cited patent both forms part of
existing knowledge that the citing patent builds upon, and constitutes ”prior art” that can potentially limit
the applicability of claims in the citing patent.
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measure whether a patent cites many prior patents from different technological categories.11

Finally, patents’ private value to its owners may be different than its scientific value, so we use

the expected number of times a patent is renewed by paying maintenance fees as a measure

of its economic value. Because the fee more than doubles for each subsequent renewal, we can

plausibly assume that the economic value of a patent is monotonically and positively related

to the number of maintenance fee payments (further details provided in the Appendix).

2.2 Data Sources and the Matching Process

To identify the residential home location of inventors in our sample, we use detailed housing

transactions data from DataQuick, a leading supplier of real estate data and analytics, to

obtain the street address of the inventors.12 The data covers 60 combined statistical areas

(CSA) in 23 states from 1993 to 2012 and includes more than 195 million housing transactions

and refinances.13 For each transaction, we observe both the exact address of each home

bought/sold, and the full name of the home buyers and sellers. In addition, we obtain

limited demographic information, such as income, by matching transactions against loan

application data in the Home Mortgage Disclosure Act (HMDA) files, as described in Ferreira

and Gyourko (2015).

To identify the workplace location of inventors in our sample, we use historical business

establishment location data from InfoUSA, containing the street addresses of offices of all

firms in the US between 1997 and 2012. InfoUSA aggregates business location data from

11Mathematically, generality for patent i is:

Generalityi = 1−
ni∑
j

s2ij (1)

where sij is the share of citations received by patent i that belong to patent category j, out of nj patent
categories. Originality is defined similarly, except it uses citations made by patent i to patent categories j.

12DataQuick was acquired by CoreLogic in 2014.
13We use combined statistical areas (CSAs), instead of the metropolitan statistical areas (MSAs) that make

up each CSA, because CSAs better reflect the possible intra-region commuting flows and economic ties. See
Ferreira and Gyourko (2015) for additional information about the construction of the DataQuick sample.
The Appendix provides further information about the geographic coverage of the sample.
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various public sources, including yellow pages, credit card billing data, company annual

reports, etc. InfoUSA also verifies information via phone calls and web research every year

(DiNardo and Lee, 2004). The variables associated with each establishment include firm

name, street address, NAICS code, employee count, and sales volume. To verify the accuracy

of InfoUSA data, we compare it to the County Business Patterns (CBP) data by state, and

we find the totals to be quite similar (further detail provided in the Appendix). In 2005,

InfoUSA had data on 5.63 million business establishments across the 60 CSAs covered by

DataQuick.

To construct a panel of matched firm-inventor pairs, we start with the inventor and

firm information in the patent data. We first match the USPTO inventor names and locations

(city and state) with the DataQuick housing transactions data to obtain inventor home street

addresses. We then match firm names and locations against business location data. The

matching process is described in detail in the paragraphs below.

To obtain inventor home addresses, we first match buyer names exactly against

inventor names from the same city. We then match inventor names to seller names in the

subsequent transaction to obtain ownership years for each home buyer. To restrict our

sample to owner-occupiers, we exclude cases where people with the same names own different

addresses in the same city, because we cannot identify their main residence, or whether they

are different people with the same name. In other words, we identify homeowners with unique

names within a city.14 Overall, we are able to match around 264,000 inventors, or 47% of all

inventors, to their exact home addresses.

We then manually match USPTO firm names against business establishment names

in the business location data to obtain inventor workplace addresses. We obtain precise office

locations for 36,468 firms that had applied for patents between 1997 to 2012 with matched

14While homeowner names are unique within our cleaned dataset, there could be multiple same-name
individuals living in the same city who are not in our dataset. This measurement error potentially
attenuates our estimates towards zero. As a robustness check, we estimate an alternative specification by
weighting each inventor-firm pair inversely proportional to the probability of another person having the
same name in the same city. The results are consistent with our main results. See the Appendix for more
details.
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inventors. To identify an inventor’s precise work location if the firm he works for has multiple

establishments within the CSA, we select the most likely location based on whether it has by

far the largest number of employees,15 and whether it has a “research laboratory” designation

in the corresponding NAICS codes. We drop observations where it was impossible to uniquely

identify a main office location within the CSA. This narrows our dataset down to 35,836

single-location firms.

As we will describe later in our empirical strategy section, we use firm relocations as

exogenous shocks to commuting distances. In service of this empirical strategy, we identify

within-CSA business relocations where the main firm establishment location within the CSA

changes from one year to the next. To improve the power of our estimates, we limit our sample

to firms making substantial moves of more than one kilometer. We then identify inventors

who worked (i.e., patented) for the relocating firm both before and after its relocation. Finally,

we eliminate relocations that occurred in 1997 or after 2010, so we have data both before

and after the relocation. We also exclude outliers that account for 3% of our total number of

observations.16 (Further details on the matching process in the Appendix)

Our final sample consists of 22,917 inventor-firm-year observations, representing 3,445

unique inventors employed at 1,068 relocating firms.

2.3 Measures of Inventor Workplace-Home Distance

After obtaining the panel of matched inventor-firm-location pairs, we construct a number of

commuting cost measures between an inventor’s workplace and home. Our primary and most

parsimonious measure of workplace-home distance is Distance, which is the geodesic distance,

the shortest path between two points on the curved surface of the Earth.17 This measure of

15We only retain establishments that have 5 times more employees than all other establishments of the same
firm in the CSA combined

16The outliers are inventor-firm pairs who satisfy one of the following five criteria at any one year in our
sample: distance between home and workplace is greater than 100km, driving distance is greater than
125km, change in distance is greater than 57km, change in driving distance is greater than 55km, or received
more than 10 patents.

17We use Vincenty (1975) equations for a mathematical model of the earth.
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physical separation between two points is invariant over time (at least for a human lifespan).

We also construct measures of commuting cost based upon the assumption that the

inventor might be driving or taking public transit to work, which is presumed to be the case for

a large portion of our sample. Drive Distance is the shortest route for a motor vehicle, i.e. via

roads that are legal to drive on, between the inventor’s home and workplace. Drive Duration

is the estimated fastest time it takes to drive or take public transit between the inventor’s

home and workplace, accounting for speed limits and historical traffic conditions. Both of

these measures were collected from the Distance Matrix API of the Google Maps platform,

which provides travel distance and time for a matrix of origins and destinations (Google LLC,

2018). Due to data limitations, driving-based measures and these other mode-based measures

are only based on current transportation infrastructure and does not account for changes in

the transportation infrastructure (e.g., new road construction) during the time window of

this study. We use geodesic distance as our main measure of commuting cost because it is

always fixed and correct over time. Nevertheless, all our results carry over to using Drive

Distance or Drive Duration as our commuting cost measure.

2.4 Descriptive Statistics

Figure 1 shows that the distribution of workplace-home distance skews towards shorter

commutes, and a modal distance around 10 km with substantially fewer observations at

greater distances. The majority of inventors in our sample have a commuting distance of

less than 18km. This distribution is consistent with studies by the U.S. Department of

Transportation (e.g., U.S. Government Bureau of Transportation Statistics, 2003), which

suggests that the matching process generated sensible workplaces-homes matches for the

inventors. (See more detailed comparisons in the Appendix.) [NEEDS TO CHECK THIS

USING NHTS DATA]

——————–Insert Figure 1——————–
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Table 3 shows the distribution of our observations between CSAs, focusing on the six

largest CSAs by total population. Roughly a third of all inventor-firm pairs in our sample

are from the San Jose-San Francisco Bay (CA) area, representing Silicon Valley and the

presumed center of the U.S. technology industry. This proportion is similar to the overall

proportion of inventors in the Bay Area, showing that our matched inventors are similarly

distributed geographically as all U.S. inventors.

——————–Insert Table 3——————–

Table 1 shows summary statistics for our final sample at the inventor-firm pair level,

taking the average over each inventor-firm pair over the sample period. Overall, the average

inventor produces 0.524 patents per year cited 0.893 times, well above the median inventor

at 0.333 patents per year, cited 0.288 times. This suggests that patent productivity in our

sample is heavily skewed with a long tail of very productive inventors, consistent with prior

literature (Akcigit, Baslandze and Stantcheva, 2016).

Given that we use firm relocations as exogenous shocks to commuting distances, we

then compare pre- and post-relocation distributions of inventor productivity and commuting

costs. On the one hand, we find that inventor productivity declines after firm relocation,

going from producing 0.858 patents with 1.365 cites per year, to 0.328 patents with 0.633

cites per year. While some of this decline in productivity post-relocation is due to truncation

bias, some might be genuine and related to the relocation itself, which we control for in

our identification strategy. On the other hand, the mean commuting cost remains roughly

constant post-relocation, whether measured in terms of distances or duration.

——————–Insert Table 1——————–

Table 4 reports the balance test results for inventor-firm-year observations prior to

a workplace relocation event, divided by the direction of the commuting distance shock.

Columns (4-6) show the results of two-sample t-test of equality of means between these three
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groups. Prior to the workplace relocation, inventors in the Closer and Farther groups have

statistically indistinguishable productivity of around 0.85 patents per year. Unsurprisingly,

the Closer and Farther groups differ significantly in terms of workplace-home distance

across measures: inventors who live closer to the workplace are mechanically more likely to

experience an increase in their workplace-home distance than for inventors who previously

lived further away.

——————–Insert Table 4——————–

We also compare the groups based on other observable characteristics. Table 4 shows

that both income and housing prices are somewhat higher for the Farther than the Closer

group. After further investigation, we find that this difference can be explained by two facts

acting together: first, the average establishment tends to be moving away from city center,

with the average move being 2.55km away. Second, higher income and more productive

inventors are preferentially living in the suburbs, away from the central city. This is shown

in Figure 4 where we plot average inventor productivity and income against distance to

the central city. Therefore, inventors whom firms on average are moving towards are more

likely to live in the suburbs, and they tend to have higher income than inventors they are

moving away from. These systematic differences could potentially affect our identification

strategy. As discussed in the next section, we alleviate this concern by including firm-inventor

fixed effects to absorb time-invariant differences between inventors, and test for differential

pre-trends between the Farther and Closer groups of inventors.

——————–Insert Figure 4——————–

Turning to firm-level variables in Table 2, we find that establishments move by more

than 23 km on average. The mean move is almost three times longer than the median move,

meaning that there is both a concentration of establishments that moved relatively little,

as well as a long tail of establishments that moved quite far, by tens of kilometers. While
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the average move is away from the CSA’s central city by 2.55km, the standard deviation is

almost six times larger, showing that there are many moves towards as well as away from the

central city. Most of the establishments have a very small number of matched inventors, but

there are some with hundreds of matched inventors. An establishment’s average employee

count grows post-relocation, suggesting that the average relocating firm is growing over time.

——————–Insert Table 2——————–

Looking more in-depth at the distribution of commuting distance shocks at the inventor-

firm pair level, Figure 3 shows that most distance shocks are relatively small, with the mode

of the distribution centered around no change in distance at all. However, a significant

minority of inventors experienced a distance shock of more than 10 km. This variation allows

the identification of a potential workplace-home distance effect on productivity.

——————–Insert Figure 3——————–

Finally, in Figure 2, we present a näıve descriptive analysis of our main research

question relating workplace-home distance with inventor productivity. Using the full sample

of 3,445 matched inventor-firm pairs, Figure 2 shows a clear negative correlation between

distance and productivity, which is also statistically significant. The mean annual number

of patents for an inventor is slightly less than 0.6 per year for inventors living very close to

their offices. The patenting rate declines approximately linearly and steadily with increasing

workplace-home distance, down to slightly less than 0.5 patents for inventors with a workplace-

home distance of 60km. However, this negative correlation does not yet imply any causal

relationship, since it is potentially confounded by endogenous sorting of inventors and firms.

The next section details the empirical strategy to identify the causal effect in light of these

possible confounding effects.

——————–Insert Figure 2——————–
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3 Empirical Strategy

For estimating the causal effect of commuting distance on inventor productivity, the main

challenge is that the location choices of both inventors and firms are endogenously determined.

Inventors endogenously choose their place of residence based on a long list of factors in

addition to commuting costs, such as the quality of local public services, size and price of

homes available for sale, accessibility to amenities such as restaurants and movie theaters,

etc. Factors that firms consider in their office location decisions include office rent and

the neighborhood’s productive amenities, in addition to accessibility. Therefore, a simple

regression of inventor productivity on commuting distance would be biased due to sorting.

We address both empirical challenges.

We first consider the endogenous location decision of inventors. Theoretically inventor

residential sorting could bias our estimated coefficients in either direction in an OLS regression.

For example, if skilled inventors choose to live further away from the office than unskilled

inventors for any reason, such as a relative preference for good public schools, this sorting

pattern would induce an upward bias in our estimated coefficient, and could even result in a

positive correlation between commuting distance and inventor productivity. The opposite

sorting pattern, with skilled inventors living closer to the firm, would induce a bias in the

opposite direction. Consequently, we need an identification strategy that can eliminate the

confounding effects of inventor sorting. (See an illustrative model in the Appendix that

formalizes one potential mechanism for residential sorting.)

We now demonstrate the assumptions behind a difference-in-differences estimation

strategy that can identify the causal effect of distance on productivity. Consider an inventor i

working for firm j, living at a distance dij from the firm. Assume perfectly competitive labor

markets where inventors are paid their marginal productivity of labor. Also assume that

inventors are heterogeneous in their productivity type θi and where inventor productivity lij
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is determined by the following equation:

lij = θij + βidij (2)

where θij is an individual-firm commuting distance-invariant productivity parameter for

inventor i and firm j that denotes the quality of the inventor-firm match, and βi is an

individual-specific measure of how distance affects his or her productivity, This formulation

allows for heterogeneous distance effects across individuals and time-invariant heterogeneity

across both inventors and firms.

We model inventor sorting by skill level and distance. Individual-firm specific pro-

ductivity parameters are not observed, but they are drawn from the real interval such that

the distribution of individual types at each city m at distance xmi from the city center is

determined by:

θij = α0 + α1xmi + δj + εij (3)

where α1 6= 0, εij is a commuting distance-invariant match quality term and E(xmiεij) = 0.

Thus, there is sorting in city m of inventor types according to distance from city center. If

the firm is located at the center of the city, then xmi = dij. To consider a more general case

of firm location, assume that firms tend to be located closer to city centers than residents,

with a positive correlation between xmi and dij on average. In this case, inventor i’s distance

to city center is correlated with distance to the firm, with xmi = γidij + µij. Plugging this

expression into Equation 3 combined with Equation 2, we get the following expression:

lij = (α0 + α1xmi + δj + εij) + βidij

= α0 + βidij + δj + α1(γidij + µij) + εij

= α0 + (βi + α1γi)dij + δj + α1µij + εij

(4)

Thus, the OLS estimates of β using Equation 2 would be biased if α1 6= 0 and γi 6= 0,

or if δj is correlated with dij. In those cases, the estimated parameter is not a weighted
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average of βi, the individual causal relationships of distance on productivity.

We address this endogeneity problem using office relocations as exogenous shocks to

commuting distance. In a world with no lumpy moving costs and positive commuting costs

for inventors, inventors would re-optimize after firm relocation by changing their residential

location. In a world with no job search costs and perfectly competitive labor markets,

inventors may re-optimize by changing their job and workplace location. Therefore, the

crucial assumption for my estimation is imperfect inventor resorting due to lumpy moving

cost ci, which each inventor i has to pay if he or she wants to move, and the heterogeneous

match quality between inventors and firms, which allows for infra-marginal inventors who

prefer to stay at the firm even after a negative productivity and wage shock (due to perfectly

competitive labor markets). In summary, there are infra-marginal inventors for whom the

benefits from lower commuting costs after resorting do not outweigh the moving costs.

Looking at this subsample of inventors who do not re-sort, we subtract their produc-

tivity before and after the move to get:

∆lij = βi∆dij (5)

and the sorting term α1xmi drops out. Hence estimating a regression with individual firm-

inventor pairs produces a consistent estimate of βi, and estimating a fixed effect regression on

pooled data across all non-re-sorting inventors estimates β̂FE, a weighted average of individual

β̂i (Baum-Snow and Ferreira, 2015). 18

In this study, we estimate a stacked difference-in-differences regression relating changes

18One potential modification to our econometric model would include imperfect labor markets via non-zero
job search costs. This would imply a positive wage compensation for commuting distance, which can be
a form of efficiency wage to incentivize inventor effort (Ross and Zenou, 2008). In this modified model,
Equation 5 would become:

∆lij = (βi + ewij)∆dij (6)

where ewij is the efficiency wage that firm j pays inventor i per unit commuting distance. Given that
ewij should always be the opposite sign of βi, we are estimating a lower bound for the weighted ”pure”
commuting effect on inventor productivity in the case of imperfect labor markets. (See further details in
the Appendix.)
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in commuting distance to changes in inventor productivity: taking into account year fixed

effects and firm-inventor pair fixed effects. The precise specification is as follows:

Yijt = βdijt + αij + γt + δjt + εijt (7)

where Yijt is the dependent variable that proxies for productivity, such as number of patents

granted or scaled citations received for individual i working for firm j in year t. dijt is the

distance between inventor i’s home and firm j’s office in year t. αij is an inventor-firm

fixed effect that controls for the inherent productivity differences between individuals, taking

into account the matching quality between inventor and firm. γt controls for the aggregate

yearly trend in patents granted. δjt controls for the specific firm location before and after

the relocation at the ZIP code tabulation area (ZCTA) level, to account for potential time-

invariant productive amenity differences, for example due to knowledge spillovers from nearby

firms. Finally, εijt is the error term. Errors are clustered at the inventor-firm pair level.

We now consider the endogenous location choice of firms. Given that firms are

profit-maximizing entities, they only decide to relocate when the benefits of doing so are

greater than its costs. These benefits can come from direct monetary savings due to lower

rent, productivity increases from higher productive amenities offered by the new locations,

potentially due to knowledge spillovers from other firms, lower overall commuting distance

to its workers including inventors, etc. Some of these factors could both cause differences

in average productivity before versus after firm relocation (such as changes in productive

amenities) and be correlated with average changes in inventor commuting distance across

firms, which would bias our estimation results.

We employ multiple strategies to deal with this concern. First, in the main specification

(Equation 7) above, we control for the time-invariant component of productive amenities using

firm-location fixed effects at the ZCTA level. However, this still assumes that time-invariant

productive amenities are identical across firms within any ZCTA. For a more stringent test,
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we estimate the robustness specification below:

Yijt = βdijt + αij + γt + δ
′

jt + εijt (8)

where δ
′
jt is a unique firm-level office location fixed effect that differs before and after the

relocation using office location fixed effects. In other words, we control for all time-invariant

across-firm variations in firm-level variables such as office rent, productive amenities, average

commuting distance to inventors, etc. Thus the only variation we use to estimate β is

within-firm across-inventor differential changes in commuting distance.19

After controlling for time-invariant determinants of endogenous firm location, our

estimates may still be biased if there is reverse causality, where inventors’ productivity

change over time, and firms are relocating to be closer to inventors whom they anticipate will

become more productive in the future. This would violate the parallel trends assumption that

inventors who get shocked closer in or farther away should have similar productivity trends

pre- and post- the firm relocation year, absent any firm relocations, and bias our coefficient

upward. To address this concern, we adopt the standard test for parallel trends by estimating

a generalized difference-in-differences specification that looks at differential average patent

count year by direction of commuting shock, and finding no significant differential pre-trends

in productivity between inventors who get shocked closer in or farther away (see Figure 5).

Another identification assumption is that there are no other events that occur simul-

taneously with the firm relocation events, that would impact differentially the productivity

of inventors whose distance to work increases versus those whose distance to work decreases.

This is unlikely, especially since we use a stacked specification; thus, the confounding events

must be correlated with firm relocation events in different CSAs across the country and in

different years. Balancing test results in Table 1 show that inventors who received a positive

distance shock are not significantly different from inventors who received a negative distance

19Due to lack of power in some tests of heterogeneity and robustness checks, we do not use Equation 8 as our
main specification. Nevertheless, all results estimated using Equation 8 are qualitatively the same as in our
main specification.
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shock in terms of patent productivity.

Given the discrete dependent variable of patent count and scaled citations, it is

arguably better to use models that are more suited to count data, by modeling the dependent

variable to follow a Poisson distribution or a negative binomial distribution (Hausman, Hall

and Griliches, 1984; Cameron and Trivedi, 2013). Compared to the linear model, both Poisson

and negative binomial distributions are intrinsically valued as non-negative integers, which

exactly matches outcomes in both the number of patents filed and patent citations. The

difference between the two distributions is that Poisson assumes that the distribution mean

and variance are identical, while negative binomial allows for overdispersion, with variance

higher than the mean. We use both Poisson regression20 and negative binomial regression21

as robustness checks.

4 Results

In this section, we first present our main results on both patent quantity and quality. Then

we explore tests of heterogeneity that offer suggestive evidence on mechanisms driving our

20More specifically, Poisson regression estimates the following model:

pr(Yijt|xijt) =
e−λijtλ

Yijt

ijt

Yijt!

where the probability that Yijt patents are applied for by inventor i for firm j in year t follows the Poisson
distribution with λijt as the inventor-firm, firm-location and time-specific Poisson parameter, which is
obtained as follows:

logλijt = βdijt + αij + γt + δjt + εijt

As in the linear regression case, the Poisson regression has errors clustered at the inventor-firm level.
21Negative binomial regression generalizes Poisson distribution by adding an unobserved heterogeneity term,

which follows the gamma distribution with both shape and rate parameters being θ, to the Poisson regression
model, so:

pr(Yijt|xijt) =
Γ(Yijt + θ)

Yijt! Γ(θ)

( θ

θ + λijt

)θ( λijt
θ + λijt

)Yijt

where the probability that Yijt patents are applied for by inventor i for firm j in year t follows the negative
binomial distribution where λijt is the inventor-firm, firm-location and time-specific Poisson parameter,
which is obtained as follows:

logλijt = βdijt + αij + γt + δjt + εijt

Standard errors in the negative binomial model are clustered at the inventor-firm level.

22



results. Finally, we show that our results are robust to alternative specifications.

Table 5 shows estimated coefficients for our main difference-in-differences specifications.

Column (1) shows that Distance is negatively correlated with inventor productivity, as

expected given the negative slope in Figure 2. The size of the coefficient, however, triples after

controlling for inventor-firm pair fixed effects in Column (2) and becomes more significant.

This difference suggests that more skilled inventors endogenously choose residential locations

further away from their workplace than less skilled inventors, which biases the OLS coefficient

downward.22 The result remains highly significant when we control for year fixed effects in

Column (3) and firm location fixed effects in Column (4), suggesting that endogenous location

choice of firms to pursue higher time-invariant productive amenities are not driving our results.

Eliminating all between-firm variation and relying solely on within-firm between-inventor

differential changes in commuting distance still produces a significant effect in Column (5).

Column (4) represents our preferred specification, with every 10 kilometer increase in Distance

causing an average decrease in inventor productivity of 0.041 patents per year. In percentage

terms, this represents a 5% decrease in inventor productivity per 10 kilometers, compared

with the average 0.86 patents per year per inventor-firm pair before the move. While the

prior literature documents a wide range of estimates for the value of a patent, we take a

conservative lower-bound of $100,000 on the value of an average patent (Pakes, 1985; Austin,

1993; Barney, 2002; Serrano, 2005; Bessen, 2008; Fischer and Leidinger, 2014). This patent

value estimate translates to about $4270 in value generated for the employer per inventor per

year per 10km shorter commute.

——————–Insert Table 5——————–

One remaining endogeneity challenge exists: firms might be moving towards inventors

who are becoming more productive, potentially to take advantage of the additional increase

in productivity due to shorter commuting distances. We test this possible violation of our

22We confirm this by plotting pre-relocation inventor income and home price against commuting distance,
and finding a strong positive correlation between the two.
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parallel trends assumption in Figure 5, which shows the difference in the predicted average

number of patents per inventor-firm pair per year, between pairs whose workplace-home

distance increased by more than 1km, versus those who did not, plotted against the number of

years pre- and post-relocation. The graph shows that the difference between the productivity

of the two groups of inventors is close to zero and displays no significant trends before the firm

relocation. Second, productivity for inventors who get shocked farther away falls during the

year of the relocation, and afterwards remains lower relative to the productivity of those who

get shocked closer in. This is consistent with our hypothesis that the increase in commuting

distance permanently affects inventor productivity, and argues against any temporary shocks

that occur in conjunction with firm relocations driving our results.

——————–Insert Figure 5——————–

Turning to measures of patent quality, we find the same negative effect of commuting

distance on inventor productivity. Column (1) in Table 6 shows that a 10 km increase in

commuting distance causes a 0.094 decrease in patent scaled citations, roughly 7% of the

pre-relocation mean. This suggests that the decrease in patent counts is not driven by

inventors applying for fewer, but more impactful patents. The generality and originality

results in Columns (2) and (3) are consistent with this interpretation: the overall scientific

quality and applicability of patents fall with increasing commuting distance, in step with

patent counts. Testing for patent economic value using the number of maintenance fee

payments shows a potential decrease, even though the coefficient is not significant. This is

likely due to the lack of power in this specification, since the last maintenance fee payment is

only required 11.5 years after the patent grant date, causing a much more severe truncation

problem than the other specifications.

Overall, our results show that increasing commuting distance negatively impacts inven-

tor productivity both in terms of patent quantity and quality. This decrease is economically

significant, equaling thousands of dollars per year per inventor using conservative estimates

of patent value. It is also permanent and does not reverse over time.
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——————–Insert Table 6——————–

4.1 Tests for Heterogeneity

We explore suggestive evidence for potential underlying mechanisms driving our results.

First we examine the possibility of non-linearity in the commuting distance-productivity

relationship by adding a squared commuting distance to the estimating equation. On the

one hand, the direct opportunity cost of commuting is likely to be linear with distance/time

if it directly reduces the amount of time an inventor can spend at work. On the other

hand, non-linear effects could arise if some inventors have an optimal distance between home

and workplace that is neither too small nor too large and that gives them some amount of

separation between their work and family lives. Another reason for non-linearity arises when

the cost of providing effort increases non-linearly with longer commutes, such as in urban

efficiency wage models.

As shown in Table 7, we find that when the square term is added, in both patent

quantity and quality regressions, the main effect becomes insignificant, though its magnitude

is similar to our main specification. The coefficient on Distance2, however, is very close

to zero and insignificant, suggesting that its causal effect on inventor productivity is linear

within the distance range (up to 100 km) covered by our sample. These results are consistent

with a linear opportunity cost of lost time at work, and less consistent with models of effort

provision where the cost of effort increases non-linearly with commuting distance.

——————–Insert Table 7——————–

Then, given that the highest-productivity inventors may have a disproportionate

impact on a firm’s innovation output (e.g., Akcigit, Baslandze and Stantcheva, 2016), we

test whether the commuting distance effect is driven by these top inventors. To do so, we

estimate a triple-differences specification, by interacting our explanatory variable with an

indicator of whether an inventor belongs to the top decile of all inventors by productivity.
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Table 8 shows that the negative effect of distance on inventor productivity is largely

driven by high-productivity inventors, with their productivity decreasing by 0.159 patents

per year per 10 km, which is around 6 times the average effect for the other 90% of less

productive inventors, whose coefficient is reduced to an insignificant 0.026 patents per year

per 10 km. This large discrepancy is replicated in the patent quality measures. One reason

for this difference is that top inventors’ mean productivity is higher, so their opportunity

cost for every hour lost at work is also higher. Even after taking their higher mean into

account, however, top inventors suffer more proportionally than the average inventor: with a

10km increase in Distance causing a 10% drop in productivity, versus less than 4% for less

productive inventors. This large discrepancy suggests that there are potentially different

mechanisms driving the effect for the top versus average inventors. For example, perhaps

the cost of effort increases more steeply with commuting distance for top versus average

inventors.

——————–Insert Table 8——————–

Estimating the equation separately on shocks to closer versus farther away inventors

in Table 9 shows an interesting heterogeneous result where the negative main effect is driven

by inventors who get shocked farther away. Indeed, while the effect of changing commuting

distance is insignificant for inventors who did not get a large commuting distance shock

(Column 2), or who get shocked closer in to their workplace (Column 1), the coefficient

for the inventor who get shocked farther away from their office is much larger than in our

main specification, with a 10 km increase in commuting distance causing a 0.106 decrease in

patent count, equivalent to around 12% of their average pre-relocation productivity. This

result suggests that the productivity of inventors who endogenously selected to live closer

to their workplace is more sensitive to commuting distance than inventors who selected to

live farther away. In fact, there could be inventors in the latter group whose productivity is

not affected by commuting distance at all. In summary, this result shows that there is large

between-inventor heterogeneity in their elasticity of productivity versus commuting distance.
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——————–Insert Table 9——————–

While all inventors named on a patent are legally required to have contributed to the

conception of the patented invention, their contributions might differ in importance. An

implicit assumption we have adopted up to now is that each inventor on a patent is assumed

to have made an equal contribution. However, changes in per-patent contribution could occur

in conjunction with a change in commuting distance, potentially biasing our estimates in an

uncertain direction versus the ”real” effect measured by actual contribution. To account for

this, we introduce an alternate patent count that only counts single-authored patents. This

count is not subject to the bias above the inventor’s contribution to a single-authored patent

is always 100%. Because most patents have multiple inventors, however, this reduces our

overall patent count by around 80%, which reduces the power in our estimation procedure.

Nevertheless, Column (1) in Table 10 show that a 10 km increase in Distance causes a

significant decrease of 0.012 single-authored patents per year, which corresponds to around

10% of the average pre-relocation inventor productivity in terms of single-authored patents,

similar to our main results. It also suggests that commuting costs affect team and solo

productivity equally, and is not particularly detrimental to team work even though solo work

may be easier to perform with longer commutes, due to the rise of telecommuting.

——————–Insert Table 10——————–

4.2 Robustness Checks

To assess the robustness of our findings relative to the effects of outliers, and to make sure that

our results are not driven by a few inventors who live far out from their workplace, we divide

the inventor-firm pairs into three categories based on whether their Distance got farther, got

closer, or remained largely unchanged (change < 1km) after the firm relocation shock. We

construct the categorical variable ∆ Distance Direction that equals 0 to observations before

the relocation, 1 for post-relocation observations of pairs that moved farther away, -1 for
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pairs that moved closer, and 0 for pairs whose distance remained largely unchanged. We then

use this categorical variable in place of Distance in Table 11. These estimates look similar to

those in Table 5, our preferred specification. Column (4) shows that a higher ∆ Distance

Direction has a negative effect on the number of patents produced per year, while Column

(5) again shows that this result is driven by both average- and high-productivity inventors.

——————–Insert Table 11——————–

We check the robustness of our results using alternative explanatory variables. Table 12

shows that using Drive Distance or Drive Duration gives significant negative effects that are

similar in magnitude to our main specification using geodesic distances.

——————–Insert Table 12——————–

Our results are robust to using Poisson and negative binomial estimation. Results are

shown in Table 13. The coefficient in Column (1) shows that a 10 km increase in Distance

causes a 4.9% decrease in patent count in the Poisson regression, and the coefficient in

Column (3) shows a 5.4% decrease in the negative binomial regression. Both numbers are

very similar to our main linear specification.

——————–Insert Table 13——————–

We have also verified that our results are robust to using name and location weights

that take into account the probability of having duplicate names and multiple establishment

locations. Our results are also not driven by any one large CSA such as the San Francisco

Bay Area, or only by growing or shrinking firms (see the Appendix for further details), etc.

4.3 Selection Issues

We have shown that increasing commuting distance causes decreases in inventor productivity

for our sample of non-resorting inventors after a workplace relocation. However, this is a
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selected sample of the population of all inventors working for the relocating firms, because

inventors may ex post self-select out of our sample by moving to another job or home location.

In this section, we explore the question of how valid our results are accounting for these home

”movers” and job ”quitters”.23

Taking ”movers” and ”quitters” into account, we believe that our estimated commuting

elasticity of productivity for non-movers is actually a lower bound to the actual elasticity in

the entire population of inventors. Intuitively, we may expect that inventors with relatively

high elasticity (i.e. the absolute value of βi) to be particularly sensitive to negative shocks in

commuting distance. Given fixed moving costs c and job search costs s across inventors, and

given the same farther out shock in commuting distance, an inventor with high βi will suffer

a proportionately larger loss of productivity and wages than an inventor with low βi, and

thus be more likely to re-sort by moving or quitting, in other words self-selecting out of our

final sample. Therefore, we are likely underestimating the average sensitivity to commuting

distance among all inventors.

To document whether this possible selection effect exists, and the extent of re-sorting

after firm office relocation, we can study the inventor attrition rate both before and after a

firm relocates. There are two ways an inventor can re-sort: he can move his location, or he

can change his employer. Therefore, we can compute both the raw number and the rate at

which inventors are moving and selling their homes, and/or quitting their jobs. We expect to

see an increase in both rates for a period after the firm relocates, compared to a period just

before the relocation. In order to do so, we define inventors selling their homes as movers,

and we define as quitters those who start patenting for a different firm.24

Given these possible ex post selection effects, we expect that inventors who suffer

from a negative distance shock may preferentially self-select out of our sample. Furthermore,

the workplace relocation itself may be a signal for inventors to reconsider their residential

23We cannot distinguish between voluntary and involuntary job exits, so an equivalent term would be job
”separators”.

24Specifically, we define inventors as having quit their jobs the year they filed a patent for a different firm, or
failing that, five years after they last filed a patent for the current firm.
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and career options. To partially test for the existence of these ex post selection effects, we

compare ex post selection for shocks that move inventors closer versus farther away from the

firm:

qit = ω1postit + ω2postit ∗ directionit + γi + δt + qeit (9)

where qit is a binary variable that equals 1 in the year when inventor i quits his original

employer or sells his home, and 0 otherwise. qeit is an individual-level error term, and postit

is an indicator function that is equal to one after the company relocates, and 0 otherwise.

directionit is a categorical variable equalling 0 prior to a workplace relocation event, and

after a relocation event, takes the value of 1 for geodesic distance increases (farther away by

> 1km), -1 for distance decreases (closer by > 1km), and 0 when distance is approximately

unchanged (changed by less than 1km). ω1 represents the effect of the firm relocation itself,

while ω2 represents the differential selection effect for inventors shocked farther versus closer

to their workplace due to the firm relocation. We would intuitively expect that ω2 > 0.

Our hypothesis of higher moving and quitting rates for inventors receiving negative

distance shocks is consistent with results in Table 14. While we do not detect a significant

differential selection for home moves, we do detect a significant post-relocation increase in

job quitting rater for inventors shocked farther to their firm versus closer.

——————–Insert Table 14——————–

4.4 Discussions and Interpretations

Finally, the interpretation of our estimated coefficients differs depending on labor market

assumptions. In our base econometric model, we assume that the labor market is perfectly

competitive with no job search costs, with all inventors are paid at a wage equalling their

marginal productivity. In this case, inventor wage does not depend on commuting distance

beyond the direct impact that commuting has on productivity, so we are estimating the

”pure” causal effect of commuting on inventor productivity.
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If job search costs are greater than zero, however, the interpretation changes. In

imperfect urban labor markets, firms have market power and pay inventors a wage below their

marginal productivity. They may also compensate inventors for longer commutes by paying

a somewhat higher wage. This wage compensation incentivizes these negatively shocked

inventors to stay at the firm and provide more effort (Ross and Zenou, 2008). This wage

compensation has been shown to exist empirically by Mulalic, Van Ommeren and Pilegaard

(2014), who study the population of employees in Denmark. If we plausibly assume that

wage compensation for commuting also exists for inventors, partly to provide an efficiency

wage and incentivize effort, then our results can be interpreted as a total effect, combining

the ”pure” causal effect of commuting on productivity and the countering effect of higher

efficiency wage. This implies that even for non-movers, our estimates represent a lower bound

for the ”pure” effect of commuting on inventor productivity, without taking into account

wage compensation. (See the Appendix for a derivation of the econometric model with wage

compensation.)

5 Conclusion

We empirically investigate how commuting distance affects inventor productivity using a

stacked difference-in-differences design, comparing inventors who stay at the same firm and

residential location before versus after an office relocation. This strategy identifies the causal

effect of computing distance on productivity, separated from confounding sorting effects by

both firms and inventors. We find strong evidence that commuting negatively affects inventor

productivity, with every 10 km increase in commuting distance leading to a 5% or more

decrease in patent productivity for the average inventor.

By identifying a causal link between smaller commuting distance and higher inventor

productivity, our results have clear policy implications, suggesting that urban planners should

aim to increase urban density and firms should encourage their inventors to live closer to the
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workplace. This would enable both higher levels of firm and economic growth.

Our findings naturally suggest several potential avenues for future research. First, the

value of location proximity may change over time. For example, as newer telecommunications

technologies, such as broadband and wireless data connections, proliferate, telecommuting

and remote work become more common and socially acceptable. These technological changes

could decrease the value of living closer to the workplace. This question could be addressed

with a longer time series dataset, covering the time period before the broad adoption of a

particular technology (e.g., Internet) and the period after its widespread adoption.

Second, further work is needed to explore the exact mechanisms underlying our

identified negative elasticity. While we offer suggestive evidence that commuting affects

inventor productivity linearly and in equal proportions for both average and top inventors,

this finding could still be consistent with multiple potential mechanisms at work. For example,

there could be a combination of less time spent at work and being less productive while at

work. Additional research disentangling these factors could be possible with more detailed

time-use data at the inventor level.

One interesting unexplored mechanism in our paper would be knowledge spillover

effects through increased collaboration via social networks (Allen, 1977; Jaffe, Trajtenberg

and Henderson, 1993), as workers who live closer to the workplace also tend to live closer

together (Bayer, Ross and Topa, 2008; Lindquist, Sauermann and Zenou, 2015). Our paper

does not include this mechanism since, to the first order, inventor home locations are largely

the same before and after firm relocations. For future work, however, the contribution of

knowledge spillovers can be explored through changes in the spatial distributions of observable

inventor collaboration networks.

Finally, there needs to be more research done to empirically identify the effect of

commuting distance on productivity for other types of workers. Inventors and researchers are

knowledge workers, who tend to be highly-educated and earn relatively high incomes. Their

jobs also require different skills than other occupations such as manufacturing or construction.
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The commuting distance-productivity elasticity may then differ depending on the exact

mechanisms at play. In summary, future work could expand on generalizing our particular

findings on the link between distance and productivity.
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Figure 1: Distribution of Workplace-Home Geodesic Distance. This histogram depicts
the frequency distribution of geodesic distance between the workplace and home of the
inventors in the full sample, prior to any office relocation event; each inventor-firm pair is
represented once.
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Figure 2: Descriptive Relationship Between Workplace-Home Geodesic Distance
and Patent Grant Output. This descriptive graph demonstrates the näıve relationship
between an inventor’s workplace-home geodesic distance (horizontal axis) and an inventor’s
patent grant output (vertical axis). Each grey dot is the average number of patents per
inventor per year for the years prior to a workplace relocation event, where bins formed for
each nearest whole kilometer, e.g., the dot for 10km is the average of inventors who have a
geodesic distance [9.5, 10.5). Geodesic distance above 60km were omitted from this figure
due to insufficient observations.
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Figure 3: Distribution of Change in Workplace-Home Geodesic Distance. This
histogram depicts the frequency distribution of changes geodesic distance between the
workplace and home of the inventors in the full sample, before and after the corresponding
office relocation event; each inventor-firm pair is represented once.
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Figure 4: Residential Sorting by Distance to City Center. These binscatter plots show
the relationship between an inventor’s home-central city distance (horizontal axis) and an
inventor’s productivity and income (vertical axis). Each grey dot is the average number of
patents/income for the years prior to a workplace relocation event, where bins formed for
each nearest 5 kilometers.
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Figure 5: Effect of Further Commute Relative to Year of Workplace Relocation
Event. This graph shows the effect of a further commute on the number of patents produced
by inventors, in each year relative to the year of the workplace relocation event, represented
by the vertical gray line at Year 0. Inventors experiencing a closer or identical commute than
before the relocation form the control group. The plotted coefficients are βFurther

ity from the
following equation for inventor i, firm j, year relative to workplace relocation event y, and
year t:

Yijyt = βFurther
ity Further Commuteit ∗ ηy

+ αij + ηy + γt + δjt + εijt.
(10)

where Further Commuteit is equal to one for inventor-firm pairs for whom the workplace
relocation increased the workplace-home geodesic distance by 1km or more, and 0 otherwise.
ηy is a fixed effect, taking the value of 1 for the year y ∈ [−4, 5] relative to workplace relocation
event and 0 otherwise. αij is an inventor-firm fixed effect, γt is a year fixed effect, and δjt
is a firm location fixed effect. The indicator variable for the first year ηy=4 was necessarily
omitted for estimation tractability, but shown here as the baseline term, set at a value of 0,
i.e., equating the treatment and control groups.
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Table 1: Summary Statistics for Non-Moving Inventors over Sample Period. This
table presents the mean annual patent count and scaled citations per inventor-firm pair
over the full sample period, in the pre-relocation period alone and in the post-relocation
period alone. It also presents various measures of commuting distances both before and after
the relocation. Income and home price are only available pre-relocation for our sample of
non-movers. Income and Home Price are in 1,000 dollars, distances are in kilometers and
duration is in minutes.

Mean Standard Minimum Median Maximum # Inventor-

Deviation Firm Pairs

Overall

Patent Count 0.524 0.622 0.000 0.333 6.714 3,445

Scaled Citations 0.893 2.017 0.000 0.288 51.256 3,445

Pre-Relocation

Patent Count 0.858 0.879 0.000 0.600 8.333 3,445

Scaled Citations 1.365 2.561 0.000 0.491 30.892 3,445

Geodesic Distance 21.456 16.166 0.000 17.184 98.813 3,445

Drive Distance 29.244 21.201 0.000 23.952 119.146 3,445

Drive Duration 26.347 14.207 0.000 23.167 93.150 3,445

Income 125.719 107.599 5.000 105.000 2,920 1,549

Home Price (Buyer) 449.633 349.983 13.500 355.750 3,920 1,596

Post-Relocation

Patent Count 0.328 0.654 0.000 0.000 9.000 3,445

Scaled Citations 0.633 2.463 0.000 0.000 81.801 3,445

Geodesic Distance 21.607 15.919 0.001 17.463 99.908 3,445

Drive Distance 29.572 21.059 0.000 24.038 120.612 3,445

Drive Duration 26.387 13.997 0.000 22.950 92.433 3,445
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Table 2: Summary Statistics for Relocating Establishments. This table presents
descriptive statistics for relocating establishments at the time of relocation for how far the
establishment has moved, the change in establishment’s relative distance to central city, and
the number of non-moving inventors per establishment. Employee counts are averaged over
the entire sample period, and separately over the pre- and post-relocation periods. Distances
are in kilometers.

Mean Standard Minimum Median Maximum Number of

Deviation Establishments

Overall

Absolute

Relocation Distance 23.731 38.548 1.000 8.186 127.360 1,068

∆Distance To

Central City 2.554 14.006 -59.539 1.234 119.937 1,068

Number of Non−
Moving Inventors 3.226 9.267 1.000 2.000 227.000 1,068

Employee Count 185.255 567.495 1.000 50.000 13,331.700 1,068

Pre-Relocation

Employee Count 167.646 483.593 1.000 37.000 7,600.000 1,068

Post-Relocation

Employee Count 197.562 640.314 1.000 52.929 15,895.880 1,068
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Table 3: Data Composition by CSA. This table presents the observation count of Inventors
and Firms by Combined Statistical Area (CSA). The percentages of CSAs in each column
are in parentheses. The six largest CSAs by population are shown, ordered by the count of
Inventors, while the rest are grouped into Other.

Final Sample All Inventors

Combined Statistical Area Inventors Firms Inventors

San Jose-San Francisco-Oakland 1,168 341 146,631

(CA) (34%) (29%) (26%)

Boston-Worcester-Providence 515 180 67,922

(MA-RI-NH-CT) (15%) (15%) (12%)

Los Angeles-Long Beach 363 126 60,503

(CA) (11%) (11%) (11%)

Chicago-Naperville 205 72 46,188

(IL-IN-WI) (6%) (6%) (8%)

New York-Newark 160 92 84,529

(NY-NJ-CT-PA) (5%) (8%) (15%)

Washington-Baltimore-Arlington 133 65 33,091

(DC-MD-VA-WV-PA) (4%) (6%) (6%)

Other 901 304 124,117

(26%) (26%) (22%)

Total 3,445 1,180 562,981

(100%) (100%) (100%)
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Table 4: Balance Test by Direction of Distance Shocks. Means presented with standard
errors in parentheses and number of inventor-firm pairs in brackets. Closer/Same/Farther
columns indicate sub-sample for which commuting distance decreased by more than 1km,
approximately stayed the same (i.e., changed by less than 1km), and increased by more than
1km, respectively. Income and home prices are in 1,000 dollars, distance measures are in
kilometers and duration is in minutes.

Closer Same Farther p-value

Variable (1) (2) (3) (1 vs 3) (1 vs 2) (2 vs 3)

Patent Count 0.850 0.846 0.869 0.547 0.928 0.591

(0.872) (0.834) (0.897)

[1348] [529] [1569]

Scaled Citations 1.380 1.272 1.383 0.970 0.415 0.372

(2.689) (2.247) (2.548)

[1348] [529] [1569]

Income 131.881 130.837 118.807 0.035 0.918 0.026

(141.5) (81.646) (68.505)

[599] [239] [711]

Home Price (Buyer) 454.815 459.404 441.901 0.496 0.863 0.494

(350.046) (368.774) (343.541)

[614] [252] [730]

Geodesic Distance 26.47 19.38 17.85 0.000 0.000 0.041

(16.82) (15.34) (14.70)

[1,348] [529] [1,569]

Drive Distance 35.42 26.63 24.82 0.000 0.000 0.070

(21.76) (20.25) (19.71)

[1,348] [529] [1,569]

Drive Duration 30.49 24.84 23.30 0.000 0.000 0.025

(14.24) (13.85) (13.42)

[1,348] [529] [1,569]
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Table 5: Effect of Commuting on Inventor Productivity - Quantity. The dependent
variable Patents is the count of patents granted to an inventor-firm per year. The independent
variable of workplace-home Distance is geodesic distance measured in 10 kilometers. OLS
regression model with robust standard errors clustered at the inventor-firm pair-level shown
in parentheses. R2 includes both within- and between- variation.

Dependent Var.: Patents (1) (2) (3) (4) (5)

Distance -0.013* -0.039** -0.030** -0.041** -0.043**

(0.007) (0.016) (0.014) (0.019) (0.019)

Inventor-Firm Pair FE No Yes Yes Yes Yes

Year FE No No Yes Yes Yes

Firm Location (ZCTA) FE No No No Yes No

Firm X Location FE No No No No Yes

R2 0.000 0.335 0.386 0.415 0.388

Inventor-Firm Count 3,445 3,445 3,445 3,445 3,445

Observations 22,917 22,917 22,917 22,917 22,798

Table 6: Effect of Commuting on Inventor Productivity - Quality. The dependent
variables are adjusted patent quality measures per inventor-firm pair per year. The indepen-
dent variable of workplace-home Distance is geodesic distance measured in 10 kilometers.
OLS regression model with robust standard errors clustered at the inventor-firm pair-level
shown in parentheses. R2 includes both within- and between- variation.

Dependent Var.: Scaled Citation Generality Originality Payment Count

(1) (2) (3) (4)

Distance -0.094* -0.025** -0.013** -0.047

(0.049) (0.011) (0.006) (0.042)

Mean of Pre-Relocation D.V. 1.365 0.399 0.206 1.684

Inventor-Firm Pair FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Firm Location FE Yes Yes Yes Yes

R2 0.381 0.387 0.392 0.417

Inventor-Firm Count 3,445 3,445 3,445 3,445

Observations 22,863 22,863 22,863 22,863
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Table 7: Effect of Commuting on Inventor Productivity - Nonlinear Effects. The
dependent variables are patent counts and adjusted patent quality measures per inventor-firm
pair per year. The independent variable of workplace-home Distance is geodesic distance
measured in 10 kilometers. Distance2 is the square of Distance. OLS regression model with
robust standard errors clustered at the inventor-firm pair-level shown in parentheses. R2

includes both within- and between- variation.

Dependent Var.: Patents Scaled Citation Generality Originality Fee Payments

(1) (2) (3) (4) (5)

Distance -0.061 0.067 -0.006 -0.012 -0.184**

(0.041) (0.114) (0.022) (0.013) (0.086)

Distance2 0.003 -0.026 -0.003 -0.000 0.022*

(0.006) (0.016) (0.003) (0.002) (0.012)

Mean of Pre-Rel. D.V. 0.858 1.365 0.399 0.206 1.684

Inventor-Firm Pair FE Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes

Firm Location FE Yes Yes Yes Yes Yes

R2 0.415 0.381 0.387 0.392 0.417

Inventor-Firm Count 3,445 3,445 3,445 3,445 3,445

Observations 22,863 22,863 22,863 22,863 22,863
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Table 8: Effect of Commuting on Inventor Productivity - Top Inventor. The
dependent variables are patent counts and adjusted patent quality measures per inventor-firm
pair per year. The independent variable of workplace-home Distance is geodesic distance
measured in 10 kilometers. Top Inventor are inventors in the top decile in terms of average
patent count. OLS regression model with robust standard errors clustered at the inventor-firm
pair-level shown in parentheses. R2 includes both within- and between- variation.

Dependent Var.: Patents Scaled Citation Generality Originality Payment Count

(1) (2) (3) (4) (5)

Distance -0.026 -0.057 -0.022* -0.009 -0.018

(0.019) (0.048) (0.011) (0.006) (0.041)

Distance× Top Inventor -0.159** -0.407** -0.039 -0.045** -0.314**

(0.073) (0.172) (0.038) (0.022) (0.149)

Mean of Pre-Relocation 0.781 1.264 0.370 0.189 1.533

Other Inventor D.V. (0.753) (2.410) (0.450) (0.302) (1.739)

Mean of Pre-Relocation 1.670 2.421 0.708 0.386 3.276

Top Inventor D.V. (1.491) (3.641) (0.767) (0.522) (3.241)

Inventor-Firm Pair FE Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes

Firm Location FE Yes Yes Yes Yes Yes

R2 0.416 0.381 0.387 0.392 0.418

Inventor-Firm Count 3,445 3,445 3,445 3,445 3,445

Observations 22,863 22,863 22,863 22,863 22,863
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Table 9: Effect of Commuting on Inventor Productivity - Subsamples by Move
Direction. The dependent variable Patents is the count of patents granted to an inventor-
firm per year. Closer/Same/Farther columns indicate sub-sample for which commuting
distance decreased by more than 1km, approximately stayed the same (i.e. changed by less
than 1km), and increased by more than 1km, respectively. The independent variable of
workplace-home Distance is geodesic distance measured in 10 kilometers. Top Inventor are
inventors in the top decile in terms of average patent count. OLS regression model with
robust standard errors clustered at the inventor-firm pair-level shown in parentheses. R2

includes both within- and between- variation.

Dependent Var.: Patents (1) (2) (3) (4) (5) (6)

Distance 0.016 0.038 -0.106** 0.011 0.030 -0.062

(0.049) (0.778) (0.049) (0.050) (0.779) (0.049)

Distance× Top Inventor 0.072 -0.282 -0.573***

(0.087) (0.174) (0.147)

Sample Closer Same Farther Closer Same Farther

Inventor-Firm Pair FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Firm Location FE Yes Yes Yes Yes Yes Yes

R2 0.421 0.415 0.434 0.421 0.415 0.437

Inventor-Firm Count 1,348 535 1,562 1,348 535 1,562

Observations 8,887 3,512 10,417 8,887 3,512 10,417
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Table 10: Effect of Workplace-Home Distance on Inventor Productivity - Solo
Patents. The dependent variable Solo Patents is the count of patents granted to an inventor-
firm pair per year, where the inventor is the sole inventor. The independent variable of
workplace-home Distance is geodesic distance measured in 10 kilometers. Top Inventor are
inventors in the top decile in terms of average patent count. OLS regression model with
robust standard errors clustered at the inventor-firm pair-level shown in parentheses. R2

includes both within- and between- variation. The average pre-relocation single-authored
patent count is 0.103 per inventor-firm pair per year.

Dependent Var.: Solo Patents (1) (2) (3) (4) (5)

Distance -0.000 -0.010** -0.009** -0.012** -0.009

(0.002) (0.004) (0.004) (0.006) (0.006)

Distance× Top Inventor -0.036*

(0.022)

Inventor-Firm FE No Yes Yes Yes Yes

Year FE No No Yes Yes Yes

Firm Location FE No No No Yes Yes

R2 0.000 0.334 0.342 0.375 0.375

Inventor-Firm Count 3,445 3,445 3,445 3,445 3,445

Observations 22,917 22,917 22,917 22,863 22,863
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Table 11: Effect of Distance Direction Change on Inventor Productivity. The
dependent variable Patents is the count of patents granted to an inventor-firm per year. The
independent variable ∆ Distance Direction is a categorical variable equalling 0 prior to a
workplace relocation event, and after a relocation event, takes the value of 1 for geodesic
distance increases (farther away by > 1km), -1 for distance decreases (closer by > 1km), and 0
when distance is approximately unchanged (changed by less than 1km). OLS regression model
with robust standard errors clustered at the inventor-firm pair-level shown in parentheses.
R2 includes both within- and between- variation.

Dependent Var.: Patents (1) (2) (3) (4) (5)

∆ Distance Direction -0.043*** -0.097*** -0.056*** -0.072*** -0.050**

(0.016) (0.021) (0.019) (0.022) (0.020)

∆ Distance Direction× Top Inventor -0.199*

(0.110)

Inventor-Firm FE No Yes Yes Yes Yes

Year FE No No Yes Yes Yes

Firm Location FE No No No Yes Yes

R2 0.001 0.339 0.396 0.429 0.430

Inventor-Firm Count 3,445 3,445 3,445 3,432 3,432

Observations 19,472 19,472 19,472 19,365 19,365
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Table 12: Effect of Commuting on Inventory Productivity - Alternate Commuting
Measures. The dependent variables are patent counts and scaled citations per inventor-firm
pair per year. The independent variable Drive Distance is the workplace-home driving
distance (e.g., by car) in 10 kilometers. The independent variable Drive Duration is the time
it takes to drive or take public transportation between the workplace and home, whichever is
less, measured in 10 minutes. OLS regression model with robust standard errors clustered
at the inventor-firm pair-level shown in parentheses. R2 includes both within- and between-
variation.

Dependent Var.: Patents Scaled Citations Patents Scaled Citations

(1) (2) (3) (4)

Drive Distance -0.038** -0.074*

(0.015) (0.038)

Drive Duration -0.059** -0.104*

(0.024) (0.059)

Inventor-Firm FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Firm Location FE Yes Yes Yes Yes

R2 0.416 0.381 0.416 0.381

Inventor-Firm Count 3,445 3,445 3,445 3,445

Observations 22,863 22,863 22,863 22,863
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Table 13: Effect of Commuting on Inventor Productivity - Count Models. Columns
(1) and (2) estimate Poisson regression with conditional inventor-firm pair fixed effects.
Columns (3) and (4) estimate negative binomial regression with conditional inventor-firm
pair fixed effects. The independent variable of workplace-home Distance is geodesic distance
measured in 10 kilometers. Coefficients are presented as incidence-rate ratios. Robust
standard errors clustered at the inventor-firm pair-level are shown in parentheses.

Dependent Var.: Patents Poisson Estimation Negative Binomial

(1) (2) (3) (4)

Distance -0.038** -0.049** -0.041** -0.054**

(0.016) (0.020) (0.016) (0.023)

Inventor-Firm Cond. FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Firm Location FE No Yes No Yes

Pseudo R2 0.275 0.306 0.207 0.236

Inventor-Firm Count 3,445 3,445 3,445 3,445

Observations 22,917 22,917 22,917 22,917
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Table 14: Effect of Commuting on Inventor Moving and Quitting. The dependent
variable Inventor Move takes a value of 1 if the inventor moves homes in a year, and 0
otherwise. The dependent variable Inventor Quit takes a value of 1 if the inventor departs
the focal firm in a year, and 0 otherwise. The independent variable Post Relocation equals
1 for observations after and including the year of a relocation of the inventor’s workplace,
and 0 before. ∆ Move Direction is a categorical variable equalling 0 prior to a workplace
relocation event, and after a relocation event, takes the value of 1 for geodesic distance
increases (farther away by > 1km), -1 for distance decreases (closer by > 1km), and 0 when
distance is approximately unchanged (changed by less than 1km). OLS regression model
with robust standard errors clustered at the inventor-firm pair-level shown in parentheses.

Inventor Move Inventor Quit

Variable (1) (2) (3) (4)

Post Relocation 0.014*** 0.015*** 0.017*** 0.017***

(0.003) (0.003) (0.006) (0.006)

Post Relocation -0.002 0.011*

×Move Direction (0.002) (0.006)

Inventor-Firm FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

R2 0.259 0.259 0.274 0.274

Inventor-Firm Count 12,047 12,047 5,158 5,158

Observations 81,563 81,563 29,624 29,624
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A Appendix

A.1 Data Sample Composition and Construction

A.1.1 DataQuick

Ferreira and Gyourko (2015) provide more details on the time horizon (i.e., start and end

dates) of the sample. The combined statistical areas (CSA) included in the table are presented

in Table A.1. Not all parts of each CSA are included.

The DataQuick sample does not include information on home renters, or homeowners

who neither moved nor refinanced their mortgages between 1993 and 2012. Thus, we were

not able to match these inventors to their home location, and they were not included in our

study.

——————–Insert Table A.1——————–

A.1.2 InfoUSA Data Quality Assessment

To confirm the completeness and validity of InfoUSA establishment data, we compare it to

the commonly-used County Business Patterns (CBP) data produced by the U.S. Census

Bureau (e.g., Duranton and Turner, 2012).

——————–Insert Figure A.1——————–

InfoUSA has more comprehensive establishment coverage than CBP, covering both

more establishments and more employees. In particular, InfoUSA covers substantively more

small establishments, e.g., establishments with between one and four employees, than CBP,

while for large establishments and total employees the difference is much smaller. This pattern

is consistent with known under-coverage in the CBP data: given its focus on larger firms, the

U.S. Census Bureau does not readily update data on smaller multi-unit companies (in terms

of employee count), and it may miss establishments for smaller firms and firms that do not
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respond to their surveys (U.S. Census Bureau, 2018).25

A.1.3 Detailed Matching and Sample Construction Procedure

Matching Homeowners to Inventors. The first step in the sample construction process

is to identify the homes of inventors based upon the residential history given in the DataQuick

data. We match home buyer names to inventor names by city within a given CSA. We exactly

match city names and inventor first and last names. Middle names are problematic since

some transaction records list middle names in full, some only list middle initials, and others

list nothing. Given this inconsistency, we only require that there is no discrepancy in a match.

For example, in matching middle initials to middle names, we require consistency between

the middle initials and first letter of a middle name. When there are multiple names listed

on the same transaction, we consider each buyer separately.

To identify the time period for which a home is owned by an inventor, i.e., a residential

spell, we match home buyer names from a home transaction at a specific address to the

home seller names in the next transaction of that property. As before, we match first and

last names exactly and require consistency in middle names. If none of the buyers from the

previous transaction match any of the sellers from the following transaction, we drop the home

from our sample because we cannot verify the residential spell. If there are no subsequent

transaction at the property, we assume that the inventor residential spell lasts until the end

of the sample period (i.e. 2012). Similarly, we match home seller names to inventor names,

and match names with home buyers from the previous transaction to determine residential

spells. If there are no previous transaction at the property, we assume that the inventor

residential spell starts from the beginning of the sample period.

This process identifies residential spells for three groups of inventors: inventors who

bought and sold houses during the sample period; inventors who bought and kept their house

until the end of the sample period; and inventors who owned houses before and sold them

25There are no U.S. Census Bureau estimates of establishment under-coverage.
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during the sample period. We then eliminate inventors for which we cannot identify their

primary residence, such as inventors with matched to multiple different addresses in the same

city in the same year.

Out of a total of around 563,000 inventors, we obtain a sample of 264,287 inventors

with home addresses across the 60 CSAs sampled. In this final sample, we match 47% of all

inventors to their home address. The three primary limitations to matching were ambiguous

homeowner names, non-owning residents, and limited mortgage activity. First, we had to

drop many of the observations associated with the more than 20% of all homeowner names

in a city have duplicates (see Figure A.4). Second, while more than 30% of the total US

population rents, we were not able to identify the location of inventors renting a property.

We also could not match family members who live in a home but are not among the listed

homeowners. Third, homeowners who have not moved or refinanced their mortgage during

our sampling period do not appear in the original DataQuick data.

Matching Workplaces to Inventors. We then obtain the workplace addresses of

the inventors, assuming that the inventor is employed by the patent assignee, through fuzzy

matching and manually matching patent assignee names to InfoUSA firm names in all CSAs.

InfoUSA serves as the source of the workplace addresses to be matched with the assignees

named in the patent dataset.

Within these two datasets, we consolidate and standardize firm names within dataset

that likely belong to the same firm via fuzzy matching and manual matching. In both the

patent data and the InfoUSA data, firm names appear inconsistently, due to misspelling

names, abbreviations or acronyms in place of full firm names, and changes in firm names over

time due to mergers or other corporate activity. After fuzzy matching, two research assistants

then manually and independently verify the accuracy of name groupings using outside public

information. To identify firms which changed their name, the research assistants manually

search and identify alternative names for all firms with patents in a given CSA, then convert

alternative names to the most commonly appearing version of the firm name.
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We use the most common assignee name in the patent data as input to the fuzzy

matching algorithm. After fuzzy matching the inventor assignees with InfoUSA firms, a

team of research assistants manually confirms the matches. We retain all matched firms

with patents in any CSA, leaving us with an inventor-workplace matched sample of 36,468

observations.

Identifying Primary Workplace. For firms with multiple office locations in a

CSA, we designate the primary office location using two criteria. First, we select the office

location with more than five times the number of employees of all the other office locations

combined. Second, if the first condition is not met, we select locations designated as a

“research laboratory” in its NAICS code, on the assumption that research and development

is likely to take place there; this condition is only satisfied if there is a single “research

laboratory” location. After assessing these two criteria, we then drop firms where neither of

these conditions is satisfied for its workplaces in a CSA. After this process of identifying a

primary workplace, we are left with 35,836 single-location firms with matched inventors.

Identifying Workplace Relocations. We define workplace relocations as changes

in the primary office location of a firm within a CSA from one year to the next where the

geodesic distance between the old and new locations is at least one kilometer. We set the

lower relocation distance threshold to increase the power of our estimates by excluding trivial

moves between units in the same building or complex. 11,160 firms relocated during our

sample period out of a total of 35,836 single-location firms with identifiable matched inventors.

We further restrict this sample of relocations for considerations related to our observation

time window. We eliminate relocations that last for 2 years or less before going back to the

original location, since it is less likely that that these firms undertook an actual physical

relocation. To ensure pre- and post-relocation observation periods, necessary for our empirical

design, we also only retain observations occurring after the first or before the last year of our

sample. These two criteria leave us with 6,944 relocating firms with identifiable inventors.

Final Steps. We match our sample of relocating firms with inventor variables (i.e.,
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inventor-year patent count). To ensure pre- and post-relocation observation periods, we limit

our sample of inventors to those who worked at the firm both one year before and one year

after the relocation. This leaves us with 3,723 inventor-firm pairs working at 1,220 relocating

firms. The last step is to drop outliers with commuting distances that are too large to be

believable, and which can bias our results. We also winsorize inventor productivity at the 2%

level. This leaves us with a final sample of 22,917 inventor-firm-year observations for 3,445

inventor-firm pairs, employed at 1,068 relocating firms.

A.2 Illustrative Model

Consider a city with firms located at the center. All residents in the city work at the center,

and can live at two locations: location A is closer to the firms, while location B is farther

away. No matter where they live, all residents commute to the city center for work. There

are two types of workers: skilled workers and unskilled workers, with the former being more

productive than the latter at both locations.

More specifically, let productivity be lAh = θ and lBh = (1 + αh)θ for skilled workers

living at locations A and B, respectively, as well as lAl = βθ and lBl = (β + αl)θ for unskilled

workers. Our model is general and incorporates the effects of different underlying mechanisms

that link distance with productivity. For example, both commuting and knowledge spillover

effects could imply that productivity declines with distance, in which case αh, αl < 0. If

there is an optimal distance that separates work and home, as some of the work-home life

separation literature implies, we would have αh, αl > 0. For simplicity, we assume that,

overall, there is a negative total effect of distance on productivity for the rest of this section,

though derivations with positive total effects are analogous. We also abstract away from the

underlying mechanisms that produce this relationship,26 and focus on how worker sorting

can interact with this negative correlation between distance and productivity and cause bias

26Potential mechanisms include having less time at work, lower optimal effort provision with moral hazard, less
schedule flexibility, fewer interactions and less knowledge spillover with coworkers, behavioral mechanisms,
etc.
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in our estimation.

Firms compete in a competitive market and all pay a unit wage w based on performance.

So each worker i’s take-home wage is wli. Workers are risk-neutral and maximize a money-

utility:

Ui = wli − p(hi) (A.1)

where p(hi) is the price of housing. We assume that each worker demands the same quantity

of housing, so only the latter’s price enters into his utility function. Assume that all

housing stock belongs to absentee owners who try to maximize their revenue, subject to their

tenants’ participation constraints. To make the model more tractable, we make some further

assumptions: the housing stock is evenly divided between locations A and B, the worker

types are equal in number, and the total number of housing units equals the total number of

workers, so the housing market can clear. There are no moving costs so workers can change

locations costlessly.

Given that αh, αl < 0, there are three potential cases we need to consider. αh = αl,

where productivity for both types of inventors declines at the same rate with distance, αh > αl,

where productivity for unskilled workers declines faster with distance than for skilled workers,

and αh < αl, where productivity for unskilled workers declines slower with distance than for

skilled workers.

Then, there are three potential equilibria: two separating equilibria, with each type

congregating in one location separately from the other type’s location, and one pooling

equilibrium with a mixture of both skilled and unskilled workers at both locations. We show

later in this section that there is a unique equilibrium for each of the three cases above: if

αh = αl, then the pooling equilibrium occurs. If αh > αl, then the unique equilibrium is a

separating equilibrium with unskilled workers living at location A, closer to the city center

than skilled workers at location B. If αh < αl, then the separating equilibrium has unskilled

workers living at location B, farther away from skilled workers living at location A.

In both cases where αh 6= αl, the observed effect of distance on productivity would be
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different from the true effect. As shown in Figure A.2, when αh < αl, the observed effect is

more negative than either of the true slopes for skilled or unskilled workers, while for the

case where αh > αl in Figure A.3, the observed effect is less negative than either of the true

slopes for skilled or unskilled workers, and could even be positive.

——————–Insert Figure A.2——————–

——————–Insert Figure A.3——————–

This means that to identify the causal effect of distance on productivity, we need an

estimation strategy that separates the causal effect from worker sorting based on skill levels.

The rest of this section goes through the proofs to show that there are unique equilibria

for each of the three cases in the illustrative model.

A.2.1 Case I: Faster Productivity Decline for Skilled Workers

In this case, αh < αl. Housing costs at both locations can be derived as follows. First, at any

location where some unskilled workers live, housing is always priced at what the unskilled

workers can bear. Therefore, in the separating equilibrium with skilled workers at location A

and unskilled workers at location B, the housing price at location B is pB = wlBl and unskilled

workers get zero utility, which equals the modeled outside option. Then, to determine the

housing price at location A, we can use the incentive-compatibility constraint for skilled

workers because, for there to be an equilibrium, skilled workers must not want to move to

location B:

wlBh − pB ≤ wlAh − pA

w(1 + αh)θ − pB ≤ wθ − pA

wαhθ − pB ≤ pA

pA = pB − wαhθ

(A.2)
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where the last equality comes from profit maximization of the absentee homeowners. This

price differential satisfies the incentive-compatibility constraint for unskilled workers since it

is higher than the price difference that they can afford, −wαlθ, given that αh < αl. Therefore,

the separating equilibrium with skilled workers living closer to the firm is possible.

To show that this equilibrium is unique, we show that the other two potential equilibria

cannot hold. If there is a separating equilibrium with skilled workers living farther away at

location B, and unskilled workers living at A, then housing price at A would be pA = wlAl .

To determine the housing price at B, we can use the incentive-compatibility constraint for

skilled workers because for there to be an equilibrium, skilled workers must not want to move

to location A:

wlBh − pB ≥ wlAh − pA

w(1 + αh)θ − pB ≥ wθ − pA

wαhθ − pB ≥ pA

pB = pA + wαhθ

(A.3)

where the last equality comes from profit maximization of the absentee homeowners. Then,

however, the unskilled worker’s IC constraint cannot also be satisfied, because he would get a

utility gain of w(αl − αh)θ > 0 if he moved from location B to A.

Similarly, pooling is not an equilibrium either because the skilled and unskilled worker’s

IC constraints cannot be satisfied at the same time. More specifically, housing price would

be equal to the unskilled worker’s willingness-to-pay at both A and B, but this gives skilled

workers an incentive to move to location A, where they can earn higher utility than in location

B.

A.2.2 Case II: Slower Productivity Decline for Skilled Workers

In this case, αh > αl. Therefore, in the separating equilibrium with skilled workers at

location A and unskilled workers at location B, the housing price at location B is pB = wlBl
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and unskilled workers get zero utility, which equals the modeled outside option. Then, to

determine the housing price at location A, we can use the incentive-compatibility constraint

for skilled workers because, for there to be an equilibrium, skilled workers must not want to

move to location B:

wlBh − pB ≤ wlAh − pA

w(1 + αh)θ − pB ≤ wθ − pA

wαhθ − pB ≤ pA

pA = pB − wαhθ

(A.4)

where the last equality comes from profit maximization of the absentee homeowners. Then,

however, the unskilled worker’s IC constraint cannot also be satisfied, because he would get a

utility gain of w(αh − αl)θ > 0 if he moved from location B to A.

If there is a separating equilibrium with skilled workers living farther away at location

B, and unskilled workers living at A, then housing price at A would be pA = wlAl . To

determine the housing price at B, we can use the incentive-compatibility constraint for skilled

workers because, for there to be an equilibrium, skilled workers must not want to move to

location A:

wlBh − pB ≥ wlAh − pA

w(1 + αh)θ − pB ≥ wθ − pA

wαhθ − pB ≥ pA

pB = pA + wαhθ

(A.5)

where the last equality comes from profit maximization of the absentee homeowners. This

price differential satisfies the incentive-compatibility constraint for unskilled workers since

they would have negative utility living at B, given that αh > αl. Therefore, the separating

equilibrium with skilled workers living farther from the firm is possible.
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Again, pooling is not an equilibrium either because the skilled and unskilled worker’s

IC constraints cannot be satisfied at the same time. More specifically, housing price would

be equal to the unskilled worker’s willingness-to-pay at both A and B, but this gives skilled

workers an incentive to move to location B, where they can earn higher utility than in location

A.

A.2.3 Case III: Same Productivity Decline for Both Types of Workers

In this case, αh = αl. The pooling equilibrium is possible with housing price equal to the

unskilled worker’s willingness-to-pay at both locations A and B. In this case, the skilled

worker would be indifferent about living at either location, since she will get the same utility

of wlAh −pA = wlBh −pB = w(1−β)θ. This is the unique equilibrium because in both potential

separating equilibria skilled workers are indifferent about living in both locations.

A.3 Name Weights

One important source of measurement error in our regressions is the presence of duplicate

names during our matching process. Since we match inventor data to housing transactions

data at the city level, there could be multiple people with identical names who live in the

same city, which can cause mismatches. Given that neither of our datasets contains a census

of all people living in a city, there are three potential ways a mismatch can occur: there

could be multiple inventors living in the same city, there could be multiple homeowners

participating in a housing transaction during the DataQuick sample period, and there could

be a unique inventor matched to a unique homeowner in our sample, but who in fact is a

duplicate. The two first cases are observable in our data, and we mitigate their occurrence by

dropping them. However, the last case cannot be detected directly, so it is important to gauge

the percentage of mismatches there could be in our data, to quantify the amount of noise

they introduce in our results. (There could be bias if probability of having an unobservable

duplicate is correlated with both patent production and change in commuting distance. We
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consider this to be unlikely.)

To model how likely it is to encounter duplicate names without knowing it, we assume

that the probability of person i living in city j having another person with the same name

living in the same city to be Qij. Then Qij depends on the following factors:

Total population in the city Nj: The more people living in city j, the higher Qij

becomes, assuming that each additional person has some independent probability of having

an identical name.

Probability that a person has the same last name P l
ij: Since one’s last name

often depends on the ethnic group he belongs to, this factor is the product of two subfactors:

the percentage of people in the city belonging to the same ethnic group, and how common

the last name is within said ethnic group.

Probability that a person has the same first name and middle initial P f
ij:

The choice of a first name is not as strongly linked to one’s ethnic group, so we assume that

this probability to be proportional to the overall frequency of first names in a given state (or

the entire United States).

Qij = NjP
l
ijP

f
ij (A.6)

Given that we do not observe the entire population, more assumptions are needed to

empirically estimate the probability that duplicate names occur. First, we assume that the

distribution of first and last names is similar between the observable and unobservable parts

of the population; then the only difference in Qij for person i in city j between what we can

estimate and the true value is the number of people.

Second, we assume that the distribution of first and last names are identical across all

cities. In other words, P l
ij and P f

ij no longer depend on j, so we can use cross-sectional data

without worrying about compositional differences between cities biasing our estimates. Then,

we can plot a meaningful graph of the probability of having another person with the same

full name living in the same city against total population using cross-city data. Of course,
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what we estimate is an upper bound, because the same person in the DataQuick database

could have made multiple housing purchases.

——————–Insert Figure A.4——————–

The results of this analysis are shown in Figure A.4, where the mean probability of

finding another buyer with an identical name is plotted against the number of buyers in a

city. This graph shows that, even in the largest cities, less than 40% of all home buyers over

a 20-year period (1992 to 2012) have another buyer with identical names, who could very

well be the same person buying another property. Therefore, our results should not suffer

too much attenuation bias from duplicate names.

Nonetheless, as a robustness check, we estimate our main specifications by weighting

observations using the following name weights:

w =
1

1 +Number of identical buyernames in CSAinDataQuickdata
(A.7)

Thus, if an inventor’s name only appears once, we assign him or her a weight of one, whereas

if there are three more inventors with same first and last names in the CSA, the weight

becomes 0.25. Results are shown in Table A.2. All the estimated coefficients for patent

quantity and quality are still negative and significant, consistent with results in the main

text.

——————–Insert Table A.2——————–

A.4 Additional Robustness Checks

In this section we present additional robustness checks for our main specification.

A.4.1 Subsample: Firm-level Variables

We test the robustness of our results by including more firm-level control variables. In add

firm-level financial information, we manually search all the 1,068 firms used in our main
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analysis in the Compustat data and find financial information for the 405 firms (38%) that

have ever gone public. Based on the Compustat data, we control for firm turnover, market

value and total assets. From the Infogroup data, we both the number of employees and

sales volume at the establishment level. We log transform all the control variables because

their distributions are skewed to the right, and 0.01 is added to their original values so that

the zero values are not missing in the log transformation. The total number of matched

observations is 8,649.

Table A.3 shows the results of patent quantity and quality regressions in this publicly-

traded firm subsample. The estimated coefficients of commuting on inventor productivity are

negative and significant, consistent with results from our full sample.

——————–Insert Table A.3——————–

A.4.2 Subsample: Large Establishment

One potential endogeneity concern is reverse causality: small firm establishments could

move towards employees who they anticipate will become more productive. In this case, our

estimate would confound the causal effect of decreasing distance on inventor productivity,

with the anticipated increase in inventor productivity that causes the firm to move in the first

place, and our estimates would be biased upward. In the main text, we already show that this

is unlikely since firms are not moving towards inventors who are becoming more productive,

with no differential pre-trend in productivity between inventors getting shocked in opposite

directions. Furthermore, using a stacked difference-in-differences specification means that

many firms need to anticipate exactly the year at which their inventors will become more

productive in patenting. We believe this is unlikely.

Nevertheless, we further test the robustness of our results by estimating the baseline

regressions using a subsample of inventors working at large establishments, which we define

to be establishments with an average of more than 100 employees during our sample period.

Large establishments are less likely to move in anticipation of increased productivity of any
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particular employee, due to their own higher moving costs. The results in Table A.5 show that

the negative effect of Distance on inventor productivity in this large establishment subsample is

even larger in magnitude than in our baseline specification. [NEED TO CHECK WHETHER

THIS IS DUE TO HIGHER MEAN PATENT COUNT FOR THIS SUBSAMPLE]

——————–Insert Table A.5——————–

A.4.3 Subsample: Bounded Commute Distance

Another potential worry for our estimation is that firm-inventor pairs with higher workplace-

home distances could more likely be mismatches. Since inventors who lived farther away

before firm relocations are more likely to be moved closer in, this potential measurement

error could be correlated with the observed distance and cause bias in our estimation. To

check against this potential bias, we estimate the baseline regressions using a subsample

of inventor-firm pairs whose maximum distance is always smaller than 50km, which is the

90th percentile of all commuting distances in the United States (U.S. Government Bureau of

Transportation Statistics, 2003). The results in Table A.6 show that the negative effect of

Distance on inventor productivity is almost unchanged and still highly significant, compared

against baseline regressions.

——————–Insert Table A.6——————–

A.4.4 Subsample: Without San Francisco Bay Area

Almost a third of all our observations come from the San Francisco Bay Area, as shown

in Table 3. We test whether our results are driven by inventors living in the Bay Area by

estimating our main specification without them. Results are shown in Table A.4 and we still

find a consistently significant negative effect of commuting on productivity. In regressions

that are not shown, we verify that our results are robust to the exclusion of inventors from

any particular large CSAs.

——————–Insert Table A.4——————–
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A.5 Patent Valuation

Table A.7 summarizes prior estimates of the mean value of a patent in the United States

as documented in the literature. These studies utilize a diverse set of methodologies and

underlying data, across many years of study. The nominal U.S. dollar estimates of patent

value given in each paper are adjusted to 2010 U.S. dollars using the Consumer Price Index

(CPI) provided by the U.S. Bureau of Labor Statistics. Indexed to 2010 U.S. dollars, the

estimates for the value of a patent range from $102,844 (Serrano, 2005) to $4,225,487 (Pakes,

1985).

From the wide range of existing estimates, we use a conservative assumption of

$100,000 USD, a lower bound below all these existing estimates, as the value of an average

patent. This assumption can link our estimates of the impact of workplace-home distance on

patent productivity to economic value generated for the employer assigned the patent.

——————–Insert Table A.7——————–

A.6 Patent Maintenance Fee Data

This section describes patent maintenance fees in more detail.

For estimates of the economic value of individual patent, we use patent maintenance

fee data from 1980 to 2019, available from the USPTO. Patent maintenance fee data have

previously been used to estimate the economic value of individual patents, notably by Pakes

(1986) and Bessen (2008). From the USPTO website: “Maintenance fees are required to keep

in force all utility and reissue utility patents based on applications filed on or after December

12, 1980.” In short, to keep patents in force, patent owners need to pay maintenance fees 3.5,

7.5, and 11.5 years after the date of patent grant.

From a profit-maximizing perspective, a patent owner will only pay the maintenance

fee if the patent’s present value over the next four years (or remaining term for the last fee

payment) plus the option value of future renewals is greater than the cost of the maintenance
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fee. The fee schedule is steeply increasing over the patent term, ensuring that the value of

maintained patents monotonically increases over the number of fee payments.27 Therefore,

we expect that firms are willing to pay the maintenance fee longer for the patents that they

think are more valuable.

We create a variable for the number of maintenance fee payments for each patent. For

all patents applied for and granted between 1980 and 2005, Table A.8 shows the distribution

of total maintenance fee payment counts. Even after taking into account truncation bias,

most patents are not renewed a third time.

——————–Insert Table A.8——————–

One potential limitation of using the raw number of payments is that newly-granted

patents may not have had enough time to pay the additional maintenance fee even if firms

consider the patents to be valuable. Specifically, this problem exists for all patents granted

since 2007. To correct for this truncation bias, we compute the expected number of payments

for each patent. This means we compute the probability that patents that only had time

to pay the 3.5-year fee end up paying for the 7.5- and 11.5-year fees, and the conditional

probability that patents that only had time to pay 7.5-year fees will pay the 11.5-year fee

in the end. The underlying assumption is that the conditional renewal probability of a

patent after a previous patent maintenance fee payment is stable over time. The historical

data corroborates this assumption. Between 1976–1990, the expected payment count of

the paid-once patents is 1.909, and that of the paid-twice patents is 2.622. These expected

values are comparable with the values predicted based on the 1991–2005 data: 1.908 for

the paid-once patents and 2.623 for the paid-twice patents. We use the expected number of

maintenance fee payments as our main dependent variable for patent economic value, but all

our results are qualitatively unchanged if we use the raw number of maintenance fee payments

instead.
27For example, as of October 2019, the current patent maintenance fees are $1,600, $3,600 and $7,400 after

3.5, 7.5 and 11.5 years respectively, for patents assigned to large firms. Before the last fee schedule change
in 2013, the fees were $1,130, $2,850 and $4,730 respectively.
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A.7 Econometric Model for the Case of Imperfect Labor Market

This is an extension of the econometric model by adding in imperfect labor markets. Assume

that firms pay inventors efficiency wage with longer commuting distance to discourage them

from shirking (Ross and Zenou, 2008). We define a simplified wage equation as follows:

wij = wm
ij + ewijdij (A.8)

where wm
ij is the market-clearing wage and ewij is the per-unit commuting distance

efficiency wage that firm j pays to inventor i. Because only the excess wage beyond market-

clearing level can affect productivity by preventing inventors from shirking, inventor produc-

tivity then becomes:

lij = θij + (βi + ewij)dij (A.9)

Following the same steps as in the main text, Equation 4 now becomes:

lij = α0 + (βi + ewij + α1γi)dij + δj + α1µij + εij (A.10)

In this case of imperfect labor markets, the existence of non-zero job search cost s

acts in conjunction with the existence of infra-marginal inventors due to heterogeneity in

inventor-firm match quality εij to keep some inventors from moving to a different job after

firm relocation. Just as before, positive moving costs ci keep some inventors from moving to

a different residential location. Looking at this subsample of inventors who do not re-sort, we

subtract their productivity before and after the move to get:

∆lij = (βi + ewij)∆dij (A.11)

Given that ewij should always be the opposite sign of βi, we are now estimating a lower
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bound for the weighted ”pure” commuting effect on inventor productivity.
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Appendix: Figures
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Figure A.1: Relative Workplace Coverage Comparison Between InfoUSA and
County Business Patterns. This figure depicts the relative coverage of individual
business establishments (workplaces) for InfoUSA as compared to County Business Pat-
terns (CBP) for the year 2006. The vertical axis is calculated as (CBP Coverage −
InfoUSA Coverage)/InfoUSA Coverage, and the horizontal axis depicts firm size as measured
by the count of employees at the establishment. The solid black line represents the national-
level relative coverage. The grey dots represent the state-level relative coverage. Overall, the
coverage of the two datasets is fairly close, with more establishments covered by InfoUSA.
However, small firms with one to four employees are distinctly under-represented in CBP.
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Figure A.2: Skilled Workers Closer, Unskilled Workers Further: Amplification
Bias. When skilled worker productivity declines with distance more than for unskilled
workers, skilled workers live closer to the city center, while unskilled workers live further
away. In this separating equilibrium, the bias from sorting amplifies the näıve expected
effect of workplace-home distance upwards relative to the “true” effect, i.e., it makes the
negative effect even more negative, as shown by the steeper line for Expected Productivity
relative to the slopes of the (Un)Skilled Worker lines. The model is originally based on two
discrete points, Close and Far, but we relax that simplifying assumption and plot (expected)
continuous lines to provide a better visual guide
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Figure A.3: Skilled Workers Further, Unskilled Workers Closer: Attenuation Bias.
When skilled worker productivity declines with distance less than for unskilled workers,
skilled workers live further from the city center, while unskilled workers live further away.
In this separating equilibrium, the bias from sorting attenuates the näıve expected effect of
workplace-home distance upwards relative to the “true” effect, i.e., it makes the negative
effect less negative, as shown by the flatter line for Expected Productivity relative to the
slopes of the (Un)Skilled Worker lines. The model is originally based on two discrete points,
Close and Far, but we relax that simplifying assumption and plot (expected) continuous lines
to provide a better visual guide

Appendix - xxi



0%

20%

40%

60%

80%

100%

Pr
op

or
tio

n 
of

 N
am

es
 w

ith
 D

up
lic

at
es

0 200 600400 800
CSA Size: Buyers (000)

Figure A.4: Proportion of Names per City that Appear More Than Once. The
vertical axis represents the proportion of unique names that appear more than once. The
horizontal axis represents the size of a city in terms of the number of home buyers in the
DataQuick sample. Each grey dot represents a particular city, and the black line is a local
linear regression model fit onto the city-level points (Bandwidth= .8).
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Appendix: Tables

Table A.1: Combined Statistical Areas (CSA) available in DataQuick. Further
details on this sample are discussed in Ferreira and Gyourko (2015). Some CSAs are not
covered in full.

Combined Statistical Area Combined Statistical Area

1 New York-Newark (NY-NJ-CT-PA) 31 Bakersfield (CA)

2 Los Angeles-Long Beach (CA) 32 Modesto-Merced (CA)

3 Chicago-Naperville (IL-IN-WI) 33 Springfield-Greenfield Town (MA)

4 Washington-Baltimore-Arlington (DC-MD-VA-WV-PA) 34 Spokane-Spokane Valley-Coeur d’Alene (WA)

5 San Jose-San Francisco-Oakland (CA) 35 Colorado Springs (CO)

6 Boston-Worcester-Providence (MA-RI-NH-CT) 36 Lakeland-Winter Haven (FL)

7 Miami-Fort Lauderdale-Port St. Lucie (FL) 37 Visalia-Porterville-Hanford (CA)

8 Detroit-Warren-Ann Arbor (MI) 38 Reno-Carson City-Fernley (NV)

9 Seattle-Tacoma (WA) 39 Palm Bay-Melbourne-Titusville (FL)

10 Phoenix-Mesa-Scottsdale (AZ) 40 Pensacola-Ferry Pass-Brent (FL)

11 Cleveland-Akron-Canton (OH) 41 Santa Maria-Santa Barbara (CA)

12 Denver-Aurora (CO) 42 Salinas (CA)

13 Tampa-St. Petersburg-Clearwater (FL) 43 Peoria-Canton (IL)

14 Orlando-Deltona-Daytona Beach (FL) 44 Tallahassee-Bainbridge (FL)

15 Portland-Vancouver-Salem (OR-WA) 45 Eugene (OR)

16 Sacramento-Roseville (CA) 46 Gainesville-Lake City (FL)

17 Columbus-Marion-Zanesville (OH) 47 Ocala (FL)

18 Las Vegas-Henderson (NV-AZ) 48 Fort Collins (CO)

19 Cincinnati-Wilmington-Marysville (OH-KY-IN) 49 San Luis Obispo-Paso Robles-Arroyo Grande (CA)

20 Jacksonville-St. Marys-Palatka (FL-GA) 50 Crestview-Fort Walton Beach-Destin (FL)

21 Hartford-West Hartford (CT) 51 Yakima (WA)

22 Oklohoma City-Shawnee (OK) 52 Redding-Red Bluff (CA)

23 Memphis-Forrest City (TN-MS-AR) 53 Chico (CA)

24 Tulsa-Muskogee-Bartlesville (OK) 54 Prescott (AZ)

25 Fresno-Madera (CA) 55 Bellingham (WA)

26 Cape Coral-Fort Myers-Naples (FL) 56 Yuma (AZ)

27 Honolulu (HI) 57 Panama City (FL)

28 Dayton-Springfield-Sidney (OH) 58 Grand Junction (CO)

29 Tucson-Nogales (AZ) 59 Flagstaff (AZ)

30 North Port-Sarasota-Bradenton (FL) 60 Pittsfield (MA)
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Table A.2: Effect of Commuting on Inventor Productivity - Name Weights. OLS
regression model with observations weighted by the inverse of the frequency of an inventor’s
name in DataQuick real estate data. The dependent variables are patent counts and patent
quality measures per inventor-firm pair per year. The independent variable of workplace-home
Distance is geodesic distance measured in 10 kilometers. Top Inventor are inventors in
the top decile in terms of average patent count. Robust standard errors clustered at the
inventor-firm pair-level are shown in parentheses. R2 includes both within- and between-
variation.

Patents Scaled Citation Fee Payments

Variable (1) (2) (3) (4) (5) (6)

Distance -0.046** -0.035* -0.109** -0.092* -0.060 -0.034

(0.020) (0.019) (0.050) (0.050) (0.045) (0.044)

Distance× -0.153* -0.233 -0.346

Top Inventor (0.084) (0.176) (0.171)

Inventor-Firm FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Firm Location FE Yes Yes Yes Yes Yes Yes

R2 0.413 0.413 0.385 0.385 0.416 0.417

Inventor-Firm Count 3,445 3,445 3,445 3,445 3,445 3,445

Observations 22,861 22,861 22,861 22,861 22,861 22,861
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Table A.3: Effect of Commuting on Inventor Productivity - Firm-Level Variables.
OLS model with subsample of observations matched to Compustat. The dependent variables
are patent counts and adjusted patent quality measures per inventor-firm pair per year.
The independent variable of workplace-home Distance is geodesic distance measured in 10
kilometers. Top Inventor are inventors in the top decile in terms of average patent count.
Robust standard errors clustered at the inventor-firm pair-level are shown in parentheses. R2

includes both within- and between- variation.

Patents Scaled Citation Payment Count

Variable (1) (2) (3) (4) (5) (6)

Distance -0.060** -0.038 -0.077 -0.036 -0.111 -0.058

(0.026) (0.025) (0.058) (0.058) (0.068) (0.066)

Distance× -0.262** -0.467** -0.600**

Top Inventor (0.114) (0.186) (0.280)

Log Turnover -0.009 -0.009 -0.007 -0.008 0.017 0.016

(0.027) (0.027) (0.088) (0.088) (0.054) (0.054)

Log Market V alue 0.031 0.031 -0.015 -0.016 0.050 0.049

(0.032) (0.032) (0.115) (0.115) (0.073) (0.074)

Log Assets 0.093** 0.094** 0.249* 0.251* 0.149 0.151

(0.042) (0.042) (0.133) (0.133) (0.095) (0.095)

Log Employee Count -0.012 -0.013 -0.002 -0.002 -0.026 -0.026

(0.010) (0.010) (0.025) (0.025) (0.023) (0.023)

Log Sales V olume -0.009** -0.009** -0.021** -0.020** -0.024*** -0.024***

(0.004) (0.004) (0.010) (0.010) (0.008) (0.008)

Inventor-Firm FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Firm Location FE Yes Yes Yes Yes Yes Yes

R2 0.421 0.422 0.445 0.445 0.408 0.409

Inventor-Firm Count 1,493 1,493 1,493 1,493 1,493 1,493

Observations 9,218 9,218 9,218 9,218 9,218 9,218
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Table A.4: Effect of Commuting on Inventor Productivity - No Bay Area. OLS
model with subsample of observations excluding inventors in the San Francisco Bay Area. The
dependent variables are patent counts and adjusted patent quality measures per inventor-firm
pair per year. The independent variable of workplace-home Distance is geodesic distance
measured in 10 kilometers. Top Inventor are inventors in the top decile in terms of average
patent count. Robust standard errors clustered at the inventor-firm pair-level are shown in
parentheses. R2 includes both within- and between- variation.

Patents Scaled Citation Payment Count

Variable (1) (2) (3) (4) (5) (6)

Distance -0.053** -0.037 -0.091* -0.057 -0.076 -0.043

(0.024) (0.023) (0.051) (0.059) (0.048) (0.045)

Distance× -0.130 -0.316* -0.267

Top Inventor (0.087) (0.191) (0.177)

Inventor-Firm FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Firm Location FE Yes Yes Yes Yes Yes Yes

R2 0.400 0.401 0.396 0.356 0.411 0.411

Inventor-Firm Count 2,277 2,277 2,277 2,277 2,277 2,277

Observations 15,099 15,099 15,099 15,099 15,099 15,099
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Table A.5: Effect of Workplace-Home Distance on Inventor Productivity - Large
Establishments. The dependent variable Patents is the count of patents granted to an
inventor-firm pair per year, where the establishment the inventor works for has on average
more than 100 employees during the sample period. The independent variable of workplace-
home Distance is geodesic distance measured in 10 kilometers. Top Inventor are inventors in
the top decile in terms of average patent count. OLS regression model with robust standard
errors clustered at the inventor-firm pair-level shown in parentheses. R2 includes both within-
and between- variation.

Dependent Var.: Patents (1) (2) (3) (4) (5)

Distance -0.031*** -0.088*** -0.070*** -0.060** -0.040

(0.009) (0.024) (0.021) (0.028) (0.027)

Distance× Top Inventor -0.173*

(0.099)

Inventor-Firm FE No Yes Yes Yes Yes

Year FE No No Yes Yes Yes

Firm Location FE No No No Yes Yes

R2 0.002 0.342 0.389 0.416 0.416

Inventor-Firm Count 2,042 2,042 2,042 2,042 2,042

Observations 13,786 13,786 13,786 13,762 13,762
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Table A.6: Effect of Workplace-Home Distance on Inventor Productivity - Limited
Distance Subsample. Subsample includes inventor-firm pairs whose workplace-home
geodesic distances are less than 50km for all years of employment. Top Inventor are
inventors in the top decile in terms of average patent count. OLS regression model with
robust standard errors clustered at the inventor-firm pair-level shown in parentheses. R2

includes both within- and between- variation.

Dependent Var.: Patents (1) (2) (3) (4) (5)

Distance -0.014 -0.056*** -0.033** -0.049** -0.023

(0.010) (0.018) (0.017) (0.025) (0.024)

Distance× Top Inventor -0.273**

(0.107)

Inventor-Firm FE No Yes Yes Yes Yes

Year FE No No Yes Yes Yes

Firm Location FE No No No Yes Yes

R2 0.000 0.334 0.385 0.414 0.415

Inventor-Firm Count 3,118 3,118 3,118 3,118 3,118

Observations 20,788 20,788 20,788 20,740 20,740
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Table A.7: Patent Valuations in Prior Literature. This table summarizes prior estimates
of the mean value of a patent documented in the literature. These studies generate estimates
using different methodologies and underlying data. The nominal U.S. dollar estimates of
patent value given in each paper are adjusted to the 2010 U.S. dollars using the Consumer
Price Index (CPI) provided by the U.S. Bureau of Labor Statistics.

Valuation Nominal Nominal Value in

Article Methodology Value (USD) Year 2010 (USD)

Pakes (1985) Stock Market Returns 810,000 1972 4,225,487

Austin (1993) Stock Market Returns 1,504,000 1991 2,407,902

Kogan et al. (2017) Stock Market Returns 3,200,000 1982 8,330,000

Serrano (2005) Patent Maintenance Fee 86,782 2003 102,844

Bessen (2008) Patent Maintenance Fee 78,168 1992 121,490

Fischer and Leidinger (2014) Marketplace Transactions 104,781 1992 162,852

Table A.8: Patent Maintenance Fee Payment Counts. This table summarizes the raw
number of patents by maintenance fee payment counts, for patents applied for between 1980
and 2005.

Payment Count Number of Patents Percentage

0 852,309 28%

1 535,687 18%

2 493,703 16%

3 1,174,096 38%

Total 3,055,795 100%
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