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How Efficient Is Dynamic Competition?  
The Case of Price as Investment†

By David Besanko, Ulrich Doraszelski, and Yaroslav Kryukov*

We study industries where the price that a firm sets serves as an 
investment into lower cost or higher demand. We assess the wel-
fare implications of the ensuing competition for the market using 
analytical and numerical approaches to compare the equilibria of a 
learning-by-doing model to the first-best planner solution. We show 
that dynamic competition leads to low deadweight loss. This cannot 
be attributed to similarity between the equilibria and the planner 
solution. Instead, we show how learning-by-doing causes the various 
contributions to deadweight loss to either be small or partly offset 
each other. (JEL D21, D25, D43, D83, L13)

In many “new economy” industries (e.g., Amazon and Barnes & Noble in e-book 
readers) and “old economy” industries (e.g., Boeing and Airbus in aircraft, Intel and 
AMD in microprocessors), the price that a firm sets plays the role of an investment. 
The investment role arises when the firm’s current price affects its future competi-
tive position vis-à-vis its rivals. Examples include competition to accumulate pro-
duction experience on a learning curve or to acquire a customer base in markets with 
network effects or switching costs. In these settings, a firm’s current sales translate 
into lower cost or higher demand in the future, and the firm can thus shape the evo-
lution of the industry by pricing aggressively. Competition is dynamic as firms jostle 
for competitive advantage through the prices they set.

It is well understood that the investment role of price opens up a second dimen-
sion of competition between firms, namely competition for the market. At the 
same time, several high-profile antitrust cases, such as United States v. Microsoft 
in the late 1990s and European Union v. Google initiated in 2015 have taken aim 
at the market leaders in industries where the investment role of price is presumably 
important. This raises a question that is much less well understood: does unfettered 
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competition for the market when price serves as an investment warrant regulatory 
scrutiny? The answer depends on how efficient dynamic competition is. If it is not 
very efficient and leads to high deadweight loss, then there are potential gains from 
intervening in the industry. However, if dynamic competition is very efficient, then 
the upside from regulatory scrutiny is limited, barring explicitly anti-competitive 
behavior.

It may seem intuitive that dynamic competition when price serves as an invest-
ment is fairly efficient. In contrast to rent-seeking models (Posner 1975) in which 
firms compete for market dominance by engaging in socially wasteful activities 
(e.g., lobbying), competition for the market when price serves as an investment 
occurs through low prices that transfer surplus to consumers. And as a by-product of 
these low prices, firms generate socially valuable learning economies in production 
or demand-side economies of scale.

However, this intuition is incomplete. First, prices that are too low relative to 
marginal cost can cause deadweight loss from overproduction. Second, dynamic 
competition may give rise to equilibria that entail predation-like behavior and 
monopolization of the industry in the long run (Dasgupta and Stiglitz 1988; Cabral 
and Riordan 1994; Athey and Schmutzler 2001; Besanko et al. 2010; Besanko, 
Doraszelski, and Kryukov 2014), causing welfare losses from monopoly pricing and 
suboptimal product variety. Third, as firms attempt to balance the gains from possi-
bly monopolizing their industry against the losses from pricing aggressively as they 
jostle for competitive advantage, dynamic competition can distort entry behavior 
and result in coordination failures similar to the ones in natural monopoly markets 
highlighted by Bolton and Farrell (1990). It can also distort exit behavior if firms 
are reluctant to exit an industry destined to be monopolized and become caught up 
in wars of attrition (Smith 1974, Tirole 1988, Bulow and Klemperer 1999).

In sum, dynamic competition when price serves as an investment may cause 
deadweight losses through a number of distinct channels, and it is not a priori obvi-
ous what the magnitude of these deadweight losses may be. This paper makes a 
first attempt to assess how efficient dynamic competition is. We do so in a model 
of learning-by-doing along the lines of Cabral and Riordan (1994); Besanko et al. 
(2010); and Besanko, Doraszelski, and Kryukov (2014) that involves price compe-
tition in a differentiated products market with entry and exit. Learning-by-doing is 
important in a broad set of industries (see the references in Besanko et al. 2010).

We compare the Markov perfect equilibria of our learning-by-doing model to the 
solution of a first-best problem that has a social planner controlling pricing, entry, 
and exit decisions. Deadweight loss is the difference in the expected net present 
value of total surplus. We carefully explore the parameter space and multiple equi-
libria using the homotopy or path-following method in Besanko et al. (2010) and 
Besanko, Doraszelski, and Kryukov (2014). We show that dynamic competition 
does indeed tend to lead to low deadweight loss. It is less than 10 percent of the 
maximum value added by the industry in more than 65 percent of parameteriza-
tions and less than 20 percent of value added in more than 90 percent of parameter-
izations.1 Moreover, the investment role of price tends to be socially beneficial; if 

1 The maximum value added by the industry is the difference in the expected net present value of total surplus 
of the first-best planner solution and an industry that remains empty forever (see Section IIB).
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we shut it down, then deadweight loss increases, often substantially, in more than 
80 percent of parameterizations.

The low deadweight loss does not arise because equilibrium behavior and its 
implied industry dynamics are similar to the first-best planner solution. On the 
contrary, especially the “best” equilibria that entail the lowest deadweight loss are 
remarkably different from the first-best planner solution.

To identify the mechanisms through which dynamic competition leads to low 
deadweight loss, we decompose deadweight loss into a pricing distortion that cap-
tures differences in equilibrium pricing behavior from the first-best planner solution 
and a remaining non-pricing distortion that subsumes a suboptimal number of firms 
and products being offered by these firms, a suboptimal exploitation of learning 
economies, and cost-inefficient exit. The low deadweight loss boils down to three 
regularities in these components.

First, while the pricing distortion tends to be the largest contributor to deadweight 
loss, in the best equilibria it is quite low and it is “not so bad” in the “worst” equi-
libria that entail the highest deadweight loss. Analytical bounds on the pricing dis-
tortion reveal that this regularity is rooted in learning-by-doing itself. Second, the 
non-pricing distortion in the worst equilibria tends to be low because competition 
for the market resolves itself quickly and winnows out firms in a fairly efficient way. 
Third, in the best equilibria the non-pricing distortion tends to be higher. Dynamic 
competition tends to lead to over-entry and under-exit. While this has social costs 
(setup costs and forgone scrap values), it also has offsetting social benefits from 
additional product variety. Learning economies can be shown to accentuate these 
benefits by making the additional product variety less costly to procure.

All in all, we show that dynamic competition when price serves as an investment 
works remarkably well, not because competition for the market is a “magic bul-
let” that achieves full efficiency, but because the various contributions to deadweight 
loss either are small or partly offset each other. And this, in turn, happens because 
of learning-by-doing itself.

Our paper is related to a large literature on dynamic competition in settings 
where price plays the role of an investment. Besides the aforementioned models 
of learning-by-doing, this includes the models of network effects in Mitchell and 
Skrzypacz (2006); Chen, Doraszelski, and Harrington (2009); Dubé, Hitsch, and 
Chintagunta (2010); and Cabral (2011); switching costs in Dubé, Hitsch, and Rossi 
(2009) and Chen (2011); experience goods in Bergemann and Välimäki (1996) 
and Ching (2010); and habit formation in Bergemann and Välimäki (2006). As 
we show in Besanko, Doraszelski, and Kryukov (2014), these models share a key 
feature with our leaning-by-doing model in that a firm has two distinct motives 
for pricing aggressively: to acquire competitive advantage or overcome competi-
tive  disadvantage—the advantage-building motive—and to prevent its rivals from 
acquiring competitive advantage—the advantage-denying motive. Network effects, 
in particular, are a mirror image of learning-by-doing in the sense that economies 
of scale originate in demand rather than cost. We therefore expect our analysis to 
extend beyond our specific setting.2

2 A caveat is that consumers in our learning-by-doing model are short-lived. We leave the analysis of dynamic 
competition with forward-looking consumers to future research.
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While the literature has generally focused on characterizing equilibrium behav-
ior rather than anatomizing its implications for welfare, it has raised some red 
flags regarding the efficiency of dynamic competition. Bergemann and Välimäki 
(1997) show that the equilibrium in their experience-goods model is inefficient 
because of an informational externality between firms (see also Rob 1991 and 
Bolton and Harris 1999). The literature on network effects shows that an inferior 
product can be adopted and persist as the standard either because consumers’ 
expectations are misaligned or favor the inferior product (Biglaiser and Crémer 
2016; Halaburda, Jullien, and Yehezkel 2016). Nevertheless, none of these papers 
directly addresses the question whether the investment role of price is socially  
beneficial.

The remainder of this paper is organized as follows. Section I sets up our learn-
ing-by-doing model. Section  II develops the first-best planner problem and the 
welfare metrics we use in the subsequent analysis. Sections III and IV present our 
numerical analysis of equilibria and associated deadweight loss over a wide range 
of the parameter space and summarize the regularities that emerge. Section V intro-
duces our decomposition of deadweight loss and provides analytical bounds on some 
of its components. Section VI summarizes and concludes. An online Appendix con-
tains additional details and results.

Throughout the paper we distinguish between propositions, whose proofs are in 
the Appendix, and results that summarize our exploration of the parameter space 
by the percentage of parameterizations that display an outcome of interest. We 
think of these percentages as characterizing frequencies of occurrence over the 
economically interesting portion of parameter space for two reasons. First, we 
proceed as if randomly sampling parameterizations from this portion of param-
eter space. Second, we either explore the entire feasible range of a parameter 
or, if lacking a bound, explore the parameter to a point beyond which further 
changes in its value do not change the equilibrium very much (see Section IIIA). 
While further extending the region of exploration may affect the reported per-
centages, this would be an artifact of repeatedly sampling basically identical  
equilibria.

I. Model

We use the discrete-time, infinite-horizon dynamic stochastic game between two 
firms in an industry characterized by learning-by-doing in Besanko, Doraszelski, 
and Kryukov (2014). We briefly review the model and refer the reader to Besanko, 
Doraszelski, and Kryukov (2014) and the online Appendix for details.

At any point in time, firm  n ∈  {1, 2}   is described by its state   e n   ∈  {0, 1,  …  , M}  . 
State   e n   = 0  indicates a potential entrant. State   e n   ∈  {1, …  , M}   indicates the cumu-
lative experience or stock of know-how of an incumbent firm. By making a sale in 
the current period, an incumbent firm adds to its stock of know-how and, through 
learning-by-doing, lowers its production cost in the subsequent period. Competitive 
advantage and industry leadership are therefore determined endogenously in the 
model. If   e 1   >  e 2    (  e 1   <  e 2   ), then we refer to firm 1 as the leader (follower) and 
to firm 2 as the follower (leader). The industry’s state is the vector of firms’ states 
 e =  ( e 1  ,  e 2  )  .
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In each period, firms first set prices and then decide on exit and entry.3 During 
the price-setting phase, the state changes from e to   e ′   . If firm 1 makes the sale, the 
state changes to   e ′   =  e   1+  =  (min { e 1   + 1, M} ,  e 2  )  ; if firm 2 makes the sale, the state 
changes to   e ′   =  e   2+  =  ( e 1  , min { e 2   + 1, M} )  .

During the exit-entry phase, the state then changes from   e ′    to   e ″   . Entry of 
firm  n  is a transition from state   e  n  ′   = 0  to state   e  n  ′′  = 1  and exit is a transition from 
state   e  n  ′   ≥ 1  to state   e  n  ′′  = 0 . As the exit of an incumbent firm creates an opportu-
nity for a potential entrant to enter the industry, reentry is possible. The state at the 
end of the current period finally becomes the state at the beginning of the subsequent 
period.

Learning-by-Doing and Production Cost.—Incumbent firm  n ’s marginal cost 
 c ( e n  )  =  κρ    log 2   (min { e n  ,m} )    depends on its stock of know-how   e n    through a learning 
curve with a progress ratio  ρ ∈  [0, 1]  . A lower progress ratio implies stronger learn-
ing economies. A firm without prior experience has marginal cost  c (1)  =   κ > 0 . 
Once the firm reaches state  m , there are no further experience-based cost reductions. 
We refer to an industry in state e as a mature duopoly if  e ≥  (m, m)   and as a mature 
monopoly if either   e 1   ≥ m  and   e 2   = 0  or   e 1   = 0  and   e 2   ≥ m .

Demand and Consumer Surplus.—One buyer enters the market each period and 
purchases one unit of either one of the “inside goods” offered by the incumbent 
firms at prices  p =      ( p 1  ,  p 2  )   or a competitively supplied “outside good” at a price   p 0    
equal to its marginal cost   c 0   ≥ 0 . The probability that firm  n  makes the sale is given 
by the logit specification

   D n   (p)  =   
exp (  v −  p n   _ σ  )   _____________  

 ∑ k=0  2   exp (  v −  p k   _ σ  )  
   =   

exp (  −  p n   _ σ  )   ___________  
 ∑ k=0  2   exp (  −  p k   _ σ  )  

  , 

where  v  is gross utility and  σ > 0  is a scale parameter that governs the degree of 
product differentiation. As  σ → 0 , goods become homogeneous. The price of the 
outside good   p 0   =  c 0    determines the overall level of demand for the inside goods. 
As it decreases, the market becomes smaller.

For future reference, the consumer surplus associated with our logit specification 
is

(1)  CS (p)  = σln (  ∑ 
n=0

  
2

    exp (  v −  p n   _ σ  ) )  = v + σln (  ∑ 
n=0

  
2

    exp (  −  p n   _ σ  ) ) . 

Scrap Values and Setup Costs.—If incumbent firm  n  exits the industry, it receives 
a scrap value   X n    drawn from a symmetric triangular distribution   F X   ( ⋅ )   with sup-
port   [  ̄  X   −  Δ X  ,   ̄  X   +  Δ X  ]  , where   E X   ( X n  )  =   ̄  X    and   Δ X   > 0  is a scale parameter.4 
If potential entrant  n  enters the industry, it incurs a setup cost   S n    drawn from a 
symmetric triangular distribution   F S   ( ⋅ )   with support   [  ̄  S   −  Δ S  ,   ̄  S   +  Δ S  ]  , where 

3 In the online Appendix, we show that our model is invariant to reversing this order.
4 In the online Appendix, we show that our model is equivalent to a model with per-period, avoidable fixed costs 

but without scrap values.
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  E S   ( S n  )  =   ̄  S    and   Δ S   > 0  is a scale parameter. Scrap values and setup costs are 
independently and identically distributed across firms and periods, and their reali-
zation is observed by the firm but not its rival. Consequently, its rival perceives the 
firm as if it was following a mixed strategy.

A. Firms’ Decisions

Firms aim to maximize the expected net present value (NPV) of their future cash 
flows, using discount factor  β ∈  [0, 1)  .5 We analyze their decisions by working 
backward from the exit-entry phase to the price-setting phase.

Exit and Entry Decisions.—To simplify the exposition, we focus on firm 1 and 
let   ϕ 1   ( e ′  )   denote the probability that firm  1  decides not to operate in state   e ′   : if   e 1   > 0  
so that firm  1  is an incumbent, then   ϕ 1   ( e ′  )   is the probability of exiting; if   e  1  ′   = 0  so 
that firm  1  is an entrant, then   ϕ 1   ( e ′  )   is the probability of not entering.

Pricing Decision.—The pricing decision   p 1   (e)   of incumbent firm 1 in state e is 
uniquely determined (given   p 2  (e )) by the first-order condition

(2)   p 1   (e)  −   σ _  
1 −  D 1   (p (e) )    − c ( e 1  )  +  [ U 1   ( e   1+ )  −  U 1   (e) ]  

 + ϒ ( p 2   (e) )  [ U 1   (e)  −  U 1   ( e   2+ ) ]  = 0, 

where  p (e)  =  ( p 1   (e) ,  p 2   (e) )  ,  ϒ ( p 2   (e) )  =   
 D 2   (p (e) )  _ 

1 −  D 1   (p (e) )     is the probability of firm 2 

making a sale conditional on firm 1 not making a sale, and   U 1   ( e ′  )   denotes the con-
tinuation value of firm 1 in state   e ′    going into the exit-entry phase.

The pricing decision impounds two distinct goals beyond static profit 
  D 1   (p (e) )  ( p 1   (e)  − c ( e 1  ) )  . The advantage-building motive   U 1   ( e   1+ )  −  U 1   (e)   is the 
reward the firm receives by winning a sale and moving down its learning curve. 
The advantage-denying motive   U 1   (e)  −  U 1   ( e   2+ )   is the penalty the firm avoids by 
preventing its rival from winning the sale and moving down its learning curve. The 
advantage-building and advantage-denying motives arise in a broad class of dynamic 
models and together capture the investment role of price.

5 Besides time preference, the discount factor accounts for the probability that the industry “dies” for exogenous 
reasons (Besanko et al. 2010). Especially in technology industries, firms’ cost advantages may be rendered worth-
less by rapid product innovation from outside the industry that displaces their products. We use the same discount 
factor for firms and the first-best planner to avoid a “money pump” in which the government loans firms an arbi-
trarily large amount of money to make both better off. We discuss diverging discount factors in the online Appendix.
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B. Equilibrium and Industry Dynamics

Because the demand and cost specification is symmetric, we restrict ourselves to 
symmetric Markov perfect equilibria (MPE) in pure strategies.6 Existence follows 
from the arguments in Doraszelski and Satterthwaite (2010). In a symmetric equi-
librium, the decisions taken by firm 2 in state e are identical to the decisions taken 
by firm 1 in state   ( e 2  ,  e 1  )  .

Despite the restriction to symmetric equilibria, there is a substantial amount 
of multiplicity. Because the literature offers little guidance regarding equilibrium 
selection, we view all equilibria that arise for a fixed set of primitives as equally 
likely. In doing so, we take the ex ante perspective of a regulator that over time will 
confront a sequence of industries but at present has little detailed knowledge about 
these industries.

To study the evolution of the industry under a particular equilibrium, we use 
the policy functions   p 1    and   ϕ 1    with typical element   p 1   (e)  , respectively,   ϕ 1   ( e ′  )   to 
construct the matrix of state-to-state transition probabilities that characterizes the 
Markov process of industry dynamics. From this, we compute the transient distri-
bution over states in period  t ,   μ t   , starting from state   (0, 0)   (the empty industry with 
just the outside good) in period  0 . In line with our ex ante perspective, we have in 
mind a nascent industry in which two firms have developed new products that can 
potentially draw customers away from an established product (the outside good) but 
have not yet brought them to market.7 The typical element   μ t   (e)   is the probability 
that the industry is in state e in period  t . Depending on  t , the transient distributions 
can capture short-run or long-run (steady-state) dynamics. We think of period 500 
as the long run and, with a slight abuse of notation, denote   μ 500    by   μ ∞   . We do not 
use the limiting (or ergodic) distribution to capture long-run dynamics because the 
Markov process implied by the equilibrium may have multiple closed communicat-
ing classes.

II. First-Best Planner, Welfare, and Deadweight Loss

A. First-Best Planner

Our welfare benchmark is a first-best planner who makes pricing, exit, and entry 
decisions to maximize the expected NPV of total surplus (consumer plus producer 
surplus). In contrast to the market, the planner centralizes and coordinates decisions 
across firms as in Bolton and Farrell (1990). To stack the deck against finding small 
deadweight losses, we assume an omniscient planner that has access to privately 
known scrap values and setup costs.

6 Treating firms’ decisions as decentralized and uncoordinated by focusing on symmetric equilibria stacks the 
deck against finding small deadweight losses. While asymmetric or correlated equilibria can avoid wasteful dupli-
cation and delay arising from entry and exit, as Bolton and Farrell (1990) discuss it is far from clear how the firms 
will “find” one of these equilibria without some process of explicit coordination.

7 Starting from state   (0, 0)   stacks the deck against finding small deadweight losses by fully recognizing any 
distortions in the entry process. It is also an interesting setting in its own right as sellers of next-generation products 
aiming to establish a “footprint” are a pervasive feature of the business landscape, and one where the investment 
role of price is particularly salient.
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We refer the reader to the online Appendix for a formal statement of the first-best 
planner problem. From the contraction mapping theorem, a solution exists and is 
unique. We use it to construct the matrix of state-to-state transition probabilities and 
compute the transient distribution over states in period  t ,   μ  t  FB  , starting from state   
(0, 0)   in period  0 .

B. Welfare and Deadweight Loss

To capture both short-run and long-run dynamics, our welfare metric is the 
expected NPV of total surplus

(3)  T S β   =   ∑ 
t=0

  
∞

     β   t   ∑ 
e
  
 
     μ t   (e) TS (e) , 

where  TS (e)  = CS (e)  + PS (e)   is total surplus in state e under a particular equi-
librium,  CS (e)  = CS (p (e) )   is given by equation (1), and  PS (e)   includes the 

static profit  Π (e)  =  ∑ n=1  2    D n   (p (e) )  ( p n   (e)  − c ( e n  ) )   of incumbent firms as well as 
their expected scrap values and the expected setup costs of potential entrants (see 
Appendix A).

Under the first-best planner solution, we define the expected NPV of total sur-
plus  T S  β  FB   analogously. The deadweight loss arising in equilibrium therefore is

(4)  DW L β   = T S  β  FB  − T S β  . 

Because  DW L β    is measured in arbitrary monetary units, we normalize it by the 
maximum value added by the industry  V A β   = T S  β  FB  − T S  β  ∅  , where  T S  β  ∅  =   v −  p 0   _ 

1 − β    is 
the expected NPV of total surplus if the industry remains empty forever with just 
the outside good. Note that  V A β    is an upper bound on the contribution of the inside 
goods to the expected NPV of total surplus. We refer to  DW L β  /V A β    as the relative 
deadweight loss.8

III. Numerical Analysis and Equilibrium

In the online Appendix, we show in an analytically tractable special case of our 
model with a two-step learning curve ( M = m = 2 ), homogeneous goods ( σ = 0 ), 
and mixed exit and entry strategies (  Δ X   =  Δ S   = 0 ) that even if pricing is efficient, 
exit and entry may not be. Distortions in exit and entry can take the form of over-exit 
(too much or early exit), under-exit (too little or late exit), over-entry (too much or 
early entry), under-entry (too little or late entry), and cost-inefficient exit where the 
lower-cost firm exits the industry while the higher-cost firm does not.

8 We normalize by  V A β    because, like  DW L β    but unlike  T S  β  FB   and  T S β   , it does not depend on gross utility  v . 
While  v  does not affect the behavior of industry participants in any way, we set it to make the expected NPV of 
consumer surplus  C S β    positive. An alternative is to set  v =  p 0   , which implies  V A β   = T S  β  FB  .
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While theoretical analysis enables us to establish that dynamic competition is 
not necessarily fully efficient, it is ill-suited to answer the question of how efficient 
dynamic competition is. We therefore turn to numerical analysis.

A. Parameterization and Computation

Our learning-by-doing model has four key parameters: the progress ratio  ρ , 
the degree of product differentiation σ, the price of the outside good   p 0   , and the 
expected scrap value    ̄  X   . Robustness checks indicate that the remaining parameters 
play a lesser role or matter mostly in relation to the four key parameters (Besanko 
et al. 2010; Besanko, Doraszelski, and Kryukov 2014).

To explore how the equilibria vary with the parameters and to search for multi-
ple equilibria in a systematic fashion, we use the homotopy method to compute six 
two-dimensional slices through the equilibrium correspondence along   (ρ, σ)  ,   (ρ,  p 0  )  ,   
(ρ,   ̄  X  )  ,   (σ,  p 0  )  ,   (σ,   ̄  X  )  , and   ( p 0  ,   ̄  X  )  . We choose sufficiently large upper bounds for  σ  
and   p 0    so that beyond them “things don’t change much.” Back-of-the-envelope cal-
culations yield  σ ≤ 10  and   p 0   ≤ 20 . We exclude equilibria for which the indus-
try is not viable in the sense that the probability  1 −  ϕ 1     (0, 0)    2   that the industry 
“takes off”  is below  0.01 . Throughout we hold the remaining parameters fixed at 
the values in Table 1. While this baseline parameterization is not intended to be 
representative of any particular industry, it is neither entirely unrepresentative nor  
extreme.

Due to the large number of parameterizations and multiplicity of equilibria, we 
require a way to summarize them. In a first step, we average an outcome of interest 
over the equilibria at a parameterization. This “random sampling” is in line with our 
decision to refrain from equilibrium selection and ensures that parameterizations 
with many equilibria carry the same weight as parameterizations with few equilibria.

In a second step, we randomly sample parameterizations. To make this practical, 
we represent a two-dimensional slice through the equilibrium correspondence with 
a grid of values for the parameters spanning the slice. Table 1 lists the grid points we 
use for the four key parameters. We mostly use uniformly spaced grid points, except 
for  σ > 1 , where the grid points approximate a log scale in order to explore very 
high degrees of product differentiation. We associate each point in a two-dimen-
sional grid with the corresponding average over equilibria. We then pool the points 
on the six slices through the equilibrium correspondence and obtain the distribution 
of the outcome of interest.

B. Equilibrium and First-Best Planner Solution

To illustrate the types of behavior that can emerge in our learning-by-doing model, 
Table 2 shows several metrics of industry structure, conduct, and performance for 
two of the three equilibria that arise at the baseline parameterization in Table 1 as 
well as for the first-best planner solution.9

9 We refer the reader to the online Appendix for formal definitions of these metrics. The third equilibrium is 
essentially intermediate between the two shown in Table 2.
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The first-best planner operates the industry as a natural monopoly.10 In state   (0, 0)   
in period 0, the planner decides to operate a single firm (say firm 1) in the subse-
quent period; the expected short-run number of firms in Table 2 is thus   N  1  FB  = 1.00 . 
In period  t ≥ 1 , the planner marches firm 1 down its learning curve. We define the 
expected time to maturity as the expected time until the industry first becomes either 
a mature monopoly or a mature duopoly. The value   T    m,FB  = 15.02  measures the 
speed at which the planner moves firm 1 down its learning curve. At the bottom of 
its learning curve firm 1 charges a price equal to marginal cost; the expected long-
run average price is thus     ̄  p    ∞  FB  = 3.25 .

Both equilibria differ considerably from the first-best planner solution. Behavior 
in what we call an aggressive equilibrium in Besanko, Doraszelski, and Kryukov 
(2014) resembles conventional notions of predatory pricing.11 The pricing decision 
exhibits a deep well in state  (1, 1 ) with   p 1   (1, 1)  = − 34.78 ; this is reflected in the 

10 Outside the baseline parameterization in Table 1, the first-best planner does not necessarily operate the indus-
try as a natural monopoly. For example, if the degree of product differentiation is sufficiently large, then the planner 
immediately decides to operate both firms and continues to do so as they move down their learning curves.

11 In Besanko, Doraszelski, and Kryukov (2014) we formalize the notion of predatory pricing and disentangle 
it from mere competition for efficiency on a learning curve.

Table 1—Baseline Parameterization and Grid Points

Parameter Value Grid

Maximum stock of know-how  M  30 
Cost at top of learning curve κ  10 
Bottom of learning curve  m  15 
Progress ratio ρ  0.75  ρ ∈  {0, 0.05, … , 1}  
Gross utility  v  10 
Product differentiation σ  1  σ ∈ {0.2, 0.3, … , 1, 1.3, 1.6, 2,   2.5, 3.2, 4, 5, 6.3, 7.9, 10} 
Price of outside good   p 0    10   p 0   ∈  {0, 1, … , 20}  
Scrap value    ̄  X   ,   Δ X    1.5 ,  1.5    ̄  X   ∈  {− 1.5, − 1, … , 7.5}  
Setup cost    ̄  S   ,   Δ S    4.5 ,  1.5 
Discount factor β  0.9524 

Table 2—Industry Structure, Conduct, and Performance

Aggressive Accommodative Planner
equilibrium equilibrium solution

Structure
Expected short-run number of firms   N 1   1.92 1.91 1.00
Expected long-run number of firms   N ∞   1.08 2.00 1.00

Conduct
Expected short-run average price     ̄  p   1   −31.29 5.32 4.28
Expected long-run average price     ̄  p   ∞   8.28 5.24 3.25
Expected time to maturity   T   m  19.09 37.54 15.02

Performance
Expected NPV of consumer surplus  C S β   93.87 103.29 131.66
Expected NPV of total surplus  T S β   96.02 105.45 110.45
Deadweight loss  DW L β   14.43 5.01 —

Relative deadweight loss  DW L β  /V A β   13.06% 4.54% —

Notes: Aggressive and accommodative equilibrium, and first-best planner solution. Baseline parameterization.
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expected short-run average price     ̄  p   1   = − 31.29  in Table 2. A well is a preemption 
battle where firms vie to be the first to move down from the top of their learning 
curves. Such a battle is likely to ensue because, as indicated by   N 1   = 1.92 , both 
firms are likely to enter the industry in period 0. After the industry has emerged from 
the preemption battle in state (1, 1), the leader (say firm 1) continues to price aggres-
sively. Indeed, the pricing decision exhibits a deep trench along the   e 1   -axis with 
  p 1   ( e 1  , 1)   ranging from  0.08  to  1.24  for   e 1   ∈  {2, …  , 30}  . A trench is a price war that 
the leader wages against the follower. In the trench the follower (firm 2) exits the 
industry with a positive probability of  ϕ  2    ( e 1  , 1)     = 0.22  for   e 1   ∈  {2, …  , 30}  . The 
follower remains in this exit zone as long as it does not win a sale. Once the follower 
exits, the leader raises its price and the industry becomes an entrenched monopoly. 
The industry may also evolve into a mature duopoly if the follower manages to win 
a sale but this is far less likely than an entrenched monopoly; indeed, the expected 
long-run number of firms is   N ∞   = 1.08 .

In the accommodative equilibrium, by contrast, the pricing decision exhibits a shal-
low well in state   (1, 1)   with   p 1   (1, 1)  = 5.05 ; in Table 2 this is reflected in     ̄  p   1   = 5.32 . 
A much milder preemption battle is again likely to ensue, as indicated by   N 1   = 1.91 . 
After the industry has emerged from the preemption battle in state   (1, 1)  , the leader 
enjoys a competitive advantage over the follower. Without mobility barriers in the form 
of trenches, however, this advantage is temporary and, as indicated by   N ∞   = 2.00 , 
the industry evolves into a mature duopoly. While the aggressive equilibrium mainly 
involves over-entry, the accommodative equilibrium therefore involves both over-entry 
and under-exit. Learning economies are exhausted slowest in the accommodative equi-
librium with   T     m  = 37.54 , followed by the aggressive equilibrium with   T     m  = 19.09  
and the first-best planner solution with   T     m,FB  = 15.02 . This large gap arises because 
sales are split between the inside goods in the accommodative equilibrium, as well as 
at least initially with the outside good.

As the industry is substantially more likely to be monopolized in the aggres-
sive equilibrium than in the accommodative equilibrium, in Table 2 the expected 
long-run average price is     ̄  p   ∞   = 8.28  compared to     ̄  p   ∞   = 5.24 . The expected NPV 
of consumer surplus  C S β    is lower, as is the expected NPV of total surplus  T S β   . 
Consequently, the deadweight loss  DW L β    is higher in the aggressive equilibrium 
than in the accommodative equilibrium. However, the relative deadweight loss 
 DW L β  /V A β    seems modest in both equilibria:  13.06 percent  of the maximum value 
added by the industry in the aggressive equilibrium and  4.54 percent  in the accom-

modative equilibrium.

IV. Does Dynamic Competition Lead to Low Deadweight Loss?

The relative deadweight loss  DW L β  /V A β    is modest more generally. Summarizing 
a large number of parameterizations and equilibria, Figure 1 shows the cumulative 
distribution function (CDF) of  DW L β  /V A β    as a solid line. Result 1 highlights some  
findings.

RESULT 1: The relative deadweight loss  DW L β  /V A β    is less than 0.05, 0.1, and 
0.2 in 26.40 percent, 65.83 percent, and 92.03 percent of parameterizations, respec-
tively. The median of  DW L β  /V A β    is 0.0777.
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There is a large relative deadweight loss  DW L β  /V A β    for a small number of 
parameterizations. Under these parameterizations, the industry almost fails to take 
off ( 1 −  ϕ 1     (0, 0)    2  ≈ 0.01 ) because the outside good is highly attractive. Near this 
“cusp of viability” the contribution of the inside goods to the expected NPV of total 
surplus is small and thus  V A β   ≈ 0 .

Recall that we average over equilibria at a given parameterization to obtain the 
distribution of  DW L β  /V A β   . To look behind these averages, we consider the best 
equilibrium with the highest value of  T S β    at a given parameterization as well as the 
worst equilibrium with the lowest value of  T S β   . Figure 1 shows the resulting distri-
butions of  DW L β  /V A β    using a dotted line for the best equilibrium and a dashed line 
for the worst equilibrium.

RESULT 2: (i) For the best equilibrium, the relative deadweight loss  DW L β  /V A β    
is less than 0.05, 0.1, and 0.2 in 44.25 percent, 71.11 percent, and 92.10 percent of 
parameterizations, respectively. The median of  DW L β  /V A β    is 0.0571. (ii) For the 
worst equilibrium, the relative deadweight loss  DW L β  /V A β    is less than 0.05, 0.1, 
and 0.2 in 18.67 percent, 56.40 percent, and 91.80 percent of parameterizations, 
respectively. The median of  DW L β  /V A β    is 0.0922.

Hence, even in the worst equilibria the relative deadweight loss  DW L β  /V A β    is 
 modest for a wide range of parameterizations.

In Appendix  B we offer formal definitions of aggressive and accommodative 
equilibria and link them to the worst, respectively, best equilibria. Although this link 
is not perfect, to build intuition, in what follows we associate the best equilibrium 
with an accommodative equilibrium and the worst equilibrium, to the extent that it 
differs from the best equilibrium, with an aggressive equilibrium. If the equilibrium 
is unique, then we associate it with an accommodative equilibrium.
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Figure 1. Distribution of Relative Deadweight Loss  DW L β  /V A β   

Notes: All equilibria (solid line), best equilibrium (dotted line), and worst equilibrium (dashed line). 
Parameterizations and equilibria within parameterizations weighted equally.
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A. Deadweight Loss in Perspective: Static Non-Cooperative Pricing 
Counterfactual and Collusive Solution

Is a relative deadweight loss  DW L β  /V A β    of 10 percent “small” and one of 30 per-
cent “large?” To put these percentages in perspective, we first show that the dead-
weight loss is lower than expected in light of the traditional view of price as affecting 
current profit but not the evolution of the industry. To this end, we shut down the 
investment role of price, leaving incumbent firms to maximize static profit in the 
price-setting phase. We refer the reader to the online Appendix for a formal state-
ment of the static non-cooperative pricing counterfactual.

The investment role of price is by and large socially beneficial. Using a solid 
line, Figure 2 shows the distribution of the deadweight loss ratio  DW L  β  SN /DW L β    that 
compares the static non-cooperative pricing counterfactual to the equilibrium and 
Result 3 summarizes.

RESULT 3:  DW L  β  SN   is at least as large as  DW L β    in 80.32 percent of parameteriza-
tions and at least twice as large in 45.45 percent of parameterizations. The median 
of  DW L  β  SN /DW L β    is 1.8328.

In a second benchmark for the deadweight loss that arises in equilibrium, we 
assume that firms collude by centralizing and coordinating their pricing, exit, and 
entry decisions to maximize the expected NPV of producer surplus. We again refer 
the reader to the online Appendix. Figure 2 shows the distribution of the deadweight 
loss ratio  DW L  β  CO /DW L β    using a dashed line and Result 4 summarizes.

RESULT 4:  DW L  β  CO   is at least as large as  DW L β    in 94.74 percent of parameteriza-
tions and at least twice as large in 36.32 percent of parameterizations. The median 
of  DW L  β  CO /DW L β    is 1.4701.

In sum, the static non-cooperative pricing counterfactual and the collusive solu-
tion reinforce that dynamic competition generally leads to low deadweight loss. 
They also show that a low deadweight loss is almost certainly not hardwired into 
the primitives of our learning-by-doing model. Instead, there is something in the 
investment role of price and the nature of dynamic competition that in equilibrium 
leads to low deadweight loss.

B. Differences between Equilibria and First-Best Planner Solution

There are typically substantial differences between the equilibria and the first-
best planner solution. As we show in the online Appendix, the equilibria typi-
cally have too many firms in the short run, consistent with over-entry, and too 
many firms in the long run, consistent with under-exit. This latter tendency is 
exacerbated in the best equilibrium. The speed of learning in the equilibria is 
generally too slow. The best equilibrium exhausts learning economies even more 
slowly than the worst equilibrium because pricing is initially less aggressive and 
more firms split sales in an accommodative equilibrium than in an aggressive  
equilibrium.
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V. Why Does Dynamic Competition Lead to Low Deadweight Loss?

Section IV leaves us with a puzzle. Dynamic competition leads to low dead-
weight loss, but this is not because the equilibrium resembles the first-best planner 
solution. On the contrary, the best equilibrium can differ even more from the planner 
solution than the worst equilibrium.

A. Decomposition

The deadweight loss  DW L β    in equation (4) comprises differences 
between the equilibrium and the first-best planner solution in any given state 
and in the states that are visited over time. We accordingly decompose it 
as  DW L β   = DW L  β  PR  + DW L  β  EE  + DW L  β  MS  :

  DW L  β  PR  =   ∑ 
t=0

  
∞

     β   t   ∑ 
e
  
 
     μ t   (e)  [C S   FB  (e)  +  Π   FB  (e)  −  (CS (e)  + Π (e) ) ] , 

  DW L  β  EE  =   ∑ 
t=0

  
∞

     β   t   ∑ 
e
  
 
     μ t   (e)  [P S   FB  (e)  −  Π   FB  (e)  −  (PS (e)  − Π (e) ) ] , 

  DW L  β  MS  =   ∑ 
t=0

  
∞

     β   t   ∑ 
e
  
 
    [ μ  t  FB  (e)  −  μ t   (e) ] T S   FB  (e) , 

where  CS (e)  + Π (e)   is the sum of consumer surplus and static profit in state  e  and 
 PS (e)  − Π (e)   is the difference of producer surplus and static profit and thus 
is the part of producer surplus that accounts for scrap values and setup costs. 
We nalogously define  C S   FB  (e)  +  Π   FB  (e)   and  P S   FB  (e)  −  Π   FB  (e)   for the first-best 
planner solution.
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Figure 2. Distribution of Deadweight Loss Ratio  DW L  β  SN /DW L β    and  DW L  β  CO /DW L β   

Notes: Static non-cooperative pricing counterfactual (solid line) and collusive solution (dashed line). Log scale. 
Parameterizations and equilibria within parameterizations weighted equally.



3353BESANKO ET AL.: HOW EFFICIENT IS DYNAMIC COMPETITION?VOL. 109 NO. 9

The pricing distortion  DW L  β  PR   is the deadweight loss from state-wise differences 
in pricing conduct between the equilibrium and the first-best planner solution. The 
exit and entry distortion  DW L  β  EE   is similarly the deadweight loss from state-wise 
differences in exit and entry conduct. Expected inflows from scrap values in state  e  
contribute positively to  PS (e)  − Π (e)   and expected outflows from setup costs neg-
atively. A positive value of  DW L  β  EE   thus reflects a tendency for over-entry or under-
exit relative to the planner solution while a negative value reflects a tendency for 
under-entry or over-exit.

The market structure distortion  DW L  β  MS   is the deadweight loss from differences 
in the evolution of the industry. A negative value of  DW L  β  MS   indicates that the equi-
librium puts more weight on more favorable market structures with higher values 
of  T S   FB  (e)   than the first-best planner solution; a positive value indicates the reverse. 
The state  e  completely describes the number of incumbent firms, and therefore the 
extent of product variety, along with their cost positions. The value of  T S   FB  (e)   is 
high if firms’ cost positions in relation to the price of the outside good yield large 
gains from trade;  T S   FB  (e)   is also high if a large number of firms fosters product vari-
ety or allows the planner to receive scrap values by ceasing to operate excess firms. 
The factors contributing to a negative value of  DW L  β  MS   are therefore over-entry and 
under-exit as well as fast exploitation of learning economies. The factors contrib-
uting to a positive value of  DW L  β  MS   are under-entry, over-exit, slow exploitation of 
learning economies, and cost-inefficient exit. Cost-inefficient exit contributes to a 
positive value of  DW L  β  MS   in the same way as slow exploitation of learning econo-
mies by rendering firms’ cost positions less favorable.

Because  DW L  β  EE   and  DW L  β  MS   depend on over-entry and under-exit in opposite 
ways, they can offset each other. Accordingly we define the non-pricing distortion 
as  DW L  β  NPR  = DW L  β  EE  + DW L  β  MS  . It reflects (i) the net social loss from a subopti-
mal number of firms (setup costs net of scrap values net of social benefits of product 
variety), (ii) the gross social loss from a suboptimal exploitation of learning econo-
mies, and (iii) the gross social loss from cost-inefficient exit.

Figure  3 shows the distribution of  DW L  β  PR /DW L β   ,  DW L  β  EE /DW L β   , 
 DW L  β  MS /DW L β   , and  DW L  β  NPR /DW L β    for a large number of parameterizations and 
equilibria. We scale each term of the decomposition by  DW L β    to better gauge its 
size. Result 5 highlights some findings.

RESULT 5: (i) The pricing distortion  DW L  β  PR   is positive in 96.44 percent of param-
eterizations.12 The median of  DW L  β  PR /DW L β    is 0.6565. (ii) The exit and entry dis-
tortion  DW L  β  EE   is positive in 81.26 percent of parameterizations. The median of 
 DW L  β  EE /DW L β    is 0.5728. (iii) The market structure distortion  DW L  β  MS   is negative 
in 70.07 percent of parameterizations. The median of  DW L  β  MS /DW L β    is  − 0.2279 . 
(iv) The non-pricing distortion  DW L  β  NPR   is positive in 92.03 percent of parameter-
izations. The median of  DW L  β  NPR /DW L β    is 0.3435.

12 We take  DW L  β  PR   to be zero if   | DW L  β  PR /DW L β   |  < 0.001 . We proceed analogously for the other terms.
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Note that  DW L  β  EE   is typically positive by part (ii) of Result 5 because of over-en-
try and under-exit.13 Also because of over-entry and under-exit,  DW L  β  MS   is typi-
cally negative by part (iii).14 Thus, as highlighted in Result 6,  DW L  β  MS   typically 
offsets  DW L  β  EE   so that  DW L  β  NPR   is very often smaller than its largest component (in 
absolute value).

RESULT 6:  |DW L  β  NPR |  is smaller than  max { |DW L  β  EE | ,  |DW L  β  MS | }   in 88.64 percent 
of parameterizations.

Parts (i) and (iv) of Result 5 show that generally both pricing and non-pricing 
distortions contribute to deadweight loss. As Result 7 shows, the pricing distortion 
is often larger than the non-pricing distortion.

RESULT 7: The pricing distortion  DW L  β  PR   is larger than the non-pricing distor-
tion  DW L  β  NPR   in 73.23 percent of parameterizations.

Armed with these patterns in the decomposition terms, we delve into the mecha-
nisms through which dynamic competition leads to low deadweight loss.

13  DW L  β  EE   is zero in 14.87 percent of parameterizations and negative in just 3.87 percent of parameterizations 
(see again footnote 12).

14  DW L  β  MS   can be positive if the degree of product differentiation  σ  is sufficiently large to ensure that the industry 
evolves into a mature duopoly under the equilibrium and the first-best planner solution. In this case, the positive 
value of  DW L  β  MS   reflects mainly the slow exploitation of learning economies.
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Note: Parameterizations and equilibria within parameterizations weighted equally.
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B. Why Is the Best Equilibrium So Good?

The deadweight loss in the best equilibrium is small although it often differs 
greatly from the first-best planner solution. We show that this is because the pricing 
and non-pricing distortions are both small. Recall that we associate the best equilib-
rium with an accommodative equilibrium.

Why Is the Pricing Distortion Small?—At first blush, there appears to be no reason 
for the pricing distortion in an accommodative equilibrium to be particularly small. 
At the baseline parameterization, for example, equilibrium prices   ( p 1   (e) ,  p 2   (e) )    
substantially exceed static first-best prices   ( c 1   ( e 1  ) ,  c 2   ( e 2  ) )   even once the industry 
becomes a mature duopoly.

Proposition 1, however, bounds the contribution  C S   FB  (e)  +  Π   FB  (e)  −  (CS (e)  + 
Π (e) )   to the pricing distortion  DW L  β  PR   by the demand for the outside good   D 0   (𝐩 (e) )  .

PROPOSITION 1: Consider a symmetric state  e =  (e, e)  , where  e > 0 . If 
  p 0   ≥ κ ,   p 1   (e)  > c (e)  , and   D 0   (p (e) )  < 1/2 , then

 C S   FB  (e)  +  Π   FB  (e)  −  (CS (e)  + Π (e) )  ≤   
  ( p 1   (e)  − c (e) )    2 

  ___________ σ    D 0   (𝐩 (e) )  (1 −  D 0   (𝐩 (e) ) ) . 

Note that the bound in Proposition 1 approaches 0 as the demand for the outside 
good approaches 0. This often has bite: as the incumbent firms move down their 
learning curves, they improve their cost positions relative to the price of the outside 
good and drive the share of the outside good close to 0. Exceptions occur only if 
learning economies are weak— ρ  is close to 1—or inconsequential because the out-
side good is highly attractive.

The bound in Proposition 1 transcends logit demand. To a first-order approxima-
tion, the deadweight loss due to market power decreases as demand becomes less 
price elastic (Harberger 1954). With logit demand, a decrease in the price elastic-
ity of aggregate demand for the inside goods is associated with a decrease in the 
demand for the outside good. With linear demand, the aggregate demand for the 
inside goods also becomes less elastic as their prices, and with them the demand for 
the outside good, decrease (see online Appendix).

Why Is the Non-Pricing Distortion Small?—Recall that especially accommoda-
tive equilibria have too many firms, both in the short run and in the long run, con-
sistent with over-entry and under-exit. Too many firms give rise to a social loss from 
wasteful duplication of setup costs due to over-entry and scrap values that firms 
forgo in equilibrium due to under-exit, but they also give rise to a social benefit from 
additional product variety. Negative values of  DW L  β  MS   thus tend to offset positive 
values of  DW L  β  EE   (Result 6) and the net social loss from too many firms is small. 
This is especially relevant because accommodative equilibria tend to arise when 
the degree of product differentiation  σ  is high (see Appendix B). Hence, the social 
benefit of additional product variety tends to be large.

Learning economies accentuate this “silver lining” from additional product 
variety. Suppose the industry evolves into a mature duopoly in an accommodative 
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equilibrium and into a mature monopoly in the first-best planner solution, and that 
there is no further exit and entry. Then, beyond a certain period, the equilibrium 
transient distribution   μ t   (e)   puts all mass on states  e , where  e ≥  (m, m)  , and the 
first-best transient distribution   μ  t  FB  (e)   puts all mass on states  e , where either   e 1   ≥ m  
and   e 2   = 0  or   e 1   = 0  and   e 2   ≥ m . Hence, in the market structure distortion 
 DW L  β  MS  ,   ∑ e  

     [ μ  t  FB  (e)  −  μ t   (e) ] T S   FB  (e)  = T S   FB  (m, 0)  − T S   FB  (m, m)  = C S   FB  (m, 0)  − 
C S   FB  (m, m)  , where the second equality follows because the planner sets static first-
best prices. Here,  C S   FB  (m, 0)  − C S   FB  (m, m)   can be thought of as the reduction 
in  DW L  β  MS   due to the social benefit of additional product variety. From equation (1) 
it is easy to show that

  C S   FB  (m, m)  − C S   FB  (m, 0)  = σ ln  
⎛
 ⎜ 

⎝
  
exp (  −  p 0   _ σ  )  + 2exp (  − c (m)  _ σ  ) 

   __________________   
exp (  −  p 0   _ σ  )  + exp (  − c (m)  _ σ  ) 

  
⎞
 ⎟ 

⎠
  < 0, 

where  c (m)  =  κρ    log 2  m  , and

      
d (C S   FB  (m, m)  − C S   FB  (m, 0) )    _____________________  

dρ   

    = −  (2  D 1   (c (m) , c (m) )  −  D 1   (c (m) , ∞) )   κρ    log 2  m−1   log 2   m < 0. 

Hence, as learning economies strengthen, the reduction in  DW L  β  MS   (and thus  DW L  β  NPR  ) 
due to the social benefit of additional product variety increases.

C. Why Is the Worst Equilibrium Not So Bad?

Recall that we associate the worst equilibrium with an aggressive equilibrium. 
We show in two steps that the deadweight loss is small (albeit not as small as in the 
best equilibrium).

Why Is the Pricing Distortion Small?—There again appears to be no reason 
for the pricing distortion in an aggressive equilibrium to be small. At the base-
line parameterization, the industry evolves into a mature monopoly. Proposition 2 
bounds the contribution  C S   FB  (e)  +  Π   FB  (e)  −  (CS (e)  + Π (e) )   to the pricing distor-
tion  DW L  β  PR   by the degree of product differentiation  σ  and the advantage-building  
motive   U 1   ( e   1+ )  −  U 1   (e)  .

PROPOSITION 2: Consider a state  e =  (e, 0)  , where  e > 0 . Then

   C S   FB  (e)  +  Π   FB  (e)  −  (CS (e)  + Π (e) )  

    <   
⎧
 

⎪
 ⎨ 

⎪
 

⎩
   σ  if 0 ≤  U 1   ( e   1+ )  −  U 1   (e)  < σ (1 + exp (  

 p 0   − c (e) 
 _ σ  ) )          

σ +  | U 1   ( e   1+ )  −  U 1   (e) | 
  

otherwise.
    

Note that the bound in Proposition 2 approaches  σ  as the incumbent firm moves 
down its learning curve and   U 1   ( e   1+ )  −  U 1   (e)   approaches 0.
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Proposition 2 has bite because aggressive equilibria tend to arise when the degree 
of product differentiation  σ  is low (see Appendix B). This is intuitive: pricing aggres-
sively to marginalize one’s rival or altogether force it from the industry is especially 
attractive if products are close substitutes so that firms on an equal footing would 
fiercely compete.

Why Is the Non-Pricing Distortion Small?—While an aggressive equilibrium 
usually involves delayed exit (relative to the first-best planner solution), it involves 
rather brisk eventual exit. Thus, the industry usually quickly evolves toward the 
first-best market structure in an aggressive equilibrium, which tends to keep  DW L  β  MS  , 
and thus  DW L  β  NPR  , small. The small non-pricing distortion reflects the resulting rel-
atively low net social loss from a suboptimal number of firms. Put another way, in 
an aggressive equilibrium, this net social loss is small because competition for the 
market resolves itself quickly and winnows out firms in a fairly efficient way.

VI. Summary and Conclusion

We study industries where price serves as an investment. The investment role 
arises when a firm’s price affects not only its current profit but also its future com-
petitive position vis-à-vis its rivals. Competition is dynamic as firms jostle for com-
petitive advantage through the prices they set.

Our analysis suggests that dynamic competition is fairly efficient. Deadweight 
loss tends to be low (Results 1, 2, and 4) and the investment role of price socially 
beneficial (Result 3). This occurs even though equilibrium behavior and industry 
dynamics often differ markedly from the first-best planner solution.

So why is dynamic competition fairly efficient? The answer boils down to the 
key fundamental that gives rise to the investment role of price in the first place: 
learning-by-doing.

The pricing distortion tends to be the largest contributor to deadweight loss (part 
(i) of Result 5 and Result 7). Our bounds on the pricing distortion tighten as the 
incumbent firms move down their learning curves (Propositions 1 and 2). If the 
industry evolves into a mature duopoly in an accommodative equilibrium, this hap-
pens because the demand for the inside goods becomes less elastic as the incumbent 
firms improve their cost positions relative to the outside good and drive the share of 
the outside good close to zero. If the industry evolves into a mature monopoly in an 
aggressive equilibrium, the bound further tightens as the degree of product differ-
entiation decreases and the threat of substitution to the outside good holds market 
power in check. Moreover, this is precisely when aggressive equilibria tend to arise 
in the first place.

The non-pricing distortion comprises the exit and entry distortion and the market 
structure distortion. In an aggressive equilibrium, the non-pricing distortion tends 
to be low despite the wasteful duplication of setup costs due to over-entry because 
competition for the market resolves itself quickly and winnows out firms in a fairly 
efficient way. In an accommodative equilibrium, the non-pricing distortion tends to 
be higher. However, the market structure distortion tends to partly offset the exit and 
entry distortion (parts (ii) and (iii) of Result 5 and Result 6). Too many firms give 
rise not only to a social loss from incurred setup costs due to over-entry and forgone 
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scrap values due to under-exit, but also to a social benefit from additional product 
variety. Learning economies accentuate this benefit by making product variety less 
costly to procure.

Put simply, when price serves as an investment, dynamic competition is fairly 
efficient because of the efficiency-enhancing properties of the investment.

From a regulatory perspective, our analysis suggests that in settings where price 
serves as an investment, the upside from interventions and policies aimed at shap-
ing competition for the market is likely to be limited. As we show in Besanko, 
Doraszelski, and Kryukov (2014), blunt pricing conduct restrictions can lead to sub-
stantial welfare losses. Although more subtle pricing conduct restrictions can lead to 
welfare gains, typically by eliminating equilibria that entail predation-like behavior, 
achieving these gains in practice requires detailed knowledge of demand and cost 
primitives. Unless the regulator executes flawlessly based on this knowledge, it may 
therefore be preferable not to intervene at all and tolerate the “not so bad” welfare 
losses that typically arise under dynamic competition.

A caveat to our analysis is that interventions and policies remain appropriate 
that forestall collusion between firms that otherwise engage in competition for the 
market or exclusionary practices by these firms, such as forcing customers to sign 
long-term exclusive contracts. Our analysis should thus be interpreted as suggesting 
that there is little in the fundamentals of dynamic competition when price serves as 
an investment that suggests that antitrust actions have a sizable upside.

Appendix A. Producer Surplus

Under decentralized exit and entry, producer surplus in state  e  is 
 PS (e)  =  ∑ n=1  2   P S n   (e)   , where producer surplus of firm 1 in state  e  is

  P S 1   (e)  =  D 1   (𝐩 (e) )  ( p 1   (e)  − c ( e 1  ) )  

  +   ∑ 
n=0

  
2

     D n   (𝐩 (e) )   {  1 [ e 1   > 0]   ϕ 1   ( e   n+ )   E X   [ X 1   |  X 1   ≥   X ˆ   1   ( e   n+ ) ]   

    − 1 [ e 1   = 0]  (1 −  ϕ 1   ( e   n+ ) )   E S   [ S 1   |  S 1   ≤   S ˆ   1   ( e   n+ ) ]  }    

and we let   e   0+  = e . In the expression above,   E X   [ X 1   |  X 1   ≥   X ˆ   1   ( e   n+ ) ]   is the expec-
tation of the scrap value conditional on exiting the industry in state   e   n+   and 
  E S   [ S 1   |  S 1   ≤   S ˆ   1   ( e   n+ ) ]   is the expectation of the setup cost conditional on entering. 
We refer the reader to the online Appendix for the counterpart  P S   FB  (e)   to  PS (e)   
under centralized exit and entry.

Appendix B. Aggressive and Accommodative Equilibria

We note from the outset that any attempt to classify equilibria is fraught with dif-
ficulty because the different equilibria lie on a continuum and thus morph into each 
other in complicated ways as we vary the parameters of the model.
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Our definition of an aggressive equilibrium hones in on a trench in the pricing 
decision, and our definition of an accommodative equilibrium on a lack of exit from 
a duopolistic industry.

DEFINITION 1: An equilibrium is aggressive if   p 1   (e)  <  p 1   ( e 1  ,  e 2   + 1)  ,   p 2   (e)  < 
 p 2   ( e 1  ,  e 2   + 1)  , and   ϕ 2   (e)  >  ϕ 2   ( e 1  ,  e 2   + 1)   for some state  e >  (0, 0)   with   e 1   >  e 2   .

DEFINITION 2: An equilibrium is accommodative if   ϕ 1   (e)  =  ϕ 2   (e)  = 0  for all 
states  e >  (0, 0)  .

These definitions are not exhaustive. The percentage of equilibria classified as 
aggressive is 96.88 percent, the percentage of equilibria classified as accommoda-
tive is 1.99 percent, and the percentage of unclassified equilibria is 1.13 percent. 
Our computations always led to a unique accommodative equilibrium but often to 
multiple aggressive equilibria at a given parameterization.

An aggressive equilibrium exists if the degree of product differentiation  σ  is suffi-
ciently low. As competition in a duopolistic industry becomes fiercer, monopolizing 
the industry becomes more attractive. Other factors contributing to the existence of 
an aggressive equilibrium are a high expected scrap value    ̄  X    and a high price of the 
outside good   p 0   . The first factor makes it easier for a firm to induce its rival to exit 
the industry and the second makes monopolizing the industry more attractive by 
allowing the surviving firm to charge a higher price. Conversely, an accommoda-
tive equilibrium exists if the degree of product differentiation  σ  is sufficiently high. 
Other factors contributing to the existence of an accommodative equilibrium are a 
low expected scrap value    ̄  X    and a low price of the outside good   p 0   .

Our definitions of aggressive and accommodative equilibria are linked, however 
imperfectly, to worst, respectively, best equilibria. Table 3 shows that 49.09 percent 
of parameterizations have a unique equilibrium and that the equilibrium is classified 
as accommodative in 83.40 percent of these parameterizations. Moreover, 50.91 per-
cent of parameterizations have multiple equilibria and the worst equilibrium is clas-
sified as aggressive in 97.96 percent of these parameterizations. However, the best 
equilibrium is classified as accommodative in 40.54 percent of these parameteriza-
tions and as aggressive in 43.36 percent of these parameterizations. This far from 
perfect link appears to reflect that our definition of an accommodative equilibrium 
is quite stringent. While there is an aggressive equilibrium at all parameterizations 

Table 3

Unique
equilibrium

Multiple 
equilibria

Multiple equilibria
including 

accommodative equilibrium
49.09% 50.91% 21.98%

Best Worst Best Worst

Aggressive  3.32% 43.36% 97.96%  5.84% 96.85%
Accommodative 83.40% 40.54%  1.36% 93.93%  3.15%
Unclassified 13.28% 16.10%  0.68%  0.22%  0.00%

Notes: Percentage of parameterizations with a unique equilibrium, multiple equilibria, and multiple equilibria that 
include an accommodative equilibrium and, within each of these, percentage of parameterizations at which the best 
or worst equilibrium is aggressive, accommodative, or unclassified. Unweighted.
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with multiple equilibria, there may not be an accommodative equilibrium. The right-
most column of Table 3 restricts attention to parameterizations with multiple equi-
libria that include an accommodative equilibrium. The best equilibrium is classified 
as accommodative in 93.93 percent of these parameterizations and the worst equi-
librium is classified as aggressive in 96.85 percent of these parameterizations.

Appendix C. Proofs

PROOF OF PROPOSITION 1:
Define the sum of consumer surplus and static profit to be

  Φ (p)  = CS (p, p)  + 2  D 1   (p, p)  (p − c (e) ) . 

Using this definition, in a symmetric state  e =  (e, e)  , where  e > 0 , we can write

  C S   FB  (e)  +  Π   FB  (e)  −  (CS (e)  + Π (e) )  = Φ ( p  1  FB  (e) )  − Φ ( p 1   (e) ) . 

We have

(5)   Φ ′   (p)  = −   1 _ σ   (p − c (e) )   D 0   (p, p)  (1 −  D 0   (p, p) ) , 

(6)   Φ ″   (p)  = −   1 _ 
 σ   2 

   ( (p − c (e) )  (1 − 2  D 0   (p, p) )  + σ)   D 0   (p, p)  (1 −  D 0   (p, p) ) . 

Hence,  Φ (p)   is strictly quasi-concave in  p  and attains its maximum at  p = c (e)  . 
Thus, we obtain

(7)  C S   FB  (e)  +  Π   FB  (e)  −  (CS (e)  + Π (e) )  ≤ Φ (c (e) )  − Φ ( p 1   (e) ) . 

We bound the right-hand side of equation (7). Let   p ̃    be such that   D 0   ( p ̃  ,  p ̃  )   
= 1/2 , so  1 − 2  D 0   (p, p)  ≥ 0  for all  p ≤  p ̃    because   D 0   (p, p)   increases in  p . 
Equation (6) implies that  Φ (p)   is strictly concave in  p  over the interval   [c (e) ,  p ̃  ]  . 
This interval is non-empty: the assumption   p 0   ≥ κ  coupled with  κ ≥ c (e)   implies  
  D 0   (c (e) , c (e) )  ≤  D 0   (κ, κ)  ≤ 1/3 < 1/2 =  D 0   ( p ̃  ,  p ̃  )  . As   D 0   (p, p)   increases in  p , 
it must be that  c (e)  <  p ̃   .

By assumption,   p 1   (e)  ∈  [c (e) ,  p ̃  ]  . From Theorem 21.2 in Simon and Blume 
(1994) and equation (5) we therefore have

(8)  Φ (c (e) )  − Φ ( p 1   (e) )  ≤  Φ ′   ( p 1   (e) )  (c (e)  −  p 1   (e) )  

  =   
  ( p 1   (e)  − c (e) )    2 

  ___________ σ    D 0   ( p 1   (e) ,  p 1   (e) )  (1 −  D 0   ( p 1   (e) ,  p 1   (e) ) ) . 

This establishes Proposition 1.  ∎
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PROOF OF PROPOSITION 2:
Define the sum of consumer surplus and static profit to be

  Φ (p)  = CS (p, ∞)  +  D 1   (p, ∞)  (p − c (e) ) . 

Using this definition, in a state  e =  (e, 0)  , where  e > 0 , we can write

  C S   FB  (e)  +  Π   FB  (e)  −  (CS (e)  + Π (e) )  = Φ ( p  1  FB  (e) )  − Φ ( p 1   (e) ) . 

We have

   Φ ′   (p)  = −   1 _ σ   (p − c (e) )   D 0   (p, ∞)  (1 −  D 0   (p, ∞) ) , 

   Φ ″   (p)  = −   1 _ 
 σ   2 

   ( (p − c (e) )  (1 − 2  D 0   (p, ∞) )  + σ)   D 0   (p, ∞)  (1 −  D 0   (p, ∞) ) . 

Hence,  Φ (p)   is strictly quasiconcave in  p  and attains its maximum at  p = c (e)  . 
Thus, we obtain

  C S   FB  (e)  +  Π   FB  (e)  −  (CS (e)  + Π (e) )  ≤ Φ (c (e) )  − Φ ( p 1   (e) ) , 

where  Φ (c (e) )  = v − c (e)  + σ ln (1 + exp (  c (e)  −  p 0   _ σ  ) )  .
Note that,   p 1   (e)   is uniquely determined by the solution to the first-order condition 

(2); it can be written as

   p 1   (e)  = c (e)  + σ (− y + 1 + W (exp (x + y − 1) ) ) , 

where  W ( ⋅ )   is the Lambert  W  function15 and we define  x =    p 0   − c (e)  _ σ    and 
 y =  ( U 1   ( e   1+ )  −  U 1   (e) ) /σ . Hence, using the identities  W (z)  = z/exp (W (z) )   for 
all  z  and  ln W (z)  = ln z − W (z)   for all  z > 0 ,

 Φ ( p 1   (e) )  = v − c (e)  + σ 
(

ln 
(

  
1 + W (exp (x + y − 1) )    ________________  

W (exp (x + y − 1) ) 
  

)
  +   y

 ________________   
1 + W (exp (x + y − 1) ) 

   − 1
)

  

and

  Φ (c (e) )  = v − c (e)  + σ ln (1 + exp (− x) ) . 

Using the identity  ln W (z)  = ln z − W (z)   for all  z > 0 , it follows that

(9)  Φ (c (e) )  − Φ ( p 1   (e) )  

 = σ 
(

ln (1 + exp (−x) )  − ln 
(

  
1 + W (exp (x + y − 1) )   ________________  

W (exp (x + y − 1) ) 
  

)
  −   y

 ________________  
1 + W (exp (x + y − 1) ) 

   + 1
)

  

15 The Lambert  W  function is defined by the equation  z = W (z) exp (W (z) )   for all  z ∈ ℂ .
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(10)  = σ 
(

ln (1 + exp (x) )  − ln (1 + W (exp (x + y − 1) ) )  − W (exp (x + y − 1) )  

 +   
yW (exp (x + y − 1) ) 

  ________________  
1 + W (exp (x + y − 1) )   ) . 

In the remainder of the proof, we use that  W (z)   is increasing in  z ,  W (0)  = 0 , and 
the identity  W (z exp (z) )  = z  for all  z ≥ 0 .

Case 1:  y < 1 + exp (x)  . We first show that if  y < 1 + exp (x)  , then

(11)  ln (1 + exp (− x) )  − ln 
(

  
1 + W (exp (x + y − 1) ) 

  ________________  
W (exp (x + y − 1) )   

)
  + 1 < 1. 

To see this, note that equation (11) is equivalent to

  ln (1 + exp (− x) )  < ln 
(

  
1 + W (exp (x + y − 1) )    ________________  

W (exp (x + y − 1) ) 
  

)
  ⇔ exp (x)  > W (exp (x + y − 1) ) . 

If  y = 1 + exp (x)  , then the right-hand side is  W (exp (x + exp (x) ) )  = exp (x)  .  
Moreover, because  W (z)   is increasing in  z ,  exp(x) > W (exp(x + y − 1))   for 
all  y < 1 + exp (x)  .

Consider equation (9). From equation (11) it follows that

  Φ (c (e) )  − Φ ( p 1   (e) )  < σ 
(

1 − y   1 ________________  
1 + W (exp (x + y − 1) )   ) . 

Moreover,  0 <   1 _____________  
1 + W (exp (x + y − 1) )    < 1 . Therefore, if  y < 0 , then

(12)  Φ (c (e) )  − Φ ( p 1   (e) )  < σ (1 + |y|)  

and, if  y ≥ 0 , then

(13)  Φ (c (e) )  − Φ ( p 1   (e) )  < σ. 

Case 2:  y ≥ 1 + exp (x)  . We first show that if  y ≥ 1 + exp (x)  , then

(14)  ln (1 + exp (x) )  − ln (1 + W (exp (x + y − 1) ) )  − W (exp (x + y − 1) )  < 1. 

To see this, note that

 ln (1 + exp (x) )  − ln (1 + W (exp (x + y − 1) ) )  − W (exp (x + y − 1) )  

   ≤ ln (1 + exp (x) )  − ln (1 + W (exp (x + exp (x) ) ) )  − W (exp (x + exp (x) ) )  

   = ln (1 + exp (x) )  − ln (1 + exp (x) )  − exp (x)  = − exp (x)  < 1. 
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Consider equation (10). From equation (14) it follows that

  Φ (c (e) )  − Φ ( p 1   (e) )  < σ 
(

1 + y   
W (exp (x + y − 1) ) 

  ________________  
1 + W (exp (x + y − 1) )   ) . 

Moreover,  0 <   
W (exp (x + y − 1) )   _____________  

1 + W (exp (x + y − 1) )    < 1 . Because  y ≥ 1 + exp (x)  > 0 , we have

(15)  Φ (c (e) )  − Φ ( p 1   (e) )  < σ (1 + y) . 

Collecting equations (12), (13), and (15) establishes Proposition 2. ∎ 
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