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: Recently, Chatterjee (2021) introduced a new rank-based correlation coefficient which
can be used to measure the strength of dependence between two random variables. This
coefficient has already attracted much attention as it converges to the Dette-Siburg-
Stoimenov measure (see Dette et al. (2013)), which equals 0 if and only if the variables
are independent and 1 if and only if one variable is a function of the other. Further,
Chatterjee’s coefficient is computable in (near) linear time, which makes it appropriate
for large-scale applications. In this paper, we expand the theoretical understanding of
Chatterjee’s coefficient in two directions: (a) First we consider the problem of testing
for independence using Chatterjee’s correlation. We obtain its asymptotic distribution
under any changing sequence of alternatives converging to the null hypothesis (of in-
dependence). We further obtain a general result that gives exact detection thresholds
and limiting power for Chatterjee’s test of independence under natural nonparametric
alternatives converging to the null. As applications of this general result, we prove a
n−1/4 detection boundary for this test and compute explicitly the limiting local power
on the detection boundary for popularly studied alternatives in the literature. (b) We
then construct a test for non-trivial levels of dependence using Chatterjee’s coefficient.
In contrast to testing for independence, we prove that, in this case, Chatterjee’s coef-
ficient indeed yields a minimax optimal procedure with a n−1/2 detection boundary.
Our proof techniques rely on Stein’s method of exchangeable pairs, a non-asymptotic
projection result, and information theoretic lower bounds.
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1. Introduction

Suppose (X1, Y1), . . . , (Xn, Yn)
i.i.d.∼ FX,Y (·, ·) for some bivariate distribution function

FX,Y (·, ·), with marginals FX(·) and FY (·) for X1 and Y1, respectively. The problem of
measuring and testing the extent of dependence between X1 and Y1 has attracted much
attention for over a century (see e.g., [11, 21, 43, 56, 60]). A fundamental question in this
regard is the classical independence testing problem

H0 : FX,Y (x, y) = FX(x)FY (y) ∀ x, y ∈ R versus H1 : not H0. (1.1)

Problem (1.1) has been studied extensively in the statistics literature along with a variety
of applications (see [6, 10, 11, 24, 25, 30, 32, 37, 38, 43, 53, 60, 68, 18, 20, 23, 35, 57, 66,
67, 69, 34]). Note however that (1.1) tests only whether X and Y are fully independent

§Alphabetical order. All authors have equal contribution.
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or otherwise, and does not give any indication as to how strong the dependence between
X and Y is. Therefore to better understand the dependence, an alternative approach is to
use a measure of dependence, say ρ(FX,Y ), which can be chosen as classical measures such
as Pearson’s linear correlation coefficient [56], Spearman’s rank correlation coefficient [61]
or more nonparametric measures such as [21, 30] to name a few, and consider the testing
problem

H0 : ρ(FX,Y ) = ρ0 versus H1 : ρ(FX,Y ) > ρ0, (1.2)

for general ρ0. Depending on the choice of ρ(FX,Y ), problem (1.2) gives a more interpretable
understanding of the dependence between X1 and Y1. For example, if ρ(FX,Y ) is chosen to
be Pearson’s correlation, then (1.2) helps understand how well Y1 can be predicted from X1

using a linear function; and if ρ(FX,Y ) is chosen to be Spearman’s correlation, then it helps
understand how well Y1 can be predicted from X1 using a general monotone transform.

In view of problems (1.1) and (1.2), recently, Chatterjee [15] introduced a new non-
parametric data rank-based correlation coefficient ξn (see (1.3) below for definition). This
coefficient in [15] possesses a combination of natural, but unique characteristics not ex-
hibited by other measures. In particular, it converges to 0 if and only if X1 and Y1
are independent and to 1 if and only if Y1 is a measurable function of X1, as long as
X1 and Y1 are non-degenerate. In fact, Chatterjee’s coefficient converges to the Dette-
Siburg-Stoimenov measure (see [21]; also see (1.4)) for general bivariate distributions. It
also produces a consistent test against all fixed alternatives for problems (1.1) and (1.2),
and is computable in (near) linear time (in terms of sample size), making it suitable
for large-scale applications. Furthermore, through extensive simulations in [15], the au-
thor argued that ξn converges to a population measure ξ(FX,Y ) (introduced first in [21];
see (1.4) below) that captures how well Y1 can be predicted using general measurable func-
tions of X1 (see Section 4 for more details). This gives the testing problem (1.2) using
ρ(FX,Y ) = ξ(FX,Y ), a natural and completely nonparametric interpretation. Consequently,
it has attracted much attention in the past two years, in terms of both applications and
theory (see [4, 12, 13, 19, 28, 40, 58, 63, 5, 36, 50, 48, 49, 17, 29, 70, 59, 9, 1, 39, 33]). The
goal of this article is to expand the theoretical understanding of ξn for the widely popular
testing problems in (1.1) and (1.2) under general local alternatives (that is, when alterna-
tive converges to null as the sample size n increases) and obtain exact detection thresholds.
Before discussing our main results, let us first present Chatterjee’s test statistic in [15].

We arrange the data as (X(1), Y(1)), . . . , (X(n), Y(n)) so that X(1) ≤ . . . ≤ X(n) and Y(i) is
the Y value concomitant to X(i). Let Rn,i be the rank of Yi, i.e.,

Rn,i :=

n∑
j=1

1(Yj ≤ Yi).

Now consider the statistic given by

ξn := 1− 3

n2 − 1

n−1∑
i=1

∣∣Rn,(i+1) −Rn,(i)

∣∣ . (1.3)

Here Rn,(i) is the rank of Y(i). Note that this statistic is well defined if there are no ties
among Xi’s. For a more general definition of ξn that allows for ties, see [15, Page 2]. For
technical convenience, we will work with the above definition of ξn instead of the more
general definition that takes potential ties into account. In particular, we will assume the
existence of marginal densities of X’s and Y ’s for the rest of the paper.
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It has been established in Theorem 1.1 of [15] that ξn, as defined in (1.3), converges
almost surely to the Dette-Siburg-Stoimenov measure (see [21])

ξ(fX,Y ) := 6

∫
E [P(Y ≤ t|X)− P(Y ≤ t)]2 fY (t) dt, (1.4)

where fX,Y (·, ·) denotes the density corresponding to the distribution function FX,Y (·, ·),
with marginal densities fX(·) and fY (·). In various bivariate copula based models, ξ(fX,Y )
turns out to be a monotonic function of the natural dependence parameter (see examples
1.(a) - (d) in [21, Page 9 and Theorem 2]; also see Section 4), thereby making it natural
and interpretable as a way to measure the strength of dependence between X1 and Y1.

1.1. Problem setup and summary of main contributions

We will use the standard framework of local power analysis taken from [41, 42] which is
popularly used in independence testing procedures, see e.g., [7, 44]. Towards this direction,
consider a triangular array of i.i.d. random variables (Xn,1,Yn,1), . . . , (Xn,n,Yn,n) from a

bivariate density f
(n)
X,Y (·, ·) with marginals f

(n)
X (·), f (n)

Y (·). Note that the joint distribution
is no longer fixed, but changes with the sample size. We analyze the testing problem

H0,n : ξ(f
(n)
X,Y ) = ξ0 versus H1,n : ξ(f

(n)
X,Y ) = ξ0 + cn, ξ0 ∈ [0, 1) (1.5)

where ξ(·) is as defined in (1.4) and

cn ↓ 0 =⇒ ξ(f
(n)
X,Y ) ↓ ξ0 as n → ∞. (1.6)

Clearly distinguishing between H0,n and H1,n becomes harder as cn converges to 0 faster.
Also note that by [15, Theorem 1.1] and [21, Theorem 2], testing ξ0 = 0 exactly corresponds

to the test of independence as in (1.1). As ξn − ξ(f
(n)
X,Y ) converges almost surely to 0 under

mild assumptions (see [15, Theorem 1.1]), a natural level α test function for (1.5) is given
by

ϕn := 1(ξn − ξ0 ≥ zn,α), (1.7)

where zn,α is chosen appropriately so as to satisfy the level α condition. Define the power
function of ϕn as

βϕn(f
(n)
X,Y ) := P(ϕn = 1). (1.8)

Our goal is to investigate the following: “What is the fastest decaying cn ↓ 0 such that ϕn

can distinguish between the null and the alternative, i.e., βϕn(f
(n)
X,Y ) → 1 as n → ∞ under

H1,n? Further, is ϕn optimal for the testing problem (1.5)?”

In this paper, we provide an exact answer to this question. We find a dichotomy based
on whether or not the limiting Dette-Siburg-Stoimenov measure ξ0 is zero or positive. We
make a two-fold contribution in both of these regimes. Note that the case where ξ0 = 0 in
(1.5) corresponds to the important problem of independence testing. On the other hand,
when ξ0 > 0, we refer to the null hypothesis in (1.5) as the problem of testing for degree of
association between X and Y .

Critical detection boundary of ϕn for independence testing (ξ0 = 0): For this case, in The-
orem 2.2, we show that the power of ϕn converges to α, or 1, or a number in (α, 1) depending
on whether

√
ncn converges to 0, or ∞, or some number in (0,∞), respectively. This indi-

cates that the best choice of cn that ensure βϕn(f
(n)
X,Y ) → 1 is cn = O(n−1/2).
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This is however a suboptimal threshold in terms of detecting dependence. To see this,
consider the case where (X1, Y1) is a bivariate normal distribution with correlation ρn.

Theorem 2.2 implies that βϕn(f
(n)
X,Y ) converges to α, or 1, or a number in (α, 1) depending

on whether n1/4ρn converges to 0, or∞, or some number in (0,∞), respectively. This implies
that ϕn has a detection boundary of O(n−1/4) in terms of ρn. However, it is well known
from Le Cam’s theory of local asymptotic normality that the optimal detection threshold
for ρn is of the order n−1/2 and not n−1/4. In Section 3, we give concrete examples of this
detection boundary in some other local parametric alternatives, viz. simple mixtures, and
noisy nonparametric regression.

Minimax optimality of ϕn for testing degree of association (ξ0 > 0): For this case, in The-

orem 4.1, part 1, we show that βϕn(f
(n)
X,Y ) converges to 1 provided

√
ncn → ∞. In contrast

to the ξ0 = 0 case, we prove in Theorem 4.1, part 2, that cn = O(n−1/2) is indeed the
optimal threshold when ξ0 > 0 in a local asymptotic minimax sense (see (4.4)). In other
words, if

√
ncn → (0,∞), then no test can uniformly have power converging to 1. Therefore

cn = O(n−1/2) is the correct detection boundary and this highlights the minimax optimal-
ity of Chatterjee’s correlation coefficient for the testing problem (1.5) when ξ0 > 0; see
Section 4 for more details.

Additionally, as a technical device for the results above, we develop a central limit the-
orem for ξn.

Central limit theorem for shrinking alternatives: In Theorem 2.1, we show that for any

sequence of alternatives specified by ξ(f
(n)
X,Y ) → 0, ξn is asymptotically normal. Further, we

characterize the limiting mean and the limiting variance explicitly. This is a wide generaliza-
tion of the asymptotic normality results in [12, 15, 58] which are stated under independence,

or the fast shrinking alternatives ξ(f
(n)
X,Y ) = O(n−1/2). Theorem 2.1 weakens this assump-

tion only to ξ(f
(n)
X,Y ) → 0 and might be of independent interest. This CLT is obtained using

Stein’s method-based technique (see [14]). After the first draft of our paper, a number of
other interesting limit theorems for ξn or modified versions of ξn have been established that
highlight the interest in Chatterjee’s correlation; see e.g. [36, 48, 49, 50, 1, 70] to name
a few. In the following section, we will summarize the other relevant contributions to the
problem considered here.

1.2. Comparison with existing literature

Prior to the first version of our paper, the theoretical analysis of ξn had been carried out
in three papers. In Chatterjee’s paper [15], the asymptotic distribution of ξn was derived
under H0 as in (1.1) and its consistency against fixed (not changing with n) alternatives
was proved. Two other papers [58] and [12] have analyzed ξn under smooth contiguous
alternatives (see [65, Chapter 6]). For example, under the mixture type alternatives in
Section 3.1, their results show that ϕn is powerless along “contiguous” alternatives, i.e., in
cases where the mixing probability shrinks to zero at a n−1/2 rate. The proofs in [12, 58] use
Le Cam’s third lemma (see [65, Example 6.7]) which requires analyzing ξn and the likelihood
ratio jointly but only under the null, (that is, when Xn,1 and Yn,1 are independent) followed
by a change of measure formula that only holds under contiguous scales and not beyond.
In contrast, the focus of our paper is characterizing the exact detection boundary of ξn,
which as we shall see, happens to be in the non-contiguous regime. We therefore adopt
a proof strategy using Stein’s method-based technique of local dependence (see [14]) and
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non-asymptotic projection results. While the focus of the paper is in the bivariate setting,
it should be noted that multivariate versions of ξn have been studied in the literature (see
[4, 19, 1]) and asymptotic distributions under independence have been obtained in [19, 59, 1].

After the first draft of our paper, a number of other results of interest have further
solidified the understanding of ξn or modified versions thereof. In [48], the authors modified
ξn by incorporating more “right nearest neighbors” in its definition. They then proved that
in the bivariate Gaussian independence testing problem (see Section 3), as the number
of right nearest neighbors grow, the detection boundary moves from O(n−1/4) to nearly
O(n−1/2). On the other hand, in [49], the authors show that ξn is asymptotically normal

even when ξ(f
(n)
X,Y ) = ξ0 > 0. The limiting variance, in that case, is no longer universal

and depends on the data distribution. The authors in [49] obtain a consistent, analytic
estimator of this limiting variance. In the follow-up paper [50], the authors show that a
natural bootstrap estimator of this limiting variance is not consistent under independence.
On the other hand, [70] proved the asymptotic normality of a symmetrized version of ξn.
We also refer the reader to the recent review paper [16] which provides a comprehensive
overview of dependence/association measures that are based on ξn.

1.3. Organization

The rest of the paper is organized as follows. In Section 2 we describe our main results
when ξ0 = 0. In particular, Theorem 2.1 and Theorem 2.2 yield asymptotic limits of ξn
(centered and scaled) and asymptotic expressions for βϕn(f

(n)
X,Y ) depending on how fast

cn ↓ 0. Applications of these results to test for independence in popular local parametric
models are provided in Section 3. In particular, Corollary 3.1 and Corollary 3.2 highlight
the n−1/4 detection boundary. In Section 4 (see Theorem 4.1), we show that the test ϕn

constructed in (1.7) is minimax optimal for the testing problem (1.5) when ξ0 > 0. The
proofs of all main results are presented in the Appendix A. Finally, Appendix B contains
the proofs of some additional results and technical lemmas.

2. Critical detection boundary of ϕn for independence testing

In this section, we first show that under a wide class of bivariate distributions satisfy-
ing (1.6), ξn, appropriately centered by its mean and scaled by its standard deviation,
converges to a standard normal distribution. We provide a precise characterization of the
limiting bias and standard deviation of ξn. We then use these findings to obtain the detection
threshold and asymptotic power of the test ϕn as described in (1.7).

Recall the setting from the Introduction. We consider (Xn,k, Yn,k)1≤k≤n, n ∈ N, a tri-

angular array of i.i.d. random variables drawn from a bivariate density f
(n)
X,Y (·, ·). All the

probabilities and expectations taken in the sequel are with respect to the measure induced

by f
(n)
X,Y (·, ·).

Notice that from (1.3), with the identity
∑∑
i ̸=j

|i− j| = n(n2 − 1)/3, one has

ξn =
3

n2 − 1

 1

n

∑∑
i ̸=j

|i− j| −
n∑

i=1

∣∣Rn,(i+1) −Rn,(i)

∣∣ .

We will need the following definitions.
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Definition 2.1 (Kantorovic-Wasserstein distance). Given any two probability measure µ
and ν on the real line, the Kantorovic-Wasserstein distance between µ and ν is defined as

W(µ, ν) := sup

{∣∣∣∣∫ h dµ−
∫
h dν

∣∣∣∣ : h(·) is Lipschitz, ∥h∥Lip ≤ 1

}
.

In our applications, we will fix ν as the standard Gaussian distribution, which leads to
the following natural notion of “distance to Gaussianity” based on Definition 2.1.

Definition 2.2 (Distance to Gaussianity). Let ν be the standard Gaussian law and T be a
random variable with the law µ. Then the distance between T and the standard Gaussian is
defined as

D(T ) := W(µ, ν),

where ν is the standard normal law.

We first state our assumptions.

Assumption (A1). There exist functions L
(n)
i (·) : R → [0,∞) for i = 1, 2 and numerical

constants κ1 > 0, η ∈ (0, 1], and θ ∈ (1,∞] such that ∀ y, x1, x2,

|P(Yn,1 ≥ y|Xn,1 = x1)− P(Yn,1 ≥ y|Xn,1 = x2)| ≤ (1+L
(n)
1 (x1, y)+L

(n)
2 (x2, y))|x1 − x2|η,

(2.1)

lim sup
n→∞

∫
(L

(n)
i (x, y))θf

(n)
X (x)f

(n)
Y (y) dx dy ≤ κ1, (2.2)

where f
(n)
X (·) and f

(n)
Y (·) are the marginal densities of Xn,1 and Yn,1 under the joint density

f
(n)
X,Y (·, ·).

Assumption (A2). There exist numerical constants γ > 1 and κ2 > 0 such that

lim sup
n→∞

E|Xn,1|γ ≤ κ2.

Note that Assumption (A3) is weaker than the standard η Hölder condition, in that the
Hölder constants are allowed to depend on y, x1, x2 and also n. In this sense, it is weaker
than the assumptions in [4] and related papers. Assumption (A4) is a standard moment
assumption to control the tail of the distribution of Xn,i’s. This tail behavior crucially
affects the distance between Xn,(i) and Xn,(i+1), see e.g., [8, Section 2.2].

We are now in position to state our main result. In the following theorem (see Section A.1
for a proof), we show that ξn, appropriately centered and scaled, has a limiting normal

distribution in the asymptotic regime ξ(f
(n)
X,Y ) → 0.

Theorem 2.1. For any bivariate density f
(n)
X,Y (x, y) satisfying Assumptions (A3) and (A4),

there is a numerical constant C(η, θ, γ, κ1, κ2) > 0, i.e., depending only on the parameters
η, θ, γ, κ1, κ2 from Assumptions (A3) and (A4), such that:

(i) For all n ≥ 1, we have

√
n
∣∣∣E(ξn)− ξ(f

(n)
X,Y )

∣∣∣ ≤ Cn−1/2 + C
√
nbn1(ξ(f

(n)
X,Y ) > 0).
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(ii) Moreover,

D

√
n
(
ξn − ξ(f

(n)
X,Y )

)
√
2/5

 ≤ Cn−1/2 + C
(
ξ(f

(n)
X,Y ) +

√
n log n bn

)1/2
1(ξ(f

(n)
X,Y ) > 0),

where D is the Wasserstein distance to normality defined in Definition 2.2, and bn is
defined as

bn := n
− γ

γ+1 (log n)2 +

(
(log n)2

n

)(
γ(θ−1)
θ(γ+1)

∧ ηγ
γ+1

)
. (2.3)

In particular, part (ii) of Theorem 2.1 shows that if ξ(f
(n)
X,Y ) → 0 and θ−1

θ ∧ η > γ+1
2γ ,

then √
n(ξn − ξ(f

(n)
X,Y ))

w−→ N (0, 2/5). (2.4)

Therefore, in the entire asymptotic regime ξ(f
(n)
X,Y ) → 0, we see that ξn has the same limiting

variance, which matches the case where the X’s and Y ’s are mutually independent (also
see [15, Theorem 2.1]). A couple of remarks on the assumptions needed in Theorem 2.1 are
now in order.

Remark 2.1. To understand the condition θ−1
θ ∧ η > γ+1

2γ , let us first focus on a simple
case. Assume that the conditional probability in (3.14) is uniformly Lipschitz in y, x. In that

case, η = 1 and L
(n)
1 (·), L(n)

2 (·) are both uniformly bounded. In view of (3.15), this implies
θ = ∞. Therefore θ−1

θ ∧η = 1. Recall from Assumption (A4) that γ > 1 denotes the number

of finite moments of Xn,1. Therefore,
γ+1
2γ < 1. As a result, the condition θ−1

θ ∧ η > γ+1
2γ

holds in this case.

More generally speaking, the condition θ−1
θ ∧ η > γ+1

2γ can be rewritten as the combination
of the following conditions:

1

θ
+

1

2γ
< 1,

1

γ
< 2η − 1.

Therefore, if the Hölder exponent η in (3.14) is greater than 1
2 , then the condition θ−1

θ ∧
η > γ+1

2γ holds whenever L
(n)
1 (Xn,1, Yn,2), L

(n)
2 (Xn,1, Yn,2), and Xn,1 have sufficiently light

tails.

Remark 2.2. In this paper, we have restricted ourselves to the case where the Hölder
exponent η ≤ 1 instead of expanding to higher-order Hölder regularity. This is because parts

(i) and (ii) of Theorem 2.1 show that the order of the bias E(ξn) − ξ(f
(n)
X,Y ) is o(1/

√
n)

which is already of a smaller order than its fluctuation (ξn−Eξn) = Op(1/
√
n). As a result,

imposing stronger regularity leads to no further gains here. The situation would be different
for the multivariate version(s) of Chatterjee’s correlation (see [4, 19]) where the bias would
reflect a curse of dimensionality and be of a higher order than the fluctuations. While this
is an interesting question, it is currently beyond the scope of this paper.

Note that Theorem 2.1 greatly generalizes the asymptotic normality theorems of
[12, 15, 58] that are only valid under the null hypothesis of independence, or for contiguous
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parametric alternatives and cannot be used to analyze ξn along non-contiguous and non-
parametric alternatives. Therefore we believe Theorem 2.1 is of independent interest and
hence we have presented it here as a separate result. Since Theorem 2.1 aims to provide

asymptotic normality for any alternative with ξ(f
(n)
X,Y ) → 0, we can no longer use tradi-

tional instruments such as Le Cam’s third lemma, which is the main tool in [12, 58]. Note
that Theorem 2.1 holds for a large nonparametric class of distributions and comes with
finite sample guarantees. In order to prove Theorem 2.1, we use Stein’s method of normal
approximation for locally dependent structures [14] and some explicit bias and variance
computations. To elaborate briefly, we observe that ξn can be rewritten as

ξn =
3n

n2 − 1

 1

n

∑∑
i ̸=j

∣∣∣F̂n(Yn,i)− F̂n(Yn,j)
∣∣∣− n∑

i=1

∣∣∣F̂n(Yn,(i+1))− F̂n(Yn,(i))
∣∣∣
 , (2.5)

where F̂n(·) is the empirical cumulative distribution function (CDF) of Yn,1, . . . , Yn,n.

Let F
(n)
Y (·) denote the population CDF of Yn,1. Recall that Xn,(1) ≤ . . . ≤ Xn,(n) and Yn,(i)

is the Y value concomitant to Xn,(i). The main idea is to show that we can replace F̂n(·)
by F

(n)
Y (·) asymptotically. In other words, we show that ξn is close (with quantitative error

bounds) to ξ∗n, where

ξ∗n :=
3n

n2 − 1

 1

n

∑∑
i ̸=j

∣∣∣F (n)
Y (Yn,i)− F

(n)
Y (Yn,j)

∣∣∣− n∑
i=1

∣∣∣F (n)
Y (Yn,(i+1))− F

(n)
Y (Yn,(i))

∣∣∣
 .

(2.6)
Next, we quantify the proximity of the distribution of ξ∗n (appropriately centered and scaled)
to a standard normal distribution, using [14, Theorem 3.4], to establish Theorem 2.1.

Now, we characterize the asymptotic behavior of βϕn(f
(n)
X,Y ) defined in (1.8). First, sup-

pose that
√
nξ(f

(n)
X,Y ) → ∞. As

√
n
(
ξn − ξ(f

(n)
X,Y )

)
= Op(1), by (2.4), it is clear that

√
nξn =

√
n
(
ξn − ξ(f

(n)
X,Y )

)
︸ ︷︷ ︸

Op(1)

+
√
nξ(f

(n)
X,Y )

P−→ ∞.

Therefore, the last equality in (1.8) coupled with the above display implies that whenever
√
nξ(f

(n)
X,Y ) → ∞, we have βϕn(f

(n)
X,Y ) → 1. By using a similar sequence of arguments, we

get the complete picture of the limiting behavior of βϕn(f
(n)
X,Y ), formalized in the theorem

below.

Theorem 2.2. Suppose ξ(f
(n)
X,Y ) → 0 and Assumptions (A3), (A4) are satisfied with η, θ, γ

such that θ−1
θ ∧η > γ+1

2γ . Let zα be the upper α quantile of the standard normal distribution.

Then the test ϕn, defined in (1.7), with zn,α = n−1/2zα
√
2/5 has a power function satisfying

βϕn(f
(n)
X,Y ) = P(

√
nξn ≥ zα

√
2/5) = 1− Φ

(
zα −

√
nξ(f

(n)
X,Y )/

√
2/5
)
+ o(1).

On the other hand, when ξ(f
(n)
X,Y ) → c > 0, ϕn has asymptotic power equal to one. In
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particular, we have the following explicit characterization of the asymptotic power of ϕn:

lim
n→∞

βϕn(f
(n)
X,Y ) =


α if

√
nξ(f

(n)
X,Y ) → 0

1− Φ
(
zα − c0/

√
2/5
)

if
√
nξ(f

(n)
X,Y ) → c0 ∈ (0,∞)

1 if
√
nξ(f

(n)
X,Y ) → ∞.

(2.7)

Theorem 2.2 reduces the power calculation to calculating the population measure of
association under the alternative. Once again we emphasize that these results do not depend
on any specific form of the alternative distribution. In Section 3 we consider the applications
of Theorem 2.2 to certain parametric classes of alternatives, previously considered in the
literature. In doing so, we discover that for smooth parametric alternatives, the detection
threshold is seen on a non-standard scale of n−1/4. This is much larger than the optimal
detection threshold of n−1/2 in parametric problems, thereby leading to the suboptimality
of ξn for testing independence (also see [58, 12]). We provide a detailed account of this in
the following section.

3. Applications

Throughout this section, we will use the test ϕn in (1.7) with zn,α = n−1/2zα
√
2/5, where

zα is the upper α quantile of the standard normal distribution. To interpret the detection
boundary from Theorem 2.2 in terms of its rate of decay with respect to n, it is crucial

to note that ξ(f
(n)
X,Y ) (see (P1)) is the integrated squared distance between a conditional

and a marginal distribution function. For example, consider the case where f
(n)
X,Y (·, ·) is the

standard bivariate density Gaussian with correlation ρn. Then Y |X = x ∼ N (ρnx, 1− ρ2n).
Let ϕ(·) and Φ(·) be the standard normal density and distribution functions, respectively.
By first-order Taylor approximations, we then get

ξ(f
(n)
X,Y ) = 6

∫
E

[
Φ

(
t− ρnX√
1− ρ2n

)
− Φ(t)

]2
ϕ(t) dt = ρ2n

√
3/π + o(ρ2n).

This implies ξ(f
(n)
X,Y )/ρ

2
n →

√
3/π, that is, ξ(f

(n)
X,Y ) scales like ρ2n instead of ρn. This is the

result of ξ(f
(n)
X,Y ) being an integrated squared distance. Using this observation in (2.7), we

get that

lim
n→∞

βϕn(fX,Y,rn) =


α if n1/4ρn → 0

1− Φ (zα − c1) if n1/4ρn → c0 ∈ (0,∞)

1 if n1/4ρn → ∞.

(3.1)

This shows that a n−1/4 detection boundary emerges naturally out of Theorem 2.2 in the
bivariate Gaussian setting.

In this section we describe some applications of Theorem 2.2 in three popular local para-
metric models: mixture-type alternatives and noisy nonparametric regression. The detec-
tion thresholds and local powers for these two models are formally stated in Corollaries 3.1
and 3.2, respectively. The analysis of local asymptotic power of various tests along para-
metric alternatives reveals specific features of popular parametric models that control the
power of testing procedures. Consequently a lot of attention has been devoted to such anal-
ysis (see [22, 46, 47, 52, 55, 54]). Our general result as in Theorem 2.2 can be used directly
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to get detection boundaries and local powers under a number of popular alternatives, both
along “contiguous” (meaning O(n−1/2) perturbations around the null) and non-contiguous
scales, all in one go. We consider two such local parametric models in Section 3:

(a) Mixture type alternatives used in [2, 22, 26, 27, 58, 62]; see Section 3.1,

(b) Noisy nonparametric regression used in [15]; see Section 3.2

3.1. Simple mixture model

Consider the bivariate density of (X,Y ) defined by

fX,Y,r(x, y) := (1− r)fX(x)fY (y) + rgX,Y (x, y) ∀ x, y ∈ R, (3.2)

where gX,Y (·, ·) is a bivariate density function that does not factor into the product of its
marginals, fX(·), fY (·) are univariate densities, and r ∈ [0, 1]. We also note that if r = 0,
then X is independent of Y . Therefore it suffices to test if r = 0 or otherwise. Suppose that
gX,Y (·, ·) has marginals fX(·) and fY (·), i.e.,∫

x
gX,Y (x, y) dx = fY (y),

∫
y
gX,Y (x, y) dy = fX(x). (3.3)

Note that (3.3) implies that the marginals do not change under the alternative. Conse-
quently, we cannot use marginal-based tests (e.g., goodness-of-fit on marginal distributions)
to distinguish between the null and alternative. Instead, we will require an independence test
as demonstrated above. Furthermore, we also assume that there exist κ1, κ2 > 0, η ∈ [0, 1],
and θ, γ > 1 such that∫ ∞

y

∣∣gY |X=x1
(t)− gY |X=x2

(t)
∣∣ dt ≤ (1 + L1(x1, y) + L2(x2, y))|x1 − x2|η, (3.4)

lim sup
n→∞

∫
(Li(x, y))

θfX(x)fY (y) dx dy ≤ κ1, (3.5)

and

lim sup
n→∞

∫
|x|γfX(x) dx < κ2. (3.6)

Let us observe that (3.4) is a mild regularity assumption on the conditional distribution of
Y given X when their joint distribution has density g(·, ·). Many common bivariate density
functions, like bivariate normal with finite mean and variance, satisfy this assumption.

To perform local power analysis under model (3.2), we adopt the same framework as
in [58, 26, 62]. Towards this direction, fix a sequence {rn}n≥1 with rn ∈ [0, 1] for all n ≥ 1
and consider the family of bivariate densities fX,Y,rn(·, ·) as in (3.2). It is easy to check that
the condition (1.6), i.e., ξ(fX,Y,rn) → 0 holds if rn → 0. In the same vein as in (1.5), we
consider the following testing problem:

H0 : rn = 0 vs. H1,n : rn > 0. (3.7)

In view of (1.6) we focus on the shrinking alternative rn → 0. Our object of interest is the
limiting power function, i.e.,

lim
n→∞

βϕn(fX,Y,rn), where lim
n→∞

rn = 0.

Crucially, Theorem 2.2 reduces the above problem to characterizing the asymptotic behavior
of ξ(fX,Y,rn). This is the subject of the following proposition.
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Proposition 3.1. Let us consider ξ(fX,Y,rn) defined in (1.4) for a sequence {rn}n≥1 such
that rn ∈ [0, 1] and rn → 0. Then we have

ξ(fX,Y,rn) = r2n ξ(gX,Y ).

From Proposition 3.1 it is evident that
√
nξ(fX,Y,rn) → 0 or ∞ accordingly as n1/4rn → 0

or ∞. Further, ξ(fX,Y,rn) also increases with ξ(gX,Y ). Recall from (P1) that ξ(gX,Y )
is a measure of association between X,Y jointly sampled according to gX,Y (·, ·). There-
fore, Proposition 3.1 shows that the power of ϕn is governed by the strength of association
between X,Y when they are jointly sampled from gX,Y (·, ·).

We now present the complete characterization of the asymptotic power of ϕn for the
problem (3.7), which follows immediately from Proposition 3.1 coupled with Theorem 2.2.

Corollary 3.1. Consider the problem of testing H0 versus the sequence of alternatives H1,n

defined by (3.7), for a sequence {rn}n≥1 such that rn ∈ [0, 1] and rn → 0. Suppose that (3.3)
holds and Assumptions (3.4), (3.5) and (3.6) are satisfied with θ−1

θ ∧ η > γ+1
2γ . Then the

asymptotic power is given by

lim
n→∞

βϕn(fX,Y,rn) =


α if n1/4rn → 0

1− Φ(zα − c20ξ(gX,Y )/
√

2/5) if n1/4rn → c0 ∈ (0,∞)

1 if n1/4rn → ∞.

(3.8)

Remark 3.1. In Corollary 3.1, the assumption (3.3) can be dropped. This will not change
the detection threshold, but would alter the expression of the local power when n1/4rn → c0
to a more complicated and less interpretable expression. We refrain from presenting that
version to facilitate easier understanding.

In Figures 1 and 2, we provide a numerical illustration of Corollary 3.1. We generate data
using the model in Section 3.1 with n = 4000, fX ≡ N (0, 1), fY ≡ N (0, 1), gX,Y ≡ N (0,Σ)
where

Σ =

(
1 0.95

0.95 1

)
,

and the mixing probability rn = n−b, b ∈ [0, 0.5]. The power of the test, when averaged over
10000 runs, is plotted in Figure 1 as b varies in [0, 0.5]. Here β∗ is a Monte Carlo estimate
(with 10000 replications) of the limiting local power under model (3.2) with rn = n−0.25

and Σ as specified above; β∗ ≈ 0.295. Figure 1 clearly shows that the power decays sharply
from 1 to 0 as b varies between 0.2 and 0.3. In fact, when b is close to 0.25, the empirical
power is very close to the theoretical power β∗. A similar agreement between the empirical
and the theoretical distributions is also observed in Figure 2 where we plot the histogram
of

√
n(ξn − r2nξ(gX,Y ))/

√
2/5 under rn = n−0.25 and overlay it with the standard normal

density curve, thus verifying (2.4) and Proposition 3.1.

3.2. Regression model

In our main motivating paper [15], the author considered the following model in numerical
experiments:

Y = g(X) + σZ, (3.9)
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β∗
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Figure 1: Power of ϕn for (3.7) at different values of b.
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Figure 2: A histogram of
√
n(ξn − r2nξ(gX,Y ))/

√
2/5 for rn = n−0.25, with the standard normal

density curve overlaid in red.
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where σ ≥ 1, g : R → R, E[|g(X)|3] < ∞, Z ∼ N(0, 1) and X,Z are independent. We also
assume that X has a finite γ-th moment for some γ > 3 and g satisfies

|g(x1)− g(x2)| ≤ (1 + |x1|+ |x2|)|x2 − x1|.

This is the classical noisy nonparametric regression model. Note that, as σ → ∞, the “noise”
part of the model (3.9) dominates the “signal” part given by g(X). Therefore, as σ → ∞,
the independence between the “noise” and the “signal” makes it harder and harder for the
independence testing procedures to have a high power. This makes it interesting to study
the performance of ϕn in the context of model (3.9) and to obtain detection thresholds in
terms of σ.

Therefore, we consider the natural parametric model with fX,Y,σn(·, ·) being the joint
density of (X,Y ) drawn according to the model (3.9) with σ ≡ σn. It is easy to check that
ξ(fX,Y,σn) → 0 as σn → ∞. Consequently, in the same spirit as in the previous section, we
are interested in the following limiting power function:

lim
n→∞

βϕn(fX,Y,σn), where lim
n→∞

σn = ∞. (3.10)

As in Section 3.1, we first state a proposition characterizing the asymptotics of ξ(fX,Y,σn)
as n → ∞.

Proposition 3.2. Consider the model (3.9) with σ ≡ σn. We then have the following
identity:

ξ(fX,Y,σn) =

√
3

π
σ−2
n Var(g(X)) + o(σ−2

n ).

Proposition 3.2 shows that
√
nξ(fX,Y,σn) → 0 or ∞ accordingly as n−1/4σn → ∞

or 0. Also ξ(fX,Y,σn) increases with Var(g(X)). This is indeed very intuitive. Note that if
Var(g(X)) = 0 then g(·) is a constant function which means X,Y are independent according
to model (3.9). Also note that Var(E(Y |X)) = Var(g(X)) and EVar(Y |X) = σ2

n, i.e.,
Var(g(X)) measures the proportion of the total variance of Y which is explained by X.
Therefore, it is only natural that the larger the value of Var(g(X)), the larger is the power
of ϕn.

We now present the complete answer to problem (3.10), which follows immediately
from Proposition 3.2 coupled with Theorem 2.2.

Corollary 3.2. Consider the problem in (3.9). Then the asymptotic power is given by

lim
n→∞

βϕn(fX,Y,σn) =


α if n−1/4σn → ∞
1− Φ(zα − c20

√
3/πVar(g(X))/

√
2/5) if n−1/4σn → c−1

0 ∈ (0,∞)

1 if n−1/4σn → 0.

(3.11)

3.3. Rotation alternatives

As a third example, we now consider the pair of random variables (X,Y ) satisfying(
X
Y

)
=

(
1 ∆
∆ 1

)(
U
V

)
, (3.12)
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where U, V are independent, zero mean random variables with densities f1 and f2. We
further assume that f1 and f2 are twice differentiable with the i-th derivative, i ∈ {0, 1, 2}
being denoted by f

(i)
1 and f

(i)
2 respectively. The 0-th derivative is the function itself. Note

that X and Y , drawn according to model (3.12), are independent if and only if ∆ = 0.

To perform a local power analysis, we adopt the same framework as in [31, 45, 58]. Con-
sider (X,Y ) ∼ fX,Y,∆n(·, ·) as in (3.12) with ∆ ≡ ∆n. It is easy to check that ξ(fX,Y,∆n) → 0
holds if ∆n → 0. In the same vein of the earlier examples, we are interested in studying the
following limiting power function

lim
n→∞

βϕn(fX,Y,∆n), where lim
n→∞

∆n = 0. (3.13)

Before stating the main results of this section, we need some assumptions which are
encapsulated below. Note that the first two assumptions are also required for the our main
results in Section 2.

Assumption (A3). There exist functions L
(n)
i (·) : R → [0,∞) for i = 1, 2 and numerical

constants κ1 > 0, η ∈ (0, 1], and θ > 1 such that ∀ y, x1, x2,

|P(Yn,1 ≥ y|Xn,1 = x1)− P(Yn,1 ≥ y|Xn,1 = x2)| ≤ (1+L
(n)
1 (x1, y)+L

(n)
2 (x2, y))|x1 − x2|η,

(3.14)

lim sup
n→∞

∫
(L

(n)
i (x, y))θf

(n)
X (x)f

(n)
Y (y) dx dy ≤ κ1, (3.15)

where f
(n)
X (·) and f

(n)
Y (·) are the marginal densities of Xn,1 and Yn,1 under the joint density

f
(n)
X,Y (·, ·).

Assumption (A4). There exist numerical constants γ > 1 and κ2 > 0 such that

lim sup
n→∞

E|Xn,1|γ ≤ κ2.

Further, we make the following additional assumption for the rotation alternative.

Assumption (A5).

(1) EU = EV = 0 and EU2 = EV 2 = 1.

(2) Both f1 and f2 are continuous and twice differentiable. As t → ∞,

|tf ′
1(t)| → 0, and |tf ′

2(t)| → 0.

(3) There exist an ϵ > 0, and real-valued functions R1,ϵ(·, ·) and R2,ϵ(·, ·) such that

max
k∈{0,1,2}

sup
|∆|≤ϵ

∣∣∣∣ ∂k

∂∆k
fi

(
u−∆v

1−∆2

) ∣∣∣∣ ≤ Ri,ϵ(u, v)

for all u, v and i = 1, 2. Further, for all ℓ ∈ {0, 1, 2, 3},

E
[
R1,ϵ(U, V )

f1(U)
|U |ℓ

]2
< ∞, E

[
(R2,ϵ(U, V )) |V |ℓ

]2
< ∞.
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These assumptions are natural and hold in various commonly used models including the
normal distribution, the t distribution with sufficiently high degrees of freedom (10 or more)
and various other distributions in the exponential family. Under these assumptions we have
the following proposition which is proved in Section B.2.3.

Proposition 3.3. Consider the model defined by (3.12) with ∆ ≡ ∆n. Then, under the
Assumption (A5), we have

ξ(fX,Y,∆n) = ∆2
nV0 +O(∆3

n), (3.16)

where

V0 := 6

(
EV [f

2
2 (V )] + EU

[f ′
1(U)

f1(U)

]2
EV [J

2(V )]− 2EV [J(V )f2(V )]

)

and J(t) :=
t∫

−∞
y2f2(y2) dy2.

The complete answer to problem (3.13) now follows by combining Proposition 3.3 with
Theorem 2.2, and is presented below.

Corollary 3.3. Suppose Assumptions (A3), (A4), and (A5) hold with θ−1
θ ∧η > γ+1

2γ . Then
the asymptotic power in (3.13) is given by

lim
n→∞

βϕn(fX,Y,∆n) =


α if n1/4∆n → 0

1− Φ(zα − c20 V0/
√
2/5) if n1/4∆n → c0 ∈ (0,∞)

1 if n1/4∆n → ∞,

(3.17)

where V0 is as defined in Proposition 3.3.

4. Minimax optimality of ϕn for testing degree of association

Recall our basic setting, that is, (X1, Y1), . . . , (Xn, Yn)
i.i.d.∼ f

(n)
X,Y . In the earlier sections, we

focused on the case where ξ(f
(n)
X,Y ), the Dette-Siburg-Stoimenov measure, converges to 0 as

n → ∞. On the contrary, the focus of this section is on the other regime.

ξ(f
(n)
X,Y ) ↓ ξ0 > 0 as n → ∞. (4.1)

This regime is of particular importance because the value of ξ(f
(n)
X,Y ) provably encodes

how noisy the functional relationship between X and Y is. In particular, in [21, Theorem
2] and [15, Theorem 1.1], the authors show that ξ0 = 1 implies Y is a noiseless function

of X. Further, in [21, Theorems 1 and 2], the authors also show that ξ(f
(n)
X,Y ) can be used

to define a natural notion of dependence ordering based on how well Y can be predicted
from X. Through some explicit computations, in [21, Section 4, Examples 1.(a) — (d)],

the authors further prove that in multiple copula based dependence models, ξ(f
(n)
X,Y ) is

a strictly monotonic function of the natural dependence parameters. Moving to [15], the
author uses extensive numerical experiments to show that in a number of other examples,
including variants of noisy nonparametric regression, [15] also shows through extensive

simulations, that ξ(f
(n)
X,Y ) decreases monotonically with increasing noise levels. Overall, these
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results show that through invertible transformations, one can directly convert ξ(f
(n)
X,Y ) to

natural dependence parameters in a variety of models for (X1, Y1). Therefore, drawing

inference about ξ(f
(n)
X,Y ) immediately leads to interpretable inference about the nature of

dependence in a large collection of models. We expand this collection of models further

in the following proposition by showing that ξ(f
(n)
X,Y ) is a monotonic function of natural

dependence parameters in all examples from Section 3.

Proposition 4.1 (Monotonicity of ξ(f
(n)
X,Y )). Recall the definition of ξ(f

(n)
X,Y ) from (1.4).

(1) Suppose

(X1, Y1) ∼ N
((

µ1

µ2

)
,

(
σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

))
,

for µ1, µ2 ∈ R, σ1, σ2 > 0, |ρ| ≤ 1. Then ξ(f
(n)
X,Y ) is free of µ1, µ2, σ1, σ2 and a strictly

increasing function of |ρ|.
(2) Suppose that (X1, Y1) is distributed according to the mixture model in (3.2) with gX,Y (·)

further satisfying (3.3). Then ξ(f
(n)
X,Y ) is a strictly increasing function of r.

(3) Suppose (X1, Y1) is distributed according to the regression model (3.9), for σ > 0.

Then ξ(f
(n)
X,Y ) is a strictly decreasing function of σ.

Motivated by the observations made above, we focus on the following natural hypothesis
testing problem in this section:

H0 : ξ(f
(n)
X,Y ) = ξ0 versus H1,n : |ξ(f (n)

X,Y )− ξ0| ≥ cn, (4.2)

for some positive sequence {cn}n≥1 and ξ0 ∈ (0, 1). Clearly if cn = O(1), then from [15,
Theorem 1.1], Chatterjee’s correlation ξn can be used to consistently separate H0 from H1,n.
On the other hand, our focus here is when cn = o(1) which leads to (4.1). When ξ0 ∈ (0, 1),
(4.2) can be viewed as a slightly general (two-sided) version of (1.5). The goal of this section
is to address the following pair of subtle questions:

• What is the fastest decaying sequence cn such that Chatterjee’s correlation coefficient
ξn can still separate H0 from H1,n?

• Conversely, what is the slowest decaying sequence cn such that no test can separate
H0 from H1,n in the local asymptotic minimax sense?

We will prove in this section that, for Chatterjee’s correlation, the detection boundary
occurs at cn ≫ n−1/2. However, in sharp contrast to the ξ0 = 0 case, cn ≈ n−1/2 is
indeed the minimax optimal threshold, in that no test can consistently separate the two
hypotheses when cn ≈ n−1/2. This indicates that Chatterjee’s correlation based test is
indeed minimax optimal for testing the degree of association when the two variables are
not exactly independent. In the sequel, we will formalize these two notions.

We begin with some notation. Let Γ := (C, η, θ, γ) where the aforementioned constants
are taken from Assumptions (A3) and (A4). Consider the following family of distributions:

Hloc
1,n(cn; Γ) :=

{
f
(n)
X,Y (·) : |ξ(f

(n)
X,Y )− ξ0| ≥ cn, f

(n)
X,Y satisfies (A3), (A4) with constants Γ = (C, η, θ, γ)

}
.

(4.3)
In other words, the family Hloc

1,n(cn; Γ) consists of the family of joint distributions which
admit ξ(·) values at a ≥ cn distance away from the null value ξ0, and also satisfy Assump-
tions (A3) and (A4). Next, given a test function Φn ≡ Φn((X1, Y1), . . . , (Xn, Yn)), consider
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its power function

βΦn(H
loc
1,n(cn; Γ)) := inf

f
(n)
X,Y (·,·)∈Hloc

1,n(cn;Γ)

P(Φn rejects Hloc
1,n(cn; Γ)). (4.4)

In terms of the definitions in (4.3) and (4.4), the goal of a good test Φn would be to ensure
that βΦn(H

loc
1,n(cn; Γ)) → 1 as n → ∞ for “small” values of cn. Given a level parameter

α ∈ (0, 1), We define our candidate good test as follows:

ϕn := 1

(
|ξn − ξ0| ≥

1 + 5
√
log (2/α)√
n

)
. (4.5)

The following theorem provides matching upper and lower bounds for β(·)(Hloc
1,n(cn; Γ)).

Theorem 4.1 (Testing for degree of association).

(1) (Upper bound for ξn). Fix an arbitrary α ∈ (0, 1) and consider the test ϕn from (4.5).
Then it is an asymptotically level α under H0 and

βϕn(H
loc
1,n(cn; Γ)) → 1

provided
√
ncn → ∞.

(2) (Minimax lower bound). There exists some α ∈ (0, 1) such that for any level α test
Φn based on (X1, Y1), . . . , (Xn, Yn), the following holds:

lim inf
n→∞

βΦn(H
loc
1,n(cn; Γ)) < 1

whenever lim inf
n→∞

√
ncn < ∞.

The two parts of Theorem 4.1 suggest that Chatterjee’s correlation based test is par-
ticularly suitable for testing the strength of association between two random variables and

is able to detect small departures from a fixed non-zero value of ξ(f
(n)
X,Y ) (i.e., ξ0) at the

optimal rate. It is worth noting that the lower bound in Theorem 4.1 heavily relies on the
fact that 0 < ξ0 < 1.

Remark 4.1. In [49], the authors show that

√
n(ξn − ξ(f

(n)
X,Y ))

σ̂n

w−→ N (0, 1),

where σ̂n is a function of the data, and σ̂n = Op(1). Therefore, a natural alternative to ϕn

from (4.5) would be
ϕn = 1(

√
n|ξn − ξ0| ≥ zα/2),

where zα/2 is the upper α/2 standard Gaussian quantile and ξ(f
(n)
X,Y ) = ξ0. This test was

proposed in [49, Remark 1.4] and it has asymptotic size exactly equal to α. On the flip side,
from the definition of σ̂n (see [49, Theorem 1.1]), it seems that it has O(n2) time complexity
which may be a greater computational burden depending on the application at hand.

Remark 4.2. In [48], the authors show that if (X,Y ) have a bivariate Gaussian distribu-
tion, then the detection boundary for ξn when ξ0 = 0 can be improved to near parametric
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rates by incorporating more “right nearest neighbors”. We would conjecture that the test in
[48] achieves O(n−1/2) detection boundary when ξ0 ∈ (0, 1) and (X,Y ) are non-Gaussian.
In view of Theorem 4.1, this would imply that the test in [48] attains (near) parametric
efficiency whenever ξ0 ∈ [0, 1) (at the expense of greater computational complexity). A con-
clusive answer on this and an inspection of the relevant applications might be of independent
interest.

Appendix A: Proofs of main results

In this section, we will prove the main results in this paper. The proofs require a number
of technical results, which are proved in Sections 2 and 3 of the Appendix B.

A.1. Proofs from Section 2

A.1.1. Proof of Theorem 2.1

Part (i). As mentioned in Section 2, our proof proceeds through studying an oracle version
of ξn. Observe that ξn can be rewritten as

ξn =
3n

n2 − 1

 1

n

∑∑
i ̸=j

∣∣∣F̂n(Yn,i)− F̂n(Yn,j)
∣∣∣− n∑

i=1

∣∣∣F̂n(Yn,(i+1))− F̂n(Yn,(i))
∣∣∣
 , (A.1)

where F̂n(·) is the empirical cumulative distribution function (CDF) of Yn,1, . . . , Yn,n.

Let F
(n)
Y (·) denote the population CDF of Yn,1. Recall that Xn,(1) ≤ . . . ≤ Xn,(n) and Yn,(i)

is the Y value concomitant to Xn,(i). The main idea is to show that we can replace F̂n(·)
by F

(n)
Y (·) asymptotically. In other words, we show that ξn is close (with quantitative error

bounds) to ξ∗n where

ξ∗n :=
3n

n2 − 1

 1

n

∑∑
i ̸=j

∣∣∣F (n)
Y (Yn,i)− F

(n)
Y (Yn,j)

∣∣∣− n∑
i=1

∣∣∣F (n)
Y (Yn,(i+1))− F

(n)
Y (Yn,(i))

∣∣∣
 .

(A.2)
The following theorem characterizes the asymptotic variances and the distance between ξ∗n
and ξn.

Theorem A.1. Suppose that Assumptions (A3) and (A4) hold. Then there is a constant
C > 0, such that for n ≥ 1,

max

{
nVar(ξn − ξ∗n),

∣∣∣∣nVar(ξn)− 2

5

∣∣∣∣} ≤ Cn−1 + Cξ(f
(n)
X,Y ) + C

√
n log n bn1(ξ(f

(n)
X,Y ) > 0)

where

bn := n
− γ

γ+1 (log n)2 +

(
(log n)2

n

)(
γ(θ−1)
θ(γ+1)

∧ ηγ
γ+1

)
. (A.3)

The next theorem characterizes the rate of convergence of
√
n
(
ξ∗n−E(ξ∗n)

)
σ∗
n

to normality.
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Theorem A.2. There is a constant C∗ > 0 such that for all n ≥ 1 we have

D

(√
n
(
ξ∗n − E(ξ∗n)

)
σ∗
n

)
≤ C∗

√
n

(
1

σ∗2
n

+
1

2σ∗3
n

)
,

where σ∗
n :=

√
Var(ξ∗n) and D is the Wasserstein distance to normality defined in Definition

2.2 of the main paper.

We defer the proofs of these theorems to Section 2 of Appendix B, and proceed to use
these results to prove Theorem 2.1.

For any p ∈ (0, 1) we can write

f
(n)
Y |X(y|x) = (1−p)f

(n)
Y (y)+pg(y|x), where g(y|x) =

f
(n)
Y |X(y|x)− f

(n)
Y (y)

p
+f

(n)
Y (y). (A.4)

Here f
(n)
Y (y) =

∫
f
(n)
X,Y (x, y)dx is the marginal density of Yn,1. We have

G(y|x) :=
∫ y

−∞
g(t|x)dt = 1

pF
(n)
Y |X(y|x) + (1− 1

p)F
(n)
Y (y);

∫
G(y|x)f (n)

X (x)dx = F
(n)
Y (y).

(A.5)

For each i ∈ [n], let N(i) ∈ {j ∈ [n] : Rank(Xn,j) = Rank(Xn,i)+1} be the unique index
j such that Xn,j is immediately to the right of Xn,i when Xn,i’s are arranged in increasing
order. If there are no such indices for some i, set the corresponding N(i) = 1. To show part
(i) of Theorem 2.1 we begin by observing that E(

√
nξn) can be simplified as follows.

E(
√
nξn)

=
√
nE

(
1− 3

n2 − 1

n−1∑
i=1

∣∣Ri −RN(i)

∣∣)

=
√
nE

[
1− 3

n2 − 1

n−1∑
i=1

(Ri +RN(i) − 2min{Ri, RN(i)})

]

=
√
nE

(
−2 +

6

n2 − 1

n−1∑
i=1

min{Ri, RN(i)}

)
+O(n−1/2)

=− 2
√
n+

6n3/2

n2 − 1

1 +
∑

k ̸=1,N(1)

E
(
E(1(Yn,k ≤ min{Yn,1, Yn,N(1)})|X(n))

)+O(n−1/2).

(A.6)

Hence, to characterize the asymptotic behavior of E(
√
nξn), we focus on the asymptotics of

the term E
(
E(1(Yn,k ≤ min{Yn,1, Yn,N(1)})|X(n))

)
.

Depending on which part of f
(n)
Y |X contributes to the random variables

Yn,1, Yn,N(1), Yn,k, we can separate E(
√
nξn), we focus on the asymptotics of the term

E
(
E(1(Yn,k ≤ min{Yn,1, Yn,N(1)})|X(n))

)
into the following terms.

E
(
E(1(Yn,k ≤ min{Yn,1, Yn,N(1)})|X(n))

)
=: (1− p)3T0 + (1− p)2pT1 + (1− p)p2T2 + p3T3.

(A.7)
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Here

T0 :=

∫
1(yk < min{y1, y})f (n)

Y (y)f
(n)
Y (y1)f

(n)
Y (yk)dydy1dyk

while the other terms are defined as

T1 :=

∫ ∫ ∑
j ̸=1

1(N(1) = j)1(yk < min{y1, yj})fY (y1)fY (yk)g(yj |xj)dy1dykdyjfX(x) dx

+

∫ ∫ ∑
j ̸=1

1(N(1) = j)1(yk < min{y1, yj})fY (y1)g(yk|xk)fY (yj)dy1dykdyjfX(x) dx

+

∫ ∫ ∑
j ̸=1

1(N(1) = j)1(yk < min{y1, yj})g(y1|x1)fY (yk)fY (yj)dy1dykdyjfX(x) dx,

T2 :=

∫ ∫ ∑
j ̸=1

1(N(1) = j)1(yk < min{y1, yj})g(y1|x1)g(yk|xk)fY (yj)dy1dykdyjfX(x) dx

+

∫ ∫ ∑
j ̸=1

1(N(1) = j)1(yk < min{y1, yj})fY (y1)g(yk|xk)g(yj |xj)dy1dykdyjfX(x) dx

+

∫ ∫ ∑
j ̸=1

1(N(1) = j)1(yk < min{y1, yj})g(y1|x1)fY (yk)g(yj |xj)dy1dykdyjfX(x) dx.

T3 :=

∫ ∫ ∑
j ̸=1,k

1(N(1) = j)1(yk < min{y1, yj})g(y1|x1)g(yk|xk)g(yj |xj)dy1dykdyjfX(x) dx

=

∫ ∫ ∑
j ̸=1

1(N(1) = j)1(yk < min{y1, yj})g(y1|x1)fY (yk)g(yj |xj)dy1dykdyjfX(x) dx.

We can show that T0 satisfies the following.

T0 =

∫
1(yk < min{y1, y})f (n)

Y (y)f
(n)
Y (y1)f

(n)
Y (yk)dydy1dyk

=P(Yn,k < min{Yn,1, Yn,2}|Yn,1, Yn,2, Yn,k ∼ f
(n)
Y ) =

1

3
. (A.8)

Let us define

H(f, g) :=

∫
E
(∫ ∞

t
g(y|Xn,1)dy

)2

f
(n)
Y (t)dt =

∫
E(1−G(t|Xn,1))

2f
(n)
Y (t)dt.

The second, third, and fourth terms can be controlled using the following lemma which has
been proved in Section 3 of Appendix B:

Lemma A.1.

T1 = 1 + rn, T2 =
2

3
+H(f, g) + rn, T3 = H(f, g) + rn,

where |rn| ≲ bn1(ξ(f
(n)
X,Y ) > 0).

We have from (A.7) that

E
(
E(1(Yn,k ≤ min{Yn,1, Yn,N(1)})|X(n))

)
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=(1− p)3T0 + (1− p)2pT1 + (1− p)p2T2 + p3T3

=(1− p)3 · 1
3
+ (1− p)2p [1 + rn] + (1− p)p2

[
2

3
+H(f, g) + rn

]
+ p3 ·A3

=
1

3
+ p (−1 + 1) + p2

(
1− 2 +

2

3
+H(f, g)

)
+ p3

(
−1

3
+ 1− 2

3
−H(f, g) +H(f, g)

)
+ rn

=
1

3
+ p2

(
H(f, g)− 1

3

)
+ rn, (A.9)

where |rn| ≤ Cn
− γ

γ+1 (log n)2 + C

(
(log n)2

n

)(
γ(θ−1)
θ(γ+1)

∧ pγ
γ+1

)
for some constant C > 0.

Recall that ξ(f
(n)
X,Y ) is the population measure of association when X ∼ f

(n)
X , Y ∼ f

(n)
Y ,

and Y |X ∼ f
(n)
Y |X(y|x) ≡ (1− p)f

(n)
Y (y) + pg(y|x). Then

ξ(f
(n)
X,Y )/6 =

∫
E[P(Yn,1 ≥ t|Xn,1)− P(Yn,1 ≥ t)]2f

(n)
Y (t)dt

=

∫ [
(1− p)2VarP(Yn,1 ≥ t) + p2Var (1−G(t|Xn,1))

+ 2p(1− p)Cov(P(Yn,1 ≥ t), 1−G(t|Xn,1))

]
f
(n)
Y (t)dt

=p2
∫

Var (1−G(t|Xn,1))f
(n)
Y (t)dt.

The last equality follows since P(Yn,1 ≥ t) does not depend on Xn,1. By the definition,

H(f, g) =
∫
E((1−G(t|Xn,1))

2)f
(n)
Y (t)dt. Next,∫

(E(1−G(t|Xn,1)))
2f

(n)
Y (t)dt =

∫
(1−F

(n)
Y (t))2f

(n)
Y (t)dt = E(1−F

(n)
Y (Y ))2 =

∫ 1

0
u2du =

1

3
.

This means

6p2
(
H(f, g)− 1

3

)
= 6p2

∫
Var (1−G(t|Xn,1))f

(n)
Y (t)dt = ξ(f

(n)
X,Y ). (A.10)

Plugging (A.9) and (A.10) back into (A.6),

E(
√
nξn)

=− 2
√
n+

6n3/2

n2 − 1

1 +
∑

k ̸=1,N(1)

E
(
E(1(Yn,k ≤ min{Yn,1, Yn,N(1)})|X(n))

)+O(n−1/2)

=− 2
√
n+

6n5/2

n2 − 1

[
1

3
+ p2

(
H(f, g)− 1

3

)
+ 3rn

]
+O

(
1√
n

)
=6

√
np2

(
H(f, g)− 1

3

)
+ 18

√
nrn +O

(
1√
n

)
=
√
nξ(f

(n)
X,Y ) +O(n−1/2) +O(

√
nbn)1(ξ(f

(n)
X,Y ) > 0).

This finishes the proof of part (i) of Theorem 2.1.
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Part (ii). Let µ∗
n and µn be the laws of W ∗

n = (ξ∗n−Eξ∗n)
√

Var (ξ∗n) and
√
n(ξn−Eξn)/

√
2/5.

By Theorem A.1, we have the upper bound

W(µ∗
n, µn) ≤ W2(µ

∗
n, µn) ≲ n−1/2 +

(
ξ(f

(n)
X,Y ) +

√
n log n bn

)1/2
1(ξ(f

(n)
X,Y ) > 0),

where W2 is the Wasserstein-2 distance, and W is the Wasserstein-1 distance defined in
Definition 2.1.

Now if we define µ′
n to be the law of

√
n(ξn − ξ(f

(n)
X,Y ))/

√
2/5, then by part (i) of the

theorem

W(µ∗
n, µ

′
n) ≤

√
n
∣∣∣Eξn − ξ(f

(n)
X,Y )

∣∣∣+W(µ∗
n, µn)

≲n−1/2 +
(
ξ(f

(n)
X,Y ) +

√
n log n bn

)1/2
1(ξ(f

(n)
X,Y ) > 0).

Finally notice that for the standard normal law ν,

D

√
n(ξn − ξ(f

(n)
X,Y ))√

2/5

 =W(µ′
n, ν) ≤ W(µ′

n, µ
∗
n) +W(µ∗

n, ν)

=W(µ∗
n, µ

′
n) +D(W ∗

n)

≲
(
ξ(f

(n)
X,Y ) +

√
n log n bn

)1/2
1(ξ(f

(n)
X,Y ) > 0) + n−1/2,

where we use Theorem A.2 in the last step.

A.2. Proofs from Section 3

A.2.1. Proof of Proposition 3.1

Let us observe that using equation (3.2), the marginal densities ofX and Y under fX,Y,rn(·, ·)
are fX(·) and fY (·) respectively for any rn. Let us define,

FY |X;rn(y|x) :=
y∫

−∞

fX,Y,rn(t, x)

fX(x)
dt (A.11)

and observe that

ξ(fX,Y,rn) = 6

[ ∞∫
−∞

EX [F 2
Y |X;rn

(t|X)] fY (t)dt−
1

3

]
. (A.12)

Let FY (·) be the CDF of Y . Next, note that (A.11) implies:

FY |X;rn(t|x) = (1− rn)FY (t) + rn

t∫
−∞

gX,Y (x,w)

fX(x)
dw.

Let gX(·) be the marginal density of X under gX,Y (·, ·). By equation (3.2), gX(·) = fX(·).

Since
∞∫

−∞
F 2
Y (t)fY (t) dt =

1
3 , we have that

∞∫
−∞

EX [F 2
Y |X;rn

(t|X)] fY (t)dt = (1− rn)
2 1

3
+ 2rn(1− rn)

∞∫
−∞

FY (t)EX

 t∫
−∞

gX,Y (X,w)

fX(X)
dw

 fY (t) dt
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+ r2n

∞∫
−∞

EX

 t∫
−∞

gX,Y (X,w)

fX(X)
dw

2

fY (t) dt

=
1

3
− 1

3
r2n + r2n

∞∫
−∞

EX

 t∫
−∞

gX,Y (X,w)

fX(X)
dw

2

fY (t) dt.

=
1

3
+

r2n
6

−2 +

∞∫
−∞

EX

 t∫
−∞

gX,Y (X,w)

gX(X)
dw

2

fY (t) dt


=

1

3
+

r2nξ(gX,Y )

6
.

Plugging the above display in (A.12) completes the proof.

A.2.2. Proof of Proposition 3.2

Let (X ′, Y ′, Z ′) d
= (X,Y, Z) where (X ′, Y ′, Z ′) is independent of (X,Y, Z) and (X,Y, Z) be

drawn according the distribution defined by equation (3.9) with σ ≡ σn.

Let us observe that

ξ(fX,Y,σn) = −2 + 6EY ′EX

[
P(Y ≤ Y ′|X,Y ′)

]2
= −2 + 6EX′,Z′EX

[
P(Y ≤ g(X ′) + σnZ

′|X,X ′, Z ′)
]2

. (A.13)

Under equation (3.9), it is easy to check that

P2(Y ≤ g(X ′) + σnZ
′|X,X ′, Z ′) = Φ2

(
Z ′ +

g(X ′)− g(X)

σn

)
, (A.14)

where Φ(·) is the CDF of N(0, 1). All the derivatives of Φ2(·) are uniformly bounded. Using
this fact with a standard Taylor series expansion, we get that, for any x, x′, z′, we get:

Φ2(z′+σ−1
n (g(x′)−g(x))) = Φ2(z)+2σ−1

n Φ(z)ϕ(z)(g(x′)−g(x))+
σ−2
n

2

[
2ϕ2(z)(g(x′)−g(x))2

+ 2Φ(z)ϕ′(z)(g(x′)− g(x))2
]
+O(σ−3

n |g(x′)− g(x)|3), (A.15)

where ϕ(·) is the density of the N(0, 1) distribution. By combining (A.13) and (A.14), we
have,

√
n ξ(fX,Y,σn) = −2 + 6

√
nEX′,Z′EXΦ2

(
Z ′ +

g(X ′)− g(X)

σn

)
= 6

√
nσ−2

n EX,X′

{
g(X)− g(X ′)

}2
EZ′

[
ϕ2(Z ′) + Φ(Z ′)ϕ′(Z ′)

]
+O(

√
nσ−3

n )

= 6× 2
√
nσ−2

n Var(g(X))× 1

4
√
3π

+O(
√
nσ−3

n )

= (
√
3n/π)σ−2

n Var(g(X)) +O(
√
nσ−3

n ).
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A.2.3. Proof of Proposition 3.3

Let us begin by observing that the joint density of (X,Y ) is given by

fX,Y,∆n(x, y) =
1

(1−∆2
n)

f1

(
x−∆ny

1−∆2
n

)
f2

(
y −∆nx

1−∆2
n

)
.

Let (X ′, Y ′) d
= (X,Y ) where (X ′, Y ′) is independent of (X,Y ) and (X,Y ) is drawn according

to (3.12) with ∆ ≡ ∆n. Notice that

ξ(fX,Y,∆n)/6 = EY ′∼Y EX

[
P(Y ≤ Y ′|X,Y ′)− P (Y ≤ Y ′|Y ′)

]2
(A.16)

Under the rotation model (3.12) for any t,

P(Y ≤ t|X)− P(Y ≤ t) =:

t∫
−∞

A(x, y,∆n)dy

∞∫
−∞

A(x, y,∆n)dy

− 1

1−∆2
n

t∫
−∞

∞∫
−∞

A(x, y,∆n)dxdy (A.17)

where A(x, y,∆n) = f1

(
x−∆ny
1−∆2

n

)
f2

(
y−∆nx
1−∆2

n

)
=: f1(h1(x, y,∆n))f2(h2(x, y,∆n)) . Without

loss of generality, we can assume |∆n| ≤ ϵ where ϵ is as specified in Assumption (A3), part
3 from Section 3.3. Next, by Taylor expansion around 0, we have

f1

(
x−∆ny

1−∆2
n

)
=f1(x)− yf ′

1(x)∆n +

(
y2 · ∂2

∂θ2
f1(h1(x, y, θ))

∣∣
θ=ξ

+ 2x
∂

∂θ
f1(h1(x, y, θ))

∣∣
θ=ξ

)
∆2

n

f2

(
y −∆nx

1−∆2
n

)
=f2(y)− xf ′

2(y)∆n +

(
x2 · ∂2

∂θ2
f2(h2(x, y, θ))

∣∣
θ=ξ′

+ 2y
∂

∂θ
f2(h2(x, y, θ))

∣∣
θ=ξ′

)
∆2

n

for some ξ, ξ′ ∈ [−ϵ, ϵ]. Multiplying the last two equations, we have

A(x, y,∆n) =: f1(x)f2(y)−∆n(xf1(x)f
′
2(y) + yf ′

1(x)f2(y)) + ∆2
ng(x, y,∆n),

which implies (since
∫
xf1(x)dx =

∫
yf2(y)dy = 0)

t∫
−∞

A(x, y,∆n)dy =f1(x)F2(t)−∆n[xf1(x)f2(t) + f ′
1(x)J(t)] + ∆2

n

t∫
−∞

g(x, y,∆n)dy,

∞∫
−∞

A(x, y,∆n)dy =f1(x) + ∆2
n

∞∫
−∞

g(x, y,∆n)dy,

t∫
−∞

∞∫
−∞

A(x, y,∆n)dxdy =F2(t) + ∆2
n

t∫
−∞

∞∫
−∞

g(x, y,∆n)dxdy. (A.18)

We define G(x, t,∆n) :=
t∫

−∞
g(x, y,∆n)dy. We also observe that the marginal density of X,

say fX,∆n(·), satisfies the following:

fX,∆n(x) =
1

1−∆2
n

∞∫
−∞

A(x, y,∆n)dy
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Then by (A.16), (A.17) and (A.18) we now have

ξ(f
(n)
X,Y )/6 =

∫ ∫ [
−∆n(xf1(x)f2(t) + f ′

1(x)J(t)) + ∆2
ng2(x, t,∆n)

]2
f1(x) + ∆2

nG(x,∞,∆n)
dxfY,∆n(t)dt

where fY,∆n(·) is the marginal density of Y and

g2(x, t,∆n) :=G(x, t,∆n)− f1(x)F2(t)

∫
G(x, t,∆n)dx− F2(t)G(x, t,∆n)

+ ∆2
nF2(t)G(x, t,∆n)

∫
G(x, t,∆n)dx.

Next, let us observe that G(x, t,∆n) can be written as a sum of

(
∂k

∂uk
f1(u)|u|l

)
for k ∈

{0, 1, 2} and ℓ ∈ {0, 1, 2, 3}. It can be checked using Assumption (A3) from Section 3.3, that
this implies

∫
g2(x, t,∆n)

2/f1(x)dx ≲ 1.

We now expand the square above (and use the Cauchy-Schwarz inequality for the cross
terms) to obtain

ξ(f
(n)
X,Y )/6 = ∆2

n

∫ ∫
(xf1(x)f2(t) + f ′

1(x)J(t))

f1(x)
dxfY,∆n(t)dt+O(∆3

n).

Moreover, the marginal fY,∆n(y) under the alternative can be written, by a similar Taylor
expansion, as

fY,∆n(y) =
1

1−∆2
n

∞∫
−∞

A(x, y,∆n)dx = f2(y) + ∆2
n

∞∫
−∞

g(x, y,∆n)dx.

Consequently,

ξ(f
(n)
X,Y )/6 = ∆2

n

∫ ∫
(xf1(x)f2(t) + f ′

1(x)J(t))
2

f1(x)
dxfY,∆n(t)dt+O(∆3

n)

=∆2
n

∫ ∫
x2f1(x)

2f2(t)
2 + (f ′

1(x))
2(J(t))2 + 2xf1(x)f2(t)f

′
1(x)J(t)

f1(x)
dxf2(t)dt+O(∆3

n).

(A.19)

It is not hard to see that∫ ∫
x2f1(x)

2f2(t)
2

f1(x)
dxf2(t)dt =(EU2)E(f2(V )2) = E(f2(V )2),∫ ∫

(f ′
1(x))

2J2(t)

f1(x)
dxf2(t)dt =I(f1)E(J2(V )),

and finally

∞∫
−∞

∞∫
−∞

xf ′
1(x)f2(t)J(t)dxf2(t)dt =

∞∫
−∞

J(t)f2
2 (t)dt×

∞∫
−∞

xf ′
1(x)dx = −E(J(V )f2(V )).
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Plugging these back into (A.19) finishes the proof.

Next, in Appendix B, we prove the theorems as stated in Section 4 above, and state
some technical results required in the process. In Appendix C, we prove Theorems A1 and
A2 from Appendix A. Finally in Appendix D, we present the proofs of the technical lemmas
used to prove the theorems in the Appendix A as well as those in Sections B and C.

Appendix B: Proofs from Section 4

B.1. Proof of Proposition 4.1

Let (X2, Y2) be generated independently of (X1, Y1) and with the same distribution. Note
that it suffices to show that

J := E(X1,Y1), Y2
[P(Y1 ≤ Y2|X1, Y2)]

2

is a strictly increasing function of |ρ|, r and σ−1 in parts (1), (2) and (3) respectively.

Part (1). Clearly, by replacing X1, Y1, and Y2 by (X1 − µ1)/σ1, (Y1 − µ2)/σ2, and
(Y2 − µ2)/σ2, J does not change. Consequently we can assume without loss of generality
µ1 = µ2 = 0 and σ1 = σ2 = 1. In the sequel, we will use Φ(·) and ϕ(·) to denote the
probability distribution function and the probability density function of the standard normal
distribution. With this in view, note that

J =

∫
x

∫
t
Φ2

(
t− ρx√
1− ρ2

)
ϕ(t)ϕ(x) dt dx

=
√
1− ρ2

∫
x

∫
z
Φ2(z)ϕ

(
ρx+

√
1− ρ2z

)
ϕ(x) dz dx

[
Put z =

t− ρx√
1− ρ2

]

=

√
1− ρ2

2π

∫
x

∫
z
Φ2(z) exp

(
−1

2

(
ρ2x2 + z2(1− ρ2) + 2zxρ

√
1− ρ2

))
exp

(
−x2

2

)
dz dx

=

√
1− ρ2

2π

∫
z
Φ2(z) exp

(
−z2

2
· 1− ρ2

1 + ρ2

)∫
x
exp

−1 + ρ2

2

(
x+

2ρ
√

1− ρ2√
1 + ρ2

)2
 dx dz

=
1√
2πρ0

∫
Φ2(z) exp

(
− z2

2ρ20

)
dz

[
Define ρ0 :=

1 + ρ2

1− ρ2

]
=

∫
z>0

(
Φ2(ρ0z) + Φ2(−ρ0z)

)
ϕ(z) dz. (B.1)

By differentiating the above with respect to ρ0, we get from (B.1) that:

d

dρ0
J =

∫
z>0

z(2Φ(ρ0z)− 1)ϕ(ρ0z)ρ(z) dz > 0,

which implies that J is a strictly increasing function of ρ0 which in turn, is a strictly
increasing function of |ρ|, thereby completing the proof.

Part (2). Note that Y1, Y2
i.i.d.∼ fY (·) and X1 ∼ fX(·) for all r ∈ [0, 1]. Here, FY (·) and

fX(·) are probability densities, and we will write FY (·) and FX(·) to denote the correspond-
ing distribution functions. We will write gY |X(·) to denote the conditional density of Y |X
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under gX,Y (·). Therefore,

J =

∫
x

∫
t

(∫ t

−∞

(
(1− r)fY (y) + rgY |X=x(y)

)
dy

)2

fY (t)fX(x) dt dx

=

∫
t
F 2
Y (t)fY (t) + 2r

∫
t

∫ t

−∞

(∫
x
(gY |X=x(y)− fY (y))fX(x) dx

)
fY (t) dy dt

+ r2
∫
x

∫
t

(∫ t

−∞
(gY |X=x(y)− fY (y)) dy

)2

fY (t)fX(x) dt dx

=
1

3
+ r2

∫
x

∫
t

(∫ t

−∞
(gY |X=x(y)− fY (y)) dy

)2

fY (t)fX(x) dt dx,

which is clearly a strictly increasing function of r.

Part (3). We write Y2 = g(X2)+σZ2, Z2 ∼ N (0, 1). Further, let F̃X(·) be the probability
distribution function of the random variable g(X2)−g(X1). Observe that F̃X(·) is symmetric
around 0, in the sense that F̃X(t) = 1− F̃X(−t) for all t. By simple computations, we then
have:

J = EΦ2

(
Z2 +

g(X2)− g(X1)

σ

)
=

∫
z

∫
x
Φ2
(
z +

x

σ

)
ϕ(z) dz dF̃X(x)

Let us define σ0 := σ−1 and take derivative of J with respect to σ0, to get:

d

dσ0
J = 2

∫
z

∫
x
Φ(z + σ0x)ϕ(z + σ0x)ϕ(z)x dz dF̃X(x)

= 2

∫
z

∫
x>0

Φ(z)ϕ(z)(xϕ(z − σ0x)− xϕ(z + σ0x)) dz dF̃X(x)

= 2

∫
z>0

∫
x>0

(Φ(z)− Φ(−z))ϕ(z)x(ϕ(z − σ0x)− ϕ(z + σ0x)) dz dF̃X(x). (B.2)

Note that for z > 0, we have
Φ(z) > Φ(−z)

and for x, z > 0, we have:

ϕ(z − σ0x)− ϕ(z + σ0x) = exp

(
−1

2

(
z2 + σ2

0x
2
))

(exp(σ0zx)− exp(−σ0zx)) > 0.

Combining the two observations above, with (B.2), we get:

d

dσ0
J > 0

which implies J is a strictly increasing function of σ0 and consequently a strictly decreasing
function of σ.
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B.2. Proof of Theorem 4.1

Part (i). Consider (X ′
1, Y

′
1), . . . , (X

′
n, Y

′
n)

i.i.d.∼ f
(n)
X,Y . Let ξ

i
n be Chatterjee’s correlation coef-

ficient defined with (Xi, Yi) replaced by (X ′
i, Y

′
i ). By the same argument as in [15, Lemma

9.11], |ξn − ξin| ≤ 6n−1. We apply the bounded differences inequality [51] to get:

P(|ξn − Eξn| ≥ t) ≤ 2 exp

(
−nt2

18

)
.

Also by Theorem 2.1, there exists N0 depending only on Γ = (C, η, θ, γ) from Assumptions
(A1) and (A2) in the main paper, such that

√
n|Eξn − ξ(f

(n)
X,Y )| ≤

1

2

for all n ≥ N0. Define K := 1+ 5
√

log (2/α). Combining the two displays above, under H0,
we get:

PH0(
√
n|ξn − ξ0| ≥ K) ≤ PH0(

√
n|ξn − EH0ξn| ≥ 5

√
log (2/α)) ≤ α

for all n ≥ N0.

Next note that, by the triangle inequality, for all f
(n)
X,Y ∈ Hloc

1,n(cn; Γ), we have:

√
n|ξn − ξ0| ≥

√
ncn −

√
n|ξn − EH1,nξn| −

√
n|EH1,nξn − ξ0|.

As
√
ncn → ∞ and the other two terms are Op(1) and O(1) from the preceding displays,

we have
βϕn(H

loc
1,n(cn; Γ)) → 1 as n → ∞.

Part (ii). The proof of this result will use Le Cam’s two-point method; see [64, Chapter
2]. Towards this direction, let fX,Y (·, ·) be a joint distribution on R2, with marginals fX(·)
and fY (·) such that the following conditions hold:

• ξ(fX,Y ) = ξ0.

• fX,Y (·, ·) satisfies Assumptions (A1) and (A2) in the main paper with paramers
C, η, θ, γ given in the problem statement.

• fX,Y (·, ·) is compactly supported on [−1, 1]2 and is uniformly upper and lower bounded
on [−1, 1]2.

This can be easily ensured by choosing fX,Y (·, ·) to be a truncated bivariate Gaussian with
appropriate parameters depending on C, η, θ, γ. Fix {rn}n≥1 and define

f
(n)
X,Y (·, ·) = (1− rn)fX,Y (·, ·) + rnfX(·)fY (·),

where rn ∈ (0, 1). Note that f
(n)
X,Y also satisfies Assumptions (A1) and (A2) with the same

parameters. It then suffices to show the following:

(1). For all n large enough and some c1 > 0, we have
∣∣∣ξ(f (n)

X,Y )− ξ0

∣∣∣ ≥ c1rn.

(2). For all n large enough and some c2 > 0, we have KL
(
⊗n f

(n)
X,Y || ⊗n fX,Y

)
≤ c2nr

2
n.

Here KL(p||q) denotes the Kullback-Leibler divergence between probability measures
p and q, and ⊗n denotes the n-fold product measure.
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Proof of 1. Let F
(n)
Y |X(·|X) and FY |X(·|X) denote the conditional distribution functions

of Y |X under f
(n)
X,Y and fX,Y respectively. Also, let FY (·) be the distribution function of Y .

Then the following holds:

ξ(f
(n)
X,Y ) (B.3)

= 6

∫
E[F (n)

Y |X(t|X)]2fY (t) dt− 2

= 6

∫
E[FY |X(t|X) + rn(FY (t)− FY |X(t|X))]2fY (t) dt− 2

= ξ0 + 2rn

∫ (
E[FY (t)]

2 − E[FY |X(t|X)]2
)
fY (t) dt︸ ︷︷ ︸

D

+r2n

∫
E
(
FY (t)− FY |X(t|X)

)2
fY (t) dt︸ ︷︷ ︸

E

.

(B.4)

Note that, by the conditional version of Jensen’s inequality

E[FY (t)]
2 ≤ E[FY |X(t|X)]2 for all t ∈ R.

As ξ0 > 0, this implies X and Y are not independent (see [15, Theorem 1.1]) and conse-
quently, the above display implies D < 0. For the same reason E > 0. By replacing rn by
crn for a small constant c if necessary, we can ensure

rn ≤ |D|
E

.

Combining the above display with (B.3), we get∣∣ξ(f (n)
X,Y )− ξ0| ≥ 2rn|D| − r2nE ≥ rn|D|.

This proves 1.

Proof of 2. As KL(⊗np||⊗n q) = nKL(p||q), it suffices to show that KL(f
(n)
X,Y ||fX,Y ) ≤ r2n.

Towards this direction, note that

KL(f
(n)
X,Y ||fX,Y )

=

∫
[fX,Y (x, y) + rn(fX(x)fY (y)− fX,Y (x, y))] log

fX,Y (x, y) + rn(fX(x)fY (y)− fX,Y (x, y))

fX,Y (x, y)
dx dy

(a)
=

∫
[fX,Y (x, y) + rn(fX(x)fY (y)− fX,Y (x, y))]

(
rn

fX(x)fY (y)− fX,Y (x, y)

fX,Y (x, y)

)
+O(r2n)

≤ c2r
2
n,

where (a) follows from a Taylor Series expansion and c2 depends on the parameters of
fX,Y (·, ·). This proves 2.

Appendix C: Proofs of Theorems A.1 and A.2

C.1. Proof of Theorem A.1

We consider a triangular array (Xn,1, Yn,1), . . . , (Xn,n, Yn,n) from a bivariate density

f
(n)
X,Y (·, ·). We shall show that

max

{∣∣∣∣nVar (ξ∗n)− 2

5

∣∣∣∣, ∣∣∣∣nVar (ξn)− 2

5

∣∣∣∣, ∣∣∣∣nCov(ξ∗n, ξn)− 2

5

∣∣∣∣}
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≲
1

n
+ ξ(f

(n)
X,Y ) +

√
n log n bn1(ξ(f

(n)
X,Y ) > 0) (C.1)

for bn := n
− γ

γ+1 (log n)2 +

(
(log n)2

n

)(
γ(θ−1)
θ(γ+1)

∧ ηγ
γ+1

)
.

By the standard Glivenko-Cantelli Theorem, we know that F̂n(·) and F
(n)
Y (·) are “close”

almost surely in the L∞ norm. This motivates the definition of an oracle version of ξn (see
Section 2 in the main paper) as follows:

ξ∗n :=
3n

n2 − 1

 1

n

∑∑
i ̸=j

∣∣∣F (n)
Y (Yn,i)− F

(n)
Y (Yn,j)

∣∣∣− n∑
i=1

∣∣∣F (n)
Y (Yn,(i+1))− F

(n)
Y (Yn,(i))

∣∣∣
 .

(C.2)
Intuitively, of course, ξ∗n is mathematically more tractable than ξn as it replaces the random

function F̂n(·) by the deterministic function F
(n)
Y (·).

Let N(i) ∈ {j ∈ [n] : Rank(Xn,j) = Rank(Xn,i) + 1} be the unique index j such that
Xn,j is immediately to the right of Xn,i when Xn,i’s are arranged in increasing order. If
there are no such indices for some i, set the corresponding N(i) = 1. Let us define

ξ′n :=
6

n2 − 1

n−1∑
i=1

min{Ri, RN(i)},

ξ∗′n :=
6n

n2 − 1

 n∑
i=1

min{F (n)
Y (Yn,i), F

(n)
Y (Yn,N(i))} −

1

n

∑∑
i ̸=j

min{F (n)
Y (Yn,i), F

(n)
Y (Yn,j)}

 .

(C.3)

Here and in the rest of the supplement, we remove the subscript n in Rn,i and write Ri for
notational convenience.

Since {Ri} and {RN(i)} form two permutations of [n], we have that
∑

Ri =
∑

RN(i) =
n(n− 1)/2. Then using the simple identity |a− b| = a+ b− 2min{a, b}, one can check that

nE(ξ∗n − ξ∗′n )
2 ≲ n−1 and nE(ξn − ξ′n)

2 ≲ n−1.

Therefore it suffices to prove (C.1) with ξ′n and ξ∗′n instead of ξn and ξ∗n respectively. Define
X(n) := (Xn,1, . . . , Xn,n). Conditioning on X(n), we have

Var (ξ∗′n ) = E(Var (ξ∗′n |X(n))) + Var (E(ξ∗′n |X(n))), Var (ξ′n) = E(Var (ξ′n|X(n))) + Var (E(ξ′n|X(n)))

Cov(ξ′n, ξ
∗′
n ) = E(Cov(ξ′n, ξ∗′n |X(n)))+Cov(E(ξ′n|X(n)),E(ξ∗′n )|X(n)).

We now decompose each of the six terms on the right hand side, starting with the three
expectation of covariance terms. To analyze the first term, that is, E(Var (ξ∗′n |X(n))), let us
introduce the following notations.

T ∗
1 :=

1

n

∑
i

Var(min{F (n)
Y (Yn,i), F

(n)
Y (Yn,N(i))}|X(n))

T ∗
2 :=

1

n

∑
i

Cov(min{F (n)
Y (Yn,i), F

(n)
Y (Yn,N(i))},min{F (n)

Y (Yn,N(i)), F
(n)
Y (Yn,N(N(i)))}|X(n))
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T ∗
3 :=

1

n3

∑∑∑
(i,j,l) distinct

Cov(min{F (n)
Y (Yn,i), F

(n)
Y (Yn,j)},min{F (n)

Y (Yn,i), F
(n)
Y (Yn,l)}|X(n))

T ∗
4 :=

1

n2

∑∑∑
(i,j,N(i)) distinct

Cov(min{F (n)
Y (Yn,i), F

(n)
Y (Yn,j)},min{F (n)

Y (Yn,i), F
(n)
Y (Yn,N(i))}|X(n))

T ∗
5 :=

1

n2

∑∑∑
(i,j,N(i)) distinct

Cov(min{F (n)
Y (Yn,N(i)), F

(n)
Y (Yn,j)},min{F (n)

Y (Yn,i), F
(n)
Y (Yn,N(i))}|X(n))

T ∗
6 :=

1

n3

∑∑∑∑
(i,j,k,l) distinct

Cov(min{F (n)
Y (Yn,i), F

(n)
Y (Yn,j)},min{F (n)

Y (Yn,k), F
(n)
Y (Yn,l)}|X(n))

T ∗
7 :=

1

n2

∑∑∑∑
(i,j,k,N(k)) distinct

Cov(min{F (n)
Y (Yn,i), F

(n)
Y (Yn,j)},min{F (n)

Y (Yn,k), F
(n)
Y (Yn,N(k))}|X(n))

T ∗
8 :=

1

n3

∑∑∑∑
(i,j,N(i),N(j)) distinct

Cov(min{F (n)
Y (Yn,i), F

(n)
Y (Yn,N(i))},min{F (n)

Y (Yn,j),

F
(n)
Y (Yn,N(j))}|X(n)) (C.4)

Let us define
T ∗
j,ind := the value of T ∗

j when X, Y are independent , (C.5)

and the corresponding deviation terms:

Q∗
j := T ∗

j − T ∗
j,ind. (C.6)

Through an explicit calculation of the Tj,ind’s, it follows that

T ∗
1 =

1

18
+Q∗

1, T ∗
2 =

1

45
+Q∗

2,

T ∗
3 =

1

45
+Q∗

3, T ∗
4 =

1

45
+Q∗

4,

T ∗
5 =

1

45
+Q∗

5, T ∗
6 = 0,

T ∗
7 = 0, T ∗

8 = 0,

where the last three equations follow once again by the fact that conditional on X(n) the
random variables Yn,1, . . . , Yn,n are independent. Now, we observe that

(n2 − 1)2

36n3
Var(ξ∗′n |X(n)) = T ∗

1 + 2T ∗
2 + 4T ∗

3 − 4T ∗
4 − 4T ∗

5 + T ∗
6 − 2T ∗

7 + T ∗
8 +O(n−1). (C.7)

Hence, to bound the absolute value of (n2−1)2

36n3 Var(ξ∗′n |X(n)), we need to bound the Q∗
i s. To

bound the Q∗
i ’s stochastically, we shall use the following lemma, which is proved in Ap-

pendix D.1.

Lemma C.1. max{E|Q∗
1| , . . . , E|Q∗

5|} ≲ n−1 + ξ(f
(n)
X,Y ) + bn1(ξ(f

(n)
X,Y ) > 0).

Using Lemma C.1, adding the equations in (C.4) and taking expectation over X(n), we
have ∣∣∣∣nEVar (ξ∗′n |X(n))− 2

5

∣∣∣∣
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=

∣∣∣∣36E(T ∗
1 + 2T ∗

2 + 4T ∗
3 − 4T ∗

4 − 4T ∗
5 + T ∗

6 − 2T ∗
7 + T ∗

8 )−
2

5

∣∣∣∣+O(n−1)

=36 |E(Q∗
1 + 2Q∗

2 + 4Q∗
3 − 4Q∗

4 − 4Q∗
5)|+O(n−1)

≲n−1 + ξ(f
(n)
X,Y ) + bn1(ξ(f

(n)
X,Y ) > 0). (C.8)

Moving on to E(Var (ξ∗′n |X(n))) we notice that

min{Ri, RN(i)} =
n∑

k=1

1(Yn,k ≤ min{Yn,i, Yn,N(i)}) = 1+
∑

k ̸=i,N(i)

1(Yn,k ≤ min{Yn,i, Yn,N(i)}).

Let us now define the following notation.

T1 :=
n

(n2 − 1)2

n−1∑
i=1

Var (min{Ri, RN(i)|X(n)})

=P(Yn,1 ≤ min{Yn,3, Yn,4}, Yn,2 ≤ min{Yn,3, Yn,4})
− P(Yn,1 ≤ min{Yn,3, Yn,4})P(Yn,2 ≤ min{Yn,3, Yn,4}) +Q1

=
1

18
+Q1, (C.9)

T2 :=
n

(n2 − 1)2

n−1∑
i=1

Cov(min{Ri, RN(i)}, min{RN(i), RN(N(i))}|X(n))

=P(Yn,1 ≤ min{Yn,3, Yn,4}, Yn,2 ≤ min{Yn,4, Yn,5})
− P(Y1 ≤ min{Y3, Y4})P(Y2 ≤ min{Y4, Y5}) +Q2

=
1

45
+Q2, (C.10)

T3 :=
n

(n2 − 1)2

∑
i

∑
j ̸=i

∑
l ̸=i,j,

N(i),N(j)

Cov(1(Yn,l ≤ min{Yn,i, Yn,N(i)}),1(Yn,l ≤ min{Yn,j , Yn,N(j)})|X(n))

=P(Yn,1 ≤ min{Yn,2, Yn,3}, Yn,1 ≤ min{Yn,4, Yn,5})
− P(Yn,1 ≤ min{Yn,2, Yn,3})P(Yn,1 ≤ min{Yn,4, Yn,5}) +Q3

=
4

45
+Q3, (C.11)

T4 :=
n

(n2 − 1)2

∑
i

∑
j ̸=i

∑
l ̸=j,N(j)

Cov(1(Yn,j ≤ min{Yn,i, Yn,N(i)}),1(Yn,l ≤ min{Yn,j , Yn,N(j)})|X(n))

=P(Yn,1 ≤ min{Yn,2, Yn,3}, Yn,4 ≤ min{Yn,1, Yn,5})
− P(Yn,1 ≤ min{Yn,2, Yn,3})P(Yn,4 ≤ min{Yn,1, Yn,5}) +Q4,

=− 2

45
+Q4. (C.12)

T5 :=
n

(n2 − 1)2

×
∑
i

∑
j

∑
k

∑
l

i,j,k,l,N(i),N(j) distinct

Cov(1(Yn,k ≤ min{Yn,i, Yn,N(i)}),1(Yn,l ≤ min{Yn,j , Yn,N(j)})|X(n))

= 0, (C.13)
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where Qj ’s are defined in a way similar to (C.5)-(C.6). More explicitly, let

Tj,ind be the value of Tj when X, Y are independent. (C.14)

and
Qj := Tj − Tj,ind. (C.15)

When conditioned on X(n), the variables N(1), . . . , N(n) are measurable. Using this obser-
vation, some straightforward but tedious calculation then yields

n

36
Var (ξ′n|X(n)) = T1 + 2T2 + T3 + 4T4 + T5 +O(n−1).

We have (C.13) because, conditioned on X(n), the random variables Yn,1, . . . , Yn,n are in-
dependent. To bound the Qi’s stochastically, we shall use the following lemma, which is
proved in Appendix D.2.

Lemma C.2. max{E|Q1|, E|Q2|, E|Q3|, E|Q4|} ≲ n−1 + ξ(f
(n)
X,Y ) + bn1(ξ(f

(n)
X,Y ) > 0).

Using Lemma C.2, adding equations (C.9)-(C.13) and taking expectation over X(n) we
have ∣∣∣∣nEVar (ξ′n|X(n))− 2

5

∣∣∣∣ =∣∣∣∣36E(T1 + 2T2 + T3 + 4T4 + T5)−
2

5

∣∣∣∣+O(n−1)

=36 |E(Q1 + 2Q2 +Q3 + 4Q4)|+O(n−1)

≲n−1 + ξ(f
(n)
X,Y ) + bn1(ξ(f

(n)
X,Y ) > 0). (C.16)

Similarly, we can also prove∣∣∣∣nE(Cov(ξ′n, ξ∗′n |X(n)))− 2

5

∣∣∣∣ ≲ n−1 + ξ(f
(n)
X,Y ) + bn1(ξ(f

(n)
X,Y ) > 0). (C.17)

We now move on to the ‘variance of expectation’ terms. We begin with the following lemma
which is proved in Appendix D.3.

Lemma C.3. Suppose f
(n)
X,Y (·, ·) satisfies Assumptions (A1) and (A2) in the main paper.

Then,

max{Var(E[
√
nξ′n|X(n)]), Var(E[

√
nξ∗′n |X(n)])} ≲ n−1+ξ(f

(n)
X,Y )+

√
n log nbn1(ξ(f

(n)
X,Y ) > 0).

By the Cauchy-Schwarz inequality, the same upper bound holds for
Cov(E(ξ′n|X(n)), E(ξ∗′n |X(n))). Putting together equations (C.16), (C.8), (C.17), Lemma C.3
and finally (C.3), the proof of (C.1) is complete.

C.2. Proof of Theorem A.2

Recall that X(n) = (Xn,1, . . . , Xn,n). Also, recall that N(i) = {j ∈ [n] : Rank(Xn,j) =
Rank(Xn,i) + 1} is the unique index j such that Xn,j is immediately to the right of Xn,i
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when the Xn,i’s are arranged in increasing order. If there are no such indices for some i, set
the corresponding N(i) = 1. We shall use the oracle statistic ξ∗n defined as

ξ∗n =
3n

n2 − 1

 1

n

∑∑
i ̸=j

∣∣∣F (n)
Y (Yn,i)− F

(n)
Y (Yn,j)

∣∣∣− n∑
i=1

∣∣∣F (n)
Y (Yn,i)− F

(n)
Y (Yn,N(i))

∣∣∣


=
3

n(n− 1)

∑∑
i ̸=j

∣∣∣F (n)
Y (Yn,i)− F

(n)
Y (Yn,j)

∣∣∣− 3

n

n∑
i=1

∣∣∣F (n)
Y (Yn,i)− F

(n)
Y (Yn,N(i))

∣∣∣+O(n−1).

(C.18)

By the U-statistic projection theorem (see Theorem 12.3 of [65]),

√
n

 1(
n
2

)∑
i<j

{
|F (n)

Y (Yn,i)− F
(n)
Y (Yn,j)| − E|F (n)

Y (Yn,i)− F
(n)
Y (Yn,j)|

}
=

2√
n

n∑
i=1

h(Yn,i) +O(n−1/2) (C.19)

where h(y) := E|F (n)
Y (y)−U | −E|U1 −U2| with U,U1, U2 being i.i.d Uniform (0, 1) random

variables. Combining equations (C.18) and (C.19) we have

√
n(ξ∗n − Eξ∗n)

=
3√
n

n∑
i=1

{
2h(Yn,i)− |F (n)

Y (Yn,i)− F
(n)
Y (Yn,N(i))|+ E|F (n)

Y (Yn,i)− F
(n)
Y (Yn,N(i))|

}
+O(n−1/2)

=Sn +O(n−1/2), (C.20)

where

Sn =
3√
n

n∑
i=1

{
2h(Yn,i)−|F (n)

Y (Yn,i)−F
(n)
Y (Yn,N(i))|+E|F (n)

Y (Yn,i)−F
(n)
Y (Yn,N(i))|

}
. (C.21)

In the rest of the proof, we will study the asymptotic distribution of Sn. Let us define
Wn := Sn/

√
Var (Sn) and W ∗

n :=
√
n(ξ∗n − Eξ∗n)/

√
Var (ξ∗n). Using the standard properties

of the Wasserstein-1 distance (same as the Kantorovic-Wasserstein distance in Definition
1.1 of the main paper) and (C.20) we get

D(W ∗
n) ≤ D(Wn) + Cn−1/2. (C.22)

Now we proceed to bound D(Wn). Let us define

M := {(Xn,1, Yn,1), · · · , (Xn,n, Yn,n)} and M′ := {(X ′
n,1, Y

′
n,1), · · · , (X ′

n,1, Y
′
n,n)},

where M and M′ are independent and identically distributed. Let

Mi :=
{
(Xn,1, Yn,1), · · · , (X ′

n,i, Y
′
n,i), · · · , (Xn,n, Yn,n)

}
and Mij :=

{
(Xn,1, Yn,1), · · · , (X ′

n,i, Y
′
n,i), · · · , (X ′

n,j , Y
′
n,j), · · · , (Xn,n, Yn,n)

}
.
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Let us define Wℓ : (R2)n → R as,

Wℓ((x1, y1), · · · , (xn, yn)) := 3 [2h(yℓ)−|F (n)
Y (yℓ)−F

(n)
Y (yN(ℓ))|+E|F (n)

Y (yℓ)−F
(n)
Y (yN(ℓ))|].

(C.23)

By graphical rule on a measure space X n we mean a mapping from X n to the space of
undirected graphs on n vertices. For x ∈ X n, the graphical rule at x will be denoted by
G(x). Such graphical rules will be called symmetric if for any permutation π on [n], the edges
in G(xπ(1), · · · , Gπ(n)) will precisely be {(π(i), π(j)) : (i, j) ∈ E(G(x))}. This definition is in
line with Section 2.3 of [14]. As defined in Section 2.3 of [14], we also consider the definition
of a vector x ∈ X n being embedded in a vector y ∈ Xm for m > n. For a function f defined
on X n, we shall call indices the i and j non interacting with respect to the triplet (f,x,x′)
if

f(x)− f(xj) = f(xi)− f(xij),

where

xik =

{
xk if k ̸= i,

x′i if k = i,

and

xijk =

{
xk if k ∈ {i, j}
x′k if k ∈ {i, j}.

A graphical rule is called an interaction rule for a function f if the edge (i, j) is absent in
all of G(x), G(xi), G(xj) and G(xij) implies the pair (i, j) is non-interacting with respect
to the triplet (f,x,x′).

Now let us consider the measure space X = R2. For x ∈ X n, let us define the following
distance of {1, · · · , n}.

Dx(i, j) :=

{
n+ 20 if xi > xj

#
{
ℓ : xi < xℓ < xj

}
if xi ≤ xj .

(C.24)

Given a configuration x ∈ X n, let us define a graph G(x) on [n] as follows. For a pair {i, j},
there exist an edge between i and j if there exists an ℓ ∈ [n] such that,

Dx(ℓ, i) ≤ 2 and Dx(ℓ, j) ≤ 2.

Note that this graphical rule is a symmetric rule. The next lemma shows that this is an
interaction rule for the function Wℓ for all 1 ≤ ℓ ≤ n, and has been proved in Appendix D.4.

Lemma C.4. Consider the graphical rule G(x) for x ∈ (R2)n, as defined above. For any
pair of vertices i, j if there exists no edge {i, j} in G(x),G(xi),G(xj) and G(xij), then for
all 1 ≤ ℓ ≤ n, we have,

Wℓ(x)−Wℓ(x
i)−Wℓ(x

j) +Wℓ(x
ij) = 0,

where Wℓ is defined in (C.23).

By Lemma C.4, G is a symmetric graphical interaction rule. Let us define

∆j := Sn(M)− Sn(Mj),
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where Sn is defined in (C.21), and Sn(M) is Sn computed with dataset M. Let us define

M := max
j

|∆j |.

Since F
(n)
Y (y) ≤ 1 for all y, we have a constant C > 0 such that for all j ∈ [n],

|∆j | ≤
C√
n

and M ≤ C√
n
. (C.25)

Let us now construct a new graph G′(M) on vertices {1, · · · , n+4} as follows. There exists
an edge between the vertices i and j if and only if there exists an ℓ ∈ [n+ 4] such that,

DM(ℓ, i) ≤ 6 and DM(ℓ, j) ≤ 6.

Clearly all the edges of G(M) are in G′(M), meaning that G(M) is embedded in G′(M).
Moreover, G′(M) is a symmetric graphical rule. The degree of any vertex in G′(M) is
bounded by 14 as if there exists an ℓ ∈ [n] such that,

DM(ℓ, i) ≤ 2 and DM(ℓ, j) ≤ 2,

then i− 7 ≤ j ≤ i+ 7. Hence, almost surely

δ := 1 + degree of vertex 1 in G′ ≤ 15. (C.26)

Now, using Theorem 2.5 of [14], we have an absolute constant C1 > 0 such that

D(Wn) ≤
C1n

1/2

σ∗2
n

E(M8)1/4E(δ4)1/4 +
1

2σ∗3
n

n∑
j=1

E|∆j |3, (C.27)

where,

σ∗2
n = var

(
1√
n

n∑
ℓ=1

Wℓ(M)

)
,

and Wℓ(M) is the function Wℓ computed with the dataset M. The proof of Theorem A.2
is now completed by plugging in the bounds from (C.20), (C.25), and (C.26), into (C.22).

Appendix D: Proofs of Lemmas

D.1. Proof of Lemma C.1

To reduce notation, hide the dependence on n and write fX,Y (·, ·), fX(·), fY (·) and

FY (·) to mean f
(n)
X,Y (·, ·), f

(n)
X (·), f

(n)
Y and F

(n)
Y (·) respectively. We will also write

(X1, Y1), . . . , (Xn, Yn) to mean the random variables (Xn,1, Yn,1), . . . , (Xn,n, Yn,n) ∼ f
(n)
X,Y

from the triangular array.

We defer the steps for T ∗
1 to the proof of Lemma C.2 and start with the possibly more

complicated term T ∗
2 . Observe that for any i, j,

min{F (Yi), F (Yj)} =

∫
1(y ≤ min{Yi, Yj})fY (y) dy. (D.1)
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Using (D.1) in the definition of T ∗
2 and writing Q∗

21 and Q′∗
22 for terms to be bounded at the

end of the proof, we get:

ET ∗
2 =

1

n

n∑
i=1

E
∫
1(y4 ≤ min{y1, y2})1(y5 ≤ min{y2, y3})fY (y4)fY (y5)fY |X(y1|Xi)

fY |X(y2|XN(i))fY |X(y3|XN(N(i))) dy1 dy2 dy3 dy4 dy5

− 1

n

n∑
i=1

E
∫
1(y5 ≤ min{y1, y2})1(y6 ≤ min{y3, y4})fY (y5)fY (y6)fY |X(y1|Xi)

fY |X(y2|XN(i))fY |X(y3|XN(i))fY |X(y4|XN(N(i))) dy1 dy2 dy3 dy4 dy5 dy6

=Q∗
21 +

1

n

n∑
i=1

E
∫
1(y4 ≤ min{y1, y2})1(y5 ≤ min{y2, y3})fY (y4)fY (y5)fY |X(y1|Xi)

fY |X(y2|Xi)fY |X(y3|Xi) dy1 dy2 dy3 dy4 dy5

− 1

n

n∑
i=1

E
∫
1(y5 ≤ min{y1, y2})1(y6 ≤ min{y3, y4})fY (y5)fY (y6)fY |X(y1|Xi)

fY |X(y2|Xi)fY |X(y3|Xi)fY |X(y4|Xi) dy1 dy2 dy3 dy4 dy5 dy6

= Q∗
21 +Q∗

22 + P(Y4 ≤ min{Y1, Y2}, Y5 ≤ min{Y2, Y3})
− P(Y5 ≤ min{Y1, Y2})P(Y6 ≤ min{Y3, Y4})

=
1

45
+Q∗

21 +Q∗
22. (D.2)

In terms of the notation used in the proof of Theorem 2.1 in the main paper, Q∗
2 = Q∗

21+Q∗
22.

We now move on to the error terms Q∗
21 and Q∗

22.

Bound for Q∗
21. Note that by our definition of Q1, one has

|Q∗
21|

=

∣∣∣∣ 1n
n∑

i=1

E
∫
1(y4 ≤ min{y1, y2})1(y5 ≤ min{y2, y3})fY (y4)fY (y5)fY |X(y1|Xi)

fY |X(y2|XN(i))fY |X(y3|XN(N(i))) dy1 dy2 dy3 dy4 dy5

− 1

n

n∑
i=1

E
∫
1(y5 ≤ min{y1, y2})1(y6 ≤ min{y3, y4})fY (y5)fY (y6)fY |X(y1|Xi)

fY |X(y2|XN(i))fY |X(y3|XN(i))fY |X(y4|XN(N(i))) dy1 dy2 dy3 dy4 dy5 dy6

− 1

n

n∑
i=1

E
∫
1(y4 ≤ min{y1, y2})1(y5 ≤ min{y2, y3})fY (y4)fY (y5)fY |X(y1|Xi)

fY |X(y2|Xi)fY |X(y3|Xi) dy1 dy2 dy3 dy4 dy5

+
1

n

n∑
i=1

E
∫
1(y5 ≤ min{y1, y2})1(y6 ≤ min{y3, y4})fY (y5)fY (y6)fY |X(y1|Xi)

fY |X(y2|Xi)fY |X(y3|Xi)fY |X(y4|Xi) dy1 dy2 dy3 dy4 dy5 dy6

∣∣∣∣
≲

1

n

n∑
i=1

E
∫ ∣∣P(Y ≥ max{y4, y5}|Xi)− P(Y ≥ max{y4, y5}|XN(i))

∣∣fY (y4)fY (y5) dy4 dy5
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+
1

n

n∑
i=1

E
∫ ∣∣P(Y ≥ y5|Xi)− P(Y ≥ y5|XN(N(i)))

∣∣fY (y5) dy5
+

1

n

n∑
i=1

E
∫ ∣∣P(Y ≥ y5|Xi)− P(Y ≥ y5|XN(i))

∣∣fY (y5) dy5 +O(n−1). (D.3)

Let us now focus on the first term on the right hand side of (D.3). Towards this direction,
by using Assumption (A1), (2.2) from the main paper, we further get:

E
∫ ∣∣P(Y ≥ max{y4, y5}|X1)− P(Y ≥ max{y4, y5}|XN(1))

∣∣fY (y4)fY (y5) dy4 dy5
≤ E

[
min

{
(1 + L1(X1,max{Y4, Y5}) + L2(XN(1),max{Y4, Y5}))|X1 −XN(1)|η, 1

}]
≲ P(|X1 −XN(1)| ≥ 1) +

{
E
(
1 + (L1(X1,max{Y4, Y5}))θ + (L2(X1,max{Y4, Y5}))θ

)} 1
θ

{
E|X1 −XN(1)|

θη
θ−11(|X1 −XN(1)| ≤ 1)

} θ−1
θ

, (D.4)

where the last two lines follow from Assumption (A1), (2.2) in the main paper and Hölder’s
inequality. Now we will bound each term on the right hand side of (D.4) separately. First
note that,

lim sup
n→∞

E(L(n)
1 (X1,max{Y4, Y5}))2 ≤ 2 lim sup

n→∞
E(L

(n)
1 (X1, Y4))

2 ≲ 1, (D.5)

where the last line follows from Assumption (A2), (2.3) in the main paper. Next, on using [15,
Lemma 9.4] and (D.5), it further follows that,

lim sup
n→∞

E(L(n)
1 (XN(1),max{Y4, Y5}))2 ≲ 1. (D.6)

Using Lemma D.4, we then get:{
E|X1 −XN(1)|

θη
θ−11(|X1 −XN(1)| ≤ 1)

} θ−1
θ ≤

{
E|X1 −XN(1)|

θη
θ−1

∧1
1(|X1 −XN(1)| ≤ 1)

} θ−1
θ

≲

(
(log n)2

n

)(
γ(θ−1)
θ(γ+1)

∧ ηγ
γ+1

)
. (D.7)

Plugging in the conclusions from (D.5), (D.6), and (D.7) into (D.4), we get that the first
term on the right hand side of (D.3) satisfies,

1

n

n∑
i=1

E
∫ ∣∣P(Y ≥ max{y4, y5}|Xi)− P(Y ≥ max{y4, y5}|XN(i))

∣∣fY (y4)fY (y5) dy4 dy5
≤ n

− γ
γ+1 (log n)2 +

(
(log n)2

n

)(
γ(θ−1)
θ(γ+1)

∧ ηγ
γ+1

)
:= bn. (D.8)

By using a similar argument as above, we get the same bound for the other two terms on
the right hand side of (D.3), which implies,

|Q∗
21| ≲ bn.
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Also, from (D.3), provided X1 and Y1 are independent, i.e., ξ(f
(n)
X,Y ) = 0, we also have

R(1) = O(n−1). Therefore,

|Q∗
21| ≲ bn1(ξ(f

(n)
X,Y ) > 0) + n−1. (D.9)

Bound for Q∗
22. We have

Q∗
22 =

1

n

n∑
i=1

E
∫
1(y4 ≤ min{y1, y2})1(y5 ≤ min{y2, y3})fY (y4)fY (y5)fY |X(y1|Xi)

fY |X(y2|Xi)fY |X(y3|Xi) dy1 dy2 dy3 dy4 dy5

− 1

n

n∑
i=1

E
∫
1(y5 ≤ min{y1, y2})1(y6 ≤ min{y3, y4})fY (y5)fY (y6)fY |X(y1|Xi)

fY |X(y2|Xi)fY |X(y3|Xi)fY |X(y4|Xi) dy1 dy2 dy3 dy4 dy5 dy6

− P(Y4 ≤ min{Y1, Y2}, Y5 ≤ min{Y2, Y3}) + P(Y5 ≤ min{Y1, Y2})P(Y6 ≤ min{Y3, Y4}).

Then it can be checked that

|Q∗
22| ≤ |S1|+ 2|S2|+ |S3|+ 2|S4|+ |S5|+ 4|S6|+ 2|S7|+ 4|S8|+ 4|S9|+ |S10|, (D.10)

where

S1 := E
∫
1(y4 ≤ min{y1, y2})1(y5 ≤ min{y2, y3})fY (y4)fY (y5)fY (y1)

(fY |X(y2|X1)− fY (y2))fY (y3) dy1 dy2 dy3 dy4 dy5

S2 := E
∫
1(y4 ≤ min{y1, y2})1(y5 ≤ min{y2, y3})fY (y4)fY (y5)(fY |X(y1|X1)− fY (y1))

fY (y2)fY (y3) dy1 dy2 dy3 dy4 dy5

S3 := E
∫
1(y4 ≤ min{y1, y2})1(y5 ≤ min{y2, y3})fY (y4)fY (y5)(fY |X(y1|X1)− fY (y1))

fY (y2)(fY |X(y3|X1)− fY (y3)) dy1 dy2 dy3 dy4 dy5

S4 := E
∫
1(y4 ≤ min{y1, y2})1(y5 ≤ min{y2, y3})fY (y4)fY (y5)fY (y1)

(fY |X(y2|X1)− fY (y2))(fY |X(y3|X1)− fY (y3)) dy1 dy2 dy3 dy4 dy5

S5 := E
∫
1(y4 ≤ min{y1, y2})1(y5 ≤ min{y2, y3})fY (y4)fY (y5)(fX,Y (y1|X1)− fY (y1))

(fY |X(y2|X1)− fY (y2))(fY |X(y3|X1)− fY (y3)) dy1 dy2 dy3 dy4 dy5

S6 := E
∫
1(y5 ≤ min{y1, y2})1(y6 ≤ min{y3, y4})fY (y5)fY (y6)(fY |X(y1|X1)− fY (y1))

fY (y2)fY (y3)fY (y4) dy1 dy2 dy3 dy4 dy5 dy6

S7 := E
∫
1(y5 ≤ min{y1, y2})1(y6 ≤ min{y3, y4})fY (y5)fY (y6)(fY |X(y1|X1)− fY (y1))

(fY |X(y2|X1)− fY (y2))fY (y3)fY (y4) dy1 dy2 dy3 dy4 dy5 dy6
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S8 := E
∫
1(y5 ≤ min{y1, y2})1(y6 ≤ min{y3, y4})fY (y5)fY (y6)(fY |X(y1|X1)− fY (y1))

fY (y2)(fY |X(y3|X1)− fY (y3))fY (y4) dy1 dy2 dy3 dy4 dy5 dy6

S9 := E
∫
1(y5 ≤ min{y1, y2})1(y6 ≤ min{y3, y4})fY (y5)fY (y6)(fY |X(y1|X1)− fY (y1))

(fY |X(y2|X1)− fY (y2))(fY |X(y3|X1)− fY (y3))fY (y4) dy1 dy2 dy3 dy4 dy5 dy6

S10 := E
∫
1(y5 ≤ min{y1, y2})1(y6 ≤ min{y3, y4})fY (y5)fY (y6)(fY |X(y1|X1)− fY (y1))

(fY |X(y2|Xi)− fY (y2))(fY |X(y3|X1)− fY (y3))(fY |X(y4|X1)− fY (y4)) dy1 dy2 . . . dy6

Now we will bound each of the Si’s individually. We start with S1. Observe that

S1 =

∫
1(y4 ≤ min{y1, y2})1(y5 ≤ min{y2, y3})fY (y4)fY (y5)fY (y1)×

×
(∫

(fX,Y (y2|X1 = x)− fY (y2))fX(x) dx

)
fY (y3) dy1 dy2 dy3 dy4 dy5 = 0 (D.11)

A similar calculation shows that S2 = 0. We now look at S3. Note that,

S3 =E
∫

y4,y5

(∫
y2

1(y2 ≥ max{y4, y5})fY (y2) dy2
)(∫

y1

1(y1 ≥ y4)(fY |X(y1|X1)

− fY (y1)) dy1

)(∫
y3

1(y3 ≥ y5)(fY |X(y3|X1)− fY (y3)) dy3

)
fY (y4)fY (y5) dy4 dy5

=E
∫

y4,y5

(P(Y ≥ max{y4, y5})) (P(Y ≥ y4|X1)− P(Y ≥ y4)) (P(Y ≥ y5|X1)− P(Y ≥ y5))

fY (y4)fY (y5) dy4 dy5

≤E
[∫

y4

∣∣P(Y ≥ y4|X1)− P(Y ≥ y4)
∣∣fY (y4) dy4]2

≤E
∫

(P(Y ≥ y4|X1)− P(Y ≥ y4))
2 fY (y4) dy4 =

1

6
ξ(f

(n)
X,Y ), (D.12)

where the last step uses the Cauchy-Schwarz inequality. In order to bound S4, let us start
with:

S4 =E
∫

y4,y5

(∫
y2

1(y2 ≥ max{y4, y5})(fY |X(y2|X1)− fY (y2)) dy2

)(∫
y1

1(y1 ≥ y4)fY (y1) dy1

)
(∫

y3

1(y3 ≥ y5)(fY |X(y3|X1)− fY (y3)) dy3

)
fY (y4)fY (y5) dy4 dy5

= E
∫

y4,y5

(P(Y ≥ max{y4, y5}|X1)− P(Y ≥ max{y4, y5})) (P(Y ≥ y5|X1)− P(Y ≥ y5))

(P(Y ≥ y4)) fY (y4)fY (y5) dy4 dy5

=E
∫
y4

∫
y5≤y4

(P(Y ≥ y5|X1)− P(Y ≥ y5)) (P(Y ≥ y4|X1)− P(Y ≥ y4)) (P(Y ≥ y4))

fY (y4)fY (y5) dy5 dy4
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+ E
∫
y4

∫
y5≥y4

(P(Y ≥ y5|X1)− P(Y ≥ y5))
2 (P(Y ≥ y4)) fY (y4)fY (y5) dy5 dy4

≤E
[∫

y4

∣∣P(Y ≥ y4|X1)− P(Y ≥ y4)
∣∣fY (y4) dy4]2 + E

∫
(P(Y ≥ y4|X1)− P(Y ≥ y4))

2 fY (y4) dy4

≤ 1

6
ξ(f

(n)
X,Y ) +

1

6
ξ(f

(n)
X,Y ) =

1

3
ξ(f

(n)
X,Y ). (D.13)

For S5, we observe that

S5 = E
∫

y4,y5

(P(Y ≥ y4|X1)− P(Y ≥ y4)) (P(Y ≥ y5|X1)− P(Y ≥ y5))

1(y2 ≥ max{y4, y5})(fY |X(y2|X1)− fY (y2)) dy2fY (y4)fY (y5) dy4 dy5

≤ 2E
∫

(P(Y ≥ y4|X1)− P(Y ≥ y4))
2 fY (y4) dy4 =

1

3
ξ(f

(n)
X,Y ) (D.14)

A similar set of calculations can be used to show that maxi≥6 |Si| ≲ ξ(f
(n)
X,Y ). Combining the

above observation with (D.11), (D.12), (D.13) and (D.14), we get maxi≥1 |Si| ≲ ξ(f
(n)
X,Y ).

Applying this observation in (D.10), we further have:

|Q∗
22| ≲

∑
i≥1

|Si| ≲ ξ(f
(n)
X,Y ).

Combining the above display with (D.9) and (D.2) we finally obtain,∣∣∣∣ET ∗
2 − 1

45

∣∣∣∣ ≲ Q∗
21 +Q∗

22 ≲ bn1(ξ(f
(n)
X,Y ) > 0) + ξ(f

(n)
X,Y ) +

1

n
. (D.15)

A similar set of computations can be used in ET ∗
i , i = 1, 3, 4, 5. We skip the relevant

algebraic details for brevity. We present the corresponding conclusions below:

max

{∣∣∣∣ET ∗
1 − 1

18

∣∣∣∣, ∣∣∣∣ET ∗
3 − 1

45

∣∣∣∣, ∣∣∣∣ET ∗
4 − 1

45

∣∣∣∣, ∣∣∣∣ET ∗
5 − 1

45

∣∣∣∣} ≲ n−1+ξ(f
(n)
X,Y )+bn1(ξ(f

(n)
X,Y ) > 0).

(D.16)
By the definition of Q∗

i for i = 1, . . . , 5 this completes the proof of Lemma C.1.

D.2. Proof of Lemma C.2

The proof is similar to that of Lemma C.1. We decompose the first term T1. Notice that
T ∗
1 from Lemma C.1 is very similar and can be analysed similarly. To reduce notation,

we will hide the dependence on n and write fX,Y (·, ·), fX(·), fY (·) and FY (·) to mean

f
(n)
X,Y (·, ·), f

(n)
X (·), f (n)

Y (·) and F
(n)
Y (·) respectively. We will write (X1, Y1), . . . , (Xn, Yn) to

mean the random variables (Xn,1, Yn,1), . . . , (Xn,n, Yn,n) ∼ f
(n)
X,Y from the triangular array.

Also we will use Y and X for the set of random variables (Y1, . . . , Yn) and (X1, . . . , Xn)
respectively.

ET1

=
n

(n2 − 1)2

n∑
i=1

EVar (min{Ri, RN(i)|X})
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=E
∫

n

(n2 − 1)2

n−1∑
i=1

(min{Ri, RN(i)})2fY|X(y)dy − n

(n2 − 1)2

n∑
i=1

E
[∫

min{Ri, RN(i)}fY|X(y)dy

]2
=E

∫ [
n

(n2 − 1)2

n−1∑
i=1

(min{Ri, RN(i)})2
]{

fY(y) + fY|X(y)− fY(y)
}
dy

− n

(n2 − 1)2

n∑
i=1

E
[∫

min{Ri, RN(i)}
{
fY(y) + fY|X(y)− fY(y)

}
dy

]2
=:

n

(n2 − 1)2

n−1∑
i=1

E

[∫
(min{Ri, RN(i)})2fY(y)dy −

(∫
min{Ri, RN(i)}fY(y)dy

)2
]
+Q11 +Q12

=
n

(n2 − 1)2

n∑
i=1

∑
k ̸=i, N(i)

EVar (1(Yk ≤ min{Yi, YN(i)}))

+
n

(n2 − 1)2

n∑
i=1

∑∑
k1 ̸=k2

k1,k2 ̸=i, N(i)

ECov(1(Yk1 ≤ min{Yi, YN(i)}),1(Yk2 ≤ min{Yi, YN(i)})) +Q11 +Q12

=P(Y1 ≤ min{Y3, Y4}, Y2 ≤ min{Y3, Y4})− P(Y1 ≤ min{Y3, Y4})P(Y2 ≤ min{Y3, Y4})
+O(n−1) +Q11 +Q12

=
1

6
− 1

3
· 1
3
+Q11 +Q12 +O(n−1)

=
1

18
+Q11 +Q12 +O(n−1). (D.17)

In terms of the notation used in the proof of Theorem 2.1 in the main paper, Q1 =
Q11 +Q12.

Bounding Q11. Since min{Ri, RN(i)} = 1 +
∑

k ̸=i,N(i)

1(Yk ≤ Yi, YN(i)), we have

Q11 :=

∫ [
n

(n2 − 1)2

n−1∑
i=1

(min{Ri, RN(i)})2
]
(fY|X(y)− fY(y))dy

=
n

(n2 − 1)2

n∑
i=1

∑∑
k1 ̸=k2

∫ [
1(yk1 ≤ yi ∧ yN(i))1(yk2 ≤ yi ∧ yN(i))

]
(fY|X(y)− fY(y))dy

+O(n−1)

=

∫
1(y1 ≤ min{y3, y4})1(y2 ≤ min{y3, y4})

(
4∏

i=1

fY |X(yi|Xi)−
4∏

i=1

fY (yi)

)
dy1dy2dy3dy4

+O(n−1). (D.18)

The difference of product pdfs can be written out as in the expansion of

a4 − b4 = a3(a− b) + a2b(a− b) + ab2(a− b) + b3(a− b).

For example, term 1 (corresponding to a3(a− b)) will be

E
∫
1(y1, y2 ≤ min{y3, y4})fY |X(y1|X1)fY |X(y2|X2)fY |X(y3|X3)

(
fY |X(y4|XN(3))− fY (y4)

)
dy
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=Q′
11 + E

∫
1(y1, y2 ≤ min{y3, y4})fY |X(y1|X1)fY |X(y2|X2)fY |X(y3|X3)

(
fY |X(y4|X3)− fY (y4)

)
dy

= Q′
11 + E

∫
1(y1, y2 ≤ min{y3, y4})fY |X(y1|X1)fY |X(y2|X2)

(fY |X(y3|X3)− fY (y3))
(
fY |X(y4|X3)− fY (y4)

)
dy

+ E
∫
1(y1, y2 ≤ min{y3, y4})fY |X(y1|X1)fY |X(y2|X2)fY (y3)

(
fY |X(y4|X3)− fY (y4)

)
dy

= Q′
11 + E

∫
1(y1, y2 ≤ min{y3, y4})fY |X(y1|X1)fY |X(y2|X2)

(fY |X(y3|X3)− fY (y3))
(
fY |X(y4|X3)− fY (y4)

)
dy + 0

≤ Q′
11 +

∫ (∫ [∫ ∞

y1∨y2
(fY |X(y3|X3)− f(y3))dy3

]2
f(x3)dx3

)
fY (y1)fY (y2)dy1dy2

≤ Q′
11 + 6ξ(f

(n)
X,Y ). (D.19)

The last expectation term on the third line above is zero by independence of Xi since∫
fY |X(y|X3)fX(x3)dx3 = fY (y). We also use Cauchy-Schwarz inequality in the second last

line, and the definition of ξ in the last line. The remainder Q′
11 can be bounded as

Q′
11 =: E

∫
1(y1, y2 ≤ y3)fY |X(y1|X1)fY |X(y2|X2)fY |X(y3|X3)∫ ∞

max(y1,y2)
(fY |X3

(y4)− fY |XN(3)
(y4))dy

= E
∫
1(y1, y2 ≤ y3)fY |X(y1|X1)fY |X(y2|X2)fY |X(y3|X3)

(FX,Y (y1 ∨ y2|XN(3))− FX,Y (y1 ∨ y2|X3))dy

≤ E
∫

fY |X(y1|X1)fY |X(y2|X2)(FX,Y (y1 ∨ y2|XN(3))− FX,Y (y1 ∨ y2|X3))dy1dy2

≤ E
[
min

{
(1 + L

(n)
1 (X3,max{Y1, Y2}) + L

(n)
2 (XN(3),max{Y1, Y2}))|X3 −XN(3)|η, 1

}]
≲ P(|X3 −XN(3)| ≥ 1) +

{
E
(
1 + (L

(n)
1 (X3,max{Y1, Y2}))θ + (L

(n)
2 (X3,max{Y1, Y2}))θ

)} 1
θ

×
{
E|X3 −XN(3)|

θη
θ−11(|X3 −XN(3)| ≤ 1)

} θ−1
θ

, (D.20)

where the last two lines follow by Assumptions (A1) and (A2) from the main paper and
Hölder’s inequality. Plugging in the conclusions from (D.5), (D.6), and (D.7) into (D.20),
we get that

Q′
11 ≤ n

− γ
γ+1 (log n)2 +

(
(log n)2

n

)(
γ(θ−1)
θ(γ+1)

∧ ηγ
γ+1

)
:= bn, (D.21)

By using a similar argument as above, we get the same bound for the other terms in Q11,
which implies

Q11 ≤ ξ(f
(n)
X,Y ) + bn.

Also from (D.18), provided X1 and Y1 are independent, i.e., ξ(f
(n)
X,Y ) = 0, we also have

Q11 = O(n−1). Therefore,

EQ11 ≲ bn1(ξ(f
(n)
X,Y ) > 0) +

1

n
. (D.22)
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Bounding Q12. Similarly, since min{Ri, RN(i)} ≤ n, we have

Q12 :=
n

(n2 − 1)2

n∑
i=1

E
[ ∫

min{Ri, RN(i)}(fY(y)− fY|X(y))dy×

×
∫

min{Ri, RN(i)}(fY(y) + fY|X(y))dy

]
≤ 2n−1E

∣∣∣∣∫ min{R1, RN(1)}(fY|X(y)− fY(y))dy

∣∣∣∣
≤ 2

∣∣∣∣∣E
∫
1(y3 ≤ (y1, y2))

(
fY |X(y3|X3)fY |X(y1|X1)fY |X(y2|XN(1))−

3∏
i=1

fY (yi)

)
dy1dy2dy3

∣∣∣∣∣
≤2

∣∣∣∣E∫ 1(y3 ≤ (y1, y2))
(
fY |X(y1|X1)fY |X(y2|XN(1))− fY (y1)fY (y2)

)
dy1dy2fY (y3)dy3

∣∣∣∣
≤2

∣∣∣∣E∫ 1(y3 ≤ (y1, y2))
(
fY |X(y1|X1)fY |X(y2|XN(1))− fY (y1)fY (y2)

)
dy1dy2fY (y3)dy3

∣∣∣∣
+ 2

∣∣∣∣E∫ 1(y3 ≤ y1)fY |X(y1|X1)dy1 (FX,Y (y3|X1)− FX,Y (y3|X1)) fY (y3)dy3

∣∣∣∣
≤2

∣∣∣∣E∫ 1(y3 ≤ (y1, y2))
(
fY |X(y1|X1)− fY (y1)

) (
fY |X(y2|X1)− fY (y2)

)
dy1dy2fY (y3)dy3

∣∣∣∣
+ 2E

[
min

{
(1 + L

(n)
1 (X1, Y2) + L

(n)
2 (XN(1), Y2))|X1 −XN(1)|η, 1

}]
≲
∫

E
(∫

1(y3 ≤ y1)
(
fY |X(y1|X2)− fY (y1)

)
dy1

)2

fY (y3)dy3

+ n
− γ

γ+1 (log n)2 +

(
(log n)2

n

)(
γ(θ−1)
θ(γ+1)

∧ ηγ
γ+1

)

≲ ξ(f
(n)
X,Y ) + n

− γ
γ+1 (log n)2 +

(
(log n)2

n

)(
γ(θ−1)
θ(γ+1)

∧ ηγ
γ+1

)
.

In the above, we have used the fact that
∫
fY |X(y|x)fX(x)dx = fY (y) in the third and fifth

inequalities. The last line uses Cauchy-Schwarz inequality for the first term and Assumption
(A1) in the main paper, coupled with equations (D.5)-(D.7) for the second term.

On the other hand, notice that when ξ(f
(n)
X,Y ) = 0, X1 and Y1 are independent and

Q12 = 0 from definition. Thus

Q12 ≲ ξ(f
(n)
X,Y ) + bn1(ξ(f

(n)
X,Y ) > 0) (D.23)

Plugging in (D.22) and (D.23) into (D.17) yields∣∣∣∣ET1 −
1

18

∣∣∣∣ ≲ n−1 + ξ(f
(n)
X,Y ) + bn1(ξ(f

(n)
X,Y ) > 0).

A similar set of computations can be used in ETi, i = 2, 3, 4. We skip the relevant algebraic
details for brevity. We present the corresponding conclusions below:

max{E
∣∣T1 − 1

18

∣∣,E∣∣T2 − 1
45

∣∣,E∣∣T3 − 4
45

∣∣,E∣∣T4 +
2
45

∣∣} ≲ n−1 + ξ(f
(n)
X,Y ) + bn1(ξ(f

(n)
X,Y ) > 0).

By the definitions of Q1, . . . , Q5 this finishes the proof of Lemma C.2.
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D.3. Proof of Lemma C.3

As before, we hide the dependence on n and write fX,Y , fX , fY , FY to mean f
(n)
X,Y , f

(n)
X ,

f
(n)
Y , F

(n)
Y respectively. We will write (X1, Y1), . . . , (Xn, Yn) to mean the random variables

(Xn,1, Yn,1), . . . , (Xn,n, Yn,n) for some fixed n in the triangular array.

Bounding Var(E[
√
nξ∗′n |X(n)]).

We will start this proof with some definitions:

H1 :=
6n

n2 − 1

n∑
i=1

∫
min{FY (y1), FY (y2)}fY |X(y1|Xi)fY |X(y2|XN(i)) dy1 dy2,

H ′
1 :=

6n

n2 − 1

n∑
i=1

∫
min{FY (y1), FY (y2)}fY |X(y1|Xi)fY |X(y2|Xi) dy1 dy2,

H2 :=
6

n2 − 1

∑∑
i ̸=j

∫
min{FY (y1), FY (y2)}fY |X(y1|Xi)fY |X(y2|Xj) dy1 dy2.

Based on the above notation, note that:

Var(E[
√
nξ∗′n |X(n)]) = nE(H1 −H2 − EH1 + EH2)

2. (D.24)

Using (D.24), it is easy to see that:

Var(E[
√
nξ∗′n |X(n)]) ≲ nE(H1 −H ′

1 − E(H ′
1 −H2))

2 + nVar(H ′
1 −H2). (D.25)

We will now bound the two terms on the right hand side of (D.25) separately.

We start with the first term. Towards this direction, define Zn :=
√
n(H1 − H ′

1). The
first term on the right hand side of (D.25) then equals Var(Zn). Next observe that:

E|Zn| ≤
1√
n

n∑
i=1

E
∫

P(Y ≥ y|Xi)|P(Y ≥ y|Xi)− P(Y ≥ y|XN(i))|fY (y) dy

≤ 1√
n

n∑
i=1

Emin

{∫
(1 + L

(n)
1 (Xi, y) + L

(n)
2 (XN(i), y))|Xi −XN(i)|ηf

(n)
Y (y) dy, 1

}
≤

√
nbn, (D.26)

where bn is defined as in (C.1) and the last line follows using similar computations as
in (D.7) and (D.20). Note that, if X1 and Y1 are independent, then Zn = 0, i.e.,

ξ(f
(n)
X,Y ) = 0 =⇒ Zn = 0. (D.27)

Combining (D.27) with (D.26), we get:

E|Zn| ≲
√
nbn1(ξ(f

(n)
X,Y ) > 0). (D.28)

The above gives us a bound on the first moment of |Zn|. However, we are interested in the
second moment. To make this transition, we will use Lemma D.5.
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By Lemma D.5, there exists K > 0, a positive constant, such that

P
(
|Zn − EZn| ≥ K

√
log n

)
≲

1

n6
. (D.29)

Choose such a K > 0 satisfying (D.29) and consider the following decomposition:

E(Zn − EZn)
2

= E
[
(Zn − EZn)

2
1(|Zn − EZn| ≥ K

√
log n)

]
+ E

[
(Zn − EZn)

2
1(|Zn − EZn| ≤ K

√
log n)

]
.

(D.30)

For the first term, we begin by observing that E(Zn − EZn)
4 ≲ 1 by Lemma D.5.

Consequently by the Cauchy-Schwarz inequality,

E
[
(Zn − EZn)

2
1(|Zn − EZn| ≥ K

√
log n)

]
≤
√

E(Zn − EZn)4
√
P(|Zn − EZn| ≥ K

√
log n) ≲ n−3 (D.31)

where the last line follows from (D.29).

For the second term, note that

E
[
(Zn − EZn)

2
1(|Zn − EZn| ≤ K

√
log n)

]
≤ K

√
log nE|Zn| ≲ bn

√
n log n, (D.32)

where the last line follows from (D.26). Combining (D.32), (D.31) and (D.27), we then get:

nE(H1 −H ′
1 − E(H ′

1 −H2))
2 ≲

(
bn
√

n log n+ n−3
)
1(ξ(f

(n)
X,Y ) > 0), (D.33)

which provides a bound for the first term in (D.25).

For the second term in (D.25), we can use the same technique that we used to bound
the Si’s in the proof of Lemma C.1, to get:

nVar(H ′
1 −H2) ≲ ξ(f

(n)
X,Y ) + n−1. (D.34)

Finally, combining (D.33) and (D.34) completes the proof of Part 1.

Bounding Var(E[
√
nξ′n|X(n)]). Recall that

min (Ri, RN(i)) = 1 +
∑

j /∈{i,N(i)}
1
(
Yj ≤ min (Yi, YN(i))

)
. (D.35)

We will decompose fY |X(y|x) = fY (y) + fY |X(y|x) − fY (y). Then using (D.35) in the
expression of ξ′n, we get:

E[
√
nξ′n|X(n)]/6

=

√
n

n2 − 1

n∑
i=1

j ̸=i,N(i)

∫
1(y3 ≤ min{y1, y2})fY |X(y1|Xi)fY |X(y2|XN(i))fY |X(y3|Xj)dy1dy2dy3 +O( 1n)

=

√
n

n2 − 1

n∑
i=1

∑
j ̸={i,N(i)}

[∫
1(y3 ≤ min(y1, y2))fY (y1)fY (y2)fY (y3) dy1 dy2 dy3
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+

∫
1(y3 ≤ min(y1, y2))(fY |X(y1|Xi)− fY (y1))fY |X(y2|XN(i))fY |X(y3|Xj) dy1 dy2 dy3

+

∫
1(y3 ≤ min(y1, y2))fY (y1)(fY |X(y2|XN(i))− fY (y2))fY |X(y3|Xj) dy1 dy2 dy3

+

∫
1(y3 ≤ min(y1, y2))fY (y1)fY (y2)(fY |X(y3|Xj)− fY (y3)) dy1 dy2 dy3

]
+O(n−1).

(D.36)

Note that the first term within the sum is just P(Y3 ≤ min{Y1, Y2})+O(n−1) = 1
3+O(n−1).

Among the rest, let us define

T1

:=

√
n

n2 − 1

n∑
i=1

∑
j ̸=i,N(i)

∫
1(y3 ≤ min(y1, y2))(fY |X(y1|Xi)− fY (y1))

fY |X(y2|XN(i))fY |X(y3|Xj) dy1 dy2 dy3

=

√
n

n2 − 1

n∑
i=1

∑
j ̸=i,N(i)

∫
(FY (y)− FY |X(y|Xi))(1− FY |X(y|XN(i)))fY |X(y|Xj)dy

=:

√
n

n2 − 1

n∑
i=1

∑
j ̸=i,N(i)

∫
(FY (y)− FY |X(y|Xi))(1− FY |X(y|Xi))fY |X(y|Xj)dy + T ′

1(X
(n))

=:

√
n

(n2 − 1)

n∑
i=1

∑
j ̸=i,N(i)

F(Xi, Xj) + T ′
1

=:T ∗
1 + T ′

1. (D.37)

Note that F(Xi, Xj) ≤ 1. Then

Var (T ∗
1 )

=Var

 √
n

n2 − 1

n∑
i=1

∑
j ̸=i,N(i)

∫
(FY (y)− FY |X(y|Xi))(1− FY |X(y|Xi))fY |X(y|Xj)dy


=

n

(n2 − 1)2

n∑
i1=1

n∑
i2=1

∑
j1 ̸=i1,N(i1)

∑
j2 ̸=i2,N(i2)

Cov (F(Xi1 , Xj1), F(Xi2 , Xj2))

=
n

(n2 − 1)2

∑∑
i1 ̸=i2

∑
j ̸=i1,N(i1),i2,N(i2)

Cov (F(Xi1 , Xj), F(Xi2 , Xj))

+
n

(n2 − 1)2

n∑
i=1

∑∑
j1 ̸=j2 ̸=i,N(i)

Cov (F(Xi, Xj1), F(Xi, Xj2)) +O(n−2) (D.38)

where the last step follows by the independence of X1, . . . , Xn. For any 1 ≤ i1, i2 ≤ n and
j ̸= i1, N(i1), i2, N(i2)

E (F(Xi1 , Xj)F(Xi2 , Xj))

=

∫ ∫ [∫
(FY (y1)− FY |X(y1|Xi1))(1− FY |X(y1|Xi1))fX(xi1)dxi1

]
fY |X(y1|Xj)dy1×



Auddy, Deb, and Nandy/On Chatterjee’s correlation coefficient 48

×
∫ [∫

(FY (y2)− FY |X(y2|Xi2))(1− FY |X(y2|Xi2))fX(xi2)dxi2

]
fY |X(y2|Xj)dy1fX(xj)dxj

≤
∫ ∫ [∫

(FY (y)− FY |X(y|X))(1− FY |X(y|X))fX(x)dx

]2
fY |X(y|Xj)dyfX(xj)dxj

≤
∫ [∫

(FY (y)− FY |X(y|X))2(1− FY |X(y|X))2fX(x)dx

]
fY (y)dy

≤ ξ(f
(n)
X,Y ). (D.39)

Here we have used Cauchy-Schwarz inequality in the second and third inequalities. The
exact same calculation also implies that

E (F(Xi, Xj1)F(Xi, Xj2)) ≤ ξ(f
(n)
X,Y ).

By (D.38) and (D.39) we have

Var (T ∗
1 ) ≲ ξ(f

(n)
X,Y ) + n−2. (D.40)

On the other hand,

E
∣∣T ′

1

∣∣
=

√
n

n2 − 1
E

n∑
i=1

∑
j ̸=i,N(i)

∫ ∣∣(FY (y)− FY |X(y|Xi))(FY |X(y|XN(i))− FY |X(y|Xi))
∣∣fY |X(y|Xj)dy

≲

√
n

n+ 1

n∑
i=1

E
∫ ∣∣P(Y ≥ y|Xi)− P(Y ≥ y|XN(i))

∣∣fY (y)dy ≲
√
nbn (D.41)

following (D.26). Note that if X1 and Y1 are independent then T ′
1(X

(n)) = 0, i.e.,

ξ(f
(n)
X,Y ) = 0 =⇒ T ′

1 = 0 (D.42)

which together with (D.41) implies

E
∣∣T ′

1

∣∣ ≲ √
nbn1(ξ(f

(n)
X,Y ) > 0). (D.43)

As in part 1 of the lemma, we make a transition to the second moment via McDiarmid’s
inequality. Notice that just as in Lemma D.5, we have a constant C > 0 such that for any
n ≥ 1 and t ≥ 0

P(
∣∣∣T ′

1(X
(n))− ET ′

1(X
(n))
∣∣∣ ≥ t) ≤ 2 exp(−Cnt2).

In particular, there exists a constant K > 0 such that

P(
∣∣T ′

1 − ET ′
1

∣∣ ≥ K
√
log n) ≲

1

n6
. (D.44)

One can then follow (D.30)-(D.32) to get

E(T ′
1 − ET ′

1)
2

=E
[
(T ′

1 − ET ′
1)

2
1(
∣∣T ′

1 − ET ′
1

∣∣ ≥ K
√
log n)

]
+ E

[
(T ′

1 − ET ′
1)

2
1(
∣∣T ′

1 − ET ′
1

∣∣ ≤ K
√
log n)

]
≤
√
E(T ′

1 − ET ′
1)

4

√
P(|T ′

1 − ET ′
1| ≥ K

√
log n) +K

√
log nE|Zn|
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≲ n−3 + bn
√

n log n. (D.45)

which, together with (D.42) implies that

E(T ′
1 − ET ′

1)
2 ≲

(
n−3 + bn

√
n log n

)
1(ξ(f

(n)
X,Y ) > 0). (D.46)

Combining (D.40), (D.46) and (D.37), we have

Var (T1) ≤ ξ(f
(n)
X,Y ) +

(
n−3 + bn

√
n log n

)
1(ξ(f

(n)
X,Y ) > 0) + n−2. (D.47)

Using a similar calculation, we have the same bound for the variance of the third and fourth
terms on the right-hand side of (D.36). This finishes the proof of the second bound, and
hence Lemma C.3 follows.

D.4. Proof of Lemma C.4

Let us consider Wℓ defined in (C.23) and observe that Wℓ(x) depends on (xℓ, yℓ) and
(xN(ℓ), yN(ℓ)). Consider x,x′ ∈ (R2)n and {i, j} ∈ [n] × [n], such that the edge {i, j} does
not exist in G(x),G(xi),G(xj) and G(xij). We shall show that for all ℓ ∈ [n],

Wℓ(x)−Wℓ(x
i)−Wℓ(x

j) +Wℓ(x
ij) = 0. (D.48)

By (C.24), we have ∣∣∣Dx(i, j)−Dx′(i, j)
∣∣∣ ≤ #

{
t : xt ̸= x′t

}
. (D.49)

Let us fix an ℓ ∈ [n] such that Dx(ℓ, j) ≤ 1. That means there exists at most one k, such
that, xℓ < xk < xj . We shall show

Wℓ(x) = Wℓ(x
i) and Wℓ(x

j) = Wℓ(x
ij).

As the edge {i, j} is absent in G(x), we have

Dx(ℓ, i) > 2. (D.50)

In particular, i is different from ℓ and j. Again, as the edge {i, j} is absent in G(xi), we
further have,

Dxi(ℓ, i) > 2. (D.51)

This implies N(ℓ) does not change in x and xi. Hence,

Wℓ(x) = Wℓ(x
i).

Next we show that if Dx(ℓ, j) ≤ 1 then we have Dxj (ℓ, i) ≥ 2 and Dxij (ℓ, i) ≥ 2. Suppose
not, let Dxj (ℓ, i) ≤ 1. If j = ℓ, then clearly this is false as the edge {i, j} is absent in G(xj).
If j ̸= ℓ, then by (D.49) and (D.50), we get,

Dxj (ℓ, i) ≥ 2.

This is a contradiction. Further, if Dxij (ℓ, i) ≤ 1 and j = ℓ, then this is similarly false as
the edge {i, j} edge is absent in G(xij). If j ̸= ℓ, then by (D.49) and (D.51), we get,

Dxij (ℓ, i) ≥ 2.
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Again we get a contradiction. As Dxj (ℓ, i) ≥ 2 and Dxij (ℓ, i) ≥ 2, N(ℓ) is same in xj and
xij . Hence,

Wℓ(x
j) = Wℓ(x

ij).

This implies if Dx(ℓ, j) ≤ 1, then (D.48) holds. Similarly if Dxi(ℓ, j) ≤ 1 or Dxj (ℓ, j) ≤ 1 or
Dxij (ℓ, j) ≤ 1, then (D.48) holds. Now if Dx(ℓ, j), Dxi(ℓ, j), Dxj (ℓ, j), Dxij (ℓ, j) > 1, then
N(ℓ) does not change in x and xj implying

Wℓ(x) = Wℓ(x
j).

Also N(ℓ) does not change in xi and xij implying

Wℓ(x
i) = Wℓ(x

ij).

This implies the lemma.

D.5. Proof of Lemma A.1

To reduce notation we write fX,Y (·, ·), fX(·), fY (·) and FY (·) to mean f
(n)
X,Y (·), f

(n)
X (·),

f
(n)
Y (·) and F

(n)
Y (·) respectively. We will write (X1, Y1), . . . , (Xn, Yn) to mean the random

variables (Xn,1, Yn,1), . . . , (Xn,n, Yn,n) ∼ f
(n)
X,Y from the triangular array. We will also write

X to mean (X1, . . . , Xn). It is useful to note some properties of g(y|x) which we will use
throughout the proof.

a) ∫
g(y|x)dy = 1 and

∫
g(y|x)fX(x)dx = fY (y). (D.52)

In this sense, g(y|x) is like a conditional density, although it can take negative values.

b) Recalling the definition of g, we write

G(y|x) =
∫ y

−∞
g(t|x)dt = 1

pfX,Y (y|x)+ (1− 1
p)FY (y);

∫
G(y|x)fX(x)dx = FY (y).

(D.53)

c) For any y, x1, x2, Assumption (A1) in the main paper implies there exist η ∈ (0, 1],
θ > 1 and C > 0 such that

|G(y|x1)−G(y|x2)| ≤ (1 + L
(n)
1 (x1, y) + L

(n)
2 (x2, y))|x1 − x2|η

lim sup
n→∞

∫
(L

(n)
1 (x, y))θfX(x)fY (y)dy ≤ C.

(D.54)

We will prove the three parts of Lemma A.1 as Lemmas D.1 to D.3 presented below.

Lemma D.1. |T1 − 1| ≲

n
− γ

γ+1 (log n)2 +

(
(log n)2

n

)(
γ(θ−1)
θ(γ+1)∧

ηγ
γ+1

)1(ξ(f
(n)
X,Y ) > 0).
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D.5.1. Proof of Lemma D.1

T1 involves two contributions from fY (y) and one from g(y|x). Thus

T1 =

∫ ∑
j ̸=1

1(N(1) = j)1(yk < min{y1, yj})fY (y1)fY (yk)g(yj |xj)dy1dykdyjfX(x) dx

+

∫ ∑
j ̸=1

1(N(1) = j)1(yk < min{y1, yj})fY (y1)g(yk|xk)fY (yj)dy1dykdyjfX(x) dx

+

∫ ∑
j ̸=1

1(N(1) = j)1(yk < min{y1, yj})g(y1|x1)fY (yk)fY (yj)dy1dykdyjfX(x) dx.

(D.55)

Now for the first term of T1, we use Fubini’s theorem to write∫ ∑
j ̸=1

1(N(1) = j)1(yk < min{y1, yj})fY (y1)fY (yk)g(yj |xj)dy1dykdyjfX(x) dx

=

∫ ∑
j ̸=1

1(N(1) = j)1(yk < min{y1, yj})(g(yj |x1) + g(yj |xj)− g(yj |x1))fX(x) dx

fY (yk)fY (y1)dy1dykdyj

=:

∫
1(yk < min{y1, y})

∫
g(y|x1)fX(x1)dx1fY (y1)fY (yk)dydy1dyk + En

=

∫
1(yk < min{y1, y})fY (y)fY (y1)fY (yk)dydy1dyk + En =

1

3
+ En,

where we use the fact that
∫
g(y|x)fX(x)dx = fY (y) from (D.52). The remainder term is

En =

∫ ∑
j ̸=1

1(N(1) = j)

∫
(g(yj |xj)− g(yj |x1))fY (y1)fY (yk)dy1dykdyjfX(x) dx

=

∫ ∞∫
yk

∫ ∑
j ̸=1

1(N(1) = j)

∞∫
yk

(g(yj |xj)− g(yj |x1))fY (yk)fY (y1)dy1dykdyjfX(x) dx

=

∫ ∞∫
yk

∫ ∑
j ̸=1

1(N(1) = j)[GY |X1=x1
(yk)−GY |Xj=xj

(yk)]fY (yk)fY (y1)dy1dykfX(x) dx

≤
∫ ∞∫

yk

∫ ∣∣∣GY |X1
(yk)−GY |XN(1)

(yk)
∣∣∣fX(x) dxfY (yk)fY (y1)dy1dyk

≤
∫ ∫

{1 ∧ (1 + L
(n)
1 (x1, yk) + L

(n)
2 (xN(1), y))|x1 − xN(1)|η, 1}fX(x) dx(1− FY (yk))fY (yk)dyk

≲P(|X1 −XN(1)| ≥ 1)

+
{
E
(
1 + (L

(n)
1 (X1, Yk))

θ + (L
(n)
2 (X1, Yk))

θ
)} 1

θ
{
E|X1 −XN(1)|

θη
θ−11(|X1 −XN(1)| ≤ 1)

} θ−1
θ

≲ n
− γ

γ+1 (log n)2 +

(
(log n)2

n

)(
γ(θ−1)
θ(γ+1)

∧ ηγ
γ+1

)
, (D.56)
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where we use (D.54) in the second last line, and Lemma D.4 in the last line. By analogous
calculation, the second and third terms in T1 can be written as

∫
1(yk < min{y1, y})fY (y)fY (y1)fY (yk)dydy1dyk +O

((log n)2

n

)(
γ(θ−1)
θ(γ+1)∧

ηγ
γ+1

)
=
1

3
+O

n
− γ

γ+1 (log n)2 +

(
(log n)2

n

)(
γ(θ−1)
θ(γ+1)

∧ ηγ
γ+1

) .

Finally, when ξ(f
(n)
X,Y ) = 0 Xi and Yi are independent, and hence g(y|x) = fY (y) for all x.

It can be checked that in this case En = 0 and similarly the other error terms are all zero.
This finishes the proof of Lemma D.1, i.e., part i) of Lemma A.1.

Lemma D.2.∣∣∣∣T2 −
(
2

3
+H(f, g)

)∣∣∣∣ ≲
n

− γ
γ+1 (log n)2 +

(
(log n)2

n

)(
γ(θ−1)
θ(γ+1)

∧ ηγ
γ+1

)1(ξ(f
(n)
X,Y ) > 0).

D.5.2. Proof of Lemma D.2

The second term deals with the case where one of the three is from fY (y) and the other
two are from g(y|x):

T2 =

∫ ∑
j ̸=1

1(N(1) = j)1(yk < min{y1, yj})g(y1|x1)g(yk|xk)fY (yj)dy1dykdyjfX(x) dx

+

∫ ∑
j ̸=1

1(N(1) = j)1(yk < min{y1, yj})fY (y1)g(yk|xk)g(yj |xj)dy1dykdyjfX(x) dx

+

∫ ∑
j ̸=1

1(N(1) = j)1(yk < min{y1, yj})g(y1|x1)fY (yk)g(yj |xj)dy1dykdyjfX(x) dx.

(D.57)

For the first term of T2, by interchanging the integrals,∫ ∑
j ̸=1

1(N(1) = j)1(yk < min{y1, yj})g(y1|x1)g(yk|xk)fY (yj)dy1dykdyjfX(x) dx

=

∫ ∑
j ̸=1

1(N(1) = j)1(yk < min{y1, yj})g(y1|x1)g(yk|xk)fX(x) dxfY (yj)dy1dykdyj

=

∫
1(yk < min{y1, y})

[∫
g(y1|x1)fX(x1)dx1

∫
g(yk|xk)fX(xk)dxk

]
fY (yj)dy1dykdyj

=

∫
1(yk < min{y1, y})fY (y1)fY (yk)fY (yj)dy1dykdyj =

1

3
(D.58)

where the last line follows from (D.52). The second term in T2 is∫ ∑
j ̸=1

1(N(1) = j)1(yk < min{y1, yj})fY (y1)g(yk|xk)g(yj |xj)dy1dykdyjfX(x) dx
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=

∫ ∑
j ̸=1

1(N(1) = j)1(yk < min{y1, yj})fY (y1)g(yk|xk)

(g(yj |x1) + g(yj |xj)− g(yj |x1))fX(x) dxdy1dykdyj

=:

∫
1(yk < min{y1, y})

[∫
g(yj |x1)fX(x1)dx1

∫
g(yk|xk)fX(xk)dxk

]
fY (y1)dy1dykdyj + E′

n

=

∫
1(yk < min{y1, y})fY (y1)fY (yk)fY (yj)dy1dykdyj + E′

n =
1

3
+ E′

n (D.59)

where the last line follows from (D.52). Just as in equation (D.56), the remainder term

E′
n

=

∫ ∑
j ̸=1,k

1(N(1) = j)1(yk < min{y1, yj})(g(yj |xj)− g(yj |x1))g(yk|xk)dµ(x)fY (y1)dy1dykdyj

=

∫ ∫ ∑
j ̸=1,k

1(N(1) = j)1(yk < min{y1, yj})(g(yj |xj)− g(yj |x1))fX(x) dx


×
[∫

g(yk|xk)fX(xk)dxk

]
fY (y1)dy1dykdyj

=En

≲ n
− γ

γ+1 (log n)2 +

(
(log n)2

n

)(
γ(θ−1)
θ(γ+1)

∧ ηγ
γ+1

)
. (D.60)

We use the fact that j ̸= k in the second equality and Lemma D.4 in the last step. With a
remainder term E′′

n defined similarly as En and E′
n, we can write the third term as∫ ∑

j ̸=1

1(N(1) = j)1(yk < min{y1, yj})g(y1|x1)fY (yk)g(yj |xj)dy1dykdyjfX(x) dx

=:

∫
1(yk < min{y1, y})

[∫
g(y1|x1)g(y|x1)fX(x1)dx1

]
fY (yk)dy1dykdy + E′′

n

=

∫
E
(∫ ∞

t
g(y|X)dy

)2

fY (t)dt+ E′′
n

= H(f, g) + E′′
n. (D.61)

Indeed

E′′
n

=

∫ ∑
j ̸=1,k

1(N(1) = j)1(yk < y1 ∧ yj)(g(yj |xj)− g(yj |x1))g(y1|x1)fX(x)dxfY (yk)dy1dykdyj

=

∫ ∑
j ̸=1,k

1(N(1) = j)

∞∫
yk

(g(yj |xj)− g(yj |x1))dyj

∞∫
yk

g(y1|x1)dy1fX(x) dxfY (yk)dyk

=

∫ ∫ ∑
j ̸=1,k

1(N(1) = j)[GY |X1=x1
(yk)−GY |Xj=xj

(yk)](1−GY |X1=x1
(yk))fX(x) dx

 fY (yk)dyk
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=

∫ [∫
[GY |X1

(yk)−GY |XN(1)
(yk)](1−GY |X1

(yk))fX(x) dx

]
fY (yk)dyk

≲ P(|X1 −XN(1)| ≥ 1)

+
{
E
(
1 + (L

(n)
1 (X1, Yk))

θ + (L
(n)
2 (X1, Yk))

θ
)} 1

θ
{
E|X1 −XN(1)|

θη
θ−11(|X1 −XN(1)| ≤ 1)

} θ−1
θ

≲ n
− γ

γ+1 (log n)2 +

(
(log n)2

n

)(
γ(θ−1)
θ(γ+1)

∧ ηγ
γ+1

)
, (D.62)

where the last step follows by mimicking the last line of (D.56). Adding (D.58)-(D.62) proves

Lemma D.2 when ξ(f
(n)
X,Y ) > 0.

Once again ξ(f
(n)
X,Y ) = 0 means g(y|x) = fY (y) for all x, which implies that H(f, g), E′

n

and E′′
n are equal to zero.

Lemma D.3.

|T3 −H(f, g)| ≲

n
− γ

γ+1 (log n)2 +

(
(log n)2

n

)(
γ(θ−1)
θ(γ+1)

∧ ηγ
γ+1

)1(ξ(f
(n)
X,Y ) > 0).

D.5.3. Proof of Lemma D.3

Finally in the third term, the contributions for all of Yk; Y1; YN(1) are from g(y|x):

T3 =

∫ ∑
j ̸=1,k

1(N(1) = j)1(yk < min{y1, yj})g(y1|x1)g(yk|xk)g(yj |xj)dy1dykdyjfX(x) dx

=

∫ ∑
j ̸=1

1(N(1) = j)1(yk < min{y1, yj})g(y1|x1)fY (yk)g(yj |xj)dy1dykdyjfX(x) dx

= H(f, g) + E′′
n

= H(f, g) +O

n
− γ

γ+1 (log n)2 +

(
(log n)2

n

)(
γ(θ−1)
θ(γ+1)

∧ ηγ
γ+1

) .

The first line is by definition of T3. The second line follows by integrating over xk (notice that
j ̸= k). The third and fourth lines follow by comparing to (D.61) and (D.62) respectively.

Once again ξ(f
(n)
X,Y ) = 0 means g(y|x) = fY (y) for all x, which implies that H(f, g), E′′

n are
equal to zero.

Lemmas D.1 to D.3 together prove Lemma A.1.

D.6. Auxiliary lemmas

Lemma D.4. Under Assumption (A2) from the main paper, given any ϵ > 0,

P
(
|X1 −XN(1)| ≥ ϵ

)
≲ n

− γ
γ+1 +

(log n)2n
− γ

γ+1

ϵ
.

Consequently, for any p ≤ 1, uxil

E|X1 −XN(1)|p1(|X1 −XN(1)| ≤ 1) ≲

(
(log n)2

n

)p

.
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Proof of Lemma D.4. The proof follows by retracing the steps of [4, Lemma 14.1] and a
straightforward application of Lyapunov’s inequality.

Lemma D.5. There exists a fixed positive constant C > 0 such that the following holds for
any n ≥ 1 and t ≥ 0:

P (|Zn − EZn| ≥ t) ≤ 2 exp(−Cnt2).

Proof of Lemma D.5. We omit the proof of this lemma since it follows simply from McDi-
armid’s inequality (see [51]) as used in [15, Lemma 9.11].

References

[1] Jonathan Ansari and Sebastian Fuchs. A simple extension of azadkia & chatterjee’s
rank correlation to a vector of endogenous variables. arXiv preprint arXiv:2212.01621,
2022.

[2] Ery Arias-Castro, Rong Huang, and Nicolas Verzelen. Detection of sparse positive
dependence. Electron. J. Stat., 14(1):702 – 730, 2020.

[3] Arnab Auddy, Nabarun Deb, and Sagnik Nandy. Exact detection thresholds and min-
imax optimality of Chatterjee’s correlation. 2023.

[4] Mona Azadkia and Sourav Chatterjee. A simple measure of conditional dependence.
arXiv preprint arXiv:1910.12327, 2019.

[5] Mona Azadkia, Armeen Taeb, and Peter Bühlmann. A fast non-parametric approach
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