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Abstract

In this paper, we study community detection when we observe m sparse networks and
a high dimensional covariate matrix, all encoding the same community structure among n
subjects. In the asymptotic regime where the number of features p and the number of subjects
n grow proportionally, we derive an exact formula of asymptotic minimum mean square error
(MMSE) for estimating the common community structure in the balanced two block case
using an orchestrated approximate message passing algorithm. The formula implies the
necessity of integrating information from multiple data sources. Consequently, it induces a
sharp threshold of phase transition between the regime where detection (i.e., weak recovery)
is possible and the regime where no procedure performs better than random guess. The
asymptotic MMSE depends on the covariate signal-to-noise ratio in a more subtle way than
the phase transition threshold. In the special case of m “ 1, our asymptotic MMSE formula
complements the pioneering work [17] which found the sharp threshold when m “ 1. A
practical variant of the theoretically justified algorithm with spectral initialization leads to an
estimator whose empirical MSEs closely approximate theoretical predictions over simulated
examples.
Keywords: clustering; contextual SBM; integrative data analysis; multilayer network; phase
transition; stochastic block model; approximate message passing.

1 Introduction

Network data is a prevalent form of relational data. It appears in many different fields such as
social science, economics, epidemiology, biological science, among others. Many networks come
with inherent community structures. Nodes within the same community connect in different
ways than nodes between different communities. The community labels of the nodes are usually
unknown. It is of interest to uncover such latent community structures based on observed
networks. This inference problem is usually called community detection which in essence is
clustering of network nodes. The stochastic block model (SBM) [21] is a popular model for
studying community detection. There has been a large literature on theoretical approaches,
algorithmic, and application aspects of SBM’s. We refer interested readers to several recent
survey papers [1, 18, 25] for more detailed accounts of this large and growing literature.
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A more traditional clustering problem in statistics is clustering based on covariates, which
is also a leading example of unsupervised learning. Standard techniques include, but are not
limited to k-means clustering, hierarchical clustering, and the EM algorithm. The multivariate
Gaussian mixture model has been a popular model for theoretical study on this front which has
received renewed interest in recent years. The model is closely related to the spiked covariance
model [24] which is widely adopted in Random Matrix Theory.

Ever-growing techniques for data acquisition have led us to a new paradigm where one could
have multiple data sets as multiple sources of information about the community structure. For
instance, for a set of n people, one could potentially have several social networks observed
on them (Facebook, LinkedIn, etc.) together with a large collection of socioeconomic (and/or
genomic, neuroimaging, etc.) covariates for each individual. This poses a new challenge: How
can we best integrate information from these multiple sources to uncover the common underlying
community structure?

When the network is at least part of the observation, there are two different scenarios.
The first is where one observes multiple networks without any covariate. A practical example
of this scenario was described in [14] where the nodes represent proteins, the edges in one
network represent physical interactions between nodes and those in another network represent
co-memberships in protein complexes. This scenario has been studied in the multilayer network
literature. The arguably more interesting scenario is where one observes one or more networks
together with a collection of covariates. In the pioneering work by Deshpande, et al. [17], the
authors considered the case where the available data is an nˆn adjacency matrix of an SBM and
a high dimensional pˆn Gaussian covariate matrix, both containing the same balanced two block
community structure. Under this stylized yet informative model, they rigorously established a
sharp information-theoretic threshold for detecting the community structure (i.e., to uncover the
community structure better than random guessing) when p and n tend to infinity proportionally
and the average degree of the network diverges with n. In addition, they proposed a heuristic
algorithm which supports the information-theoretic threshold empirically. Subsequently, the
sharp threshold was extended to the case where the average degree is bounded [27]. See also
[11, 2] for investigations of spectral clustering and [38] for an SDP approach in similar models.

The present paper is motivated by two important questions that remain unanswered by [17].

• Multiple networks with or without covariates. How does the phase transition phenomenon
found in [17] exhibit itself when one observes multiple networks with or without high-
dimensional covariates? How does the threshold depend on individual signal-to-noise ratios
in these multiple data sources?

• Precise characterization of the information-theoretic limit achieved by Bayes optimal
estimator. Even in the special case considered by [17] where only one network is ob-
served together with covariates, it is not clear what the information-theoretic limit of the
performance by the best estimator is when the signal-to-noise ratio is above the phase
transition threshold. The authors provided a spectral estimator that achieves nontrivial
performance above the threshold. However, it is not Bayes optimal, and the exact form of
the information-theoretic limit is unknown.

In this paper, we provide affirmative answers to both of the above questions. Without loss
of generality, we propose to consider an observation model where one observes m independent
adjacency matrices from m SBM’s and a high-dimensional Gaussian data-set with p covariates,
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all carrying the same latent community structure (balanced two block). Focusing on this model
and assuming that the average degrees diverge, our contributions are the following.

• Sharp phase transition threshold. We establish sharp thresholds for phase transition be-
tween the regime where detecting the community structure is feasible and the regime where
no procedure performs better than random guess.

• Exact formula for asymptotic minimum mean square error (MMSE). We give an exact for-
mula for the asymptotic MMSE achieved by the Bayes optimal estimator of the community
structure.

To facilitate the derivation of asymptotic MMSE, we also provide convergence analysis of
an orchestrated approximate message passing (AMP) algorithm with multiple parallel and
information-sharing orbits. This could be of independent interest.

Last but not least, our results continue to hold for the special case where one only observes
m networks and there is no covariate. In this case, our model is reduced to a multilayer SBM.
Results in [23, 33] provide sharp information-theoretic thresholds between the regimes of exact
recovery (where the best procedure uncovers the community structure perfectly) and almost
exact recovery (where the best procedure only makes mistakes on a vanishing proportion of
nodes). In addition, [33, 37] derived the minimax rates of convergence that are sharp in exponents
in the regime of almost exact recovery under the Hamming loss. In contrast, the present paper
provides sharp thresholds for detection (a.k.a. weak recovery) and the exact asymptotic minimax
risk under the squared error loss.

On the technical front, the main novelty of the present manuscript lies in designing an
orchestrated AMP algorithm with multiple orbits that synchronizes the extraction of information
about community structure from multiple data sources. In addition, we provide a rigorous
proof of the almost sure convergence of the AMP average sequence. The idea underpinning the
algorithm design is potentially applicable to other settings where the integration of information
from multiple sources is needed.

The setting of the present paper can be reformulated as a multi-view spiked matrix model
which has been studied in [7, 34]. The results of the aforementioned papers give the asymptotic
MMSE of joint estimation of the covariates. More specifically, these papers have used the adap-
tive interpolation technique described in [6] to obtain the limit of per-vertex mutual information
between data and both the community labels and the covariate means. Then they have used the
I-MMSE identity to get the asymptotic MMSE for the joint estimation of the community labels
and the covariate means. A different proof technique related to a similar model was described
in [13], where the authors identified the limiting free energy as the viscosity solution to a certain
Hamilton-Jacobi equation. In contrast to the foregoing papers, the present manuscript focuses
on the optimal estimation of the community label vector only. The asymptotic joint estimation
MMSE results in the foregoing papers do not lead to the asymptotic community label estimation
MMSE we shall derive in this paper, since different priors (Rademacher vs. Gaussian) have been
put on the community labels and the covariate means, respectively, while the connection between
the joint and individual estimation MMSEs depend crucially on the choices of the priors. Due
to the generality of the models considered, the asymptotic MMSE’s in [7, 34] were expressed
in complicated variational forms with matrix arguments. In contrast, under the specific setting
considered in the present manuscript, we shall obtain an explicit ‘single-letter’ characterization of
the asymptotic MMSE. While it remains possible to derive asymptotic per-vertex mutual infor-
mation between data and community labels alone by using the adaptive interpolation technique
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and further obtain the asymptotic MMSE result in the current paper by differentiation, our
proof technique is constructive and hence is entirely different from the approaches in [7, 34, 13].
While those investigations found the limit of the free energy and used it to find the limit of the
per-vertex mutual information, we shall use an AMP algorithm to explicitly construct a Bayes
optimal sequence of estimators and directly obtain the asymptotic MMSE as the limiting mean
squared error of that sequence. The limit of the per-vertex mutual information will be obtained
as a side result of our calculations.

Paper organization The rest of the paper is organized as follows. Section 2 introduces
our observation models and presents key results on detection threshold and asymptotic MMSE
along with introducing the new orchestrated AMP setup. It also lays out three major steps in
the proof of main results, which are executed in Sections 3–5 in order, and formally summa-
rized in Section 6. In Section 7 we collect the results on the asymptotics of the orchestrated
AMP algorithm. In Section 8 we describe a practical algorithm for estimating the community
labels using orchestrated AMP with appropriate spectral initialization and demonstrate its per-
formance through simulations. Finally, we discuss the wider applicability of our techniques and
discuss some potential future research directions in Section 9. The technical proofs are deferred
to the appendices.

2 Detection Threshold and Asymptotic MMSE

2.1 Model

Suppose that n subjects are partitioned into two disjoint groups (labeled by ˘1) according to
an n-dimensional vector x˚ P t˘1un. Throughout the paper we assume that the elements x˚i ’s
are i.i.d. Rademacher random variables which take values ˘1 with equal probability 1

2 .
The observed data consists of two parts. The first part is a collection of m undirected

networks on these n subjects denoted by their adjacency matrices, G “ tGpiq : i P rmsu.
Throughout the paper, for any positive integer k, we let rks “ t1, . . . , ku. The second part is
a p ˆ n data matrix B where the i-th column records the observed values of p covariates on
the i-th subject. Conditional on an instance of x˚, the adjacency matrix Gpiq has zero diagonal
entries, and for all k ‰ l, we assume

G
piq
kl “ G

piq
lk

ind
„

$

&

%

Bern
´

a
piq
n
n

¯

, if x˚k “ x˚l ,

Bern
´

b
piq
n
n

¯

, if x˚k ‰ x˚l .
(2.1)

For any ρ P r0, 1s, Bernpρq denotes a Bernoulli distribution with success probability ρ. Further,

we assume that a
piq
n ą b

piq
n for all n, i ě 0. In addition, the data matrix B is assumed to admit

the representation

B “

c

µ

n
v˚px˚qJ `R, (2.2)

where R is an p ˆ n matrix consisting of i.i.d. standard Gaussian variates and v˚ „ Npp0, Ipq.
Finally, we assume that conditional on x˚, Gp1q, . . . ,Gpmq and B are mutually independent. In
other words, conditional on x˚, the first part of our data consists of m stochastic block models
(a.k.a. a multi-layer stochastic block model with m layers [20]) with a common community
structure x˚. Given v˚, the columns of the covariate matrix B is also partitioned into two
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groups by x˚, where those corresponding to x˚i “ `1 are i.i.d. realizations of a Npp
a

µ{nv˚, Ipq
distribution, and those with x˚i “ ´1 are i.i.d. random vectors following Npp´

a

µ{nv˚, Ipq.
Our goal is to estimate x˚ upon observing tGp1q, . . . ,Gpmqu and B. We focus on an asymp-

totic regime where as nÑ8, m is fixed and

lim
nÑ8

p

n
“

1

c
P p0,8q. (2.3)

For each 1 ď i ď m, define

sppiqn “
a
piq
n ` b

piq
n

2n
, ∆piq

n “
a
piq
n ´ b

piq
n

2n
, λpiqn “

npa
piq
n ´ b

piq
n q

2

pa
piq
n ` b

piq
n qp2n´ a

piq
n ´ b

piq
n q

.

We further assume that µ ě 0 is a fixed constant while

lim
nÑ8

nsppiqn p1´ sppiqn q “ 8, and (2.4)

λpiqn “ λpiq P p0,8q, for all n, i. (2.5)

For brevity, we let

λ “ pλp1q, . . . , λpmqq and λ “
m
ÿ

i“1

λpiq (2.6)

in the rest of this paper. For convenience, we shall further assume that there are some constants
rp1q, . . . , rpmq P p0, 1q such that

m
ÿ

i“1

rpiq “ 1 and λpiq “ rpiqλ, for all i. (2.7)

2.2 Detection Threshold

For every fixed n, λ and µ, we define

Overlapnpλ, µq “ sup
psn:GnˆBnÑt˘1un

1

n
E |xx˚, ŝnpG,Bqy| .

Here Gn is the set of all collections of m undirected networks on n vertices, Bn is the set of
all pˆ n real-valued matrices, and psnpG,Bq is a generic estimator of the community vector x˚

based on observing G and B.
We say detection (a.k.a. weak recovery) of x˚ is possible if

lim inf
nÑ8

Overlapnpλ, µq ą 0.

Otherwise, we perform no better than random guessing. Indeed, if we simply estimate by
random guessing, then our estimator is essentially a vector x with i.i.d. Rademacher entries that
is independent of x˚, and we have 1

nE|xx
˚,xy| Ñ 0.

The following theorem characterizes the phase transition of detection under our model.
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Theorem 2.1. Let the data be generated by (2.1) and (2.2). Suppose that as n Ñ 8, (2.3),
(2.4), (2.5) and (2.7) hold. Then we have

lim sup
nÑ8

Overlapnpλ, µq “ 0, if λ` µ2

c ď 1,

lim inf
nÑ8

Overlapnpλ, µq ą 0, if λ` µ2

c ą 1.
(2.8)

where λ is defined in (2.6).

Proof. The theorem follows from our later Theorem 2.2 and (2.10).

Remark 2.1. Note that rp1q, . . . , rpmq P p0, 1q are allowed to take any values as long as (2.7)
holds.

The foregoing theorem determines a sharp detection threshold in terms of the joint signal-
to-noise ratio (SNR) contained in the two different data sources, namely the m networks and
the data matrix. Here λ can be understood as the joint SNR of the m networks. The phase
transition described in (2.8) asserts that the joint SNR of the two parts has an additive form
λ ` µ2{c. In the special case of m “ 1, Theorem 2.1 reconstructs the threshold found in [17].
When m “ 0, it coincides with the famous Baik–Ben Arous–Peche phase transition for PCA
[4, 5, 32]. When µ “ 0, we could simply discard the data matrix B as it contains no information
about x˚ and Theorem 2.1 leads to a new detection threshold for multi-layer stochastic block
models.

2.3 Asymptotic MMSE

We now seek a more precise characterization of the optimal estimator of x˚ based on observing
G and B, where the optimality is measured through the mean square error.

Minimum mean square error To this end, define the (matrix) minimum mean square error
for estimating the community labels from pG,Bq as

MMSEnpλ, µq “
1

n2
E
“

}x˚px˚qJ ´ E
“

x˚px˚qJ
ˇ

ˇG,B
‰

}2F

‰

. (2.9)

Following the lines of the proof of Lemma 4.6 in [15], one has

1´MMSEnpλ, µq `Opn
´1q ď Overlapnpλ, µq ď

a

1´MMSEnpλ, µq `Opn
´1{2q. (2.10)

In particular, Overlapnpλ, µq Ñ 0 if and only if MMSEnpλ, µq Ñ 1. Therefore, a more precise
characterization of the overlap than that in Theorem 2.1 can be made if we could describe the
exact asymptotic behavior of MMSEnpλ, µq.

A scalar Gaussian model As a useful device for describing the asymptotic behavior of
MMSEnpλ, µq, we follow [29, 16, 15] to introduce the following scalar Gaussian model:

Y “ Y pηq “
?
ηX0 ` Z0, (2.11)

where X0 „ Rademacher and Z0 „ Np0, 1q. In (2.11), every term is a scalar. We assume
knowledge of η and the goal is to estimate X0 based on the observed Y . For this model, we can
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Figure 1: Plots of asymptotic MMSE. Left panel: Asymptotic MMSE as a function of λ for
fixed µ and c combinations. Right panel: Asymptotic MMSE as a function of µ for fixed λ and
c combinations.

compute the mutual information between X0 and Y and the minimum mean square error for
estimating X0 respectively as

Ipηq “ E
„

dpY |X0
pY pηq | X0q

dpY pY pηqq



“ η ´ E rlog coshpη `
?
ηZ0qs , (2.12)

mmsepηq “ E rX0 ´ EpX0 | Y pηqqs
2
“ 1´ E

“

tanh2pη `
?
ηZ0q

‰

. (2.13)

Representation of the asymptotic MMSE With the foregoing definitions in (2.11), (2.12)
and (2.13), we define z˚ “ z˚pλ, µq as the largest non-negative solution to

z “ 1´mmse

ˆ

λz `
µ2

c

z

1` µz

˙

. (2.14)

The following theorem gives a precise characterization of the limiting behavior of MMSEnpλ, µq.

Theorem 2.2. Suppose that the conditions in Theorem 2.1 hold. Then we have

lim
nÑ8

MMSEnpλ, µq “ 1´ z2˚pλ, µq, (2.15)

where λ is defined by (2.6). This implies

1. If λ` µ2{c ď 1,
lim
nÑ8

MMSEnpλ, µq “ 1,

2. If λ` µ2{c ą 1,
lim
nÑ8

MMSEnpλ, µq ă 1.

Remark 2.2. If λ`µ2{c ą 1, then z˚pλ, µq, the largest non-negative solution to (2.14) is strictly
greater than zero. Consequently, the limit of MMSE is strictly less than 1, or equivalently, we
strictly perform better than random guessing.

Remark 2.3. Together with (2.10), phase transition of matrix MMSE for estimating x˚ in The-
orem 2.2 implies the phase transition of the overlap in Theorem 2.1.
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Remark 2.4. By Theorems 2.1 and 2.2, the parameter λ affects the asymptotic behavior of both
Overlapn and MMSEn only through λ. So from here on, we shall slightly abuse notation to also
write Overlapnpλ, µq and MMSEnpλ, µq, which can be viewed as fixing a set of rpiq’s in (2.7) and
hence treating Overlapn and MMSEn as functions of λ and µ only for this fixed set of rpiq’s.

In Figure 1, we show how limnÑ8MMSEnpλ, µq behaves as a function of λ for different values
of µ and c, and as a function of µ for different values of λ and c. It is worth noting that even for
the same values of λ and µ2{c, asymptotic MMSE’s could differ, as its dependence on the three
parameters is more subtle than the phase transition threshold.

2.4 Outline of Proof

We now outline the three major steps in the proof of Theorem 2.2. We follow the same overall
proof structure as in [15]. Compared with [17] and [15], our major novelty lies in the proposal of
an orchestrated AMP algorithm which synchronizes updates about community structure from
multiple data sources.

Gaussian approximation In the first step, we define a Gaussian observation model whose
asymptotic per-vertex mutual information about x˚ is the same as that in the original observa-
tion model in (2.1)–(2.2). To this end, let

 

Y piq : i P rms
(

be a collection of symmetric Gaussian
matrices defined as

Y piq “

c

λpiq

n
x˚px˚qJ `Zpiq, i P rms, (2.16)

where Zpiq’s are i.i.d. Gaussian Wigner matrices. In other words, each Zpiq is symmetric and

Z
piq
kl “ Z

piq
lk „

#

N p0, 1q if k ‰ l.

N p0, 2q if k “ l.
(2.17)

We shall denote the collection of Y piq’s by Y , i.e.

Y “ tY piq : i P rmsu.

Using Lindeberg’s interpolation argument, we show that the per-vertex mutual information
between x˚ and the Gaussian observation model tY ,Bu is asymptotically the same as that
between x˚ and the original observation tG,Bu, in the sense that

1

n
Ipx˚;G,Bq ´

1

n
Ipx˚;Y ,Bq Ñ 0 as nÑ8. (2.18)

As a final reduction in our first step, we shall show that

Ipx˚;T ,Bq “ Ipx˚;Y ,Bq

where for λ defined in (2.6) and Z, a Gaussian Wigner matrix, as in (2.17)

T “ T pλq “

c

λ

n
x˚px˚qJ `Z. (2.19)
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Asymptotic I-MMSE relation For Gaussian observation models, one has the famous I-
MMSE relation [19]. For instance, for the Gaussian observation pT ,Bq, define

GMMSEnpλ, µq “
1

n2
E
›

›x˚px˚qJ ´ Erx˚px˚qJ |T ,Bs
›

›

2

F
. (2.20)

Then the I-MMSE relation refers to the identity

1

n

d

dλ
I
`

x˚px˚qJ;T ,B
˘

“
1

4
GMMSEnpλ, µq. (2.21)

See Section C for a proof of (2.21). On the other hand, we shall derive the following asymptotic
counterpart of (2.21) for the original observation model tG,Bu:

1

n

d

dλ
Ipx˚;G,Bq ´

1

4
MMSEnpλ, µq Ñ 0. (2.22)

Furthermore, (263) of [15] implies for K “ Y and T

1

n
Ipx˚;K,Bq ´

1

n
I
`

x˚px˚qJ;K,B
˘

Ñ 0. (2.23)

Together with (2.18) and the fundamental theorem of calculus, (2.22) and (2.23) establish the
asymptotic equivalence of the MMSE’s in the two models. Hence, the proof of Theorem 2.2
reduces to finding the exact asymptotic limit of GMMSEnpλ, µq. To this end, we turn to Ap-
proximate Message Passing (AMP).

Approximate message passing and MMSE in the Gaussian observation model To
obtain the “large n” limit of GMMSEnpλ, µq, we design the following orchestrated AMP algorithm
where we extract information about x˚ from both the data sources.

Let u0 “ x0 “ 0, T be as in (2.19) and B be as in (2.2). Fix any ε P p0, 1q. We define two
companion AMP orbits tvt,ut`1u and txt`1u, for t “ 0, 1, 2, . . . , characterized by the sensing
matrices T and B respectively, as follows

vt “
B
?
p
ftpu

t,xt,x0pεqq ´ ptgt´1pv
t´1,v0pεqq,

ut`1 “
BJ
?
p
gtpv

t,v0pεqq ´ ctftpu
t,xt,x0pεqq,

(2.24)

and

xt`1 “
T
?
n
ftpu

t,xt,x0pεqq ´ dtft´1pu
t´1,xt´1,x0pεqq. (2.25)

Here x0pεq “ px0,1pεq, . . . , x0,npεqq
J “ pB1x

˚
1 , . . . , Bnx

˚
nq
J where Bi’s are i.i.d. Bernpεq and

v0pεq “ pv0,1pεq, . . . , v0,ppεqq
J “ p rB1v

˚
1 , . . . ,

rBpv
˚
p q
J where rBj ’s are i.i.d. Bernpεq. Next, we define

gtpv
t,v0q “ pgtpv

t
1, v0,1pεqq, . . . , gtpv

t
p, v0,ppεqqq

J,

ftpu
t,xt,x0q “ pftpu

t
1, x

t
1, x0,1pεqq, . . . , ftpu

t
n, x

t
n, x0,npεqqq

J,

and

ct “
1

p

p
ÿ

i“1

Bgt
Bv
pvti , v0,ipεqq, pt “

c

n

n
ÿ

i“1

Bft
Bu
puti, x

t
i, x0,ipεqq, dt “

1

n

n
ÿ

i“1

Bft
Bx
puti, x

t
i, x0,ipεqq,
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where g´1 is the zero function, and ft : R3 Ñ R and gt : R2 Ñ R for t P NY t0u are defined as
follows:

ftpx, y, zq “ E rX0|αt´1X0 ` τt´1Z1 “ x, µtX0 ` σtZ2 “ y,X0pεq “ zs , (2.26)

gtpx, zq “ E rV0|βtV0 ` ϑtZ3 “ x, V0pεq “ zs . (2.27)

In the above definitions (2.26) and (2.27)

X0 „ Rademacher, X0pεq “ BpεqX0 with Bpεq „ Bernpεq,

V0pεq “ rBpεqV0 with rBpεq „ Bernpεq, V0, Z1, Z2, Z3 „ Np0, 1q, and

X0, V0, Bpεq, rBpεq, Z1, Z2 and Z3 are mutually independent.

(2.28)

In addition, the quantities αt, τt, µt, σt, βt and ϑt’s are recursively defined as follows. Let µ0 “
σ0 “ α´1 “ τ´1 “ 0 and mmsep¨q be defined as in (2.13), then for all t ě 0

µt`1 “
?
λ

ˆ

1´ p1´ εqmmse

ˆ

α2
t´1

τ2t´1
`
µ2t
σ2t

˙˙

, σ2t`1 “ 1´ p1´ εqmmse

ˆ

α2
t´1

τ2t´1
`
µ2t
σ2t

˙

;

αt “

c

µ

c

ˆ

p1´ εq
β2t

β2t ` ϑ
2
t

˙

, τ2t “ p1´ εq
β2t

β2t ` ϑ
2
t

;

βt “

c

µ

c
c

ˆ

1´ p1´ εqmmse

ˆ

α2
t´1

τ2t´1
`
µ2t
σ2t

˙˙

, ϑ2t “ c

ˆ

1´ p1´ εqmmse

ˆ

α2
t´1

τ2t´1
`
µ2t
σ2t

˙˙

.

(2.29)

Remark 2.5. These AMP iterations can be viewed as a corrected version of the power iteration
to simultaneously estimate the leading eigenvector of T and the leading singular vectors of B.
However, studying the asymptotics of the iterates of the power iteration is difficult because of the
dependence introduced in each step. This difficulty is overcome by subtracting a so-called “On-
sager term” in every iteration, which ensures that xti for i “ 1, . . . , n are “almost independent”.
Further, we deviate from using the linear version of the power iteration and specific non-linear
functions ft, gt (tailored to the priors in the model) are applied componentwise/row-wise to
previous iterates before post multiplying the iterates to the matrices A and B, so as to obtain
asymptotically Bayes optimal estimates of x˚. One can refer to [9, 22] for further understanding
of AMP in general.

Remark 2.6. The AMP iterates (2.24) and (2.25) are based on the ε-revelation of the truth x˚ and
v˚, which is adopted here to eliminate the degenerate case where all updates ut “ xt “ vt “ 0
for t ě 0. Alternatively, such degeneracy could potentially be avoided by considering spectral
initialization (e.g., [30]). Since our primary goal here is to use AMP for bounding GMMSEnpλ, µq,
we choose to work with the ε-revelation approach as its theoretical analysis is cleaner.

Remark 2.7. The major difficulty in designing the AMP iterates lies in the effective integration
of information from multiple data sources. One possibility is to treat T as the main information
and B as the side information, or vice versa. Although AMP with side information has been
considered in [26] in the context of signal recovery from noisy observations, the generic approach
in [26] does not work in the present context. In [26], the side information, contained in a set
of random variables tS1, . . . , Snu where Si contains the side information for node i, has the
special property that they are mutually independent. In our case, the side information is in the
form of tb1, . . . , bnu where bi is the i-th column of the matrix B. They are not independent
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whenever µ ą 0, and hence the side information are not independent across nodes, and a direct
application of the results in [8] as in [26] is impossible. An alternative approach is to construct
a sequence of AMP recursions with matrix valued iterates as in (28)-(29) of [22]. However, we
can verify that this leads to a version of the AMP that is not Bayes optimal. This is because
x˚ is essentially estimated in two separate iterations using T and B. This nonsynchronized
iteration is the root of the sub-optimal performance. Our proposed iterates (2.24)-(2.25) are
designed to resolve this issue by running two parallel AMP orbits with sensing matrices T and
B, respectively, while sharing information between each other at each iteration. This is achieved
by the use of a synchronized update function ft which takes both ut and xt in its arguments.

Finally, we define a sequence of estimates of x˚ based on the AMP iterates as

pxt “ ft´1pu
t´1,xt´1,x0pεqq, (2.30)

As these estimates are functions of T , B, x0pεq and v0pεq, the mean square errors of pxtppxtqJ to
estimate x˚px˚qJ provide a sequence of upper bounds for

GMMSEnpλ, µ, εq “
1

n2
E
›

›x˚px˚qJ ´ Erx˚px˚qJ |T ,B,x0pεq,v0pεqs
›

›

2

F
.

We shall show that the mean square errors of pxtppxtqJ converge to the same limit as GMMSEn
in the “large n, large t’ asymptotics. We analyze the asymptotics of the mean square errors
of pxtppxtqJ by analyzing the AMP defined in (2.24) and (2.25). To this end, we augment the
techniques in [8] to handle multiple communicating orbits. Last but not least, we argue that as ε
goes to 0, the mean square errors of pxtppxtqJ approximate the limit of GMMSEnpλ, µq. Therefore,
by showing that the “large n, large t, small ε” limit of mean square errors of the AMP iterates
is exactly the same as that in Theorem 2.2, we complete the proof.

3 Gaussian Approximation and Asymptotic Per-Vertex Mutual
Information

The results spelt out in this section closely follow the results of Section 5 in [15]. We list them
here for the paper to be self contained.

3.1 Mutual Information in the Gaussian Model

Let us recall the Gaussian model given by Y , the collection of Gaussian random matrices defined
in (2.16); the SBM ensemble G defined by (2.1); and the covariate matrix B defined in (2.2).
We shall show that as n Ñ 8, the per-vertex mutual information between x˚ and the model
tY ,Bu is asymptotically the same as the the per-vertex mutual information between x˚ and
the model tG,Bu.

To this end, we begin by defining the Hamiltonian function H for m arbitrary nˆn symmetric
matrices V p1q,V p2q, . . . ,V pmq:

Hpx,x˚,v,V ,B,λ, µ, n, pq :“ H1 px,x˚,V ,λ, nq ´ 1

2

›

›

›

›

B ´

c

µ

n
vxJ

›

›

›

›

2

F

where

H1 px,x˚,V ,λ, nq :“
m
ÿ

i“1

ÿ

kăl

V
piq
kl pxkxl ´ x

˚
kx
˚
l q `

m
ÿ

i“1

ÿ

kăl

λpiq

n
xkxlx

˚
kx
˚
l

11



with V :“
`

V p1q, . . . ,V pmq
˘

. Further, define

φpx˚,B,V ,λ, µ, n, pq

“ log

#

ÿ

xPt˘1un

ż

Rp
exppHpx,x˚,v,V ,B,λ, µ, n, pqq exp

ˆ

´
}v}2

2

˙

dv

+

.
(3.1)

Then we have the following lemma.

Lemma 3.1. Let us consider Y “ tY piq : i P rmsu defined in (2.16) and B defined in (2.2).
Then we have

Ipx˚;Y ,Bq “ n log 2`
n´ 1

2

m
ÿ

i“1

λpiq

` E log

˜

ż

Rp
exp

˜

´
1

2

›

›

›

›

B ´

c

µ

n
vpx˚qJ

›

›

›

›

2

F

¸

exp

˜

´
}v}2

2

¸

dv

¸

´ Erφpx˚,B,W ,λ, µ, n, pqs

where φpx˚,B,W ,λ, µ, n, pq is defined in (3.1) and W “ p
a

λp1q{nZp1q, . . . ,
a

λpmq{nZpmqq.

Proof. See Section A.1.

Furthermore, if we consider the random matrix T pλq defined by (2.19), the following lemma
shows that the mutual information between x˚ and tY ,Bu is the same as the mutual information
between x˚ and tT ,Bu.

Lemma 3.2. If we consider T pλq defined in (2.19), Y defined in (2.16) and B defined in (2.2)
then we have

Ipx˚;Y ,Bq “ Ipx˚;T pλq,Bq.

Proof. See Section A.2.

This shows that it is equivalent to study the model tT ,Bu or tY ,Bu. It is easier to study
the model tT ,Bu as instead of dealing with an n-vector of parameters λ in tY ,Bu, in tT ,Bu
we can study the model with respect to a single parameter λ.

3.2 Mutual Information in the Original Model

Next, we observe that the entries of the adjacency matrix G
piq
kl of the adjacency matrices Gpiq

are given by

G
piq
kl :“

#

1 with probability sp
piq
n `∆

piq
n x˚kx

˚
l ,

0 with probability 1´ sp
piq
n ´∆

piq
n x˚kx

˚
l .

We define the function HSBM , the Hamiltonian with respect to the multilayer SBM as follows.

HSBM px,x
˚,u,G,B,λ, µ, n, pqq “ H1SBM px,x˚,G,λ, nq ´

1

2

›

›

›

›

B ´

c

µ

n
vxJ

›

›

›

›

2

F

, (3.2)
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where

H1SBM px,x˚,G,λ, nq :“
m
ÿ

i“1

ÿ

kăl

«

G
piq
kl log

˜

sp
piq
n `∆

piq
n xkxl

sp
piq
n `∆

piq
n x˚kx

˚
l

¸

`

´

1´G
piq
kl

¯

log

˜

1´ sp
piq
n ´∆

piq
n xkxl

1´ sp
piq
n ´∆

piq
n x˚kx

˚
l

¸ff

.

(3.3)

Let us define

ψpx˚,B,G,λ, µ, n, pq

“ log

#

ÿ

xPt˘1un

ż

Rp
exppHSBM px,x

˚,v,G,B,λ, µ, n, pqq exp

ˆ

´
}v}2

2

˙

dv

+

.
(3.4)

Then we have the following lemma characterizing the mutual information between x˚ and
tG,Bu.

Lemma 3.3. Let us consider B defined in (2.2) and G “ tGpiq : i P rmsu defined in (2.1). Then
we have

Ipx˚;G,Bq “ n log 2` E log

˜

ż

Rp
exp

˜

´
1

2

›

›

›

›

B ´

c

µ

n
vpx˚qJ

›

›

›

›

2

F

¸

exp

ˆ

´
}v}2

2

˙

dv

¸

´ Erψpx˚,B,G,λ, µ, n, pqs

where ψpx˚,B,G,λ, µ, n, pq is defined in (3.4).

Proof. See Section A.3.

To connect Ipx˚;G,Bq to Ipx˚;Y ,Bq, we use Lindeberg’s Interpolation Argument. For
that purpose, let us define the auxiliary random matrices rGpiq where

rG
piq
kl :“

∆
piq
n

sp
piq
n p1´ sp

piq
n q

´

G
piq
kl ´ sppiqn ´∆piq

n x
˚
kx
˚
l

¯

. (3.5)

By rG we refer to the collection of random matrices t rGp1q, . . . , rGpmqu. The mutual information
between x˚ and tG,Bu is related to x˚ and t rG,Bu in the following way.

Lemma 3.4. Let us consider G̃ defined in (3.5). Then with nsp
piq
n p1´sp

piq
n q Ñ 8 for i “ 1, . . . ,m,

we have the following identity

Ipx˚;G,Bq “ n log 2`
n´ 1

2

n
ÿ

i“1

λpiq

` E log

˜

ż

Rp
exp

˜

´
1

2

›

›

›

›

B ´

c

µ

n
vpx˚qJ

›

›

›

›

2

F

¸

exp

ˆ

´
}v}2

2

˙

dv

¸

´ Erφpx˚,B, rG,λ, µ, n, pqs `O

¨

˝

m
ÿ

i“1

npλpiqq3{2
b

nsp
piq
n p1´ sp

piq
n q

˛

‚.

Proof. See Section A.4.
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3.3 Gaussian Approximation

Next, we use Lindeberg’s interpolation to approximate Erφpx˚,B, rG,λ, µ, n, pqs by Erφpx˚,B,
W ,λ, µ, n, pqs.

Lemma 3.5. Suppose np̄
piq
n p1´ p̄

piq
n q Ñ 8 for i “ 1, . . . ,m. Then we have

Erφpx˚,B, rG,λ, µ, n, pqs “ Erφpx˚,B,W ,λ, µ, n, pqs `O

¨

˝

m
ÿ

i“1

npλpiqq3{2
b

nsp
piq
n p1´ sp

piq
n q

˛

‚.

Proof. See Section A.5.

Finally we get the following theorem showing the asymptotic equivalence of the per-vertex
mutual information in the two models.

Theorem 3.1. Let us consider Y “ tY piq : i P rmsu defined in (2.16), B defined in (2.2),

and G “ tGpiq : i P rmsu defined in (2.1). If for all i P rms we have np̄
piq
n p1 ´ p̄

piq
n q Ñ 8 for

i “ 1, . . . ,m, then we have

ˇ

ˇ

ˇ

ˇ

1

n
Ipx˚;Y ,Bq ´

1

n
Ipx˚;G,Bq

ˇ

ˇ

ˇ

ˇ

ď O

¨

˝

m
ÿ

i“1

pλpiqq3{2
b

np̄
piq
n p1´ p̄

piq
n q

˛

‚.

Proof. The proof easily follows using Lemma 3.1, Lemma 3.4 and Lemma 3.5.

Remark 3.1. The above theorem shows that as nÑ8 the asymptotic per-vertex mutual infor-
mation about x˚ obtained from pY ,Bq is same as that obtained from pG,Bq.

An immediate corollary to the above theorem is as follows.

Corollary 3.1. Consider T pλq defined by (2.19) and λ “
řm
i“1 λ

piq. If for all i P rms we have

np̄
piq
n p1´ p̄

piq
n q Ñ 8 for i “ 1, . . . ,m, then we have the following inequality.

ˇ

ˇ

ˇ

ˇ

1

n
Ipx˚;T pλq,Bq ´

1

n
Ipx˚;G,Bq

ˇ

ˇ

ˇ

ˇ

ď O

¨

˝

m
ÿ

i“1

pλpiqq3{2
b

np̄
piq
n p1´ p̄

piq
n q

˛

‚.

Proof. This corollary immediately follows from Theorem 3.1 and Lemma 3.2.

4 An Asymptotic I-MMSE Relation

Let us begin by observing that the collection of SBM’s Gp1q, . . . ,Gpmq can be represented as the

collection of random variables tG
piq
kl : 1 ď i ď m, 1 ď k ă l ď nu. Instead of considering t0, 1u

valued random variables G
piq
kl , we shall consider t´1, 1u valued random variables L

piq
kl “ 2G

piq
kl ´1.

This collection will be called L, that is,

L “
!

2G
piq
kl ´ 1 : 1 ď i ď m, 1 ď k ă l ď n

)

.
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Since the elements of L are linear transformations of the elements of tG
piq
kl : i P rms, 1 ď k ă l ď

nu, we have
Hpx˚|G,Bq “ Hpx˚|L,Bq, (4.1)

where Hpx˚|L,Bq is the conditional entropy of x˚ given pL,Bq. This implies that

1

n
Ipx˚;G,Bq “

1

n
Ipx˚;L,Bq. (4.2)

Then an asymptotic I-MMSE identity for the differentiation of Ipx˚;L,Bq is given by the
following lemma.

Lemma 4.1. Let λ, λ be as defined in (2.6) and rpiq for i “ 1, . . . ,m be as defined in (2.7). If

nsp
piq
n p1´ sp

piq
n q Ñ 8, then there is a positive constant C such that

ˇ

ˇ

ˇ

ˇ

1

n

dIpx˚;L,Bq
dλ

´
1

4
MMSEnpλ, µq

ˇ

ˇ

ˇ

ˇ

ď C

˜

m
ÿ

i“1

d

rpiqλ

nsp
piq
n p1´ sp

piq
n q

¸

.

Proof. See Section B.1.

Together with (4.2), the above lemma implies

ˇ

ˇ

ˇ

ˇ

1

n

dIpx˚;G,Bq

dλ
´

1

4
MMSEnpλ, µq

ˇ

ˇ

ˇ

ˇ

Ñ 0 as nÑ8.

5 Asymptotic MMSE in the Gaussian Model

In this section, we derive the asymptotic limit of the quantity GMMSEnpλ, µq defined in (2.20).
To this end, we shall show that, for the AMP iterate pxt defined in (2.30), the mean square error
in estimating x˚px˚qJ by pxtppxtqJ in the Gaussian observation model (2.19) is asymptotically
the same as the limit of GMMSEnpλ, µq as ε goes to zero and n, t goes to infinity. The matrix
mean square error in estimating x˚px˚qJ by pxtppxtqJ,referred to as MSEAMP

n pt;λ, µ, εq, is defined
by

MSEAMP
n pt;λ, µ, εq “

1

n2
E
“

}x˚px˚qJ ´ pxtppxtqJ}2F
‰

. (5.1)

We show that in the “large n, large t, small ε” limit this sequence of estimators is asymptotically
Bayes optimal in the sense that MSEAMP

n pt;λ, µ, εq converges to the same limit as GMMSEnpλ, µq.
Hence, from the properties of the AMP iterates that we shall derive in this section, we can
characterize the precise limit of GMMSEnpλ, µq (and hence of MMSEnpλ, µq) as nÑ8.

As a byproduct, we obtain an explicit formula of the asymptotic limit of the per-vertex
mutual information in the Gaussian observation model. By Corollary 3.1, it also gives the
asymptotic limit of the per-vertex mutual information in the original model (2.1)–(2.2).
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State evolution of the AMP iterates Recall AMP iterates ut,xt and vt defined in (2.24)
and (2.25), and state evolution (2.29). From (2.29), we obtain the following

µ2t`1
σ2t`1

“ λ

ˆ

1´ p1´ εqmmse

ˆ

α2
t´1

τ2t´1
`
µ2t
σ2t

˙˙

,

β2t
ϑ2t
“ µ

ˆ

1´ p1´ εqmmse

ˆ

α2
t´1

τ2t´1
`
µ2t
σ2t

˙˙

,

α2
t

τ2t
“ p1´ εq

µ

c

β2t
β2t ` ϑ

2
t

.

Define θt :“ β2t {ϑ
2
t and γt :“ µ2t {σ

2
t . Then we have the following

γt`1 “ λ

ˆ

1´ p1´ εqmmse

ˆ

γt ` p1´ εq
µ

c

θt´1
1` θt´1

˙˙

,

θt “ µ

ˆ

1´ p1´ εqmmse

ˆ

γt ` p1´ εq
µ

c

θt´1
1` θt´1

˙˙

.

Further, define

zt “
γt`1
λ

“
θt
µ
. (5.2)

Then the state evolution recursion reduces to

zt`1 “ 1´ p1´ εqmmse

ˆ

λzt ` p1´ εq
µ2

c

zt
1` µzt

˙

. (5.3)

Since the function on the right side of (5.3) is concave, increasing monotonically and bounded
as a function of zt (as we shall show later in the proof of Theorem 5.1 in Section D.1), we have

zt Ñ z˚pλ, µ, εq, as tÑ8.

This implies that z˚pλ, µ, εq satisfies

z˚pλ, µ, εq “ 1´ p1´ εqmmse

ˆ

λz˚pλ, µ, εq ` p1´ εq
µ2

c

z˚pλ, µ, εq

1` µz˚pλ, µ, εq

˙

. (5.4)

Limit of MMSE As a first step, we have the following theorem that characterizes the asymp-
totics of MSEAMP

n pt;λ, µ, εq.

Theorem 5.1. Let MSEAMP
n pt;λ, µ, εq be defined as in (5.1). Then we have

lim
nÑ8

MSEAMP
n pt;λ, µ, εq “ 1´ z2t ,

where zt is defined by (5.2). Taking tÑ8, we have

lim
tÑ8

lim
nÑ8

MSEAMP
n pt;λ, µ, εq “ 1´ z2˚pλ, µ, εq,

where z˚pλ, µ, εq is the largest non-negative solution to (5.4). As εÑ 0, we get

lim
εÑ0

lim
tÑ8

lim
nÑ8

MSEAMP
n pt;λ, µ, εq “ 1´ z2˚pλ, µq,

where z˚pλ, µq is the largest non-negative solution to (2.14).
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Proof. See Section D.1.

Next, we have the following theorem characterizing asymptotic GMMSEnpλ, µq and per-
vertex mutual information.

Theorem 5.2. Consider GMMSEnpλ, µq defined in (2.20). Then for all λ, µ ě 0,

lim
nÑ8

GMMSEnpλ, µq “ 1´ z2˚pλ, µq,

where z˚pλ, µq is the largest non-negative solution to (2.14). Further,

lim
nÑ8

1

n
Ipx˚;T pλq,Bq “ ξpz˚pλ, µq, λ, µq,

where Ip¨q is defined in (2.12) and

ξpz, λ, µq “
λz2

4
´
λz

2
`
λ

4
`

1

2c
logp1` µzq `

1

2c

p1` µq

p1` µzq

` I

ˆ

λz `
µ2

c

z

1` µz

˙

´
1

2c
logp1` µq ´

1

2c
.

(5.5)

Proof. See Section D.2.

Finally, as an immediate corollary, we obtain the following limit for per-vertex mutual infor-
mation in the original observation model.

Corollary 5.1. Consider G defined by (2.1). Then we have the following

lim
nÑ8

1

n
Ipx˚;G,Bq “ ξpz˚pλ, µq, λ, µq,

where z˚pλ, µq is the largest non-negative solution to (2.14), and ξpz, λ, µq is defined by (5.5).

Proof. Follows from Corollary 3.1 and Theorem 5.2.

6 Proof of Theorem 2.2

With all the ingredients collected in Sections 3–5, we now give a formal proof of Theorem 2.2
according to the outline laid out in Section 2.4.

Using (263) of [15], we get

lim
nÑ8

„

1

n
I px˚;T pλq,Bq ´

1

n
I
`

x˚px˚qJ;T pλq,B
˘



“ 0.

Now using the same arguments as those in Section C, we have

lim
nÑ8

1

n
pIpx˚;T pλ1q,Bq ´ Ipx

˚;T pλ2q,Bqq

“ lim
nÑ8

1

n

`

Ipx˚px˚qJ;T pλ1q,Bq ´ Ipx
˚px˚qJ;T pλ2q,Bq

˘

“ lim
nÑ8

ż λ2

λ1

1

4
GMMSEnpθ, µqdθ

(6.1)
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where GMMSEnpθ, µq “
1
n2E}x˚px˚qJ ´E

“

x˚px˚qJ|T pθq,B
‰

}2F and T pθq are defined in (2.19).

Fix a set of rpiq’s defined in (2.7). For any θ ą 0, we can write MMSEnpθ, µq for MMSEnpθ, µq
where the ith element of θ is θrpiq. Using Lemma 4.1 and (2.4), we get for all finite λ1 and λ2

lim
nÑ8

ż λ2

λ1

1

4
MMSEnpθ, µqdθ “ lim

nÑ8

1

n
pIpx˚;Gpλ2q,Bq ´ Ipx

˚;Gpλ1q,Bqq

where Ipx˚;Gpλq,Bq refers to the mutual information between x˚ and pG,Bq. Then using
Corollary 3.1 and (6.1) we get for all λ ě 0 and µ ě 0

lim
nÑ8

GMMSEnpλ, µq “ lim
nÑ8

MMSEnpλ, µq.

Now using Theorem 5.2 we get

lim
nÑ8

MMSEnpλ, µq “ 1´ z2˚pλ, µq,

where z˚pλ, µq is the largest non-negative solution to (2.14). Define

Gpzq “ 1´mmse

ˆ

λz `
µ2

c

z

1` µz

˙

,

and
Spzq “ 1´mmsepzq.

Then using Lemma 6.1 of [15] we get that G is increasing, concave, Gp0q “ 0 and there is an
unique positive solution of (2.14) if and only if

G1p0q “

ˆ

λ`
µ2

c

˙

S1p0q “ λ`
µ2

c
ą 1.

In this case, z˚pλ, µq ă 1 by its definition in (2.14). Otherwise, if λ ` µ2{c ď 1, then the only
non-negative solution to (2.14) is 0.

Since the foregoing arguments hold for any fixed rp1q, . . . , rpmq, this implies if λ` µ2{c ď 1

lim
nÑ8

MMSEnpλ, µq “ 1,

and if λ` µ2{c ą 1
lim
nÑ8

MMSEnpλ, µq ă 1.

This completes the proof.

7 Orchestrated Approximate Message Passing

This section collects the key results on the SLLN type behavior of the orchestrated AMP iterates
with multiple parallel orbits. These results are used to derive the properties of the sequence of
estimators pxt in Section 5, and they are potentially of independent interest. Although we focus
on the case of two orbits in this section, the arguments could be extended to more than two
orbits.

To fully accommodate the ε-revelation approach we have taken in (2.24)–(2.25), we need to
introduce some additional technicalities for the function classes that we establish convergence
results on. The details are spelled out in Section 7.1. The SLLN-type behavior of the iterates
in AMP without and with signal is established in Sections 7.2 and 7.3, respectively.
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7.1 Partially Pseudo-Lipschitz and Partially Lipschitz Functions

Traditionally, while analyzing the convergence of the AMP iterates, one considers pseudo-
Lipschitz functions [9, 22, 15]. However, many update functions which are intuitive may not
belong to this function class. For example, in our case, while the sequence of update functions
ft (in (2.24) and (2.25)) are pseudo-Lipschitz, the functions gt are not. Fortunately, the asymp-
totics of the AMP iterates that we have designed can be analyzed with a weaker requirement in
the update functions.

To motivate our definition, observe that gt : R2 Ñ R in (2.27) is given by

gtpx, zq “

#

βt
β2
t`ϑ

2
t
x if z “ 0,

z if z ‰ 0.
(7.1)

This function is discontinuous at px, 0q for all x P Rzt0u. Hence, it is not pseudo-Lipschitz.
However, if we fix the last argument and view the function as only a function of the remaining
arguments, then it becomes pseudo-Lipschitz. Such functions are sufficiently smooth for the
AMP iterates to behave properly in the asymptotic regime. In view of this we define the
following partially pseudo-Lipschitz functions.

Definition 7.1. Let a “ pa1, . . . , akq
J, b “ pb1, . . . , bkq

J, and z P R. A function ϕ : Rk`1 Ñ R
is called partially pseudo-Lipschitz if there is an absolute constant C ą 0 such that for all
a, b P Rk and z P R,

|ϕpa, zq ´ ϕpb, zq| ď C

˜

1`
k
ÿ

i“1

|ai| `
k
ÿ

i“1

|bi| ` |z|

¸

}a´ b}. (7.2)

Further there exists C1 ą 0, such that for all z P R,

|ϕp0, zqq| ď C1

`

1` |z|2
˘

. (7.3)

In a partially pseudo-Lipschitz function, the first k variables are the main variables, and the
last is called the offset variable.

Similar to pseudo-Lipschitz functions, partially pseudo-Lipschitz functions also form a func-
tion class on which one has the desired SLLN type behavior. In the same spirit, we define
partially Lipschitz functions as follows.

Definition 7.2. Consider a “ pa1, . . . , akq
J, b “ pb1, . . . , bkq

J and z P R. A function f :
Rk`1 Ñ R is called partially Lipschitz if there is an absolute constant C ą 0 such that for all
a, b P Rk and z P R,

|fpa, zq ´ fpb, zq| ď C}a´ b}.

Further there exists C1 ą 0, such that for all z P R,

|fp0, zq| ď C1p1` |z|q.

Remark 7.1. All pseudo-Lipschitz functions are partially pseudo-Lipschitz. This implies that all
Lipschitz functions are partially pseudo-Lipschitz. Furthermore, if fpx1, . . . , xk, zq : Rk`1 Ñ R,
is Lipschitz, then the functions f2 and xif for i P rks are partially pseudo-Lipschitz. For two
Lipschitz functions f, g : Rk`1 Ñ R, the function fg is partially pseudo-Lipschitz. Finally, by
Lemma D.1, the sequence of functions ftpx, y, zq defined by (2.26) is Lipschitz. Hence, f2t px, y, zq,
xftpx, y, zq, yftpx, y, zq and ftpx, y, zqfspx, y, zq are all partially pseudo-Lipschitz. The same is
true for Bft{Bx and Bft{By for all t, as they are Lipschitz continuous.
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Next we observe the following properties of partially Lipschitz and partially pseudo-Lipschitz
functions.

Lemma 7.1. Consider two partially Lipschitz functions f, g : Rk`1 Ñ R. Then they satisfy the
following properties.

1. The function hpx1, . . . , xk, zq “ fpx1, . . . , xk, zqgpx1, . . . , xk, zq is partially pseudo-
Lipschitz.

2. Consider a random variable X with finite expectation. For any fixed x1, . . . , xr´1,
xr`1, . . . , xk, let

Hpx1, . . . , xr´1, xr`1, . . . , xk, zq “ EX tφpx1, . . . , xr´1, X, xr`1, . . . , xk, zqu ,

where φ is partially pseudo-Lipschitz. Then the function H : Rk Ñ R is partially pseudo-
Lipschitz.

Remark 7.2. Recall that gtpx, zq defined in (2.27) satisfies (7.1). It is straightforward to check
that gt’s are partially Lipschitz. As all partially Lipschitz functions are partially pseudo-
Lipschitz, gt’s are partially pseudo-Lipschitz. Further, Bgt{Bx’s are also partially Lipschitz for
all t and hence partially pseudo-Lipschitz. Furthermore, g2t px, zq, xgtpx, zq, and gtpx, zqgspx, zq
are all partially pseudo-Lipschitz.

7.2 Orchestrated AMP with Mean Zero Gaussian Sensing Matrices

Let L be a pˆ n random matrix where

Lij
iid
„ Np0, 1{pq, (7.4)

and let N be a scaled GOE(n) matrix where

Nii
iid
„ Np0, 2{nq and Nij “ Nji

iid
„ Np0, 1{nq when i ‰ j. (7.5)

In addition, assume that L and N are mutually independent. We want to construct two orches-
trated AMP orbits based on the matrices L and N with information sharing between them in
each iteration.

Construction of orchestrated AMP orbits Consider a sequence of update functions ft :
R4 Ñ R, where for all integers t ě 0,

ft’s are partially Lipschitz and their partial derivatives with respect to

the first two variables are also partially Lipschitz.
(7.6)

Let us consider another sequence of update functions gt : R3 Ñ R, where for any integer t ě 0,

gt’s are partially Lipschitz and their partial derivatives with respect to

the first argument are also partially Lipschitz.
(7.7)

In addition, let f´1 and g´1 be zero functions.
Starting with h0 “ y0 “ 0, we consider the following two AMP orbits:
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bt “ Lftph
t,yt, ξ0,x0q ´ ptgt´1pb

t´1,ω0,v0q,

ht`1 “ LJgtpb
t,ω0,v0q ´ ctftph

t,yt, ξ0,x0q,
(7.8)

and
yt`1 “N ftph

t,yt, ξ0,x0q ´ dtft´1ph
t´1,yt´1, ξ0,x0q,

where ξ0 “ pξ0,1, . . . , ξ0,nq
J and x0 “ px0,1, . . . , x0,nq

J with pξ0,i, x0,iq
iid
„ Pξ,x which has

a finite second moment. Similarly ω0 “ pω0,1, . . . , ω0,pq
J and v0 “ pv0,1, . . . , v0,pq

J with

pω0,j , v0,jq
iid
„ Pω,v which also has finite second moment. We further assume that pξ0,x0q, and

pω0,v0q are independent of L and N . Moreover, in (7.8)

gtpb
t,ω0,v0q “ pgtpb

t
1, ω0,1, v0,1q, . . . , gtpb

t
p, ω0,p, v0,pqq

J,

ftph
t,yt, ξ0,x0q “ pftph

t
1, y

t
1, ξ0,1, x0,1q, . . . , ftph

t
n, y

t
n, ξ0,n, x0,nqq

J,

and

ct “
1

p

p
ÿ

i“1

Bgt
Bb
pbti, ω0,i, v0,iq,

pt “
c

n

n
ÿ

i“1

Bft
Bh
phti, y

t
i , ξ0,i, x0,iq,

dt “
1

n

n
ÿ

i“1

Bft
By
phti, y

t
i , ξ0,i, x0,iq,

where c “ lim
nÑ8

n{p. Note that in construction of the above (partially) pseudo-Lipschitz func-

tions, elements of x0 and v0 are offset variables, while those of ξ0 and ω0 belong to the main
variables. Finally, denote

mt “ gtpb
t,ω0,v0q and qt “ ftph

t,yt, ξ0,x0q. (7.9)

Remark 7.3. Compared to (2.24) and (2.25), for AMP iterations without signal (7.8), we have
increased the number of arguments in both update function sequences by one to accommodate
later analysis. Therefore, we change the notation to ft and gt to alert the readers that the
number of arguments has increased. Their connection with the update functions tft, gt : t ě 0u
used when signal is present will be made explicit in Remark 7.6.

Remark 7.4. The use of the same update function while updating ht and yt is not necessary.
We have considered this setup because it helps in the analysis of the estimate pxt.

State evolution For notational simplicity, we define for any vector u,v P Rm,

xu,vym “
1

m

m
ÿ

i“1

uivi and xuym “
1

m

m
ÿ

i“1

ui.

The asymptotics of the foregoing AMP can be analyzed by its state evolution described below.
Let τ2´1 “ σ20 “ 0, ϑ20 “ c lim

nÑ8
xq0, q0yn, and σ21 “ lim

nÑ8
xq0, q0yn. For all integer t ě 1, we define

recursively

σ2t “ Etft´1pτt´2Z1, σt´1Z2, rΞ0, rX0q
2u,

τ2t´1 “ Etgt´1pϑt´1Z3, rΩ0, rV0q
2u,

ϑ2t “ cEtftpτt´1Z1, σtZ2, rΞ0, rX0q
2u.

(7.10)
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Here, Z1, Z2, Z3
iid
„ Np0, 1q, prΞ0, rX0q „ Pξ,x and prΩ0, rV0q „ Pω,v, and they are mutually inde-

pendent. As before, c “ limnÑ8 n{p.
With the foregoing definitions, the following theorem characterizes the SLLN type behavior

of the “large n” averages of partially pseudo-Lipschitz functions applied on AMP iterates.

Theorem 7.1. Consider L and N defined in (7.4) and (7.5) that are mutually independent,
and the AMP iterates (7.8) satisfying (7.6) and (7.7). Let ξ0 “ pξ0,1, . . . , ξ0,nq

J and x0 “

px0,1, . . . , x0,nq
J with pξ0,i, x0,iq

iid
„ Pξ,x which has finite second moment. Similarly, ω0 “

pω0,1, . . . , ω0,pq
J and v0 “ pv0,1, . . . , v0,pq

J with pω0,j , v0,jq
iid
„ Pω,v which also has finite sec-

ond moment. In addition, suppose pξ0,x0q and pω0,v0q are independent of both L and N .
Furthermore, let τ2t , ϑ

2
t , σ

2
t be defined by the recursions (7.10) with initializations y0 “ 0,h0 “ 0,

ϑ20 “ c limpÑ8xq
0, q0yn, and σ21 “ limnÑ8xq

0, q0yn. For any partially pseudo-Lipschitz func-
tions φh : R4 Ñ R and ψb : R3 Ñ R in the sense of (7.2), we have

1

n

n
ÿ

i“1

φhph
t`1
i , yt`1i , ξ0,i, x0,iq

a.s.
ÝÑ E

!

φhpτtZ1, σt`1Z2, rΞ0, rX0q

)

,

and
1

p

p
ÿ

i“1

ψbpb
t
i, ω0,i, v0,iq

a.s.
ÝÑ E

!

ψbpϑtZ3, rΩ0, rV0q
)

.

Here Z1, Z2, Z3
iid
„ Np0, 1q, prΞ0, rX0q „ Pξ,x, prΩ0, rV0q „ Pω,v, and they are mutually independent.

Remark 7.5. The presence of two AMP orbits and the use of orchestrated iterates yt and ht in
each ft prevents us from directly using existing AMP convergence results in [9], [22] or [10]. To
resolve this issue, we shall modify the proof of Lemma 1 in [9] by using the conditioning technique
in [12] directly and prove an analogous lemma in Subsection E.2 (Lemma E.1) suitable for (7.8).
The lemma will then be used to prove Theorem 7.1.

7.3 Orchestrated AMP with Rank-One Deformed Sensing Matrices

We now turn back to the AMP iterates ut,vt and xt defined by (2.24) and (2.25) with some
generic update functions ft and gt. With a slight abuse of notation, we define µ0 “ σ0 “ α´1 “
τ´1 “ 0 and

β0 “

c

µ

c
E tX0f0p0, 0, X0pεqqu , ϑ20 “ c lim

nÑ8
xf0pu

0,x0,x0q, f0pu
0,x0,x0qyn.

Then we define for all t ě 1

µt “
?
λ E tX0ft´1pτt´2Z1 ` αt´2X0, σt´1Z2 ` µt´1X0, X0pεqqu ,

αt´1 “

c

µ

c
E tV0gt´1pϑt´1Z3 ` βt´1V0, V0pεqqu ,

βt “ c

c

µ

c
E tX0ftpτt´1Z1 ` αt´1X0, σtZ2 ` µtX0, X0pεqqu ,

σ2t “ E
!

rft´1pτt´2Z1 ` αt´2X0, σt´1Z2 ` µt´1X0, X0pεqqs
2
)

,

τ2t´1 “ E
!

rgt´1pϑt´1Z3 ` βt´1V0, V0pεqqs
2
)

,

ϑ2t “ cE
!

rftpτt´1Z1 ` αt´1X0, σtZ2 ` µtX0, X0pεqqs
2
)

,

(7.11)
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where X0, X0pεq, V0, V0pεq, Z1, Z2 and Z3 satisfy (2.28).

Remark 7.6. Here we slightly abuse notation in the sense that we use αt, βt, µt, σ
2
t , τ

2
t and ϑ2t

for state evolution with generic ft and gt, whereas they were originally defined only for the
specific ft and gt in (2.26)–(2.27). Effectively, we could think of these quantities as functions
of tft, gt : t ě 0u. In this way, the notation could be unified. Furthermore, the notation σ2t ,
τ2t´1 and ϑ2t are in accordance with that of (7.10) by identifying pX0, X0pεqq with prΞ0, rX0q,

pV0, V0pεqq with prΩ0, rV0q, ftpx1, x2, y, zq with ftpx1 ` αt´1y, x2 ` µty, zq and gt´1px, y, zq with
gt´1px` βt´1y, zq.

The following theorem establishes the SLLN type behavior for AMP iterates defined by
(2.24) and (2.25) with generic ft and gt satisfying certain smoothness conditions.

Theorem 7.2. Consider partially pseudo-Lipschitz functions φ : R3 Ñ R and ψ : R2 Ñ R in the
sense of (7.2). Suppose that, in (2.24) and (2.25), the update functions ft and its partial deriva-
tives with respect to the first two variables are partially Lipschitz for all t ě 0. Further for all
t ě 0, gt and its partial derivative with respect to the first argument are also partially Lipschitz.
In addition, let f´1 and g´1 be zero functions. Then for all t P N, and for µt, αt´1, βt, σ

2
t , τ

2
t´1

and ϑ2t defined in (7.11), we have the following identities:

lim
nÑ8

1

n

n
ÿ

i“1

φputi, x
t
i, x0,iq

a.s.
“ E tφ pαt´1X0 ` τt´1Z1, µtX0 ` σtZ2, X0pεqqu ,

and

lim
pÑ8

1

p

p
ÿ

i“1

ψpvti , v0,iq
a.s.
“ E tψ pβtV0 ` ϑtZ3, V0pεqqu .

Here X0, X0pεq, V0, V0pεq, Z1, Z2 and Z3 satisfy (2.28).

8 Numerical Experiments

The AMP algorithm defined by the recursions (2.24) and (2.25) is asymptotically Bayes optimal
for estimating x˚px˚qJ in the Gaussian model. However, its dependence on the partial revela-
tion of the truth x˚ and v˚ makes it impractical. In this section, we investigate the empirical
performance of a practically implementable variant of (2.24)– (2.25): we initialize with a spectral
estimator and force ε “ 0 in the AMP iterates (2.24)– (2.25).

To this end, we propose to initialize both x0 and u0 with
?
n ē, where ē is the leading

eigenvector of T ` a0BB
J for some constant a0 defined below. Throughout this section, we

define a0 as the unique solution to the following equation:

µ

cλ
“
´λ` pca2 ` µa2q `

a

pλ` ca2 ` µa2q2 ´ 4λca2

2µ
. (8.1)

It can be shown that if λ`µ2{c ą 1, then the leading eigenvector of T`a0BB
J is asymptotically

correlated with x˚, and they are asymptotically orthogonal if λ` µ2{c ď 1. Rigorous proofs of
the properties of this initializer and related issues are beyond the scope of the present paper,
and they are being investigated in [31].

In the rest of this section, we first conduct a simulation study of the above algorithm under
the Gaussian observation model (2.19) and (2.2). Next, we study its performance under the
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original multilayer network plus covariate model with one and two layers. In both cases, the
empirical performance of this practical variant agrees well with the theoretical predictions in
Theorems 5.2 and 2.2, respectively.

8.1 The Gaussian Observation Model

We take n “ 1500 and p “ 900 and consider two settings: “fixed µ varying λ” and “fixed λ
varying µ”.

In the first setting, we fix µ P t0.5, 0.7, 0.9u, respectively. At each fixed value µ, we vary
λ across 25 equally-spaced values in the interval r0.5, 4.5s. For each combination pλ, µq, we
generate 25 i.i.d. copies of pT ,Bq pairs. For each pT ,Bq pair, we run the iterates in (2.24) and
(2.25) with ε “ 0 for 100 iterations after initializing µ0, σ0, α´1 and τ´1 randomly in the interval
r4, 10s and using the spectral initialization for u0 and x0. We construct the AMP estimate px100

as in (2.30). The upper panel of Figure 2 reports the average and spread of the empirical MMSEs
on 25 replications at each λ for all three fixed values of µ and compares the average with the
theoretical prediction (2.15). These plots show that the MMSEs of the spectral initialized AMP
iterates agree well with the theoretical limits across all pλ, µq value pairs.

In the second setting, we fix λ P t0.3, 0.6, 0.9u, respectively. At each fixed value λ, we vary µ
across 25 equally-spaced values in the interval r0.5, 4.5s. For each combination pλ, µq, the other
simulation details are the same as in the first setting. The lower panel of Figure 2 reports the
average and spread of the empirical MMSEs over 25 replications at each µ for the three fixed
values of λ and compares the average with the theoretical prediction (2.15). As in the previous
setting, the empirical MMSEs agree well with theoretical predictions.

8.2 The Original Observation Model with One Layer

We now consider the original observation model (2.1)–(2.2) with m “ 1. This special case is
also known as the contextual SBM. Although the AMP algorithm defined by (2.24) and (2.25) is
designed for a Gaussian sensing matrix, but arguments of [36] show that the same state evolution
limits can be obtained if instead of T , one considers the matrix

A “
G´ spn11J

a

nspnp1´ spnq
,

where G is the adjacency matrix of the one layer network. Thus, we could apply the practical
algorithm presented at the beginning of this section with T replaced with A.

We take n “ 2000 and p “ 3000 and p̄n “ 0.7{
?
n, and all other simulation details are

identical to those used in Section 8.1. In the upper panel of Figure 3 we plot the average and
the spread of the empirical MMSE of the estimator defined by (2.30) over 25 iterates for each
value of λ at three fixed values of µ and compare it against the theoretical prediction given by
(2.15). In the lower panel of Figure 3, we repeat the experiment across different µ values at
three fixed λ values. In both settings, we see the same pattern as in the Gaussian observation
model: the empirical MMSEs of the practical algorithm approximate the theoretical predictions
well across all pλ, µq combinations that we consider.

8.3 The Original Observation Model with Three Layers

In our last set of simulations, we turn to the original observation model (2.1)-(2.2) with m “ 3.

We take n “ 2000, p “ 3000, and consider three SBMs with p̄
p1q
n “ 0.7{

?
n, p̄

p2q
n “ 0.4{

?
n and
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(c) µ “ 0.9

1 2 3 4

0.
4

0.
6

0.
8

1.
0

mu

E
m

pi
ric

al
 M

M
S

E

Theoretical MMSE
Empirical MMSE
2nd Largest Obs
2nd Smallest Obs

(d) λ “ 0.3
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(e) λ “ 0.6
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(f) λ “ 0.9

Figure 2: Upper Panel: Empirical MMSE plots of the AMP estimator versus λ for different fixed
µ’s. Lower Panel: Empirical MMSE plots of the AMP estimator versus µ for different fixed λ’s.

p̄
p3q
n “ 0.3{

?
n. In addition, we keep the SNR fractions rp1q, rp2q and rp3q in (2.7) at 0.6, 0.2 and

0.2, respectively. The adjacency matrices of the SBMs are denoted by G1 and G2. To find the
counterpart for T to be used in the practical algorithm, we first define the centered and scaled
adjacency matrices:

Ai “
Gi ´ sp

piq
n 11J

b

nsp
piq
n p1´ sp

piq
n q

, i “ 1, 2, 3.

Simple algebra suggests that we should replace T in the Gaussian model with

A :“
a

λ1{λA1 `
a

λ2{λA2 `
a

λ3{λA3

Other than the foregoing modification, the other experiment details are identical to what we
have used in the previous two subsections.

In the upper panel of Figure 4 we plot the average and the spread of the empirical MMSE
of the estimator defined by (2.30) over 25 iterations at each value of λ for three fixed values of
µ. We compare empirical MMSEs with the theoretical prediction (2.15). In the lower panel of
Figure 4 we switch the roles of λ and µ, that is, we fix λ and vary µ. In both settings, we see the
same pattern as in the Gaussian observation model and in the contextual SBM: the empirical
MMSEs of the practical algorithm approximate the theoretical predictions well across all pλ, µq
value pairs that we consider.
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(b) µ “ 0.7
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(c) µ “ 0.9
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(d) λ “ 0.3
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(e) λ “ 0.6

1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

mu

E
m

pi
ric

al
 M

M
S

E

Theoretical MMSE
Empirical MMSE
2nd Largest Obs
2nd Smallest Obs

(f) λ “ 0.9

Figure 3: Upper Panel: Empirical MMSE plots of the AMP estimator based on Graph Adjacency
matrix versus λ for different fixed µ’s. Lower Panel: Empirical MMSE plots of the AMP
estimator based on Graph Adjacency matrix versus µ for different fixed λ’s.

9 Concluding Remarks

In this paper, we have designed an orchestrated AMP algorithm with two orbits and ε-revelation
to establish the exact asymptotic limit of MMSE for estimating x˚. The theoretically justified
version is not practical due to its dependence on the true parameter values through ε-revelation.
In Section 8, a practical variant with spectral initialization leads to empirical estimation errors
that closely approximate the theoretically predicted optimal values over all simulated examples.
To fully establish its generality, it is of great interest to show mathematically that this practical
algorithm indeed reaches the asymptotic MMSE. An alternative practical algorithm for com-
munity detection in single layer Contextual SBM has been described in Section 4 of [17]. This
algorithm can potentially be modified to handle multilayer networks and covariates. However,
this is beyond the scope of the current manuscript and we leave it for future research.

We have focused exclusively on the balanced two-block setting, which is the simplest non-
trivial case for community detection. In addition, we have considered Gaussian covariates.
These assumptions could be relaxed. The extension of our results to general sub-Gaussian
sensing matrices can be derived by directly using the techniques described in [36]. Therefore,
we do not describe it in detail. In addition, we could consider the balanced k block setting with
k ą 2, in which case the signal would be encoded by a matrix of rank k ´ 1. See, for instance,
the multiple spiked models (1.1) and (1.2) in [30]. The AMP algorithms for handling such cases
can be developed by following the principle in the present paper and generalizing our techniques
along the line of [30]. Furthermore, we could consider detection threshold in a sparse setting
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Figure 4: Upper Panel: Empirical MMSE plots of the AMP estimator based on three Graph
Adjacency matrices versus λ for different fixed µ’s. Lower Panel: Empirical MMSE plots of the
AMP estimator based on two Graph Adjacency matrices versus µ for different fixed λ’s.

with non-diverging average degrees. We could also consider the optimal rate of community
detection in these models under a Hamming loss as in [39] in the regime of weak consistency
as opposed to detection. In these settings, different techniques from AMP are expected to be
needed to achieve the information-theoretically optimal performance. That being said, the idea
of developing orchestrated parallel estimation sequences with information sharing at each step
for different data sources could still be useful. We leave the aforementioned potential extensions
for future research.

In the present work, we have considered an orchestrated AMP algorithm with two orbits as
we have two sources of information about the estimand. It could be generalized to more than
two orbits when additional sources of information are present. For example, suppose that there
are n vertices in total. In addition to network and covariate information for all vertices as we
have considered in this work, there may be an additional network on a subset of vertices and
some additional covariates on a different subset, represented by an n1 ˆ n1 adjacency matrix
and an n2 ˆ p1 covariate matrix, where n1, n2 ă n. To pool all the information together, we
anticipate that an orchestrated AMP algorithm with four orbits would be needed to achieve
an information-theoretically optimal estimation error. We think that the study of orchestrated
AMP algorithms in more general settings would be an interesting future research topic.
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A Proof of Results in Section 3

A.1 Proof of Lemma 3.1

From the definition of mutual information we have

Ipx˚;Y ,Bq “ E
„

log
dpY ,B|x˚pY ,B|x

˚q

dpY ,BpY ,Bq



.
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Then using the property of Gaussian channel we get
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A.2 Proof of Lemma 3.2

A careful inspection of the expression of Ipx˚;Y ,Bq in Lemma 3.1 shows that the mutual
information depends on tλpiqu and tZpiqu only through

λ “
m
ÿ

i“1
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m
ÿ
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Z
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The proof is simply completed by noting that

m
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Z
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d
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Zkl, for all k ă l.
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A.3 Proof of Lemma 3.3

Let us define
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A.4 Proof of Lemma 3.4

We begin by noting that if x P t˘1u then
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Using Taylor approximation for z P r0, c0s we have
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with C1 and C2 absolute positive constants. Furthermore
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We complete the proof by applying Lemma 3.3.
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A.5 Proof of Lemma 3.5
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Now we shall use Lindeberg’s generalization theorem (Theorem 5.6 of [15]) to establish the

desired result. We consider the collections of random variables t rG
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B Proofs of Results in Section 4

We start with some definitions. For i P rms, we let EpGpiqq denote all
`

n
2

˘

unordered pairs of
nodes in the ith graph. For a pair of vertices e “ pk, lq, consider the following random variables.

xe :“ x˚kx
˚
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and
ppyeq “ Pxe pxe “ yeq . (B.2)

By definitions in Section 2.1
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n qrpiq

nλ
xe`

piq
e .

By definition, it is immediate that MMSEnpλ, µq defined in (2.9) is a function of λ and µ only.
For the purpose of this lemma, we consider µ P p0,8q to be a fixed number and study the
function as a function of λ only. We note that

Hpx˚|G,Bq “ ´Ex˚,G,B rlog π px˚|G,Bqs ,

where π px˚|G,Bq is the posterior density of x˚ given G and B. By the definition of mutual
information,

I px˚;G,Bq “ Hpx˚q ´Hpx˚|G,Bq,

where Hpx˚q is the entropy of x˚. It is easy to observe that Hpx˚q equals n log 2 as x˚ is a n
vector made of i.i.d Rademacher random variables. Therefore

dI px˚;G,Bq

dλ
“ ´

dHpx˚|G,Bq

dλ
.

By (4.1) we have
Hpx˚|G,Bq “ Hpx˚|L,Bq,

where Hpx˚|L,Bq is the conditional entropy of x˚ given L and B. Finally, for e “ pk, lq we
define

Lpiq´e “ LztLpiqk,lu.
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B.1 Proof of Lemma 4.1
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Combining (B.4) and (B.5) we get
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From (B.6) and (B.7) we get
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piq
n q ´ pxepLpiq´e,Bqpp

piq
n ´ q

piq
n q

“
sp
piq
n

1´ sp
piq
n

«

1` p∆
piq
n {sp

piq
n qpxepLpiq´e,Bq

1´ p∆
piq
n {p1´ sp

piq
n qqpxepLpiq´e,Bq

ff

.

In addition, it is easy to observe that

πpiqpλ;´1,´1qπpiqpλ;`1,`1q

πpiqpλ;`1,´1qπpiqpλ;´1,`1q
“
p1` p∆

piq
n {sp

piq
n qqp1` p∆

piq
n {p1´ sp

piq
n qqq

p1´ p∆
piq
n {sp

piq
n qqp1´ p∆

piq
n {p1´ sp

piq
n qqq

.

Since we have |∆
piq
n {sp

piq
n |, |∆

piq
n {p1 ´ sp

piq
n q| ď

b

λrpiq{pnsp
piq
n p1´ sp

piq
n qq Ñ 0, and |pxepLpiq´e,Bq| ď 1,

for each λmax P R there exists a n0pλmaxq such that for n ě n0pλmaxq we have for all 1 ď i ď m
and e P EpGpiqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

log

»

–

ř

xPt˘1u π
piqpλ; 1, xqppx|Lpiq´e,Bq

ř

xPt˘1u π
piqpλ;´1, xqppx|Lpiq´e,Bq

fi

fl´B
piq
0 ´

∆
piq
n pxepLpiq´e,Bq
sp
piq
n p1´ sp

piq
n q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C1
λrpiq

nsp
piq
n p1´ sp

piq
n q

,

and
ˇ

ˇ

ˇ

ˇ

ˇ

log

«

πpiqpλ;´1,´1qπpiqpλ;`1,`1q

πpiqpλ;`1,´1qπpiqpλ;´1,`1q

ff

´
2∆

piq
n

sp
piq
n p1´ sp

piq
n q

ˇ

ˇ

ˇ

ˇ

ˇ

ď C2
λrpiq

nsp
piq
n p1´ sp

piq
n q

,

where B
piq
0 “ logpsp

piq
n {p1 ´ sp

piq
n qq and C1, C2 are positive constants depending on λmax. We

observe that ErpxepLpiq´e,Bqs “ E rxes “ 0. This implies
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

dHpx˚|L,Bq
dλ

`
1

2n2

m
ÿ

i“1

ÿ

ePEpGpiqq

rpiq
´

1´ ErpxepLpiq´e,Bqs2
¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C2

m
ÿ

i“1

d

λrpiq

nsp
piq
n p1´ sp

piq
n q

.

Let pxepL,Bq “ E rxe|L,Bs. Recall that L
piq
e “ L

piq
k,l for e “ pk, lq, then by Bayes’ formula we

have

ppiq pye|L,Bq “
ppiqpL

piq
e ,Lpiq´e,B, xe “ yeq

ř

xPt˘1u p
piqpL

piq
e ,Lpiq´kl,B, xe “ xq

p1q
“

πpiqpλ;L
piq
e , yeqp

piqpye|Lpiq´e,Bq
ř

xPt˘1u π
piqpλ;L

piq
e , xqppiqpx|Lpiq´e,Bq

.

Here, equality (1) follows as conditional on xe, L
piq
e is independent of Lpiq´e. Let us define

bpiqpLpiqe q “
πpiqpλ;L

piq
e ,`1q ´ πpiqpλ;L

piq
e ,´1q

πpiqpλ;L
piq
e ,`1q ` πpiqpλ;L

piq
e ,´1q

.

We note that

pxepLpiq´e,Bq ` bpiqpL
piq
e q

2
“

πpiqpλ;L
piq
e ,`1qppiqp`1|Lpiq´e,Bq ´ πpiqpλ;L

piq
e ,´1qppiqp´1|Lpiq´e,Bq

πpiqpλ;L
piq
e ,`1q ` πpiqpλ;L

piq
e ,´1q

(B.8)
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and

1` bpiqpL
piq
e qpxepLpiq´e,Bq

2
“

πpiqpλ;L
piq
e ,`1qppiqp`1|Lpiq´e,Bq ` πpiqpλ;L

piq
e ,´1qppiqp´1|Lpiq´e,Bq

πpiqpλ;L
piq
e ,`1q ` πpiqpλ;L

piq
e ,´1q

.

(B.9)
Then from (B.8) and (B.9) we get

pxepL,Bq “
pxepLpiq´e,Bq ` bpiqpL

piq
e q

1` bpiqpL
piq
e qpxepLpiq´e,Bq

.

From the definition of πpiqpλ;L
piq
e , xeq it follows that

bpiqpLpiqe q “

$

&

%

b

p1´ sp
piq
n qλrpiq{pnsp

piq
n q if L

piq
e “ 1,

´

b

sp
piq
n λrpiq{pnp1´ sp

piq
n qq if L

piq
e “ ´1.

This in particular gives us |bpiqpL
piq
e q| ď

b

λrpiq{pnsp
piq
n p1´ sp

piq
n qq Ñ 0. In addition, |pxepLpiq´e,Bq| ď

1. Thus
ˇ

ˇ

ˇ
pxepL,Bq ´ pxepLpiq´e,Bq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

bpiqpL
piq
e qp1´ pxepLpiq´e,Bq2q

1` bpiqpL
piq
e q pxepLpiq´e,Bq2

ˇ

ˇ

ˇ

ˇ

ˇ

ď |bpiqpLpiqe q| ď

d

λrpiq

nsp
piq
n p1´ sp

piq
n q

.

(B.10)

Using |pxepLpiq´e,Bq| ď 1 and (B.10) we get

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

dHpx˚|L,Bq
dλ

`
1

2n2

m
ÿ

i“1

ÿ

ePEpGpiqq

rpiq
´

1´ E rpxepL,Bqs2
¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C2

m
ÿ

i“1

˜d

λrpiq

nsp
piq
n p1´ sp

piq
n q

¸

.

It is easy to observe that for e “ pk, lq

´

1´ E rpxepL,Bqs2
¯

“ E
”

px˚kx
˚
l ´ Epx˚kx˚l |L,Bqq

2
ı

Then using
řm
i“1 r

piq “ 1 we get

ˇ

ˇ

ˇ

ˇ

1

n

dHpx˚|L,Bq
dλ

`
1

4
MMSEnpλ, µq

ˇ

ˇ

ˇ

ˇ

ď C2

˜

m
ÿ

i“1

d

λrpiq

nsp
piq
n p1´ sp

piq
n q

¸

.

As Hpx˚q “ n log 2 we get using definition of conditional entropy and mutual information

ˇ

ˇ

ˇ

ˇ

1

n

dIpx˚;L,Bq
dλ

´
1

4
MMSEnpλ, µq

ˇ

ˇ

ˇ

ˇ

ď C2

˜

m
ÿ

i“1

d

λrpiq

nsp
piq
n p1´ sp

piq
n q

¸

,

which implies the lemma.
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B.2 Results Used to Prove Lemma 4.1

Lemma B.1. Let πpiqpλ; `
piq
e , xeq, ppy

piq
e q, Ppiqe pLpiq,B, ypiqe , `

piq
e q be defined in (B.1), (B.2) and

(B.3) respectively, then

dHpx˚|Lpiq,Bq
dλ

“ ´

m
ÿ

i“1

ÿ

e PEpGpiqq

ÿ

y
piq
e Pt˘1u

`
piq
e Pt˘1u

ppypiqe q log πpiqpλ; `piqe , y
piq
e q

dπpiqpλ; `
piq
e , xeq

dλ

`

m
ÿ

i“1

ÿ

e PEpGpiqq

ÿ

y
piq
e Pt˘1u
`ePt˘1u

dπpiqpλ; `
piq
e , y

piq
e q

dλ
ELpiq´e,B

”

Ppiqe pLpiq,B, ypiqe , `piqe q
ı

.

Proof. We begin by observing that H
`

x˚|Lpiq,B
˘

is a function of λ through πpiqpλ; `
piq
e , xeq for

e P EpGpiqq and 1 ď i ď m.

By the chain rule and linearity of differentiation, it suffices to assume that only πpiqpλ; `
piq
e , xeq

depends on λ. Then, for e “ pk, lq, we have

Hpx˚|L,Bq `HpLpiqe |L
piq
´e,Bq “ Hpx˚;Lpiqe |L

piq
´e,Bq

p1q
“ Hpx˚|Lpiq´e,Bq `HpLpiqe |x˚,L

piq
´e,Bq

p2q
“ Hpx˚|Lpiq´e,Bq `HpLpiqe |xeq.

Here, equality (1) follows by writing the entropy in two different forms using the chain rule, and

equality (2) follows from observing that given xe, L
piq
e is independent of everything else. This

implies

dHpx˚|L,Bq
dλ

“
dHpL

piq
e |xeq

dλ
´
dHpL

piq
e |Lpiq´e,Bq
dλ

,

because Hpx˚|Lpiq´e,Bq does not depend on πpiqpλ; `
piq
e , xeq, hence not on λ under the simplifying

assumption that only πpiqpλ; `
piq
e , xeq depends on λ.

Next let us observe

dHpL
piq
e |xeq

dλ
“ ´

d

dλ

ÿ

`
piq
e Pt˘1u

Ex˚

”

πpiqpλ; `piqe , xeq log πpiqpλ; `piqe , xeq
ı

“ ´
ÿ

`
piq
e Pt˘1u

Ex˚

«

dπpiqpλ; `
piq
e , xeq

dλ
log πpiqpλ; `piqe , xeq `

dπpiqpλ; `
piq
e , xeq

dλ

ff

“ ´
ÿ

`
piq
e Pt˘1u

Ex˚

«

dπpiqpλ; `
piq
e , xeq

dλ
log πpiqpλ; `piqe , xeq

ff

“ ´
ÿ

y
piq
e Pt˘1u

`
piq
e Pt˘1u

Pxe
´

xe “ ypiqe

¯ dπpiqpλ; `
piq
e , y

piq
e q

dλ
log πpiqpλ; `piqe , y

piq
e q.

(B.11)
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Here the third equality holds since

ÿ

`
piq
e Pt˘1u

dπpiqpλ; `
piq
e , xeq

dλ
“ 0, xe P t˘1u.

Next, we note that

HpLpiqe |L
piq
´e,Bq “ ´

ÿ

`
piq
e Pt˘1u

ELpiq´e,B

»

–

ÿ

y
piq
e Pt˘1u

πpiqpλ; `piqe , y
piq
e qPpiqe pL,B, ypiqe , `piqe q

fi

fl .

So we have

dHpL
piq
e |Lpiq´e,Bq
dλ

“ ´
ÿ

y
piq
e Pt˘1u

`
piq
e Pt˘1u

dπpiqpλ; `
piq
e , xeq

dλ
ELpiq´e,B

”

Ppiqe pL,B, ypiqe , `piqe q
ı

´
ÿ

y
piq
e Pt˘1u

`
piq
e Pt˘1u

ELpiq´e,B

»

–

πpiqpλ; `
piq
e , y

piq
e qppy

piq
e |Lpiq´e,Bq

pp`
piq
e |Lpiq´e,Bq

ÿ

xPt˘1u

dπpiqpλ; `
piq
e , xq

dλ
ppx|Lpiq´e,Bq

fi

fl

“ ´
ÿ

y
piq
e Pt˘1u

`
piq
e Pt˘1u

dπpiqpλ; `
piq
e , xeq

dλ
ELpiq´e,B

”

Ppiqe pL,B, ypiqe , `piqe q
ı

. (B.12)

Here, the second equality holds since

ÿ

y
piq
e Pt˘1u

`
piq
e Pt˘1u

ELpiq´e,B

»

–

πpiqpλ; `
piq
e , y

piq
e qppy

piq
e |Lpiq´e,Bq

pp`
piq
e |Lpiq´e,Bq

ÿ

xPt˘1u

dπpiqpλ; `
piq
e , xq

dλ
ppx|Lpiq´e,Bq

fi

fl

“
ÿ

`
piq
e Pt˘1u

ELpiq´e,B

»

–

ÿ

xPt˘1u

dπpiqpλ; `
piq
e , xq

dλ
ppx|Lpiq´e,Bq

fi

fl

“ ELpiq´e,B

»

–

d

dλ

¨

˝

ÿ

xPt˘1u

ÿ

`
piq
e Pt˘1u

πpiqpλ; `piqe , xqppx|L
piq
´e,Bq

˛

‚

fi

fl

“ ELpiq´e,B

„

d

dλ
1



“ 0.

Combining (B.11) and (B.12), we complete the proof of the lemma.
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C Proof of I-MMSE Identity in the Gaussian Model

Let us consider the vector t containing tTi,juiăj and the vector r containing tx˚i x
˚
j uiăj . Then

from the definition of T we have

t “

c

λ

n
r ` q,

where q „ NCn2
p0, ICn2 q (Cn2 “

`

n
2

˘

). As the diagonal entries of x˚px˚qJ are all 1, let us consider

s “

c

λ

n
` q1,

where q1 „ Nnp0, 2Inq. Let Y “ pt, s,Bq and B “ pb1, ¨ ¨ ¨ , bpq where bi “ pI`
µ
nx

˚px˚qJq´1rzi,
where rzi „ Nnp0, Inq. From the definition, it is clear that,

Ipx˚px˚qJ;T ,Bq “ Ipx˚px˚qJ;Yq

Next we have
Ipx˚px˚qJ;Yq “ HpYq ´HpY|x˚px˚qJq.

Note that
HpY|x˚px˚qJq “ Hpq, q1, trziu

p
i“1q.

Observe that the right hand side is free of λ and hence we get

d

dλ
Ipx˚px˚qJ;Yq “ d

dλ
HpYq.

Since the density of Y can be written as

fYpYq “
ÿ

xPt˘1un

1

2n

«#

ź

iăj

φ

˜

Ti,j ´

c

λ

n
xixj

¸+#

n
ź

i“1

φ

˜

Ti,i ´
a

λ{n
?

2

¸+

fpB|xq

ff

,
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we have

d

dλ
HpYq “ d

dλ

#

´ EY,x˚rlog fYpYqs

+

“
1

2
?
λn

EY,x˚

«

1

2n

ÿ

xPt˘1un

ÿ

iăj

pTi,j ´
a

λ{nxixjqpx
˚
i x
˚
j ´ xixjqfYpY|xq

fYpYq

ff

“
1

2
?
λn

EY,x˚

«

ÿ

xPt˘1un

ÿ

iăj

pTi,j ´
a

λ{nxixjqpx
˚
i x
˚
j ´ xixjqfpx|Yq

ff

“
1

2
?
λn

EY,x˚

«

ÿ

iăj

#

Ti,jx
˚
i x
˚
j ´ Ti,jErx˚i x˚j |Ys ´

c

λ

n
x˚i x

˚
jErx˚i x˚j |Ys

`

c

λ

n
Erpx˚i x˚j q2|Ys

ff

“
1

2n

ÿ

iăj

E

«

px˚i x
˚
j ´ Erx˚i x˚j |Ysq2

ff

“
1

4n2
E}x˚px˚qJ ´ Erx˚px˚qJ|Ys}2F

“
1

4
GMMSEnpλ, µq.

This implies
1

n

d

dλ
Ipx˚px˚qJ;T ,Bq “

1

4
GMMSEnpλ, µq.

D Proof of Results in Section 5

D.1 Proof of Theorem 5.1

We start by observing that

MSEAMP
n pt;λ, µ, εq

“ 1´ 2 Expxt,x˚y2n `
1

n2
E}pxt}4

“ 1´ 2 Exft´1put´1,yt´1,x0pεqq,x
˚y2n `

1

n2
E}ft´1put´1,yt´1,x0pεqq}

4.

(D.1)

Since ft´1 is Lipschitz (by Lemma D.1), px, y, w, zq ÞÑ wft´1px, y, zq is partially pseudo-Lipschitz.
This implies using Theorem 7.2, we get

lim
nÑ8

xpxt,x˚y2n “ E
”

X0E
“

X0|αt´2X0 ` τt´2Z0, µt´1X0 ` σt´1 rZ0, X0pεq
‰

ı

,

where Z0, rZ0
iid
„ Np0, 1q, X0 „ Rademacher and X0pεq “ B0X0 where B0 „ Bernpεq is

independent of all other random variables. Similarly, px, y, w, zq ÞÑ f2t´1px, y, zq is partially
pseudo-Lipschitz, and Theorem 7.2 implies

lim
nÑ8

1

n
}ft´1pu

t´1,yt´1,x0pεqq}
2 “ E

”

`

E
“

X0|αt´2X0 ` τt´2Z0, µt´1X0 ` σt´1 rZ0, X0pεq
‰˘2

ı

.

40



Then using the dominated convergence theorem, property of conditional expectation and (D.1),
we obtain the following.

lim
nÑ8

MSEAMP
n pt;λ, µ, εq “ 1´

´

E
”

`

E
“

X0|αt´2X0 ` τt´2Z0, µt´1X0 ` σt´1 rZ0, X0pεq
‰˘2

ı¯2
.

Now using (2.29), and (5.2) we get

lim
nÑ8

MSEAMP
n pt;λ, µ, εq “ 1´ z2t .

It is immediate to show that

Gεpzq “ 1´ p1´ εqmmse

ˆ

λz ` p1´ εq
µ2

c

z

1` µz

˙

is continuous on r0,8q, limzÑ8Gεpzq “ 1 and Gεp0q “ ε. Using the fact that the function
t ÞÑ mmseptq is monotone decreasing and ε P r0, 1s, it is easy to show that Gεpzq is monotone
increasing in z. Further, using Lemma 6.1 of [15], it can be concluded that Gεpzq is strictly
concave in r0,8q. From these observations we have

lim
tÑ8

lim
nÑ8

MSEAMP
n pt;λ, µ, εq “ 1´ z2˚pλ, µ, εq,

where z˚pλ, µ, εq is the largest non-negative solution to (5.4). Note that

Gεpzq “ 1` pε´ 1qmmse

ˆ

λz ` p1´ εq
µ2

c

z

1` µz

˙

.

As ε ÞÑ mmse
`

λz ` p1´ εqpµ2{cqpz{p1` µzqq
˘

is increasing in ε, we have Gεpzq is increasing as
a function of ε. From this observation and boundedness of Gεpzq, we have

z˚pλ, µ, εq Ñ z˚pλ, µq

as εÑ 0, where z˚pλ, µq satisfies (2.14) and hence

lim
εÑ0

lim
tÑ8

lim
nÑ8

MSEAMP
n pt;λ, µ, εq “ 1´ z2˚pλ, µq.

D.2 Proof of Theorem 5.2

Begin by noting that

ˇ

ˇ

ˇ

ˇ

1

n
I px˚;T pλq,B,x0pεq,w0pεqq ´

1

n
I px˚;T pλq,Bq

ˇ

ˇ

ˇ

ˇ

“
1

n
I px˚;x0pεq,w0pεq|T pλq,Bq

ď
1

n
Hpx0pεq,w0pεqq ď ε log 2`

p

2n
ε logp2π eq Ñ 0,

as εÑ 0. Further, using techniques similar to the proof of Remark 6.5 in [15], we can show

lim
λÑ8

lim
nÑ8

1

n
I
`

x˚px˚qJ;T pλq,B
˘

“ log 2, (D.2)
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where T pλq is defined in (2.19). From Lemma D.2, we also have

lim
nÑ8

1

n
I
`

x˚px˚qJ;T p0q,B
˘

(D.3)

“
1

2c
logp1` µγ˚q `

1

2c

p1` µq

p1` µγ˚q
` I

ˆ

µ2

c

γ˚
1` µγ˚

˙

´
1

2c
logp1` µq ´

1

2c

“ κpµ, γ˚q,

where γ˚ satisfies

γ˚ “ 1´mmse

ˆ

µ2

c

γ˚
1` µγ˚

˙

. (D.4)

From (263) of [15] we have for all λ ě 0

lim
nÑ8

„

1

n
I px˚;T pλq,B,x0pεq,w0pεqq ´

1

n
I
`

x˚px˚qJ;T pλq,B,x0pεq,w0pεq
˘



“ 0.

Next observe that for all λ, µ, ε ą 0

GMMSEnpλ, µ, εq ď MSEAMP
n pt;λ, µ, εq, (D.5)

where

GMMSEnpλ, µ, εq “
1

n2
E
›

›x˚px˚qJ ´ Erx˚px˚qJ |T ,B,x0pεq,w0pεqs
›

›

2

F
.

With the same techniques used to prove (2.21), we have

1

n

d

dλ
I
`

x˚px˚qJ;T pλq,B,x0pεq,w0pεq
˘

“
1

4
GMMSEnpλ, µ, εq. (D.6)

Using Lemma D.3, we further have

ξpz˚pλ, µq, λ, µq “ ξpγ˚, 0, µq `

ż λ

0

1

4

`

1´ z2˚pt, µq
˘

dt. (D.7)

42



Then using Theorem 5.1, (D.2), (D.3), (D.5), (D.6), (D.7)

log 2´ κpµ, γ˚q “ lim inf
nÑ8

lim
λÑ8

«

1

n
I
`

x˚px˚qJ;T pλq,B
˘

´
1

n
I
`

x˚px˚qJ;T p0q,B
˘

ff

“ lim inf
nÑ8

lim
λÑ8

lim
εÑ0

«

1

n
I
`

x˚px˚qJ;T pλq,B,x0pεq,w0pεq
˘

´
1

n
I
`

x˚px˚qJ;T p0q,B,x0pεq,w0pεq
˘

ff

“ lim inf
nÑ8

lim
λÑ8

lim
εÑ0

ż λ

0

1

4
GMMSEnpu, µ, εq du

ď lim sup
tÑ8

lim sup
nÑ8

lim
λÑ8

lim
εÑ0

ż λ

0

1

4
MSEAMP

n pt;u, µ, εq du

“ lim
εÑ0

lim
λÑ8

ż λ

0

1

4

`

1´ z2˚pu, µ, εq
˘

du

pwhere z˚pλ, µ, εq satisfies (5.4)q

“ lim
λÑ8

ż λ

0

1

4

`

1´ z2˚pu, µq
˘

du

pwhere z˚pλ, µq satisfies (2.14)q

“ lim
λÑ8

ξpz˚pλ, µq, λ, µq ´ ξpγ˚, 0, µq

pwhere ξpz, λ, µq is defined by (5.5)q

“ log 2´ κpµ, γ˚q.

(D.8)

This implies that all inequalities in (D.8) are equalities, which, in turn, implies

lim
nÑ8

GMMSEnpλ, µq “ lim
εÑ0

lim
tÑ8

lim
nÑ8

MSEAMP
n pt;λ, µ, εq “ 1´ z2˚pλ, µq.

By the definition of ξ

lim
nÑ8

1

n
I
`

x˚px˚qJ;T p0q,B
˘

“ ξpγ˚, 0, µq.

Finally using Theorem 5.1 and Lemma D.3, we have

lim
nÑ8

1

n
I
`

x˚px˚qJ;T pλq,B
˘

“ ξpγ˚, 0, µq ` lim
nÑ8

ż λ

0

1

4
GMMSEnpt, µq dt

“ ξpγ˚, 0, µq ` lim
nÑ8

ż λ

0

1

4
MSEAMP

n pt;λ, µq dt

“ ξpγ˚, 0, µq `

ż λ

0

1

4

`

1´ z2˚pt, µq
˘

dt

“ ξpz˚pλ, µq, λ, µq.

This completes the proof.
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D.3 Lemmas Used to Prove Results in Section 5

Lemma D.1. Consider ft defined in (2.26). Then ft and its partial derivatives with respect to
the first and second arguments are Lipschitz for all t ě 0.

Proof. Let x “ px, yq and a “ pa, bq. We begin by observing that

ftpx, y, zq “

$

’

’

&

’

’

%

1 if z “ 1

´1 if z “ ´1

tanh
´

´
αt´1

τ2t´1
x´ µt

σ2
t
y
¯

if z “ 0

(D.9)

Using (D.9), we get
|ftpx, y, 1q ´ ftpa, b, 1q| “ 0 ď }px, 1q ´ pa, 1q},

and
|ftpx, y,´1q ´ ftpa, b,´1q| “ 0 ď }px, 1q ´ pa, 1q}.

Further, since | tanh1pxq| ď 1 for all x, using multivariate mean-value theorem, we have

|ftpx, y, 0q ´ ftpa, b, 0q| ď pαt´1{τ
2
t´1 ` µt{σ

2
t q

1{2}px, 0q ´ pa, 0q}.

Again as | tanhpxq| ď 1, it can be easily shown that

|ftpx, y,´1q ´ ftpa, b, 0q| ď C}px,´1q ´ pa, 0q},

and
|ftpx, y, 1q ´ ftpa, b, 0q| ď C}px, 1q ´ pa, 0q}.

Again, by definition

|ftpx, y, 1q ´ ftpa, b,´1q| “ 2 ď C}px, 1q ´ pa,´1q}.

Next observe that

Bftpx, y, zq

Bx
“

$

’

’

&

’

’

%

0 if z “ 1,

0 if z “ ´1,

´
αt´1

τ2t´1
sech2

´

´

´

αt´1

τ2t´1
x` µt

σ2
t
y
¯¯

if z “ 0;

Observing that |sechpxq| ď 1 and |sechpxq tanhpxq| ď 1, and using arguments similar to those

previously used, we can show that Bftpx,y,zq
Bx is Lipschitz. Similarly, we can also show Bftpx,y,zq

By is
Lipschitz.

Lemma D.2. We have

lim
nÑ8

1

n
I px˚;Bq “ κpµ, γ˚q,

where κpµ, γ˚q is as defined in (D.3).
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Proof. Let us observe that if λ “ 0, we have B is the transpose of the matrix Y described in
(1) of [28] with U “ x˚, V “ v˚, λ “ µ and α “ 1{c. Since

1

n
Ipv˚px˚qJ;Bq “

1

n
Ippv˚,x˚q;Bq “

1

n
Ippv˚,x˚q;BJq,

the result of [28] directly apply in our case. Let us consider the scalar model

Y “
?
γ X ` Z,

where Z „ Np0, 1q and X P tU, V u where V „ Np0, 1q and U „ Rademacher. Recall

ZpY q “
ż

dPXe
γxX`

?
γxZ´ γx2

2

and the function FPX pγq defined in (9) of [28] given by

FPX pγq “ E
„

1

ZpY q

ż

xXeγxX`
?
γxZ´ γx2

2 dPX



.

For X “ V it can be easily verified that

FPX pγq “
γ

1` γ
.

By definition of Γpµ, cq as in (11) of [28], in our case we have

Γpµ, cq “

#

ˆ

q,
µq

1` µq

˙

: q ě 0

+

.

If we recall the definition of ψPX pγq as in (10) of [28], that is

ψPX pγq “ E log

ˆ
ż

eγxX`
?
γxZ´ γx2

2 dPX

˙

,

then it is easy to show that

ψPV pγq “
γ

2
´

1

2
logp1` γq,

and
ψPU pγq “

γ

2
´ Ipγq,

where Ipγq is defined in (2.12). Let us define

Fpqq “ ψPU

ˆ

µ2

c

q

1` µq

˙

`
1

c
ψPV pµqq ´

µ2

2c

q2

1` µq

“
µ

2c
`

1

2c
´

µ` 1

2cp1` µqq
´ I

ˆ

µ2

c

q

1` µq

˙

´
1

2c
logp1` µqq.

Now if γ˚ is the supremum of Fpqq, then it must satisfy, F 1pγ˚q “ 0, which further implies

γ˚ “ 1´mmse

ˆ

µ2

c

γ˚

1` µγ˚

˙

.
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Using Corollary 1 of [28], we get

lim
nÑ8

1

n
Ipv˚px˚qJ;Bq “

µ

2c
´
µ

2c
´

1

2c
`

µ` 1

2cp1` µγ˚q
` I

ˆ

µ2

c

γ˚

1` µγ˚

˙

`
1

2c
logp1` µγ˚q

“
µ` 1

2cp1` µγ˚q
` I

ˆ

µ2

c

γ˚

1` µγ˚

˙

`
1

2c
logp1` µγ˚q ´

1

2c

“ κpµ, γ˚q `
1

2c
logp1` µq.

We note that given v˚px˚qJ, B is equal in distribution to py1,y2, . . . ,ypq, where

yi „ Nn

´

a

µ{nv˚px˚qJ, In

¯

. This implies

HpB|v˚px˚qJq “
p

2
log det p2πeInq .

Also note that, given x˚, B
d
“ pb1, b2, . . . , bpq, where bi „ Nn

`

0, pµ{nqx˚px˚qJ ` In
˘

. This
implies

HpB|v˚px˚qJq “
p

2
log det

´

2πe
´µ

n
x˚px˚qJ ` In

¯¯

.

Next we get

1

n

“

Ipx˚;Bq ´ Ipv˚px˚qJ;Bq
‰

“
1

n

“

HpB|v˚px˚qJq ´HpB|x˚q
‰

“ ´
p

2n
logp1` µq.

Thus, we have

lim
nÑ8

1

n
I px˚;Bq “ lim

nÑ8

1

n

“

Ipx˚;Bq ´ Ipv˚px˚qJ;Bq
‰

` lim
nÑ8

1

n
Ipv˚px˚qJ;Bq

“ κpµ, γ˚q.

Lemma D.3. Let us consider the function ξ defined in (5.5). Then for all λ, µ ą 0

ξpz˚pλ, µq, λ, µq “ ξpγ˚, 0, µq `

ż λ

0

1

4

`

1´ z2˚pt, µq
˘

dt.

Proof. From (5.4) it is easy to see that z˚pλ, µ, εq “ γ˚ where γ˚ is the unique non-negative
solution to (D.4). Then we have

Bξpγ, λ, µq

Bγ

ˇ

ˇ

ˇ

ˇ

pz˚pλ,µq,λq

“
1

2

˜

λ`
µ2

c

1

pµz˚pλ, µq ` 1q2

¸#

z˚pλ, µq ´ 1` mmse

˜

λz2˚pλ, µq `
µ2

c

z˚pλ, µq

µz˚pλ, µq ` 1

¸+

also
Bξpγ, λ, µq

Bλ

ˇ

ˇ

ˇ

ˇ

pz˚pλ,µq,λq

“
1

4

`

1´ z2˚pλ, µq
˘

.

This implies using (5.4)

dξpγ, λ, µq

dλ

ˇ

ˇ

ˇ

ˇ

pz˚pλ,µq,λq

“
1

4

`

1´ z2˚pλ, µq
˘

.

46



E Proof of Results in Section 7

E.1 Proof of Lemma 7.1

Let us consider two x,y P Rk, where x “ px1, . . . , xkq and y “ py1, . . . , ykq. Then

|fpx, zq| ď |fpx, zq ´ fp0, zq| ` |fp0, zq|.

Since f is partially Lipschitz, we have using (7.2)

|fpx, zq ´ fp0, zq| ď C}x},

for some constant C ą 0. Again, using (7.3)

|fp0, zq| ď Cp1` |z|q.

Hence, we have
|fpx, zq| ď Cp1` }x} ` |z|q.

1. Now let us observe that

|fpx, zqgpx, zq ´ fpy, zqgpy, zq|

“ |fpx, zqgpx, zq ´ fpy, zqgpx, zq ` fpy, zqgpx, zq ´ fpy, zqgpy, zq|

ď |fpx, zq ´ fpy, zq||gpx, zq| ` |gpx, zq ´ gpy, zq||fpy, zq|

ď Cp1` }x} ` }y} ` |z|q}x´ y}.

Also

|fp0, zqgp0, zq| ď C2p1` |z|q2 ď C1p1` |z|
2q.

2. Let us denote x1 “ px1, . . . , xr´1, xr`1, . . . , xkq and y1 “ py1, . . . , yr´1, yr`1, . . . , ykq. Next
note that

|Hpx1, zq ´Hpy1, zq|

ď EX
”ˇ

ˇ

ˇ
φpx1, . . . , xr´1, X, xr`1, . . . , xk, zq ´ φpy1, . . . , yr´1, X, yr`1, . . . , yk, zq

ˇ

ˇ

ˇ

ı

ď C EX
”

p1` }x1} ` }y1} ` |X| ` |z|q}x1 ´ y1}
ı

ď C1p1` }x
1} ` }y1} ` |z|q}x1 ´ y1}.

Next, note that

|Hp0, zq| ď EX
”ˇ

ˇ

ˇ
φp0, . . . , 0, X, 0, . . . , 0, zq ´ φp0, . . . , 0, 0, 0, . . . , 0, zq

ˇ

ˇ

ˇ

ı

`

ˇ

ˇ

ˇ
φp0, . . . , 0, 0, 0, . . . , 0, zq

ˇ

ˇ

ˇ

ď C EX
”

p1` |X| ` |z|q|X|
ı

` Cp1` |z|2q

ď C1p1` |z| ` |z|
2q

ď C2p1` |z|
2q.
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E.2 Proof of Theorem 7.1, Conditioning Technique and the Main Technical
Lemma

To prove Theorem 7.1, we apply the same device used in [9]. We begin by observing that for the
Gaussian matrix L defined at the beginning of Section 7.2 and a fixed vector v, Lv is a centered
Gaussian vector with i.i.d. entries and variance xv,vyp. Similarly, Nv is a centered Gaussian
vector with the covariance matrix Σ “ In `

1
nvv

J. However, LJmt is not a centered Gaussian
by the previous argument as mt is not independent of L. We can argue similarly for the other
terms. To resolve this problem we adopt the conditioning technique developed in [12] and later
used in [9], [22] and [10].

E.2.1 Conditioning Technique

With qt and mt defined in (7.9), the AMP orbits can be written as

bt “ Lqt ´ ptm
t´1,

ht`1 “ LJmt ´ ctq
t,

and

yt`1 “Nqt ´ dtq
t´1.

The Asymmetric Orbit. Let us observe that, to construct ht`1 we need to know Ah,t`1

“ th1, . . . ,ht,y1, . . . ,yt, b0, . . . , bt,m0, . . . ,mt, q0, . . . , qt, ξ0,x0,ω0,v0u. Let the sigma
algebra generated by these random variables be denoted by Gt`1,t. Since mj ’s and qj ’s are func-
tions of hj ,yj , qj , ξ0,x0,ω0 and v0; Gt`1,t is the sigma-algebra generated by th1, . . . ,ht,y1, . . .
,yt, b0, . . . , bt, ξ0,x0,ω0,v0u. Further, since ht`1 depends on y1, . . . ,yt throughm0, . . . ,mt and
q0, . . . , qt, the conditional distribution of L given Gt`1,t is equal to the conditional distribution
of L given

rh1 ` c0q
0| . . . |ht ` ct´1q

t´1s

“ĎHt

“ LJ rm0| . . . |mt´1s

“Mt

,

and
rb0| . . . | bt ` ptm

t´1s

“ sBt`1

“ L rq0| . . . | qts

“Qt`1

.

Using Lemma 11 and Lemma 12 of [9], we get

L|Gt`1,t

d
“ Et`1,t ` Pt`1,tprLq,

where

Et`1,t “ sBt`1pQ
J
t`1Qt`1q

´1QJt`1 `MtpM
J
t Mtq

´1
ĎHJ
t

´MtpM
J
t Mtq

´1MJ
t
sBt`1pQ

J
t`1Qt`1q

´1QJt`1,

and
Pt`1,tprLq “ PKMt

rLPKQt`1
.
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Here rL is an independent copy of L and PKMt
, PKQt`1

are the orthogonal projectors on to the
orthogonal complements of the column spaces of Mt and Qt`1, respectively.

Next, if we consider bt we need to know Ab,t “ th
1, . . . ,ht,y1, . . . ,yt, b0, . . . , bt´1,m0, . . . ,

mt´1, q0, . . . , qt, ξ0,x0,ω0,v0u. Let the sigma algebra generated by the above mentioned vari-
ables be denoted by Gt,t. The conditional distribution of L given Gt,t is equal to the conditional
distribution of L given ĎHt “ L

JMt and sBt “ LQt. By Lemmas 11 and 12 of [9] we get

L|Gt,t
d
“ Et,t ` Pt,tprLq,

where

Et,t “ sBtpQ
J
t Qtq

´1QJt `MtpM
J
t Mtq

´1
ĎHJ
t ´MtpM

J
t Mtq

´1MJ
t
sBtpQ

J
t Qtq

´1QJt ,

and
Pt,tprLq “ PKMt

rLPKQt
.

The Symmetric Orbit Now, we consider the second orbit characterized by B. Observe that
the distribution of yt`1 depends on the sigma algebra generated by Ay,t`1 “ th

1, . . . ,ht,y1, . . .
yt, b0, . . . , bt,m0, . . . ,mt´1, q0, . . . , qt, ξ0,x0,ω0,v0u. This implies that we must consider the
distribution of N given Gt`1,t, or equivalently given

ry1| . . . |yt ` dt´1q
t´2s

“ sYt

“N rq0| . . . | qt´1s

“Qt

.

Now, using Lemma 3 of [22], we get

N |Gt`1,t

d
“ Ft`1,t ` Pt`1,tpĂNq, (E.1)

where

Ft`1,t “ sYtpQ
J
t Qtq

´1QJt `QtpQ
J
t Qtq

´1
sY Jt ´QtpQ

J
t Qtq

´1QJt
sYtpQ

J
t Qtq

´1QJt , (E.2)

and
Pt`1,tpĂNq “ PKQt

ĂNPKQt
.

Here ĂN is an independent copy of N and PKQt
is the orthogonal projector to the orthogonal

complement of the column space ofQt. Using the above conditioning technique and the following
main technical lemma (that is, Lemma E.1), the proof of Theorem 7.1 is immediate.

E.2.2 Main Technical Lemma

Let us denote the projection of mt on the column space of Mt by mt
}

and its ortho-complement

by mt
K. Similarly qt

}
denotes the projection of qt onto the column space of Qt and qtK be its

ortho-complement. This implies, if we define

αt “ pα
t
0, . . . ,α

t
t´1q “

„

MJ
t Mt

p

´1
MJ

t m
t

p
,
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and

βt “ pβ
t
0, . . . ,β

t
t´1q “

„

QJt Qt

n

´1
QJt q

t

n
,

then we have

mt
} “

t´1
ÿ

i“0

αtim
i, mt

K “m
t ´mt

};

and

qt} “
t´1
ÿ

i“0

βtiq
i, qtK “ q

t ´ qt}.

Finally, for two sequences of random vectors xn,yn, by xn
P
» yn we mean xn ´ yn

P
Ñ 0. With

all these defined, let us now state the following general result.

Lemma E.1. Suppose that the conditions of Theorem 7.1 hold. Then for all t P NYt0u, we get

(a)

ht`1|Gt`1,t

d
“

t´1
ÿ

i“0

αtih
i`1 ` rLJmt

K `
rQt`1op1q,

bt|Gt,t
d
“

t´1
ÿ

i“0

βtib
i ` rLqtK `

ĂMtop1q,

and

yt`1|Gt`1,t

d
“

t´1
ÿ

i“0

βtiy
i`1 ` ĂNqtK `

rQtop1q,

where rQt(alternatively, ĂMt) is a matrix whose columns form an orthogonal basis of Qt

(respectively, Mt), and rQJt
rQt “ nIt ( ĂMJ

t
ĂMt “ pIt).

(b) For all partially pseudo-Lipschitz functions φh : R2t`4 Ñ R, φb : Rt`3 Ñ R

lim
nÑ8

1

n

n
ÿ

i“1

φhph
1
i , . . . , h

t`1
i , y1i , . . . , y

t`1
i , ξ0,i, x0,iq

a.s.
“ E

!

φhpτ0Z0, . . . , τtZt, σ1 rZ1, . . . , σt`1 rZt`1, rΞ0, rX0q

)

,

lim
pÑ8

1

p

p
ÿ

i“1

φbpb
0
i , . . . , b

t
i, ω0,i, v0,iq

a.s.
“ E

!

φbpϑ0 qZ0, . . . , ϑt qZt, rΩ0, rV0q
)

,

where pZ0, . . . , Ztq, p rZ1, . . . , rZtq, p qZ1, . . . , qZtq, prΞ0, rX0q and prΩ0, rV0q are mutually indepen-
dent random vectors. Marginally, Zi, rZi, qZi „ Np0, 1q, prΞ0, rX0q „ Pξ,x and prΩ0, rV0q „
Pω,v.
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(c) For all 0 ď k, ` ď t, the following equations hold and all the limits exist, are bounded and
have degenerate distributions:

lim
nÑ8

xhk`1,h``1yn
a.s.
“ lim

pÑ8
xmk,m`yp,

lim
pÑ8

xbk, b`yp
a.s.
“ c lim

nÑ8
xqk, q`yn,

and

lim
nÑ8

xyk`1,y``1yn
a.s.
“ lim

nÑ8
xqk, q`yn.

(d) For all 0 ď k, ` ď t and for any partially Lipschitz functions ϕ : R4 Ñ R, ψ : R3 Ñ R, with
ϕ11 being the derivative of ϕ with respect to the first coordinate, ϕ12 being the derivative of
ϕ with respect to the second coordinate and ψ1 being the derivative of ψ with respect to the
first coordinate, where ϕ11, ϕ12 and ψ1 being partially Lipschitz, the following equations hold
and all the limits exist, are bounded and have degenerate distributions:

lim
nÑ8

xhk`1, ϕph``1,y``1, ξ0,x0qyn
a.s.
“ lim

nÑ8
xhk`1,h``1ynxϕ

1
1ph

``1,y``1, ξ0,x0qyn,

lim
pÑ8

xbr, ψpbs,ω0,v0qyp
a.s.
“ lim

pÑ8
xbr, bsypxψ

1pbs,ω0,v0qyp,

and

lim
nÑ8

xyr`1, ϕphs`1,ys`1, ξ0,x0qyn
a.s.
“ lim

nÑ8
xyr`1,ys`1ynxϕ

1
2ph

s`1,ys`1, ξ0,x0qyn.

(e) The following relations hold almost surely

lim sup
nÑ8

1

n

n
ÿ

i“1

pht`1i q2 ă 8, lim sup
pÑ8

1

p

n
ÿ

i“1

pbtiq
2 ă 8, lim sup

nÑ8

1

n

n
ÿ

i“1

pyt`1i q2 ă 8.

(f) For all 0 ď r ď t:
lim
nÑ8

xht`1, q0yn
a.s.
“ 0.

(g) For all 0 ď s ď t´ 1, 0 ď k ď t, the following limits exist, and there exist strictly positive
constants ρk, ,κs such that the following relations hold almost surely:

lim
nÑ8

xqkK, q
k
Kyn ą ρk, lim

pÑ8
xms

K,m
s
Kyp ą κs.

E.2.3 Proof of Theorem 7.1

Proof. The desired result is a direct consequence of Lemma E.1 claim (b).

E.3 Proof of Lemma E.1

We shall prove this lemma by induction. We shall first show that the statements (a)-(g) hold
true for b0,h1 and y1. Then assuming that the result holds true for 0 ď s ď t´1, we shall show
that the statements (a)-(g) hold bt,ht`1 and yt`1.

First, let us observe that if ftpx, y, ξ0, x0q is free of x, y almost surely with respect to ξ0 and
x0 or if gtpu, ω0, v0q is free of u almost surely with respect to ω0 and v0, then the lemma is
immediate. So we assume that these degenerate cases do not arise in the rest of this proof.
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The Base Case (b0,h1 and y1). The proofs of the assumptions paq´pgq for b0 follows using
exactly the same arguments as in B0 of [9]. So we skip the details. Next, let us observe that
as y1 “ Nq0, and Q0 is empty matrix, we have q0K “ q

0. Thus using the definition of G1,0, we
conclude

y1|G1,0

d
“Nq0K.

Again, the assertions (a), (c), (e) and (f) for h1 follows immediately using the techniques of H1

of [9]. Now, let us consider these assertions for y1. For the assertion paq, let us observe that,
as y1 “ Nq0, and Q0 is empty matrix, we have q0K “ q

0. Thus using the definition of G1,0, we
conclude

y1|G1,0

d
“Nq0K.

Next, for the assertion (c), using Lemma E.2(c), we have

lim
nÑ8

xy1,y1yn|G1,0

d
“ lim

nÑ8

1

n
}Nq0}2

a.s.
“ lim

nÑ8
xq0, q0yn

a.s.
“ σ21.

Then for assertion (e), by Lemma E.2 (d), we have

lim
nÑ8

1

n

n
ÿ

i“1

py1i q
2 “ lim

nÑ8

1

n

n
ÿ

i“1

rNq0s2i
a.s.
“ lim

nÑ8
xq0, q0yn lim

nÑ8

1

n

n
ÿ

i“1

z2i ,

which implies the assertion. Next, we prove the assertion (b) for the pair ph1,y1q. Let us observe
that, as φh is partially pseudo-Lipschitz, by Lemma E.2 (d) with r “ 1 and m “ 2, we have

lim
nÑ8

1

n

n
ÿ

i“1

“

φhph
1
i , y

1
i , ξ0,i, x0,iq ´ φhph

1
i , zi, ξ0,i, x0,iq

‰ a.s.
“ 0,

where z „ Nnp0, p}q
0}2{nqInq. Now conditional on G1,0, we have

1

n

n
ÿ

i“1

φhph
1
i , zi, ξ0,i, x0,iq

ˇ

ˇ

ˇ

G1,0

d
“

1

n

n
ÿ

i“1

φhprrL
Jm0si ` op1qq

0
i , zi, ξ0,i, x0,iq.

Then using the techniques used to prove H1(b) of [9], we can show

1

n

n
ÿ

i“1

”

E
!

φhprrL
Jm0si, zi, ξ0,i, x0,iq|G1,0

)

´ E
!

φhpτ0Zi, σ1 rZi, ξ0,i, x0,iq|G1,0

)ı

a.s.
“ 0.

It is easy to see that

E
!

φhpτ0Zi, σ1 rZi, ξ0,i, x0,iq|G1,0

)

“ E
Zi, rZi

!

φhpτ0Zi, σ1 rZi, ξ0,i, x0,iq
)

,

where the expectation is taken with respect to Zi, rZi, treating ξ0,i, x0,i as constants. Now using

SLLN for i.i.d ψpξ0,i, x0,iq “ E
Z, rZ

!

φhpτ0Z, σ1 rZ, ξ0,i, x0,iq
)

we get

1

n

n
ÿ

i“1

E
!

φhprrL
Jm0si, zi, ξ0,i, x0,iq|G1,0

)

a.s.
“ E

!

φhpτ0Z, σ1 rZ, rΞ0, rX0q

)

.

On the right side of the last display, we have that Z, rZ and prΞ0, rX0q are mutually independent.
By our foregoing arguments, the randomness of Z comes from that of rL, the randomness of rZ
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comes from that ofN , and both are independent of pξ0,x0q. To prove the assertion (d) for h1 and
y1, we use part (b) for partially pseudo-Lipschitz function φhpx, z, ξ0,i, x0,iq “ xϕpx, z, ξ0,i, x0,iq

(by Lemma 7.1(1)) to obtain limnÑ8xh
1, ϕph1,x1, ξ0,x0qyn

a.s.
“ E

!

τ0Zϕpτ0Z, σ1 rZ, rΞ0, rX0q

)

.

Now, we have using Lemma 4 of [9]

E
!

τ0Zϕpτ0Z, σ1 rZ, rΞ0, rX0q

)

“ E
!

E
!

τ0Zϕpτ0Z, σ1 rZ, rΞ0, rX0q| rZ, rΞ0, rX0

))

“ E
!

E
!

τ20ϕ
1
1pτ0Z, σ1

rZ, rΞ0, rX0q| rZ, rΞ0, rX0

))

“ τ20 E
!

ϕ11pτ0Z, σ1
rZ, rΞ0, rX0q

)

.

The second equality holds since Z is independent of rZ, rΞ0 and rX0. Note that
τ20 “ limnÑ8xh

1,h1yn. Using part (b) and the fact that ϕ11 is partially Lipschitz we get

limnÑ8xϕ
1
1ph

1,x1, ξ0,x0qyn
a.s.
“ E

!

ϕ11pτ0Z, σ1
rZ, rΞ0, rX0q

)

. The assertion about

limnÑ8xy
1, ϕph1,y1, ξ0,x0qyn follows similarly. Finally, since t “ 0 and q0 “ q0K, the assertion

(g) follows from

lim
pÑ8

xq0, q0yn “
1

c
ϑ20 ă 8.

Inductive Step. Let us assume that the assertions (a)-(g) for bs,hs`1 and ys`1 for 0 ď s ď
t ´ 1. We shall show that the assertions hold for s “ t. The assertions for bt follows exactly
using the same arguments used to prove Bt, (a)-(g) of [9].

Next, we consider the assertion (g) for ht`1 and yt`1. Applying the induction hypothesis to
the partially pseudo-Lipschitz function φbph

r
i , y

r
i , ξ0,i, x0,iq “ frph

r
i , y

r
i , ξ0,i, x0,iq and

fsph
s
i , y

s
i , ξ0,i, x0,iq (by Lemma 7.1(1)) such that for 1 ď r, s ď t, we have almost surely

lim
nÑ8

xqr, qsyn “ E
!

frpτr´1Zr´1, σr rZr, rΞ0, rX0qfspτs´1Zs´1, σs rZs, rΞ0, rX0q

)

.

Further

xqtK, q
t
Kyn “ xq

t, qtyn ´
pqtqJQt

n

„

QJt Qt

n

´1
QJt q

t

n
.

Using induction hypotheses part (g), we have limpÑ8xq
r
K, q

r
Kyn ą ρr for all r ď t´1. Now using

Lemma 9 of [9], for large enough n the smallest eigenvalue of matrix QJt Qt{n is larger than
positive constant c1 independent of n. By Lemma 10 of [9], QJt Qt{n converges to an invertible
limit. Hence, we have

lim
nÑ8

xqtK, q
t
Kyn

a.s.
“ E

!

rftpτt´1Zt´1, σt rZt, rΞ0, rX0qs
2
)

´ uJC´1u

with u P Rt and C P Rt ˆ Rt such that 1 ď r, s ď t:

ur “ E
!

frpτr´1Zr´1, σr rZr, rΞ0, rX0qftpτt´1Zt´1, σt rZt, rΞ0, rX0q

)

,

and
Cr,s “ E

!

frpτr´1Zr´1, σr rZr, rΞ0, rX0qfspτs´1Zs´1, σs rZs, rΞ0, rX0q

)

.

If we show Varrτr´1Zr´1|τ0Z0, . . . , τr´2Zr´2, σ1 rZ1, . . . , σr´1 rZr´1s and Varrσr rZr|τ0Z0, . . . ,
τr´2Zr´2, σ1 rZ1, . . . , σr´1 rZr´1s are strictly positive for 1 ď r ď t, then using Lemma E.3 the
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result follows. Using the induction hypotheses, part (b), and the techniques similar to the proof
of Bt (g) of [9], we have for all 1 ď r, s ď t:

lim
nÑ8

xhrK,h
r
Kyn “ lim

nÑ8

˜

xhr,hryn ´
phrqJHr

n

„

pHrq
JHr

n

´1
HJ
r h

r

n

¸

“ Varrτr´1Zr´1|τ0Z0, . . . , τr´2Zr´2, σ1 rZ1, . . . , σr´1 rZr´1s.

Next, using part (c) of the induction hypotheses, we have almost surely

lim
nÑ8

xhrK,h
r
Kyn “ lim

nÑ8

˜

xhr,hryn ´
phrqJHr

n

„

pHrq
JHr

n

´1
HJr h

r

n

¸

“ lim
pÑ8

˜

xmr´1,mr´1yp ´
pmr´1qMJ

r´1

p

„

pMr´1q
JMr´1

p

´1
MJ

r´1m
r´1

p

¸

“ lim
pÑ8

xmr´1
K

,mr´1
K
yp.

Using part (g) of the induction hypotheses, we have limpÑ8xm
r´1
K

,mr´1
K
yp ą κr´1 ą 0, and

hence the result follows.
The assertion (a) for ht`1 follows using the techniques used to prove Ht`1(a) of [9]. To prove
the same for yt`1, we consider Ft`1,t defined in (E.2), we get

Ft`1,tqtK “ QtpQ
J
t Qtq

´1
sY Jt q

t
K.

Further, note that using QJt
sYt “ sY Jt Qt we get

Ft`1,tqt} “ sYtpQ
J
t Qtq

´1QJt q
t
}.

Combining these two equations we get

Ft`1,tqt “ QtpQ
J
t Qtq

´1
sY Jt q

t
K `

sYtpQ
J
t Qtq

´1QJt q
t
}.

Then using (E.1) we get

yt`1|Gt`1,t

d
“ QtpQ

J
t Qtq

´1
sY Jt q

t
K `

sYtpQ
J
t Qtq

´1QJt q
t
} ` P

K
Qt

ĂNPKQt
qt ´ dtq

t´1.

Now sYt “ Yt ` r0|Qt´1sDt, where Yt “ ry
1| . . . |yts and Dt “ diagpd0, . . . , dt´1q. As sY Jt q

t
K “

Y Jt q
t
K, so we need to show

QtpQ
J
t Qtq

´1Y Jt q
t
K ` r0|Qt´1sDtpQ

J
t Qtq

´1QJt q
t ´ dtq

t´1 “ Qtop1q,

or equivalently
r0|Qt´1sDtβ

t `QtpQ
J
t Qtq

´1Y Jt q
t
K ´ dtq

t´1 “ Qtop1q,

We need to show that the coefficients of q`´1 converge to zero for ` “ 1, . . . , t. Now the coefficient
of q`´1 is given by

rQtpQ
J
t Qtq

´1Y Jt q
t
Ks` ´ dlp´β

t
`q

I`‰t “
t
ÿ

k“1

«

ˆ

QJt Qt

n

˙´1
ff

`,k

xyk, qt ´
t´1
ÿ

s“0

βtsq
syn ´ d`p´β

t
`q

I`‰t .
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Denoting QJt Qt{n by G, we get

lim
nÑ8

Coefficient of q`´1 “ lim
nÑ8

#

t
ÿ

k“1

pG´1q`,kxy
k, qt ´

t´1
ÿ

s“0

βtsq
syn ´ d`p´β

t
`q

I`‰t

+

.

Using parts (c) and (d) of the induction hypotheses, for k “ 1, . . . , t, we get

lim
nÑ8

Coefficient of q`´1
a.s.
“ lim

nÑ8

#

t
ÿ

k“1

pG´1q`,kxy
k, dtx

t ´

t´1
ÿ

s“0

βtsdsy
syn ´ d`p´β

t
`q

I`‰t

+

a.s.
“ lim

nÑ8

#

t
ÿ

k“1

pG´1q`,krGk,tdt ´
t´1
ÿ

s“0

βtsGk,sdss ´ d`p´β
t
`q

I`‰t

+

“ lim
nÑ8

#

dtIt“` ´
t´1
ÿ

s“0

βtsdsI`“s ´ d`p´βt`qI`‰t
+

“ 0.

This implies

yt`1|Gt`1,t

d
“

t´1
ÿ

i“0

βtiy
i`1 ` ĂNqtK ´ PQt

ĂNqtK `Qtop1q.

Using the fact that

ĂN “
1

2

`

NJ
1 `N1

˘

,

where all entries of N1 are distributed as Np0, 1{nq. Hence

PQt
ĂNqtK “

1

2

˜

t
ÿ

i“1

xrqi,N
J
1 q

t
Kynrqi

¸

`
1

2

˜

t
ÿ

i“1

xrqi,N1q
t
Kynrqi

¸

,

where rqi are columns of rQt. Using Lemma E.2 (b) along with arguments similar to the proof of
Ht`1(a) of [9] and xqtK, q

t
Kyn ă 8, we get

PQt
ĂNqtK “

rQtop1q.

Hence we have the result.
Using the induction hypotheses and the proof of Ht`1(d) of [9], one can prove the assertion (d)
for both ht`1 and yt`1.
The assertion (e) for ht`1 follows using the proof of Ht`1(e) of [9]. To show the same for yt`1

we condition on Gt`1,t, and using the assertion paq we get

1

n

n
ÿ

i“1

pyt`1l q2 ď
C

n

n
ÿ

i“1

˜

t´1
ÿ

r“0

βtry
r`1
i

¸2

`
C

n

n
ÿ

i“1

´

rPKQt
ĂNJqtKsi

¯2
` op1q

C

n

t´1
ÿ

r“0

n
ÿ

i“1

prqrsiq
2 .

Now using the techniques described in Bt (e) of [9], we can show

C

n

n
ÿ

i“1

˜

t´1
ÿ

r“0

βtry
r`1
i

¸2

ă 8,
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and
C

n

t´1
ÿ

r“0

n
ÿ

i“1

prqrsiq
2
ă 8.

Finally

C

n

n
ÿ

i“1

´

rPKQt
ĂNJqtKsi

¯2
ď O

˜

C

n

n
ÿ

i“1

´

rĂNJqtKsi

¯2
¸

`O

˜

C

n

n
ÿ

i“1

´

rPQt
ĂNJqtKsi

¯2
¸

.

Using Lemma E.2 (d) with ϕnpxq “ p}x}
2q{n and xqtK, q

t
Kyn ă xq

t, qtyn ă 8 , we show that the
first term is finite. We show that the second term is finite using Lemma E.2 (b). Hence, we have

1

n

n
ÿ

i“1

pyt`1l q2 ă 8.

To show part (b) for ht`1 and yt`1 we use part (a) to get

φhph
1
i , . . . , h

t`1
i , y1i , . . . , y

t`1
i , ξ0,i, x0,iq

ˇ

ˇ

Gt`1,t

d
“ φh

´

h1i , . . . , h
t
i,

«

t´1
ÿ

i“0

αtih
i`1 ` rLJmt

K `
rQt`1op1q

ff

i

, y1i , . . . , y
t
i ,

«

t´1
ÿ

i“0

βtiy
i`1 ` rNqtK `

rQtop1q

ff

i

, ξ0,i, x0,i

¯

.

Firstly, using Lemma E.2 (d) with r “ 2t` 1 and m “ 2, we get

1

n

n
ÿ

i“1

φh

´

h1i , . . . , h
t
i,

«

t´1
ÿ

i“0

αtih
i`1 ` rLJmt

K `
rQt`1op1q

ff

i

, y1i , . . . , y
t
i ,

«

t´1
ÿ

i“0

βtiy
i`1 ` rNqtK `

rQtop1q

ff

i

, ξ0,i, x0,i

¯

´
1

n

n
ÿ

i“1

φh

´

h1i , . . . , h
t
i,

«

t´1
ÿ

i“0

αtih
i`1 ` rLJmt

K `
rQt`1op1q

ff

i

, y1i , . . . , y
t
i ,

«

t´1
ÿ

i“0

βtiy
i`1 `z

}qtK}?
n
` rQtop1q

ff

i

, ξ0,i, x0,i

¯

a.s.
ÝÑ 0,

where z „ Nnp0, Inq is independent of everything else. Now using the techniques used in Bt (b)
of [9] we can remove the terms rQtop1q and rQt`1op1q. So it is enough to consider

rXn,i “ φh

˜

h1i , . . . , h
t
i,

«

t´1
ÿ

i“0

αih
i`1 ` rLJ

}mt
K}

?
p

ff

i

, y1i , . . . , y
t
i ,

«

t´1
ÿ

i“0

βtiy
i`1 ` z

}qtK}?
n

ff

i

, ξ0,i, x0,i

¸

.

It is easy to verify the conditions of Theorem 3 of [9] conditionally on Gt`1,t and hence we get

56



for z1, z2
iid
„ Nnp0, Inq, given Gt`1,t

1

n

n
ÿ

i“1

#

φh

˜

h1i , . . . , h
t
i,

«

t´1
ÿ

i“0

αtih
i`1 ` rLJmt

K

ff

i

, y1i , . . . , y
t
i ,

«

t´1
ÿ

i“0

βtiy
i`1 `z

}qtK}?
n

ff

i

, ξ0,i, x0,i

¸

´ Ez1,z2

«

φh

˜

h1i , . . . , h
t
i,

«

t´1
ÿ

i“0

αtih
i`1 `z1

}mt
K}

?
p

ff

i

, y1i , . . . , y
t
i ,

«

t´1
ÿ

i“0

βtiy
i`1 `z2

}qtK}?
n

ff

i

,

ξ0,i, x0,i

¸ff+

a.s.
ÝÑ 0.

It follows that we also have this marginally. Let δt “ limnÑ8
}mt

K
}

?
n

and ρt “ limnÑ8
}qt
K
}

?
n

. Then

by partially pseudo-Lipschitz property of φh

1

n

n
ÿ

i“1

#

Ez1,z2

«

φh

˜

h1i , . . . , h
t
i,

«

t´1
ÿ

i“0

αtih
i`1 `z1

}mt
K}

?
p

ff

i

,

y1i , . . . , y
t
i ,

«

t´1
ÿ

i“0

βtiy
i`1 `z2

}qtK}?
n

ff

i

, ξ0,i, x0,i

¸ff

´ Ez1,z2

«

φh

˜

h1i , . . . , h
t
i,

«

t´1
ÿ

i“0

αtih
i`1 `z1δt

ff

i

, y1i , . . . , y
t
i ,

«

t´1
ÿ

i“0

βtiy
i`1 `z2ρt

ff

i

,

ξ0,i, x0,i

¸ff+

a.s.
ÝÑ 0.

Now consider the partially pseudo-Lipschitz function

pφhph
1
i , . . . , h

t
i, y

1
i , . . . , y

t
i , ξ0,i, x0,iq

“ Ez1,z2

#

φh

˜

h1i , . . . , h
t
i,

«

t´1
ÿ

i“0

αtih
i`1 ` δtz1

ff

i

, y1i , . . . , y
t
i ,

«

t´1
ÿ

i“0

βtiy
i`1 `ρtz2

ff

i

, ξ0,i, x0,i

¸+

.

That it is partially pseudo-Lipschitz follows by Lemma 7.1(2). By the induction hypothesis part
(b), we get

lim
nÑ8

1

n

n
ÿ

i“1

pφhph
1
i , . . . , h

t
i, y

1
i , . . . , y

t
i , ξ0,i, x0,iq

“ E

#

φh

˜

τ0Z0, . . . , τt´1Zt´1,
t´1
ÿ

i“0

αtiτiZi ` δtZ, σ1 rZ1, . . . , σt rZt,

t´1
ÿ

i“0

βtiσi`1
rZi`1 ` ρt rZ, rΞ0, rX0

¸+

,

As both τtZt “
řt´1
i“0 α

t
iτiZi ` δtZ and σt`1 rZt`1 “

řt´1
i“0 β

t
iσi`1

rZi`1 ` ρt rZ are centered Gaus-
sians, it is enough to show their variances are τ2t and σ2t`1 respectively. Proceeding as in Bt (b)
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of [9]

E

#

t´1
ÿ

i“0

αtiτiZi ` δtZ

+2

a.s.
“ lim

nÑ8
xht`1,ht`1yn

a.s.
“ lim

nÑ8
xmt,mtyp

a.s.
“ E

!

gtpϑt qZt, rΩ0, rV0q
2
)

“ τ2t .

Similarly we have

E

#

t´1
ÿ

i“0

βtiσi`1
rZi`1 ` ρt rZ

+2

a.s.
“ lim

nÑ8
xyt`1,yt`1yn

a.s.
“ lim

nÑ8
xqt, qtyn

a.s.
“ E

!

ftpτt´1Zt´1, σt rZt, rΞ0, rX0q
2
)

“ σ2t`1.

Last but not least, using induction hypotheses, and the fact that Z and rZ in the definition of
Zt and rZt are independent of everything else, we obtain that pZ0, . . . , Ztq, p rZ1, . . . , rZt`1q and
prΞ0, rX0q are mutually independent. This completes the proof of part (b).
Finally, the assertion (d) for ht`1 and yt`1 follows using the arguments similar to the base case.

E.4 Proof of Theorem 7.2

Let us define the following AMP which is easier to analyze. We shall show that the iterates of
this AMP is asymptotically close to the iterates of the original AMP given by (2.24) and (2.25)
with generic tft, gt : t ě 0u satisfying the condition of Theorem 7.2. Let us define ru0 “ ry0 “ 0.
Then for t P NY t0u, we define

rvt “
R
?
p
ftpαt´1x

˚ ` rut, µtx
˚ ` rxt,x0pεqq ´ rptgt´1pβt´1v

˚ ` rvt´1,v0pεqqq, (E.3)

rut`1 “
RJ
?
p
gtpβtv

˚ ` rvt,v0pεqq ´ rctftpαt´1x
˚ ` rut, µtx

˚ ` rxt,x0pεqq,

rxt`1 “
Z
?
n
ftpαt´1x

˚ ` rut, µtx
˚ ` rxt,x0pεqq ´ rdtft´1pαt´2x

˚ ` rut´1, µt´1x
˚ ` rxt´1,x0pεqq,

where

rct “
1

p

p
ÿ

i“1

Bgt
Bv
pβtv

˚
i ` rvti , v0,ipεqq,

rpt “
c

n

n
ÿ

i“1

Bft
Bu
pαt´1x

˚
i ` ruti, µtx

˚
i ` rxti, x0,ipεqq,

rdt “
1

n

n
ÿ

i“1

Bft
By
pαt´1x

˚
i ` ruti, µtx

˚
i ` rxti, x0,ipεqq.
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Let us observe that fpu, v, x, yq “ ftpαt´1x`u, µtx`v, yq and gpu, x, yq “ gt´1pβt´1x`u, yq are
partially Lipschitz functions for all t. The iterates defined in (E.3) is of the form (7.8). Hence
using Theorem 7.1 for any partially pseudo-Lipschitz functions pφ and pψ, we get

lim
nÑ8

1

n

n
ÿ

i“1

pφpruti, rx
t
i, x

˚
i , x0,ipεqq

a.s.
“ E

!

pφ pτt´1Z1, σtZ2, X0, X0pεqq
)

, (E.4)

and

lim
pÑ8

1

p

p
ÿ

i“1

pψprvti , v
˚
i , v0,ipεqq

a.s.
“ E

!

pψ pϑtZ3, V0, V0pεqq
)

. (E.5)

Define pφpx, y, z, wq “ φpαt´1z` x, µtz` y, z, wq and pψpx, y, rq “ ψpβty` x, y, rq. It is not hard
to observe that these functions are partially pseudo-Lipschitz. Then we obtain

lim
nÑ8

1

n

n
ÿ

i“1

φpαt´1x
˚
i ` ruti, µtx

˚
i ` rxti, x0,ipεqq

a.s.
“ E tφ pαt´1X0 ` τt´1Z1, µtX0 ` σtZ2, X0pεqqu ,

and

lim
pÑ8

1

p

p
ÿ

i“1

ψpβtv
˚
i ` rvti , v0,ipεqq

a.s.
“ E tψ pβtV0 ` ϑtZ3, V0pεqqu .

Hence, it is enough to show that

lim
nÑ8

1

n

n
ÿ

i“1

“

φpαt´1x
˚
i ` ruti, µtx

˚
i ` rxti, x0,ipεqq ´ φpu

t
i, x

t
i, x0,ipεqq

‰ a.s.
“ 0,

and

lim
pÑ8

1

p

p
ÿ

i“1

“

ψpβtv
˚
i ` rvti , v0,ipεqq ´ ψpv

t
i , v0,ipεqq

‰ a.s.
“ 0.

We shall prove the last two displays by induction on the following hypotheses:

1. limnÑ8
1
n

řn
i“1

“

φpαt´1x
˚
i ` ruti, µtx

˚
i ` rxti, x0,ipεqq ´ φpu

t
i, x

t
i, x0,ipεqq

‰ a.s.
“ 0,

2. limpÑ8
1
p

řp
i“1

“

ψpβtv
˚
i ` rvti , v0,ipεqq ´ ψpv

t
i , v0,ipεqq

‰ a.s.
“ 0,

3. limnÑ8
}∆t

1}
2

n
a.s.
“ 0,

4. limnÑ8
}∆t

2}
2

n
a.s.
“ 0,

5. limpÑ8
}∆t

3}
2

p
a.s.
“ 0,

6. limnÑ8
}αt´1x˚`rut}2

n ă 8 a.s.,

7. limnÑ8
}µtx˚`rxt}2

n ă 8 a.s.,

8. limpÑ8
}βtv˚`rvt}2

p ă 8 a.s.,

where ∆t
1 “ x

t ´ µtx
˚ ´ rxt, ∆t

2 “ u
t ´ αt´1x

˚ ´ rut, and ∆t
3 “ v

t ´ βtv
˚ ´ rvt.
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Step 1: The t “ 0 case Using α´1 “ µ0 “ 0 and u0 “ ru0 “ y0 “ ry0 “ 0, hypotheses
p1q, p3q, p4q, p6q and p7q follows. Now note that

v0 “

c

µ

np
v˚px˚qJf0p0,0,x0pεqq `

R
?
p
f0p0,0,x0pεqq,

and

rv0 “
R
?
p
f0p0,0,x0pεqq.

We have for i P rps

rv0i “ }f0p0,0,x0pεqq}
zi
?
p
,

where z1, . . . , zp are i.i.d Np0, 1q and z “ pz1, . . . , zpq
J. Then we get

}β0v
˚ ` rv0}2

p
“ β20

}v˚}2

p
`
}f0p0,0,x0pεqq}

2

p

}z}2

p
` 2β0

}f0p0,0,x0pεqq}
?
p

xz,v˚yp.

By SLLN, we get that all the terms are finite. Hence Hypothesis (8) follows. We further note
that

lim
pÑ8

1

p
}∆0

3}
2 “ lim

pÑ8

ˆ
c

µ

np
px˚qJf0pu

0,y0,x0pεqq ´ β0

˙2
}v˚}2

p
.

Using SLLN, definition of β0 and p{nÑ 1{c, we get Hypothesis (5). Again note that

}v0}
?
p
ď

ˇ

ˇ

ˇ

ˇ

ˇ

c

µ

np
px˚qJf0p0,0,x0pεqq

ˇ

ˇ

ˇ

ˇ

ˇ

}v˚}
?
p
`
}z}
?
p

}f0p0,0,x0pεqq}
?
p

.

Then using SLLN we get limpÑ8 }v
0}{
?
p ă 8 almost surely. Now using the partially pseudo-

Lipschitz property of ψ, we get

ˇ

ˇ

ˇ

ˇ

ˇ

1

p

p
ÿ

i“1

“

ψpβ0v
˚
0,i ` rv0i , v0,ipεqq ´ ψpv

0
i , v0,ipεqq

‰

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˆ

1`
}β0v

˚ ` rv0}
?
p

`
}v0}
?
p
`
}v0pεq}
?
p

˙

}v˚}
?
p

ˇ

ˇ

ˇ

ˇ

ˇ

c

µ

np
px˚qJf0pu

0,x0,x0pεqq ´ β0

ˇ

ˇ

ˇ

ˇ

ˇ

a.s.
Ñ 0,

by SLLN, definition of β0 and p{nÑ 1{c. This shows Hypothesis (2).

Let the hypotheses hold for ` “ 0, . . . , t ´ 1. Now we show the hypotheses for ` “ t to
complete the induction.

Step 2: Hypothesis (6), (7) and (8) First consider Hypotheis (6) for ` “ t. If we consider
the partially pseudo-Lipschitz function pφpx, y, z, wq “ pαt´1z ` xq2, then using (E.4) this Hy-
pothesis follows. Similarly using pφpx, y, z, wq “ pµtz` yq

2, Hypothesis (7) follows. Finally using
pψpx, y, rq “ pβty ` xq

2 and (E.5), Hypothesis (8) follows.
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Step 3: Hypothesis (3) Consider Hypothesis (3) for ` “ t. It can be observed that

∆t
1,i

“

´?
λxx˚, ft´1pu

t´1,xt´1,x0pεqqyn ´ µt

¯

x˚i

` rdt´1ft´2pαt´3x
˚
i ` rut´2i , µt´2x

˚
i ` rxt´2i ,x0,ipεqq

`
1
?
n
xZi,˚, ft´1pu

t´1,xt´1,x0pεqq ´ ft´1pαt´2x
˚ ` rxt´1, µt´1x

˚ ` rxt´1,x0pεqqyn

´ dt´1ft´2pu
t´2
i , xt´2i ,x0,ipεqq.

Thus using the Jensen’s inequality, we have for constant L1 ą 0

1

n
}∆t

1}
2

ď L1

´?
λxx˚, ft´1pu

t´1,xt´1,x0pεqqyn ´ µt

¯2

` L1|rdt´1 ´ dt´1|
2 1

n

n
ÿ

i“1

f2t´2pαt´3x
˚
i ` rut´2i , µt´2x

˚
i ` rxt´2i ,x0,ipεqq

`
L1

n2
}Z}2op}ft´1pu

t´1,xt´1,x0pεqq ´ ft´1pαt´2x
˚ ` rut´1, µt´1x

˚ ` rxt´1,x0pεqq}
2

`
L1

n
|dt´1|

2}ft´2pu
t´2,xt´2,x0pεqq ´ ft´2pαt´3x

˚ ` rut´2, µt´2x
˚ ` rxt´2,x0pεqq}

2.

Using the partially pseudo-Lipschitz function pφpx, y, z, wq “ zft´1pαt´1z ` x, µtz ` y, wq (by
Lemma 7.1(1)), definition of µt and Hypothesis (1) for ` “ t´ 1 we have

?
λxx˚, ft´1pu

t´1,xt´1,x0pεqqyn ´ µt
a.s.
Ñ 0. (E.6)

From [3], we have

lim sup
nÑ8

1

n
}Z}2op ă 8 a.s.

Using the partially Lipschitz property of ft´1, we have

}ft´1pu
t´1,xt´1,x0pεqq´ft´1pαt´2x

˚` rut´1, µt´1x
˚` rxt´1,x0pεqq}

2 ď L1p}∆
t´1
1 }2`}∆t´1

2 }2q.

By induction hypothesis (3) and (4) for ` “ t´ 1 we get

1

n
}ft´1pu

t´1,xt´1,x0pεqq ´ ft´1pαt´2x
˚ ` rut´1, µt´1x

˚ ` rxt´1,x0pεqq}
2

ď L1

ˆ

}∆t´1
1 }2

n
`
}∆t´1

2 }2

n

˙

a.s.
Ñ 0.

This implies

1

n2
}Z}2op}ft´1pu

t´1,xt´1,x0pεqq ´ ft´1pαt´2x
˚ ` rut´1, µt´1x

˚ ` rxt´1,x0pεqq}
2 a.s.
Ñ 0. (E.7)

Since pψpx, y, rq “ f2t´2px, y, rq is partially pseudo-Lipschitz ( by Lemma 7.1(1)), using (E.4), we
have almost surely

lim sup
nÑ8

1

n

n
ÿ

i“1

f2t´2pαt´3x
˚
i ` rut´2i , µt´2x

˚
i ` rxt´2i , x0,ipεqq ă 8.

61



As f
p2q
t´1px, y, rq “

Bft´1

By px, y, rq is partially Lipschitz, we have using Hypothesis (1)

|rdt´1 ´ dt´1| “

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

rf
p2q
t´1pαt´2x

˚
i ` rut´1i , µt´1x

˚
i ` rxt´1i , x0,ipεqq ´ f

p2q
t´1pu

t´1
i , xt´1i , x0,ipεqqs

ˇ

ˇ

ˇ

ˇ

ˇ

a.s
Ñ 0.

This implies

|rdt´1 ´ dt´1|
2 1

n

n
ÿ

i“1

f2t´2pαt´3x
˚
i ` rut´2i , µt´2x

˚
i ` rxt´2i ,x0,ipεqq

a.s.
Ñ 0. (E.8)

Again, using similar arguments, we can show that

|dt´1|
2 ă 8 a.s.

Again using the induction hypothesis (3) and (4) for ` “ t´ 2 we get

1

n
}ft´2pu

t´2,xt´2,x0q ´ ft´2pαt´3x
˚ ` rut´2, µt´2x

˚ ` rxt´2,x0pεqq}
2

ď L1

ˆ

}∆t´2
1 }2

n
`
}∆t´2

2 }2

n

˙

a.s.
Ñ 0.

Thus, we have the following.

|dt´1|
2 1

n
}ft´2pu

t´2,xt´2,x0pεqq ´ ft´2pαt´3x
˚ ` rut´2, µt´2x

˚ ` rxt´2,x0pεqq}
2 a.s.Ñ 0. (E.9)

Using (E.6), (E.7), (E.8), and (E.9) we have

lim
nÑ8

}∆t
1}

2

n
a.s.
“ 0.

Step 4: Hypothesis (4) Next we try to prove Hypothesis (4) for ` “ t. We observe that

∆t
2,i “

´

p
a

pµ{nqxv˚, gt´1pv
t´1,v0pεqqyp ´ αt´1

¯

x˚i

` rct´1ft´1pαt´2x
˚
i ` rut´1i , µt´1x

˚
i ` rxt´1i , x0,ipεqq

` xL˚,i, gt´1pv
t´1,v0pεqq ´ gt´1pβt´1v

˚ ` rvt´1,v0pεqqy

´ ct´1ft´1pu
t´1
i , xt´1i , x0,ipεqq.

If L “ V {
?
n, then by the Jensen’s inequality, we have for constant L2 ą 0

}∆t
2}

2

n
ď L2

ˆ
c

µp

n
xv˚, gt´1pv

t´1,v0pεqqyp ´ αt´1

˙2

` L2|rct´1 ´ ct´1|
2 1

n

n
ÿ

i“1

f2t´1pαt´2x
˚
i ` rut´1i , µt´1x

˚
i ` rxt´1i ,x0,ipεqq

`
L2

np
λmaxpV V

Jq}gt´1pv
t´1,v0pεqq ´ gt´1pβt´1v

˚ ` rvt´1,v0pεqq}
2

`
L2

n
|ct´1|

2}ft´1pu
t´1,xt´1,x0pεqq ´ ft´1pαt´1x

˚ ` rut´1, µt´1x
˚ ` rxt´1,x0pεqq}

2.
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Using the partially pseudo-Lipschitz function pψpx, y, rq “ ygt´1pβt´1y`x, rq( by Lemma 7.1(1)),
definition of αt´1 and Hypothesis (2) for ` “ t´ 1, we have

c

µp

n
xv˚, gt´1pv

t´1,v0pεqqyp ´ αt´1
a.s.
Ñ 0. (E.10)

Since p{nÑ 1{c, using Corollary 5.35 of [35], we have

lim sup
nÑ8

λmaxpV V
Jq

n
ă 8 a.s.

Using the partially Lipschitz property of gt´1, we have

}gt´1pv
t´1,v0pεqq ´ gt´1pβt´1v

˚ ` rvt´1,v0pεqq}
2 ď L2 }∆

t´1
3 }2

By induction hypothesis (5) for ` “ t´ 1, we get

1

p
}gt´1pv

t´1,v0pεqq ´ gt´1pβt´1v
˚ ` rvt´1,v0pεqq}

2 ď L2

ˆ

}∆t´1
3 }2

p

˙

a.s.
Ñ 0.

This implies

lim sup
nÑ8

λmaxpV V
Jq

np
}gt´1pv

t´1,v0pεqq ´ gt´1pβt´1v
˚ ` rvt´1,v0pεqq}

2 a.s.“ 0. (E.11)

Since pψpx, y, rq “ f2t´1px, y, rq is partially pseudo-Lipschitz (by Lemma 7.1 (1)), using (E.4), we
have almost surely

lim sup
nÑ8

1

n

n
ÿ

i“1

f2t´1pαt´2x
˚
i ` rut´1i , µt´1x

˚
i ` rxt´1i , x0,ipεqq ă 8.

As g1t´1px, yq “
Bgt´1

Bx px, yq is partially Lipschitz, we have using Hypothesis (2) for ` “ t´ 1

|rct´1 ´ ct´1| “

ˇ

ˇ

ˇ

ˇ

ˇ

1

p

p
ÿ

i“1

rg1t´1pβt´1v
˚
i ` rvt´1i , v0,ipεqq ´ g

1
t´1pv

t´1
i , v0,ipεqqs

ˇ

ˇ

ˇ

ˇ

ˇ

a.s
Ñ 0.

This implies

|rct´1 ´ ct´1|
2 1

n

n
ÿ

i“1

f2t´1pαt´2x
˚
i ` rut´1i , µt´1x

˚
i ` rxt´1i , x0,ipεqq

a.s.
Ñ 0. (E.12)

Using similar arguments, we can show

|ct´1|
2 ă 8 a.s.

Using the induction hypotheses (3) and (4) for ` “ t´ 1 we get

1

n
}ft´1pu

t´1,xt´1,x0pεqq ´ ft´1pαt´2x
˚ ` rut´1, µt´1x

˚ ` rxt´1,x0pεqq}
2

ď L1

ˆ

}∆t´2
1 }2

n
`
}∆t´2

2 }2

n

˙

a.s.
Ñ 0.

Thus we have

|ct´1|
2 1

n
}ft´2pu

t´2,xt´2,x0pεqq ´ ft´2pαt´3x
˚ ` rut´2, µt´2x

˚ ` rxt´2,x0pεqq}
2 a.s.Ñ 0. (E.13)

Using (E.10), (E.11), (E.12), and (E.13), we have

lim
nÑ8

}∆t
2}

2

n
a.s.
“ 0.
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Step 5: Hypothesis (1) Now observe that using the partially pseudo-Lipschitz property of
φ, we have for a constant C1 ą 0

ˇ

ˇφpαt´1x
˚
i ` ruti, µtx

˚
i ` rxti, x0,ipεqq ´ φpu

t
i, x

t
i, x0,ipεqq

ˇ

ˇ

ď C1p|∆
t
1,i| ` |∆

t
2,i|qp1` |u

t
i| ` |x

t
i| ` |αt´1x

˚
i ` ruti| ` |µtx

˚
i ` ryti | ` |x0,ipεq|q

ď 2C1p|∆
t
1,i| ` |∆

t
2,i|qp1` |∆

t
1,i| ` |∆

t
2,i| ` |αt´1x

˚
i ` ruti| ` |µtx

˚
i ` rxti| ` |x0,ipεq|q.

(E.14)

Using (E.14) and the Cauchy Schwarz inequality, we get

1

n

n
ÿ

i“1

ˇ

ˇφpαt´1x
˚
i ` ruti, µtx

˚
i ` rxti, x0,ipεqq ´ φpu

t
i, x

t
i, x0,ipεqq

ˇ

ˇ

ď
2L

n

n
ÿ

i“1

t|∆t
1,i| ` |∆

t
1,i|

2 ` |∆t
1,i||αt´1x

˚
i ` ruti| ` |∆

t
1,i||∆

t
2,i|

` |∆t
1,i||µtx

˚
i ` rxti| ` |∆

t
1,i||x0,ipεq| ` |∆

t
2,i| ` |∆

t
2,i|

2

`|∆t
2,i||αt´1x

˚
i ` ruti|` |∆

t
1,i||∆

t
2,i|` |∆

t
2,i||µtx

˚
i ` rxti|` |∆

t
2,i||x0,ipεq|u

ď
2L

n
t
?
n}∆t

1} ` }∆
t
1}

2 ` }∆t
1}}αt´1x

˚ ` rut} ` 2}∆t
1}}∆

t
2}

` }∆t
1}}µtx

˚ ` rxt} ` }∆t
1}}x0pεq} `

?
n}∆t

2} ` }∆
t
2}

2

` }∆t
2}}αt´1x

˚ ` rut} ` }∆t
2}}µtx

˚ ` rxt} ` }∆t
2}}x0pεq}u

.

Thus, using Hypotheses (3) and (4) for ` “ t, we have

1

n

n
ÿ

i“1

ˇ

ˇφpαt´1x
˚
i ` ruti, µtx

˚
i ` rxti, x0,ipεqq ´ φpu

t
i, x

t
i, x0,ipεqq

ˇ

ˇ

a.s.
Ñ 0.

Step 6: Hypothesis (5) Now we try to prove Hypothesis (5) for ` “ t. We first observe that

∆t
3,i “

´

p
a

nµ{pqxx˚, ftpu
t,xt,x0pεqqyn ´ βt

¯

v˚i ` rptgt´1pβt´1v
˚
i ` rvt´1i , v0,ipεqq

`xLi,˚, ftpu
t,xt,x0pεqq´ftpαt´1x

˚` rut´1, µtx
˚`rxt,x0pεqqy´ptgt´1pv

t´1
i , v0,ipεqq.

By Jensen’s inequality, there exists a constant L3 ą 0 such that

1

p
}∆t

3}
2 ď L3

ˆ
c

nµ

p
xx˚, ftpu

t,xt,x0pεqqyn ´ βt

˙2
˜

1

p

p
ÿ

i“1

v20,ipεq

¸

` L3
λmaxpV

JV q

p2
}ftpu

t,xt,x0pεqq ´ ftpαt´1x
˚
i ` rut, µtx

˚
i ` rxt,x0pεqq}

2

`
L3

p
|pt|

2}gt´1pv
t´1,v0pεqq ´ gt´1pβt´1v

˚ ` rvt´1,v0pεqq}
2

` L3|rpt ´ pt|
2 1

p

n
ÿ

i“1

g2t´1pβt´1v
˚
i ` rvt´1i , v0,ipεqq.
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Using the partially pseudo-Lipschitz function pφpx, y, z, wq “ zftpαt´1z ` x, µtz ` y, wq (by
Lemma 7.1(2)), definition of βt and Hypothesis (1) for ` “ t´ 1 we have

c

nµ

p
xx˚, ftpu

t,xt,x0pεqqyn ´ βt
a.s.
Ñ 0. (E.15)

Since p{nÑ 1{c, using Corollary 5.35 of [35], we have

lim sup
nÑ8

λmaxpV
JV q

p
ă 8 a.s.

Using the partially Lipschitz property of ft, we have

}ftpu
t,xt,x0pεqq ´ ftpαt´1x

˚ ` rut, µtx
˚ ` rxt,x0pεqq}

2 ď L3 p}∆
t
1}

2 ` }∆t
2}

2q

By induction hypotheses (3) and (4) for ` “ t we get

1

n
}ftpu

t,xt,x0pεqq ´ ftpαt´1x
˚ ` rut, µtx

˚ ` rxt,x0pεqq}
2 ď L3

ˆ

}∆t
1}

2

n
`
}∆t

2}
2

n

˙

a.s.
Ñ 0.

This implies

lim sup
nÑ8

λmaxpV
JV q

p2
}ftpu

t,xt,x0pεqq ´ ftpαt´1x
˚ ` rut, µtx

˚ ` rxt,x0pεqq}
2 a.s.“ 0. (E.16)

Since, pψpx, y, rq “ g2t´1pβt´1y ` x, rq is partially pseudo-Lipschitz (by Lemma 7.1(1)), using
(E.4), we have almost surely

lim sup
pÑ8

1

p

p
ÿ

i“1

g2t´1pβt´1v
˚
i ` rvt´1i , v0,ipεqq ă 8.

As f
p1q
t px, y, rq “ Bft

Bx px, y, rq is partially Lipschitz, we have using Hypothesis (1) for ` “ t

|rpt ´ pt| “

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

rf
p1q
t pαt´1x

˚
i ` ruti, µtx

˚
i ` rxti, x0,ipεqq ´ f

p1q
t puti, x

t
i, x0,ipεqqs

ˇ

ˇ

ˇ

ˇ

ˇ

a.s
Ñ 0. (E.17)

This implies

|rpt ´ pt|
2 1

p

p
ÿ

i“1

g2t´1pβt´1v
˚
i ` rvt´1i , v0,ipεqq

a.s.
Ñ 0. (E.18)

Using arguments similar to (E.17), we can show that

lim sup
nÑ8

|pt|
2 ă 8 a.s.

Then, using the induction hypothesis (5) for ` “ t´ 1, we get

1

p
}gt´1pv

t´1,v0pεqq ´ gt´1pβt´1v
˚ ` rvt´1,v0pεqq}

2 ď L3
}∆t´1

3 }2

p
a.s.
Ñ 0.

Thus, we have the following.

|pt|
2 1

p
}gt´1pv

t´1,v0pεqq ´ gt´1pβt´1v
˚ ` rvt´1,v0pεqq}

2 a.s.Ñ 0. (E.19)

Using (E.15), (E.16), (E.18), and (E.19) we have

lim
nÑ8

}∆t
3}

2

n
a.s.
“ 0.
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Step 7: Hypothesis (2) Again using the partially pseudo-Lipschitz property of ψ and the
Cauchy–Schwarz inequality we get

1

p

p
ÿ

i“1

ˇ

ˇψpβtv˚i ` rvti , v0,ipεqq ´ ψpv
t
i , v0,ipεqq

ˇ

ˇ

ď
2L

p
t
?
p}∆t

3} ` }∆
t
3}

2 ` }∆t
3}

2 ` }∆t
3}}βtv

˚ ` rvt} ` }∆t
1}}v0pεq}.

Using Hypothesis (5) for ` “ t gives us

1

p

p
ÿ

i“1

ˇ

ˇψpβtv˚i ` rvti , v0,ipεqq ´ ψpv
t
i , v0,ipεqq

ˇ

ˇ

a.s.
Ñ 0.

E.5 Lemmas Used to Prove Results in Section 7

Variants of the following lemmas have previously appeared in [8]. We include their statement
and proof here mainly for the manuscript to be self-contained.

Lemma E.2. Consider a sequence of matrices A „ GOEpnq and two sequences of vectors
u,v P Rn such that }u} “ }v} “

?
n.

(a) xv,Auyn
a.s.
Ñ 0,

(b) Let P P Rnˆn be a sequence of projection matrices such that there exists a constant t that
satisfies for all n, rank pP q ď t. Then 1

n}PAu}
2
2
a.s.
Ñ 0,

(c) 1
n}Au}

2
2
a.s.
Ñ 1,

(d) There exists a sequence of random vectors z „ Np0, Inq such that for any sequence of
functions ϕn : pRnqr ˆ Rn ˆ pRnqm Ñ R, n ě 1 satisfying

|ϕnph1, . . . ,hr,x, ξ1, . . . , ξmq ´ ϕnph1, . . . ,hr,y, ξ1, . . . , ξmq|

ď L

˜

1`
r
ÿ

i“1

}hi}
?
n
`
}x}
?
n
`
}y}
?
n
`

m
ÿ

j“1

}ξj}
?
n

¸

}x´ y}
?
n

,

where for all i P rrs and j P rms,

lim sup
nÑ8

}hi}
?
n
ă 8 lim sup

nÑ8

}ξ}
?
n
ă 8.

Then we have

ϕnph1, . . . ,hr,Au, ξ1, . . . , ξmq ´ ϕnph1, . . . ,hr, z, ξ1, . . . , ξmq
a.s.
Ñ 0.

Proof. First note that for any fixed k ą 0, if we have a sequence of random variables Xn defined
on the same probability space such that Xn „ Np0, k{nq. Then we have the following inequality

P
ˆ

|Xn| ě
1

n1{4

˙

ď 2 exp

ˆ

´

?
n

2k

˙

.

As
8
ř

n“1
exp

´

´
?
n

2k

¯

ă 8, using the Borel Cantelli Lemma we have

|Xn|
a.s.
Ñ 0.
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(a) Recall that A “ G`GJ where Gi,j are i.i.d Np0, 1{p2nqq random variables, thus

1

n
xv,Auy “

1

n
xv,Guy `

1

n
xv,GJuy.

The random variable 1
nxv,Guy is a centered Gaussian random variable with variance 1{2n.

Thus 1
nxv,Guy

a.s.
Ñ 0. Similarly we can show 1

nxv,G
Juy

a.s.
Ñ 0.

(b) Suppose v1, . . . ,vk, an orthogonal basis of the image P , such that }vi} “
?
n. As k is

bounded by t, by part (a)

1

n
}PAu}22 “

1

n

k
ÿ

i“1

ˆ

xv,Auy

}vj}

˙2

“

k
ÿ

i“1

ˆ

1

n
xv,Auy

˙2
a.s.
Ñ 0.

(c) By (d), we have a sequence of random vectors z „ Np0, Inq

1

n
}Au}22 ´

1

n
}z}22

a.s.
Ñ 0.

As 1
n}z}

2
2
a.s.
Ñ 1, we can show part (c).

(d) We shall show this for r “ 1 and m “ 1, the case for higher r and m follows. It is easy to
check thatAu is a centered Gaussian vector with covariance matrix Σ “ In`

1
nuu

J. Thus

there exists a Gaussian vector z „ Np0, Inq such that Au “ Σ1{2z “ z`p
?

2´1q 1nuu
Jz.

By the property of ϕn we have

|ϕnph,Au, ξq ´ ϕnph, z, ξq| ď L

ˆ

1`
}h}
?
n
`
}Au}
?
n
`
}z}
?
n

˙

}Au´ z}
?
n

.

The law of large numbers imply, }z}2{
?
n
a.s.
Ñ 1, and we have }Au}{

?
n ď }Σ1{2}op}z}{

?
n

ď
?

2}z}{
?
n
a.s.
Ñ
?

2. Further

}Au´ z}
?
n

“
}
`

Σ1{2 ´ In
˘

z}
?
n

“
1

n3{2
p
?

2´ 1q}uuJz} “ p
?

2´ 1q
1

n
|uJz|

a.s.
Ñ 0.

The last assertion follows as 1
n |u

Jz| is a centered Gaussian with variance 1{n.

Lemma E.3. Let pZ1, . . . , Ztq, p rZ1, . . . , rZtq be sequences Gaussian random variables, where the
two sequences are independent. Let c1, . . . , ct and c̃1, . . . , c̃t be strictly positive constants such
that for all i “ 1, . . . , t:

VarpZi|Z1, . . . , Zi´1, rZ1, . . . , rZi´1q ą ci

and
Varp rZi|Z1, . . . , Zi´1, rZ1, . . . , rZi´1q ą c̃i.

Further assume E
 

Z2
i

(

ď K for all i and E
!

rZ2
i

)

ď L. Let Y be a random variable in the same

probability space.
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Finally let ` : R3 Ñ R be a Lipschitz function, with pz, yq ÞÑ `pz, y, Y q non-constant with
positive probability (with respect to Y ). Then there exists a positive constant c1t such that

E
!

r`pZt, rZt, Y q
2s

)

´ uJC´1u ą c1t,

where u P Rt´1 is given by ui “ E
!

`pZt, rZt, Y q`pZi, rZi, Y q
)

, and C P Rt´1 ˆ Rt´1 satisfies

Ci,j “ E
!

`pZi, rZi, Y q`pZj , rZj , Y q
)

for all 1 ď i, j ď t´ 1.

Proof. Let us denote by Q the covariance of the Gaussian vectors Z1, . . . , Zt, and Q1 the co-
variance of the Gaussian vectors rZ1, . . . , rZt. The set of matrices Q,Q1 satisfying the constraints
with constants c1, . . . , ct,K is compact. So if the thesis does not hold then there must exist a
covariance matrix

E
!

r`pZt, rZt, Y qs
2
)

´ uJC´1u “ 0. (E.20)

Let S P Rtˆt be the matrix with the entries Si,j “ E
!

`pZi, rZi, Y q`pZj , rZj , Y q
)

. Then (E.20)

implies that S is not invertible by the Schur Complement Formula. Therefore, there exist
non-vanishing constants a1, . . . , a` such that

a1`pZ1, rZ1, Y q ` . . .` at`pZt, rZt, Y q
a.s.
“ 0.

The function pz1, . . . , ztq ÞÑ a1`pz1, z̃1, Y q ` . . . ` at`pzt, z̃t, Y q is Lipschitz and non-constant.
Hence there is a set A Ď Rt of positive Lebesgue Measure such that it is non-vanishing on
A. Therefore, A must have zero measure under the law of pZ1, . . . , Ztq and p rZ1, . . . , rZtq, i.e.,
λminpQq “ 0 and λminpQ

1q “ 0. This implies there exists a11, . . . , a
1
t and b11, . . . , b

1
t such that

a11Z1 ` . . .` a
1
tZt

a.s.
“ 0, and b11

rZ1 ` . . .` b
1
t
rZ2

a.s.
“ 0.

If t˚ “ maxti P t1, . . . , tu : a1i ‰ 0u and s˚ “ maxti P t1, . . . , tu : b1i ‰ 0u, this implies

Zt˚
a.s.
“

t˚´1
ÿ

i“1

p´a1i{a
1
t˚qZi, and rZt˚

a.s.
“

t˚´1
ÿ

i“1

p´b1i{b
1
t˚q

rZi.

This violates the assumption of the hypothesis.

Lemma E.4. The vectors

αt “ pα
t
1, . . . ,α

t
t´1q “

„

MJ
t Mt

p

´1
MJ
t m

t

p
,

and

βt “ pβ
t
1, . . . ,β

t
t´1q “

„

QJt Qt
n

´1
QJt q

t

n
,

have finite limits as p, nÑ8.

Proof. Applying Lemma 9 of [8] and Btpgq,Htpgq,Xtpgq we can obtain that for large n the
smallest eigenvalues of pMJ

t Mtq{n, pQJt Qtq{n are all strictly positive. By Lemma 10 of [8] this
implies they converge to invertible limits. Then using Htpcq,Xtpcq and Bt´1pcq we have the
result.
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