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Regulating Innovation with Uncertain Quality: Information, Risk,

and Access in Medical Devices

Matthew Grennan and Robert J. Town

Data Appendix

A1. Dataset construction

The dataset used in this paper is fromMillennium Research Group’s Marketrack
survey of catheter labs, the source that major device manufacturers subscribe to
for detailed market research. The goal of the survey is to provide an accurate
picture of market shares and prices of medical devices. For our purposes, the
key variables in the data are the price paid and quantity used for each stent in
each hospital in each month. In addition, the hospitals report monthly totals for
di↵erent procedures performed, such as diagnostic angiographies. The data span
January 2004 through June 2013 and cover the US and EU markets.
There are three main challenges in constructing a usable dataset from the raw

survey data. First, the survey was not as concerned with collecting price data as it
was with collecting quantity data. Second, the survey measures stent usage rather
than availability, and our data go back only to 2004, so it is not always possible
to infer regulatory approval dates from the data (and while our independent
research found most introduction dates, we were not able to find all). Finally,
there is some apparent misreporting in the survey. The following tables illustrate
how key sample summary statistics compare across our cleaning steps for the EU
and US datasets. These steps are summarized below; full detail can be found
in the Stata code used to execute them, cleaning-eu-data-3-sample.do and
cleaning-us-data-3-sample.do.
The table rows record the sample means for key summary statistics across

various cleaning steps. The summary statistics are means of quantities calculated
at the hospital-month level. The means reported are of the total number of stents
implanted; the total number of diagnostic angiographies; the number of di↵erent
bare-metal stents (BMS) used; the number of di↵erent drug-eluting stents (DES)
used; and the weighted average age, in months, of the stents used. The table also
shows the total number of stent-hospital-month observations, number of hospital-
month observations, and number of hospitals in each sample.
The table rows correspond to di↵erent samples. The first row of each table sum-

marizes the raw EU and US survey data. The second row drops hospital-months
with suspect total quantities. The criteria for dropping are threefold. First, we
drop hospital-months for which the total quantity of stents changes by more than
50% relative to the previous month in which the hospital appears in the data.
Second, for “low-quantity” hospitals with mean monthly stent quantities below
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Table A1—: Dataset modifications and e↵ect on sample

EU dataset modifications

Diagnostic Stents BMS DES Average Stent-hospital- Hospital- Hospitals
procedures implanted |J | |J | stent age months months

Raw data 151 108 3.8 3.3 54.3 88,144 15,064 542
Rm. suspect q 161 98 3.3 2.8 54.5 61,098 13,477 540
Rm. if q>2*diagnostics 152 107 3.8 3.3 54.3 86,672 14,812 537
Rm. suspect diagnostics 151 108 3.8 3.3 54.4 87,349 14,933 542
Rm. outlier p 148 106 3.8 3.3 54.4 81,646 14,149 532
Rm. unknown entry 150 108 3.8 3.3 54.0 87,516 14,995 541
Final sample 160 95 3.2 2.8 54.6 54,771 12,313 524

US dataset modifications

Diagnostic Stents BMS DES Average Stent-hospital- Hospital- Hospitals
procedures implanted |J | |J | stent age months months

Raw data 137 76 2.2 2.5 36.8 68,603 17,183 526
Rm. suspect q 147 68 1.9 2.1 37.8 44,218 14,631 509
Rm. if q>2*diagnostics 138 76 2.2 2.5 36.7 67,783 16,982 517
Rm. suspect diagnostics 138 76 2.2 2.5 36.8 67,857 16,997 526
Rm. outlier p 136 75 2.2 2.5 37.1 66,293 16,720 525
Final sample 147 67 1.8 2.1 38.0 41,779 13,900 478

15, we drop hospital-months with usage strictly greater than 1.5 standard devia-
tions from the hospital’s mean. For “high-quantity” hospitals with mean monthly
stent quantities (weakly) greater than 15, we drop hospital-months with usage
strictly greater than 3.0 standard deviations from the hospital’s mean. Third,
for hospital-months with flagged quantity changes that were accompanied by a
30% or greater change in diagnostic angiography procedures, the hospital-months
were undropped. Diagnostic angiography procedures are performed prior to coro-
nary stent implantation, so large changes in monthly stent quantities should be
accompanied be similarly large changes in angiographies.
The third and fourth rows of the table drop hospital-months with suspect diag-

nostic angiography counts. Diagnostic angiographies should be bounded below by
some multiple of the number of stents used; in our data and anecdotally accord-
ing to clinicians, there are on average about two stents implanted per procedure.
The third row drops hospital-months if the number of diagnostic angiographies
is less than two times the number of stents implanted in that hospital-month.
The fourth row drops hospital-months if the number of diagnostic angiographies
is more than 2 standard deviations away from the hospital’s mean and if the ratio
of angiographies to stents was 2 standard deviations from the hospital’s mean.
The fifth row of the table drops hospital-months with problematic prices. We

drop hospital-months with outlier prices based on a regression of log-price on
the hospital’s number of BMS products and number of DES products used that
month, in addition to a hospital fixed-e↵ect. Hospital-months with products
whose regression residuals were more than 2 standard deviations from the mean
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of all residuals were dropped.
The sixth and penultimate row of the E.U. table drops hospital-months with

positive quantities for stents for which E.U. regulatory approval dates are not
known. Since the age of the product is an important component of our analysis,
the products for which an entry date could be pinned down with reasonable cer-
tainty must be removed from the analysis. This drop a↵ects only a few products,
none of which were frequently used. There are no products for which the US
approval dates could not be ascertained.
The final row in each table reports summary statistics for the final sample, which

drops all observations that meet one or more of the dropping criteria described
above.

A2. Clinical trial data

Our collected clinical trial data, and a detailed document on the sources, are
available in the online archive and upon request from the authors.
In addition to clarifying the di↵erences between EU and US trial policy and

validating our product quality estimates, the trial data make clear the strong
relationship between the size of clinical trial in terms of patients and the time
spent on the trial via the time it takes to recruit patients. Figure A1 plots the data
on patients and length of recruitment in days for smaller and larger trials (broken
down to roughly correspond to the scale of trials required for “EU” and “US”
approval). One can see from the fitted lines that larger trials take longer. The
fit is not perfectly linear, as there are of course idiosyncracies to particular trials,
but especially for the larger “US” trials, which tend to be run by professional
units within large firms or third party research organizations that do this as their
core business, the fit is reasonably tight, implying an average arrival rate of 186
patients per month.

Robustness and Alternative Explanations: Supplemental Figures and

Discussion

B1. Evidence of learning from individual products

Averaging across products conditional on age provides patterns in the data that
have direct relation to expected patterns in our model. However, these averages
cloud heterogeneity across products. Figure A2 provides two types of evidence of
this variation. First, the figures in the panels provide patterns for a few individual
products, illustrating how learning does not always bring good news, and lack of
learning brings a volatile mix of good and bad over time. Second, the table below
the panels provides summary statistics on the raw changes in usage patterns with
age ln(sjt/s0t)� ln(sjt+1/s0t+1) for products in the EU, undergoing US trials.
The patterns documented previously regarding decreases in volatility and in-

creasing mean usage with age might be worrisome if they were driven by increasing
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Figure A1. : Relationship between trial size and time.

usage for all product with age that then asymptotes as in a di↵usion process. The
table on the raw usage changes show this is not the case—there is a large fraction
of changes that are ”bad news” for products.

Case Study: CoStar and the Role of Bad News

Here we focus on a clear example of the impact of bad news. A small firm named
Conor Medsystems developed a drug-eluting stent with an intuitively appealing
new design for drug release that performed well in small early trials (CoStar I
(87 patients) and EuroStar I (149 patients)), which were received enthusiastically
at conferences in late 2005 through 2006. During this period, pivotal US trials
were begun. The stent saw growing market share after receiving a CE mark and
being released in the EU in February 2006.57 In November 2006, Johnson &
Johnson was su�ciently optimistic about CoStar to buy Conor for $1.4B. J&J
took over CoStar’s pre-market notification submission to the FDA. In May 2007
J&J announced the results of a large US trial (CoStar II (1675 patients)), where
safety evidence was good but e�cacy was disappointing with TLR rates 8% for
CoStar versus 4% for its competitor and the control stent, Taxus. Shortly after,
J&J announced that it was terminating its FDA mandated clinical trials as the
stent was failing to meet its primary endpoints.58

The CoStar story demonstrates many of the themes of our analysis. CoStar’s
usage rose as early trial results were communicated at physician conferences and
it underwent US trials. As more information was generated via the clinical trial,

57See http://www.ptca.org/pr conor/20060217.html
58See http://www.investor.jnj.com/releasedetail.cfm?releaseid=241182.
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Figure A2. : Learning patterns for selected individual products. Three representa-
tive products that receive good and bad news from trials or not much (useful) news at all. Left
panel (a) plots mean utility estimate for each product ln(sja/s0a) by age since introduction
into the EU. Right panel (b) plots absolute di↵erences |ln(sja/s0a)� ln(sja+1/s0a+1)| by age,
which should be larger with more uncertainty, and converge toward zero with learning. Table
below summarizes data on raw changes over time for products.
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that information is reflected in the inclusive share. Presumably J&J shared this
optimism and did not possess di↵erential information, even after due diligence
that would have made it privy to the same information as Conor. And when trial
results on e�cacy were unfavorable, market share dipped and the product was
pulled from the market.

B2. Robustness and Mechanism Tests: Supplemental Figures and Discussion

Placebo Test: PTCA Balloons

One alternative explanation for the findings in Figure 2 would be that the set of
manufacturers/products that undergo US trials promote their products di↵erently
than other products in the EU, and also di↵erently than for the same products
upon US introduction. While we believe the evidence on decreasing variance and
on the same products upon US launch make this unlikely, it is not impossible.
To further explore this possibility, we perform a placebo test using percutaneous
transcatheter coronary artery (PTCA) balloons, which are FDA Class II devices
and thus face similar regulatory requirements in both the EU and US. Thus PTCA
should not display the di↵erential signs of learning we document for stents if our
proposed mechanism is true. The results here show that we do see more total entry
in the EU (presumably due to pre-existing complementary sales and distribution
assets in the US for some manufacturers); but the di↵erences in amount of entry
are smaller than in stents, there is no gap in time of entry on average, and usage
patterns with age show no evidence of learning.
As another check that our results are indeed capturing learning in the EU from

US clinical trials, we perform a “placebo” type analysis by looking at a device
where we know such trials are not required. We perform the analysis on PTCA
balloons catheters, which are often used to clear a blockage in the artery before
the stent is placed. Standard balloons (ones that do not have drug coatings or
special cutting capabilities) typically have little, if any, gap between US and EU
approval requirements. This is evident in the lag between US and EU introduction
of on average two months (here we calculated entry from first observation in the
data instead of looking up press releases, and so the confidence interval includes
zero when sampling error is taken into account). Despite this lack of lag for those
products introduced in both the US and EU, we still observe many balloons
introduced only in the EU because they are sold by the same sales force as stents,
but are much lower revenue products, so that only a few companies enter the US
market for the purpose of selling balloons only. During our ten year sample, 40
manufacturers sell 113 di↵erent balloons in the EU and 6 manufacturers sell 40
di↵erent balloons in the US. Thus we can execute our same research design on
balloons, with the expectation of no di↵erential learning between products that
are EU only versus those that enter the US as well.
Figure A4 shows the results of this placebo test, comparing EU data for prod-

ucts that do and do not enter the US as well. The results illustrate the importance



54 THE AMERICAN ECONOMIC REVIEW JANUARY 2020

−
7

−
6
.5

−
6

−
5
.5

−
5

−
4
.5

−
4

−
3
.5

−
3

In
cl

u
si

ve
 S

h
a
re

 (
W

ith
in

)

0 12 24
Age Since Introduction to Region (Months)

EU (enter US) EU (don’t enter US)

(a) Meanj|a ln(sjt/s0t) (within product)

0
.2

.4
.6

.8
1

1
.2

1
.4

1
.6

1
.8

2
In

cl
u
si

ve
 S

h
a
re

: 
S

tD
e
v 

A
cr

o
ss

 P
ro

d
u
ct

s 
(W

ith
in

)

0 12 24
Age Since Introduction to Region (Months)

EU (enter US) EU (don’t enter US)

(b) SDj|a ln(sjt/s0t)

xa=1 xa=24 x24 � x1 (xtrials

24 � xtrials

1 )� (xnot

24 � xnot

1 )

MeanEU|trials
j|a

ln(sjt/s0t) -4.22 -3.25 0.96 0.37

(0.17) (0.27) (0.32) (0.33)

MeanEU|not
j|a

ln(sjt/s0t) -6.52 -5.93 0.60

(0.16) (0.18) (0.21)

SDEU|trials
j|a

ln(sjt/s0t) 0.62 0.59 -0.03 0.01
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N = 789 product-month observations (all in EU). Standard errors clustered by month Nt = 114 in
parentheses.

Figure A4. : PTCA Balloons—EU only, products that enter US vs. not.

of looking at learning evidence in the volatility along with trends in means as well
as the importance of having comparison groups to be able to look at di↵erences-
in-di↵erences. There is no evidence of learning in the volatility figure. Mean
usage of products in both groups trend up slightly with age, but these trends are
statistically identical, suggesting a slight di↵usion process that a↵ects all balloons
in the EU that is not driven by learning about product quality.

Alternative Explanation: Observational Learning with Different Initial

Sample Size

Another potential explanation for the results in Figure 2 is that there is learning
in the EU sample undergoing US trials, but this learning is observational (all or
in part). The di↵erence between the patterns in the two samples is then plausibly
driven by the fact that those stents undergoing US trials enter with higher usage
levels, which generate su�cient sample sizes for observational learning to occur,
whereas the EU sample not undergoing trials contains too many products that
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do not gain enough early traction to enable learning.
We examine this hypothesis by reformulating the same figures and tests for a

set of products with overlapping support on initial values of 1
Ja

P
j
ln(sja/s0a) at

aj = 1, so they all have similar chances to generate early observational learning.
The pattern in Appendix Figure A5 is essentially identical to that in Figure 2,
suggesting that our results are not driven by selection on initial quality/usage
levels.59
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Figure A5. : Stent usage patterns after product entry, by region and trial status

(subsample matched on age = 1 usage)

59For this matched sample, selection into US trials must be based on level shifts in expected US
profit due to the fact that those products that enter the US all have pre-existing complementary assets
for sales and distribution (while those that don’t enter do not). This is consistent with the challenges
firms such as Biotronik have faced in develop US sales forces. See, “Tipping the Odds for a Maker of
Heart Implants,” New York Times, April 2, 2011.
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Alternative Explanation: Asymmetric Information and Signaling

Another potential explanation that could rationalize Figure 2 is manufacturer
signaling. Under this hypothesis, after the release of EU trial data, manufacturers
retain a su�ciently large degree of private information about expected product
quality, and so undertaking costly US trials signals expected product quality
to physicians. To produce the observed data patterns, such a signaling model
also needs to include some combination of slow signal di↵usion across hospitals
and/or increasing signal strength as a trial continues. We explore this hypothesis
by looking more closely at the shapes of the distribution of ln(sjt/s0t) with age.
Appendix Figure A6 shows the evolution with age of di↵erent quantiles of the

ln(sjt/s0t)|a distribution. Under a model where manufacturers and physicians
are similarly informed about quality after the release of trials for EU entry, and
then learn similarly as data from US trials is released, the distribution of product
quality estimates should converge symmetrically to the true product quality dis-
tribution. In an asymmetric information setting, consumers do not receive direct
information about quality, but instead infer quality must be above some thresh-
old if a manufacturer is willing to continue with costly testing (see Appendix
Figure A7 below for more on this intuition). Learning in this way would cause
the lower tail of the distribution for product in US trials to become truncated. In
the Figure, the 25th and 75th percentiles appear to move symmetrically towards
the median as information arrives. Below the figure, we present relevant test
statistics. The change in the skewness of the distribution and the change in the
ratio of the 75th-50th percentile to the 50th-25th are both insignificant.
Our test of information symmetry in Figure A6 relies upon the intuition that

symmetric learning (as we assume in our model) suggests that the inferred dis-
tribution of product qualities should tighten from both ends of the distribution
as learning occurs (and also shift up if consumers are risk averse). This contrasts
with a model where suppliers have private information about their product quali-
ties, where consumer learning should take the form of realizing that manufacturers
who engage in costly testing must have product quality exceeding some threshold,
which suggests that the inferred distribution of product qualities should tighten
from the bottom as learning occurs. Figure A7 illustrates these ideas graphically.
The left panel (a) plots two distributions directly from our EU data for stents

undergoing US trials: (Pre-learning) plots the density of ln(sjt/s0t)|a=1; and
(Post-learning) plots the density of ln(sjt/s0t)|a=12. As one would expect from
Figure A6, the distribution shifts up and tightens symmetrically after 12 months
in US clinical trials.
The right panel (b) plots the same pre-learning distribution, and displays

the expected post-learning distribution from applying a truncated learning rule
ln(sjt/s0t)|a=1,ln(sjt/s0t)>�6. The plot illustrates the type of distribution we might
expect if there were learning with asymmetric information. This is clearly di↵er-
ent from the symmetric model and from our data, which is why our test in Figure
A6 fails to reject the null hypothesis of symmetric learning.
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B3. EU vs. US: Other Di↵erences Driving Entry and Di↵usion Patterns?

In theory it could be that the di↵erences in usage patterns between the US and
EU are driven by di↵erences in disease incidence, preferences for angioplasty and
stents, or variation in price setting regimes between the US and EU. However, all
the evidence that we have been able to gather indicates that these explanations do
not plausibly explain the patterns in the data described above. For example, the
average ischemic heart disease mortality rate is very similar between the US and
the EU, suggesting that the disease incidence is also similar. The 2010 mortality
rate in the US for ischemic heart disease was 126.5 deaths per 100,000; and the
corresponding figure for the EU is 130.0 per 100,000.60 This modest di↵erential
seems unlikely to account for the stark di↵erences of entry rates between the two
regions.
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Figure A8. : Comparison of diagnostic procedure patterns, EU vs. US. Left panel
(a) plots the distribution of number of diagnostic procedures across hospitals—the US and EU
are nearly identical. Right panel (b) plots the distribution across hospitals of the probability
that a diagnostic procedure results in stenting—the EU is shifted slightly to the right of the
US, with a mean of 32 versus 28 percent.

Prior to performing an angioplasty in which a stent may be inserted, the patient
must undergo a diagnostic angiography. In this procedure, the blood flow through
the coronary artery is visualized and this information is used to determine whether
the patient should receive a stent or some other medical intervention. If the
di↵erence in the number of stents available between the EU and the US was
driven by higher demand for stents, then it should show up in the data with the

60OECD Health at a Glance, 2013.
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EU performing a larger number of angiographies or having a higher rate of stenting
conditional on the angiography rate. Figure A8 documents the distributions of
the number of diagnostic angiographies performed across the hospitals in our
data and percent of those diagnostic procedures resulting in a stenting procedure
across hospitals in the US and EU samples. The distributions are close to identical
statistically, with the EU having a few more small volume hospitals and hospitals
that are more likely to place a stent conditional upon a diagnostic procedure. In
the EU, 32 percent of patients received a stent conditional on an angiography
while in the US that figure was 28 percent. Like the evidence on heart disease
prevalence, this small di↵erence seems unlikely to explain the large disparity in
entry rates between the two regions.
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Figure A9. : Comparison of usage and price patterns EU vs. US.

Figure A9 documents that DES usage as a percentage of all stents used is lower
in the EU but follows similar patterns to the US over time. If the increased DES
entry in the EU was driven by higher demand, we would expect the opposite
pattern. Figure A9 also shows that the prices and hence profits per stent sold are
lower in the EU. This is true for both BMS and DES and is true over our entire
sample period. Both of these patterns are likely the result of lower reimbursement
levels for stent procedures overall, lower DES reimbursement levels in particular,
and more competing devices in the EU market. These findings suggest that
conditional upon FDA approval, average variable profit in the US is higher making
it a more attractive entry target than the EU. This, in turn, suggests that the
di↵erential entry rates are driven by di↵erences in regulation and not underlying
demand.
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Theory Appendix

This appendix provides formulas and proofs to supplement the results provided
in the body of the paper.

C1. Nested Logit Demand Formulas

Choice probabilities are given by:

(C1) cpjht = Pr[Uijht > Uikht, 8k 2 Jt]

=
exp

⇣
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where �jht := Qjht�
⇢

2�
2
jt
�✓

p
pjht+⇠jh is the mean ex-ante expected utility across

patients given beliefs regarding the mean stent performance characteristics and
the variance of those beliefs. The corresponding elasticity of choice probabilities
with respect to own price is given by

(C2) ⌘jht :=
@qjht

@pjht
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pjht.

The ex-ante expected consumer surplus (relative to the outside option) as a func-
tion of information and choice set is

(C3) CSht(Jt, Iht) = ✓
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where ✓scale is set to make fully informed the average treatment on the treated vs.
non-stent alternatives for DES introduced to the US equal to $5000, as motivated
by the clinical literature discussed in the body of the paper.

(C4) 5000 = ✓
scale

1

|JDES,US |

X

j2JDES,US

ln (1 + exp (�jht))✓
1+exp(�jht)
exp(�jht)

◆

C2. Regulator’s Total Surplus Tradeo↵: Illustrative Case

The general total surplus function is complicated by the entry policies of firms,
tracking observational learning for firms that entered the market at di↵erent
times, and potential distortions due to heterogeneity in marginal costs and price
markups. To clearly see the core tradeo↵ between uncertainty and access in the
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model, it is helpful to consider a simple case of a simple logit demand model with
testing and entry costless, no observational learning, homogenous marginal costs
(normalized to zero for convenience), and no distortions in usage due to price. In
this case, the regulator’s tradeo↵ simplifies as follows:

TSt(T
c + 1)� TSt(T

c) = ln

0
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where (C5) follows from no fixed costs, and (C6) follows from no observational
learning and recognizing � = 0 ) Jt(T c) = Jt+1(T c + 1).

C3. Learning and Risk Aversion Predictions for Shares

The data exploration section explores several patterns of distribution of market
shares, conditional on age. This Section provides further justification for the
relationship between these patterns and learning / risk aversion.

Prediction 1 (Learning): If initial product quality is uncertain �Q > 0, then
learning 1/�2

A
> 0 implies that expected volatility in product-specific quality

estimates (demeaned by true product quality) converge by decreasing with
age to zero V arj|a(�

a

j
� �̄j) &a!1 0.

Proof: It is clear from the model setup and Bayes’ rule that nonzero pre-
cision of the learning process 1/�2

A
> 0 (in and/or out of trials, so here

we suppress that subscript) implies convergence of quality estimates to the
true quality Q

a

j
�!

a!1
Q

⇤

j
and the convergence of uncertainty about that

estimate to zero �
a

j
&

a!1 0 for any product j. Our further claim is that
evidence for this learning will be found by looking at measures of volatility
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of the mean utilities across products:
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where the first equality follows from the mean utility specification used in
the body of the paper (and relies on linear separability of the quality term).
The second substitutes for Qa

j
using Bayes’ rule. The third from distributing

the Q
⇤

j
term and the fact that the term inside brackets has expectation

zero. The fourth from distributing the square and taking expectations.
And monotonically decreasing convergence of that quantity to zero is clear.
Q.E.D.

Prediction 2 (Risk Aversion): If consumers (doctors making decisions on be-
half of their patients) are risk averse (⇢ > 0), then expected product usage,
conditional on age, will increase strictly as learning occurs (Ej [�aj ] %

a!1

Q).

Proof: This again follows from the basic structure of the learning model.
Consider the quantity of interest:

lim
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where the first line follows from the mean utility specification. The second
line follows from the convergence of {Qa

j
} and {�

2
j

a
}. And �

2
j

a
&

a!1 0
and ⇢ > 0 guarantee the convergence is increasing and strictly so. Q.E.D.

Demand/Learning Estimation: Supplementary Details

D1. Demand/learning estimation algorithm

The estimation approach is to construct a generalized method of moments
estimator that matches the observed market shares in the data (and knowl-
edge of which products are in clinical trials when) to the demand and learning
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model. The Matlab code for this estimator is available in the electronic archive
code4RegulatingInnovation.zip. This appendix outlines the main steps of the al-
gorithm.

1) Construct an initial estimator for �Q using the empirical equivalent from
the Q

⇤

j
from the estimator using age by trial status fixed e↵ects instead of

the learning model.

2) Guess initial values for learning precisions (�EU ,�A,�Ac) and hospital het-
erogeneity (�des

H
,�

bms

H
, �H).

3) Compute the full vector of �2
jt
implied by �

2
Q
, the learning precision param-

eters, and which products are in trials when.

4) Least squares then gives an estimator for the linear parameters (⇢, Q⇤

j
, ✓

p
,�

g).

5) Repeat 2-4 until minimize the GMM objective function.

6) Recompute �Q using the empirical equivalent from the Q
⇤

j
from this stage.

7) Repeat 2-6 until �Q converges.

D2. Robustness and Alternative Structural Demand Models

Table A2 displays results for several robustness checks on our demand/learning
model specification. The first two columns use age fixed e↵ects, interacted with a
dummy variable indicating whether the product is in US clinical trials, to provide
a less parametric way to capture how demand changes over time with age and
trial status. The first column (NL) estimates a simple nested logit model, shutting
down any variation in preferences across hospitals. The second column (NLQW)
estimates the Quan and Williams (2018) model. The results show how across
hospital heterogeneity is important for fitting the data as the criterion function
reaches a lower minimum with this added flexibility. As expected, this acts as a
selection correction for the product-hospital-months with zero shares, which shifts
the product fixed e↵ect estimates.
The third column (NLQWNN) adds the structure of the Normal-Normal learn-

ing model in place of the age and trial status fixed e↵ects. There are two primary
di↵erences: (1) the learning model parameterization forces learning to be smooth
over time (vs. the nonparametric fixed e↵ects); and (2) the learning model uses
the rational expectations assumption to link the product fixed e↵ect estimates
Q

⇤

j
to how demand evolves with age and trial status. Under rational expecta-

tions, the fixed e↵ect estimates must be consistent with the prior distributions
F

UStrials(Q) and F
not(Q), and the precision parameters in the learning model

(1/�2
EU

, 1/�2
Ac , 1/�2

A
) link the prior to how the variance and levels moments of

product usage evolve with age and trial status.
Figure A10 plots the age fixed e↵ects in NLQW and uncertainty discounts�⇢

2�
2
jt

in NLQWNN versus age. The left panel shows the products in US trials; the right
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Table A2—: Estimates of physician preference and learning model parameters

NL NLQW NLQWNN �A (qjt�1) H Lags
✓p (utils/$1000) 0.21 0.20 0.10 0.10 0.11

(0.03) (0.04) (0.04) (0.04) (0.05)
�des 0.88 0.84 0.81 0.81 0.81

(0.02) (0.02) (0.02) (0.02) (0.02)
�bms 0.91 0.88 0.82 0.82 0.81

(0.01) (0.01) (0.01) (0.01) (0.01)
�des

H 0.14 0.19 0.19 0.19
(0.03) (0.04) (0.04) (0.04)

�bms

H 0.07 0.18 0.18 0.18
(0.01) (0.02) (0.02) (0.03)

⇢ · ✓p (1/$1000) 3.36 3.29 3.66
(1.70) (2.30) (1.99)

1/�2
EU 18.82 18.75 18.52

(2.16) (2.09) (2.74)
1/�2

Ac 1.73 1.70 1.88
(0.51) (0.60) (0.70)

1/�2
A 0.00 0.00 0.00

(0.00) (0.15) (0.13)
�H

�q ( 1
�
2
A
/100) 0.00

(0.00)
µlag (months) 0.00

(0.10)
Q

j
-2.06 -2.58 -2.37 -2.37 -2.41
(0.05) (0.06) (0.10) (0.35) (0.31)

�Q|UStrials 0.27 0.30 0.26 0.26 0.27
(0.02) (0.02) (0.01) (0.01) (0.02)

�Q|not 0.30 0.36 0.34 0.34 0.34
(0.02) (0.03) (0.01) (0.01) (0.02)

age⇥ UStrials FE Y Y N N N
min(GMMcriterion) 101.47 15.47 15.53 15.54 15.54
RMSE(⇠jt) 0.413 0.401 0.281 0.279 0.297
Estimates for demand model ln(sjt/s0t) = �gj ln(sj|gt)� ✓ppjht +Q⇤

j � ⇢

2�
2
jt + ⇠jt with

separate nests for DES and BMS. NJHT = 407, 191 product-hospital-months and NJT = 4, 888
product-months. Standard errors in parentheses and are clustered by month (NT = 114).

panel products not in US trials. The patterns show that: (1) With regards to the
smooth parameterization of the learning model, the fit is still quite close to the
pattern of the age fixed e↵ects, so the parametric form imposes very little on the
data (this can be seen in the figures and also in the min(GMMcriterion) (fitting
the aggregate usage, aggregate volatility, and hospital moments) and RMSE(⇠jt)
(of aggregate usage moments only) in the table being close for the two models).
(2) The rational expectations assumption allows the model to extract much more
information from the data – the prior is now linked to the fixed e↵ects, and so we
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can infer the amount of learning from EU trials/approval from the gap between
that and the variation in usage patterns at age = 1. Pinning uncertainty to these
two points then allows us to infer the amount of uncertainty remaining as learning
does or doesn’t occur, and it then requires the product quality estimates Q

⇤

j
to

adjust for this. Finally, the NN learning model separates learning/uncertainty
and risk aversion parameters – these structural parameters have a clear inter-
pretation that allows for validation of the results, and they allow estimation of
counterfactuals where the nature of uncertainty/learning might change due to
regulatory changes.
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Figure A10. : Comparison of estimates from fixed e↵ect and learning models.

Plots the estimated discount due to uncertainty versus product age in Normal-Normal learning
model � ⇢

2�
2
jt

vs. model with age and age⇥ UStrials fixed e↵ects.

Returning to Table A2, the final two columns show the results for two extensions
of our model. Column 4 allows observational learning in the market place to be
a function of past demand, �A (qjt�1), in order to check that the lack of market
learning that we estimate is not being driven by low usage levels. This is similar
in spirit to our “overlapping Qj,age=1” test in the reduced form section, and like
that test, we do not find any evidence of observational learning for products not
in US trials, even for those that are used in large quantities.
The final column, HLags, reports the estimates for a model that allows dif-

ferent hospitals to learn with di↵erent random lags from each information shock.
The goal is to allow for the patterns in the data to potentially be generated by
an information di↵usion process that is not intrinsically linked to information
generation (in which case we might be conflating this di↵usion process with the
trial information generation process, which is the process the regulator controls
most directly). Specifically, each hospital receives each signal with a delay of a
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number of months drawn from a Poisson(µlag) distribution, and we estimated µ
lag

using simulated GMM. Similar to the hospital signal correlation parameter in our
preferred model, this lag parameter is identified by the di↵erence in the aggregate
vs. hospital level patterns of usage. The estimate does not suggest that learning
lag heterogeneity across hospitals explains the patterns in the data.
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Figure A11. : Estimated Quality Distributions. Density plots of the product fixed
e↵ect parameters {Q

⇤

j
} and market expectations upon EU entry {Q

1
j
}.

One advantage of the GMM algorithm vs. ML (besides the ability to use instru-
ments, which is of course important) is that it allows a nonparametric distribution
of product quality estimates. Figure A11 plots the distribution of Q1

j
(left panel

(a)) and Q
⇤

j
(right panel (b)). The results help to validate several of the main-

tained assumptions. The distributions are not perfectly normal, but appear to
be symmetric and reasonably approximated by normals (especially since the tails
are inherently di�cult to estimate). Also, it does seem that the UStrials distri-
bution may indeed be best thought of as a di↵erent distribution with a slightly
higher mean and smaller variance. But the distribution does not appear to have
a di↵erent shape in a way that would make the two groups di�cult to compare
or that would suggest an asymmetric information signaling equilibrium.
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Counterfactuals: Supplementary Details

E1. Partial equilibrium e↵ect of risk: dependence on quality relative to outside option

Table A3 replicates Table 2 in the paper body, allowing the mean qualities
to vary by shifting the entire quality distribution by plus or minus a standard
deviation of the logit horizontal error term. As referred to in the paper, the e↵ects
of decreasing risk become more dramatic as mean quality increases relative to the
outside option.

Table A3—: The e↵ect of uncertainty on number of stenting procedures, surplus per
stent implanted, and expected ex post loss.

�Q = �aEU=0 = �Tc=6 = �Tc=12 = �Tc=18 = �Tc=24 = �Tc=30 =
0.312 0.185 0.160 0.143 0.131 0.121 0.113

Baseline Q⇤

j
1� s0 (%) 12.5 24.0 26.4 27.9 29.0 29.7 30.3

(2.5) (1.4) (1.3) (1.3) (1.3) (1.4) (1.4)
TS

1�s0
($) 5776 6103 6184 6238 6276 6304 6327

(176) (167) (167) (168) (169) (170) (171)
E[Q⇤

j �Qjt|j⇤] ($) -1096 -560 -429 -348 -292 -252 -221
(127) (23) (37) (41) (41) (39) (37)

Q⇤

j
+

p
⇡/6 1� s0 (%) 33.8 52.9 56.1 58.0 59.2 60.1 60.8

(5.0) (1.8) (1.6) (1.6) (1.6) (1.6) (1.6)
TS

1�s0
($) 6525 7458 7663 7795 7887 7955 8007

(301) (233) (230) (232) (234) (236) (238)
E[Q⇤

j �Qjt|j⇤] ($) -1083 -554 -425 -344 -289 -249 -219
(127) (23) (36) (40) (40) (39) (37)

Q⇤

j
�

p
⇡/6 1� s0 (%) 3.9 8.1 9.1 9.8 10.2 10.6 10.9

(0.9) (0.6) (0.6) (0.6) (0.6) (0.6) (0.6)
TS

1�s0
($) 5533 5611 5634 5651 5663 5672 5679

(137) (138) (138) (139) (139) (139) (139)
E[Q⇤

j �Qjt|j⇤] ($) -1102 -563 -432 -350 -294 -254 -223
(127) (23) (37) (41) (41) (40) (38)

E2. Algorithms for computing equilibrium counterfactuals

The Matlab code for the counterfactuals is available in the electronic archive
code4RegulatingInnovation.zip. This appendix outlines the main steps of the al-
gorithms.
For each potential T c = 0, 1, ..., 30 (and given estimated or comparative static

parameter values) we calculate the M and L cases as follows:

M case:

1) Simulate r = 1, ..., 20 draws from the posterior signal distribution for each
observation, given �jt(T c) and qualities at EU entry Q

1
j
.
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2) Restrict sample to products that would be active in each month J
M (T c) =

Jt+T c .

3) Given J
M (T c), use demand/learning models to compute equilibrium quan-

tities and surplus measures for each r.

4) Estimate expected surplus measures using mean of r realizations.

L case:

1) Given M case results and �T
c = 1.6E6⇤T c, restrict sample to products that

would enter, under the naive assumption that firms assume other products
enter as if � = 0 (i.e. single agent entry, assuming competing against
J

M (T c) \ j), such that

E

2

4
tj+T

c

X

t=t
j
+T c

 
X

h

qjht(pjht �mcj)

!1�.01(t�t
j
�T

c)

|I
1
,��j = 0

3

5 > �jT
c

, with the expectation computed as the mean across the r simulations of
the profits for product j competing against J

M (T c) \ j (i.e. exactly the
expected product profits from the M case). The set of products that would
enter is J L(T c).

2) Given J
L(T c), use demand/learning models to compute equilibrium quan-

tities and surplus measures for each r.

3) Estimate expected surplus measures using mean of r realizations.

In the Appendix where we also model pricing, equilibrium prices are also com-
puted simultaneously with quantities. Standard errors for counterfactuals are
calculated using a nonparametric delete-10 jackknife, blocked at the month level.

E3. Distribution of Profits Over Product Lifetime and Across Products

The counterfactual L case with fixed costs of entry require calculation of ex-
pected lifetime profits under the assumption that all firms who enter in the EU
do enter in equilibrium. This number can be directly acquired from the EU data
for the 41 of 109 products that both enter and exit the market during our sample
period. However, for the other 68 products whose lifetimes are truncated at the
beginning or end, we need to extrapolate.
We perform this extrapolation by estimating the percent of cumulative lifetime

profits the average product has earned at each age. We then use this percent to
extrapolate the missing profits, for whatever age at which the truncation occurred.
We do this unconditionally on any covariates besides age.
In our counterfactuals, we hold take time from entry until exit as exogenously

given, and we use this same extrapolation to calculate expected lifetime profits
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(b) Distribution of Lifetime Profits over
Products

mean s.d. 10ptile median 90ptile N
Products with full lifetime during sample period:
Months in sample 21.5 19.8 5 15 47 41
Profit per month ($1000s) 179 612 18 70 211 41
Products with censored lifetime:
Months in sample 53.1 34.9 10 46 100 68
Profit per month ($1000s) 1,347 2,119 41 262 4,067 68
Distribution of lifetime profits (extrapolated where necessary):
Lifetime Profit ($M) 72.6 141.5 1.3 10.5 304.3 109

Figure A12. : Distribution of Profits Over Age and Across Products.

for any product that has not exited by the end (or entered by the beginning)
of the sample period in the counterfactual. Our counterfactual estimates are
robust to a variety of approaches to this extrapolation. This is in part because
the extrapolation is typically for the beginning or end of lifetime tail of product
profits, so that lifetime profit projections are not very sensitive to the method we
choose. Further, the products that are marginal in the sense that they exit as
entry costs increase, are also marginal in their contribution to consumer surplus.
Also notable here is the distribution of estimated lifetime profits in the last row

of the table at the bottom of Figure A12, which makes it clear that many products
with quite low profitability enter the EU. This supports our assumption that the
products in the EU market represent a reasonable approximation to the set of
products developed that firms might consider testing and bringing to market.

E4. Additional Results for E[⇡j(T c)],J (T c), PS(T c), FC(T c)

Each of our counterfactuals fully characterizes outcomes (under our M and L
cases), but we only show results for CS and TS in the body of the paper. Figure
A13 shows: (a) the distribution of expected profits across products given their
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information sets upon EU entry and beliefs about other product entry, (b) the
number of new products entering, (c) variable producer surplus, and (d) fixed
cost expenditures on trials.
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Figure A13. : Additional Results for E[⇡j(T c)],J (T c), PS(T c), FC(T c) Computed
for our baseline scenario of a change in policy in January 2004 (no spillovers).

Several highlights from these results are discussed in the body of the paper.
The full results here provide a more complete picture of how delay of entry from
longer trials (subfigure (b), M case) a↵ects the choice set of products available for
our period of study. Additionally, they show how fixed costs of additional trials
(subfigure (d)) plus the distribution across products of expected profits (subfigure
(a)) can further combine to limit the set of products available (subfigure (b), L
case). The bulk of this decreased entry due to larger fixed costs of testing comes
from the 76 percent of products whose expected lifetime profits are below $25M.
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E5. Robustness of Counterfactual Estimates to Modeling Assumptions

The paper makes a number of modeling assumptions to facilitate the counter-
factual computations. Here we explore robustness of the results to the extent to
which the government/regulator discounts future surplus, and to the assumptions
on marginal costs and prices. Table A4 shows the results.
The assumed amount of discounting has rather large e↵ects on the amount of

surplus generated by optimal testing. The reason for this is that it takes time
for many products used in the market to be products that have benefited from
further testing, whereas the costs of lack of access to new products are more
uniformly distributed in time. Thus more heavily discounting the future reduces
the benefit from further testing. However, this e↵ect is primarily borne out in the
level of surplus gain from optimal testing, with the amount of increased testing
under optimal policy changing little with the discounting applied.

Table A4—: Robustness: Discounting, Marginal Costs, and Pricing. Top row
repeats our baseline results (discounted at one percent nominal per month, mcj = .50 ⇤

min(p|gj), and prices held fixed). Subsequent rows modify these assumptions as indicated in
the first column.

State of Market at Policy Change �CS(T c⇤) (%) T c⇤

CS (months) �TS(T c⇤) (%) T c⇤

TS (months)
(L) (M) (L) (M) (L) (M) (L) (M)

Jan 2004 5.2 6.7 16 17 3.9 6.3 16 17
(1.8) (1.9) (4) (2) (1.6) (1.9) (4) (2)

Jan 2004, Govt. Discount 7% real 5.8 7.3 18 18 4.5 6.9 16 17
(2.1) (2.2) (4) (3) (2.0) (2.1) (4) (3)

Jan 2004, Govt. Discount 3% real 6.6 8.2 19 19 5.2 7.7 16 19
(2.1) (2.2) (4) (3) (2.0) (2.1) (4) (3)

Jan 2004, No Govt. Discount 7.7 9.5 19 19 6.2 8.9 16 19
(2.1) (2.2) (4) (3) (2.0) (2.1) (4) (3)

Jan 2004, mcj = .25 ⇤min(p|gj) 5.4 6.7 13 17 3.9 6.3 13 17
(1.8) (1.9) (3) (2) (1.6) (1.9) (4) (2)

Jan 2004, mcj = .75 ⇤min(p|gj) 5.2 6.7 16 17 3.8 6.3 13 17
(1.8) (1.9) (4) (2) (1.6) (1.9) (4) (2)

Jan 2004, Pricing Modeled 5.2 6.6 13 17 4.0 6.7 13 18
(1.7) (1.9) (3) (2) (1.6) (1.8) (4) (3)

NJHT = 407, 191 product-hospital-months and NJT = 4, 888 product-months. Standard
errors, clustered by month (NT = 114) using a delete-10 block jacknife, in parentheses.

Turning to marginal costs and prices, our primary specification holds prices
fixed in the counterfactual and assumes marginal costs at half the minimum price
observed within each product group (g 2 {bms, des}) for the purpose of comput-
ing firm expected and realized profits. The bottom rows of Table A4 show that
results change very little, if at all, when we change marginal costs to be either one
quarter or three quarters the group minimum, or when we instead model pric-
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ing and use that model to estimate marginal costs and compute new equilibrium
prices in the counterfactuals.

Pricing: model, identification, estimation, and results

Here we describe the pricing model and estimation for the robustness check
where we model pricing explicitly.
In the EU, device pricing practices vary somewhat across countries and hospi-

tals, but are typically negotiated between manufacturers and either the hospital
or some regional body responsible for procurement for a set of hospitals. For this
Appendix, we model this process using a static Nash Equilibrium of Nash Bargain-
ing models for each period, following the theory developed in Horn and Wolinsky
(1988) and Collard-Wexler et al. (2019) and recent empirical work by Crawford
and Yurukoglu (2012), Grennan (2013), and Gowrisankaran et al. (2014). These
approaches assume that prices maximize the bilateral Nash product
(E1)

max
pjHt

 
X

h2H

⇡jH(Jt, Iht, pjHt)

!
bjt(H) X

h2H

CSht(Jt, Iht, pjHt)� CSht(Jt \ {j}, Iht, pjHt)

!
bHt(j)

,

for each j 2 Jt in each market (group of hospitals in bargaining unit H in each
month t), taking other prices in the market {pkHt}k2Jt

as given. Here ⇡jH :=
qjht(pjHt�mcj) are manufacturer variable profits at marginal cost, mcj , for each
device. CSht is the hospital level consumer surplus. The parameters bjt(H)
and bHt(j) are the Nash bargaining weights, determining the extent to which
equilibrium prices weight manufacturer profit (minus its outside option of not
producing the stent) versus hospital surplus (minus its outside option of optimal
choice for each patient from a choice set that excludes j).61

With the demand and learning model parameter estimates in hand, we turn to
estimating the parameters from the bargaining model between hospitals and de-
vice manufacturers. To take the bargaining model to the data, we follow Grennan
(2013) and rewrite (E1) as

(E2) pjHt = mcj +
bjt(H)

bjt(H) + bHt(j)

X

h2H

MhtP
h2H

Mht

AVjht(Jt, Iht, pjHt,mcj ; ✓
D) ,

where the added value of product j to hospital h is defined as
(E3)

AVjht :=

✓
1 +

@qjht

@pjht

pjHt �mcj

qjht

◆
CSht(Jt, Iht, pjHt)� CSht(Jt \ {j}, Iht, pjHt)

qjht
+pjHt�mcj

61Assuming constant returns to scale in distribution and manufacturing on the margin at
P

h2H
qjht.

We also follow previous work in maintaining the Nash-like assumption that other prices remain the same
in the case of disagreement, which is consistent with “passive beliefs” in the theory literature that provides
noncooperative foundations for this concept.
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To estimate the structural parameters, the bargaining weights and the marginal
costs, we use our utility model estimates. We calculate the substitution patterns
by simulating ⌘jht, the elasticities across hospitals as defined in Equation (C2),
over the distribution of hospital level unobservables fH(⇠jh;�

gj

H
) (suppressing de-

pendence on hospital-specific learning for simplicity since 1/�2
A
and �H are both

estimated to be zero). Similarly, we use the consumer surplus equation derived
from the utility function in Equation (C3) to compute the buyer surplus portion
of the added value.

Because of physicians may be imperfect agents for patients and/or hospitals,
estimated physician price sensitivity measures may not reflect the correct scaling
for measuring hospital and/or consumer surplus. For this reason, we deviate
slightly from the standard demand estimation approach in that we add a scaling
coe�cient to relate consumer surplus derived from consumer utility maximization
to estimates of the dollar value of quality adjusted life years obtained in clinical
studies. We normalize the total surplus per stenting procedure to $5,000, which is
the approximate median of the estimated dollars in quality adjusted life years from
the procedure relative to a coronary artery bypass graph surgery, a more invasive
alternative to receiving angioplasty and a stent.62 This alternative scaling is only
for translating welfare measures into dollars—we continue to use the estimated
✓
p in quantity and elasticity calculations, as revealed preference indicates this is
the level of price sensitivity that best fits the demand patterns in the data.

In addition to the standard set of issues that the bargaining literature has
identified in estimating marginal costs and bargaining parameters, we face two
additional challenges. First, the challenge in estimating demand at the hospital
level means that our demand estimates only provide the distribution of added
values across hospitals, not the hospital-specific added values. Second, because
we only observe a sample of hospitals, we do not have added value measures for
all hospitals in a group H in cases where our hospitals may negotiate as part of
a group.

We address both of these supply estimation challenges by aggregating our es-
timation strategy across hospitals to the product-month level. Otherwise, we
follow Grennan (2013, 2014): We assume the econometric error enters relative
bargaining weights multiplicatively:

(E4) mcj := µ
C

g ;
bjt(H)

bHt(j)
:=

�j

�H
⌫jHt

where µ
C
g allows marginal cost to vary across BMS/DES, and �j are product-

specific bargaining parameters to be estimated. Substituting into Equation (E2),
rearranging and taking logs to obtain a linear equation in the unobservable, and

62Among studies reported in the Cost E↵ectiveness Analysis Registry (https://research.tufts-
nemc.org). We could also scale into dollars using the standard approach of the inverse of the price
coe�cient 1

✓p
= 10, 482, which would approximately double all related consumer welfare estimates.



74 THE AMERICAN ECONOMIC REVIEW JANUARY 2020

aggregating over hospitals gives the equations at the product-month level that we
take to the data:

(E5)
X

h

Mht

Mt

ln

✓
pjht � �j

AVjht

◆
= ln(�j) +

X

h

Mht

Mt

(� ln(�h) + ln(⌫jht))

| {z }
⌫̃jt

The parameters (�j , �j) can then be estimated by a GMM algorithm, assuming
Ejt [⌫̃jt|Zjt] = 0 for a set of instruments including product-specific constants and
@⌫̃jt

@�j
.

Table A5 presents the parameter estimates from the bargaining model. As we
estimate the parameters at the product level, we present the means and standard
deviations of those estimates. The first two variables are the elasticity and average
value parameters that come from the demand model that feed into the bargaining
model. The price elasticity is somewhat higher from DES stents and the typic
BMS stent adds $1155 of value while the average DES stent adds significantly
more value at $1424.

Table A5—: Structural parameter estimates for pricing model

⌘p

jht
AVjht ($) mcj ($)

bjt(H)

bjt(H)+bHt(j)

mean sd mean sd mean sd mean sd
BMS -0.25 0.11 1155 118 87 - 0.41 0.12

(0.06) (0.06) (172) (41) (124) (0.06) (0.04)
DES -0.42 0.14 1424 224 361 - 0.60 0.14

(0.32) (0.11) (312) (60) (117) (0.08) (0.04)
NJHT = 407, 191 product-hospital-months and NJT = 4, 888 product-months. Standard errors
clustered by month (NT = 114) using a delete-10 block jacknife in parentheses.

The next two sets of variables are parameter estimates from the bargaining
model. The marginal cost estimates align with expectations and prior literature.
BMS cost an average of $87 to produce while DES are more costly at $361. Finally,
the last two columns present the estimates of the relative bargaining weights,

bjt(H)
bjt(H)+bHt(j)

. The results imply that for BMS, hospitals retain the majority of

the surplus (manufacturers obtain 41 percent on average) from the implantation
of the device, with a modest amount of variance across products. However, for
the newer DES technology, on average, the manufacturers receive the majority of
the surplus (60 percent).63

63The DES bargaining parameter is nearly double that in Grennan (2013) in the US 2004-07 subsam-
ple, but this corresponds closely to the magnitude of our alternative scaling of consumer surplus, and
may also be related to lower reimbursements to hospitals and the di↵erent competitive environment for
DES in the EU relative to the US.
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E6. Additional Comparative Static Counterfactual Results

Table A6 provides results for a more complete set of comparative static pa-
rameter values than those shown in the body of the paper in Table 3. The key
takeaways were discussed in the body of the paper. We supply the full set of
numerical values here for the interested reader. We find these useful in consid-
ering the robustness of our estimated results for coronary stents 2004-13, and
also for thinking about how these results might extrapolate to other product cat-
egories with di↵erent primitives. Perhaps the most non-obvious and important
qualitative result is the nonlinearity of optimal testing length with respect to the
precision of information generated by testing. As mentioned in the body of the
paper, this thought experiment is tightly linked to pushes for validating more in-
termediate/surrogate endpoints (e.g. for stents this would be measuring 6 month
“loss” in the target vessel diameter instead of revascularization or mortality end-
points) that could allow trials to generate more information with smaller sample
sizes.
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Table A6—: Sensitivity of Optimal Regulation to Key Parameters: Full results for
all parameter values we have explored.

State of Market at Policy Change �CS(T c⇤) (%) T c⇤

CS (months) �TS(T c⇤) (%) T c⇤

TS (months)
(L) (M) (L) (M) (L) (M) (L) (M)

Jan 2004 5.2 6.7 16 17 3.9 6.3 16 17
(1.8) (1.9) (4) (2) (1.6) (1.9) (4) (2)

Jan 2004, FC * .1 6.6 6.7 17 17 5.9 6.3 17 17
(1.9) (1.9) (3) (2) (1.8) (1.9) (3) (2)

Jan 2004, FC * .2 6.5 6.7 17 17 5.7 6.3 17 17
(1.9) (1.9) (3) (2) (1.8) (1.9) (3) (2)

Jan 2004, FC * .5 6.2 6.7 14 17 5.0 6.3 13 17
(1.9) (1.9) (3) (2) (1.8) (1.9) (3) (2)

Jan 2004, FC * 2 3.9 6.7 9 17 2.4 6.3 7 17
(1.6) (1.9) (4) (2) (1.3) (1.9) (6) (2)

Jan 2004, FC * 5 1.7 6.7 7 17 0.0 6.3 0 17
(1.1) (1.9) (3) (2) (0.4) (1.9) (2) (2)

Jan 2004, FC * 10 0.0 6.7 0 17 0.0 6.3 0 17
(0.3) (1.9) (1) (2) (0.0) (1.9) (0) (2)

Jan 2004, �Q * .5 0.1 0.2 1 5 0.0 0.1 0 1
(0.3) (0.5) (2) (3) (0.1) (0.5) (1) (4)

Jan 2004, �Q * .75 2.2 3.1 8 13 1.3 2.9 6 13
(1.3) (1.5) (4) (3) (1.0) (1.4) (4) (3)

Jan 2004, �Q * .9 4.0 5.3 11 17 2.7 5.0 11 17
(1.6) (1.8) (4) (3) (1.4) (1.7) (4) (3)

Jan 2004, �Q * 1.1 6.4 7.9 18 18 5.0 7.5 16 17
(1.9) (2.1) (3) (3) (1.8) (2.0) (4) (2)

Jan 2004, �Q * 1.33 8.6 10.2 19 19 6.9 9.6 17 19
(2.1) (2.2) (3) (3) (2.0) (2.1) (4) (3)

Jan 2004, �Q * 2 12.1 13.7 19 19 10.2 13.1 18 19
(2.3) (2.4) (3) (3) (2.2) (2.3) (4) (3)

Jan 2004, ⇢ * .5 0.8 1.2 6 6 0.2 1.1 3 6
(0.5) (0.7) (2) (2) (0.3) (0.6) (2) (2)

Jan 2004, ⇢ * .75 2.7 3.6 9 13 1.8 3.3 6 13
(1.2) (1.3) (3) (3) (1.0) (1.3) (3) (3)

Jan 2004, ⇢ * 1.33 9.6 11.2 19 19 7.7 10.6 18 19
(2.6) (2.7) (3) (3) (2.4) (2.6) (5) (3)

Jan 2004, ⇢ * 2 16.3 20.0 20 26 14.1 19.1 20 26
(4.1) (4.3) (3) (2) (3.9) (4.1) (3) (3)

Jan 2004, 1/�2
Ac * .2 0.0 0.1 0 1 0.0 0.1 0 1

(0.1) (0.5) (2) (4) (0.0) (0.4) (0) (4)
Jan 2004, 1/�2

Ac * .5 1.5 2.6 7 13 0.7 2.4 6 13
(1.2) (1.5) (4) (4) (0.9) (1.4) (5) (4)

Jan 2004, 1/�2
Ac * .75 3.5 4.9 16 17 2.2 4.6 8 17

(1.6) (1.8) (4) (3) (1.4) (1.7) (5) (3)
Jan 2004, 1/�2

Ac * 1.33 6.9 8.4 13 17 5.5 8.0 16 17
(1.9) (2.1) (3) (2) (1.8) (2.0) (3) (2)

Jan 2004, 1/�2
Ac * 2 9.6 10.7 13 17 7.9 10.2 13 17

(2.1) (2.2) (3) (3) (1.9) (2.1) (3) (3)
Jan 2004, 1/�2

Ac * 5 14.2 15.3 10 12 12.6 14.5 9 11
(2.3) (2.3) (2) (2) (2.1) (2.2) (2) (2)

NJHT = 407, 191 product-hospital-months and NJT = 4, 888 product-months. Standard
errors, clustered by month (NT = 114) using a delete-10 block jacknife, in parentheses.
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E7. Post-Market Surveillance and Consumer Surplus
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Figure A14. : The Value of Post-Market Surveillance (Consumer Surplus): Plots
of optimal trial length (left panel (a)) and total surplus (right panel (b)) as observational
learning precision 1/�2

A
varies from zero to the clinical trial precision 1/�2

Ac .

As noted in the body of the paper, the CS metric generates tighter bounds and
greater returns to optimal pre-market policy. The CS metric is of special interest
in the post-market surveillance case because it is derived from only the risk-
access tradeo↵, not the fixed costs savings from less trials. As a result, optimal
pre-market trial length decreases less quickly with post-market learning under the
CS criterion.

*
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