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A B S T R A C T

We consider the integrated planning of spare parts and service engineers that are needed for serving a group of
systems. These systems are subject to different failure types, and for each failure, a service engineer with the
necessary spare part has to be assigned to repair the system. The service provider follows a backlogging policy
with part reservations. That is, a repair request is backlogged if one of the required resources is not immediately
available upon demand. Moreover, a spare part is reserved if the requested spare part is in stock but no service
engineer is immediately available. The spare parts are typically slow-movers and are managed according to a
base-stock policy. The objective is to jointly determine the stock levels and the number of service engineers to
minimize the total service costs subject to a constraint on the expected total waiting times of the repair calls. For
the evaluation of a given setting, we present an exact method (computationally feasible for small problems) and
an accurate approximation. For the joint optimization, we present a greedy heuristic that efficiently produces
close-to-optimal results. We test how the heuristic performs compared to the optimal solution and the separate
optimization of spare parts and service engineers in an extensive numerical study. In a case study with 93 types
of spare parts, we show that the solution of the greedy algorithm is always within 2% of the optimal solution and
is up to 20% better than a separated optimization approach encountered in practice.

1. Introduction

In the technically advanced business environment, system avail-
ability is generally crucial for a company's operations. An operational
failure resulting in downtime is highly undesirable and can be very
expensive. Different maintenance services such as inspections and
preventive maintenance activities are executed with the goal to max-
imize the availability of these expensive systems. However, failures still
happen and are often unavoidable. Therefore, in addition to preventive
maintenance and services, repair actions are necessary. Because of the
focus on the up-time of systems, often the policy “repair-by-replace-
ment” is adopted, i.e. upon detection of what parts are malfunctioning,
these parts are removed and replaced by functioning spare parts. In this
case, spare parts and service engineers are the main resources for ex-
ecuting the repair actions and the availability of them has a major
impact on overall system downtime. Most spare parts are expensive,
and service providers typically keep the smallest possible number of

them in stock while still satisfying agreements on availability with their
customers. Furthermore, the repair of systems needs to be carried out
by highly skilled and hence expensive service engineers. Hence, the
optimal planning of spare parts inventory and service engineers staffing
allows service providers to reduce the service costs considerably, but
still meet the required high service levels.

With the increasing fierce competition in the after-sales market,
many service providers are striving for a superb level of service offered
to their customers and for maximizing their operational profit margin.
Especially for advanced capital goods, the spare parts holding cost is
among the major cost components hindering the maximization of the
service provider profit margin. Therefore, the usage of advanced
planning tools for spare parts as well as for service engineers is a
common practice. Most service providers, however, decouple the above
problem into two separate problems, i.e. one for spare parts inventory
planning and one for service engineers staffing. One reason for this is
that these resources are usually managed by different departments. The
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parts and service engineers are required jointly for a successful equip-
ment repair. This makes the prompt satisfaction of a customer repair
order mainly dependent on the availability of both the spare parts and
the service engineers. Although it has been noted that the planning of
parts and service engineers in an integrated way may result in a more
efficient utilization of these two resources and in a better service de-
livery (AberdeenGroup, 2006), the integrated planning of these re-
sources has received little attention so far in the literature. This is
especially true for the case of a service provider following the standard
“backlogging policy”, a widely used policy in practice. In this paper, we
bridge this gap in the literature. We consider a set of equipment in an
installed base. These systems are subject to random failures. Each
failure (which results in a repair call) needs both a service engineer and
a spare part to be available before the service provider can start to
resolve it. We aim to quantify the performance gap between the current
planning tool in the practice, i.e. separated planning, and the integrated
planning of spare parts and service engineers for the full backlogging
service policy.

The contribution of this paper is threefold. First, we analytically
model the availability of the spare parts and the service engineers in an
integrated way and evaluate the system performance. For the exact
system evaluation, we analytically describe the model using a Markov
chain. Second, since the exact evaluation method is computationally
feasible only for small problems (small number of part types), we
propose an accurate approximation method to evaluate large problems.
Third, we study the integrated optimization problem to quantify the
gain of jointly planning of spare parts and service engineers, compared
to the results of the separate optimization. The objective of the in-
tegrated optimization problem is to determine the spare parts stock
levels and the number of service engineers such that the total service
cost is minimized subject to a service level constraint. In this model, the
service level is made on the expected waiting time of the repair calls. A
greedy heuristic algorithm is designed for solving the integrated opti-
mization problem. To validate this algorithm, a lower bound for the
optimal solution is proposed (for cases in which finding the optimal
solution is not possible).

We discuss different approaches to the planning of spare parts in-
ventory and service engineers that are typically carried out in practice.
In these approaches, the spare parts inventory and the service engineers
planning are done separately and the waiting times for both spare parts
and service engineers are not taken into the account together in the
planning stage. By doing so, either the service provider is not able to
meet the service level requirement, or in cases where service level
agreements are strictly enforced, it leads to over-staffing of the service
engineers to make sure that the waiting time for them is negligible.

In a smarter way of separated optimization, the spare parts in-
ventory and service engineers planning is achieved by splitting the
maximum average waiting time between these two resources. In prac-
tice, the service provider decides on a splitting fraction before solving
the problem and the chance of choosing the right fraction is very low.
We show that, even by using the optimal splitting strategy, this ap-
proach to separated planning, results in a solution with up to 32%
higher total cost than the optimal solution and 20% higher total cost
than the solution of the integrated optimization heuristic that is pre-
sented in this paper (tested for problems with 10 types of spare parts).

In the remainder of this paper, we first describe the related litera-
ture in Section 2, followed by the model in Section 3. We then describe
the Markov chain which is used to evaluate the performance of the
system in Section 4. In Section 5, we investigate how to compute the
total average waiting time efficiently. Then, we study the optimization
problem in Section 6. A greedy algorithm, as well as three separated
optimization methods, are described. Furthermore, a numerical vali-
dation of the approximation method and a comparison between the
solutions found under all optimization approaches are given in the
numerical study. In Section 7, we study a case using the optimization
approaches discussed in Section 6. Finally, we draw conclusions and

discuss managerial insights in Section 8.

2. Literature review

Although spare parts and service engineers have been studied ex-
tensively in the literature, most papers consider these two resources
separately. We shortly review the literature on spare parts in Section
2.1 and service engineers in Section 2.2. There are only a few papers
that study the joint planning problem. We discuss these papers in
Section 2.3.

2.1. Spare parts

If we ignore the availability of service engineers, our problem is
reduced to a spare parts inventory model. Spare parts management and
optimization has been studied extensively in the literature starting with
the seminal paper of Sherbrooke (1968). The literature of spare parts
inventory management has been reviewed by Kennedy et al. (2002),
Muckstadt (2004) and Sherbrooke (2006). For a more recent survey and
review of spare parts management, we refer to Basten and van Houtum
(2014), van Houtum and Kranenburg (2015) and Hu et al. (2018).

In the integrated planning of service engineers and spare parts, a
request occupies simultaneously for two resources. However, in most
spare parts models, it is assumed that only one part is needed to repair a
failure. This feature makes our model theoretically different from spare
parts management problems. A more general model considers the case
where multiple failures occur simultaneously, each requesting a specific
spare part. Only a few papers assume that multiple failures can happen.
Some interesting studies on spare part models with multiple failures are
van Jaarsveld et al. (2015), Cheung and Hausman (1995), Alt (1962),
Miller (1971) and Schaefer (1983).

If we investigate general inventory models, the most similarity to
our model is found in assemble to order systems (ATO). In this context,
inventory models with demand for multiple items at the same time are
considered (see Song and Zipkin, 2003; Bijvank, 2009; Atan et al.,
2017, for an overview of research in this area). In both cases, there are
simultaneous requests for multiple components/resources. Our problem
is related to ATO for the case of multiple products with stochastic de-
mand and replenishment lead time and base-stock inventory policy.
Interesting references in this area are Wee and Dada (2010), van
Jaarsveld and Scheller-Wolf (2015), Zhou and Chao (2012), Ko et al.
(2011), Dayanik et al. (2003), Lu et al. (2005), Benjaafar and ElHafsi
(2006), Zhao and Simchi-Levi (2006), ElHafsi et al. (2008), Lu (2008),
Zhao (2009), Dogru et al. (2010), Lu et al. (2010) and Hoen et al.
(2011). Note, in an ATO system, all resources (components) are con-
sumable. However, in our problem, service engineers will again become
available for possible future repair calls after finishing their service on a
job.

2.2. Service engineers

A service provider also depends on other resources besides spare
parts when providing service to its customers. The availability of ser-
vice engineers is one of the main bottlenecks in ensuring that the ser-
vice level agreements are met. Al Hanbali et al. (2015) consider human
resources, where they focus on the assignment of a set of engineers to a
group of customers with varying service level requirements. The au-
thors analyze a non-preemptive M PH c/ / priority queue with various
customer classes. The availability of service engineers, called man-
power, is also studied in other research areas such as call centers and
cross-training manpower planning (cf. Agnihothri and Mishra, 2004;
Fırat and Hurkens, 2012) in which similar modeling structures are
analyzed. An overview of these areas is discussed in Rahimi-Ghahroodi
et al. (2017). Also, for a review of personnel scheduling and planning
see van den Bergh et al. (2013). The service engineers planning pro-
blems have also been studied in simulation models, see, e.g. Dear and
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Sherif (2000).
Besides spare parts and service engineers, the availability of service

tools may sometimes also have a considerable influence on the total
downtime of a system. There are a few studies that consider the service
tools planning problem in a maintenance logistic system, see Vliegen
and van Houtum (2009) and Vliegen (2009). In terms of service, tools
are similar to service engineers (i.e. they are not consumed and re-
used). When a tool is needed, it is taken from the stock and will be
returned after the repair is finished. Note, tools are usually ordered in
sets and will be returned simultaneously (coupling in return). This is
not the case for the integration of spare parts and service engineers as in
this paper. The integration of service tools and spare parts planning is
also considered in Vliegen (2009) using some simplifying assumptions.

2.3. Joint optimization problem

The joint optimization problem is linked to the repair kit problem.
See Bijvank et al. (2010) for an extensive review on the repair kit
problem. In the repair kit problem, there is only one service engineer
who is carrying the kit of spare parts with him or herself and the re-
plenishment of spare parts only occurs when the service engineer re-
turns to the depot after a repair tour. In papers studying the repair kit
problem, each tour of repairs is studied independently, which means
that all spare parts (or tools) are restocked again directly after usage or
at the end of each tour. Teunter (2006) studies the problem in which a
repairman visits multiple locations before his repair kit is restocked. In
this work, every tour is considered separately, which means that the
replenishment lead times are not considered. Bijvank et al. (2010) ex-
tend the work of Teunter (2006) by introducing an exact formulation
for the service level, instead of an approximation, while also con-
sidering other service policies. The models of Waller (1994) and
Papadopoulos (1996) are special versions of the repair kit problem in
which a revisit takes place when the repair job is not successful after the
first visit.

Güllü and Köksalan (2013) study an optimization model for the kit-
management problem with an exact evaluation of the system perfor-
mance that is only tractable for small-scale problems. They propose a
greedy heuristic procedure to find the base-stock levels that minimize
the service costs, subject to a service level constraint. In this problem,
items are stocked at a central location. Kits are composed of these items
and sent to a customers site. From the kit, one item is used and the
others are returned together to the central location after a certain
holding time. The item that is used is replenished; the replenishment
process is modeled as a finite capacity queue. If an item is not in stock,
it is supplied via an emergency channel without any delay. As soon as a
unit of that item becomes available again at the central location, it is
returned to the emergency source.

Other papers use simulation as a methodology for performance
analysis. Hertz et al. (2014) review the literature on simulation models
in after-sales service logistics. There are some papers in spare parts
management in which service engineers are considered, but they are
always available. Caglar et al. (2004) mention the service engineer
availability as a possible future research direction for a two-echelon
spare parts inventory system. Tovia et al. (2010) study a service parts
logistics system (SPLS) in which one service engineer is assigned to
provide equipment service to a group of customers spread across a
geographic region. The service engineer carries some spare parts ac-
cording to a periodic review inventory policy. The service system is
approximated with a modified M G c/ / queue with a head-of-the-line
service discipline. Then, the system cost is approximated with a
mathematical model, and a heuristic is described to obtain a close to
optimal solution of the service engineer assignment given a fixed in-
ventory policy. An integrated solution to the service engineer assign-
ment and spare parts inventory policies is mentioned as a follow-up
research.

Recently, the joint optimization problem of spare parts stock levels

and service engineers staffing was studied in Rahimi-Ghahroodi et al.
(2017). Similar to this paper, they investigate the integrated planning of
spare parts and service engineers but for a different service policy,
called the “partial backlogging policy”. They study a full emergency
shipment in the case of spare parts stock-out and a backlogging policy
for service engineers. Exact and approximate performance evaluation
methods are proposed and the optimization problem is tested with a
tailored optimization algorithm. They show that the integrated plan-
ning of the spare parts and service engineers can result in up to 27%
cost savings compared to a separated optimization. In this paper, we
focus on the common practice “full backlogging policy”. This leads to a
completely different model for the performance evaluation of the
system than the one in Rahimi-Ghahroodi et al. (2017). This new model
requires different heuristic techniques that we specifically design. In
both papers, the objective is to minimize the total service cost under a
tight constraint on the average waiting time of a repair request. In the
working paper by Rahimi-Ghahroodi et al. (2018), the result of this
paper (full backlogging) is compared with Rahimi-Ghahroodi et al.
(2017) (partial backlogging) and it is shown that none of these two
service policies is always superior in terms of the total service cost given
the same constraint on the average waiting time. Especially, for cases
with an expensive emergency shipment cost and lower service level, the
service provider is better off with the full backlogging policy. This in-
tuitive result is an additional supporting argument to analyze the full
backlogging policy. Lastly, Rahimi-Ghahroodi et al. (2018) use the re-
sult of this comparison in a game theoretic model of a two-echelon
after-sales service network to guide the emergency supplier selecting a
proper emergency shipment cost which is maximizing his profit and is
acceptable for the service provider.

The joint optimization of the spare parts and the service engineers is
also studied in Sleptchenko et al. (2018) where the service policy is to
fully outsource the repair job when one of the resources, service en-
gineers or spare parts, is not immediately available. In this service
policy, they optimize the total costs without considering any constraint
on waiting time or other service level agreements. Note, in some sys-
tems, outsourcing is not an option for the service provider or it is ex-
tremely expensive and the service provider has to rely only on his own
resources to meet the service level agreement. In this situation, the
service provider needs to follow the full backlogging service policy.

3. Model

We consider a single service region with multiple systems. A service
provider is responsible for the maintenance of systems and has a team
of service engineers and spare parts available for this. Different types of
failure occur randomly in these systems. Each failure needs one unit of
a specific spare part. The repair is done by replacement of a failed part
with a ready-to-use spare part. A single stocking point is located in this
region to supply various types of spare parts. Let = …K K{1,2, | |} denote
the set of spare part types, and Hk be the cost of stocking part k for one
month. The cost for having one service engineer available 24 h per day
(note that this implies multiple service engineer shifts) is O Euros per
month. When one of the systems breaks down, a demand occurs for a
repair job for which both a specific spare part and a service engineer are
needed. We assume that all engineers are qualified to execute the re-
pairs for all of the parts. The repair job starts only when both resources
are available. We assume that, whenever the necessary part is available
for an arriving job, this part is assigned (reserved) to the job until a
service engineer becomes available. At the same time, a replenishment
for the reserved part is requested. This makes the service policy of each
spare part type an FCFS policy. However, a service engineer is only
assigned to the job once the needed spare part is available. The spare
parts replenishment time is usually much larger than the engineer
service time. Therefore, if we reserve a service engineer when the part
is not available, he (or she) will be blocked for a long time (until the
part becomes replenished), which is inefficient since another repair job
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can be executed during this time. Note that the service engineers might
have some preventive maintenance activities as well, however, this
work has a low priority compared to corrective maintenance (repair
job). So whenever there is a request of repair job, they preempt their
preventive jobs and go to satisfy the corrective one.

Repair jobs of type k, i.e. jobs that need a part type-k and a service
engineer, arrive following a Poisson process with rate k. The as-
sumption of Poisson failures is standard in the spare parts literature and
follows from the technical nature of the systems under consideration.
For these systems, the mean time between failures is close-to ex-
ponential; see e.g., Munnik (2011) and Section 3.5.5 of Jardine and
Tsang (2013). Furthermore, the service provider maintains multiple
systems that all fail independently with low failure rate. Therefore, the
failure rate observed by the service provider can be well approximated
by a Poisson process. Whenever a demand for a repair job arrives, we
assume that it is known immediately that a spare part and a service
engineer are needed, and which spare part is required. So, contrary to
Waller (1994) and Papadopoulos (1996), we assume that no inspection
is needed, nor is there any doubt about the need for a part. We also
assume that each repair requires only one spare part, which is standard
for spare parts inventory models.

The inventory policy for spare part type k is a base-stock policy with
base stock level Sk. This means that as soon as a demand occurs, a re-
plenishment order is placed. This is a typical policy used for expensive
slow-movers as in our case. The replenishment lead time for part k is
exponentially distributed with mean =LT 1/k k months.

A total of E service engineers are available in the service region. The
repair time is exponentially distributed with mean =RT µ1/ months,
and is equal for all jobs independent of the part needed. The repair time
includes traveling to the customer site and back to the service point, so,
the service engineer is available again directly after the previous repair
has finished.

The performance of the system is measured in terms of the waiting
time, i.e., the time between the arrival of a repair job and the time the
repair job has started. Waiting time is sufficient to determine the

availability and up-time of the installed base of systems. Define WT[ ]
as the expected total waiting time. Of course, customers are mainly
interested in the total time it takes to repair their system, which in-
cludes both the waiting time and the repair time. Since the repair time
is assumed to be known and the target time to repair can be adjusted in
the model, we focus on the waiting time.

The objective is to minimize the costs for spare parts and service
engineers while satisfying the waiting time constraint agreed upon with
the customers. Note, this waiting time constraint is over all the systems
(not per system or machines). Let WTmax denote the maximum average
waiting time allowed. The optimization problem thus becomes:

+ <= H S OE WT WT EP S( )Min{ | [ ] , , },k
K

k k max
K

1 0 1

where S is the vector of all spare parts stock levels. Note that cost of
stocking a part is based on its target stocking level and not on the ex-
pected inventory. This is standard in spare parts management since the
service provider pays for parts in the pipeline as well. The expected
total waiting time is a non-linear function of decision variables, E and S,
which means (P) is an integer non-linear optimization problem.
Furthermore, as we show in Appendix A, the total expected waiting
time is a non-convex function of spare parts stock levels. This makes (P)
a non-convex problem as well. Typically, for large problems of this
type, one needs heuristics that yield suboptimal solutions. Nevertheless,
before studying the optimization problem, we need to evaluate the
model performance, or more precisely find the expected total average
waiting time for given values of S and E. In Sections 4 and 5, we model
the problem using Markov chains and queueing models to calculate the
average total waiting time of a repair call, WT[ ], in an efficient way.

4. Exact evaluation

In this section, we mathematically analyze this problem. To model
the system we need to keep track of the number of repair jobs that are
waiting or are being served by the service engineers queue N e, and the

Fig. 1. Markov chain transitions diagram in a single part problem. N t( )p and N t( )e show the number of spare parts in the replenishment and the number of repair
jobs waiting or being served in the service engineers queue, respectively.
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number of outstanding replenishment orders for each spare part type k,
Nk

p. It is well known that an inventory system state under a base-stock
policy is fully described by the number of outstanding orders per type,
and the same holds in our spare parts inventory system. Namely, if the
number of type-k outstanding orders at time t, N t( )k

p , is lower than the
base stock level Sk we do have parts available. If N t S( )k

p
k, there are

no parts in stock (although there may be parts reserved for repair jobs
but still waiting for an engineer). If >N t S( )k

p
k, there are jobs waiting

for parts (in the inventory literature referred to as backorders). At the
same time, we use N e to record the state of the service engineers queue.
Therefore, the whole system can be modeled by a +K 1 -dimensional
Markov chain with state space …N t N t N t N t{ ( ), ( ), ( ), , ( )}e p p

K
p

1 2 .
Fig. 1 shows the Markov chain representation of a situation with a

single type of spare parts. The extension for multiple types of spare
parts is straightforward. For more details and the description of the
Markov chain transitions, we refer to Rahimi-Ghahroodi (2019), Sec-
tion 4.3. The model described is infinite in all dimensions ( +K 1). If we
bound the model in K dimensions, the steady-state distribution can be
solved using matrix-geometric analysis (see Rahimi-Ghahroodi, 2019,
Appendix 4.A). Once we find the steady-state probabilities, we can
calculate the expected repair calls waiting times for the spare parts and
in the service engineers queue.

The matrix-geometric method is computationally tractable only for
small problems ( <K 5). In Section 5, we, therefore, investigate how we
can find the total expected waiting time of repair calls in a more effi-
cient way, such that it can be used for problems with a large number of
spare parts types.

5. Expected total waiting time of the repair calls in the system

In this section, for a more efficient performance measurement, we
analyze the spare parts inventory and the service engineers queue se-
parately using queuing models. The total waiting time of the repair calls
in the system is the sum of two parts: (1) W p, the waiting time of repair
calls for spare parts, if none is available on-hand; (2) W e, the waiting
time of repair calls for one of the service engineers to become available.
As mentioned before, in the case that the requested spare part is
available but there is no service engineer immediately available, the
part is taken from the inventory and is reserved until a service engineer
becomes available. This reservation makes the spare parts inventory
independent of the service engineers queue. The same can be concluded
by studying the marginal Markov chains, see Section 4. By looking at
the equations of the marginal steady-state probabilities for each spare
part type, we see that they are independent of the states of the service
engineers queue as well as other spare part types inventory. However,
this is not true for the marginal probabilities of the service engineers
queue. The arrival process to the engineers queue depends on the spare
parts stock levels. Therefore, the average waiting time of repair calls for
spare parts can be determined independently, while for the exact eva-
luation of the service engineers queue, the impact of the spare parts
stock levels on the arrival process should be considered.

5.1. Spare parts inventory

By definition, it is easy to show that for each type of spare part, the
number of parts in the replenishment (outstanding orders) can be
modeled as the number of jobs in an M M/ / queue. This also can be
derived from the marginal Markov chain of each spare part type.
Therefore, the expected number of type-k repair calls waiting for spare
parts, = …Q k K[ ], 1, ,k

p , is well known and given as follows, see, e.g.
Sherbrooke (1968).

=

=

+

= =

Q Q S

e S e

[ ] [( ) ],

1 1 ,

k
p

M M k

k
p

i
S

i k i
S

i

/ /

0
1 ( )

! 0
( )

!
k k

p i
k
p k k

p i
k
p

(1)

where =k
p k

k
. The total expected waiting time (of repair calls) for

spare parts gives

=
=

W Q[ ] 1 [ ].p

k

K

k
p

1 (2)

It is easy to show that W[ ]p is a convex function in spare part stock
level, see Sherbrooke (1968).

It is known that the steady state distribution of the number of busy
servers in a M G/ / queue is given in terms of only the arrival rate and
the mean service time (see e.g., Tijms, 2003). It means Eq. (1) holds for
the case where the spare parts replenishment lead time follows a non-
exponential distribution as well. However, the output process from the
spare parts inventory system, which will be the arrival process for the
service engineers queue, does depend on the higher moments of the
replenishment time distribution (see Rahimi-Ghahroodi, 2019,
Appendix 4.F). In other words, a different replenishment time dis-
tribution even with the same mean will impact the average waiting time
in the service engineers queue. Therefore, the total average waiting
time in the system is sensitive to the replenishment time distribution.

5.2. Service engineers queue: aggregation approximation

The expectation of the waiting time in the service engineers queue is
not easy to find. As described previously, the failure arrival streams to
the spare parts inventory are Poisson processes. When a stock-out
happens in the spare parts inventory, the repair call is backlogged until
the requested spare part is replenished. The repair call joins the service
engineers queue only once the part is available. This means, sometimes
the repair call arrives at the service engineers queue with a delay
(waiting for a part to be replenished in case of a stock-out). Therefore,
the arrival process to the service engineers queue is a superposition of
arrival streams for various types of spare parts that are not Poisson
processes. The dependency of arrivals on spare parts stock inventory
causes arrivals at the service engineers pool to be dependent on past
arrivals. Therefore, the arrival streams to the service engineers queue
are also non-renewal processes. Hence, to evaluate the service en-
gineers queue separately from the spare parts inventory, we need to
deal with a multi-server queue with superposition of non-renewal ar-
rival streams, G M c/ / queue with =c E, the number of service en-
gineers.

There is no exact result in the literature for a G M c/ / queue with
non-renewal arrival streams. However, different approximations are
studied and proposed for similar queues. Some problems have been
studied in single failure spare parts inventory with lateral transship-
ment or commonality, in which they develop similar models for the
system performance evaluation as we use in this paper, see Kranenburg
and van Houtum (2007), Kranenburg and van Houtum (2009) and van
Wijk et al. (2012). The lateral transshipment or commonality make the
spare parts stocks dependent on each other. More precisely, the demand
arrival to each spare parts inventory depends on the spare parts stocks
in other locations, which makes the arrival streams non-Poisson pro-
cesses. This is similar to the impact that spare parts inventory has on the
repair calls arrival to the service engineers queue. In these papers, they
mostly approximate these non-Poisson processes with Poisson pro-
cesses. Other methods are also used such as the interrupted Poisson
process (Kuczura, 1973). Other approximations such as mean value
analysis and Laplace methods are studied in Rahimi-Ghahroodi et al.
(2017), however, none of these methods gives satisfactory result for
approximating the expected waiting time in the service engineers queue
in this model. Therefore, we come up with a new method, the “ag-
gregated approximation”, based upon the exact average waiting time of
scaled single item queues.

Aggregation approximation (AA method). For problems with one spare
part type, the matrix-geometric method is fast enough (less than a
couple of seconds) to calculate the exact average waiting time in the
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service engineers queue. For this approximation method, we use the
result of the expected waiting time for single item problems as an ap-
proximation for the multi-item problems. Suppose there are K types of
spare parts. For each spare part type k, = …k K1, , , we first determine
an independent average service engineers waiting time, as follows. We
change the arrival rate k and the replenishment rate k of this spare
part to λ (total arrival rate) and k

k
respectively, and keep the other

parameters the same. This scaling keeps the offered load (workload) in
the spare parts inventory = /k k k the same. Then, we find the
average waiting time in the service engineers queue, Wk

s, by means of
the matrix-geometric method. Next, we approximate total average
waiting time in the service engineers queue by

=W
W

[ ] .p k k k
s

(3)

This method is efficient for any size of problems. We investigate the
accuracy of this approximation in an extensive numerical experiment
for instances with two to 50 types of spare parts, see Appendix A. Al-
though there is no structural or bounding result to show the accuracy of
the aggregation approximation, from the numerical result, we can
conclude that AA works very well. As mentioned in Appendix A, this
numerical test is designed such that it covers different situations, thus
valid for testing the accuracy of the approximation. Compared to other
approximation methods mentioned earlier, the AA method gives a
much lower average and maximum error. Moreover, in contrast with
the matrix-geometric method, there is no computational limitation in
the use of the AA method. In addition, in instances where the AA gives
negative errors (underestimate), the absolute difference between the
exact (or simulation) results and the results of AA is negligible.
Therefore, this approximation is appropriate to use for the optimization
problem. By using the AA for optimizations, the chance of getting an
infeasible solution (because of underestimation) is very low and if it
happens we expect only very small deviations.

With the means of aggregate approximation, we are able to calcu-
late the total expected waiting time of repair calls for any size of pro-
blems efficiently. In the next section, we study the procedures with
which we can solve the optimization problem introduced in Section 3.

6. Optimal capacity decisions

In this section, we study the optimization problem of the integrated
spare parts inventory and service engineers staffing. As introduced
before in Section 3, the optimization problem (P) that we need to solve
is as follows:

<TC E WT WT EP S S( )Min{ ( , )| [ ] , , },max
K
0 1

where,

= +
=

TC E
K

H S OES( , ) ,
k

k k
1 (4)

= +WT W W[ ] [ ] [ ].p e (5)

We want to find spare parts stock levels and a number of service
engineers that minimize the total spare parts holding cost and the
service engineer hiring cost, subject to the condition that the total re-
pair calls expected waiting time is less than a promised level. As we
notice in Appendix A, W[ ]e and therefore WT[ ] is a non-convex
function of spare parts stock level. This makes the problem (P) a non-
convex integer non-linear optimization problem for which an efficient
way of finding the exact optimal solution is not known. In Section 6.3,
we propose an efficient greedy heuristic to solve this integrated opti-
mization problem. To quantify the benefit of the integrated planning,
however, we first discuss the separated optimization and the ap-
proaches that are used in practice in Sections 6.1 and 6.2. The accuracy
of all methods is tested in a numerical experiment.

6.1. Optimizing the resources separately

Although it is clear that spare parts and service engineers have a
joint effect on the service level, an often used method for optimizing the
capacities of these resources is to split them. One reason for this is that
in practice, these resources are usually managed in different depart-
ments. Here, we study three ways of splitting the problem that usually
happen in practice:

• Ignoring the impact the other resource has, i.e., assuming the other
resource has infinite capacity.

• Service engineers over-staffing to make sure the waiting time for
them is negligible.

• Constraint splitting: Splitting the accepted total waiting time in an
accepted waiting time for parts and an accepted waiting time for
service engineers.

In the following, we discuss the first two approaches. The constraint
splitting approach will be discussed in next section in more details.

In the first approach, companies often decouple these two resources
capacity decisions and each decision is done by assuming that the other
resource has infinite capacity, and the waiting time will be caused so-
lely by the resource under consideration. The optimization subproblem
faced by the department responsible for the spare parts then becomes:

<= H S W WTP S( )Min{ | [ ] , }.k
K

k k
p

max
K

p 1 0

To solve the spare parts optimization subproblem, we use the known
greedy heuristic in the spare parts inventory literature which is ori-
ginally introduced by Sherbrooke (1968) and then extended later on.
Note, this greedy heuristic does not necessarily give the optimal solu-
tion, but it performs well (see van Houtum and Kranenburg, 2015, p.
20–21).

The optimization subproblem for the service engineers is as follows:

<OE W WT EP( )Min{ | [ ] , }.e
maxe 1

Since we separate the spare parts inventory and the service en-
gineers queue, we have an M M c/ / queue with =c E for the service
engineers. This subproblem is easy to solve. The waiting time is de-
creasing in the number of service engineers. We start with the minimum
number of service engineers that guarantees the queue stability. We
increase the number service engineers one by one until the average
waiting time becomes less than WTmax.

As is clear, this way of optimizing the resource capacities will lead
to waiting times that might be much higher than the waiting time
target. However, since we only allow for integer values of S and E, it is
possible that a lower waiting time is achieved as well.

Often service providers have a very strict agreement on the service
level with the customer and not satisfying the service level agreement
will be very costly for them. Therefore, following the first approach is
not an option for them. Still, in some industries, they only focus on the
spare parts, and the stock levels are decided by assuming that the ser-
vice engineers are always available for the repairs. Since the service
level agreement with the customer is very strict, this way leads to over-
staffing of service engineers to make sure the waiting time for service
engineers is negligible. In this method, the spare parts stock levels can
be found by solving the Problem (Pp). To find the number of service
engineers, we need to solve the following problem:

<E W WT W EP S( )Min{ | [ ] [ ( )], },e
max

P
e p 1

where Sp is the solution of the Problem (Pp) and W S[ ( )]P
p the average

waiting time in the spare parts inventory given this solution.
In the next section, we study the third way of decoupling the spare

parts inventory and service engineers planning which is a smarter way
of separation.
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6.2. Constraint splitting

Another way of decoupling the decisions of resource capacities
which seems to be more rational, is by splitting the maximum total
waiting time in a waiting time for service engineers and a waiting time
for parts. Let us define the splitting fraction, α, as the percentage of the
total waiting time that can be caused by spare parts:

=WT WT ,max
p

max (6)

=WT WT WT .max
e

max max
p (7)

Then, the optimization subproblems become as follows:

<= H S W WTP S( )Min{ | [ ] , }.k
K

k k
p

max
p K

p 1 0

<OE W WT EP( )Min{ | [ ] , }.e
max
e

e 1

Each subproblem can be solved with the same procedure as pre-
sented for previous approaches. Note, similar to other separated ap-
proaches, the effect of spare parts stock levels on the service engineers
queue is not considered in this method. Therefore, the average waiting
time in the service engineers queue is calculated using M M c/ / queues
result. It is worth noting that the second separated optimization ap-
proach discussed earlier (service engineers overstaffing) is an extreme
case of the constraint splitting method where the splitting fraction, α, is
equal to 1.

The performance of this method highly depends on how the total
waiting time is split. To have a “smart” constraint splitting procedure,
we need to find the best splitting strategy. One way to find a good value
of α is to search in a limited number of possible values and choose the
best among them. Depending on the number of possible values, we can
not have the accuracy and efficiency together, especially for larger
problems.

Suppose the number of service engineers, and thus the expected
average waiting time in the service engineers queue are given. Then,
the maximum average waiting for the spare parts is equal to

=WT WT W[ ].max
p

max
e

Thereafter, the spare parts stock level can be determined by solving
the problem (Pp). Hence, by having the number of service engineers, the
splitting fraction can be easily calculated as follows:

= WT W
WT

[ ] .max
e

max

This explanation suggests a smarter way to find the optimal max-
imum average waiting time splitting strategy:

Step 1. Define the range E E[ , ]0 1 in which the optimal number of
service engineers is included for sure. To find E0, we assume that all
the waiting time is caused by service engineers ( = 0).

=E E W E WTmin{ | [ ( )] }e
max

0

To find E1, we assume that α is very close to one, e.g., 0.99. In real
cases, a value for α higher than 0.99 does not happen in the optimal
solution.

=E E W E WTmin{ | [ ( )] 0.01 }e
max

1

Step 2. For E in E E[ , ]0 1 :

=WT E WT W E( ) [ ( )]max
p

max
e

Given WT E( )max
p , ES( ) is the solution of the problem (Pp). Thus, the

total cost is equal to

= +
=

TC E H S E OE( ) ( ) .
k

K

k k
1

Step 3. We keep the number of service engineers, E *, which gives the

lowest total cost value:

=E TC Eargmin{ ( )}.*

Therefore, the equation below gives the optimal splitting fraction.

= WT E
WT

( ) .max
p

max

*
*

As has been observed in some examples, the cost function associated
with the optimal spare parts levels, given the number of service en-
gineers E, is not always convex in E. Therefore, we should not stop the
search when the total cost starts to increase. The search should be done
for the whole range between E0 and E1. By searching in different
numbers of service engineers, we actually only search for those values
of α that are on the border of changing the number of service engineers.
The best α value is for sure one of these values.

Note that, by finding the best splitting strategy, there is no guar-
antee that the constraint splitting method gives the optimal solution.
First, for the spare parts subproblem, we use the standard greedy
heuristic that may not be optimal. Second, we find the expected waiting
time in the service engineers queue by assuming that it is an M M c/ /
queue. However, in the real system, the arrival process is not Poisson
and the exact expected waiting time may be smaller compared to an
M M c/ / queue.

6.3. Greedy heuristic

In the integrated optimization problem (P), since there is no ana-
lytical solution available, finding the optimal solution might be done by
enumerating all possible solutions. However, we instead propose a
greedy heuristic algorithm that is far more efficient. For the algorithm
initial solution, we start with the minimal values of E and S as given
below. We can find the minimal values by arguing that the average
waiting time that is caused individually by each spare part inventory or
by the service engineers must be at most equal to WTmax.

• Sk
0: minimal Sk, = …k K1, , . Assuming that the capacity for the

service engineers and other spare parts is never limiting, we can
determine the minimal number of each spare part stock level such
that the average waiting time constraint is met.

• E0: minimal E. The minimum number of engineers is easily de-
termined by assuming that there is no waiting time for spare parts
(the capacity of spare parts is not limited). In this situation, we know
that the arrival process to the service engineers queue leads to a
Poisson process. Therefore, to determine the minimal value for E, we
assume that the service engineers queue is M M c/ / and find the
minimum number of service engineers that is needed to meet the
average waiting time constraint.

We start the algorithm with E S( , )0 0 where S0 is the vector of Sk
0

values for all = …k K1, , . This solution may be an infeasible solution for
the integrated planning problem.

Step 1. Set =E ES S( , ): ( , )0 0 .
Step 2. Calculate the total average waiting time, WT E S( , ). If
WT E WTS( , ) max , then E S( , ) is the optimal solution. Otherwise, go
to the next step.
Step 3. Calculate e and for each type of spare part k

p, using for-
mulas below. gives the highest value.

= +
+

WT E WT E
TC E TC E

S S
S S

( , ) ( 1, )
( 1, ) ( , )

e
(8)

= +
+

WT E WT E e
TC E e TC E

S S
S S

( , ) ( , )
( , ) ( , )k

p k

k (9)

= max { , }k
e

k
p (10)
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If e is the highest value, update = +E E: 1, otherwise update
= +S S: 1k k for k that k

p gives the highest value.
Calculate WT E S( , ). If WT E WTS( , ) max , go to the next step.

Otherwise, repeat step 3.

Step 4. Perform a local search to decrease the total cost while the
solution remains feasible. The last solution is the suboptimal solu-
tion.

Local search. Since we have an integer optimization problem, per-
forming a local search may improve the solution considerably. We
search in the following directions:

• Decrease the number of service engineers by one: Since the average
waiting time in the service engineers queue may decrease by in-
creasing the spare parts stock levels, we check whether by de-
creasing the number of service engineers by one, the solution re-
mains feasible or not.

• Decrease the stock level of one of the spare parts by one: Decrease in
one of the stock levels may keep the solution feasible, but it de-
creases the total cost.

• Decrease the number of service engineers by one and simultaneously
increase the stock level of one of the spare parts by one: If the hiring
cost of service engineers is higher than the holding cost of the spare
part, we check whether by a change in this direction the solution
remains feasible or not.

Service target overshoot. Another way of improving the greedy
heuristic is to avoid an overshoot in the final solution. The greedy
heuristic may give a solution in which the total average waiting time is
much lower than the target level. It means we are putting more re-
sources than needed. This is called an overshoot. One way to avoid this
is to change Step 3 as follows. Instead of calculating the decreases in the
total waiting time per one unit of cost, we calculate the decreases in the
total waiting time towards the waiting time target level per unit of cost.
Therefore, the functions change as follows:

= +
+

WT E WT WT E
TC E TC E
S S

S S
( , ) max{ , ( 1, )}

( 1, ) ( , )
e max

(11)

= +
+

WT E WT WT E e
TC E e TC E
S S

S S
( , ) max{ , ( , )}

( , ) ( , )k
p max k

k (12)

We test the greedy algorithm numerically with and without this
updated functions. Using equations (11) and (12) instead of equations
(8) and (9) improves the greedy algorithm in average, but in some
cases, we may obtain much worse solutions. However, we can easily get
the benefit of both techniques. In our following numerical studies, we
solve each problem with both the original greedy algorithm and the
updated one (no overshooting). At the end, we take the best solution of
these two algorithms as the final solution of the greedy heuristic.

The greedy optimization methods that we study in this paper are
similar to the approaches that are used in spare parts inventory opti-
mization. For a review of spare parts inventory optimization, see van
Houtum and Kranenburg (2015). There are some papers that consider
local search along with greedy heuristics, see, e.g., Wong et al. (2005).
The concept of service target overshoot is also investigated in a few
papers, e.g. Sherbrooke (2006). However, to the best of our knowledge,
the combination of the local search and overshooting has not been
applied in the use of greedy algorithms in spare parts inventory.

6.4. Optimal solution and lower bounds

In this section, we are interested to find the optimal solution or a
lower bound when finding the optimal solution is not possible, to show
how much the results of the proposed optimization algorithms deviate
from the optimal one. To find the optimal solution, we perform an

enumeration. To determine a sufficiently small feasible region, we use
the solution of the greedy algorithm. More precisely, we only search in
solutions with total costs equal to or lower than the total cost in the
greedy solution. Note, this enumeration is only possible for small pro-
blems.

We need the exact evaluation (given in Section 4) to know the
enumeration leads to a guaranteed optimal solution. However, the use
of exact evaluation in the optimization is only tractable for instances up
to three types of spare parts. For larger instances, we propose to use an
underestimate approximation (lower bound) of the exact average
waiting time in the service engineers queue as it is described in Rahimi-
Ghahroodi (2019), Appendix 4.D. In this case, the enumeration always
results in a lower bound of the optimal solution.

For large problems ( >K 10), enumeration becomes almost im-
possible, even when using the lower bound procedure. We propose
another method using the greedy procedure to find a lower bound for
the optimal solution without enumeration. This method is introduced in
Rahimi-Ghahroodi (2019), Appendix 4.E. In our following numerical
experiments, we use this (greedy) lower bound in our large instances
(where enumeration in search for the optimal solution is not possible)
to test the performance of the proposed optimization algorithms.

6.5. Optimization algorithms performance

In this section, we investigate how the greedy algorithm performs
compared to the separated optimizing of the resources and to the op-
timal solution or the lower bounds defined in Section 6.4. We use the
same parameter settings as in Table A 3. We solve 6000, 2000, and 100
instances with two, five, and ten types of spare parts, respectively. In all
instances, the hiring cost of service engineers is fixed to 100 day/ and
the holding cost of spare parts varies from 10 to 400 day/ . Note, these
cost factors are scaled and not necessarily realistic. However, they are
chosen such that all ratio possibilities of service engineers hiring cost to
spare parts holding costs ([0.1, 4]) are covered in the numerical ex-
periment. Therefore, for each algorithm, we expect the same perfor-
mances in real cases as in this numerical experiment.

In Sections 6.1 and 6.2, we discussed three ways for the optimiza-
tion of spare parts and service engineers separately. In the first way, we
optimize each resource separately by assuming that the other resource
capacity is infinite, which is an often common practice in industry. As
we discussed before, this way may end up in an infeasible solution that
does not meet the waiting time constraint. For instances with two types
of spare parts in 61% of cases, five types of spare parts in 72% of cases,
and ten types of spare parts in 76% of cases we get infeasible solutions
using this separated optimization approach.

Table 1 shows the average and the maximum relative errors of the
total cost of the greedy algorithm and the “constraint splitting” solu-
tions compared to the optimal solutions ( =K 2) or the lower bounds
( =K 5,10). Note, in the constraint splitting method, we search for the
best splitting strategy by searching in the possible values of the number
of service engineers as explained in Section 6.2.

In Table 1, the errors that are shown for the instances with 5 and 10
types of spare parts are upper bounds of the real errors since we use a
lower bound for the average waiting time in the enumeration of the
optimal solution. The real error may be much lower than the presented
errors in Table 1. Moreover, in the table, the expression “Optimal So-
lution (%)” for instances with 5 and 10 types of spare parts shows the
percentage of instances in which the greedy or constraint splitting al-
gorithm gives the same solution as the solution associated with the
lower bound. Therefore, we expect that in a higher percentage of in-
stances the optimal solution is obtained using greedy and constraint
splitting algorithms.

The maximum and average error that is given in Table 1 for the
constraint splitting method is done by using the best α value (search in
the number of service engineers). However, the constraint splitting
never outperforms the integrated optimization with the greedy
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heuristic. First, the effect of spare parts stock levels on the average
waiting time in the service engineers queue is not considered in the
constraint splitting method (M M c/ / assumption). Second, the con-
straint splitting method cannot avoid overshooting like we managed to
do with the proposed greedy heuristic. Moreover, in practice, the
splitting fraction (α) of the constraint splitting method is usually chosen
by the rule of thumb and most of the time it is far from its optimal
value.

As noted earlier, the second separated planning method discussed in
Section 6.1 (service engineers over-staffing) is actually an extreme case
of the constraint splitting algorithm ( = 1). Therefore, we do not in-
clude it in this performance comparison. However, to show that how a
common procedure in practice can go far from the optimal strategy, we
compare it with the greedy heuristic and the lower bound in a case
study in Section 7.

These numerical results show that although the constraint splitting
algorithm is faster than the greedy algorithm, its average error is con-
siderably higher. In addition, the chance of finding the optimal solution
is much higher using the greedy algorithm. We cannot draw a specific
conclusion under which condition each of these optimization algo-
rithms performs best or shows a higher error. However, using the
greedy heuristic seems to be the best option for the optimization in
terms of average and maximum deviation from the optimal solution.

For real-life problems with many types of spare parts, the efficiency
becomes more critical and finding the optimal solution with enumera-
tion is almost impossible. In our instances with 10 types of spare parts,
the average runtime of the greedy algorithm (on a Core i5 computer) is
only 8 s. The runtime should not be more than a couple of minutes for
real size problems. For larger problems, obtaining the optimal solution
using the greedy algorithm is less likely. However, we expect smaller
errors in large problems, since the steps in the greedy procedures will
be smaller compared to the total cost value (compare maximum error
for instances with 2, 5 and 10 types of spare parts).

We can conclude that for instances with sufficiently many types of
spare parts, the greedy algorithm will generate reasonable suboptimal
solutions for Problem P( ) with low computational effort. If more ac-
curacy is needed, the optimal solution can be found using the enu-
meration and with much more computations. To make it faster, the
greedy algorithm result can be used as an upper bound in the enu-
meration (as we did in our instances). Still, as can be seen in Table 1,
the greedy algorithm on average is 5700 times faster than optimal
enumeration for problems with 10 types of spare parts. This runtime
difference will be much more for larger problems. As another ad-
vantage, the solution generated by the greedy algorithm, will be rather
robust against the changes in parameters value in contrast with the

optimal solution, see, e.g. van Houtum and Kranenburg (2015).

7. Case study

In this section, we perform a numerical study on a real size problem
considered in Rahimi-Ghahroodi et al. (2017) as a case study. In this
problem, an OEM of advanced assets used in the defense sector is re-
sponsible for service of a number systems which are operated by his
customers. There are 93 different spare parts needed for corrective
maintenance of these systems and there is a team of service engineers
responsible for the repair.

Most of the parameters are based on data obtained from the com-
pany involved in this case study, however, the provided data is limited.
First of all, there is not enough information regarding the service times
and we have to estimate the service rates. We assume that these rates
are the same for all types of spare parts. All these spare parts regard a
single system and are at the same level in the product configuration
tree. Therefore, the replacements of spare parts have a similar com-
plexity, so the service rates are roughly the same for all types of repair
jobs. Moreover, the company's data only includes the average value for
different parameters. Therefore, interpreting the distributions from the
data is not possible. For the failures, the mean time to failure for each
part is provided. The failures data are associated to more than 200
identical set of assets. Therefore, we believe the installed base size is
large enough that the assumption of having Poisson failure arrivals is
justified (based on PalmKhintchine theorem, cf. Heyman and Sobel,
2003). In addition, these data are based on systems in their mature
phase and the assets are not yet suffering from wear out. Therefore,
there is no big increase in failure rates over time. Last, the objective of
this case study is to test the accuracy of approximation method and the
optimization algorithms for a rather large size problem (93 different
parts), not as a tool to validate the assumptions. Therefore, the re-
plenishment time and the service time are assumed to be exponentially
distributed as a simplified assumption. The holding cost of a spare part
per year is equal to 20% of the new part price and the service engineers
hiring cost per year is equal to €200000 (four shifts, hence the em-
ployer's cost of an individual engineer are €50000 per year). The total
failure arrival rate is about 250 failures per year. The average service
time of the service engineers is equal to 10 h and the average replen-
ishment time of the spare parts are in the range of 2100–8600 h.

We solve this problem with the greedy heuristic (integrated opti-
mization) and constraint splitting method (smart separated optimiza-
tion) for different target service levels (WTmax). The results are sum-
marized in Table 2. The current practice of the company is to hire
enough number of service engineers to make sure that there is no
queueing for them (second separation method in Section 6.1). We solve
the problem with this strategy as well and the result can be seen in the
column “Practice”. To check the results, we compare the solutions with
the greedy lower bound (see Rahimi-Ghahroodi, 2019, Appendix 4.E).
For each algorithm, Table 2 shows the (percentual) deviations (error) of

Table 1
Maximum and average total cost percentage error for the greedy and the con-
straint splitting algorithms in the cases with two (6000 instances), five (2000
instances) and 10 types (100 instances) of spare parts. The percentage number
of instances in which each algorithm gives the optimal solution is given.
Runtime speed ratio shows in average how much faster each algorithm solves
the problem compared to the optimal optimization (enumeration).

K Greedy Constraint Splitting

2 Average error (%) 0.085 3.07
Maximum error (%) 23.26 90.34
Optimal Solution (%) 98.35 64.28
Runtime speed ratio 15 35

5 Average error (%) 0.99 4.44
Maximum error (%) 16.88 38.27
Optimal Solution (%) 67.90* 27.48*

Runtime speed ratio 80 600
10 Average error (%) 0.759 4.89

Maximum error (%) 5.05 31.45
Optimal Solution (%) 60. 0* 14. 0*

Runtime speed ratio 5700 140000

Table 2
The greedy algorithm, the constraint splitting and the practice solutions' de-
viations from the lower bound of the optimal solution for cases with different
maximum average waiting times (service levels). QTmax shows the maximum
accepted average number of repair calls waiting in the system.

QTmax WT hr( . )max Greedy algorithm
error (%)

Constraint Splitting
error (%)

Practice (%)

0.025 0.3 0.22 1.05 12.39
0.075 0.9 0.75 1.73 15.64
0.15 1.8 0.07 0.75 14.03
0.25 3 0.18 0.36 15.58
0.375 4.5 1.95 2.35 20.91
0.5 6 0.26 1.44 17.68
0.75 9 0.29 1.58 16.23
1 12 0.06 2.34 21.86
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the (sub)optimal total cost from the lower bound value. Note, these
errors are an upper bound on the real error values. To have a better
understanding of the average waiting time, QTmax is also given in the
table. It shows the maximum average number of repair calls waiting in
the system which can be easily obtained from the WTmax (Little's law).

As can be seen in Table 2, the greedy solution is always within 2% of
the optimal solution. For applications in practice, this is a reasonable
and sufficient result. In comparison with constraint splitting optimiza-
tion, the greedy algorithm yields always better results. The difference in
this case study is rather small, but as it is shown in Table 1, the con-
straint splitting method may yield a solution with a large deviation
from the optimal solution. The gap between the total cost of the current
practice of the company and the solution of the greedy algorithm is
considerable. The high cost of the practice strategy mostly comes from
the cost of hiring a lot of service engineers. However, as the solution of
the integrated planning suggests, by stocking more spare parts, the
company is able to hire a fewer number of service engineers and allows
queueing for them, but still, meet the service level agreement. Note, the
total service cost in maintenance logistics is huge in real problems, and
only 1% saving may be equivalent to a few million Euros per year.

For a more extensive analysis, we refer to a sensitivity analysis
presented in Rahimi-Ghahroodi (2019), Section 5.2. The most im-
portant observation in this sensitivity analysis is regarding the optimal
splitting fraction. Respect to change of parameters, a fluctuating and
unpredictable behavior of the optimal splitting fraction is observed in
all cases. This suggests that it is hard to derive a “rule of thumb” for a
good value of the average waiting time splitting fraction before solving
the integrated optimization that guarantees a close to optimal splitting
strategy. This emphasizes more on the need for integrated planning in
this problem. Even by using a smart separated optimization technique
like constraint splitting method, there is no guarantee to achieve a good
suboptimal solution, especially if the splitting fraction is chosen by a
rule of thumb.

8. Conclusions

In this paper, we study an integrated planning of spare parts in-
ventory and service engineers under a full backlogging policy. In case
the requested spare part is available but there is no available service
engineer immediately, the part is reserved and the request is back-
logged until a service engineer becomes available. However, when the
requested part is not available, a service engineer is not reserved and
one is called for duty once the part is replenished. This policy makes the
availability of service engineers dependent on the spare parts stock
levels. We have developed an exact method for the performance eva-
luation of the system for a given policy using a matrix-geometric ana-
lysis. This method is efficient only for small problems. We calculate the
exact average waiting time of the repair calls in the spare parts in-
ventory using queuing models. We design the aggregated approxima-
tion for the average waiting time in the service engineers queue for
larger problems where using the matrix-geometric method computa-
tionally is not tractable. In a numerical study, we show that the ag-
gregation approximation gives satisfactory results for the average
waiting time in the service engineers queue.

To optimize the spare parts inventory and service engineers queue
in an integrated way, we propose the greedy heuristic. To quantify the
benefit of the integrated optimization, we discuss the separated opti-
mization approaches that are often used in practice. Two common
practice separated optimization methods are investigated. We show
that these algorithms either mostly give infeasible solutions or solutions
far from the optimal strategy. A smarter separated optimization
method, constraint splitting, is studied. In this method, the maximum
total average waiting time is split for spare parts and service engineers.
In a numerical study, we compare the result of the constraint splitting
method and the greedy heuristic with the optimal solution or its lower
bound. Although the constraint splitting method is faster, it never

outperforms the greedy algorithm. For real size problems, the greedy
algorithm generates reasonable suboptimal solutions with low compu-
tational effort.

We test the proposed optimization algorithm in a rather large size
case study problem. We show that the solution of the greedy algorithm
is always within 2% of the optimal solution and up to 20% better than
the current practice approach. To get more managerial insight, we
check the sensitivity of the problem to different optimization para-
meters. We show the fluctuating behavior of the optimal splitting
fraction (α) versus different parameters which indicates that a rule of
thumb for splitting the maximum average waiting time between spare
parts and service engineers is not intuitive.

There is another service policy in between the ones studied in this
paper and Rahimi-Ghahroodi et al. (2017), that seems to be different,
but results in a similar model structure. When a spare part is not
available, only the requested part is ordered via a fast emergency
shipment. The request for the service engineers is then sent when the
part has arrived at the parts storage location. Considering this policy,
the system can be modeled with a similar quasi birth-death Markov
chain and can be solved with the matrix-geometric method that is used
in this paper (with some small modification). However, the proposed
approximation methods for the average waiting time in the service
engineers queue should be tested to see whether it also gives accurate
results for this scenario.

By quantifying the benefit of integrated planning of spare parts and
service engineers under a full backlogging service policy, we show that
there is a considerable potential cost saving in the joint optimization of
these resources. By separating the planning of these two resources, we
are neglecting the impact of these resources on the availability of each
other. Moreover, meeting the service level agreement cost efficiently is
not possible without an integrated planning of resources. In addition,
by comparing the result of this paper with Rahimi-Ghahroodi et al.
(2017), we are able to see in what conditions it is beneficial for the
service provider to choose the full backlogging policy and when the
partial backlogging policy gives him lower total service cost; see the
working paper Rahimi-Ghahroodi et al. (2018).

In this study, we assume the service time is equal to all types of
repair jobs and is independent of the part needed. However, the Markov
chain considered in this paper can handle having different service rate
for different repair jobs. For this case, the representation of the Markov
chain will be more complex. This is because in this case one needs to
keep track of the type of job under repair. Therefore, it is not enough to
know the total number of jobs waiting in the queue but also the type of
jobs should added to the state of the Markov. Although this Markov
chain will have larger state space, the matrix-geometric method can
solve this new well-structured Markov chain.

It is well known that for a G G c/ / queue the average waiting time is
sensitive to the service time distribution (e.g., Tijms, 2003). It means, if
we assume non-exponential service time in this problem (even with the
same mean), the provided results for the average waiting time in the
service engineers queue will change. This is the same for the replen-
ishment time distribution. Although the average waiting time in the
spare parts inventory is not sensitive to the second and higher moments
of the replenishment time distribution, having a non-exponential re-
plenishment time will impact the arrival process to the service en-
gineers queue. This makes the total expected waiting time also sensitive
to the spare parts replenishment time distribution. Hence, it is not
possible to simply relax the assumption of having exponential service
and replenishment time without considering its effect on the total ex-
pected average waiting time. Nevertheless, the Markov chain in-
troduced as the representation of the joint model and the matrix-geo-
metric method used to analyze this Markov chain are flexible to handle
the rich class of phase-type distributions. Of course, in that case, the
Markov chain will be more complex and it will have more states and
transitions. For non-phase-type distributions, we lose the tractability of
the Markov analysis in this model. Therefore, extending the

S. Rahimi-Ghahroodi, et al. International Journal of Production Economics 212 (2019) 39–50

48



methodology of this paper to cover these cases is not straightforward
and one may need other techniques such as simulation to analyze the
model under these distributions.

In this paper, we consider a single echelon, single indenture model
with homogeneous skilled service engineers. To study real problems,
we may need to extend the presented model in different aspects. The
model can be easily extended to non-homogeneous skilled service en-
gineers. In the case of cross-trained engineers, more analysis and
modification in the model is needed. The service constraint in this
model is a waiting time constraint that is averaged over all repair call
types. One may impose the service constraint per repair calls (per spare
part type) or a constraint on the fraction of the repairs that should be

done within a time window. We expect that the optimization proce-
dures that are proposed in this paper would work for these service
constraints as well. However, for the evaluation of these constraint,
other methods are needed.
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Appendix A. Accuracy of aggregation approximation and M M c/ / result

In this section, we show that how the aggregation approximation method performs compared to the exact result. Before testing the aggregated
approximation, we show what result we get if we just assume that the arrival process to the service engineers queue is a Poisson process. By this
assumption, we can use the result of M M c/ / queues. In this way, we actually neglect the effect of the spare parts inventory on the arrival process at
the service engineers queue. Therefore, the expected waiting time in the service engineers queue is independent of spare parts stock levels. When the
spare parts stock levels are zero or very high, the exact expected waiting time is the same as the result of the M M c/ / queue analysis. However, for
some values of stock levels, the expected waiting time is considerably lower than the M M c/ / waiting time. The squared coefficient of variation of the
arrival process to the service engineers queue is always less than 1 (see Rahimi-Ghahroodi, 2019, Appendix 4.F). This means that the arrival process
to the service engineers queue is less variable than a Poisson process. Thus, we expect a lower average waiting time in the service engineers queue
than the average waiting time of an M M c/ / queue.

For a simple example with one type of spare part, Figure A 2 shows how the exact average waiting time in the service engineers queue deviates
from the M M c/ / average waiting time for different values of replenishment rate and spare part stock level. Numerically, we observe that for a fixed
value of the replenishment rate, the minimum average waiting time happens for a stock level with a value around / , i.e., when S/ is around one.
As a side remark, we can see that.

Remark 1. The exact expected waiting time is not a convex function respects to the spare parts stock levels.

Fig. A.2. Average waiting time in the service engineers queue compared to the M M c/ / average waiting time in an example with one type of spare parts. This chart
shows the deviation for different values of replenishment rate and stock level, which reaches its maximum around / .

In summary, although the M M c/ / result is very easy to use and reliable (it always overestimates the average waiting time in the service engineers
queue), it does not give satisfactory accuracy for approximating the average waiting time in the service engineers queue. In the following, we
examine the accuracy of the aggregation approximation in a numerical study.

Table A.3 shows the maximum and average error of the approximate expected waiting time using the aggregation approximation (AA) compared
to the exact expected waiting time for a set of instances with two to fifty types of spare parts. To calculate the exact expected waiting time, we use the
matrix-geometric method for problems with two types of spare parts ( =K 2), and discrete-event simulation for problems with K 5. We simulate
the system using AnyLogic software package. To ensure that the results of the simulation are reliable, a proper warm-up period, run length and
number of runs are applied. In our experiment, we have the following parameter setting. The total arrival rate is fixed to 1 per day. The other rates
are chosen such that the parameter setting covers all the values of queues workload that can happen in practice. In this case, this numerical
experiment is valid for testing the accuracy of the approximation. The chosen ranges for the workload of the service engineers queue and the spare
parts inventory are [0.05, 1) and [0.04, 1) respectively. Therefore, the replenishment rate varies from 0.1 to 1.5 and the service rate from 0.2 to 4 per
day. The spare parts stock levels are chosen in the range of 1 15 units. In all defined ranges, a limited number of values are considered and
instances are generated using a full factorial design. The number of service engineers is five in all instances.
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Table A.3
Total expected waiting time error using the aggregation approximation in comparison with the exact evaluation for problems with different types of spare parts.

Number of part types

(Number of instances) Average error (%) Max positive error (%) Max negative error (%)
K = 2 (1350) 0.35 1.53 −0.18
K = 5 (185) 0.31 1.73 −0.11
K = 20 (56) 0.16 1.29 −0.09
K = 50 (28) 0.14 1.35 −0.13
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