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We view an administrative activity of issuing parking tickets in a dense city street setting, like downtown

Philadelphia or NYC, as a revenue collection activity. The task of designing parking permit inspection routes is

modeled as a revenue collecting Chinese Postman Problem. After demonstrating that our design of inspection

routes maximizes the expected revenue we investigate decision rules that allow the officers to adjust online

their inspection routes in response to the observed parking permits’ times. A simple simulation study tests

the sensitivity of expected revenues with respect to the problem’s parameters and underscores the main

conclusion that allowing an officer to selectively wait by parked cars for the expiration of the cars’ permits

increases the expected revenues between 10% and 69 percent.

© 2014 Elsevier B.V. All rights reserved.
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. Introduction

Consider a large city street grid, like downtown Philadelphia or

ew York City, represented as a graph G = (V, E), with parking seg-

ents along some streets in G and the common/familiar parking kiosk

etting where the car owners buy parking time and place the re-

eipt/permit on the dashboard of the car. The city administrators

ould like to maximize their street parking revenues by (a) collect-

ng the parking fees from the legally parked cars – cars parked in

esignated parking spaces conforming to the parking times they pur-

hased, and by (b) issuing parking tickets to cars parked in violation

f the parking rules. Violation of the parking rules can take a number

f forms. In our inquiry, we restrict the analysis to the time viola-

ions with respect to the parking times the car owners purchased and

he parking tickets issued by the parking enforcement officers when

bserving parking time violations.

In order to collect the revenues from the parking violations, the

ity administrators usually resort to employing a crew of enforcement

fficers assigned to patrol the city parking areas at any given time of

ay and night. Consider a single parking enforcement officer’s as-

ignment. Without inferring any gender bias, we refer to the parking

nforcement officer (from now on referred to as PEO) by the generic

he’. As such, the officer is usually assigned a subgraph of city streets,
∗ Corresponding author. Tel.: +1 508 910 6436.

E-mail addresses: nsummerfield@umassd.edu, nichalin@yahoo.com,
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ay G′(V ′, E′) ⊂ G, and he has to select (or is provided) an itinerary

hat traverses all the edges (it is edges since the PEO can traverse a

treet segment in either direction using the sidewalk) in G′ where paid

arking is allowed. We assume for simplicity that the subgraph G′ is

connected component of G and all edges of E′ have to be regularly

nspected by the PEO during his patrol, both for public safety reasons

nd for the main function of parking permit enforcement. Again, the

dges in E′ correspond to the segments of the streets along which

aid parking is allowed. The PEO inspects the cars’ parking permits

y walking along streets’ sidewalks. Since a PEO can walk on any

idewalk in either direction the graphs G and G′ are considered to be

ndirected. If paid parking is allowed on both sides of a given street

egment the graph G′ is a multigraph with two edges connecting the

orresponding pair of nodes in V ′. From now on we will refer to G′

s a multigraph. In case it is desired to inspect the edges of the undi-

ected multigraph G′ with different frequencies, we add without loss

f generality appropriate copies of these edges to G′. The PEO does not

now in advance the number, density, and individual parking times

urchased for the parked cars. As he traverses the multigraph G′, he

as to decide how, in what order of street segments (edges in G′),
o traverse the streets’ segments and at what rate; should he stop

nd wait next to a car whose parking time on the permit is about

o expire or continue to the next car? Essentially, at each car a PEO

as an option to wait, return to previously inspected cars, or con-

inue walking to inspect the ‘next’ car. It corresponds to processing

arking cars’ information in real time and represents a real-time (on-

ine) optimization problem with the objective of collecting the maxi-

um expected revenues from a PEO’s patrol assignment. At least that

http://dx.doi.org/10.1016/j.ejor.2014.10.039
http://www.ScienceDirect.com
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would be one of a number of the city administrators’ objectives to

consider.

Optimizing the traversal order of a multigraph’s edges is not a

new problem. Given a connected multigraph G′(V ′, E′) with ‘length’

weights w(e) for each edge e ∈ E′, the problem of designing the short-

est tour – a path or a circuit, that traverses each edge in E′ at least

once is well known under the heading of the Chinese Postman Prob-

lem (CPP) and dates back to 1962 (http://www.nist.gov/dads/HTML/

chinesePostman.html).

In our problem of designing a traversal scheme for a single PEO,

we need to define a few more concepts. We associate with each

edge e in the street multigraph G′ three weights; the weight w(e)
expresses the expected revenue collected from edge e ∈ G′, ŵ(e) rep-

resents the expected traversal time of edge e while inspecting the

cars parking permits, and w(e) is the dead-heading time for e (the

traversal time with no inspections). The traversal minimization CPP

problem on G′ refers to the weights ŵ(e) and dead-heading weights

w(e). Our parking ticket revenue management problem is defined

more formally below. Note that dead-heading edges might have to

be added to E′ when solving a CPP on G′ as a necessary part of the

CPP solution. We assume for now that in a planar graph such as a

city street graph, we can construct an optimal CPP solution that tra-

verses an edge in a dead-heading mode, when it is required, imme-

diately after traversing it in a ‘working’ mode. We revisit this as-

sumption in the paper’s Summary section. Observe that with the

assumption of triangle inequality time traversal matrix for G′ for

both ‘working’ mode times and dead-heading times, in an optimal

CPP solution any edge in G′ will have at most one dead-heading

traversal.

Motivation: The potential of increased revenues due to more effi-

cient issuing of parking tickets may constitute a non-negligible contri-

bution to social economic well-being for many cities. Cities like New

York, Philadelphia, Chicago, etc., are in great need for revenues and

are desperately searching for innovative ways to raise additional rev-

enues. The basic concept of CPP for an efficient traversal of city streets

is well known to municipal managers from, for instance, planning of

garbage collection operations (Beltrami & Bodin, 1974). Implement-

ing some of the findings of this study in the daily routine operation of

PEOs is rather straightforward.

The solution presented in this paper has the potential to increase

revenue by about 10–69 percent. The significance of increasing park-

ing ticket revenues by even 10 percent is invaluable for any city. Quot-

ing from one source on parking fines (http://money.cnn.com/2004/

05/03/news/parkingfinesup/): “A typical fine in Manhattan now can

make your wallet $65 lighter. Parking at a fire hydrant or bus stop will

run $115. The city’s parking violations bureau expects to collect $562

million this year, up 48 percent from 2002. Los Angeles will collect

$110 million in 2004, up 20 percent from two years ago. Angelenos

endure some of the highest fines in the country; parking illegally in a

disabled persons zone can draw a whopping $355 fine. Another ben-

eficiary of higher parking fines is Chicago. Revenue has climbed 28

percent from 2002 to $141 million.”

The significance of increasing parking related revenues can be

illustrated by considering the city of Pittsburgh with population

of about 0.3 million (http://www.census.gov/newsroom/releases/

archives/2010_census/cb11-cn74.html). Based on the information

from http://www.city.pittsburgh.pa.us/pghparkingauthority/assets/

09_PPA_Annual_Report.pdf and http://www.post-gazette.com/pg/

11248/1172336-53-0.stm?cmpid=localstate.xml, the total revenue

of Pittsburgh Parking Authority from parking permit purchases and

parking ticket revenues was $42 million. The city issued 280,000 tick-

ets. The parking authority collected about $5 million from all parking-

related fines with $2 million from expired meter fines. In terms of

ticket-related variable cost, the facility and parking court manage-

ment expenses were only $2 million (i.e. the variable cost is only 40

percent of all fines revenue). If we scale the number to match large
ities, e.g. Manhattan, the 10 percent increase would translate to sev-

ral million dollars.

In 2003, the city of Berkeley collected $6.9 million from park-

ng citations, out of this amount, $2.3 million was attributed to tick-

ts issued for expired meters (http://www.berkeleydailyplanet.com/

rticle.cfm?archiveDate=05-14-04&storyID=18852). In 2009, the city

f Milwaukee issued nearly 150,000 tickets for expired meters

hich would have brought in $3.3 million if all the tickets

ere paid (http://www.bizjournals.com/milwaukee/print-edition/

011/01/07/expired-downtown-parking-meters.html?page=all). In

erms of cost information, citing the Seattle Parking Management

tudy of September 2002 (96 page report), “The parking ticket rev-

nue generated by a Parking Enforcement Officer (PEO) is approxi-

ately three times the cost of labor and necessary equipment. . . . the

verage PEO generates $240 per hour in ticket revenue (collected

evenue), . . . ”.

The outline of this paper is as follows: Section 2 discusses the

tructure of our problem relative to other problems examined within

perational Research. Section 3 describes our notation and introduces

he problem of designing a PEO route over G′ as a CPP. In Section 3.1 we

tart with the analysis of local inspection decisions regarding which

ar to inspect next as a function of the remaining times for the cars

nspected so far on a given street segment. We begin by consider-

ng an option of waiting in front of a parked car with a valid permit

nticipating its permit to expire before its owner’s arrival. We de-

ote this option as memory size = 1. This operational option can be

xtended by allowing to step back to the last previously inspected

ar (memory size = 2). The general case of allowing to step back to

ny previously inspected car or just inspecting a new car is examined

n Section 3.1.3. A simple simulation study for the CPP routing with

nspections with online local decisions is presented in Section 4. In

ection 5 we present the results. In the summary and discussion sec-

ions (Section 6) we examine the related technological issues and the

easibility of implementation.

. Related literature

In this section, we discuss two topics: previous research on related

roblems involving the Chinese Postman Problem, and the structure

f our problem in relation to some other problems examined within

perational Research.

As mentioned before, the Chinese Postman Problem dates back to

962 (see Dror, 2000, for the different aspects of related arc routing

roblems and for a more recent account see Corberán & Prins, 2010).

ormally, a CPP is asking for a shortest closed circuit tour of a graph

hat visits (traverses) each edge and arc in that graph at least once.

n optimizing solution for the CPP, if the multigraph G′ is undirected

the adjacent nodes in V ′ are connected only by edges) or completely

irected (has only arcs connecting the different nodes in V ′), is ob-

ainable in quadratic time in |V ′|. Finding an optimal CPP solution in

he case that G′ is a mixed graph (some node pairs are connected by

dges and some by arcs) is NP-hard (Papadimitriou, 1976).

The problem of designing an online algorithm that maximizes

he expected total revenue collection in a CPP, like the one repre-

enting parking revenue collection, has not yet to our knowledge

een introduced in the literature. However, a so-called orienteer-

ng version of a related problem has been examined by Feillet,

ejax, and Gendreau (2005). There are several other papers on sim-

lar problems. Archetti, Feillet, Hertz, and Speranza (2010) stud-

ed the Undirected Capacitated Arc Routing Problem with Profits

UCARPP). The UCARPP asks for a set of routes that maximize the

otal collected profit while satisfying the constraints on the route

uration and on the vehicle capacity. Another capacitated varia-

ion of the orienteering CPP problem, called Maximum Benefit Chi-

ese Postman Problem (MBCPP), was studied by Malandraki and

askin (1993), Pearn and Wang (2003), Pearn and Chiu (2005), and

http://www.nist.gov/dads/HTML/chinesePostman.html
http://money.cnn.com/2004/05/03/news/parkingfinesup/
http://www.census.gov/newsroom/releases/archives/2010_census/cb11-cn74.html
http://www.city.pittsburgh.pa.us/pghparkingauthority/assets/09_PPA_Annual_Report.pdf
http://www.post-gazette.com/pg/11248/1172336-53-0.stm?cmpid=localstate.xml
http://www.berkeleydailyplanet.com/article.cfm?archiveDate=05-14-04&storyID=18852
http://www.bizjournals.com/milwaukee/print-edition/2011/01/07/expired-downtown-parking-meters.html?page=all
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ecently by Corberán, Plana, Rodríguez-Chía, and Sanchis (2013).

he MBCPP asks for a tour that maximizes net benefit while travers-

ng some edges a certain number of times. Aráoz, Fernández, and

eza (2009) describe an algorithm for solving the Prize-collecting

ural Postman Problem (PRPP). Unlike CPP, the PRPP does not require

raversing all edges and its profit collection on an edge is taken into

ccount only the first time that the edge is traversed. Aráoz et al.

2009) modeled their problem version as a linear integer program.

In our problem, as a PEO traverses a road network, he has to de-

ide how, in what order of street segments, to traverse the streets’

egments and at what rate. At each car the PEO has an option to wait,

eturn to previously inspected cars, or continue walking to inspect

he next car. This setting is similar to the work of Dror and Stulman

1987) where a one dimensional robot movement control mechanism

as been examined in a textile machine setting. A more elaborate ex-

mination was undertaken in the same robot movement setting by

’Ecuyer, Mayrand, and Dror (1991) modeling it as a Markov renewal

ecision process with a computational approach based on dynamic

rogramming.

We note that, in the broader context of sequential resource allo-

ation problems, the car parking enforcement inspection decisions

ight be viewed as a multi-armed bandit problem (see Katehakis &

einott, 1987). This class of problem is concerned with allocating one

r more resources among several alternative (competing) projects by

aking decisions that sacrifice current gains with the prospect of bet-

er future rewards. Such broad view is not attempted here because of

he nature of the underlying combinatorial structure of the CPP.

. Model description

Without significant loss of generality, we assume that the car park-

ng spaces on any given street segment (segment capacity) are iden-

ical in terms of single length ‘consumed’ as a parking space, and

e measure a parking segment’s capacity in car units. Our analy-

is is restricted to a single PEO’s subgraph G′ and a time interval

t0, td], td − t0 = S > 0, with S large enough to represent a PEO’s work-

ng shift duration. We do not consider the problem of partitioning an

ntire city car parking inspection graph G into a set of single PEO

ssigned subgraphs G′s, nor do we consider the selections of PEOs’

hift durations. We note that the corresponding graph partitioning

roblem is an important and mathematically ‘rich’ topic that is left

or future study.

We assume that it takes a constant time a > 0 to issue a parking

icket irrespective of the car location and that a � S. We use t as time

alue (t ∈ [t0, td]). A parking space could be either empty or occupied

y a car. At time t a parked car could be in either of two states: in

ompliance state with a valid parking permit, or in a parking violation

tate. Note that for a CPP it is immaterial to consider/introduce a

tarting node of a PEO’s shift in V ′ and it is also immaterial if G′ is a

raph or a multigraph. For simplicity, we refer to G′ as a graph.

Some notation and definitions:

′(V ′, E′): a connected subgraph with |V ′| = v > 1 nodes and |E′|
edges.

e: number of parking spaces, ordered from 0 to ne − 1, avail-

able on edge e ∈ E′. (ne ∈ N0.)

: total number of parking spaces in G′. N = ∑
e∈E′ ne.

ie(t): an a priori likelihood (probability) that parking space

i ∈ {0, 1, . . . , ne − 1} on edge e is empty at time t. We as-

sume for now that Zie(t) = z for all t, i, and e. That is, every

parking space has the same likelihood to be empty. Zie(t) is

a Bernoulli distribution. If we take a snapshot of G′(V ′, E′)
at any time t, there will be zN empty parking spaces and

(1 − z)N occupied parking spaces.

ie(t): a probability that a car in a non-empty parking space i on

edge e is in a parking violation state at time t. The rationale
for i, e, and t dependencies is that certain parking spaces

may be more likely to have a car in violation state in some

times of day. We assume that all owners of cars in parking

space i on edge e share the same probability distribution

regarding a car owner’s return time with respect to per-

mit duration and all permits at any location are of the same

time duration L. Note that Zie(t)and Pie(t)are two indepen-

dent probability density functions. Pie(t) can be calculated

as shown below.

Consider car c in parking space i on edge e at time t. Let x be

continuous random variable representing an owner’s return time

fter parking, and its probability density function is given by viet(x)
ith a finite support [0, Xiet]. That is, Xiet is the latest possible time

hat this owner may return to her car. Let the parking time purchased

y the owner (length of permit) be L. The permit expires after L. We

ssume that L ≤ Xiet . Note that x can map to t by adding the time the

ar arrived tc to x.

Let y be a continuous random variable representing the time that

he PEO arrives by the parked car for inspection. Because the PEO tra-

erses the graph G′(V ′, E′)several times a day, and cars may arrive and

eave many times in each parking space, we assume that the proba-

ility density function of y is a uniform distribution u(y) between 0

nd Y , and Y ≥ Xie. Probability density functions viet(x) and u(y) are

ndependent. Note that y can also map to t by adding the time the car

rrived tc to y.

The event of the PEO’s arrival is equivalent to drawing y randomly.

o calculate Pie(t), we are only interested in the probability that is

onditional upon the parking space being non-empty, i.e., y < x.

ie(t) = Pr(y > L|y < x) = Pr(y > L, y < x)

Pr(y < x)

=
∫ Xiet

L

∫ x

L viet(x)u(y)dydx∫ Xiet

0

∫ x

0 viet(x)u(y)dydx
.

Without loss of generality we assume that viet(x) = v(x) and

iet = X. Hence, Pie(t) is the same for all t, i, and e. Pie(t) = p where

=
∫ X

L

∫ x

L v(x)u(y)dydx∫ X

0

∫ x

0 v(x)u(y)dydx
. (1)

If we take a snapshot of G′(V ′, E′)at any time t, the expected num-

er of cars in violation state is (1 − z)
∑

e∈E′
∑ne−1

i=0
Pie(t) = (1 − z)pN.

More notation:

ie(t): the time information, observed at t, about how long has car

i been parked in parking space i on edge e. If car c arrives for

parking in parking space i on edge e at tc < t, ξie(t) = t − tc.

ξie(t) ≥ 0. If the parking space is empty, ξie(t) ≡ 0.

ie(t): the ‘observed’ time at t until parking permit’s expiration

for a car in parking space i on edge e. If car c arrives for

parking in parking space i on edge e at tc < t, sie(tc) = L and

sie(t) = L − ξie(t) ≥ 0. sie(t) = 0 implies that at time t the car

in parking space i on e is in a parking violation state. If the

parking space is empty, sie(t) ≡ ∞.

Given that a car is parked in parking space i on edge e at time t′,
ith either compliance state or violation state, the probability that the

ar’s owner will return to the car on or before time t′′ > t′ is Hie(t
′, t′′)

here

ie(t
′, t′′) = Pr(x ≤ ξie(t

′′)|x > ξie(t
′))

= Pr(x ≤ ξie(t
′′), x > ξie(t

′))
Pr(x > ξie(t′))

=
∫ ξie(t

′′)
ξie(t′) v(x)dx∫ X

ξie(t′) v(x)dx
. (2)

Given that a car is in a compliance state at time t′, the probability

hat the car’s owner will return to the car on or before switching to

parking violation state is Ĥ (t′).
ie
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Ĥie(t
′) = Hie(t

′, t′ + sie(t
′)) = Pr(x ≤ L|x > ξie(t

′))

=
∫ L

ξie(t′) v(x)dx∫ X

ξie(t′) v(x)dx
. (3)

Proposition 1. Assume that at a given time t ∈ [t0, td] the likelihood

of an expired permit (a parking violation state) at any parked car in G

is represented by probability Pie(t) = p and the likelihood of an empty

parking space in G is represented by probability Zie(t) = z. Then, given

that the PEO has no memory regarding the parking compliance time left

for the cars he inspected so far, it is optimal for the PEO to follow the path

found as the optimal solution to corresponding CPP on subgraph G′. That

is, to traverse G′ in the shortest time.

Proof. The PEO has no memory regarding the parking compliance

time left for the cars on the path that he has been traversing so far,

Pie(t) = p, and Zie(t) = z for all t, i, and e ∈ G′. The PEO will traverse a

segment of a CPP solution in a dead-heading mode as dictated by the

optimal CPP solution after the segment has already been inspected

for parking violations in that CPP cycle. When traversing segment e

in a dead-heading mode the PEO does not inspect the permit status

of cars parked along e.

Let each parking ticket issued to a car in violation state generate a

revenue of r dollars. Hence, the expected revenue collected from any

single parking space is (1 − z)pr dollars per tour cycle. Thus, by strictly

executing the optimal CPP traversal solution, the PEO generates an

expected revenue of (1 − z)prN from each tour cycle.

Assume that to observe the parking status of a car (inspecting the

parking permit) takes a constant time b > 0, it takes a constant time

a > 0 to issue a parking ticket, and a time w(e) to dead-head through

the edge e ∈ E′. Thus, ŵ(e) = w(e)+ (1 − z)(pa + b)ne is the time re-

quired to inspect and issue parking tickets along the edge e ∈ G′. As-

sume also that the PEO executes an optimal CPP tour that may have

dead-heading edges. Let α∗
e ≥ 1 represent the number of times edge

e is used in one optimal CPP tour. Thus, the expected tour time is∑
e∈E′ α∗

e w(e)+ (1 − z)(pa + b)N. During the PEO’s shift duration S, he

would expect to execute S∑
e∈E′ α∗

e w(e)+(1−z)(pa+b)N
tour cycles. There-

fore the expected revenue per shift would be (1−z)SprN∑
e∈E′ α∗

e w(e)+(1−z)(pa+b)N

dollars.

Consider the case of the PEO deciding to inspect the graph G by

traversing G in a suboptimal CPP fashion of a longer time duration than

the optimal CPP tour. For simplicity assume that the suboptimal tour

requires additional dead-heading edges with αe ≥ α∗
e representing

the number of times edge e is traversed in the suboptimal tour versus

the optimal one. The expected revenue for each tour cycle is still

(1 − z)prN. The expected suboptimal tour time is
∑

e∈E′ αew(e)+ (1 −
z)(pa + b)N. Thus, during the PEO’s shift duration S, he would expect

to generate (1−z)SprN∑
e∈E′ αew(e)+(1−z)(pa+b)N

dollars per shift.

Since αe ≥ α∗
e , the revenue of generated by the suboptimal CPP

tour is lower than or equal to the optimal CPP.
Fig. 1. (Left) Options to wait or continue. (Right) Options
For notation simplicity, let Er/t = (1−z)prN∑
e∈E′ α∗

e w(e)+(1−z)(pa+b)N
represent

he expected revenue per unit time given an expected duration of

ptimal CPP solution.

.1. Local decisions with limited record of remaining compliance times

.1.1. Memory size = 1

Now assume that the PEO observes the compliance time left for

he car just inspected and has the option of waiting by the car for the

arking permit to expire before its owner returns or continue to the

ext car (Fig. 1, left). (A PEO may remember the compliance time left

n more than one car. However, in this section, we assume a memory

f 1 thus not allowing the PEO’s return to a previously inspected car.)

Consider the case that the PEO inspects car c in parking space i on

dge e at time t′ where sie(t
′) > 0 time left until its parking permit

xpires. Once the parking permit expires, the PEO spends a > 0 time

ssuing a ticket. The expected revenue for waiting sie(t
′)unit time and

ssuing the ticket is r(1 − Ĥie(t
′)).

Clearly, if the owner of the car comes back before the parking

ermit expires and the PEO is waiting in front of it, the PEO would at

hat point continue to the next car on his CPP tour. But if the owner

f the car comes back while the PEO is still issuing the ticket, the

wner may not convince the PEO to discard the ticket. The waiting

ime function can be defined as

iet′(x) =
{

sie(t′)+ a if x > L

x − ξie(t′) if x ≤ L
(4)

here x is a continuous random variable representing the car owner’s

eturn time after parking.

Hence, the expected time for waiting in front of car c is

sie(t
′)+ a)(1 − Ĥie(t

′))+
∫ L

ξie(t′)
(x − ξie(t

′))v(x|x > ξie(t
′))dx

here v(x|x > ξie(t
′)) is essentially a truncated distribution of v(x)

ith support (ξie(t
′), X]. Thus, we divide the resulting distribution by

minus the integral up to the truncation point ξie(t
′) to ‘normalize’

he distribution results.

For instance, let V(x) be a cumulative probability distribution

f v(x).

(x|x > ξie(t
′)) =

⎧⎪⎪⎨
⎪⎪⎩

2x

(1 − V(ξie(t′)))mX
if 0 ≤ x ≤ m

2(X − x)

(1 − V(ξie(t′)))(X − m)X
if m < x ≤ X

(5)

We consider the expected revenue per unit time in comparison

o the expected revenue per unit time from traversing the CPP path

ithout waiting at car c, which is Er/t . Therefore, the PEO should wait

n front of car c only if

r(1 − Ĥie(t
′))

(sie(t′)+ a)(1 − Ĥie(t′))+ ∫ L

ξie(t′)(x − ξie(t′))v(x|x > ξie(t′))dx
≥ Er/t

(6)
to wait, step back to the previous car, or continue.
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y assuming the same distribution of v(x) for all cars, we can calculate

he time slimit such that the PEO should wait by the car at i only if

ie(t) < slimit.

onsistency check. Suppose that it is optimal for the PEO to

ait at time t′. Then, it is also optimal for him to wait at

ime t′ + δ where 0 < δ < sie(t
′) and sie(t

′ + δ) > 0. Because sie(t
′) >

ie(t
′ + δ),

ˆ
ie(t

′) > Ĥie(t
′ + δ) (7)

L

ξie(t′)
(x − ξie(t

′))v(x|x > ξie(t
′))dx

>

∫ L

ξie(t′+δ)
(x − ξie(t

′ + δ))v(x|x > ξie(t
′ + δ))dx (8)

Note that the expected revenue per shift of duration S given the

ption of waiting by cars with sie(t) > 0 is greater or equal to the

xpected revenue per shift without the option of waiting.

.1.2. Memory size = 2

Next, consider the case when the PEO remembers the parking

ermit’s expiration time for the car inspected last before the present

ar (Fig. 1, right). In this case, the PEO has the choice to wait at the

urrent car, to step back to the previous car, or to move to the next

ar. For simplicity, assume that once he moves on to the next parking

egment (different edge in G′), he cannot recall the compliance times

eft for any of the cars on the previous segment.

Denote the time taken for stepping back to the previous car as

> 0 (approximately, λ = w(e)/ne unit time) and consider that the

EO inspects car i on edge e at time t′. Suppose that cars at i and

− 1 have sie(t
′) > 0 and si−1,e(t

′) time left until the parking permits

xpire, respectively. Should the PEO wait in front of car i or car i − 1,

r not wait at all? If he waits at car i and issues a ticket, should he still

onsider waiting at car i − 1 afterward?

In our online heuristic rules we assume that the PEO makes two

equential decisions. The first decision is to choose among cars i − 1,

, and i + 1, the next parking space that has not been inspected yet.

f he walks to car i − 1, waits, and issues a ticket, then he will make

second decision choosing between the remaining two cars, i and

+ 1. If he walks to car i, waits, and issues a ticket, then he will have

o decide between the remaining two cars, i − 1 and i + 1. Each of

he two decisions will attempt to maximize the expected revenue per

nit time.

To calculate the expected revenue per unit time for the option of

ursuing car i − 1, we divide the expected revenue by the expected

ime necessary for pursuing car i − 1. At time t′, if the remaining

ime on car i − 1’s permit si−1,e(t
′) is greater than λ which is the

ime to reach i − 1, then the expected revenue is the ticket revenue

(1 − Ĥi−1,e(t
′)) or r(1 − Hi−1,e(t

′, t′′)) where t′′ = t′ + si−1,e(t
′). If the

emaining time on the permit is less than the time the PEO takes to

alk to it, then the expected revenue is the ticket revenue r times

minus the probability of the car owner arrival between t′ and t′′ =
′ + λ which is r(1 − Hi−1,e(t

′, t′′)). Hence, the expected revenue can

e written as r(1 − Hi−1,e(t
′, t′′)) where t′′ = t′ + max{si−1,e(t

′), λ}.

Consider the first decision. The function for the PEO’s time spent

n car i − 1, corresponding to the owner’s return time after parking,

an be defined as:

i−1,et′(x)

=
⎧⎨
⎩

2λ if x ≤ ξi−1,e(t
′ + λ)

2λ + x − ξi−1,e(t′ + λ) if ξi−1,e(t′ + λ) < x and x ≤ L
2λ + si−1,e(t

′ + λ)+ a if ξi−1,e(t
′ + λ) < x and x > L

(9)

hat is, if the owner of car i − 1 walks back to the car before the PEO

alks to the car (x ≤ ξi−1,e(t
′ + λ)), the PEO would have spent in total
f 2λ unit time which is the time walking to car i − 1 and from car i − 1

ack to car i. If the owner of car i − 1 arrives while the PEO is waiting

n front of the car (ξi−1,e(t
′ + λ) < x ≤ L), the PEO would have spent

alking time plus the waiting time until the owner comes back. If

he owner of car i − 1 arrives after the permit expired, the PEO would

ave spent walking time plus waiting time and plus the ticket issuing

ime.

The expected revenue per unit time of car i − 1 is

i−1 = r(1 − Hi−1,e(t
′, t′′))

Ex[wi−1,et′(x)]

here Ex[wi−1,et′(x)] = 2λ+ ∫ L
ξi − 1,e(t

′+λ)(x − ξi − 1,e(t
′ +λ))v(x|x >ξi − 1,e

t′))dx + (si−1,e(t
′ + λ)+ a)(1 − Hi−1,e(t

′, t′′)).
We compare it with the expected revenues per unit time at car i

hich is

i = r(1 − Ĥie(t
′))

(sie(t′)+ a)(1 − Ĥie(t′))+ ∫ L

ξie(t′)(x − ξie(t′))v(x|x > ξie(t′))dx
.

Hence, the PEO should wait at car i if

Ei ≥ Er/t

nd Ei ≥ Ei−1.

On the other hand, the PEO should wait at car i − 1 if

Ei−1 ≥ Er/t

nd Ei−1 ≥ Ei.

Once the above outcome occurs (the PEO waits) then the next de-

ision will be considered/evaluated when either a parking violation

icket has been issued or the car owner returns to the corresponding

ar before its parking permit expiration time. Clearly, the availabil-

ty of the option of stepping back leads to higher expected revenue

han the previous case with the options to wait or continue since it

ubsumes the former.

.1.3. Memory size = ne. Remembering expiration times for all the cars

n a given segment

Now consider the case of a PEO who remembers the expiration

imes for all the cars inspected on edge e. The PEO can also visually

bserve which of the inspected cars are still parked and which have

eft their parking spaces. In this case, he has to choose whether to

ait at the current car, to step back to any of the previous cars on

hat edge, or to walk to the next car on the current edge. As before,

ssume that it takes λ = w(e)/ne to walk to the next car on the same

dge.

At each car in a compliance state, the PEO can go back to any of the

reviously inspected cars, stay put at the current car, or continue to

nspect the next car. This setting has a very similar flavor to the work

f Dror and Stulman (1987).

Consider the following case. Say the PEO is currently positioned at

ar j. Let car at i < j have sie(t
′) > 0 time left before its permit expires.

he PEO should walk back to car i only if the expected revenue per

nit time of pursuing car i is higher than the expected revenue per

nit time earned when following the CPP path.

To calculate the expected revenue per unit time for the option

f pursuing car i, we divide the expected revenue by the expected

ime necessary for pursuing car i. At time t′, if the remaining time

n car i’s permit sie(t
′) is greater than λ|j − i| which is the time to

each i, then the expected revenue is the ticket revenue r(1 − Ĥie(t
′))

r r(1 − Hie(t
′, t′′)) where t′′ = t′ + sie(t

′). If the remaining time on the

ermit is less than the time the PEO takes to walk to it, then the

xpected revenue is the ticket revenue r times 1 minus the proba-

ility of the car owner arrival between t′ and t′′ = t′ + λ|j − i| which

s r(1 − Hie(t
′, t′′)). Hence, the expected revenue can be written as

(1 − Hie(t
′, t′′)) where t′′ = t′ + max{sie(t

′), λ|j − i|}.
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Fig. 2. Options to step to previously inspected cars, or continue.
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Fig. 3. Selected graph.
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Given that the PEO is at car j at time t′, the function for the PEO’s
time spent on car i, corresponding to the owner’s return time after
parking, can be defined as:

wiet′(x)

=
⎧⎨
⎩

2λ|j − i| if x ≤ ξie(t
′ + λ|j − i|)

2λ|j − i| + x − ξie(t
′ + λ|j − i|) if ξie(t

′ + λ|j − i|) < x and x ≤ L

2λ|j − i| + sie(t
′ + λ|j − i|)+ a if ξie(t

′ + λ|j − i|) < x and x > L

(10)

The expected time spent for the option of pursuing car i while the

PEO is at j is

2λ|j − i| +
∫ L

ξie(t′+λ|j−i|)
(x − ξie(t

′ + λ|j − i|))v(x|x > ξie(t
′))dx

+ (sie(t
′ + λ|j − i|)+ a)(1 − Hie(t

′, t′ + max{sie(t
′), λ|j − i|})).

Hence, the PEO should walk back to car i if the expected revenue per

unit time spent is greater than or equal to Er/t .

Now, consider when the PEO has more options than just walking

to a certain car as shown in Fig. 2.
Previously, the PEO was positioned at car 5 (he had inspected cars

1, 2, 3, 4, and 5, but no ticket was issued) but has decided to walk back
to car 3. Say he issued a ticket to car 3. At this time t′, he knows of the
time left on cars 1, 2, 4, and 5. He may choose to walk to any of them
or continue to car 6, which he has not yet inspected. The simplest
rule is for him to go to the car that promises the highest expected
revenue per unit time. The calculation has to take care not to double
count the walking time. That is, when he was at car 5 and decided
to walk back to car 3, he has already accounted for the time walking
from car 5 to car 3 and back from car 3 to car 5. Therefore, when he
is at car 3 and evaluating this rule for car 5, he should not include the
time walking from car 3 to car 5. Hence, at time t′, he can calculate the
expected time spent at cars 1, 2, 4, and 5 relative to his current location
(car 3) as:

car 1: 2λ|3 − 1| +
∫ L

ξ1e(t′+λ|3−1|)
(x − ξ1e(t

′ + λ|3 − 1|))v(x|x > ξ1e(t
′))dx

+ (s1e(t
′ + λ|3 − 1|)+ a)(1 − H1e(t

′, t′ + max{s1e(t
′), λ|3 − 1|})).

car 2: 2λ|3 − 2| +
∫ L

ξ2e(t′+λ|3−2|)
(x − ξ2e(t

′ + λ|3 − 2|))v(x|x > ξ2e(t
′))dx

+ (s2e(t
′ + λ|3 − 2|)+ a)(1 − H2e(t

′, t′ + max{s2e(t
′), λ|3 − 2|})).

car 4: 2λ|3 − 4| +
∫ L

ξ4e(t′+λ|3−4|)
(x − ξ4e(t

′ + λ|3 − 4|))v(x|x > ξ4e(t
′))dx

+ (s4e(t
′ + λ|3 − 4|)+ a)(1 − H4e(t

′, t′ + max{s4e(t
′), λ|3 − 4|})).

car 5: 2λ|3 − 5| +
∫ L

ξ5e(t′+λ|3−5|)
(x − ξ5e(t

′ + λ|3 − 5|))v(x|x > ξ5e(t
′))dx

+ (s5e(t
′ + λ|3 − 5|)+ a)(1 − H5e(t

′, t′ + max{s5e(t
′), λ|3 − 5|})).

(11)
Using our heuristic rules, the PEO will choose the car with the

ighest expected revenue per unit time. Below we describe a numer-

cal experiment – a simple simulation study – that ‘calculates’ the

xpected revenue per shift when implementing our heuristic rules.

. Numerical experiment

.1. Selected graph and parameters

We chose the graph depicted in Fig. 3 for our numerical experi-

ent. This graph could be translated into a street grid that surrounds

wo city blocks and cars are allowed to park on one side of each

treet. The graph in Fig. 3 is not Eulerian. We have to dead-head

3 to transform this graph into an Eulerian graph to allow for the

onstruction of an optimal CPP solution. The optimal CPP solution

equires the PEO to walk from the top-left node and follow the tour,

1 → e4 → e3 → e3 (reverse) → e7 → e6 → e5 → e2. He traverses e3

n reverse direction in a dead-heading mode.

In the experiment we assume a constant number of cars on each

dge. Specifically, we tested with ne equals 25. That is, there are 175

arking spaces in total in the graph. The parameters that we used in

ur numerical experiment are as follows:

• Each parking permit is valid for exactly 60 minutes (L = 60).
• Each violation ticket generates a revenue of r = 30 dollars.
• The PEO’s shift length S is 8 hours.
• The PEO spends b = 0.5 minutes inspecting the time left on each

parking permit.
• The PEO spends a = 5 minutes issuing a ticket.
• Dead-heading time w(ek)on any edge of the graph is 6.25 minutes

(λ = 0.25).

hese parameters were selected based on observing parking rules in

arious cities.

We experiment with a PEO remembering expiration times for var-

ous numbers of parked cars, Bernoulli probability of empty parking

paces parameter z and time length of permits L.

For simplicity, we chose a triangle distribution to repre-

ent the distribution of the time between the parking of a car

nd the return of its owner, with a mode m as 55, which is

minutes before the car turns into violation state and the end point

is 90, which is 30 minutes after the car turns into violation state.

. Results and discussion

We simulated 1000 one-shift rounds for each parameter’s setting.

n each round, a PEO traverses the graph for 8 hours (one shift). We

xamine the effects of memory size, Bernoulli probability of empty

paces on average revenue per shift z and permit length L. The revenue

er parking ticket is set to $30.

.1. Effect of the memory size

To observe the effects of memory size, we chose Zie(t) = z = 0.30.

he computed p is 0.0591. We varied the memory size from 0 (no
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Fig. 4. Effect of the memory size.

Fig. 5. Effect of λ.
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emory, no option to wait) to 25 (the PEO can memorize the parking

ermit time of all 25 cars on an edge.) We ran 1000 rounds of ex-

eriment for each one of the 25 memory options. Given our heuristic

ules, we expected to see an increase in average revenue per shift as

he memory size increases.

Fig. 4 shows the result of our experiment. When the memory size is

, the simulation shows the average (over a thousand rounds of simu-

ation) revenue per shift to be $708.00 which is very close to the com-

uted expected revenue per shift of $707.16. The simulated PEO went

hrough an average of 572.64 parking spaces in an 8-hour shift, out of

hese, 172.16 parking spaces were empty (30 percent). Among the oc-

upied spaces, 23.60 cars were in violation state (approx. 5.9 percent).

he simulated PEO took approximately 3.26 tour cycle per shift.

Increasing the memory size to 1 (the PEO can wait at a car but

annot walk back to previous cars), we noted a 28.57 percent im-

rovement ($202.26) in the average revenue per shift. The subsequent

ncreases did not show significant improvement in the average rev-

nue per shift. To understand this result, we observed the number of

imes the PEO waited at a car or walked back to previous cars.
Table 1 shows the average number of times per shift that the

EO waited at a car or walked back to previous cars for each given

emory size. For instance, when the memory size was three cars, the

EO waited at the car he was inspecting 20.34 times per shift, walked

ack one space to a previous car 2.21 times per shift, and walked back

wo spaces 2.04 times per shift. In total, the PEO waited or walked

ack 24.58 times per shift. The average revenue per shift was $915.84.

Notice that the PEO rarely walked back far. That is, the expected

evenue per unit time on walking back further is rarely better than

he expected revenue per unit time of traversing the normal CPP

ath. This is because the longer it takes for the PEO to walk back, the

igher the expected time spent; and the higher the chance that the

ar owner comes back before the PEO reaches the car, and the lower

he expected revenue. One may ask how can we improve with respect

o the average revenue as the memory increase. What happens if the

EO walks faster or rides a Segway? In this case, λ decreases. See

ig. 5 for the result with λ = 0.05. We don’t see a significant changes

n the improvement pattern. The increase in the revenue seems to

ome from the effect of lambda, but not the memory size.
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.2. Effect of the Bernoulli probability of empty spaces

To observe the effect of the Bernoulli probability of empty spaces,

e varied z from 0.00 (all parking spaces are occupied) to 0.90

10 percent of parking spaces are occupied) and the memory size

rom 0 to 25. Given our heuristic rules, we expected to see a linear

ecrease in average revenue per shift as the Bernoulli probability of

mpty spaces increases.

Fig. 6 shows the result of our experiment. Consider changes in

he average revenue when the memory size is 0. When z = 0.0, the

verage revenue per shift was $782.9. The average revenue per shift

ecreased by 2.85 percent ($22.3) when z increased to 0.1. The rate

f decrease in average revenue grew as z increased. The same effect

an be observed for other memory sizes.

With constant p, in one tour cycle, the PEO encountered a lin-

arly decreasing number of cars with an expired permit as z linearly

ncreased. However, the more the empty spaces, the faster the PEO

ompletes a tour cycle because the PEO does not need to spend b unit

ime inspecting empty spaces. Thus, in an 8-hour shift, the PEO can

omplete more tour cycles when z = 0.5 than when z = 0.0. Recall

hat for each tour cycle, the probability of parking violation is con-

tant. Hence, the 10 percent decrease in the number of empty spaces

hen most parking spaces were occupied generated less effect than

he 10 percent decrease when most parking spaces were empty.

.3. Effect of the parking permit time length L

To observe the effect of the parking permit time length, we varied

from 30 minutes to 120 minutes, and the memory size from 0 to 25.

e kept the mode and the upper bound of the triangle distribution

t 5 minutes before L and 30 minutes after L, respectively. Given our

euristic, we expected to see a decrease in average revenue per shift

s L increases.

Fig. 7 shows the result of our experiment. Consider changes in the

verage revenue when the memory size is 0. When L = 30 minutes,

= 15.13 percent, the average revenue per shift was $1313.7. The

verage revenue per shift decreased by 46 percent ($605.7) when L

ncreased to 60 minutes (thus p decreased to 5.91 percent).

Essentially, the PEO encounters a decreasing number of cars with

n expired permit in each tour cycle, as p decreases. However, the less

he parking violations, the shorter the PEO takes to complete a tour

ycle because the PEO needs to spend a unit time issuing each ticket.

o, in an 8-hour shift, the PEO can complete fewer tour cycles when

= 15.13 percent than when p = 5.91 percent. Notice also that the

mprovement in the revenue from memory size of 0 to memory size

f 1 is greatest when p is small.

.4. Effect of the distribution of the owner’s return time v(x)

In the previous section, we experimented with a triangle distri-

ution. In this section, we experiment with Kumaraswamy distribu-

ion, which is similar to the Beta distribution. The original probability

ensity function of this distribution is abxa−1(1 − xa)b−1 for x ∈ [0, 1]

efore we generalized it to our time range. We kept the parking time

at 60 minutes and with z = 0.3. We select Kumaraswamy parame-

ers a = 4 and b = 5.6275 so that the mode m is still at 55, which is 5

inutes before the car turns into violation state and the end point X

s still 90, which is 30 minutes after the car turns into violation state.

ig. 8 shows the selected distribution.

The computed p is 0.03946. We varied the memory size from 0

o 25. We ran 1000 rounds of experiment for each one of the 25

emory options. Fig. 9 shows the result of our experiment. When the

emory size is 0, the simulation shows the average revenue per shift

o be $511.8 which is very close to the computed expected revenue

er shift of $513.97. The simulated PEO went through an average of

20.31 parking spaces in an 8-hour shift, out of these, 186.09 parking
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Fig. 6. Effect of the Bernoulli probability of empty spaces.
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paces were empty (30 percent). Among the occupied spaces, 17.13

ars were in violation state (approx. 3.9 percent). The simulated PEO

ook approximately 3.54 tour cycle per shift.

Since the percentage of cars in violation state when using Ku-

araswamy distribution is less than the similar setting when using

riangle distribution as shown in Fig. 4, the average revenues are less

or all memory sizes.

Increasing the memory size to 1, we noted a 46.37 percent im-

rovement ($237.3) in the average revenue per shift. The subsequent

ncreases did not show significant improvement in the average rev-

nue per shift. This shows that our heuristic is robust for the change

n the distribution.
. Summary

.1. Technical summary

In this paper we show that revenue collection from car parking

iolations can be modeled as a Chinese Postman Problem (CPP) on a

treet graph and prove that the car inspection order is optimal when

he PEO automatically follows a preset route. We assume throughout

he analysis in the paper that the number of cars whose permit expira-

ion times a PEO can memorize does not impact the traversing order

f the graph’s edges. We discard the case of the PEO re-optimizing

is CPP inspection route when retracing his route to a previously
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Fig. 7. Effect of the parking permit time length L.

Fig. 8. Kumaraswamy distribution.
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inspected car since the likelihood of such an event is small. The PEO

commits to traversing the assigned street subgraph by following the

optimal CPP path.
Fig. 9. Experiment result for Ku
We focus on the PEO’s real-time online decisions at each in-

pected car. The PEO has the options to wait at the current car,

o step back to previously inspected cars on that edge, or to walk

o the next car. We propose a myopic set of rules that help the

EO to make a locally best decision aimed at maximizing the ex-

ected revenue per unit time. We tested our heuristic rules by run-

ing a simulation experiment using various parameters. The main

nding is that by allowing for the PEO to wait by a car (for some

ars) with a valid parking permit until the permit’s time expires

aises the average collected revenue significantly (10–69 percent).

ncreasing the number of inspected cars whose permit expiration

imes the PEO can remember beyond one does not significantly

ncrease the average revenue and therefore is unlikely to happen.

e also validated the ‘obvious’ that the average revenue depends

n the probability of empty spaces and the probability of parking

iolations.

We tested the effect of changing dead-heading time λ. Decreasing

will increase the average revenue per shift. We did not test the

ffect of inspecting time b, and ticket issuing time a. Increasing a and

will definitely decrease the average revenue per shift regardless of

he probability distributions of empty spaces and parking violations.

e did, however, test the effect of the number of parking spaces per
maraswamy distribution.
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dge and found that it does not effect the average revenue per shift

t all because the PEO would encounter the same number of parking

iolations in 8 hours.

Our simulation experiments were based on several assumptions

egarding the respective probability distributions. We assumed that

he probability distributions of empty spaces is Bernoulli. We assume

hat the probability distribution of the PEO arrival at each car is uni-

orm. Moreover, we assume that the probability distribution of the

ar owner’s return time counting from the moment the car owner

arks her car is a triangle distribution. (Note, however, that when we

eplaced the triangle distribution with Kumaraswamy distribution,

e reached similar results.) These plausible assumptions might need

o be validated with real data before our online heuristic rules are to

e implemented. However, once the data is collected and the maxi-

um time worth waiting for a valid permit to expire is calculated, the

ctual implementation into the daily routine operation of the PEOs is

traightforward.

One might ask what would happen if the probability distribution of

mpty spaces differs among different edges and varies over a period

f time. For instance, parking spaces near a popular restaurant are

sually full around lunch time and dinner time. Should the PEO follow

he optimal CPP path, or should the PEO traverse the edge with denser

arking cars more often? This question is outside the scope of this

aper as we do not test for different probability distributions of cars’

urnover rates on edges.

Another issue pertains to the construction of an optimal CPP

ath. There could be multiple optimal CPP paths which result in

he same distance travel per tour cycle. In our experiment with the

raph in Fig. 3, we chose the CPP path that traverses edge e3 in a

ead-heading mode right after inspecting all cars on that edge. If

different path was selected, e.g. e1 → e4 → e3 → e5 → e6 → e7 →
3 (reverse) → e2, edge e3 would be repeated long after the PEO in-

pected the cars on that edge. In this case, some cars’ permits might

ave expired and some new cars might have been parked in previ-

usly empty parking spaces on edge e3. In that case it might be better

or the PEO to reinspect edge e3, instead of traversing it in a dead-

eading mode. The problem of selecting an optimal CPP solution that

llows for traversing an edge in a dead-heading mode immediately

fter its regular traversal is outside the scope of this paper. We are

ot aware of any work on this topic or on the question of establishing

n existence of such optimal CPP solution for any nontrivial family of

raphs.

One might also ask what would happen if we do not assume

hat the PEO commits to traversing the subgraph following the se-

ected optimal CPP path. For instance, consider the following sce-

ario. The PEO was able to memorize the parking time left of all

arked cars in the subgraph while following CPP tour: e1 → e4 →
3 → e3 (reverse) → e7 → e6 → e5 → e2. After he inspected the last

top most) car on edge e5 in Fig. 3, he recalled that the left most car

n edge e3 would have 1 minutes left. He might want to change the

ourse of his traversal to inspect the left most car on edge e3 before

ontinuing on to edge e2. Such deviation from the original CPP path

ould require very little time and might result in larger expected rev-

nue per unit time. Again, we do not examine such deviations in the

urrent work.

.2. Discussion

Our study has broader implication beyond revenue collection from

llegally parked cars. Clearly, any inspection activity over edges of

raphs that involves revenues, say ice-cream vendors, etc. would

ave a similar flavor and could use similar CPP based logic and

nalysis as the one used in this paper. The results of this study

eveals the existence of a ‘bang for the buck’ phenomena; pay at-

ention to the remaining time for the currently inspected car –

t matters. In the broader context it translates to paying at-
ention to the dynamic nature of events along the arcs of the

raph.

The revenues collected by parking enforcement operations are

ignificant as demonstrated by the available data. Thus, increasing

uch revenues even more, say by 10 percent, by implementing a sim-

le rule prescribing when a PEO ought to wait in front of a car with

valid permit (without going back to previous cars) and when to

ontinue on his CPP route (or any preset inspection route) has im-

ortant revenue implications. We argue that the implementation of

uch a rule is feasible in practice. Calculating (or even estimating

y trial and error) a threshold time value and setting a policy that

EOs wait by the car upon inspection of a valid parking ticket if the

ime left on the ticket is below the threshold value and continue

therwise, represents a reasonable task. The threshold time value

an be calculated by a city manager/analyst prior to communicating

o PEOs.

Another feasibility question relates to the technology of issu-

ng/purchasing a parking permit. Since there are many different park-

ng permit schemes implemented in the various cities across the

lobe and the technological frontier of issuing short term parking

ermits is evolving, is our car parking permit inspection procedure

ith the rule that tells a PEO when to wait in front of a car with

valid permit restricted by a specific technology? The clear answer

s that the procedure is independent of the technology. Regardless

f the technology used is the ‘old’ coin operated parking meters,

entral kiosk parking ticket purchasing machines, electronically (re-

otely adjusted) purchase of parking permits, all these technolo-

ies require human inspection and the ticketing of parking violations

nless a expensive automated violations monitoring system is in-

talled. We note (Seattle Parking Management Study, 2002) that hav-

ng parking inspection PEOs patrolling city streets generates not only

onsiderable revenues but also as its by-product it generates con-

iderable societal benefits in terms of maintaining order and crime

revention.
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ppendix A. Description of the simulation study

The scheme for our numerical analysis is outlined in the pseudo

ode below. We use the graph in Fig. 3, with the inspection CPP tour

lways starting at the top left corner of the graph and executing the

ollowing CPP tour: e1 → e4 → e3 → e3 (reverse) → e7 → e6 → e5 →
2. In the first step, the subroutine selects the first parking space on

dge e1 for inspection. The walking time is increased by λ. We ‘call’ a

andom number generator (randomizer) to determine if this parking

pace is empty, occupied by a car with a valid permit, or occupied by

car with an expired permit.

For instance, the randomizer generates the first number between

and 1 from a uniform distribution; if the number falls between 0

nd z, the parking space is empty, if the number falls between z and 1,

he parking space is occupied. The second random number between

and X is generated from a triangle distribution for the car owner’s

eturn time. The third random number also between 0 and X is gen-

rated from a uniform distribution for the PEO arrival time. If the

hird random number is greater than the second number, we regen-

rate both numbers. If the third number is smaller than the second

umber and greater than L, the parking space is occupied by a car in

iolation state. If the third number is smaller than the second num-

er and smaller than L, the parking space is occupied by a car with a

alid permit.
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Main routine

1 Set the current position of the officer to the top left corner of the graph.

2 Determine CPP path including direction and the dead-heading arcs.

3 While clock time t < S:

4 Determine the target position i (Subroutine).

5 If this is the first car on an edge to get inspected,

reset the memory of all cars’ time left sie(t).
6 Walk to the target position i.

7 Increase t by walking time and deadhead traversing time if any.

8 If the time left of i is not previously known,

9 generate three random numbers from [0,1] uniform distribution (for z),

[0,X] triangle distribution for ξie(t), and [0,X] uniform distribution for y

to determine if i is empty, occupied by a car with a valid permit,

or occupied by a car with an expired permit.

10 If i is occupied by a car with an expired permit, mark i as ticketed,

increase t by a + b and increase revenue by r.

11 If i is occupied by a car with a valid permit,

increase t by b. The amount of permit time left is L − y.

12 Else

13 If owner comes back before the permit expires (ξie(t) ≤ L),

mark i as empty. Increase t by walking time and waiting time, if any.

14 Else,

mark i as ticketed. Increase t by walking time and waiting time,

and ticket issuing time a, and increase revenue by r.

15 End if.

16 End if.

17 End while.

Subroutine: Determine the target position

S1 Set the next parking space on the CPP path that has not been inspected

as the default target position i

S2 For each car j in the memory (including the current car if not ticketed)

S3 Determine if car j’s owner has returned to the car using ξie(t).
If so, skip to the next car in the memory.

S4 Calculate the expected profit per expected time spent of car j.

S5 If the calculated amount is greater than the default target position,

set car j as the new target position.

S6 End for.

S7 Return the target position.

Discussion: If the parking space is empty, the PEO moves on to de-

termine the next target car (line 4). If the parking space is occupied

by a car with an expired permit, the PEO immediately issues a ticket

and increases the revenue by r. The clock time t is increased by a + b

which is the inspecting time b plus the ticket issuing time a. If the

parking space is occupied by a car with a valid permit, we determine

the amount of parking permit time left by subtracting the PEO arrival

time y (generated by the randomizer) from L. The clock time t is in-

creased by b. Then, the PEO moves on by determining the next target

car (line 4 calling the subroutine).

Assume that the first parking space is occupied by car 1 with a valid

permit. The subroutine sets the second parking space on the CPP path

as the default target position. We have one car in memory, which is

car 1. Hence, we determine whether the expected profit per expected
ime of waiting at car 1 is greater than the expected revenue per unit

ime of traversing CPP path without waiting (expected revenue per

nit time of the second parking space).

Assume that it is more profitable to wait at car 1. We would not

ave to increase the walking time as the PEO is already at this parking

pace. Using the random number previously generated for ξie(t), and

, we determine whether the owner will return to the car before

he permit expires. If the owner returns to the car before the permit

xpires, we increase the waiting time upto the time when the owner

eturns. If the owner returns to the car after the permit expires, we

ark car 1 as ticketed, increase the revenue by r, and increase the

aiting time by L − y + a.

Throughout the numerical experiment, the memory size is inter-

preted as the number of cars that the PEO can remember their parking

permit time left. For instance, if the furthest parking space that the

PEO has inspected is car 8 and he has four car memory option, he

would be able to remember the time left of cars 5, 6, 7, and 8.

At the end of one tour (the PEO reaches the starting point), we reset

every car’s time. We assume that they are all new cars. This assump-

tion is reasonable because one tour takes longer than 60 minutes –

the available permit time.
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