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We view an administrative activity of issuing parking tickets in a dense city street setting, like downtown
Philadelphia or NYC, as a revenue collection activity. The task of designing parking permit inspection routes is
modeled as a revenue collecting Chinese Postman Problem. After demonstrating that our design of inspection
routes maximizes the expected revenue we investigate decision rules that allow the officers to adjust online
their inspection routes in response to the observed parking permits’ times. A simple simulation study tests
the sensitivity of expected revenues with respect to the problem’s parameters and underscores the main
conclusion that allowing an officer to selectively wait by parked cars for the expiration of the cars’ permits
increases the expected revenues between 10% and 69 percent.
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1. Introduction

Consider a large city street grid, like downtown Philadelphia or
New York City, represented as a graph G = (V, E), with parking seg-
ments along some streets in G and the common/familiar parking kiosk
setting where the car owners buy parking time and place the re-
ceipt/permit on the dashboard of the car. The city administrators
would like to maximize their street parking revenues by (a) collect-
ing the parking fees from the legally parked cars - cars parked in
designated parking spaces conforming to the parking times they pur-
chased, and by (b) issuing parking tickets to cars parked in violation
of the parking rules. Violation of the parking rules can take a number
of forms. In our inquiry, we restrict the analysis to the time viola-
tions with respect to the parking times the car owners purchased and
the parking tickets issued by the parking enforcement officers when
observing parking time violations.

In order to collect the revenues from the parking violations, the
city administrators usually resort to employing a crew of enforcement
officers assigned to patrol the city parking areas at any given time of
day and night. Consider a single parking enforcement officer’s as-
signment. Without inferring any gender bias, we refer to the parking
enforcement officer (from now on referred to as PEO) by the generic
‘he’. As such, the officer is usually assigned a subgraph of city streets,
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say G'(V',E') c G, and he has to select (or is provided) an itinerary
that traverses all the edges (it is edges since the PEO can traverse a
street segment in either direction using the sidewalk) in G’ where paid
parking is allowed. We assume for simplicity that the subgraph G’ is
a connected component of G and all edges of E’ have to be regularly
inspected by the PEO during his patrol, both for public safety reasons
and for the main function of parking permit enforcement. Again, the
edges in E’ correspond to the segments of the streets along which
paid parking is allowed. The PEO inspects the cars’ parking permits
by walking along streets’ sidewalks. Since a PEO can walk on any
sidewalk in either direction the graphs G and G’ are considered to be
undirected. If paid parking is allowed on both sides of a given street
segment the graph G’ is a multigraph with two edges connecting the
corresponding pair of nodes in V. From now on we will refer to ¢/
as a multigraph. In case it is desired to inspect the edges of the undi-
rected multigraph G’ with different frequencies, we add without loss
of generality appropriate copies of these edges to G'. The PEO does not
know in advance the number, density, and individual parking times
purchased for the parked cars. As he traverses the multigraph G, he
has to decide how, in what order of street segments (edges in G'),
to traverse the streets’ segments and at what rate; should he stop
and wait next to a car whose parking time on the permit is about
to expire or continue to the next car? Essentially, at each car a PEO
has an option to wait, return to previously inspected cars, or con-
tinue walking to inspect the ‘next’ car. It corresponds to processing
parking cars’ information in real time and represents a real-time (on-
line) optimization problem with the objective of collecting the maxi-
mum expected revenues from a PEO’s patrol assignment. At least that
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would be one of a number of the city administrators’ objectives to
consider.

Optimizing the traversal order of a multigraph’s edges is not a
new problem. Given a connected multigraph G'(V’, E’) with ‘length’
weights w(e) for each edge e € F’, the problem of designing the short-
est tour - a path or a circuit, that traverses each edge in E’ at least
once is well known under the heading of the Chinese Postman Prob-
lem (CPP) and dates back to 1962 (http://www.nist.gov/dads/HTML/
chinesePostman.html).

In our problem of designing a traversal scheme for a single PEO,
we need to define a few more concepts. We associate with each
edge e in the street multigraph G’ three weights; the weight w(e)
expresses the expected revenue collected from edge e € G', W(e) rep-
resents the expected traversal time of edge e while inspecting the
cars parking permits, and w(e) is the dead-heading time for e (the
traversal time with no inspections). The traversal minimization CPP
problem on G’ refers to the weights Ww(e) and dead-heading weights
w(e). Our parking ticket revenue management problem is defined
more formally below. Note that dead-heading edges might have to
be added to E’ when solving a CPP on G’ as a necessary part of the
CPP solution. We assume for now that in a planar graph such as a
city street graph, we can construct an optimal CPP solution that tra-
verses an edge in a dead-heading mode, when it is required, imme-
diately after traversing it in a ‘working’ mode. We revisit this as-
sumption in the paper’s Summary section. Observe that with the
assumption of triangle inequality time traversal matrix for G’ for
both ‘working’ mode times and dead-heading times, in an optimal
CPP solution any edge in G’ will have at most one dead-heading
traversal.

Motivation: The potential of increased revenues due to more effi-
cientissuing of parking tickets may constitute a non-negligible contri-
bution to social economic well-being for many cities. Cities like New
York, Philadelphia, Chicago, etc., are in great need for revenues and
are desperately searching for innovative ways to raise additional rev-
enues. The basic concept of CPP for an efficient traversal of city streets
is well known to municipal managers from, for instance, planning of
garbage collection operations (Beltrami & Bodin, 1974). Implement-
ing some of the findings of this study in the daily routine operation of
PEOs is rather straightforward.

The solution presented in this paper has the potential to increase
revenue by about 10-69 percent. The significance of increasing park-
ing ticket revenues by even 10 percent is invaluable for any city. Quot-
ing from one source on parking fines (http://money.cnn.com/2004/
05/03/news/parkingfinesup/): “A typical fine in Manhattan now can
make your wallet $65 lighter. Parking at a fire hydrant or bus stop will
run $115. The city’s parking violations bureau expects to collect $562
million this year, up 48 percent from 2002. Los Angeles will collect
$110 million in 2004, up 20 percent from two years ago. Angelenos
endure some of the highest fines in the country; parking illegally in a
disabled persons zone can draw a whopping $355 fine. Another ben-
eficiary of higher parking fines is Chicago. Revenue has climbed 28
percent from 2002 to $141 million.”

The significance of increasing parking related revenues can be
illustrated by considering the city of Pittsburgh with population
of about 0.3 million (http://www.census.gov/newsroom/releases/
archives/2010_census/cb11-cn74.html). Based on the information
from http://www.city.pittsburgh.pa.us/pghparkingauthority/assets/
09_PPA_Annual_Report.pdf and http://www.post-gazette.com/pg/
11248/1172336-53-0.stm?cmpid=localstate.xml, the total revenue
of Pittsburgh Parking Authority from parking permit purchases and
parking ticket revenues was $42 million. The city issued 280,000 tick-
ets. The parking authority collected about $5 million from all parking-
related fines with $2 million from expired meter fines. In terms of
ticket-related variable cost, the facility and parking court manage-
ment expenses were only $2 million (i.e. the variable cost is only 40
percent of all fines revenue). If we scale the number to match large

cities, e.g. Manhattan, the 10 percent increase would translate to sev-
eral million dollars.

In 2003, the city of Berkeley collected $6.9 million from park-
ing citations, out of this amount, $2.3 million was attributed to tick-
ets issued for expired meters (http://www.berkeleydailyplanet.com/
article.cfm?archiveDate=05-14-04&storylD=18852). In 2009, the city
of Milwaukee issued nearly 150,000 tickets for expired meters
which would have brought in $3.3 million if all the tickets
were paid (http://www.bizjournals.com/milwaukee/print-edition/
2011/01/07 [expired-downtown-parking-meters.html?page=all). In
terms of cost information, citing the Seattle Parking Management
Study of September 2002 (96 page report), “The parking ticket rev-
enue generated by a Parking Enforcement Officer (PEO) is approxi-
mately three times the cost of labor and necessary equipment. ... the
average PEO generates $240 per hour in ticket revenue (collected
revenue),...”.

The outline of this paper is as follows: Section 2 discusses the
structure of our problem relative to other problems examined within
Operational Research. Section 3 describes our notation and introduces
the problem of designing a PEO route over G’ as a CPP. In Section 3.1 we
start with the analysis of local inspection decisions regarding which
car to inspect next as a function of the remaining times for the cars
inspected so far on a given street segment. We begin by consider-
ing an option of waiting in front of a parked car with a valid permit
anticipating its permit to expire before its owner’s arrival. We de-
note this option as memory size = 1. This operational option can be
extended by allowing to step back to the last previously inspected
car (memory size = 2). The general case of allowing to step back to
any previously inspected car or just inspecting a new car is examined
in Section 3.1.3. A simple simulation study for the CPP routing with
inspections with online local decisions is presented in Section 4. In
Section 5 we present the results. In the summary and discussion sec-
tions (Section 6) we examine the related technological issues and the
feasibility of implementation.

2. Related literature

In this section, we discuss two topics: previous research on related
problems involving the Chinese Postman Problem, and the structure
of our problem in relation to some other problems examined within
Operational Research.

As mentioned before, the Chinese Postman Problem dates back to
1962 (see Dror, 2000, for the different aspects of related arc routing
problems and for a more recent account see Corberan & Prins, 2010).
Formally, a CPP is asking for a shortest closed circuit tour of a graph
that visits (traverses) each edge and arc in that graph at least once.
An optimizing solution for the CPP, if the multigraph G’ is undirected
(the adjacent nodes in V' are connected only by edges) or completely
directed (has only arcs connecting the different nodes in V'), is ob-
tainable in quadratic time in |V’|. Finding an optimal CPP solution in
the case that G’ is a mixed graph (some node pairs are connected by
edges and some by arcs) is NP-hard (Papadimitriou, 1976).

The problem of designing an online algorithm that maximizes
the expected total revenue collection in a CPP, like the one repre-
senting parking revenue collection, has not yet to our knowledge
been introduced in the literature. However, a so-called orienteer-
ing version of a related problem has been examined by Feillet,
Dejax, and Gendreau (2005). There are several other papers on sim-
ilar problems. Archetti, Feillet, Hertz, and Speranza (2010) stud-
ied the Undirected Capacitated Arc Routing Problem with Profits
(UCARPP). The UCARPP asks for a set of routes that maximize the
total collected profit while satisfying the constraints on the route
duration and on the vehicle capacity. Another capacitated varia-
tion of the orienteering CPP problem, called Maximum Benefit Chi-
nese Postman Problem (MBCPP), was studied by Malandraki and
Daskin (1993), Pearn and Wang (2003), Pearn and Chiu (2005), and
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recently by Corberan, Plana, Rodriguez-Chia, and Sanchis (2013).
The MBCPP asks for a tour that maximizes net benefit while travers-
ing some edges a certain number of times. Ardoz, Fernandez, and
Meza (2009) describe an algorithm for solving the Prize-collecting
Rural Postman Problem (PRPP). Unlike CPP, the PRPP does not require
traversing all edges and its profit collection on an edge is taken into
account only the first time that the edge is traversed. Ardoz et al.
(2009) modeled their problem version as a linear integer program.

In our problem, as a PEO traverses a road network, he has to de-
cide how, in what order of street segments, to traverse the streets’
segments and at what rate. At each car the PEO has an option to wait,
return to previously inspected cars, or continue walking to inspect
the next car. This setting is similar to the work of Dror and Stulman
(1987) where a one dimensional robot movement control mechanism
has been examined in a textile machine setting. A more elaborate ex-
amination was undertaken in the same robot movement setting by
L’Ecuyer, Mayrand, and Dror (1991) modeling it as a Markov renewal
decision process with a computational approach based on dynamic
programming.

We note that, in the broader context of sequential resource allo-
cation problems, the car parking enforcement inspection decisions
might be viewed as a multi-armed bandit problem (see Katehakis &
Veinott, 1987). This class of problem is concerned with allocating one
or more resources among several alternative (competing) projects by
making decisions that sacrifice current gains with the prospect of bet-
ter future rewards. Such broad view is not attempted here because of
the nature of the underlying combinatorial structure of the CPP.

3. Model description

Without significant loss of generality, we assume that the car park-
ing spaces on any given street segment (segment capacity) are iden-
tical in terms of single length ‘consumed’ as a parking space, and
we measure a parking segment’s capacity in car units. Our analy-
sis is restricted to a single PEO’s subgraph G’ and a time interval
[to. t4]. tg — to = S > 0, with Slarge enough to represent a PEQ’s work-
ing shift duration. We do not consider the problem of partitioning an
entire city car parking inspection graph G into a set of single PEO
assigned subgraphs G’s, nor do we consider the selections of PEOs’
shift durations. We note that the corresponding graph partitioning
problem is an important and mathematically ‘rich’ topic that is left
for future study.

We assume that it takes a constant time a > 0 to issue a parking
ticket irrespective of the car location and that a « S. We use t as time
value (t € [tg, tg]). A parking space could be either empty or occupied
by a car. At time t a parked car could be in either of two states: in
compliance state with a valid parking permit, or in a parking violation
state. Note that for a CPP it is immaterial to consider/introduce a
starting node of a PEO’s shift in V' and it is also immaterial if G’ is a
graph or a multigraph. For simplicity, we refer to G’ as a graph.

Some notation and definitions:

G (V',E'): a connected subgraph with |V'| =v > 1 nodes and |E'|
edges.

Ne: number of parking spaces, ordered from O to n — 1, avail-
able on edge e € E'. (1. € Np.)

N: total number of parking spacesin G'. N = )", p Ne.

Zie(b): an a priori likelihood (probability) that parking space

ief{0,1,...,n.— 1} on edge e is empty at time t. We as-

sume for now that Z;, (t) = z for all t, i, and e. That is, every

parking space has the same likelihood to be empty. Z;, (t) is

a Bernoulli distribution. If we take a snapshot of G'(V', E)

at any time t, there will be zN empty parking spaces and

(1 — 2)N occupied parking spaces.

a probability that a car in a non-empty parking space i on

edge eisin a parking violation state at time t. The rationale

Pie (0):

for i, e, and t dependencies is that certain parking spaces
may be more likely to have a car in violation state in some
times of day. We assume that all owners of cars in parking
space i on edge e share the same probability distribution
regarding a car owner’s return time with respect to per-
mit duration and all permits at any location are of the same
time duration L. Note that Z, (t) and P, (t) are two indepen-
dent probability density functions. P, (t) can be calculated
as shown below.

Consider car c in parking space i on edge e at time t. Let x be
a continuous random variable representing an owner’s return time
after parking, and its probability density function is given by vje (x)
with a finite support [0, Xje¢|. That is, Xje, is the latest possible time
that this owner may return to her car. Let the parking time purchased
by the owner (length of permit) be L. The permit expires after L. We
assume that L < Xj,;. Note that x can map to t by adding the time the
car arrived t¢ to x.

Let y be a continuous random variable representing the time that
the PEO arrives by the parked car for inspection. Because the PEO tra-
verses the graph G'(V’, E’) several times a day, and cars may arrive and
leave many times in each parking space, we assume that the proba-
bility density function of y is a uniform distribution u(y) between 0
and Y, and Y > X;,. Probability density functions v, (x) and u(y) are
independent. Note that y can also map to t by adding the time the car
arrived t. to y.

The event of the PEO’s arrival is equivalent to drawing y randomly.
To calculate P (t), we are only interested in the probability that is
conditional upon the parking space being non-empty, i.e., y < x.

Pr(y > L,y <X)
Pr(y < x)
_ L vieu(y)dydx
Jo'™ J5 Vier @u(y)dydx
Without loss of generality we assume that v, (x) = v(x) and
Xiet = X. Hence, P;,(t) is the same for all t, i, and e. P, (t) = p where
_ i veu(y)dydx
fg( Jo vu(y)dydx
If we take a snapshot of G'(V’, E’) at any time t, the expected num-

ber of cars in violation state is (1 —2) Y ..p Z?:eal Pio(t) = (1 — z)pN.
More notation:

Pe(t) = Pr(y > Lly <x) =

(1)

&.(t):  the time information, observed at t, about how long has car
i been parked in parking space i on edge e. If car c arrives for
parking in parking space i on edge e at t < t, £ (t) =t — t,.
& (t) > 0. If the parking space is empty, &;.(t) = 0.

Sie (0): the ‘observed’ time at t until parking permit’s expiration

for a car in parking space i on edge e. If car c arrives for
parking in parking space i on edge e at t. < t, Sje(t;) = L and
Sie(t) = L — &0 (t) > 0.5, (t) = 0 implies that at time t the car
in parking space i on e is in a parking violation state. If the
parking space is empty, s, (t) = oc.

Given that a car is parked in parking space i on edge e at time t/,
with either compliance state or violation state, the probability that the
car’s owner will return to the car on or before time t” > t’ is H, (t', t")
where

Hiet. ) = Prix < &e(©)}x > ()
| P = (). x> Ee©) _ Ji vOOds )
Pr(x > & (t') B f;e () V)dx -

Given that a car is in a compliance state at time t’, the probability
that the car’s owner will return to the car on or before switching to
aparking violation state is H;, (t').
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Hie(t') = Hie(t . t' +5ie(t)) = Pr(x < L|x > & (t')
- st,»e ) V)dx

- _ 3
féi () Ve)dx 3

Proposition 1. Assume that at a given time t € [ty, t4] the likelihood
of an expired permit (a parking violation state) at any parked car in G
is represented by probability P;,(t) = p and the likelihood of an empty
parking space in G is represented by probability Z;,(t) = z. Then, given
that the PEO has no memory regarding the parking compliance time left
for the cars he inspected so far, it is optimal for the PEO to follow the path
found as the optimal solution to corresponding CPP on subgraph G'. That
is, to traverse G’ in the shortest time.

Proof. The PEO has no memory regarding the parking compliance
time left for the cars on the path that he has been traversing so far,
Pie(t) = p, and Zi (t) = z for all t, i, and e € G'. The PEO will traverse a
segment of a CPP solution in a dead-heading mode as dictated by the
optimal CPP solution after the segment has already been inspected
for parking violations in that CPP cycle. When traversing segment e
in a dead-heading mode the PEO does not inspect the permit status
of cars parked along e.

Let each parking ticket issued to a car in violation state generate a
revenue of r dollars. Hence, the expected revenue collected from any
single parking space is (1 — z)pr dollars per tour cycle. Thus, by strictly
executing the optimal CPP traversal solution, the PEO generates an
expected revenue of (1 — z)prN from each tour cycle.

Assume that to observe the parking status of a car (inspecting the
parking permit) takes a constant time b > 0, it takes a constant time
a > 0 to issue a parking ticket, and a time w(e) to dead-head through
the edge e € E'. Thus, w(e) = w(e) + (1 — z)(pa + b)n, is the time re-
quired to inspect and issue parking tickets along the edge e € G'. As-
sume also that the PEO executes an optimal CPP tour that may have
dead-heading edges. Let o} > 1 represent the number of times edge
e is used in one optimal CPP tour. Thus, the expected tour time is
Y ecp @zw(e) + (1 — z)(pa + b)N. Durmg the PEO’s shift duration S, he
would expect to execute ETEIO) +(1 —parhn tour cycles. There-

fore the expected revenue per shift would be T vg(e)zls(l”\;)(p TTBN
dollars.

Consider the case of the PEO deciding to inspect the graph G by
traversing G in a suboptimal CPP fashion of alonger time duration than
the optimal CPP tour. For simplicity assume that the suboptimal tour
requires additional dead-heading edges with o, > o representing
the number of times edge e is traversed in the suboptimal tour versus
the optimal one. The expected revenue for each tour cycle is still
(1 — 2)prN. The expected suboptimal tour time is }_,.p aew(e) + (1 —
z)(pa + b)N. Thus, during the PEQ’s shift duration S, he would expect

(1-2)SprN :
to generate Sop @@+ (1-2GarbN dollars per shift.

Since ae > o}, the revenue of generated by the suboptimal CPP
tour is lower than or equal to the optimal CPP. O

For notation simplicity, let E/; = s agw(}e’)?ﬁri)(p a5y represent

the expected revenue per unit time given an expected duration of
optimal CPP solution.

3.1. Local decisions with limited record of remaining compliance times

3.1.1. Memory size =1

Now assume that the PEO observes the compliance time left for
the car just inspected and has the option of waiting by the car for the
parking permit to expire before its owner returns or continue to the
next car (Fig. 1, left). (A PEO may remember the compliance time left
on more than one car. However, in this section, we assume a memory
of 1 thus not allowing the PEO’s return to a previously inspected car.)

Consider the case that the PEO inspects car c in parking space i on
edge e at time t’ where s;.(t') > 0 time left until its parking permit
expires. Once the parking permit expires, the PEO spends a > 0 time
issuing a ticket. The expected revenue for waiting s, (t') unit time and
issuing the ticket is r(1 — i, (t')).

Clearly, if the owner of the car comes back before the parking
permit expires and the PEO is waiting in front of it, the PEO would at
that point continue to the next car on his CPP tour. But if the owner
of the car comes back while the PEO is still issuing the ticket, the
owner may not convince the PEO to discard the ticket. The waiting
time function can be defined as

Sie (' ifx>1L
wferf<x>={ elt)ra i 4)
x—&e(t) ifx<lL
where x is a continuous random variable representing the car owner’s
return time after parking.
Hence, the expected time for waiting in front of car c is

L
Gie() +a)(1 = He () + L _ (t,)(x = &ie()V(x|x > & (t'))dx

where v(x|x > &, (t')) is essentially a truncated distribution of v(x)
with support (& (t'), X]. Thus, we divide the resulting distribution by
1 minus the integral up to the truncation point &;(t') to ‘normalize’
the distribution results.

For instance, let V(x) be a cumulative probability distribution
of v(x).

Z—X if0<x<m
(1 =VEe))mX T
vx|x > & () = (5)
2X ) ifm<x<X

(1= VEe@))X —mX
We consider the expected revenue per unit time in comparison
to the expected revenue per unit time from traversing the CPP path
without waiting at car ¢, which is E;;,. Therefore, the PEO should wait
in front of car c only if
r(1 — Hi(t))
Sie®) +a)(1 — Hle(t )+ féf,e(t)(x Eie(t)V(x|x > &ie('))dx

Er/t

(6)

Fig. 1. (Left) Options to wait or continue. (Right) Options to wait, step back to the previous car, or continue.
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By assuming the same distribution of v(x) for all cars, we can calculate
the time s)j;; such that the PEO should wait by the car at i only if
Sie(t) < Siimit-

Consistency check. Suppose that it is optimal for the PEO to
wait at time t'. Then, it is also optimal for him to wait at
time t’ + § where 0 < § < s;o(t') and s;.(t' +8) > 0. Because s, (t') >
Sie(t/‘i‘s)y

Aet) > Aot +8) (7)
L
/ (x — Ee(EDVE|X > E(t))dx
éie(t/)

L
o [ et + )Wl > Gl + ) (8)
Eie (t'+5)
Note that the expected revenue per shift of duration S given the
option of waiting by cars with s;,(t) > 0 is greater or equal to the
expected revenue per shift without the option of waiting.

3.1.2. Memory size =2

Next, consider the case when the PEO remembers the parking
permit’s expiration time for the car inspected last before the present
car (Fig. 1, right). In this case, the PEO has the choice to wait at the
current car, to step back to the previous car, or to move to the next
car. For simplicity, assume that once he moves on to the next parking
segment (different edge in G'), he cannot recall the compliance times
left for any of the cars on the previous segment.

Denote the time taken for stepping back to the previous car as
A > 0 (approximately, A = w(e)/n unit time) and consider that the
PEO inspects car i on edge e at time t’. Suppose that cars at i and
i — 1 have s;(t') > 0 and s;_1 ((t') time left until the parking permits
expire, respectively. Should the PEO wait in front of cari or cari—1,
or not wait at all? If he waits at car i and issues a ticket, should he still
consider waiting at car i — 1 afterward?

In our online heuristic rules we assume that the PEO makes two
sequential decisions. The first decision is to choose among carsi — 1,
i, and i+ 1, the next parking space that has not been inspected yet.
If he walks to car i — 1, waits, and issues a ticket, then he will make
a second decision choosing between the remaining two cars, i and
i+ 1. If he walks to car i, waits, and issues a ticket, then he will have
to decide between the remaining two cars, i — 1 and i+ 1. Each of
the two decisions will attempt to maximize the expected revenue per
unit time.

To calculate the expected revenue per unit time for the option of
pursuing car i — 1, we divide the expected revenue by the expected
time necessary for pursuing car i — 1. At time t/, if the remaining
time on car i — 1's permit s;_1 (') is greater than A which is the
time to reach i — 1, then the expected revenue is the ticket revenue
r(l — I:Ii_l,e(f’)) or r(1 — Hi_1,(t',t")) where t" =t +5s;_1 (). If the
remaining time on the permit is less than the time the PEO takes to
walk to it, then the expected revenue is the ticket revenue r times
1 minus the probability of the car owner arrival between t’ and t” =
t' + A which is r(1 — Hi_1 ¢(t', t”)). Hence, the expected revenue can
be written as r(1 — H;_1 ((t', t”)) where t” = t’ + max{s;_1 ('), A}.

Consider the first decision. The function for the PEO’s time spent
on car i — 1, corresponding to the owner’s return time after parking,
can be defined as:

Wi—l‘et’(x)
2\ ifx <& 1.t +A)
={2A+x—& 1.t + 1) if& .t +A)<xandx<L (9)
2h+Siq.{t +A)+a if&§ .t +A)<xandx>1L

That is, if the owner of car i — 1 walks back to the car before the PEO
walks to the car (x < &_1 .(t' + 1)), the PEO would have spent in total

of 2 unit time which is the time walking to cari — 1 and from cari — 1
back to car i. If the owner of car i — 1 arrives while the PEO is waiting
in front of the car (§;_1 (t' + A) < x < L), the PEO would have spent
walking time plus the waiting time until the owner comes back. If
the owner of car i — 1 arrives after the permit expired, the PEO would
have spent walking time plus waiting time and plus the ticket issuing
time.
The expected revenue per unit time of cari — 1 is

r(1 = Hi_1.(t,t")
Ex[Wi1er (¥)]

where Ex[Wi 1 o0 (1 =22+ f5 | iny®—=&i 1 +MDVEIX>E 1
EDAX + oo + 1) + @)1 — Hi_g o(t'. ).

We compare it with the expected revenues per unit time at car i
which is

Ei 1=

. =) .
Gie®) + )1 = Fie®) + JL )% — EeO)W(xlx > Eie(t))dx
Hence, the PEO should wait at car i if
Ei = Ept
and E; > E;_;.
On the other hand, the PEO should wait at cari — 1 if

Ei_1 = Eyt
and E;_; > E;.

Once the above outcome occurs (the PEO waits) then the next de-
cision will be considered/evaluated when either a parking violation
ticket has been issued or the car owner returns to the corresponding
car before its parking permit expiration time. Clearly, the availabil-
ity of the option of stepping back leads to higher expected revenue
than the previous case with the options to wait or continue since it
subsumes the former.

3.1.3. Memory size = n.. Remembering expiration times for all the cars
on a given segment

Now consider the case of a PEO who remembers the expiration
times for all the cars inspected on edge e. The PEO can also visually
observe which of the inspected cars are still parked and which have
left their parking spaces. In this case, he has to choose whether to
wait at the current car, to step back to any of the previous cars on
that edge, or to walk to the next car on the current edge. As before,
assume that it takes A = w(e)/n, to walk to the next car on the same
edge.

At each car in a compliance state, the PEO can go back to any of the
previously inspected cars, stay put at the current car, or continue to
inspect the next car. This setting has a very similar flavor to the work
of Dror and Stulman (1987).

Consider the following case. Say the PEO is currently positioned at
carj. Let car at i < j have s;,(t') > 0 time left before its permit expires.
The PEO should walk back to car i only if the expected revenue per
unit time of pursuing car i is higher than the expected revenue per
unit time earned when following the CPP path.

To calculate the expected revenue per unit time for the option
of pursuing car i, we divide the expected revenue by the expected
time necessary for pursuing car i. At time t/, if the remaining time
on car i's permit s;(t') is greater than A|j — i| which is the time to
reach i, then the expected revenue is the ticket revenue r(1 — H (t'))
orr(1 — Hip(t', t")) where t” = t’ + sje(t'). If the remaining time on the
permit is less than the time the PEO takes to walk to it, then the
expected revenue is the ticket revenue r times 1 minus the proba-
bility of the car owner arrival between t’ and t” = t’ + A|j — i| which
is r(1 — Hi(t', t”)). Hence, the expected revenue can be written as
r(1 — Hi (t', t")) where t” = t' + max{s;(t'), A|j — i|}.
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Fig. 2. Options to step to previously inspected cars, or continue.

Given that the PEO is at carj at time t’, the function for the PEQ’s
time spent on car i, corresponding to the owner’s return time after
parking, can be defined as:

Wiep (%)

ifx < &e(t'+Alj—1i])

if&e(t' +Ali—i]) <xandx <L

if &t + Alj—i]) <xandx > L
(10)

24l — |
= [2Mji| +X— &t +Alj —1i])
21— i + S + Al —i])+a

The expected time spent for the option of pursuing car i while the
PEO is atj is

L
Al [ e el Al D)Vl > o)y
&ie (C+A1j—i])

+ Gie + Al — i) + @)1 = Hie(t', t' + max{sie (t"), Aj — i[})).

Hence, the PEO should walk back to car i if the expected revenue per
unit time spent is greater than or equal to E ;.

Now, consider when the PEO has more options than just walking
to a certain car as shown in Fig. 2.

Previously, the PEO was positioned at car 5 (he had inspected cars
1,2,3,4,and 5, but no ticket was issued) but has decided to walk back
to car 3. Say he issued a ticket to car 3. At this time t’, he knows of the
time left on cars 1, 2, 4, and 5. He may choose to walk to any of them
or continue to car 6, which he has not yet inspected. The simplest
rule is for him to go to the car that promises the highest expected
revenue per unit time. The calculation has to take care not to double
count the walking time. That is, when he was at car 5 and decided
to walk back to car 3, he has already accounted for the time walking
from car 5 to car 3 and back from car 3 to car 5. Therefore, when he
is at car 3 and evaluating this rule for car 5, he should not include the
time walking from car 3 to car 5. Hence, at time t/, he can calculate the
expected time spentat cars 1, 2,4, and 5 relative to his current location
(car 3) as:

L

car1: 2A|13-1| +/ = &1 + A3 = 1))v(x|x > E1e(t))dx
S1e(t+A13-1])

+ 1ot +AJ3 — 1))+ a)(1 — Hy(t', ' + max{si(t), A3 — 1]})).
L
car2: 243 -2[+ / (X = E20(t + 113 = 2D)WV[x > Ere(t))dx
Exe(t+113-2])

+ (S2¢(t' + AI3 = 2]) + @)(1 — Hoe (', t' + max{sz (t'). A3 — 2[})).

L

car4: 2A|13 -4+ / (X — Ege(t' + 1|3 = 4))V(X|x > Ege(t'))dx
ae (U +A13-4])

+ (S0t + 1|3 —4]) + a)(1 — Hae(t', t' + max{ss(t'), 1|3 — 4|})).

car5: 2A|3 -5+ /L (x — &Ese(t' + A3 = 5))vx|x > Ese(t'))dx

Ese (t+113-5])
+ (Sse(t’ + AI3 = 5]) + a)(1 — Hs (', t' + max{sse(t), A|3 — 5[})).
(11)

€4

e, e,
€3

€5 €7
€6

Fig. 3. Selected graph.

Using our heuristic rules, the PEO will choose the car with the
highest expected revenue per unit time. Below we describe a numer-
ical experiment - a simple simulation study - that ‘calculates’ the
expected revenue per shift when implementing our heuristic rules.

4. Numerical experiment
4.1. Selected graph and parameters

We chose the graph depicted in Fig. 3 for our numerical experi-
ment. This graph could be translated into a street grid that surrounds
two city blocks and cars are allowed to park on one side of each
street. The graph in Fig. 3 is not Eulerian. We have to dead-head
e3 to transform this graph into an Eulerian graph to allow for the
construction of an optimal CPP solution. The optimal CPP solution
requires the PEO to walk from the top-left node and follow the tour,
e; — e4 — e3 — e3 (reverse) — e; — eg — es — e;. He traverses e
in reverse direction in a dead-heading mode.

In the experiment we assume a constant number of cars on each
edge. Specifically, we tested with n, equals 25. That is, there are 175
parking spaces in total in the graph. The parameters that we used in
our numerical experiment are as follows:

 Each parking permit is valid for exactly 60 minutes (L = 60).

» Each violation ticket generates a revenue of r = 30 dollars.

o The PEO’s shift length S is 8 hours.

o The PEO spends b = 0.5 minutes inspecting the time left on each
parking permit.

o The PEO spends a = 5 minutes issuing a ticket.

o Dead-heading time w(e,) on any edge of the graph is 6.25 minutes
(A =0.25).

These parameters were selected based on observing parking rules in
various cities.

We experiment with a PEO remembering expiration times for var-
ious numbers of parked cars, Bernoulli probability of empty parking
spaces parameter z and time length of permits L.

For simplicity, we chose a triangle distribution to repre-
sent the distribution of the time between the parking of a car
and the return of its owner, with a mode m as 55, which is
5 minutes before the car turns into violation state and the end point
X is 90, which is 30 minutes after the car turns into violation state.

5. Results and discussion

We simulated 1000 one-shift rounds for each parameter’s setting.
In each round, a PEO traverses the graph for 8 hours (one shift). We
examine the effects of memory size, Bernoulli probability of empty
spaces on average revenue per shift zand permitlength L. The revenue
per parking ticket is set to $30.

5.1. Effect of the memory size

To observe the effects of memory size, we chose Z;, (t) = z = 0.30.
The computed p is 0.0591. We varied the memory size from 0 (no



N. S. Summerfield et al./ European Journal of Operational Research 242 (2015) 149-160 155
Average Average Average
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Fig. 4. Effect of the memory size.
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Fig. 5. Effect of A.

memory, no option to wait) to 25 (the PEO can memorize the parking
permit time of all 25 cars on an edge.) We ran 1000 rounds of ex-
periment for each one of the 25 memory options. Given our heuristic
rules, we expected to see an increase in average revenue per shift as
the memory size increases.

Fig. 4 shows the result of our experiment. When the memory size is
0, the simulation shows the average (over a thousand rounds of simu-
lation) revenue per shift to be $708.00 which is very close to the com-
puted expected revenue per shift of $707.16. The simulated PEO went
through an average of 572.64 parking spaces in an 8-hour shift, out of
these, 172.16 parking spaces were empty (30 percent). Among the oc-
cupied spaces, 23.60 cars were in violation state (approx. 5.9 percent).
The simulated PEO took approximately 3.26 tour cycle per shift.

Increasing the memory size to 1 (the PEO can wait at a car but
cannot walk back to previous cars), we noted a 28.57 percent im-
provement ($202.26) in the average revenue per shift. The subsequent
increases did not show significant improvement in the average rev-
enue per shift. To understand this result, we observed the number of
times the PEO waited at a car or walked back to previous cars.

Table 1 shows the average number of times per shift that the
PEO waited at a car or walked back to previous cars for each given
memory size. For instance, when the memory size was three cars, the
PEO waited at the car he was inspecting 20.34 times per shift, walked
back one space to a previous car 2.21 times per shift, and walked back
two spaces 2.04 times per shift. In total, the PEO waited or walked
back 24.58 times per shift. The average revenue per shift was $915.84.

Notice that the PEO rarely walked back far. That is, the expected
revenue per unit time on walking back further is rarely better than
the expected revenue per unit time of traversing the normal CPP
path. This is because the longer it takes for the PEO to walk back, the
higher the expected time spent; and the higher the chance that the
car owner comes back before the PEO reaches the car, and the lower
the expected revenue. One may ask how can we improve with respect
to the average revenue as the memory increase. What happens if the
PEO walks faster or rides a Segway? In this case, A decreases. See
Fig. 5 for the result with A = 0.05. We don’t see a significant changes
in the improvement pattern. The increase in the revenue seems to
come from the effect of lambda, but not the memory size.
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Table 1

Average number of times per shift that the PEO walked back to previous cars.

Number of parking spaces the officer walked back

Average revenue

13 14 15 16 17 18 19 20 21 22 23 24 Total

12

10

Average number of times that the officer walked back per shift

Memory size

0

708.00

910.26

22.19

22.19

912.72

221
221
2.19

21.23
20.34

915.84

24.58

2.04
2.02
2.03
2.06
2.06
2.09
2.07
2.08
2.08
2.07
2.12
2.06
2.06
2.07
2.07
2.07
2.08
2.06
2.09
2.07
2.08
2.06

923.25

25.70
26.86
27.96
29.06

30.01

1.93
2.02
2.01
2.05
2.03
2.03
2.08
2.05
2.04
2.07
2.07
211
212
2.03
2.05
1.98
2.04
2.03
2.00
1.99
1.99

19.56
18.74
18.06
17.45
16.86
16.32
15.81

931.17

1.87
1.88
1.95
1.89
1.93
1.93
1.90
1.92
1.89
1.87
1.86
1.93
1.90
1.95
1.90
1.95
1.92
1.87
1.87
1.87

221
221
221
2.19

939.63

1.74
1.73
1.72
1.79
1.81
1.79
1.76
1.78
1.82
1.81
1.81
1.80
1.79
1.76
1.82
1.76
1.78

951.09

1.62
1.67
1.69
1.66
1.68
1.68
1.66
1.68
1.75
1.69
1.73
1.67
1.69
1.69
1.69
1.67
1.69
1.67

960.96

1.56
1.61
1.55
1.55
1.58
1.57
1.59
1.59
1.57
1.57
1.54
1.56
1.57
1.55
1.58
1.59
5!

974.07

30.99
31.87
32.66
33.32
33.94

1.40
1.42

2.16
2.18

984.24

1.36

10
1
12
13

993.69
1,005.09
1.012.83
1,023.33
1.032.42
1,038.81

1.175
1.203
1.176
1.173
1.192
1.178
1.196
1.207
1.235
1.252
1.243
1.265
1.259
1.232
1.237

1.381
1.382
1.376
1.392
1.392
1.337
1.329
1.391
1.378
1.375
1.380
1.352
1.389
1.405
1.394

1.474
1.400
1.442
1.468
1.471

2.20
217

15.37
15.05

14.71
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1.083
1.097
1.114
1.097
1.077
1.119
1.108
1.164
1.094
1.117
1.124
1.093
1.093
1.108

0.887
0.931

2.18

34.64
35.09
35.44
35.94
36.32

0.851

217

14.45
14.18

14
15

0.840 0.672 -

0.843

0.904
0.920

217

0.615

0.690
0.724
0.740
0.740
0.744
0.745
0.762

1.469
1.460
1.471

2.12

14.01

16
17

1.045.08
1.052.70
1,055.91

0.557
0.560
0.563
0.554
0.549
0.568
0.561

0.847 0.667
0.876

0.932

2.15

13.86
13.69
13.57

0.43
0.44
0.43
0.42
0.45
0.46
0.4

0.693

0.948

2.14
2.16

18
19
20
21

36.59
36.78
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0.28
0.30

0.858
0.855

2.16
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0.46
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0.980
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5.2. Effect of the Bernoulli probability of empty spaces

To observe the effect of the Bernoulli probability of empty spaces,
we varied z from 0.00 (all parking spaces are occupied) to 0.90
(10 percent of parking spaces are occupied) and the memory size
from O to 25. Given our heuristic rules, we expected to see a linear
decrease in average revenue per shift as the Bernoulli probability of
empty spaces increases.

Fig. 6 shows the result of our experiment. Consider changes in
the average revenue when the memory size is 0. When z = 0.0, the
average revenue per shift was $782.9. The average revenue per shift
decreased by 2.85 percent ($22.3) when z increased to 0.1. The rate
of decrease in average revenue grew as z increased. The same effect
can be observed for other memory sizes.

With constant p, in one tour cycle, the PEO encountered a lin-
early decreasing number of cars with an expired permit as z linearly
increased. However, the more the empty spaces, the faster the PEO
completes a tour cycle because the PEO does not need to spend b unit
time inspecting empty spaces. Thus, in an 8-hour shift, the PEO can
complete more tour cycles when z = 0.5 than when z = 0.0. Recall
that for each tour cycle, the probability of parking violation is con-
stant. Hence, the 10 percent decrease in the number of empty spaces
when most parking spaces were occupied generated less effect than
the 10 percent decrease when most parking spaces were empty.

5.3. Effect of the parking permit time length L

To observe the effect of the parking permit time length, we varied
L from 30 minutes to 120 minutes, and the memory size from 0 to 25.
We kept the mode and the upper bound of the triangle distribution
at 5 minutes before L and 30 minutes after L, respectively. Given our
heuristic, we expected to see a decrease in average revenue per shift
as L increases.

Fig. 7 shows the result of our experiment. Consider changes in the
average revenue when the memory size is 0. When L = 30 minutes,
p = 15.13 percent, the average revenue per shift was $1313.7. The
average revenue per shift decreased by 46 percent ($605.7) when L
increased to 60 minutes (thus p decreased to 5.91 percent).

Essentially, the PEO encounters a decreasing number of cars with
an expired permit in each tour cycle, as p decreases. However, the less
the parking violations, the shorter the PEO takes to complete a tour
cycle because the PEO needs to spend a unit time issuing each ticket.
So, in an 8-hour shift, the PEO can complete fewer tour cycles when
p = 15.13 percent than when p = 5.91 percent. Notice also that the
improvement in the revenue from memory size of 0 to memory size
of 1 is greatest when p is small.

5.4. Effect of the distribution of the owner’s return time v(x)

In the previous section, we experimented with a triangle distri-
bution. In this section, we experiment with Kumaraswamy distribu-
tion, which is similar to the Beta distribution. The original probability
density function of this distribution is abx®~'(1 — x9)P~1 for x € [0, 1]
before we generalized it to our time range. We kept the parking time
L at 60 minutes and with z = 0.3. We select Kumaraswamy parame-
tersa = 4 and b = 5.6275 so that the mode m is still at 55, which is 5
minutes before the car turns into violation state and the end point X
is still 90, which is 30 minutes after the car turns into violation state.
Fig. 8 shows the selected distribution.

The computed p is 0.03946. We varied the memory size from 0
to 25. We ran 1000 rounds of experiment for each one of the 25
memory options. Fig. 9 shows the result of our experiment. When the
memory size is 0, the simulation shows the average revenue per shift
to be $511.8 which is very close to the computed expected revenue
per shift of $513.97. The simulated PEO went through an average of
620.31 parking spaces in an 8-hour shift, out of these, 186.09 parking
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Memory size
values of z A0% +10% ®30% m50% X 70% 090%
Average Revenue per shift
for different values of z
0% 10% 30% 50% 70% 90%
Memory | Average Average Average Average Average Average
size Revenue | Std.Dev | Revenue | Std.Dev | Revenue | Std.Dev | Revenue | Std.Dev | Revenue | Std.Dev | Revenue | Std.Dev
per shift per shift per shift per shift per shift per shift
0 782.9 112.5 760.6 110.8 708.0 110.2 621.3 108.9 486.3 104.2 229.8 74.5
1 984.4 93.2 963.2 91.9 910.3 96.1 826.7 93.0 688.9 88.5 390.0 73.6
2 991.5 95.1 968.1 91.9 912.7 92.8 829.9 92.8 690.2 87.1 389.9 75.5
3 1,000.1 94.7 975.5 93.3 915.8 90.9 833.0 91.5 690.1 86.4 389.6 75.3
4 1,014.5 92.7 988.8 93.9 923.3 92.1 837.1 93.5 690.5 87.4 389.7 74.6
5 1,029.1 94.2 1,001.7 92.6 931.2 92.7 840.1 92.0 691.9 85.8 389.3 73.5
6 1,047.0 94.4 1,016.7 93.9 939.6 94.8 844.3 90.7 694.4 85.4 390.0 72.9
7 1,063.1 92.0 1,032.6 93.8 951.1 96.7 851.0 89.4 696.6 87.8 390.4 73.7
8 1,081.7 91.6 1,050.3 94.6 961.0 98.7 857.4 90.2 698.0 87.3 389.9 73.0
9 1,101.8 97.2 1,065.5 96.6 974.1 98.1 863.6 89.7 700.6 89.0 390.9 73.1
10 1,116.7 98.5 1,078.0 93.4 984.2 96.9 867.8 90.8 704.3 89.1 390.8 72.2
11 1,134.5 100.1 1,092.2 97.3 993.7 98.9 875.2 93.0 706.7 88.4 391.6 73.3
12 1,150.7 102.9 1,105.7 96.1 1,005.1 98.5 881.6 94.4 708.9 88.5 391.9 70.9
13 1,163.2 100.6 1,115.7 97.3 1,012.8 100.8 888.2 93.5 713.5 88.0 391.3 73.6
14 1,173.3 101.8 1,127.6 97.2 1,023.3 98.8 892.1 93.7 715.6 89.6 391.5 72.3
15 1,181.3 101.2 1,139.7 99.6 1,032.4 100.3 895.0 96.2 717.7 90.4 391.7 73.0
16 1,190.2 100.7 1,145.0 99.2 1,038.8 100.1 899.6 96.5 720.3 88.2 391.8 73.0
17 1,193.4 102.7 1,152.5 101.5 1,045.1 100.8 903.5 97.3 721.3 90.9 391.9 73.9
18 1,200.4 98.7 1,160.5 98.2 1,052.7 100.7 906.9 95.7 722.5 90.2 392.3 73.0
19 1,203.8 101.4 1,165.1 101.3 1,055.9 102.2 914.0 97.0 725.6 89.1 391.7 72.7
20 1,204.4 99.5 1,165.7 100.7 1,059.5 99.7 918.4 98.0 727.0 90.5 392.3 71.9
21 1,207.7 101.5 1,171.2 102.9 1,062.1 98.9 921.6 99.8 726.5 91.0 393.4 73.0
22 1,207.5 99.2 1,173.5 100.8 1,067.5 97.5 923.3 96.8 728.6 90.6 393.8 73.9
23 1,209.1 101.4 1,174.1 99.7 1,068.9 97.0 923.8 98.2 729.1 88.9 393.9 72.2
24 1,210.4 100.3 1,175.9 102.0 1,068.5 96.9 926.6 99.2 729.2 89.3 393.8 73.2
25 1,212.2 101.1 1,173.2 102.3 1,067.6 100.3 924.1 99.6 730.4 87.7 393.6 73.6

Fig. 6. Effect of the Bernoulli probability of empty spaces.

spaces were empty (30 percent). Among the occupied spaces, 17.13
cars were in violation state (approx. 3.9 percent). The simulated PEO
took approximately 3.54 tour cycle per shift.

Since the percentage of cars in violation state when using Ku-
maraswamy distribution is less than the similar setting when using
triangle distribution as shown in Fig. 4, the average revenues are less
for all memory sizes.

Increasing the memory size to 1, we noted a 46.37 percent im-
provement ($237.3) in the average revenue per shift. The subsequent
increases did not show significant improvement in the average rev-
enue per shift. This shows that our heuristic is robust for the change
in the distribution.

6. Summary
6.1. Technical summary

In this paper we show that revenue collection from car parking
violations can be modeled as a Chinese Postman Problem (CPP) on a
street graph and prove that the car inspection order is optimal when
the PEO automatically follows a preset route. We assume throughout
the analysis in the paper that the number of cars whose permit expira-
tion times a PEO can memorize does not impact the traversing order
of the graph’s edges. We discard the case of the PEO re-optimizing
his CPP inspection route when retracing his route to a previously
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Average Revenue per shift

2,000.0 for different permit duration time
Memory 30 min 60 min 90 min 120 min
1,800.0 aaaaan RN N size p=15.13% | p=5.91% | p=3.14% | p=1.94%
1600.0 A A 0.0 1,313.7 708.0 423.8 278.6
’ A A 1.0 1,450.7 910.3 617.1 446.0
A A 4 2.0 1,474.5 912.7 615.7 443.1
% 1,400.0 A 3.0 1,502.9 915.8 616.7 441.2
g 12000 4.0 1,538.0 923.3 617.1 440.7
a M 5.0 1,573.5 931.2 619.6 441.8
2 L o000 NPT R AR { 6.0 1,607.8 939.6 621.0 4415
; PO T LI 4 7.0 1,637.7 951.1 622.0 443.7
2 5000 8.0 1,663.3 961.0 629.3 445.0
g . . % % % 9.0 1,684.5 974.1 632.4 447.3
2 00 XX X X X X X X X X X X X X X X X X X 10.0 1,700.2 984.2 636.6 449.9
11.0 1,707.2 993.7 642.0 451.6
wpp X " EEEEEEEEEEERERE" EmEEEEN 12.0 1,712.5|  1,005.1 646.2 454.2
13.0 1,719.2 1,012.8 650.9 456.1
2000 L 14.0 1,721.0 1,023.3 656.6 459.9
15.0 1,723.6 1,032.4 662.8 463.8
. 16.0 1,722.9 1,038.8 668.0 466.0
0.0 <o 10.0 150 20.0 250 17.0 1,7243|  1,045.1 669.4 468.3
Memory size 18.0 1,7236] 10527 6773 470.6
19.0 1,723.7 1,055.9 677.3 472.5
20.0 1,723.6 1,059.5 680.4 474.0
21.0 1,723.5 1,062.1 685.5 475.8
values of L A 30 min... 460 min... 90 min... B 120 min... 22.0 1,723.6 1,067.5 686.1 479.6
23.0 1,723.6 1,068.9 687.6 480.9
24.0 1,723.7 1,068.5 690.4 480.8
25.0 1,723.7 1,067.6 690.4 481.3

Fig. 7. Effect of the parking permit time length L.
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Fig. 8. Kumaraswamy distribution.

inspected car since the likelihood of such an event is small. The PEO
commits to traversing the assigned street subgraph by following the
optimal CPP path.

We focus on the PEO’s real-time online decisions at each in-
spected car. The PEO has the options to wait at the current car,
to step back to previously inspected cars on that edge, or to walk
to the next car. We propose a myopic set of rules that help the
PEO to make a locally best decision aimed at maximizing the ex-
pected revenue per unit time. We tested our heuristic rules by run-
ning a simulation experiment using various parameters. The main
finding is that by allowing for the PEO to wait by a car (for some
cars) with a valid parking permit until the permit’s time expires
raises the average collected revenue significantly (10-69 percent).
Increasing the number of inspected cars whose permit expiration
times the PEO can remember beyond one does not significantly
increase the average revenue and therefore is unlikely to happen.
We also validated the ‘obvious’ that the average revenue depends
on the probability of empty spaces and the probability of parking
violations.

We tested the effect of changing dead-heading time A. Decreasing
A will increase the average revenue per shift. We did not test the
effect of inspecting time b, and ticket issuing time a. Increasing a and
b will definitely decrease the average revenue per shift regardless of
the probability distributions of empty spaces and parking violations.
We did, however, test the effect of the number of parking spaces per

1,000.0 Memory Average Memory Average Memory Average
% AaaAAAAAAAL size Revem'le Std. Dev size Revenl'xe Std. Dev size Revenl'Je Std. Dev
§ 8000 | aaAkAA AAAA per shift per shift per shift
-3 0 511.8 105.0 10 804.5 93.3 20 862.1 93.9
§ 600.0 [ 1 749.1 88.9 11 815.0 93.8 21 864.3 92.7
% 200.0 2 748.8 88.2 12 821.8 92.3 22 868.3 94.5
; 3 752.0 90.0 13 831.2 94.5 23 869.7 95.7
frf 200.0 4 755.8 88.7 14 839.5 93.0 24 869.8 94.6
5 5 760.8 89.1 15 842.2 92.9 25 869.4 92.9
< - 6 769.6 90.9 16 847.6 91.8
0 2 4 6 8 101D 1‘% 16 18 20 22 24 7 778.0 91.3 17 854.3 92.5
Memory size 8 787.7 89.9 18 860.4 95.0
9 798.0 91.7 19 859.2 92.4

Fig. 9. Experiment result for Kumaraswamy distribution.
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edge and found that it does not effect the average revenue per shift
at all because the PEO would encounter the same number of parking
violations in 8 hours.

Our simulation experiments were based on several assumptions
regarding the respective probability distributions. We assumed that
the probability distributions of empty spaces is Bernoulli. We assume
that the probability distribution of the PEO arrival at each car is uni-
form. Moreover, we assume that the probability distribution of the
car owner’s return time counting from the moment the car owner
parks her car is a triangle distribution. (Note, however, that when we
replaced the triangle distribution with Kumaraswamy distribution,
we reached similar results.) These plausible assumptions might need
to be validated with real data before our online heuristic rules are to
be implemented. However, once the data is collected and the maxi-
mum time worth waiting for a valid permit to expire is calculated, the
actual implementation into the daily routine operation of the PEOs is
straightforward.

One might ask what would happen if the probability distribution of
empty spaces differs among different edges and varies over a period
of time. For instance, parking spaces near a popular restaurant are
usually full around lunch time and dinner time. Should the PEO follow
the optimal CPP path, or should the PEO traverse the edge with denser
parking cars more often? This question is outside the scope of this
paper as we do not test for different probability distributions of cars’
turnover rates on edges.

Another issue pertains to the construction of an optimal CPP
path. There could be multiple optimal CPP paths which result in
the same distance travel per tour cycle. In our experiment with the
graph in Fig. 3, we chose the CPP path that traverses edge e; in a
dead-heading mode right after inspecting all cars on that edge. If
a different path was selected, e.g. e — e4 — e3 — €5 — eg — €7 —
ez (reverse) — e;, edge e3 would be repeated long after the PEO in-
spected the cars on that edge. In this case, some cars’ permits might
have expired and some new cars might have been parked in previ-
ously empty parking spaces on edge es. In that case it might be better
for the PEO to reinspect edge es, instead of traversing it in a dead-
heading mode. The problem of selecting an optimal CPP solution that
allows for traversing an edge in a dead-heading mode immediately
after its regular traversal is outside the scope of this paper. We are
not aware of any work on this topic or on the question of establishing
an existence of such optimal CPP solution for any nontrivial family of
graphs.

One might also ask what would happen if we do not assume
that the PEO commits to traversing the subgraph following the se-
lected optimal CPP path. For instance, consider the following sce-
nario. The PEO was able to memorize the parking time left of all
parked cars in the subgraph while following CPP tour: e; — e4 —
e3 — e3 (reverse) — e; — eg — es — ey. After he inspected the last
(top most) car on edge es in Fig. 3, he recalled that the left most car
on edge e3 would have 1 minutes left. He might want to change the
course of his traversal to inspect the left most car on edge e3 before
continuing on to edge e,. Such deviation from the original CPP path
would require very little time and might result in larger expected rev-
enue per unit time. Again, we do not examine such deviations in the
current work.

6.2. Discussion

Our study has broader implication beyond revenue collection from
illegally parked cars. Clearly, any inspection activity over edges of
graphs that involves revenues, say ice-cream vendors, etc. would
have a similar flavor and could use similar CPP based logic and
analysis as the one used in this paper. The results of this study
reveals the existence of a ‘bang for the buck’ phenomena; pay at-
tention to the remaining time for the currently inspected car -
it matters. In the broader context it translates to paying at-

tention to the dynamic nature of events along the arcs of the
graph.

The revenues collected by parking enforcement operations are
significant as demonstrated by the available data. Thus, increasing
such revenues even more, say by 10 percent, by implementing a sim-
ple rule prescribing when a PEO ought to wait in front of a car with
a valid permit (without going back to previous cars) and when to
continue on his CPP route (or any preset inspection route) has im-
portant revenue implications. We argue that the implementation of
such a rule is feasible in practice. Calculating (or even estimating
by trial and error) a threshold time value and setting a policy that
PEOs wait by the car upon inspection of a valid parking ticket if the
time left on the ticket is below the threshold value and continue
otherwise, represents a reasonable task. The threshold time value
can be calculated by a city manager/analyst prior to communicating
to PEOs.

Another feasibility question relates to the technology of issu-
ing/purchasing a parking permit. Since there are many different park-
ing permit schemes implemented in the various cities across the
globe and the technological frontier of issuing short term parking
permits is evolving, is our car parking permit inspection procedure
with the rule that tells a PEO when to wait in front of a car with
a valid permit restricted by a specific technology? The clear answer
is that the procedure is independent of the technology. Regardless
if the technology used is the ‘old’ coin operated parking meters,
central kiosk parking ticket purchasing machines, electronically (re-
motely adjusted) purchase of parking permits, all these technolo-
gies require human inspection and the ticketing of parking violations
unless a expensive automated violations monitoring system is in-
stalled. We note (Seattle Parking Management Study, 2002) that hav-
ing parking inspection PEOs patrolling city streets generates not only
considerable revenues but also as its by-product it generates con-
siderable societal benefits in terms of maintaining order and crime
prevention.
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Appendix A. Description of the simulation study

The scheme for our numerical analysis is outlined in the pseudo
code below. We use the graph in Fig. 3, with the inspection CPP tour
always starting at the top left corner of the graph and executing the
following CPP tour: e; — e4 — e3 — e3 (reverse) — e7 — eg — €5 —
e,. In the first step, the subroutine selects the first parking space on
edge e; for inspection. The walking time is increased by A. We ‘call’ a
random number generator (randomizer) to determine if this parking
space is empty, occupied by a car with a valid permit, or occupied by
a car with an expired permit.

For instance, the randomizer generates the first number between
0 and 1 from a uniform distribution; if the number falls between 0
and z, the parking space is empty, if the number falls betweenz and 1,
the parking space is occupied. The second random number between
0 and X is generated from a triangle distribution for the car owner’s
return time. The third random number also between 0 and X is gen-
erated from a uniform distribution for the PEO arrival time. If the
third random number is greater than the second number, we regen-
erate both numbers. If the third number is smaller than the second
number and greater than L, the parking space is occupied by a car in
violation state. If the third number is smaller than the second num-
ber and smaller than L, the parking space is occupied by a car with a
valid permit.
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Main routine
Set the current position of the officer to the top left corner of the graph.
Determine CPP path including direction and the dead-heading arcs.
While clock time t < S:
Determine the target position i (Subroutine).
If this is the first car on an edge to get inspected,
reset the memory of all cars’ time left s;, (t).
Walk to the target position i.
Increase t by walking time and deadhead traversing time if any.
If the time left of i is not previously known,
generate three random numbers from [0,1] uniform distribution (for z),
[0,X] triangle distribution for &; (t), and [0,X] uniform distribution for y
to determine if i is empty, occupied by a car with a valid permit,
or occupied by a car with an expired permit.
10 If i is occupied by a car with an expired permit, mark i as ticketed,
increase t by a + b and increase revenue by r.
11 If i is occupied by a car with a valid permit,
increase t by b. The amount of permit time left is L — y.
12 Else
13 If owner comes back before the permit expires (& (t) < L),
mark i as empty. Increase t by walking time and waiting time, if any.
14 Else,
mark i as ticketed. Increase t by walking time and waiting time,
and ticket issuing time a, and increase revenue by r.
15 End if.
16  Endif.
17 End while.
Subroutine: Determine the target position
S1 Set the next parking space on the CPP path that has not been inspected
as the default target position i
S2 For each car j in the memory (including the current car if not ticketed)
S3  Determine if car j's owner has returned to the car using &g (t).
If so, skip to the next car in the memory.
S4  Calculate the expected profit per expected time spent of car j.
S5  If the calculated amount is greater than the default target position,
set car j as the new target position.
S6 End for.
S7 Return the target position.

v WN =

[{= e BN ie))

Discussion: If the parking space is empty, the PEO moves on to de-
termine the next target car (line 4). If the parking space is occupied
by a car with an expired permit, the PEO immediately issues a ticket
and increases the revenue by r. The clock time t is increased by a + b
which is the inspecting time b plus the ticket issuing time a. If the
parking space is occupied by a car with a valid permit, we determine
the amount of parking permit time left by subtracting the PEO arrival
time y (generated by the randomizer) from L. The clock time t is in-
creased by b. Then, the PEO moves on by determining the next target
car (line 4 calling the subroutine).

Assume that the first parking space is occupied by car 1 with a valid
permit. The subroutine sets the second parking space on the CPP path
as the default target position. We have one car in memory, which is
car 1. Hence, we determine whether the expected profit per expected

time of waiting at car 1 is greater than the expected revenue per unit
time of traversing CPP path without waiting (expected revenue per
unit time of the second parking space).

Assume that it is more profitable to wait at car 1. We would not
have to increase the walking time as the PEO is already at this parking
space. Using the random number previously generated for & (t), and
y, we determine whether the owner will return to the car before
the permit expires. If the owner returns to the car before the permit
expires, we increase the waiting time upto the time when the owner
returns. If the owner returns to the car after the permit expires, we
mark car 1 as ticketed, increase the revenue by r, and increase the
waiting time by L —y + a.

Throughout the numerical experiment, the memory size is inter-
preted as the number of cars that the PEO can remember their parking
permit time left. For instance, if the furthest parking space that the
PEO has inspected is car 8 and he has four car memory option, he
would be able to remember the time left of cars 5, 6, 7, and 8.

At the end of one tour (the PEO reaches the starting point), we reset
every car’s time. We assume that they are all new cars. This assump-
tion is reasonable because one tour takes longer than 60 minutes —
the available permit time.
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