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ABSTRACT

This research focuses on minimizing the life cycle cost of a fleet of aircraft. We consider two cate-
gories of repairable parts; upon failure of a first category part (No-Go part), its aircraft becomes
non-operational but when a second category part (Go part) fails, the aircraft can still operate for a
predetermined period of time before it becomes non-operational. In either case, to minimize air-
craft downtime, the failed part has to be replaced with one from the good part inventory,
returned from the repair facility or through exchange from a supplier—an emergency sourcing
mechanism which is common in the airline industry. Motivated by the observation that a modern
aircraft contains a significant fraction of Go parts (estimated at 50% of all repairable parts), we
develop a strategic model to decide on stocking and sourcing policies using Erlang-A and Erlang-
B queueing models. The suggested model provides an alternative to existing models that typically
consider only failed parts that immediately cause a system to be non-operational, and do not con-
sider an emergency sourcing mechanism. A realistic implementation of the model for a fleet of
Boeing 737 aircraft, based on a list of 2,805 part types, demonstrates that significant cost savings
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may be achieved by explicitly modeling Go parts.

1. Introduction

We consider the problem of supporting a fleet of mission-
critical systems (our focus is on a fleet of aircraft, e.g., a fleet
of Airbus 330s) that are subject to random failures. Fleet
availability is achieved by returning failed systems to service
promptly. Such a resumption to service is achieved by
replacing failed parts with good ones. This is accomplished
through the deployment of repair capabilities and the pur-
chase of spare parts, both of which require large capital
expenditures. At a more strategic level, firms can also con-
sider options that affect the underlying reliability of aircraft
(or systems) in the field and/or the sourcing of parts from
alternative (emergency) supply sources.

Minimizing the life cycle costs for such fleets is an import-
ant objective in both commercial and defense environments,
where capital-intensive equipment must operate reliably over
extended periods of ownership and use. The approach most
commonly used in practice to solve this problem is based on
algorithms that capture the effects of random parts failure,
long repair and replenishment lead times, and complex operat-
ing environments. The use of such algorithms has become the
standard in inventory planning systems currently in-use in
industries throughout the world, such as aerospace and
defense, semiconductor equipment, automobile and med-
ical equipment.

The research described in this article is motivated by a
project conducted with an international airline to improve

the management of expensive repairable parts, such as
engines, power generators, navigation and communication
equipment, etc. The airline conducted a program for the
purchase of a new fleet of aircraft, which included large cap-
ital expenditures for supporting the fleet through the pur-
chase of expensive repairable parts. We observed that
repairable parts in the airline industry, in general, are classi-
fied into one of two categories; failures of first category parts
cause an immediate grounding of the aircraft until their
replacement by good parts (most prior research only consid-
ers this category). When parts from the second category fail,
the aircraft can still operate for a predetermined period of
time, typically 3 to 10 days, after which it is grounded if the
failed part is not replaced by a good one. Parts may also be
classified into the second category if engineers issue an
engineering approval for an aircraft to operate for a limited
period of time with a failed part, on a case-by-case basis. It
is common to refer to parts in the first category as “No-Go”
parts and parts in the second category are referred to as
“Go” parts. The fraction of Go parts within a modern air-
craft is estimated, by our partner airline, to be half of the
overall number of repairable parts. This estimation was con-
firmed by our examination of a list of 205 repairable parts
for a Boeing 737. In this list, Go parts account for 55% of
the parts and 50% of the purchase cost. Examples of Go
parts (purchase prices, which are tens to 500 thousand dol-
lars per part, are not detailed, due to propriety limitations)
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include electrical power generators, an air data inertial refer-
ence unit inside the navigation system, navigation com-
puters, auto pilot system parts, communication equipment,
such as radios, entertainment system parts and many more
parts, which are spread throughout all aircraft systems.

Supply chain planning models to support system avail-
ability in use today typically do not account for Go parts,
although it is clear that consideration of such parts could
lead to potential savings since they can act as a mechanism
to increase the reliability of the system. In other words,
unlike existing models, the suggested model accounts for the
duration in which a part has failed but the aircraft is still
operational.

We also consider an emergency sourcing mechanism,
which is commonly named exchange by airlines. Typically,
an airline in need of a spare part receives it quickly from a
third party (hereafter, a supplier) for a fee. The supplier gets
the failed part and charges its repair cost to the airline.
Today, exchange is done as an emergency response to stock-
outs. Exchange mechanisms may have different cost struc-
tures, such as time-dependent costs, but in this article we
consider an expected cost per exchanged item, which is con-
sistent with the literature for emergency procedures (e.g.,
Van Houtum and Kranenburg, 2015). Henceforth, we refer
to such exchanges as an Emergency Procedure (EP) and
include the EP within the planning process. As we demon-
strate, there are cases in which it is advisable to apply emer-
gency sourcing proactively in order to prevent stockouts
instead of doing so reactively, which is typical. For example,
one alternative to achieve high availability is to purchase
and stock additional parts. Another alternative, which we
denote as the proactive EP policy, may be cheaper. Under
such a policy, an EP is initiated whenever there is a demand
for the last part in stock (rather than when there is a stock-
out). The suggested model considers such policies and sets
the appropriate policy per part type.

Our treatment of the problem is strategic. The objective
function is to minimize capital expenditure for parts over
the fleet’s life-cycle subject to a service level goal based on
fleet up-time. Purchase decisions for repairable spare parts
(e.g., engines) are typically made at the beginning of a pro-
gram roll-out phase and are considered to be strategic, since
they represent a considerable capital expense and can have a
major impact on fleet availability. Since our model explicitly
considers emergency sourcing, we imply that there is an
incentive for airlines to form strategic emergency sourcing
alliances with suppliers in order to get better prices and ser-
vice performance, and for suppliers to guarantee their per-
formance in a long-term contract. The introduction of a Go
part may require re-design of the part and/or changes to its
maintenance processes, which are also strategic decisions.
Finally we note that the strategic treatment of the problem
in this setting is in line with the current trend in the after-
sales market towards outsourcing and performance-based
contracts (Guajardo et al., 2012).

The main contribution of this article is in developing a
repairable parts management and supply chain sourcing
model that accounts for the different categories of parts that

we have observed in practice. Such a model, which is first of
its kind to the best of our knowledge, achieves lower, pos-
sibly much lower costs to support a fleet of aircraft. The
methodological contributions of this research include the
application of Erlang-A and Erlang-B queueing models for
modeling Go and No-Go parts, respectively. These queueing
models feed into an optimization problem to minimize the
sum of life-cycle costs. Our solution approach breaks down
the original hard-to-solve optimization problem into a series
of efficient solutions, each of which provides the minimal
cost for a given downtime value. The solution time for a
realistic size problem with thousands of part types is less
than 20 minutes on a personal computer.

The problem characteristics that motivated our model
can be found in industries other than airlines, where cost-
effective after-sales support of complex equipment is a stra-
tegic necessity. Our analysis of the underlying parts stocking
of both Go and No-Go parts and EP sourcing decisions also
leads to insights concerning the strategic use of these
options. Thus, this article also contributes to the extensive
literature on emergency sourcing, as well as to reliability
improvement.

2. A literature survey

The standard model used to quantify the tradeoff between
repairable stock levels and system availability is the Metric
inventory model (introduced by Feeney and Sherbrooke,
1966; Sherbrooke, 1968). It was originally developed for the
United States Air Force for optimizing the deployment of
spare parts inventory. The Metric model aims to minimize
expected inventory costs subject to meeting a probabilistic
service goal based on fleet availability. It does not consider
repair costs, as it assumes that all parts have to be repaired
and there is no differentiation between repair costs at differ-
ent locations. Metric-based models have been extended to
include multi-indenture problems (Muckstadt, 1973), lateral
transshipments (Lee, 1987), cannibalization (Gaver et al.,
1993; Sherbrooke, 2004), non-backordering emergency ship-
ments (Cohen et al, 1988) and location-dependent lead
times (Wang et al., 2000). Although most of the research
considers infinite repair capacity, Diaz and Fu (1997),
Perlman et al. (2001), and Sleptchenko et al. (2002) used a
queuing model approximation to prioritize repairs in a finite
capacity setting. Sleptchenko et al. (2003) also developed a
greedy algorithm to decide on capacity and inventory levels.
Their modeling approach was extended by Lau and Song
(2008) to accommodate non-stationary demands.

A number of papers have considered the joint optimiza-
tion of repair capacities, inventory investments, and repair
sourcing (Alfredsson, 1997; Rappold and van Roo, 2009;
Basten et al., 2015; Cohen et al., 2017). Alfredsson (1997)
used an Integer Programming (IP) model to decide on
repair allocations and Target Stocking Levels (TSLs). Others,
such as Rappold and van Roo (2009), used a stochastic inte-
ger program to jointly determine repair facility location and
inventory allocation. Basten et al. (2012) and Basten et al.
(2015) introduced an IP for a level of repair analysis model



of the inventory-allocation problem, which was solved
through decomposition and iterative methods. Cohen et al.
(2017)) considered both central and local (depot) repair pol-
icies and developed a heuristic solution algorithm. All of
these models are based on a steady state, state-independent
policies, which are suitable for longer term planning deci-
sions such as the ones we consider, i.e., how much stock is
needed to support a system and what contractual sourcing
policies should be used. It is worthwhile to mention models
that consider the system’s state. Such a model was developed
by Caggiano et al. (2006) to dynamically decide on repair
and inventory allocations for operational day-to-day pur-
poses. These models are typically intractable and use heuris-
tics to find good policies.

There is also a body of research that is directed towards
evaluation of the decision to improve the reliability of parts
as a means to achieve a desired level of fleet availability.
Typically, this decision is considered jointly with the deci-
sion to set a stocking level for each part. An economic ana-
lysis of this tradeoff was considered in Kim et al. (2015) in
the context of different service support contracting options,
i.e., performance-based or time-and-material, where reliabil-
ity improvement was based on part failure rates. Another
relevant body of research evaluates whether to apply inter-
val-based maintenance or condition-based maintenance (e.g.,
Christer, 1982). Condition-based maintenance approaches
that use information about the actual condition of parts can
be used to enhance stocking models and to facilitate
improved decisions as demand information becomes avail-
able (e.g., advanced demand information research Gallego
and Ozer, 2001; Howard et al., 2015).

Relaxation/column generation methods represent a solu-
tion approach to solve stocking and EP optimization prob-
lems (e.g., Kranenburg and van Houtum, 2007; Alvarez
et al., 2013). Oner et al. (2013) used an Erlang-B queueing
model approach for analyzing design decisions where the
objective is to minimize life cycle costs of a fleet of systems
by deciding on stock, design and repair sourcing policies.
The design decision they considered is whether or not to
install a redundant part in a system to increase its reliability.
Other contributions to modeling reliability improvement
can be found in Xie et al. (2014) who extended the analysis
of redundancy, and in Jin and Tian (2012) who considered
a non-stationary version of the problem where the installed
base changes over time.

Our model formulation extends Oner et al. (2013) to the
setting in which an organization does not design the parts
used, but instead has to decide on both stocking and EP
policies. Unlike previous models in this area, we also con-
sider the two categories of Go and No-Go parts noted
above. Also, as noted above, the inclusion of Go parts repre-
sents another approach to improving system reliability by
allowing for the consequence of a part failure to be delayed
in terms of system downtime. To the best of our knowledge,
our model is the first to address both EPs and these two
part categories simultaneously.

There is an extensive literature on sourcing for repairable
parts which includes papers concerned with pooling (lateral
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transshipments) and emergency sourcing. A recent contribu-
tion by Howard et al. (2015), incorporated the use of pipe-
line information to dynamically determine sourcing for cost
minimization. Our article contributes to the repairable
sourcing literature by considering a setting with availability
constraints and by allowing for proactive use of the EP
sourcing mechanism, which can be applied in both shortage
and non-shortage situations. As noted, we observed its use
in emergency (shortage) situations only, in the airline indus-
try and particularly in our partner airline. A related paper
by Oner et al. (2015) considers the option to proactively
replace parts before they fail when a new, more reliable
design becomes available.

3. Description of the environment and main
assumptions

We examine the problem of minimizing the sum of spare
parts purchase costs, inventory holding costs and the
source-dependent repair costs, subject to a service constraint
based on fleet availability (up-time). We consider a fleet of
N identical mission-critical aircraft (e.g., a fleet of Boeing
737s) that has to satisfy a service level goal based on fleet
availability. Indeed, airlines and air forces support each fleet
of aircraft separately, subject to overall service policies and
budget constraints. The model can handle the support of a
new fleet of aircraft or the addition of aircraft to an existing
fleet (i.e., more failures are expected). In the latter case, we
design the model so it can be resolved with the new failure
rates; the differences between suggested and previous stock-
ing policies must be adjusted to achieve the desired level of
availability. We note that the model introduced in this art-
icle can be used in other industries.

We consider a steady state continuous review model, which
is suitable for making long-term decisions, such as the pur-
chase of expensive spare parts. The planning horizon, which is
5 to 15 years for our airline partner, is long enough to achieve
steady state and its duration, T, may represent the remaining
lifetime of the fleet, or a strategic planning period over which
the organization plans its expenditures for fleet support. The
service level goal corresponds to a fleet downtime D, through-
out the planning horizon—smaller downtimes correspond to
higher fleet availability. A downtime occurs when a part fails
and there is a delay in restoring the aircraft to operations, due
to parts shortages and the time required to complete a repair.
The actual total downtime is the summation of downtime con-
tributions of each part, which amounts to the total time that
aircraft are down due to part failures. Consistent with the lit-
erature, we assume that parts fail only when aircraft operate
(Sherbrooke, 2004; Oner et al, 2013). Time and monetary
units are in years and dollars.

Following standard practice, we assume that an aircraft is
composed of line replaceable units (parts) i = 1,...,m. Each
part type i fails, according to a homogeneous Poisson pro-
cess with rate A;. In other words, 4; is the rate of failures of
part type i across the fleet. Indeed, assuming a homogeneous
Poisson failure process is reasonable for aerospace and
defense environments in which only parts of mature design
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are used, repairs are performed according to a specification
and parts are screened before returning to stock. The short
downtimes of systems, relative to the planning horizon T,
support the constant failure rate assumption (e.g.,
Sherbrooke, 2004; Oner ef al., 2013; Jin et al., 2015).

These line replaceable units are typically characterized by a
high purchase cost, long lead times and have a critical effect
on the fleet’s availability. They also are typically highly reliable.
Thus, an (s;—1,s;) base stock policy is standard, where s; is
the TSL for line replaceable unit i (Sherbrooke, 2004, p. 6).
We assume that failures of line replaceable units, within an air-
craft, are mutually independent, which is consistent with the
literature and with the highly conservative design practices
used for aircraft service support.

In this article we only consider line replaceable units and
denote them as parts. For simplicity, we assume that only
one copy of each type of part is installed within an aircraft
(this assumption can be relaxed).

As noted earlier, there are two categories of parts, which
we refer to as Go and No-Go. Upon failure of a Go part the
aircraft can still operate for a period of time, after which it
becomes non-operational. Typically, the “Go duration”, G,
is deterministic, and is defined by regulations or engineering
standards. A failed No-Go part causes the aircraft to be
immediately non-operational. We model No-Go parts as Go
parts with a zero-length “Go duration”. Based on analysis of
a commercial passenger aircraft, the partner airline that we
worked with estimates that the fraction of Go parts is about
50% of all repairables (for example, as noted earlier, based
on Boeing data for 2805 Boeing 737 repairable parts, 55% of
which are Go). Thus, it is important to distinguish between
Go and No-Go parts. Moreover, the fraction of Go parts in
other less critical systems may be even larger, and thus our
suggested model, based on Go/No-Go classification, is rele-
vant to multiple industries. Our model can also deal with
random “Go durations” with an exponential distribution
with expected length G;. The exponential distribution arises
in situations where the failed part must first be analyzed in
order to determine the specific length of the “Go duration”.
We would see shorter durations for more complex failures,
and longer ones otherwise. Thus, our modeling approach is
appropriate for parts that upon failure can still operate,
under a specific engineering order, for a limited duration
which is dependent upon the nature of the failure and
the part.

Regardless of part type, the organization needs to replace
failed parts with good ones. Failed parts are sent for repair to
the organization’s central repair facility, or to a sub-contractor
when the organization does not have repair capabilities (both
possibilities are considered hereafter as an organizational
repair). Repair durations (including transportation times to
and from the failure location) for Go and No-Go parts are
independent and identically distributed (i.i.d) random variables
drawn from an exponential and a general distribution, respect-
ively, with an expected value of v;, We note that while assum-
ing exponentially distributed repair durations is standard in
the repairable parts literature, in this article it also follows
from the use of Erlang-A (M/M/s;+ G;) and Erlang-B

(M/G/si/s;) models for Go and No-Go parts, respectively
(more details are provided in the next section). Repair costs
and assembly durations (the time to install a good part in the
system which is typically very short, with an order of magni-
tude of hours), are i.i.d random variables from a general dis-
tribution with expected values r1; and p, ;, respectively. We
assume that any part is also available through an EP. Based on
the experience of the airline that motivated our model formu-
lation, this assumption is reasonable. So, instead of a repair,
the organization can use an EP to replace a failed part with a
good one from a supplier. EP durations and costs are i.i.d ran-
dom variables from a general distribution. The expected EP
cost is r,;, which includes an EP fee (e.g., for administration)
and an expected repair cost. The expected EP duration is u, ;,
which includes the assembly duration. EP costs are assumed to
be higher than repair costs for a given part, but have shorter
durations. Typically, r,; > r; and w,; < p;; +v;. Due to
the short EP duration (typically, shorter than 48 or 72hours),
we neglect the probability of additional failures of the same
part occurring before the part arrives from the EP. Since we
are dealing with highly reliable parts, this assumption typically
holds. This assumption allows us to consider a single proactive
EP policy, as explained in the next section. It can be relaxed at
the cost of considering additional policies.

The assumptions, made above, imply that each part type
can be treated independently, thus enabling a tractable solu-
tion to the multi-part problem.

The independence assumption of part failures within a
given system may lead to a conservative downtime calculation
in very specific and rare cases. All these cases involve parts
failing within the same period in a specific aircraft. Based on
real data, the probability for two or more parts failing on a
specific aircraft within a Go duration of 3 or 10 days is in the
order of magnitude of 10™% or 10*, respectively. All these
events involve combinations of Go parts, and stock-outs for
the failed parts; such combinations are rare events for these
fleets, which are designed to operate at a high level of availabil-
ity. In such cases, the downtime of the Go and the other failed
part will overlap on the same aircraft, but our model adds
them. In light of the small probability for such a sequence of
events and the tractable analytical results enabled by the inde-
pendence assumption, we feel that it is appropriate.

In the aerospace and defense industry, purchase decisions
for repairable spare parts (e.g., engines) are typically made at
the beginning of a program roll-out phase and are considered
to be strategic since they represent a considerable capital
expense and can have a major impact on fleet availability.
Thus, parts are assumed to be purchased at the beginning of
the planning horizon at a unit cost of ¢, Each part has a unit
holding cost rate of ;. We consider an interest rate of o. The
objective is to minimize the fleet’s total discounted operating
costs over the planning horizon. The costs considered are for
repair, holding, EP, and for the purchase of spare parts.

Next, we develop a model for Go parts (a single part and
multiple parts) followed by a model for No-Go parts. Then,
we combine Go and No-Go parts into a unified model that
represents an aircraft fleet with airplanes that are composed
of both part types.
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Figure 1. The stock-on-hand process according to an Erlang-A model.

4. Go parts: Analysis, model formulation and
solution approach

We first consider Go parts and in the next section formu-
late the problem for No-Go parts. When a Go part fails
there is a “Go duration” during which the aircraft is oper-
ational. If there is a part in stock, then it is immediately
used to replace the failed part. Otherwise, there is a back-
order that can be satisfied by a part that will complete its
repair during G;, or by an EP if there is no such part. If a
part arrives from an EP after G;, there will be some down-
time for the aircraft.

We consider two EP policies. According to the first one, in
the case of a backorder, we check if a part is expected to
return from repair in time, and if not the failed part is sourced
to EP. This policy, which is an emergency reactive procedure,
is denoted by z; = 0. The second policy is proactive, and is
denoted by z; = 1. Under this policy, failed parts are immedi-
ately replaced by parts from the stock-on-hand and the only
downtime is caused by parts’ assembly times. To achieve this,
a part is immediately ordered through an EP when the last
good part is consumed (that is, the stock-on-hand is one and
there is a demand for a good part). Other EP policies, used
when the stock-on-hand is larger than one (denoted as z; = 2,
z; = 3, etc.) are inferior due to the assumption that no failures
occur during the EP duration (following Oner et al., 2013).

4.1. Parts in stock process

We use an Erlang-A model, M/M/s; + G; to describe the sto-
chastic process of the stock-on-hand for part i if z; = 0 (see,
Figure 1). Failed parts arrive according to a Poisson process
with rate A;. The number of servers is s;, which is the TSL, and
the service time is exponentially distributed with an expected
value of v;. After service is completed, a part returns to the
good inventory (ie., a server becomes idle) or immediately
starts servicing a waiting customer (i.e., a backordered part). If
a failed part is not expected to be replaced with a good part
during its Go duration, G;, the EP is used.

The probability to perform an EP for parts is the probabil-
ity that a failure is not satisfied by a part from stock or repair
during G;, which is the abandonment probability of an Erlang-
A model. For a deterministic G;, the abandonment probability
P(Ab) equals (Zeltyn and Mandelbaum, 2005 Mandelbaum
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and Zeltyn, 2009a):

1+ (/1,-— i—) Ji
P, (Ab) = ————+—, (1)
Bi(si—1)" + i
where
(’liV;)sl
Bj(si) = —— (2)

Zs, GaviY’
=0~

is the Erlang-B blocking probability.
If li—(S,’/Vi) §£ 0, then

1 Ai Si
i= - —| =% )Gi
)

Vi \ Vi

otherwise,
Vi
Ji=Gi+—.

S

1

€)

When G; is the mean of an exponential distribution, then
the expression for J; is:

5iGj

N 1 Vi S,‘Gi
Ji = Giexp (4;G;) </1iGi> /(77/1ici>7

where

y
V(% y) = Jt"_le_tdt, x>0, y>0,
0

and y(x,y) is an incomplete Gamma function with parame-
ters x, y.

Note that when using z; = 1, failed parts will always be sat-
isfied from stock, i.e., there is no queue (backorders) in such a
system and the only downtime is caused by assembly times.
For z; = 1, we describe the stochastic parts in stock process
using an Erlang-B model, with s;—1 servers, as indicated in
Figure 2. In such case, a failed part is sent for an EP when the
system is blocked, where the expected number of EPs during
the planning horizon is A;TB;(s;i—1).

In the rest of this article, we consider G; to be deterministic,
since this is the more common situation and also the formula-
tions are simpler. When modeling a random G, it is assumed
to be exponentially distributed, and then we need to use the
relevant formulas for J;.

4.2. Availability

We represent the fleet’s unavailability through its downtime,
measured in years. Lower downtimes imply higher availabil-
ities. We denote the downtime goal as D,. For example, setting
Dy = 0.1kNT, where k is the average fraction of the year that
the system is operating (e.g., if a system works 24/7 then
k=1), corresponds to fleet availability of 90%.

The actual total downtime D(S, Z) is the summation of
downtime contributions of each part, D;(s;, z;). The expected
number of failures per part i, across the fleet throughout T is
Air. Each failed part causes its system to be down at least dur-
ing its assembly duration p, ;.
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The EP arrival time is modeled by the random variable
X34, which is assumed to be exponentially distributed with a
mean f;,;. Note that by definition, u;; = 1, ;—u; ;. When
modeling Go parts, we need to distinguish between t,; and
Us; since if the EP arrival time overlaps the Go duration,
the incurred downtime is smaller than the EP arrival time.
We follow Baccelli and Hebuterne (1981) who state that the
abandon probability does not depend on the time of the
abandonment, as long as customers abandon before being
serviced. In our context, the equivalent of “abandoning cus-
tomers” are parts that undergo EP, since they are not
expected to enter repair within the Go duration. The prob-
ability to abandon depends on repair time, TSL and the
length of the Go duration; it is equivalent if abandonments
are immediate or postponed. Thus, our policy is to perform
EP as soon as possible. We calculate the total expected
downtime as follows: For all failed parts the assembly time
is incurred. For the abandoning parts, those for which there
is a stockout and a good part is not expected to arrive
within the Go duration, there is an additional downtime.
We note that in real-time management, this policy can be
refined by additional considerations based on the actual load
in a repair facility and the estimated repair times of spe-
cific parts.

Thus, the downtime of part i is:

D,‘(Si7 Z,‘) = (1_Zi)Ps, (Ab);,TP(XM > G,‘)E[Xg.,i—Gi]Jr + i,‘T,ul‘i.

(4)
The downtime constraint is:
m
D(S,2) = ZDi(Si,Zi) < Dy. (5)
i=1

Given the downtime constraint, we can now formulate
Problem (P1) for minimizing the overall organization’s costs
as follows:

min 7(S, Z)
subject to:
D(S,Z) < Dy,
(P1)
VANS {0,1} Viel,...,m,
S >z Vi e 1,..,m,
si € Ny Viel,..,m.

The objective function is a cost function, where,
TC(S, Z) = Z ni(sia Zi)a
i=1
and the individual cost per part is:
ﬂf,’(Si, Z,') =§ (Si) + S, (Si) + Ri(Si7 Z,').
The spare parts purchase cost is
S1(si) = cisis

the net present value of the holding cost is expressed by

h(1-B(s,-1)

\

—5,—1

bB(s,~1)

OO0

1"

Emergency
Procedure
Figure 2. The stock-on-hand process for policy z; = 1.

T hiS,‘ ~
Sz(Si) = J hiSieiaT = —(1—67”) = SiT]’l,',
0 a
where
~ h:
hi=—(1—eT 6
ocT( eT), (6)

and the net present value of repair and EP costs are:

i _
Ri(S,‘, Zi) :; (1—6 “T) |:rl.i + (TZ,i_rl,i)Ps,- (Ab)(l_zl)
=+ zi(r27i—r1,i)Bi(si—1)] .

We define
A r.i —a
r.i= ﬁ(l—e T, (7)
and express R;(s;,z;) more compactly as

Ri(si,zi) = AT [Pri+ (Fai—t1,) [Py (AD) (1—2:) + ziBi(si—1)] ]
Finally,
mi(si,z) = si(Thy + c;) + M[n,- + (P 710) [Ps (AD) (1-2;)
+ziBi(s—1)] |
(8)

4.3. Solution approach

Solving Problem (P1) is difficult, since it is a bin packing
problem. Thus, we construct an efficient frontier of the cost
as a function of the downtime from which the decision
maker can choose an appropriate solution to Problem (P1).
We use a Lagrangian relaxation approach (Everett, 1963;
Fox, 1966), which has been used to solve related problems
such as by Oner et al. (2013). We solve a bi-objective
Problem (P2), which is closely related to Problem (P1); in
other words, we find solutions that achieve a minimum cost
per a given downtime and a minimum downtime per a
given cost:



min 7(S, Z)

min D(S, Z)

subject to:

zi€{0,1} Viel,..,m (P2)
$i >z Viel,..m

si € Ny Viel,..,m

The Lagrangian relaxation approach does not find all of
the efficient frontier solutions, but its advantage is in allow-
ing us “to approach a problem first with a simple technique
(the basic Lagrange multiplier method) and then to produce
additional solutions only when actually desirable or neces-
sary” as Everett (1963) notes. In our settings, when there are
several types of parts, the solution approach generates a
dense efficient frontier so there is, typically, no need to gen-
erate additional solutions, although this is possible. This is
demonstrated later in this article through a numerical
example. Next, we develop the Lagrangian relaxation
approach for the Go parts. A similar approach is used for
No-Go parts, with a different Lagrangian formula, and for a
combination of both.

The Lagrangian function for Problem P1 is:

L(S,Z,A) zm:n, (is i) +A<ZD (is i) D)7
i=1

i=1

A >0 is a unique Lagrange multiplier, which represents
the downtime penalty; uniqueness follows from the single
downtime constraint.

Denote

Li(si, zi, A) = mi(si, zi) + AD;(si, zi). )
Thus,

L(S,Z,A) ZL, si, ziy A)—ADy.

i=1
Since we do not use the downtime constraint when con-
structing the efficient frontier, each part can be considered
separately, as shown in Equation (9); In the following sec-
tions we consider a single part (Section 4.3.1) and then
develop solutions for multiple parts (Section 4.3.2).

4.3.1. Considering a single part
By substituting Equations (4) and (8) in Equation (9) we
get:

Li(si,zi, A) = si(Thi +¢) + iiT{?u + (F2,i—T1)
[Ps; (Ab)(l*Z,‘) + Z,‘B,‘(Sifl)]:|
+ ALT [(1—z,4)p5‘ (Ab)P(X3; > G)E[X5,—G||*

+ :ul‘z}'

Let s;, (A) be the optimal TSL as a function of A for a
given z; policy. We develop our solution following the logic
of (Oner et al, 2013) who used an Erlang-B model and
the following:

IISE TRANSACTIONS (&) 7

(2)) s

convex in s;

1. Erlang-B blocking probability (Equation
strictly decreasing and strictly
(Karush, 1957).

2. For Go parts, where z=0 we conjecture that P;,(Ab) is
convex with respect to s; This is justified for sev-
eral reasons:

1. The problem of establishing convexity of Py (Ab)
for G; < v; is an open research question, which has
been challenging researchers for some time (Kogaga
et al., 2015)

2. The conjecture has been given theoretical support
in two ways. One is an actual proof of convexity,
under the assumption that G; > v; (Armony et al.,
2009; Koole and Pot, 2011). The other is that
P, (Ab) converges to the blocking probability of the
Erlang-B model, as G; — 0, and the latter is con-
vex. We follow previous researchers who have
made this conjecture (e.g, Mandelbaum and
Zeltyn, 2009b, Remark 5.2).

3. We carried out an extensive numerical experiment
with over 127 million separate scenarios to verify
that our conjecture is reasonable (see Appendix C).
We note that only Go parts with z; = 0 need this
conjecture since Go parts with z; = 1 and No-Go
parts do not rely on it.

3. Li(si,zi, A) is a linear function of A given s; and z;.

4. Li(si,zi,A) is a convex function of s; given A and z;
(note that 7,; >71; and ;> ; for s, = 1,
Li(si,zi, A) is the sum of convex functions and for s, =
0 we also rely on the conjecture about P, (Ab) convexity
in si).

5. For a given si, L;(s;,0,A) is a linear function of A, with
a positive slope that decreases with s;. Under the
assumption that L;(s;,0,A) is convex in s; for a given
value of A, it follows that L;(s},(0),0,0) < Li(s;,0,0)
for every s; > s7,(0). Thus, the functlon Li(sfy(A),0,A)
is a strictly increasing, concave and piecewise linear
function of A.

6. For a given s; > 1 it holds that L;(s;,1,A) is a linear
function of A.

The intuition for the solution approach is as follows. For
every A > 0 we find the optimal TSL for z; = 1, 57, (A) and
for z; = 0, s, (A). Thus, the optimal solution for a given A is
(S?(A),Z? (A)) = argmin{l‘i(si’ Zi, A) | (5i7 Zi) € {(SiO(A)a 0)7
(s¥1(A),1)}}. This is used to build an efficient frontier of sol-
utions as explained in the following.

Let AL{(S,‘, Zi, A) = Li(Si + 17 Zi, A) —L1(51'7 Zi, A) Under
the convexity assumption of L;(s;,0,A) in s; given A and
the convexity of L;(s;, 1, A) in s; given A it follows that:

st (A) = min{si €Ny | AL,’(Si,Z,',A) > 0,5 > Zi}. (10)

We start with policy z; = 0. We define AP, (Ab) =
P, (Ab)—P,1(Ab) and develop optimality conditions for

TSL and z; policies (see details in Appendix B),
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L(s*+k,z,A)
4

L(s*(0,0).0.A)

L(s*(0,0)+1,0,A)

A, A A

1,01

min{L(s* (0,00 + &, 0, A)vk e M, Lis*(LA)LA)}

Figure 3. An illustration of the solution process for Go parts.

)

sjo(A) = min{s,- S NOlAPS,- (Ab)

T]:li + ¢
S ~ A~ + .
)@T[(T’z‘,‘ — 7'171‘) + AP(X37,‘ > Gi)E[Xli—G,‘] ]
(11)
For z; = 1 we get
Tili + ¢
AT (P2 —114) |
(12)

51'*,1(/\) = min{si € N|AB;(si — 1) <

which is optimal for all A values.

After finding the optimal TSL for every value of A and
z;, let us find the solutions (s} (A),z;(A)) for all values of A.
We start with A = 0 and use Lemma 1, which is proved in

Appendix A, to conclude that z;(0) = 0.
Lemma 1. For every s; > 1, P, (Ab) < B;(s;—1).

Since P, (Ab) <Bi(s;—1), then for every s €
N, Li(s;,0,0) < Li(s;, 1,0) (fewer EPs and the same purchase
and holding costs). By definition, Li(s;,(0),0,0) < Li(s;,0,0)
and Li(s;;(0),1,0) < Li(s;,1,0) for every s; €N, thus
Li(s7,(0),0,0) < Li(s},(0),1,0), which means that for A = 0
poliéy z = 0 outperforms policy z; = 1. We now introduce
Lemma 2 to find the point of switch from policy z; = 0 to pol-
icy z; =1 and vice versa (the proof is in Appendix A). In
other words, Lemma 2 demonstrates that when high enough
availability is needed (i.e., the penalty for downtime is large
enough) there exists a A;p_; >0 that defines the switch
between policies i.e., policy z; = 1 outperforms policy z; = 0.

Lemma 2. There exists a Ajo_1 >0 such that for every A >
Ajo_1 policy z; = 1 outperforms policy z; =0 and for every
A < Ajo_ policy zi = 0 outperforms policy z; = 1.

Figure 3 illustrates the suggested solution process. To
find Ajo—1 we first calculate s7,(0). The next step is to find
the intersection points that constitute the piecewise linear
function discussed above. For example, one needs to find
the intersection between L;i(s;,(0),0,A) and Li(s;,(0) +

1(S.7) ,

— i

| T Au, D
=]

Figure 4. An efficient frontier of the total cost as a function of the downtime
for all possible solutions.

1,0,A), which is defined as A;;. If this point is above the
line Li(sj;(A),1,A) then A;p-; is the intersection point
between L;(s{(0),0,A) and Li(s;,(A),1,A), which means
that it is optimal to change policy to z; = 1 for all A >
Aio—1. If not, then it is optimal to keep policy z; = 0 and
A;; is the point where it is optimal to add one additional
part to stock. Next, we continue by finding the intersection
point between L;(s;,(0) +1,0,A) and L;(sj,(0) +2,0,A).
This process continues until A;y_,; is found.

Thus, A;; are the intersection points where it is optimal
to add one stock unit in policy z; = 0. In other words, the
optimal stock level for A where A;; 1 <A< Ajj <Ajp

is sﬁO(O) + (-1).

4.3.2. Extending the solution to multiple parts

After finding A;;, Az, ..., Ajp— for all the parts, the overall
fleet’s stocking and EP policy is defined as follows: The first
step is to construct an efficient frontier of the cost 7*(S, Z)
as a function of the downtime (see Figure 4). Its first point
corresponds to the minimum cost solution given that A =
0, zz=0 for all parts and consequently the TSLs
correspond to s7;(0) for all parts. Note that this solution
yields the largest downtime and it is the cheapest. Next, set
A=A, find the point which corresponds to A =
min{/\,»,j,A,»,oﬂl|/\,-_j>A',A,-‘(HI>/\'7 Vi, Vj} and calculate
the downtime and cost. Continue until the last solution in
which all parts have policy z; = 1, the downtime is minimal
and the cost is the highest. We note that this approach creates
a convex efficient frontier that discretely iterates from one
downtime value to smaller ones. There may be other part com-
binations that may yield intermediate downtime values. To
find these combinations, one needs to enumerate all combina-
tions, which is computationally inefficient. Moreover, in reality,
when there are several types of parts, the efficient frontier is
rather dense (as we demonstrate in the numerical examples) so
these intermediate values are not interesting.

5. No-go parts: Analysis, model formulation and
solution approach

We consider two EP policies for No-Go parts. According to
the first policy, parts are repaired within the organization’s



A(1-B(s)) @
Eme}gencv
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(a)

Figure 5. The stock-on-hand process for: (a) Policy z; = 0, and (b) policy z; = 1.

repair facility unless there is a backorder. In such a case, an
EP is carried out. This policy is denoted by z; = 0. Under
the second policy, denoted by z; = 1, parts are sent to EP
when the stock-on-hand is one and there is a demand for a
good part. All other EP policies that perform EPs when the
stock-on-hand is larger than one are inferior due to the
assumption that no failures occur during the EP duration
(Oner et al., 2013).

5.1. Parts in stock process

For Go parts, it was natural to use the Erlang-A model to
describe the stochastic process of the stock on hand. For
No-Go parts, however, if a failed part is not replaced with a
good part immediately it is sent for an EP. So, in fact we set
the Go duration G; to 0 and use Lemma 3, which is proved
in Appendix A, to find the probability of an EP:

Lemma 3. When G; = 0 then the probability to abandon an
Erlang-A queueing system, Py (Ab), is equal to the blocking
probability of the corresponding Erlang-B system, B;(s;).

Thus, we use the Erlang-B model, which also holds for
M/G/si/si, so the results in the following can be used for
general distributed repair durations (Whitt, 2002).

Figure 5 illustrates the stock-on-hand process for policies
zi=0and z; = 1.

5.2. Availability

We treat the availability in the same manner as for the Go
parts. Each failed part causes its system to be down at least
during its assembly duration p;;. A part from EP causes
downtime of p,;, which already includes the assembly dur-
ation (i = ft5; + 1t;;). So the expected time of a part’s
downtime is: '

Di(Si, Zi) = )“iT|:/~’tl7i + (:ul,i_nul,i)Bi<Si)(1_Zi):| y (13)
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ﬁ.{(I—BJ{.\J—I)') @ -
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Eme}gencv
Procedure

(b)

and the constraint is:

D(S,Z) = Z)H'T[.ul,i + (ﬂz,ifﬂl,i)Bi(Si)O*Zi)} < Dy.
P}

(14)

5.3. The problem

The optimization problem is identical to Problem P1, but
the ingredients are different, as is detailed below (note that
7.; and h.; definitions hold). The overall cost is the summa-
tion of all parts’ costs, 7(S,Z) = > I, mi(si, z;), and the cost
of each part is:

i(si, zi) = S1(si) + Sa(si, zi) + Ri(sis zi)- (15)

S1(si) = cis; represents parts’ purchase cost at the begin-
ning of the planning horizon, where ¢; is the purchase cost
per unit.

S»(s;) is the net present value of stock holding costs
throughout the planning horizon:

Sz (S,’) = SiT]:l,'.

The last cost component is the expected net present
repair and EP costs:

R,‘(Si, Z,‘) = /AL,‘T[TA’L,‘ + (?‘271‘—;‘1,,‘) [(I—Z,')B,'(Si) + Z,‘B,‘(Si—l)]] .

5.4. The model’s solution approach

We use the same solution approach used for Go parts; only
the Lagrangian formula changes to:

Li(si,zi, A) = Si(Tili + Ci) + 4T
(71 + (F2i—=714) [(1=2)Bi(si) + ziBi(si—1)] |
+ AALT {M,i + (/’LZ,i_,ul,i)Bi(si)(l_Zi)} .
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The Lagrangian properties, shown in Section 4.3.1, are
valid. Finding s;,(A) for No-Go parts is identical to Go
parts, that is:

Tili + ¢
. _ o) i(si—- 1)< ——— 16
su(A) mln{s, €N|ABi(s;i — 1) < JiT (s — ?u)}’ (1o

which is optimal for all A values.
For z; = 0, we get a different result compared with the
Go parts:

sio(A) = min{si € No|ABi(s))
(17)

< Tl:ll =+ ¢i }
- j.,'T(?'z{y,‘ — ?’1‘,') =+ )lTA(,uZI — ,ulﬁ,-) '

The rest of the solution approach, for a single part and
for multiple parts, follows the procedure described for Go
parts, so it is omitted from the text.

6. Combining go and no-go parts

This section starts with a description of the combined solu-
tion followed by an illustrative example.

6.1. A combined solution approach

Consider a fleet of aircraft, with m; Go and m, No-Go parts.
The Go parts are numbered 1,..,m; and the No-Go parts
my + 1,...,m; + m,. We have shown, for each type of part,
how to find the optimal stocking and EP policies for a given
downtime penalty. We now formulate the combined problem:

m my+my
min ZTE{(S{,Z,’) + Z ﬂj(Sj,Zj)
i=1 j=m+1
subject to:
my my+my
ZDi(Si,Zi) + Z Dj(Sj,Zj) S l)o7 (P3)
i=1 j=mi+1
VAN {0,1}, Vi e {1,...,m1—|—m2}
Si ZZI', Vie {1,...,m1+m2}
s;eNy Vie {1,...,m1—|—m2}.

Note that the A >0 is unique since there is a single
availability constraint, and the Lagrangian for the combined
problem can be written as:

my my+my

L(S,Z,A) = Zni(si,zi) + Z T (j: )

i=1 j=mi+1

my+my

+A<ZD,’(S[,Z;‘)+ Z Dj(sj,Zj)D()),

j=mi+1

Reordering of Equation (18) gives:
L(S,Z,A) = Z (mi(si, zi) + ADj(si, zi))
i=1
my+my
+ Z (TCj(Sj, Z]) + ADJ(SJ, Z])) —ADy.

j=mi+1

Denote
Ly(sk, zk, A) = 7k (sk, zk) + ADk(sk, zk);

thus, L(S,Z,A) = >0 Li(sk, zx, A)—ADy, which is of
identical form as the Lagrangian that was already solved in
the previous sections. All the characteristics of the
Lagrangian remain intact (e.g., separability, convexity, etc.),
so we apply the following solution approach: For each part
k we find Ag1, Ak, ..., Ako—1. We iteratively build an effi-
cient frontier following the procedure in Subsection 4.3.2.
The final efficient frontier determines the optimal stocking
and EP policies for all of the parts for varying values
of downtime.

6.2. Numerical examples

We consider two examples to demonstrate the suggested
approach: The first example contains five parts, three of
which are No-Go and two are Go. Data, provided by the
airline with whom we collaborated was used to characterize
parts of a Boeing passenger aircraft. The second example
illustrates a realistic implementation of the model, for 205
repairable parts. The number of parts was selected based on
a list from our partner airline that contained 205 repairable
parts of a Boeing 737. For each example we find efficient
solutions where each is characterized by a cost and down-
time, and determine the EP policy and TSL for all parts.
Then, an organization can determine its downtime goal to
choose the matching solution.

6.2.1. Example 1
Consider T =15, m =5, and o = 0.05. The holding cost is
5% of a unit cost per year.

Assume exponentially distributed EP durations with
means /3 ;. Part specific data is outlined in Table 1.

We start by finding the optimal TSL, given A =0 and
Z;i = 0:

510(0) = 1,554(0) = 2,53,(0) = 1,55,(0) = 2,55,(0) = 3,
and z; = 1:
5’15,1(/\) =2,55,(A) =3,5,(A) = 2,521(A) =3,55,(A) =4

Then, we calculate A values for each part, as shown in
Table 2.

Table 1. Parts data for Example 1.
Part 1 (No-Go) Part 2 (No-Go) Part 3 (No-Go)

Part 4 (Go) Part 5 (Go)

A 3.6 4.8 24 5 6.2
v, 2B 5 69 1 1
! 365 73 365 4
G 465 419 169 355 78 056 50 000 220 000
rn; 14131 8426 21 650 10 000 25 000
r,; 10131 43 562 33 846 17 812 59 375
1 1
i 431% 5840 3504 ﬁ ﬁ
77 101 313 23 53
i om0 29 200 87 600 5475 14 600
6 6
3 - - - 12_25 @
A _ _ 1
Gi % 35
h; 23271 8468 3903 2500 11 000




Figure 6 graphically illustrates L;(sf,(A) 4+ k,0,A) for
k=0,1and L3(s},(A), 1, A).

The entries in Table 3 specify for each part-solution com-
bination, the policy z; and the TSL s; (the last solution, Sol
9, achieves the minimum downtime whereas z; =1 Vi).
Table 4 presents the costs and downtime for each of the sol-
utions. There are a variety of solutions ranging from Sol 1,
which is the cheapest but with the highest downtime, to sol-
utions that contain higher TSLs and the proactive policy of
z; = 1 which provides lower downtime at an additional cost.
Each one of the nine solutions is optimal in the sense that it
provides the highest availability for its cost.

6.2.2. Example 2

This example illustrates a realistic size implementation of
the model. We cannot reveal the true data, so we synthe-
sized data that was realistic for the airline industry. We used
T=15, m=205, and o = 0.05; 4; was randomly drawn from

IISE TRANSACTIONS 1

[2, 34] (based on the MTBF ranges that we observed in the
airline industry). The mean repair duration, in years, v; was

set according to

1,1
3T

where u; is uniformly distributed between zero and one.
Parts cost, ¢; was randomly drawn from [50 000, 400 000];
Wy ; and p,; were set as 6, and 48 hours, respectively. Repair
and EP costs, r; and r,; were set to 7% and 17% of ¢,
respectively; h; was set to 5% of ¢, We conducted four dif-
ferent experiments, each with a different percentage of Go
parts, 0, 40, 50, and 60%. These percentages were selected
based on the list of parts from which 55% are Go and add-
itional estimations provided by our industry partner that
about half of the repairable parts within a modern aircraft
are Go. The Go duration for these parts was set to 10 days.

Table 4. A summary of the downtime and cost for Example 1 solutions.

Total cost Total downtime in years
Sol 1 7 532 569 0.228
Table 2. A values for each part. Sol 2 7575829 0.199
Sol 3 7 742 464 0.169
Aiy Ao Sol 4 7 818 444 0.162
Part 1 5710 584 149 265 941 Sol 5 7 995 372 0.151
Part 2 16 265 070 50 050 509 Sol 6 8 009 148 0.151
Part 3 1485 934 9709 310 Sol 7 8 090 933 0.149
Part 4 - 33 320 164 Sol 8 8 635 288 0.145
Part 5 - 4374 x 10 Sol 9 8 758 123 0.145
Figure 6. Example 1: An illustration of L3(s},(0) + k,0,A) for k = 0,1 and L3(s/,(A), 1, A).
Table 3. A summary of EP policies and TSLs for Example 1.
Part 1 Part 2 Part 3 Part 4 Part 5
Sol 1 Z1:0,S1:1 22:0,52:2 2370,53:1 Z4:0,S4:2 Z5:O,S5:3
Sol 2 z1=0,5 =1 z;=0,5=2 2370753:2 Z4:0,S4:2 z5 =0,55 =3
Sol 3 z1=0,5 =2 2, =0,5 =2 z3=0,53 =2 2, =0,5, =2 75 =0,55 =3
Sol 4 Z1:0,S1:2 22:0,52:2 23:1753: Z4:0,S4:2 Z5:0,$5:3
Sol 5 Z1:0,S1:2 22:0,52:3 2371,5372 Z4:0,S4:2 Z5:O,S5:3
Sol 6 21=0,5 =2 7, =0,5=3 z3=1,53=2 23=1,5=3 75 =0,55 =3
Sol 7 21=0,5 =2 z=1,5=3 z3=1,53=2 2;=1,5=3 75 =0,55 =3
Sol 8 Z1:1,S1:2 22:1,52:3 23:1753: Z4:‘|,S4:3 Z5:0,$5:3
Sol 9 Z1:1,S1:2 22:1,52:3 2371,53:2 Z4:1,S4:3 Z5:1,S5:4
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Figure 7. Optimal solution costs as a function of availability for Example 2. The graphs represent 0, 40, 50, and 60% of Go parts out of a total of 2805 parts,

respectively.

The solution procedure was programmed in Matlab and
the problem was solved. The results, presented in Figure 7,
demonstrate a total cost reduction with the number of Go
parts. For example 40, 50, and 60% of Go parts reduces the
total cost by 18%, 22%, and 26%, respectively. In light of the
estimations that the fraction of Go parts in modern com-
mercial aircraft is about 50%, we note that using the sug-
gested model leads to significantly different cost estimates
and stocking policies compared to models which do not
consider Go parts. To achieve the highest possible availabil-
ity, all z;s are set to one and the flexibility that stems from
having a Go duration is lost.

We note, in passing, that the computational time to run
the example for 2805 parts is between 10 to 15 minutes
using Matlab and a personal computer with Windows-10
with 16GB RAM, and Intel CPU i7-7500U.

7. Concluding remarks

Our research motivation came from an airline that initiated
a purchase program for a new fleet of aircraft; the program
included expenditures to support the fleet throughout its life
cycle. In this context, we developed a strategic model to
manage the inventory of repairable parts in order to minim-
ize life-cycle costs to support a fleet of aircraft that has to
satisfy a service level goal based on fleet availability. Unlike
previous models that treat all parts as No-Go parts, we con-
sider Go parts using the Erlang-A queueing model. Better
decisions can be made when considering Go parts and the
flexibility that these parts provide upon failure. This flexibility
may lead to a significant reduction in the overall cost. For
example, modeling about 50% out of 2805 parts as Go parts,
which is in line with estimation of our partner airline for the
percentage of Go parts out of all repairable parts, has led to a
22% cost reduction compared with modeling all parts as No-
Go. The model also incorporates an EP mechanism that pro-
vides flexibility in procuring replacement parts.

The suggested model provides guidelines to organiza-
tions, especially those in the airline industry, with respect to

purchase decisions of spare parts and the use of EP policies.
The model provides an estimation of expected expenditures
for EPs. Today, EPs are unplanned reactions to part stock-
outs, with any supplier that has the needed part. The model
introduced here provides incentives for long-term EP agree-
ments with suppliers and the cost estimates provided by our
model can be used to support negotiations with suppliers.
For example, an organization that forecasts large EP costs
for some of its parts can negotiate long-term contracts with
suppliers. Under such contracts, the organization may bene-
fit from reduced fees and shorter delivery times (we believe
that in some cases the supplier will pre-allocate and position
parts close to the organization), which in turn may allow
the organization to reduce the quantity of parts purchased.
The supplier also may benefit from a long-term relationship
with its customers.

Algorithms for solving the model efficiently were developed
and resulted in an efficient frontier of solutions, where each
solution is characterized by the minimum cost for a specified
availability value. Fleet managers can use such results to choose
between the efficient solutions—i.e., to explore the tradeoff
between cost and fleet availability and select a solution which
would be appropriate for their environment.

The suggested model requires additional data compared
with standard models, such as length of the Go duration
and the EP duration. From our experience with the airline
for which this model was developed, only a modest effort is
required to gather such additional data and the potential
cost savings can be significant.
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Appendix A: Proofs
A.1. Proof of Lemma 1

We use the following: A4;>0,v;,>0,J; >0 (see (Mandelbaum and
Zeltyn, 2009a) for the definition of J)), 1 <s;<oo and B;(s;) strictly
decreasing in s; (see (Karush, 1957)). We do not provide proof for the
case where J; = 0 as it is trivial:
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A.2. Proof of Lemma 2

We have shown that function L;(sfy(A),0,A) is a strictly increasing,
concave and piecewise linear function of A. For z; = 1, the slope of
the line Li(s;, (A), 1, A), 2Ty, ;, has the smallest possible value—specif-
ically, it is smaller than the slopes of all lines of the piecewise linear
function  Li(s;o(A),0,A).  Also,  Li(s}((0),0,0) <Li(s;,(A),1,0).
Consequently, there exists a A, «call it Ajo_; for which
L,‘(S}io(/\,'.(]‘,1)7 0, /\,"0*,1) = Li(321(Ai.0~>1)7 17 Ai.oﬂl). For all A> Ai‘oﬂl
policy z; = 1 outperforms policy z; = 0.

U

A.3. Proof of Lemma 3

We prove for A;—(si/vi;) # 0. The proof for A;—(s;/v;) =0 is similar.
After placing 3(51,1)71 (Equation (2)) and J; (Equation (3)) into
P, (Ab) (Equation (1)) we get:

Table A1. Convexity of P;(Ab) experiment.

start value end value increment
2 (parts 1 1
’“(year) g 1600 ]
Glyear) % 2 7

- 180 1
v(year) 365 365 365
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Appendix B: Optimality conditions for TSL and z;
1 (Si /1) 1 A policies: s;,(A) and s;,(A)
i (i — Ai) S (5—1 — 7»;') As noted, for a given s;, L;(s;, 0, A) is a linear function of A, with a
Vi Vi \Vi positive slope that decreases with s. Under the assumption that
s ( /]~iVi)j Li(s;,0,A) is convex in s; for a given value of A, it follows that
2% il py 2 Li(57(0),0,0) < Li(s;,0,0) for every s; >s;,(0). Thus, the function
P a < 7S Li(sfy(A),0,A) is a strictly increasing, concave and piecewise linear
(Av)* Si sifsi i0 Y 8 P
;' (7 - )4) o (7 - i) function of A. Recall that AP, (Ab) = P, (Ab)—Ps1(Ab). To find
(si = 1)! ! P sio(A) we use the explicit expressions for Li(s;+1,0,A) and
Li(si,0,A) as shown below:
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Li(si, 1, A) is positive and equals 4; Ty, ; due to the assumption that no
vt additional parts fail during an EP duration (downtime caused only by
(s —1)! the parts’ assembly times). Thus, the optimal TSL is independent of A.
E— Recalling that AB;(s;) = B;(s;)—Bi(s; + 1), we use the explicit expres-
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AL;(s;, 1, A) = Li(s; + 1,1, A)—Li(s;, 1, A) >0,
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Appendix C: Experiment

We performed an experiment with over 127 000 000 instances, in order
to verify that our assumption about convexity of P;(Ab) in s is reason-
able in scenarios which are feasible in the airline industry. The aban-
don probability is a function of arrival rates, 4, patience, G, expected
repair duration, v and number of servers s.

For each set of values (see Table A1), we checked convexity in s for
s=1 to s =120 with increments of one. For every value of s in the test
set and for every triplet (4, G, v) the function Ps(Ab) was convex.
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