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Abstract

According to the absolute priority rule (APR), firm shareholders should recover

nothing in default unless creditors are paid in full. However, historically, shareholders

have sometimes received a positive payoff in default. In this paper, I develop a dy-

namic model to estimate shareholder recovery rate and examine its implications. A

positive recovery rate makes shareholders more willing to default, which increases bor-

rowing costs. In response, firms lower leverage ex-ante. This channel helps to match

distributions of both leverage and default probabilities. Structural estimation reveals

a dramatic change over time in the U.S. bankruptcy system: shareholder recovery rate

increased from roughly zero to 29% around the Bankruptcy Reform Act of 1978, and

has gradually decreased back to zero. Finally, I show that a positive shareholder recov-

ery rate has a quantitatively large effect on leverage, default probabilities, firm value,

and government tax revenue.
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1. Introduction

In the United States, the absolute priority rule1 states that shareholders should recover

nothing in default unless creditors are paid in full. However, shareholders have received a

positive payoff due to a sequence of historical events, notably the Bankruptcy Reform Act of

1978. Between 1970 and 2005, shareholders received a positive payoff in 30.3% of bankruptcy

instances (Bharath, Panchapegesan and Werner, 2007). In this paper, I use U.S. data to

study the economic consequences of a positive shareholder recovery rate. To that end, using

a dynamic model, this paper structurally estimates shareholder recovery rate and conducts

counterfactual analysis.

The key insight of the dynamic model is as follows. When shareholders expect to receive

a positive payoff in default, they choose to strategically default sooner, which increases

borrowing costs, reducing optimal leverage ex-ante. Shareholders would like to commit

to zero recovery in default because this would enable them to take higher leverage ex-ante,

which generates a greater tax shield benefit. Yet, due to the unique nature of the bankruptcy

system in the United States, shareholders sometimes are able to recover some value ex-post,

and thus the commitment to zero recovery is not credible. This commitment problem is

amplified by allowing default to be costly even when shareholders receive a positive payoff

by renegotiating with creditors. The costly default contrasts with model implications of Fan

and Sundaresan (2000) and yet is realistic and consistent with empirical findings (Andrade

and Kaplan, 1998). As default cost increases, borrowing costs, conditional on leverage,

increase, reducing optimal leverage ex-ante. Taken together, this commitment problem can

help explain the observed leverage, and thus addresses the “underleverage puzzle,” which

states that the “trade-off theory” produces counterfactually high leverage levels when given

realistic default costs. (Miller, 1977; Graham, 2000)

How much does this commitment problem reduce leverage? I address this question by es-

timating the structural parameters of my model, targeting leverage and default probabilities.

I am able to identify shareholder recovery rate and default cost in the following way. I define

1See the U.S. Bankruptcy Code §1129(b)(2)(B)(ii))
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shareholder recovery rate as a fraction of remaining firm value before default cost is realized.

Accordingly, shareholder recovery increases with shareholder recovery rate although it does

not move with respect to changes in default costs. Thus, conditional on leverage, in making

a strategic default decision, shareholders consider their recovery rate and yet do not consider

default cost. This implies that conditional default probabilities increase with shareholder

recovery rate but do not move with respect to changes to default cost. The difference in

sensitivities of conditional default probabilities with respect to the two structural parameters

helps to separately identify them. Then, I structurally estimate for the representative firm

similar to Hennessy and Whited (2005, 2007).2

I document dramatic changes over time in the U.S. bankruptcy system. As Hackbarth,

Haselmann and Schoenherr (2015) show, the Bankruptcy Reform Act of 1978 increased share-

holders’ bargaining power vis-á-vis creditors, and thus shareholder recovery rate inreased.

In order to test this, similar to Hackbarth et al., I form two subperiods, 1975Q1-1978Q3

and 1981Q2-1984Q4. Between these two subperiods, I allow tax rates to vary in order to ac-

count for the other concurrent change: the Economic Recovery Tax Act of 1981. Consistent

with Hackbarth et al.’s finding, my structural estimation shows that shareholder recovery

rates statistically significantly increased from 0.1% to 29%, whereas default cost statistically

insignificantly increased from 19.0% to 21.0%. In response to the change in shareholder re-

covery rates, firms optimally lowered leverage ex-ante by 32.0%. This shows that allowing a

positive shareholder recovery rate better explains the empirically observed leverage than does

the “trade-off theory.” Due to lower leverage, default probabilities decreased by 62.5%, and

credit spreads decreased by 5.4%. Because firms took less advantage of tax shield benefits,

firm values decreased by 5.0% and government tax revenue, defined as a contingent claim

to the future tax revenue, increased by 22.2%. Lastly, lower default probabilities, driven by

a positive shareholder recovery, implied less frequent realization of deadweight cost. Thus,

the sum of firm values and government tax revenue increased by 4.4%.

After a subsequent series of contractual innovations in the bankruptcy process (Skeel,

2003; Bharath, Panchapegesan and Werner, 2007), shareholders’ bargaining power vis-á-vis

2In addition, in order to analyze how shareholder recovery rates vary across firms, I structurally estimate
shareholder recovery rate for each subset of firms.
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creditors steadily decreased, and thus shareholder recovery rate decreased. After accounting

for changes in tax rates, my estimates for shareholder recovery rate show the consistent

trend: 19.9% between 1985Q1 and 1994Q4; 3.8% between 1995Q1 and 2004Q4; and 0.97%

between 2005Q1 and 2016Q4. On the other hand, default cost did not significantly change

from one subperiod to the next.

Similar to the existing empirical literature on the capital structure, I also estimate model

parameters based on the long sample period, 1970Q1-2016Q4. The implied shareholder

recovery rate was 7.1% and the implied default cost was 17.3%. Compared to the coun-

terfactual world where shareholder recovery rate is set to zero, firms’ optimal leverage was

9.4% lower. Due to lower leverage, default probabilities were 8.1% lower, and credit spreads

were 1.7% lower. Moreover, firm values were 1.5% lower, government tax revenue was 9.9%

greater, and the sum of firm values and government tax revenue was 0.9% greater.

My empirical strategy complements existing literature that relies on natural experiment

and direct measurement. Even though results from a natural experiment can be instructive,

due to other concurrent changes, it is empirically challenging to tease out the impact of

a positive shareholder recovery rate. For example, a seemingly ideal setting for a natural

experiment is the Bankruptcy Reform Act of 1978. However, the Economic Recovery Tax

Act of 1981 changed tax rates almost simultaneously and thus it is hard to disentangle the

impact of shareholder recovery rate from the impact of tax rate. Moreover, it is empirically

challenging to use a natural experiment by itself to estimate an unobservable parameter

such as shareholders’ expected recovery rate. Direct measurement analysis calculates a

sample average of shareholder recovery rates among bankrupt firms. While instructive, these

results may suffer from sample-selection bias because firms with lower shareholder recovery

rates default more frequently. This paper bases estimates on a broad cross-section of firms,

including both bankrupt and non-bankrupt firms, and thus is immune from the sample-

selection bias. Using direct measurement analysis, literature estimates shareholder recovery

rate to be between 0.4% and 7.6% (Eberhart, Moore and Roenfeldt, 1990; Franks and Torous,

1989; Betker, 1995; Bharath, Panchapegesan and Werner, 2007). Even before accounting for

the sample-selection bias, this paper’s structural estimate of 7.1% for shareholder recovery
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rate during 1970Q1-2016Q4 is in-line with direct measurement analysis’ estimates.

Admittedly, a structural estimation has limitations. One limitation is that it is hard to

account for heterogeneity across firms. This limitation makes it empirically challenging to

structurally estimate the sample-selection bias.3 Firm heterogeneity can arise due to multiple

sources, such as heterogeneous shareholder recovery rates or heterogeneous model misspeci-

fication. Because the sample-selection bias arises due to heterogeneous shareholder recovery

rates but not due to heterogeneous model misspecification, estimating the sample-selection

bias requires identifying a portion of heterogeneity that arises only due to the former. Un-

fortunately, the structural estimation cannot distinguish between these two sources; thus,

structural estimation for the sample-selection bias is significantly biased. Due to this limita-

tion, I do not target the result of direct measurement analysis in the structural estimation.

Moreover, the limitation implies that researchers might need to revisit the structural esti-

mation of the sample-selection bias (Glover, 2016).

The rest of the paper is structured as follows. Immediately following the introduction

is the literature review. Section 2 discusses in detail the sequence of events in the United

States that allowed shareholders to receive a positive payoff. Section 3 develops the model

and Section 4 discusses the estimation procedure. Section 5 presents my empirical results on

model fit, parameter estimates, and economic consequences. Section 6 discusses robustness,

and Section 7 concludes.

Literature Review First, there is growing literature on shareholder recovery rate in

default. Shareholders can recover non-negative value in default because shareholders can

threaten to exercise several options.4 Credibility of these threats is best illustrated in East-

ern Airlines’ bankruptcy case in 1989 (Weiss and Wruck, 1998). Thus, creditors are forced

to accept shareholders’ renegotiating terms and this naturally allows shareholders to recoup

non-zero residual value in default. Accordingly, using pre-2000 samples on defaulted firms, a

3The structural estimation for the representative firm properly addresses heterogeneity thanks to the law
of large numbers.

4These include 1) an option to take risky actions (asset substitution), 2) an option to enter costly Chapter
11, 3) an option to delay the Chapter 11 process if entered and 4) an option not to preserve tax loss
carryfowards (for asset sales).
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number of empirical papers (Eberhart, Moore and Roenfeldt, 1990; Franks and Torous, 1989;

Betker, 1995) document that shareholders recover 2.28% to 7.6% of the remaining firm value

on average. However, a subsequent series of contractual innovations in the bankruptcy pro-

cess (Skeel, 2003) decreased shareholder recovery rate ever since. Shareholders recover 0.4%

of the remaining firm value on average in 2000Q1-2005Q4 period (Bharath, Panchapegesan

and Werner, 2007). Although these results are instructive, their measures could potentially

suffer from sample-selection bias in estimating population cross-sectional mean of shareholder

recovery rates, whereas my structural estimation is immune from the bias. Moreover, con-

sistent with documented time-series variation, my subperiods analysis (see Figure 4) yields

a downward trend in shareholder recovery rate.

The second strand of literature that this paper relates to is on the underleverage puzzle.

Using various approaches, a few papers (Altman, 1984; Andrade and Kaplan, 1998) estimate

default cost to be between 10% and 20%. However, researchers find that the empirically ob-

served default cost is too low to justify empirically observed leverage (Miller, 1977; Graham,

2000). In response to this concern, Almeida and Philippon (2007), Elkamhi, Ericsson and

Parsons (2012), Ju et al. (2005), Bhamra, Kuehn and Strebulaev (2010), and Chen (2010)

use various approaches to address the puzzle. More recently, Glover (2016) estimates popu-

lation default cost to be much larger (45%) and attributes sample-selection bias as a possible

reason behind the large discrepancy between his estimate and other empirical work. In an

attempt to address the same puzzle, this paper uses shareholders’ strategic default action

driven by a positive shareholder recovery.

Similar to this paper, Morellec, Nikolov and Schurhoff (2012) allow shareholders to receive

a positive payoff and obtain a number for shareholder recovery rate. They set liquidation

cost to be 46%, assume the liquidation cost to be a bargaining surplus between creditors

and shareholders, and assume that shareholders are as equally powerful as creditors are in

bargaining. This implies that default is not costly when shareholders and creditors bargain

and shareholders recover 23% in default. The gap between Morellec et al.’s estimate and

the direct measurement analysis estimate is too large to be reconciled only by the sample-

selection bias. This paper allows default to be costly, focuses on the commitment problem
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driven by shareholder recovery rate, and obtains a shareholder recovery rate that is more in

line with the previously documented numbers, between 0.4% and 7.6%.

More recently, by using a model that forces firms to roll over a fixed fraction of debt,

Reindl, Stoughton and Zechner (2017) estimate default cost to be 20%. Although Reindl

et al.’s estimate is similar to mine, we differ in a few major areas. Most importantly, I

allow shareholders to receive a positive payoff and this extension makes the model general

enough to capture some types of debt covenants. Absent such an extension, as Reindl et

al. argues, debt covenants could have prevented shareholders from strategically defaulting.

Next, Reindl et al. argues that Glover’s estimate is significantly upward biased due to a

model misspecification in explaining leverage, and motivates the authors’ choice not to match

leverage. As discussed in Section 6.4.1, I show that the first-order reason behind Glover’s

large estimate is due to Glover’s particular choice of estimation procedure, which is conducted

at each firm level. Moreover, I show that the structural estimation procedure, which is used

by Hennessy and Whited (2005, 2007), and used in this paper, suffers significantly less from

a model misspecification problem and thus validates use of leverage as a matching moment.

Lastly, I allow firms to optimally choose an upward refinancing point.

The third strand of literature that this paper relates to is as follows. Noting the im-

portance of a positive shareholder recovery, Fan and Sundaresan (2000) model strategic

interactions between creditors and shareholders and their model is adopted in a number of

recent papers (Davydenko and Strebulaev, 2007; Garlappi, Shu and Yan, 2008; Garlappi and

Yan, 2011; Morellec, Nikolov and Schurhoff, 2012; Hackbarth, Haselmann and Schoenherr,

2015; Boualam, Gomes and Ward, 2017). Yet, their models typically assume that firms do

not incur any default cost in equilibrium, whereas my model allows firms to incur default

cost.

Finally, Green (2018) studies how valuable a restrictive debt covenant is in reducing

agency costs of debt. As the author focuses on refinancing, he models firms’ default decision

as random events. On the contrary, I take firms’ strategic default decision more seriously

and study how it impacts firms’ financing. Although I do not explicitly model covenants in

my model, a cash-flow-based covenant can be one-to-one matched with shareholder recov-
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ery rate and have the similar effect on firms’ optimal leverage ex-ante (see Section 3.1 for

more discussion). Corbae and D’Erasmo (2017) studies a welfare implication of an policy

counterfactual (hybrid version of Chapter 7 and Chapter 11). Corbae et al. compares a pol-

icy counterfactual to the world where firms in default optimally choose between Chapter 7,

which complies with APR yet comes with high default cost, and Chapter 11, which violates

APR yet comes with low default cost. On the contrary, in this paper, firms are not given an

option to choose between Chapter 7 and Chapter 11, and this paper studies a shareholder

recovery’s impact on the behavior of “average” firms.

2. Bankruptcy Law in the United States

In the United States, the bankruptcy code states that creditors should be paid in full before

shareholders can receive anything in default. However, in practice, the bankruptcy process

is a negotiated agreement involving both creditors and shareholders. Thus, the code merely

serves as a guideline for the process rather than a requirement, and thus shareholders can

receive a positive payoff even when creditors are not paid in full. In this section,5 I briefly

discuss the sequence of historical events in the United States that eventually allowed a

positive shareholder recovery rate.

Prior to the nineteenth century, the bankruptcy system in the United States was admin-

istrative in nature: bankrupt firms were almost always liquidated, its shareholders did not

recover any value and managers were let go. Consequently, APR always held and sharehold-

ers were never part of the bankruptcy process.

However, in the late nineteenth century, there was a dramatic turn of events due to a

series of bankruptcies in the railroad industry. These bankruptcies prompted the courts

to intervene and rescue them for the sake of public interest in an effective transportation

system. The courts formed equity receivership to run the bankrupt firm. Equity receivership

comprised old shareholders, old creditors and old managers. This is important because

this was the first time that shareholders became a part of the bankruptcy process. The

5See Skeel (2001) for a more detailed discussion.
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practice spread to other industries and persisted over time. The Bankruptcy Reform Act of

1978 formally gave more power to shareholders, leading to larger shareholder recovery rate.

Although the bankruptcy laws did not significantly change since then, a subsequent series of

contractual innovations in the bankruptcy process gradually decreased shareholder recovery

rate over time.

It is important to note that a positive shareholder recovery is a byproduct of the courts’

effort to keep its business alive and pay creditors, which is Chapter 11’s stated objective.

The bankruptcy process sometimes requires shareholders’ help or consent and thus requires

shareholders to be paid off at the expense of the creditors. Consequently, this effort leads to

a positive shareholder recovery. In the rest of the document, through the lens of the model,

developed in the next section, I test whether a positive shareholder recovery is implied by

firm data, and if so, quantify its magnitude that is implied by firm data.

3. Model

I extend the workhorse dynamic capital structure model (Goldstein, Ju and Leland, 2001)

as follows. Upon default, firms lose α , shareholders recover η, and creditors recover the

remainder 1− η − α fraction of the remaining firm value.67 If shareholders are subject to a

higher tax rate than creditors are, firms have an incentive to issue debt to shield earnings

from taxation. Such a tax shield benefit motive is the only reason that firms want to lever

up in my model. To stay in a simple time-homogeneous setting, I consider callable debt

contracts that are characterized by a perpetual flow of coupon payments. Shareholders of

each firm make three types of corporate financing decisions: (1) when to default, (2) when

to refinance, and (3) how much debt to issue upon refinancing. Shareholders exercise their

default option if earnings drop below a certain earning level, called the default threshold.

Shareholders exercise the refinancing option if earnings rise above a certain earning level,

called the upward refinancing threshold. These features are shared with numerous other

6This naturally imposes a restriction that η + α <= 1.
7Contrary to Leland (1994), the model allows shareholders to recover non-zero value. Contrary to Fan

and Sundaresan (2000), firms can potentially incur default cost even when shareholders and creditors enter
renegotiation. Here, I want to emphasize that the model does not rule out α = 0 nor η = 0.
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capital structure models.

3.1. Setup and Solution

In the model, a firm i’s earnings growth depends on aggregate earnings shocks as well as

idiosyncratic shocks specific to the firm. Before-tax earning, Xi,t, evolves according to

dXi,t

Xi,t

= µidt+ biσAdW
A
t + σFi dW

F
i,t

Firm i’s expected earnings growth is given by µi. bi is firm i’s exposure to the aggregate

earnings shocks generated by the Brownian motion WA
t and σA is the volatility of aggregate

earnings shocks. σFi is the volatility generated by the firm-specific Brownian motion W F
i,t.

By assumption, W F
i,t is independent of WA

t for all firms i.

The model is partial equilibrium, and thus the pricing kernel is exogenously set as:

dΛt

Λt

= −rdt− ϕAdWA
t

where r is the risk-free rate and ϕA is the market Sharpe ratio. Under the risk-neutral

measure, the earnings process evolves according to:

dXi,t

Xi,t

= µ̂idt+ σi,XdŴi,t

where Ŵi,t is Brownian motion under the risk-neutral probability measure, µ̂i = µi− biσAϕA
and σi,X =

√
(biσA)2 + (σFi )2. In order to guarantee the convergence of the expected present

value of Xi,t, I impose the usual regularity condition r− µ̂i > 0. For notational convenience,

I drop i in the rest of the document.

This paper uses τcd ≡ 1− (1− τc)(1− τd) as an effective tax rate that shareholders pay

on the corporate earnings where τc denotes tax on corporate earnings and τd denotes tax on

equity distributions. τcdi ≡ τcd − τi denotes tax shield benefit rate, where τi denotes tax on

interest income.
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Now, I describe how debt value and equity value are derived. For given default threshold

XD and optimal policies (coupon C and upward refinancing point XU), I use the contingent

claims approach to solve for debt value D(X) and equity value E(X). The most relevant

boundary conditions are as follows. (Please see the Appendix for more detail.)

D(XD) = (1− α− η)
(1− τcd)XD

r − µ̂
(1)

E(XD) =
η(1− τcd)XD

r − µ̂
(2)

The first boundary condition captures that creditors recover 1−α−η fraction of the remaining

unlevered firm value. The second boundary condition captures that shareholders recover η

fraction of the remaining unlevered firm value.

The next step is to solve for an optimal coupon C, upward refinancing point XU , and

default threshold XD. C and XU are determined at time 0 (initial point or refinancing point)

to maximize firm value minus debt issuance cost. Here, debt issuance cost is φD times the

debt value.

[C,XU ] = arg max
C∗,X∗U

((1− φD)D(X0;C∗, X∗U) + E(X0;C∗, X∗U)) (3)

subject to

lim
Xt↓XD

E
′
(Xt) =

η(1− τcd)
r − µ̂

(4)

XD is determined based on the above smooth pasting condition, Equation (4) (see the

heuristic derivation of the smooth pasting condition in Appendix C.2).

Because the model is used to explain the data, it is important to discuss what η might

potentially capture. In the model, shareholders recover only in default. In reality, prior to

declaring bankruptcy, some shareholders can potentially enjoy benefits of control rights by,

for example, opportunistically refinancing to change covenants (Green, 2018).8 To the extent

8For example, fallen angel firms delay refinancing relative to always-junk firms because loose covenants
allow shareholders to transfer wealth from creditors.

10



that shareholders’ opportunistic behavior makes debt more costly and higher debt cost is

internalized, shareholder recovery rate η in the model captures such benefits in addition to

explicit ex-post recovery value.

When shareholders recover zero amount in default, shareholders might not be able

to strategically default at the optimal default threshold due to debt covenants (Reindl,

Stoughton and Zechner, 2017). Yet, when shareholders are allowed to receive a positive

payoff in default, such debt covenants can be easily described with my current model and

shareholders will behave as if shareholders strategically default. More specifically, let us

consider a cash-flow-based covenant, which specifies that shareholders must default if the

earnings-to-coupon ratio goes below a certain threshold, say X̄DC . Because strategic default

threshold XDC(η) monotonically increases over η (as shown below in Equation (5)), I can

find unique η that sets XDC(η) = X̄DC . Such an implied η increases over X̄DC , and thus

shows that a more restrictive covenant (or equivalently higher X̄DC) corresponds to larger

η. As such, my model is general enough to capture cases with some types of debt covenants.

3.2. Key Economic Channels: Commitment Problem

In this subsection, I discuss key economic channels in three steps.

Let me explain the first step. In their decision to default, shareholders weigh the benefits

of holding on to their control rights, all future dividends, and recovery value against the costs

of honoring debt obligations while the firm is in financial distress. As shareholder recovery

rate (η) increases, the trade-off shifts and leads to earlier exercise of the option to default.

This intuition can be seen in a closed form for the normalized default threshold (XDC):

XDC =
XD

C
=
r − µ̂
r

−λ−
1− λ−

1

1− η
(5)

where λ− is a negative solution to the characteristic equation.

On a related note, XDC does not depend on default cost, α, yet depends on η. The

intuition is as follows. I define shareholder recovery rate as a fraction of remaining firm

value before default cost is realized. Accordingly, shareholder recovery rate does not move

11



with respect to changes to default cost. Thus, conditional on leverage, in making a strategic

default decision, shareholders account for their recovery rate and yet do not account for

default cost. This implies that conditional default probabilities increase with shareholder

recovery rate but default probabilities do not move with respect to changes to default cost.

This intuition is a key mechanism in separately identifying α and η. Thus, I write this as a

proposition below and refer back to it later:

Proposition 1 Conditional on the leverage, default probabilities increase over shareholder

recovery rate (η). Conditional on the leverage, default probabilities do not change over default

cost (α).

The second step is, conditional on the leverage, debt becomes more costly. In other

words, as η increases, borrowing cost increases because creditors lose η to shareholders and

XDC is determined to maximize the equity value at the expense of the bond value. In the

third step, firms internalize higher debt cost and optimally lower leverage ex-ante.

[INSERT FIGURE 1]

The aforementioned three-step intuition can be illustrated graphically as shown in Figure

1. Going from point A to B illustrates the first two steps, where firm value decreases due to

shareholders’ strategic default action. The last step is illustrated by going from point B to

C where firms optimally lower leverage ex-ante, and thus firm values increase. Interestingly,

as Proposition 7 proves, the increase in firm values from point B to C is not sufficient to

offset the decrease in firm values from point A to B.

In the rest of this section, I show why costly default is important in my setting. In order

to present the intuition with closed forms, I suppress upward refinancing and study terms

for firm value minus debt issuance cost:

(1− φD)D(Xt) + E(Xt) =
1− τcd
r − µ̂

Xt +
τ̃cdiC

r
+ Loss

(
Xt

C ·XDC

)λ−
(6)

12



where τ̃cdi = (1− τi)(1− φD)− (1− τcd) and

Loss/C = − τ̃cdi
r
− (α + φD(1− α− η))

(1− τcd)XDC

r − µ̂
< 0 (7)

Here, τ̃cdiC
r

captures the tax shield benefit whereas Loss
(

Xt
C·XDC

)λ−
captures expected firm-

value loss. As η increases, firm values decrease because the expected firm-value loss increases

due to larger XDC . Firms’ optimal policy, C, has to decrease to equate marginal cost and

marginal benefit. It is important to note that η impacts firms’ capital structure decision

mainly through XDC . Thus, if default cost (α) becomes zero, because φD is very small in

magnitude, (α + φD(1 − α − η)) in Equation (7) becomes negligible, and thus Loss term

in Equation (6) becomes insensitive to η. Consequently, η’s impact on the optimal leverage

significantly decreases.

3.3. Leverage, Default Probability and Market Beta

In this subsection, I discuss how η and α relate to leverage, default probability, and market

beta.

Higher α implies higher firm-value loss conditional on defaults and thus higher expected

firm-value loss. This consequently implies lower optimal leverage. Higher η implies higher

firm-value loss and higher default probability. Taken together, this implies higher expected

firm-value loss and consequently implies lower optimal leverage.

Proposition 2 Higher default cost (α) and higher shareholder recovery rate (η) lead to lower

leverage.

All proofs are in the Appendix. Let us now discuss how α and η relate to default probabilities.

As α increases, optimal leverage decreases, and thus default probabilities decrease. Higher

η implies higher default probabilities and higher firm-value loss conditional on defaults. If

leverage decreases only to exactly offset the increase in default probabilities but not in firm-

value loss, then marginal cost is larger than marginal benefit and thus it is not optimal.

13



Leverage has to further decrease and this exactly implies that default probabilities decrease

over η.

Proposition 3 Higher default cost (α) and higher shareholder recovery rate (η) lead to lower

default probability.

Because default probabilities and leverage change over η in the same direction as they do

over α, I need an extra key economic channel to separately identify α and η. The structural

estimation in this paper is akin to solving the system of two equations for two unknowns.

The two unknowns correspond to shareholder recovery rate and default cost. Leverage

specifies one equation in terms of two model parameters and default probability specifies

the other equation in terms of the same two parameters. Figure 2 graphically illustrates the

intuition. It shows locus of α and η that match a given leverage (solid line) and a given

default probability (dashed line). A necessary condition for α and η to be point-identified is

that both lines have different slopes.

[INSERT FIGURE 2]

The key driver for the aforementioned necessary condition is Proposition 1. The

difference in sensitivities of conditional default probabilities with respect to the two model

parameters helps to separately identify them in the system of two equations. Proposition

4 uses this intuition to prove the necessary condition.

Proposition 4 Leverage and default probability help to separately identify default cost (α)

and shareholder recovery rate (η).

Lastly, let us discuss how market betas change over η. Upon default, higher η implies

that shareholders recover a higher share of the unlevered firm value. Because unlevered firm

value is less risky than equity, positive probability of receiving higher payout that is less risky

in default implies lower market beta. Moreover, as firms actively lower their leverage, firms

face smaller distress risk and thus market betas further decrease. This idea is consistent

with empirical evidence that is documented in Garlappi, Shu and Yan (2008), Garlappi and

Yan (2011) and Hackbarth, Haselmann and Schoenherr (2015).
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Proposition 5 Higher shareholder recovery rate (η) leads to lower market beta.

4. Estimation

This section describes the data, aggregate parameters, estimator, and intuition behind the

estimation method.

4.1. Data

4.1.1. Sample

I obtain panel data from CRSP and COMPUSTAT. I omit missing observations and all firms

whose primary SIC classification is between 4900 and 4999 or between 6000 and 6999 since

the model is inappropriate for regulated or financial firms. I follow Bharath and Shumway

(2008) and Gomes, Grotteria and Wachter (2018) to construct quarterly distance-to-default

(DD) default probability measures. The sample contains 246,090 firm-quarter observations,

number of unique firms is 4,435 and spans from 1970Q1 to 2016Q4. Table 1 shows summary

statistics for the panel data set that this paper attempts to match. Section D.1 describes

data variable definitions.

[INSERT TABLE 1]

Market beta is 1.105 on average,9 quarterly earnings growth rate is 0.6% on average, and

leverage is 0.283 on average. Moments of quarterly DD default probability are important in

identifying my key parameters. Thus, I validate DD default probability measures. Sample

average for my constructed quarterly default probability is 0.27%. This is similar in magni-

tude to the realized quarterly bankruptcy frequencies that are reported at 0.27% based on the

sample period between 1970 and 2014 (Chava and Jarrow, 2004; Chava, 2014; Alanis, Chava

and Kumar, 2015) or 0.28% based on the sample period between 1970 and 2003 (Campbell,

Hilscher and Szilagyi, 2008). I also validate my measure against Moody’s Expected Default

Frequencies (EDF) measures, which are widely used by financial institutions as a predictor

9Market beta is not 1 on average because this is an equal-weighted average.
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of default probability and are used in several academic papers including Garlappi, Shu and

Yan (2008) and Garlappi and Yan (2011). My measures and Moody’s are significantly and

positively correlated as rank correlation is 0.75 with p-value=0.00.

4.1.2. Tax Rates

Following Graham (2000), a few papers (Chen, 2010; Glover, 2016) set τc = 35%, τd = 12%

and τi = 29.6%. However, Graham’s sample period covers only from 1980 to 1994. Because

my sample spans from 1970 through 2016, it calls for more up-to-date tax rates. I construct

panel data of the most up-to-date tax rates (τc, τi and τd) by closely following Graham (2000)

(see Section D.1.3).

The tax rates used in this paper are τc = 28.21%, τd = 17.76%, and τi = 32.85%.

Relative to what were used by a few papers, my τc is lower because it captures periods with

low earnings growth and thus implies lower corporate tax rates. My τd is larger because the

proportion of long-term capital gains that is taxable increased from 0.4 to 1 after 1987 and

my sample captures more of post-1987 than Graham (2000) does. Lastly, my τi is slightly

larger because it accounts for the fact that τi is larger in the pre-1988 period. In net, τcdi

decreased from 13.20% to 10.20%.

4.2. Aggregate Parameters

Because I assume that aggregate variables do not change over time, I calibrate aggregate

variables using the longest sample period available: 1947 through 2016. Table 2 summarizes

calibrated values for aggregate parameters and the corresponding data sources. For quarterly

aggregate earnings growth volatility (σA), I use log growth rates based on the quarterly

aggregate earnings data from National Income and Product Accounts (NIPA) Table 1.14.

For real risk-free rate (r), I subtract realized inflation rate from the nominal three-month

Treasury bill rate.10 Lastly, I use quarterly market Sharpe ratio and debt issue cost (φD)

that are reported in Chen (2010) and Altinkilic and Hansen (2000) respectively.

10 Using the expected inflation rate (Bansal, Kiku and Yaron, 2012) yields very similar value for r.
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[INSERT TABLE 2]

4.3. Estimator

I estimate the model using a two-step process. I first set µ to the sample mean of earnings

growths, which is 0.60%. Then, I estimate the remaining four parameters by using the

simulated method of moments (SMM), which chooses parameter estimates that minimize the

distance between moments generated by the model and their data analogs. The following

subsection defines matched moments and explains how they identify the four parameters.

The four parameters are η and α, which characterize the default process, and b and σF ,

which characterize earning. Appendix A contains additional details on the SMM estimator.

4.4. Identification and Selection of Moments, and Heterogeneity

In a structural estimation, proper moment selection is crucial to identify a unique set of

model parameters that make the model fit the data as closely as possible. To that end,

moments’ predicted values need to be differently sensitive to the model parameters, and

there should be a sufficient number of moments. I match eight moments to identify the four

parameters.

Before defining the moments, I address the issue of firm heterogeneity. Model parameters

vary across firms, and it is undoubtedly important to account for cross-sectional distribution

of model parameters as shown by Glover (2016). However, it is empirically challenging to

estimate cross-sectional distribution especially when the model is misspecified (see Section

6.4). Similar to Hennessy and Whited (2005, 2007), the structural estimation used in this

paper addresses firm heterogeneity in the data by removing firm fixed effects and estimates

for the representative firm. Consequently, this allows me to match time-series variation of

moments.

Now, I define the moments. The eight matched moments are the mean of market beta,

the variance of earnings growth, leverage’s three moments (mean, variance and skewness)
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and default probability’s three moments (mean, variance and skewness).11 One additional

candidate for moments, in identifying η, are statistical moments of shareholder recovery rates

among defaulted firms, which are documented by Eberhart, Moore and Roenfeldt (1990),

Franks and Torous (1989), Betker (1995), and Bharath, Panchapegesan and Werner (2007).

In matching these moments, it is crucial to address sample-selection bias. Unfortunately,

the magnitude of sample-selection bias is very sensitive to cross-sectional distribution of η.

Because it is empirically challenging to estimate cross-sectional distribution of η (see Section

6.4), I decided not to match those moments.

Next, in order to explain how the identification works, I discuss how each parameter is

identified by the aforementioned eight moments. Table 3 tabulates how much each moment

changes over parameters and supports the description below. Each moment depends on all

model parameters, but I explain the moments that are the most important for identifying

each parameter.

[INSERT TABLE 3]

Time-series mean, volatility and skewness of leverage and the same statistical moments of

default probabilities help to identify η. This is illustrated by Figure 3. The figure illustrates

two firms that face the same sequence of earnings (top panel). Two firms have the identical

model parameter numbers except for η. The middle panel illustrates that η = 0 firm has

larger leverage than η 6= 0 firm on average (consistent with Proposition 2). Lower target

leverage, driven by larger η, makes leverage less sensitive to sequence of subsequent earnings

growth shocks and thus decreases time-series volatility of leverage.

Moreover, larger η incentivizes firms to upward refinance less frequently. Because upward

refinancing makes it more probable to default, larger expected firm-value loss, driven by

larger η, incentivizes firms to upward refinance less frequently. Similar to debt issuance cost

(see Leary and Roberts (2005) for empirical support), shareholder recovery rate makes firms’

leverage more persistent over time. Consequently, leverage decreases on average and becomes

11Another relevant moment to match is the credit spread. Yet, I decided not to match the credit spread
due to its data limitation. Firms’ debt frequently consists of heterogeneous instruments, and market prices
for most of these are less readily available than aforementioned data. Nonetheless, I study its sensitivity to
key parameters.
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less volatile. As firms reduce their target leverage and stay below its target leverage longer,

time-series distribution becomes more positively skewed. Although default probabilities are

similarly related to η as leverage is related to η, default probabilities are not as sensitive to η

as leverage is due to the opposing force from shareholders’ strategic default action (see Table

3). As illustrated in Figure 3, η = 0 firm upward refinances at time 84 whereas η 6= 0 firm

does not upward refinance until its earnings reach a higher threshold at time 154. Because

η = 0 firm increases its leverage earlier, a series of negative shocks between time 90 and

140 keep its leverage much higher and more volatile than η 6= 0 firm’s. This leads to more

significant jumps in default probability for η = 0 (bottom panel).

[INSERT FIGURE 3]

In addition, market beta helps to identify η. η is negatively related to market beta.

This relation is consistent with empirical findings reported in Garlappi, Shu and Yan (2008),

Garlappi and Yan (2011), and Hackbarth, Haselmann and Schoenherr (2015).

Similar to η, time-series mean, volatility and skewness of leverage and the same statis-

tical moments of default probabilities help to identify α. Higher α makes leverage lower

on average, less volatile and more positively skewed and thus default probability lower on

average, less volatile and more positively skewed.

Most importantly, I discuss how α and η are separately identified. Conditional on lever-

age, shareholders’ strategic default implies that default probabilities increase over η. Due

to the commitment problem, however, optimal leverage decreases and, consequently, default

probabilities decrease over η. Thus, default probabilities are less negatively related to η

than they would be without the opposing force driven by shareholders’ strategic default.

However, because shareholders’ strategic default action does not depend on α, default prob-

abilities are much more negatively related to α. I illustrate this by calculating the implied

slopes of two curves shown in Figure 2. Using numbers reported in Table 3, the slope of

solid blue curve is − ∂E(Lev)/∂η
∂E(Lev)/∂α

= −−0.317
−0.603

= −0.53, whereas the slope of dashed red curve

is − ∂E(DP )/∂η
∂E(DP )/∂α

= −−0.081
−0.530

= −0.15. Two curves have different slopes, and thus satisfy a

necessary condition for α and η to be point-identified.

Lastly, let us discuss how the remaining two parameters are identified. Larger b implies
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higher exposure to the systematic risk. This naturally translates to larger mean of market

beta. Larger b also implies lower risk-neutral earnings growth rate, which implies lower equity

value. This translates to larger mean, higher volatility and smaller skewness of leverage.

Larger b also implies higher volatility of earnings growth rate and thus implies larger mean

and higher volatility of default probability. σF is naturally identified by the earnings growth

rate volatility. Moreover, larger σF translates to higher volatility of default probability and

implies higher volatility of equity value, and thus higher volatility of leverage. Lastly, as σF

increases, the probability of reaching the default threshold during the next period increases

and thus the mean of default probability increases.

5. Empirical Results

In this section, I present main structural estimation results and discuss their implications.

5.1. Main Results

Table 4 summarizes model fit. The first and the second rows show data moments and

standard errors, respectively. The third row shows model-implied moments. The last two

rows show difference between data and model-implied moments and t-statistics.

[INSERT TABLE 4]

As shown, all the moments are matched well as none of the differences between data and

model-implied moments are statistically significantly different from zero. Especially, I want

to highlight two main matching moments. Data sample mean of leverage is 0.283, whereas

the model counterpart is 0.283. The difference between the data leverage and model-implied

leverage is statistically insignificant. Data sample mean of quarterly default probability is

0.3%, whereas the model counterpart is 0.4%. Again, the difference between the data default

probability and model-implied default probability is statistically insignificant.

Table 5 summarizes the parameter estimates. Shareholders’ recovery rate (η) is estimated

to be 7.1% and α is estimated to be 17.3%. Most interestingly, η is statistically different
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from zero, thus a natural null hypothesis that η = 0 is rejected at 1% significance level.

This number is in line with the empirically observed counterpart, between 0.4% and 7.6%

(Eberhart, Moore and Roenfeldt, 1990; Franks and Torous, 1989; Betker, 1995; Bharath,

Panchapegesan and Werner, 2007), and thus strongly validates my estimates (see Section

6.4.3 for more careful validation of my estimates). Another interpretation of results is that

average firms expect to enter the Chapter 11 in default and expect shareholders to recover

a non-negative amount. If average firms expect to enter the Chapter 7 in default, then the

implied η should have been 0, but this is statistically significantly rejected. This is consistent

with an empirical observation that most publicly listed firms that are declaring bankruptcy

file for the Chapter 11 rather than the Chapter 7.12 Moreover, default cost (α) is expected

to be statistically significantly positive even when shareholders and creditors are expected

to renegotiate in default. Lastly, if η = 0 is imposed in the structural estimation, α is

estimated to be 22.7%. This illustrates how allowing a positive shareholder recovery helps to

obtain default cost, which is more in line with the empirically observed counterpart, between

10% and 20% (Altman, 1984; Andrade and Kaplan, 1998),13 and thus strongly validates my

estimates.

[INSERT TABLE 5]

5.2. Credit Spread, Firm Value, and Government Tax Revenue

In this section, I discuss how η qualitatively relates to credit spreads, firm values and gov-

ernment tax revenue. Then, I quantify such relations in the subsequent sections.

5.2.1. Credit Spread

Conditional on leverage, larger η can be thought of as wealth transfer from creditors to

shareholders. As this is disadvantageous to creditors, credit spreads increase. However, as

12According to www.bankruptcydata.com, more than 90% of U.S. public firms file under Chapter 11.
13Morellec, Nikolov and Schurhoff (2008, 2012) cite Gilson, John and Lang (1990) to argue that α is small

(0%-5%) when shareholders and creditors renegotiate. However, Gilson’s measure does not include indirect
cost and thus is not an appropriate measure in my context.
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firms lower leverage in response, their default risk decreases, and thus credit spreads decrease.

Such a commitment problem is strong enough that credit spreads decrease over η in net.

Proposition 6 Higher shareholder recovery rate (η) leads to lower credit spread.

In the literature, there is no empirical consensus on how η impacts credit spreads. Davy-

denko and Strebulaev (2007) find the relation to be positive yet economically small in mag-

nitude. Based on cross-country data, Davydenko and Franks (2008) do not find any positive

correlation between η and credit spreads. Hackbarth, Haselmann and Schoenherr (2015) find

that credit spreads increased after η supposedly increased due to the Bankruptcy Reform

Act of 1978. Yet, I argue that the increase in credit spreads was not due to the increase in η

but due to the concurrent decrease in personal income tax rates (τi). Section 6.1 lists more

detail on quantitative analysis of the Bankruptcy Reform Act of 1978.

5.2.2. Firm Value and Government Tax Revenue

Higher η leads to lower default probabilities and thus lower expected firm-value loss. Simul-

taneously, lower leverage and less frequent refinancing, driven by higher η, decrease the tax

shield benefit. As default probabilities are small in magnitude, the latter channel more than

offsets the former channel. In net, firm values decrease over η.

Proposition 7 Higher shareholder recovery rate (η) leads to lower firm value.

As η increases, firms decrease their leverage and upward refinance less often. Both of

these lead to less usage of the tax shield benefit and thus the government collects more

taxes. In order to quantify how much government tax revenue increases, I assume that

government tax revenue is a contingent claim to the future tax revenue (see the Appendix

for the derivation).

Proposition 8 Higher shareholder recovery rate (η) leads to larger government tax revenue.
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Let us make one more assumption to study η’s impact on the entire economy: the entire

economy consists of firms and the government. In the model, there are two sources of

deadweight cost, default cost and debt issuance cost. Larger η leads to smaller default

probabilities and thus less frequent realizations of default cost. Moreover, larger η leads

to less frequent realization of debt issuance cost as larger η makes refinancing less frequent.

Taken together, larger η implies less frequent realization of deadweight cost, and consequently

larger value for the entire economy (see Section C.6 for the mathematical derivation).

5.3. The Effect of Positive Shareholders’ Recovery Rate

Column (1) of Table 6 summarizes the counterfactual world when shareholders recover zero

amount in default (η = 0). Under column (2), I allow shareholders to recover non-zero

amount in default, yet I force firms to keep the same optimal policies (coupon, C, and

refinancing point, XU) as under (1). This exercise helps to quantify how much expected

firm-value loss increases, conditional on the firms’ optimal policies. Upon default, firms lose

α (1−τcd)XD
r−µ̂ , where (1−τcd)XD

r−µ̂ is the unlevered firm value in default. Firm-value loss increases

as XD increases from 0.077 to 0.083. Simultaneously, default probabilities increase from

0.388% to 0.436%. Taken together, expected firm-value loss increases by 21.3% even when

default cost α does not change. Lastly, consistent with a few papers such as Davydenko and

Strebulaev (2007), credit spreads increase. Now, under (3), I allow firms to internalize higher

borrowing cost and to re-choose their optimal policies. Higher borrowing costs force firms

to borrow less, and thus default probabilities decrease, market betas decrease and credit

spreads decrease.

In sum, as we allow for a positive shareholder recovery (i.e. comparing column (1) and

(3)), leverages decrease by 9.4% and default probabilities decrease by 8.1%. Market betas

decrease by 20.5% and this is qualitatively consistent with Garlappi, Shu and Yan (2008),

Garlappi and Yan (2011), and Hackbarth, Haselmann and Schoenherr (2015)’s empirical

finding. Moreover, credit spreads decrease by 1.7% (see Appendix E for the discussion on

its magnitude).

Interestingly, firm values decrease by 1.5% as firms lose tax shield benefit. Positive η
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decreases the net leverage benefit (defined as a difference between levered firm value and

unlevered firm value) by 14.2%. As firms take less advantage of tax shield benefits, the

government collects more taxes. That amounts to a 9.9% increase in government tax revenue.

Lastly, the sum of firm values and government tax revenue increases by 0.9%.

6. Robustness

This section reports how estimates for shareholder recovery rate changed over time and

over different subsets of firms. I discuss how firm heterogeneity might affect estimates for

shareholder recovery rate. Lastly, I discuss how estimates would change when I use a different

assumption in the model.

6.1. Bankruptcy Reform Act of 1978

The Bankruptcy Reform Act of 1978 (BRA) is the most important act that shaped the nature

of the modern U.S. bankruptcy system (see Appendix F for more institutional details).

Through the lens of my model, I test how much this act changed default cost, α, and

shareholder recovery rate, η.

Similar to Hackbarth, Haselmann and Schoenherr (2015), I construct two subperiods:

1975Q1-1978Q3 and 1981Q2-1984Q4. A period between 1978Q4-1981Q1 is removed because,

as Hackbarth argues, the market was still learning of BRA’s true impact. In order to focus

on the impact that BRA had on η and α, I assume that only η and α changed over these two

subperiods and assume that the other model parameters did not change. In order to account

for shifts in firms’ optimal decisions driven by changes in tax rates, I allow tax rates to

vary across these two periods. More specifically, in each subperiod, I set the tax rate to the

panel-wide average of firm-quarter tax rates. For the pre-event subperiod, tax shield benefit

rate (τ precdi ) is set to 11.28%. For the post-event subperiod, tax shield benefit rate (τ postcdi ) is

set to 18.95%. τcdi changed over these two subperiods because the Economic Recovery Tax

Act of 1981 significantly decreased the personal tax rate on interest income (τi).
14

14One caveat to note here is that data on corporate marginal tax rates (τc) are not available for pre-1980
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Similar to the main structural estimation (Section 4.3), I first estimate µ by using the

entire sample. Then, I structurally estimate six parameters by matching sixteen moments.

Six parameters include b, σF , η for the pre-event subperiod (ηpre), η for the post-event

subperiod (ηpost), α for the pre-event subperiod (αpre), and α for post-event subperiod (αpost).

Sixteen moments include eight moments (mean of market beta, variance of earnings growth,

three moments of leverage and three moments of default probability) from the pre-event

subperiod and the same eight moments from the post-event subperiod.

[INSERT TABLE 7]

Table 7 summarizes parameter estimates. Consistent with the literature’s qualitative

argument, η statistically significantly increased (t-statistics is 11.4). Decrease in market

betas, leverages and default probabilities combined with the concurrent decrease in tax rates

have contributed to a significant increase in estimated η. More interestingly, the current

paper quantifies such an increase: η increased from 0.1% to 29.0%. Moreover, ηpre = 0.1%

is consistent with Hackbarth et al.’s argument that the impact of BRA was unclear leading

up to 1978. In addition, α increased, although not statistically significantly, from 19.0% to

20.1%.

Over these two subperiods, three parameter values have changed: η, α and tax rates. In

order to study impacts of each change, I conduct a counterfactual analysis by turning on

each change in sequence. Table 8 summarizes such results.

[INSERT TABLE 8]

When only η changed from 0.1% to 29.0% (comparison between (1) and (2) columns),

leverages decrease by 35.8%, market betas decrease by 11.5% and credit spreads decrease

by 6.6%. A slight increase in α (comparison between (2) and (3) columns) further decreases

leverage, market betas and credit spreads. Yet, the concurrent change in tax rates (com-

parison between (3) and (4) columns) mutes the aforementioned changes. In net, leverages

decrease by 14.0%, market betas decrease by 5.1% and credit spreads increase by 7.2%. Here,

I want to highlight that an empirically observed increase in credit spreads, which Hackbarth,

and τc used for firms in the pre-event subperiod are imputed as described in Section D.1.3. However, I do not
believe that this imputation causes an increase in τcdi as the Economic Recovery Tax Act of 1981 targeted
only individual income tax rates.

25



Haselmann and Schoenherr (2015) documents, is not due to the change in the bankruptcy

code but rather due to the change in the tax code. Lastly, the rise in η (comparison between

(1) and (2)) decreases firm values by 6.6% and increases government tax revenue by 36.9%.

Yet, after accounting for all the changes, including tax rates, firm values increase by 6.0%

and government tax revenue decreases by 39.1%.

6.2. Evolution of Shareholders’ Recovery Rate

Even though bankruptcy law has not significantly changed since BRA was passed, Skeel

(2003) conjectured that contractual innovations in the bankruptcy process steadily decreased

shareholder recovery rate. In support for Skeel’s conjecture, Bharath, Panchapegesan and

Werner (2007) documents an empirical evidence: among firms that defaulted between 2000

and 2005, shareholders only recovered 0.4% on average. Bharath et al. attributes such a

time-series decline in shareholder recovery rate to contractual innovations, such as debtor-

in-possession financing and key employee retention plans.

In order to test whether this is reflected in firm data, I structurally estimate shareholder

recovery rate and other model parameters for more recent periods. I first divided post-

1985 era into three subperiods: 1985Q1-1994Q4, 1995Q1-2004Q4, and 2005Q1-2016Q4. I

estimate model parameters for each subperiod independently from the others. Figure 4

graphically illustrates subperiod results. For completeness, the figure also illustrates pre-

1985 estimates, which were discussed in Section 6.1. Consistent with Skeel’s conjecture and

Bharath et al.’s empirical finding, shareholder recovery rate steadily decreased over time.

Shareholders’ recovery rate decreased from 19.9% during 1985Q1-1994Q4 to 0.97% during

2005Q1-2016Q4. On the contrary, default costs slightly increased, yet the increase is not

statistically significant.

The time-series changes in shareholder recovery rates and default costs are driven jointly

by various moving parts. Keeping other parameters constant, the time-series decrease in tax

shield benefit rate implies time-series decrease in leverage and time-series decrease in default

probability over 1985Q1-2016Q4. Absent the change in tax shield benefit rate, leverage and

default probabilities would have actually increased, under which case Figure 5 illustrates
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how α and η are identified. As leverages and default probabilities increase, solid line (locus

of α and η match a leverage) shifts downward and dashed line (locus of α and η that match

a default probability) shifts downward. As shown, η significantly decreases yet α slightly

increases. The time-series increase in volatility of default probabilities and leverages further

help to identify significant decrease in η and modest increase in α.

Finally, this result helps to alleviate a possible concern that my structural estimates might

be picking up other alternative economic factors that influence leverage. Those alternative

factors are, but certainly not limited to, business cycle variation (Chen, 2010) or agency

costs (Morellec, Nikolov and Schurhoff, 2012). However, there is no clear explanation on

why either of these alternative factors shows the time-series trend that is shown in Figure 4,

and thus puts more weight on my economic story: shareholder recovery rate.

6.3. Empirical Proxies for Shareholders’ Recovery Rate

The results so far quantify how much shareholders expect to recover in default for the repre-

sentative firm. Now, I explore how these values vary over firms with different characteristics.

Based on empirical proxies for shareholder recovery rate, discussed below, I construct a sub-

set of firms and estimate model parameters for each subset independently from others. Then,

I conduct counterfactual analysis in each subset to quantify economic impacts of a positive

shareholder recovery rate.

I first discuss empirical proxies for shareholder recovery rate that I use to construct

subsets. Due to lack of guidance on proxies’ validity, the literature uses a wide range of

measures. Unfortunately, in many cases, these empirical measures simultaneously proxy

other unobservable firm characteristics, and thus its validities can be ambiguous. This

subsection studies two commonly used proxies, firm size and intangible assets. I use total

asset (Compustat: AT) to measure firm size. I use two separate measures to proxy intangible

assets: normalized R&D expense (Compustat: XRD/AT) and Intangibility proposed by

Peters and Taylor (2016).

For a given empirical proxy, I form two subsets. In order to make sure that firms do
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not move from one subset to the other over time, I perform the following procedure. At

each quarter, I calculate the proxy’s cross-sectional median, and I temporarily allocate a

firm with proxy value greater than the median to High-subset and a firm with proxy value

smaller than the median to Low-subset. This generates a time-series of subsets for a given

firm. Then, I allocate the firm’s entire time-series data to one subset that the firm spends

the most time in.

Across different subsets, I allow tax rates to vary but keep other aggregate variables

constant. Table 9’s first panel summarizes tax shield benefit rates and other matching

moments. For example, low-R&D firms’ tax shield benefit rate is much larger than high-

R&D firms’ because high-R&D firms have higher expenses.

Next, I structurally estimate model parameters for each subset independently. Table

9’s middle panel summarizes estimates for default cost (α) and shareholder recovery rate

(η) for different subsets. First, I find that estimates for η increase over firm size. This

result is consistent with the literature’s use of η as a positive proxy. Citing more frequent

occurrences of a positive shareholder recovery rate15 in larger firms, Garlappi, Shu and Yan

(2008) Garlappi and Yan (2011), and Hackbarth, Haselmann and Schoenherr (2015) use firm

size as a positive proxy for η. They argue that small firms usually have a higher concentration

of bond ownership. So, close monitoring by concentrated creditors severely decreases η.

Second, although η increases over R&D, the increase is not statistically significantly

different from 0, and thus casts doubt on this literature’s (Garlappi, Shu and Yan, 2008;

Garlappi and Yan, 2011; Hackbarth, Haselmann and Schoenherr, 2015)’s use of R&D as a

negative proxy for η. They use it as a negative proxy because firms with high R&D are more

likely to face liquidity shortages (Opler and Titman, 1994) during financial crises, thus are

more likely to forgo intangible investment opportunities that shareholders value (Lyandres

and Zhdanov, 2013). Firms’ urgent need for liquidity effectively acts as cash-flow-based

covenants, and thus high intangibility puts shareholders at a disadvantage vis-á-vis creditors

and implies low η. However, η can increase over R&D because some R&D investments

are more valuable under shareholders’ possession, which increases shareholders’ bargaining

15Please see Weiss (1990), Betker (1995), and Franks and Torous (1994) for more detail.
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power vis-á-vis creditors. Due to these offsetting forces, R&D might not be a good empirical

proxy for η as evident in my estimates. A similar result holds for the other empirical proxy:

intangibility.

Third, the results show that both R&D and intangibility are strong positive proxies for α.

Consistent with some findings (Reindl, Stoughton and Zechner, 2017), this variable captures

how non-transferable a firm’s asset might be in default and thus is positively related to α.

Lastly, interestingly, the estimates imply that firm size is a strong positive proxy for α

and this is inconsistent with some previous findings (Reindl, Stoughton and Zechner, 2017).

If the same tax rates were used for both small and big firms, as was done in other studies,

then small firms’ α would have been larger than big firms’ because small firms’ leverage is

smaller than big firms’. Yet, as shown in Table 9, big firms face much larger tax shield

benefit rates (almost 3 times) than small firms do. Thus, through the lens of my model, it

implies that big firms have to face larger α than small firms do. This finding illustrates the

importance of using appropriate tax rates in estimating α and η for each subset.

Using these estimates, I do a counterfactual analysis for each subset of firms. Allowing η

to be positive can have different implications on each subset because different subsets have

different α, η and tax shield benefit rates. Table 9’s last panel summarizes such counterfactual

analysis results.

[INSERT TABLE 9]

For example, I focus on firms sorted by R&D. η for high-R&D firms is larger than that for

low-R&D firms and thus allowing η to be positive should have larger economic consequences

on high-R&D firms. High-R&D firms have larger α and thus reinforces the commitment

problem that positive η plays. Thus, high-R&D’s leverages and default probabilities de-

crease significantly more (17.1% and 24.0%, respectively) than low-R&D’s (7.3% and 4.4%,

respectively). However, these do not necessarily translate to lower dollar amount of tax

shield benefit for high-R&D firms. Because high-R&D firms face a lower tax shield benefit

rate than low-R&D firms, high-R&D firms face lower firm value loss than low-R&D firms de-

spite that high-R&D firms reduce their leverage more. Accordingly, the percentage increase

in government tax collection is larger for low-R&D firms than it is for high-R&D firms.
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6.4. Firm Heterogeneity: Monte Carlo Simulations

As emphasized by Glover (2016), cross-sectional distribution of model parameters is im-

portant to consider, especially in estimating default cost and shareholder recovery rate.

Although I agree with its importance, it is empirically challenging to estimate the cross-

sectional distribution. Below, I first discuss how model misspecification at the firm level

makes it empirically challenging to estimate the cross-sectional distribution. Then, I illus-

trate that estimating for the representative firms does not suffer from model misspecification

problem. Lastly, I quantify sample-selection bias and validate bias-adjusted estimates.

To quantitatively analyze the aforementioned three points, it is the most ideal to know

population cross-sectional distribution of model parameters. Thus, the most suitable way

to analyze this is through a Monte Carlo simulation. In order to illustrate how my analysis

is sensitive to different data-generating process (DGP), I create two simulated panel data

(see Appendix B for details). Both DGPs are calibrated to resemble data on a few aspects,

including population cross-sectional mean of model parameters, which are set almost equal

to those reported in Table 5. In both simulated data set, firm heterogeneity arises due to

heterogeneous model misspecification, heterogeneous model parameters or different realiza-

tions of earnings. The only difference between these two DGPs is as follows. I create the

first simulated panel data set by randomly drawing α and η from truncated normal PDF.

I create the second simulated panel data set by randomly drawing α and η from truncated

exponential PDF. Panel A in Table 10 shows population cross-sectional mean of shareholder

recovery rate for both DGPs.

6.4.1. Firm-Level Estimation

Glover (2016) estimates the population default cost to be 45% even though default cost

among population conditional on defaults is 25%, and Glover attributed the large discrepancy

to sample-selection bias. Even though I qualitatively agree with existence of sample-selection

bias, I want to illustrate that Glover’s particular choice of estimation method might have

significantly upward biased its estimate of the sample-selection bias.
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As long as the estimation procedure cannot distinguish between different sources of het-

erogeneity, estimated cross-sectional distribution of model parameters are biased by model

misspecification. In order to illustrate my point, I study firm-level estimation, used by

Glover, which cannot distinguish between different sources of heterogeneity. Due to small

time-series data, the law of large numbers cannot help to “fix” the model misspecification

problem, and consequently firm-level estimates are biased. Firm-level estimates are upward

biased because both model-implied functions for leverage and default probability are convex

functions in default cost, α, and shareholder recovery rate, η. Consequently, cross-sectional

average of firm-level estimates are significantly upward biased. Panel B.1 in Table 10 reports

estimation bias for both set of simulated panel data.

[INSERT TABLE 10]

6.4.2. Numerical Validation of Structural Estimation

Similar to Hennessy and Whited (2005, 2007), this paper structurally estimates for the rep-

resentative firm. This subsection numerically shows that the structural estimation procedure

used in this paper properly uncovers population cross-sectional mean of model parameters.

The results are summarized in Panel B.2 in Table 10. As shown, the structural estimation

procedure’s estimate biases are small for both simulated panel data, yet not zero due to

finite-sample bias. Thanks to the law of large numbers, estimating for the representative

firm always yields lower bias than firm-level estimates as long as the model is nonlinear in

model parameters.

6.4.3. Sample-Selection Bias and Validation of Estimates

Many earlier papers attempt to estimate η and α by examining defaulted firms. Thus,

it seems natural to check my estimates against realized counterparts documented in those

papers. However, as noted by Glover (2016), sample-selection bias can be large because firms

with small η and/or small α tend to default more frequently. Thus, the sample average of η

(α) conditional on defaults can be smaller than the unconditional sample average of η (α).
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I quantify sample-selection bias and report results in Panel C in Table 10. Population

cross-sectional mean of α and η is almost identical for both simulated data. Yet, cross-

sectional distributions of α and η, which follow the normal distribution, have smaller mass

on small values than those that follow exponential distribution. Thus, the magnitude of

sample-selection bias should be smaller under the first specification. Consistent with the

intuition, sample-selection bias is 5.5% for α and 2.3% for η using the first simulated data

set, whereas sample-selection bias is 8.3% for α and 3.3% for η using the second simulated

data set. As illustrated, the magnitude of sample-selection bias heavily depends on η and

α’s cross-sectional distribution.

Nonetheless, I use these bias-adjusted numbers to validate my estimates. Among de-

faulted firms, direct measurement literature estimate shareholder recovery rate after default

cost is realized. Thus, the comparable number is the sample average of η
1−α . The value is

5.4% under the first simulated data and 4.2% under the second simulated data. Both num-

bers are in line with empirically observed counterpart between 0.4% and 7.6%. Bias-adjusted

default cost is 11.9% under the first simulated data and 9.1% under the second simulated

data. Both numbers are in line with the empirically observed counterpart between 10%

and 20%. This external validation exercise strongly validates my results. Lastly, I check

if the parameter estimates imply a reasonable value for creditors’ recovery rate. According

to Moody’s Ultimate Recovery Database announcement in April 2017, the median recovery

for corporate bonds was 36% between 1987 and 2016. The model counterparts16 are 25.4%

using the first simulated data and 27.9% using the second simulated data. The discrepancy

in creditors’ recovery rate could arise due to different sample period.

16I define creditors’ recovery rate as

(1− αr − ηr)(D(XD) + E(XD))

D(X0)

where the numerator represents the creditor’s realized recovery value and the denominator represents what
creditors are owed.
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6.5. Uncertainty in Shareholders’ Recovery Rate

In this subsection, I study how uncertainty in shareholder recovery rate could impact firms’

optimal leverage ex-ante.

I assume that shareholder recovery rate, η, is drawn once, immediately after firms decide

on its initial leverage. One reasonable conjecture is that uncertainty in η decreases the

commitment problem played by positive η because its power seems to have subsided due

to its uncertainty. However, the opposite can happen for the following reason. Expected

firm-value loss is a convex function in η (because XDC is proportional to 1
1−η as shown in

Equation (5)). Thus, the average of high η’s optimal leverage and low η’s is smaller than

medium η’s leverage. On a related note, as long as η = 1 event happens with some positive

probability, expected firm-value loss becomes infinity (again, because XDC is proportional

to 1
1−η as shown in Equation (5)) and firms optimally choose zero leverage ex-ante. Thus,

introducing uncertainty in η can allow us to match the empirically observed leverage even

with lower magnitude of η.

What does this mean for my η estimate? If uncertainty in η truly exists in the real

world, because the current model does not account for uncertainty, η reported in Table

5 is an upper bound for the population cross-sectional mean of η. Although this is a very

interesting extension, quantitative analysis of the role of uncertainty in η is beyond the scope

of this paper and I will leave this for later study.

7. Conclusion

According to the absolute priority rule (APR), shareholders should recover nothing in default

unless creditors are paid in full. However, in practice, shareholders do receive a positive

payoff in default even if creditors are not paid in full. In this paper, I develop a dynamic

tradeoff model to examine the importance of a positive shareholder recovery rate. Consistent

with existing empirical findings, I allow default to be costly even when shareholders recover

a positive amount as a renegotiation outcome with creditors. A positive recovery makes
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shareholders more willing to default, which increases borrowing costs. In response, firms

optimally reduce leverage ex-ante. This channel helps to match distributions of both leverage

and default probability.

A structural estimation of the model yields a default cost of 17.3% and a shareholder

recovery rate of 7.1%. Counterfactual analysis reveals that allowing a positive shareholder

recovery rate decreases the leverage by 9.4%. Consequently, default probabilities decrease

by 8.1%, market betas decrease by 20.5% and credit spreads decrease by 1.7%. As firms lose

the tax shield benefit, firm values decrease by 1.5% and government tax revenue increases

by 9.9%. Lastly, lower default probability, driven by a positive shareholder recovery, implies

less frequent realization of deadweight cost. Thus, the sum of firm values and government

tax revenue increases by 0.9%. Even though this paper does not do complete welfare anal-

ysis, these findings can still be used to shed some light on an important bankruptcy policy

question as this paper highlights its consequences. Additionally, subperiod analysis reveals

that shareholder recovery rate increased immediately after the Bankruptcy Reform Act was

passed in 1978, and a shareholder recovery rate has steadily decreased ever since. Consistent

with the empirical literature, my subset estimates show that firm size is a good positive

proxy for shareholder recovery rate.
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Table 1: Summary Statistics

This table reports the summary statistics for my sample of firm data. The sample contains

246,090 firm-quarter observations, number of unique firms is 4,435 and spans from 1970Q1

to 2016Q4. Market beta is calculated based on a rolling window of 24 months of monthly

returns. Earnings growth is ẽi,t+1 = log

(∑K
j=0OIADPQi,t+1−j∑K
j=0OIADPQi,t−j

− 1

)
where K is set to 8 and

OIADPQ is operating income after depreciation. Default probabilities are constructed by

following distance-to-default model (Bharath and Shumway, 2008). Leverage is defined as
DLTTQ+DLCQ

DLTTQ+DLCQ+ME
where DLTTQ, DLCQ and ME are long-term debt, short-term debt and

market equity, respectively.

Market beta Earnings Growth Default Probability Leverage

Mean 1.105 0.0060 0.0027 0.283

Median 1.050 0.0144 0.0000 0.231

Standard dev 0.858 0.3018 0.0437 0.225

Skewness 0.763 -0.9793 19.2656 0.815

Minimum -12.771 -8.3713 0.0000 0.000

Max 15.278 8.0986 1.0000 0.999

Number of obs 246,090 246,090 246,090 246,090

Table 2: Aggregate Parameters Values

This table reports values used for aggregate parameters and their data sources. Quarterly

aggregate earnings growth volatility (σA) and quarterly real risk-free rate (r) are calibrated

based on the sample period from 1947Q1 through 2016Q4. A value for market Sharpe ratio

is obtained from Chen (2010) and a value for proportional debt issuance cost is obtained

from Altinkilic and Hansen (2000).

Description Value Source

σA Quarterly aggr earnings growth vol 0.052 NIPA

r Quarterly real risk-free rate 0.0016 FRED

ϕA Quarterly market Sharpe ratio 0.165 Chen (2010)

φD Prop’ debt issuance cost 0.015 Altinkilic and Hansen (2000)
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Table 3: Sensitivity of Moments to Parameters

This table shows the local sensitivity of model-implied moments (in columns) with respect

to model parameters (in rows). To make the sensitivities comparable across parameters and

moments, the sensitivities are normalized as ∂ moment
∂ parameter

× parameter’s standard error
moments’ standard error

. Local sensi-

tivities are calculated around the estimates that are reported in Table 5. From left to right,

moments are mean of market beta (E(β)), variance of earnings growth (var(EG)), mean of

leverage (E(Lev)), variance of leverage (var(Lev)), skewness of leverage (skew(Lev)), mean

of default probability (E(DP )), variance of default probability (var(DP )) and skewness of

default probability (skew(DP )). Parameter definitions are as follows. b is earnings growth

beta, σF is volatility of firm-specific earnings growth shock, η is shareholder recovery rate

and α is default cost.

E(β) var(EG) E(Lev) var(Lev) skew(Lev) E(DP ) var(DP ) skew(DP )

b 0.837 0.015 0.275 0.312 −0.204 0.235 0.202 −0.088

σF 0.003 0.215 −0.006 0.280 0.154 0.280 0.251 −0.107

η −0.208 0.000 −0.317 −0.655 0.027 −0.081 −0.072 0.030

α −0.276 0.001 −0.603 −0.733 0.465 −0.530 −0.452 0.196

Table 4: Model Fit

This table shows how well the model fits the eight moments targeted in the SMM estimation.

The first and the second rows show data moments and standard errors respectively. The third

row shows model-implied moments. The last two rows show the difference between data and

model-implied moments and t-statistics. From left to right, moments are mean of market

beta (E(β)), variance of earnings growth (var(EG)), mean of leverage (E(Lev)), variance of

leverage (var(Lev)), skewness of leverage (skew(Lev)), mean of default probability (E(DP )),

variance of default probability (var(DP )) and skewness of default probability (skew(DP )).

E(β) var(EG) E(Lev) var(Lev) skew(Lev) E(DP ) var(DP ) skew(DP )

Data 1.105 0.078 0.283 0.019 0.451 0.003 0.002 16.869

Std. Err. (0.036) (0.010) (0.012) (0.003) (0.155) (0.001) (0.000) (3.960)

Model 1.100 0.060 0.283 0.018 0.736 0.004 0.002 16.068

Difference 0.005 0.018 -0.001 0.001 -0.285 -0.001 0.000 0.801

t-stat 0.151 1.786 -0.041 0.251 -1.839 -1.662 -0.689 0.202
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Table 5: Parameter Estimates

This table reports the model’s parameter estimates from the simulated method of moments

(SMM). Here, I cluster by industries to account for apparent correlation between firms in the

same industry. I use 17 industry definitions from Kenneth French’s website. This clustering

strategy also accounts for time-series autocorrelation within firms. This is more conservative

than clustering by firms. Parameter definitions are as follows. b is earnings growth beta, σF

is volatility of firm-specific earnings growth shock, η is shareholder recovery rate and α is

default cost.

b σF η α

Estimate 0.816 0.244 0.071 0.173

Standard Error (0.019) (0.002) (0.009) (0.010)

Table 6: The Effect of Positive Shareholders’ Recovery Rate

This table illustrates the effect of a positive shareholder recovery rate. The first column re-

ports values for the counterfactual world where shareholders are expected to recover nothing

in default. The second column allows shareholders to recover non-zero amount in default

yet forces firms to keep the same optimal policies (coupon, C, and refinancing point, XU)

as under the first column. This exercise helps to quantify how much expected firm-value

loss increases, conditional on the firms’ optimal policies. The third column summarizes the

data-matched world where shareholders are expected to recover 7.1% in default. The first

three rows are coupon, default threshold and upward refinancing boundary, all scaled by

initial earnings level. The fourth row shows panel-wide average of leverage. The fifth row

shows panel-wide average of default probabilities. The sixth row shows panel-wide average

of market betas. The last row shows panel-wide average of credit spreads.

(1) (2) (3)

η = 0 η = 7.1% η = 7.1%

Coupon (C) 1.145 1.145 1.006

Upward Refinancing Point (XU) 3.882 3.882 3.918

Default Threshold (XD) 0.077 0.083 0.073

Leverage 0.314 0.306 0.285

Default Probability (%) 0.388 0.436 0.356

Market-beta 1.386 1.132 1.102

Credit Spread (BP) 194 201 191
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Table 7: Robustness — Bankruptcy Reform Act of 1978

This table reports the model’s parameter estimates from the simulated method of moments

(SMM). These estimates help to test how the Bankruptcy Reform Act of 1978 changed

shareholder recovery rate (η) and default cost (α). Similarly to the baseline parameter

estimates, I cluster by industries to account for apparent correlation between firms in the

same industry. I use 17 industry definitions from Kenneth French’s website. This clustering

strategy also accounts for time-series autocorrelation within firms. This is more conservative

than clustering by firms. Parameter definitions are as follows. b is earnings growth beta,

σF is volatility of firm-specific earnings growth shock, ηpre is η for the pre-event subperiod

(1975Q1-1978Q3) and ηpost is η for the post-event subperiod (1981Q2-1984Q4), αpre is α

for the pre-event subperiod (1975Q1-1978Q3) and αpost is α for the post-event subperiod

(1981Q2-1984Q4).

b σF ηpre ηpost αpre αpost

Estimate 0.812 0.220 0.001 0.290 0.190 0.210

Standard Error (0.012) (0.002) (0.019) (0.017) (0.008) (0.032)

Table 8: Robustness — Analysis of Bankruptcy Reform Act of 1978

This table illustrates the effect of the Bankruptcy Reform Act of 1978. The first column

summarizes the model-implied moments when τcdi = 11.28%, η = 0.1% and α = 19.0%.

The second column shows the model-implied moments when τcdi = 11.28%, η = 29.0% and

α = 19.0%. The third column shows the model-implied moments when τcdi = 11.28%,

η = 29.0% and α = 21.0%. The fourth column shows the model-implied moments when

τcdi = 18.95%, η = 29.0% and α = 21.0%.

(1) (2) (3) (4)

τcdi 11.28% 18.95%

η 0.001 0.290 0.290 0.290

α 0.190 0.190 0.210 0.210

Leverage 0.297 0.190 0.180 0.255

Market beta 1.094 0.968 0.958 1.038

Credit spread 216 202 197 232
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Table 9: Robustness — Subset Based on Empirical Proxies for Shareholders’ Recovery Rate

This table reports results for subset analysis. For each proxy (size, R&D, or intangibility),

I form two subsets. At each quarter, I calculate the proxy’s cross-sectional median, and I

temporarily allocate a firm with proxy value greater than the median to High-subset and a

firm with proxy value smaller than the median to Low-subset. This generates a time-series

of subsets for a given firm. Then, I allocate the firm’s entire time-series data to one subset

that the firm spends the most time in. The first panel reports summary statistics for each

subset. The second panel reports estimates for shareholder recovery rate (η) and default cost

(α) and standard errors (in parentheses) for each subset. The last panel quantifies economic

consequences of allowing shareholders to recover a positive amount in default. It reports

percent changes on leverage, default probability, firm value and government tax revenue.

Size R&D Intangibility

Small Big Low High Low High

Summary Statistics

Tax Shield Benefit Rate 0.048 0.132 0.112 0.063 0.105 0.098

Leverage 0.273 0.287 0.240 0.181 0.315 0.240

Default Prob 0.201 0.291 0.142 0.087 0.326 0.179

Estimates

Shareholders’ Recovery Rate (η) 0.015 0.122 0.071 0.101 0.061 0.073

(0.008) (0.009) (0.009) (0.043) (0.008) (0.014)

Default Cost (α) 0.105 0.242 0.131 0.150 0.174 0.21

(0.004) (0.028) (0.010) (0.022) (0.006) (0.012)

Economic Consequences: η = 0⇒ η 6= 0

%∆ Leverage −2.6 −14.6 −7.3 −17.1 −8.2 −11.0

%∆ Default Prob −4.3 −12.2 −4.4 −24.0 −7.3 −13.7

%∆ Firm Value −0.1 −4.0 −2.0 −1.1 −1.2 −1.2

%∆ Tax Revenue 0.6 79 146.4 11.2 7.5 7.5
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Table 10: Robustness — Firm Heterogeneity

This table illustrates how firm-level heterogeneity can impact structural estimates. For il-

lustration, I simulate two sets of panel data sets that feature firm heterogeneity due to

variety of sources: heterogeneous model parameters (α, η), heterogeneous model misspec-

ification and idiosyncratic shocks. The first simulated data set assumes truncated normal

distribution for model parameters and the table’s first column summarizes such results. The

second simulated data set assumes truncated exponential distribution for cross-sectional dis-

tribution of model parameters and the table’s second column summarizes such results (see

Appendix Section B for more detail). Panel A summarizes population cross-sectional mean

of heterogeneous model parameters. Panel B reports estimates for population cross-sectional

mean using different structural estimation procedures. Panel C reports conditional mean in

default, and quantifies sample-selection bias.

Truncated Normal Truncated Exponential

Panel A. Population Cross-sectional Mean of Heterogeneous Model Parameters

αi 17.4% 17.0%

ηi 7.1% 7.0%

Panel B. Estimates Using Different Estimation Procedures

estimation bias estimation bias

B.1 Firm-Level Structural Estimation (Glover (2016))

α 19.6% 2.2% 19.7% 2.7%

η 21.1% 14.0% 22.4% 15.4%

B.2 Structural Estimation Used in the Current Paper

α 17.7% 0.3% 16.3% 0.7%

η 7.4% 0.3% 6.5% 0.5%

Panel C. Conditional Mean Upon Default

selection bias selection bias

α 11.9% 5.5% 8.4% 8.6%

η 4.8% 2.3% 3.4% 3.6%
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Figure 1: Illustration of the Trade-off Theory

This figure illustrates the Trade-off theory. Solid line illustrates the Trade-off theory when

η = 0. Dashed line illustrates the Trade-off theory when η 6= 0. A → B illustrates an

economic intuition that the firm value decreases due to shareholders’ strategic default action.

B → C illustrates that firms actively de-lever to optimize firm value minus debt issuance

cost and illustrates a commitment problem.

Figure 2: Identification of η and α

This figure illustrates how η and α are separately identified. Solid line is the locus of α and

η that match a given leverage. Dashed line is the locus of α and η that match a given default

probability.
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Figure 3: Time-Series Variation of Leverage and Default Probabilities

This figure illustrates how shareholder recovery rate (η) impacts time-series variation of

leverage and default probabilities. Two firms have the same model parameters except for η:

blue firm’s η is zero, whereas red firm’s η is non-zero. Both firms face the same sequence

of earnings that are shown in the top panel. Middle panel shows time-series of leverage for

both firms. Blue firm’s leverage is larger than red firm’s on average. Moreover, blue firm

upward refinances earlier at time 84 than red firm does. Consequently, blue firm’ leverage is

more volatile and more positively skewed. Similar patterns are observed in the sequence of

default probabilities (bottom panel).

42



Figure 4: Evolution of Shareholder Recovery Rate and Default Cost in Percentages

This figure illustrates how structural estimates for shareholder recovery rate (upper panel)

and default cost (lower panel) change over time. Red dashed line illustrates estimates for

the entire sample: 1970Q1-2016Q4: η̂ = 7.1%(0.9%) and α̂ = 17.3%(1.0%). Black solid line

(estimates) along with gray region (95% confidence interval) illustrate estimates for each

subperiod. η̂ = 0.1%(1.9%) and α̂ = 19.0%(0.8%) for 1975Q1-1978Q3. η̂ = 29.0%(1.7%)

and α̂ = 21.0%(3.2%) for 1981Q2-1984Q4. η̂ = 19.9%(1.1%) and α̂ = 14.0%(1.3%) for

1985Q1-1994Q4. η̂ = 3.8%(1.0%) and α̂ = 15.3%(1.1%) for 1995Q1-2004Q4. Lastly, η̂ =

0.97%(0.3%) and α̂ = 17.1%(0.8%) for 2005Q1-2016Q4.
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Figure 5: Identification of Time-Series Change in η and α

This figure illustrates how time-series change in leverage and default probabilities help to

identify time-series change in η and α. As it moves from 1985Q1-1994Q4 to 2005Q1-2016Q4,

solid line (locus of α and η that match a leverage) shifts downward and dashed line (locus of

α and η that match a default probability) shifts downward. Intersection of thick solid line

and thick dashed line is a structural estimate for 1985Q1-1994Q4. Intersection of thin solid

line and think dashed line is a structural estimate for 2005Q1-2016Q4. As shown, as it moves

from 1985Q1-1994Q4 to 2005Q1-2016Q4, η significantly decreases yet α slightly increases.
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A. Estimation Procedure

The objective here is to estimate parameters: b, σF , η and α.

First of all, why do simulation at all? Don’t I have everything in closed-forms? I do have

closed-forms for firm value, equity value and debt value. But I do not have closed-forms for

my moments because moments are path-dependent and a simulated sample is an unbalanced

panel. Thus, I rely on simulations to generate model counterparts.

In order to address firm heterogeneity in the data, I account for firm fixed effects in

calculating the higher-order moments. More specifically, let us assume that firm i’s data at

time t is dit. I convert dit to d̃it by accounting for firm fixed effects as follows:

d̃it = dit −
1

Ti

Ti∑
t=1

dit +
1∑N
i=1 Ti

N∑
i=1

Ti∑
t=1

dit

Using the above, I construct 8× 1 data moments vector M . Similarly, for parameter θ, for

s-th simulated collection of earnings sample path, I calculate the model-implied moments

Ms(θ). Similar to the data counterpart, I account for firm fixed effects in the simulated data.

Then, I estimate θ by minimizing SMM-weight weighted distance between data moments and

model-implied moments:

θ̂ = arg min
θ

(
M − 1

S

S∑
s=1

Ms(θ)

)′
W

(
M − 1

S

S∑
s=1

Ms(θ)

)

Here, W is covariance matrix of data-moments after accounting for time-series and intra-

industry dependence:17

W =

(
1∑N
i=1 Pi

N∑
i=1

[uiu
′
i]

)−1

where ui is an 8×Pi matrix of influence functions. Here, N is the number of industries and

Pi is the sample size for the industry i.

In calculating standard errors, I correct standard errors for the sampling variability in

17Here, I cluster by industries to account for apparent correlation between firms in the same industry. I use
17 industry definitions from Kenneth French’s website. This clustering strategy also accounts for time-series
autocorrelation within firms. This is more conservative than clustering by firms.
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initially estimating µ. To that end, I update W as follows (Newey and McFadden, 1994):

W̃ =

(
1∑N
i=1 Pi

N∑
i=1

[(
ui(µ̂)− ∂ui(µ)

∂µ
uµi

)(
ui(µ̂)− ∂ui(µ)

∂µ
uµi

)′])−1

where ui(µ̂) is an influence function for 8 moments for given µ̂ and uµi is an influence function

for the earnings growth mean. Then, the standard errors for parameter estimates are given

by: √√√√ N∑
i=1

Pi(θ̂ − θ0)→ N

(
0,

(
1 +

1

S

)
((H0)′W̃H0)−1

)

where H0 = E
[
∂Ms(θ0)

∂θ

]
.

I first simulate S = 10 time-series of the aggregate earnings growth. For each time series

of the aggregate earnings growth, I simulate 4,435 firm-specific sample paths as there are

4,435 unique firms in my panel data set. In each simulation, I generate a sample path of

50+Ti quarters long earnings Xi,t. I discard the first 50 quarters of simulated earnings to

reduce solutions’ dependence on Xi,t at time t = 0. I set Ti to actual time-series length of

firm i in order to simulate the unbalanced panel as shown in Figure 6. This small time-series

sample bias is important because default probability is significantly sensitive to how long Ti

is. For example, for firms whose earnings growth was hit by negative shock, they would not

have had enough time to recover under the shorter time, and thus their time-series sample

average of default probability would have been larger compared to what would have been if

they had been given a longer time.

Figure 6: Distribution of Time-Series Length in Quarters
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B. Simulated Panel Data

Using the models that are described in Section 3, I simulate panel data of leverage and

default probability and moderately “taint” the simulated data with a model misspecifica-

tion. I simulate panel data of leverage and default probability for 4,435 firms to mimic the

true number of unique firms in the data. For a sequence of earnings level, {Xi,t}, firm i’s

observable leverage and observable default probabilities at time t are:

l(αi, ηi;Xi,t) + εli

d(αi, ηi;Xi,t)

where l and d are aforementioned functions of leverage and default probability, respectively,

in terms of αi and ηi. I randomly draw firm fixed effects εli from normal distribution εli ∼
N (0%, 4%2) in order to simulate a model misspecification. I use two different cross-sectional

distributions of αi and ηi.

First, I randomly draw ηi and αi from truncated normal distributions: ηi ∼ T N (7.1%, 4.2%2)

and αi ∼ T N (17.4%, 10.4%2), respectively. Here, a model misspecification accounts for

13.8% of the total cross-sectional variation for leverage. Second, I randomly draw ηi and αi

from truncated exponential PDF, λα exp(−λααi) and λη exp(−ληηi), respectively. λα and

λη are chosen to set the cross-sectional mean of ηi and αi equal to 17.0% and 7.0%. Here, a

model misspecification accounts for 3.6% of the total cross-sectional variation for leverage.

Note that the above formulation captures different sources of firm heterogeneity: default

cost, αi, shareholder recovery rate, ηi, ε
l
i, or realized sequence of Xi,t.

C. Mathematical Appendix

C.1. Solution

For an arbitrary value for XD, XU and C, I first derive the debt value. Debt is a contingent

claim to an after-tax interest payment. Thus, debt value D(X) satisfies the following ODE:

1

2
σXX

2D
′′

+ µ̂XD
′
+ (1− τi)C = rD
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Boundary conditions are

D(XD) = (1− α− η)
(1− τcd)XD

r − µ̂
D(XU) = D(X0)

The first boundary condition captures that creditors recover only 1 − α − η fraction of the

remaining unlevered firm value and the second boundary condition captures that creditors

receive the par-value if the debt gets called at the refinancing point. Closed form solution

for debt value is:

D(Xt) =
(1− τi)C

r
+ A1X

λ+
t + A2X

λ−
t

where18

λ± =

(
1

2
− µ̂

σ2
X

)
±

√(
1

2
− µ̂

σ2
X

)2

+
2r

σ2
X

Similarly, for an arbitrary value for XD, XU and C, equity value is:

E(Xt) = sup
τD

EQ

[∫ τD

0

e−rs(1− τcd)(Xt − C)ds+ e−rτ
D · E(XD)

]

where τD ≡ inf{t : Xt ≤ XD}.

Here, it is important to note that the above tries to maximize equity value for given

coupon amount C. This implies that “optimal” default decision XD is made without in-

ternalizing the default decision’s impact on cost of debt and leverage. For example, if the

default decision was made after internalizing its decision’s impact on cost of debt, the opti-

mal default decision is not to default at all, i.e., XD =∞. As firms never choose to default,

this effectively makes expected firm-value loss zero and thus firms choose to max out their

leverage to enjoy the tax shield benefit. However, this is possible only when shareholders

commit to constantly supplying cash by issuing equity even when firms’ earnings are signif-

icantly low. This is economically unfeasible and unrealistic and thus I make an assumption

that “optimal” default decision was made without regard to its impact on cost of debt and

18Here, A1 < 0 and A2 < 0 where[
A1

A2

]
=

[
X
λ+

D X
λ−
D

X
λ+

U −Xλ+

0 X
λ−
U −Xλ−

0

]−1 [
(1− α− η) (1−τcd)XD

r−µ̂ − (1−τi)C
r

0

]
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leverage.

Again, following the contingent claims approach, equity value E(X) satisfies the following

ODE:
1

2
σXX

2E
′′

+ µ̂XE
′
+ (1− τcd)(X − C) = rE

Boundary conditions are:

E(XD) =
η(1− τcd)XD

r − µ̂

E(XU) = [(1− φD)D(XU) + E(XU)]−D(X0) =
XU

X0

[(1− φD)D(X0) + E(X0)]−D(X0)

The first boundary condition captures that shareholder recover η fraction of the remaining

unlevered firm value and the second boundary condition captures that shareholders receive

the firm value minus debt issuance cost and original debt’s par value. The second equality

in the second boundary arises due to homogeneity. Analytical solution for E(Xt) is:

E(Xt) =
1− τcd
r − µ̂

Xt −
(1− τcd)C

r
+B1X

λ+
t +B2X

λ−
t

where B1 represents additional benefit for being allowed to upward refinance and B2 repre-

sents additional benefit for being allowed to default.19

The last remaining step is to solve for an optimal coupon C, upward refinancing point XU

and default threshold XD. C and XU are determined at time 0 (initial point or refinancing

point) by solving the following maximization problem:

[C,XU ] = arg max
C∗,X∗U

(E(X0;C∗, X∗U) + (1− φD)D(X0;C∗, X∗U))

The equity value at the time of debt issuance is equal to the total firm value. Thus, share-

holders’ incentives are aligned with the maximization of the total firm value. Here, XD is

determined based on the following smooth pasting conditions (see the heuristic derivation of

19Here, B1 > 0 and B2 > 0 where[
B1

B2

]
=

[
X
λ+

D X
λ−
D

X
λ+

U − XU

X0
X
λ+

0 X
λ−
U − XU

X0
X
λ−
0

]−1

[ (1−τcd)C
r + (η − 1) (1−τcd)XD

r−µ̂(
XU

X0
(1− φ)− 1

)(
A1X

λ+

0 +A2X
λ−
0 + (1−τi)C

r

)
+ XU

X0

(
(1−τcd)
r−µ̂ X0 − (1−τcd)C

r

)
−
(

(1−τcd)
r−µ̂ XU − (1−τcd)C

r

)]
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smooth pasting condition in Appendix C.2)

lim
Xt↓XD

E
′
(Xt) =

η(1− τcd)
r − µ̂

A few points are worth noting here. First, XD can be smaller than C, i.e., firms are

allowed to costlessly issue equity. Second, as emphasized by Bhamra, Kuehn and Strebulaev

(2010), due to fluctuations in the earnings and the assumed cost of refinancing, the firm’s

actual leverage drifts away from its optimal target. In the model, the firm is at its optimally

chosen leverage ratio only at time 0 and subsequent refinancing dates.

Now, I solve for government tax revenue. Following the contingent claims approach, I

solve:
1

2
σXX

2G
′′

+ µ̂XG
′
+ (τcdX − τcdiC) = rG

I impose the following boundary conditions:

lim
Xt→XD

G(Xt) = 0

lim
Xt→XU

G(Xt) =
XU

X0

G(X0)

The first boundary condition specifies that the government does not collect any future tax if

firms declare bankruptcy. The second boundary condition captures the homogeneity of the

problem. Then, the analytical solution for G(Xt) is:20

C.2. Smooth Pasting Condition

As a reminder, a function for equity value is

E(Xt) =
1− τcd
r − µ̂

Xt −
(1− τcd)C

r
+B1X

λ+
t +B2X

λ−
t

First, because XD is chosen to maximize E(X), we need to have:

B′1(XD) = 0 and B′2(XD) = 0

20Here, G1 and G2 satisfy:[
G1

G2

]
=

[
X
λ+

D X
λ−
D

XU

X0
X
λ+

0 −Xλ+

U
XU

X0
X
λ−
0 −Xλ−

U

]−1 [− τcd
r−µ̂XD + τcdiC

r(
XU

X0
− 1
)
τcdiC
r

]
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Second, the value-matching condition specifies that

1− τcd
r − µ̂

XD −
(1− τcd)C

r
+B1(XD)X

λ+
D +B2(XD)X

λ−
D =

η(1− τcd)XD

r − µ̂

where B1 and B2 are functions of XD. Let us take a derivative of both sides with respect to

XD

1− τcd
r − µ̂

+B′1(XD)X
λ+
D +B1(XD)λ+X

λ+−1
D +B′2(XD)X

λ−
D +B2(XD)λ−X

λ−−1
D =

η(1− τcd)
r − µ̂

Substituting B′1(XD) = 0 and B′2(XD) = 0, we have:

1− τcd
r − µ̂

+B1(XD)λ+X
λ+−1
D +B2(XD)λ−X

λ−−1
D =

η(1− τcd)
r − µ̂

Thus, we have:

lim
Xt↓XD

E
′
(Xt) =

η(1− τcd)
r − µ̂

and this is exactly the smooth pasting condition.

C.3. Firm Characteristics

This section summarizes formulas for each firm characteristic. I define the leverage as follows:

D(Xt)

D(Xt) + E(Xt)

Based on Harrison (1985), I define default probability under physical measure as:

DP (Xt)

=

Φ

(
log
(
XD
Xt

)
−(µ−σ2

X/2)T

σX
√
T

)
+
(
Xt
XD

)1−2(µ)/σ2
X

Φ

(
log
(
XD
Xt

)
+(µ−σ2

X/2)T

σX
√
T

)
if Xt ≥ XD

1 Otherwise

where I set T = 1.
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Next, I discuss the formula for the market beta. The equity return is:

dRt =
dE(Xt) + (1− τcd)(Xt − C)dt

E(Xt)

=

(
(1− τcd)(Xt − C)

E(Xt)
+
E ′(Xt)Xt

E(Xt)
µ+

1

2

E
′′
(Xt)X

2
t

E(Xt)
σ2
X

)
dt

+
E ′(Xt)Xt

E(Xt)
(bσAdW

A
t + σFdW

F
t )

Let xAt be a log of aggregate earnings XA
t . Then,

dxAt = σAdW
A
t

Using this, a term for market beta is:

Market beta =
1

dt
Et[dxAt dRt]/

1

dt
vart[dx

A
t ] =

E
′
(Xt)Xt

E(Xt)
b

Lastly, I define credit spread as:
C

D(Xt)

C.4. Proof

This subsection lists all of the proofs for all of the propositions when upward refinancing

is suppressed. I allow upward refinancing in the simulation and numerically show that the

same intuition still carries through.

D(Xt) =
(1− τi)C

r
+ Ã2

(
Xt

C ·XDC

)λ−
where

Ã2/C = −1− τi
r

+ (1− α− η)
(1− τcd)XDC

r − µ̂
< 0

On the contrary, as η increases, E(Xt) increases because shareholders gain η and XDC is
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determined to maximize E(Xt). Similarly, this increase gets magnified by larger
(

Xt
C·XDC

)λ−
.

E(Xt) =
1− τcd
r − µ̂

Xt −
(1− τcd)C

r
+ B̃2

(
Xt

C ·XDC

)λ−
B̃2/C =

1− τcd
r

+ (η − 1)
(1− τcd)XDC

r − µ̂
> 0

Proof of Proposition 2: I can approximately write the leverage as:

lev =
D(Xt)

E(Xt) +D(Xt)
≈

(1−τi)C
r

(1−τcd)
r−µ̂ Xt + τcdiC

r

where the second approximate equality exists because default probability is typically very

small. Then, I can write partial derivative terms as:

∂lev

∂η
=
∂lev

∂C

∂C

∂η
∂lev

∂α
=
∂lev

∂C

∂C

∂α

Because ∂lev
∂C

> 0, proving ∂lev
∂η

< 0 and ∂lev
∂α

< 0 is equivalent to proving that ∂C
∂η

< 0 and
∂C
∂α

< 0. So, let us focus on terms for C. The optimization problem to solve for C is as

follows:

C = arg max
C∗


1− τcd
r − µ̂

X0 +
τcdi − φD(1− τi)

r
C∗︸ ︷︷ ︸

Benefit

+

(
X0

XDC

)λ−
((1− φD)A2c +B2c)C

∗(1−λ−)︸ ︷︷ ︸
Cost


where A2c = A2/C and B2c = B2/C. The closed form solution for optimal coupon C is

C =

[
τcdi − φD(1− τi)

r

]−1/λ−

︸ ︷︷ ︸
Tax Shield Benefit−1/λ−

· X0

XDC︸ ︷︷ ︸
1/Default Threshold

· [−(1− λ−)((1− φD)A2c +B2c)]
1/λ−︸ ︷︷ ︸

Loss1/λ−

(8)

Because ∂C
∂α

< 0 and ∂C
∂η

< 0, I can say that C decreases over α and η. Intuitively, the

denominator of the second term shows that C decreases as shareholders strategically deter-

mine high threshold XDC . High XDC implies a high default probability thus a high expected

firm-value loss and low optimal C. The third term represents the loss of firm value upon

bankruptcy adjusted for debt issuance cost. High loss of firm value ((1 − φD)A2c + B2c)
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implies low C. �

Proof of Proposition 3 As shown in Section C.3, for given µ, b and σF , there is mono-

tonic relation between default probability and XD (default threshold). Thus, comparative

statistics between default probability and η and α is equivalent to that between XD and α

and η. Using closed forms for C and XDC , I derive closed-form terms for XD:

XD

X0

=

[
τcdi − φD(1− τi)

r

]−1/λ−

· [−(1− λ−)((1− φD)A2c +B2c)]
1/λ−

Here, XD decreases over α and η because ∂XD
∂α

< 0 and ∂XD
∂η

< 0. Intuitively, for given

C, the rise in η increases both default probability and value loss. Thus, C has to decrease

sufficiently enough to offset high expected firm-value loss driven by an increase in both

default probability and value loss. Thus, the decrease in C more than offsets the increase in

XDC . As a result, XD decreases over η and so does default probability. �

Proof of Proposition 5: Now, I prove for market beta:

Market beta = b
E ′X

E

E ′X =
1− τcd
r − µ̂

X +B2λ−

(
X

C ·XDC

)λ−
E =

1− τcd
r − µ̂

X − (1− τcd)C
r

+B2

(
X

C ·XDC

)λ−
Thus, I have:

Market beta =
E ′(Xt)Xt

E(Xt)
b =

(
1 +

(1− τcd)C
r · E

+ (λ− − 1)
B2

E

(
Xt

C ·XDC

)λ−)
b

Because ∂Market beta
η

< 0, this proves the proposition. Intuitively, conditional on leverage,

shareholders’ strategic action first decreases market beta. After allowing firms to de-lever

in response, its distress risk decreases and market beta further decreases. One interesting

point to note is that as X gets very close to XD, the market beta becomes less sensitive to

η because equity gets converted to a fixed fraction of unlevered asset value in default. �

Proof of Proposition 6: I set φD = 0 and show closed-form expression for the credit

spread.
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C

D(X0)
=

1

1−τi
r

+ A2/C
(
X0

XD

)λ−
=

1

1−τi
r

+ −τcdi
r(1−λ−)

(
1 +

1
1−λ−

1−τcd
τcdi

1+
−λ−
1−λ−

1−τcd
τcdi

α
1−η

)
It is immediately clear that the credit spread decreases over η. Intuitively, lower default

probability caused by the commitment problem more than offsets creditors’ higher value loss

(normalized by C) and results in a lower credit spread. Again, this commitment problem

exists because α is non-zero and thus the credit spread decreases over η. If α is 0, then the

above formula clearly tells you that the credit spread does not change over η. �

Proof of Proposition 7: Let me prove the proposition by illustrating my points in

Figure 1. I need to prove that point A always corresponds to higher firm value than point

C does. To that end, I prove this by contradiction. Let us assume otherwise: point C’s

firm value is greater than point A’s. Now, pick a point D on the solid curve that has the

same coupon rate as point C. Because the solid curve always sits above the dotted curve (∵

(1−φD)D(Xt)+E(Xt) always decreases as η increases), point D’s firm value is greater than

point C’s. This implies that point D’s firm value is greater than point A’s. This contradicts

that point A is the optimal point on the solid curve. This completes the proof. �

Proof of Proposition 8: Government tax revenue G(Xt) is:

G(Xt) =
τcd
r − µ̂

Xt −
τcdiC

r
+ G̃2

(
Xt

C ·XDC

)λ−
where

G̃2/C =
τcdi
r
− τcd
r − µ̂

XDC

As η increases, C decreases and thus government tax revenue G(Xt) increases and this

completes the proof. On the related note, G̃2 illustrates an interesting intuition. Upon

firms’ default, even though the government loses potential tax revenue on the firm’s future

income stream, the government is no longer exploited by corporations. �

Proof of Proposition 4: Here, I prove that leverage and DP (default probability) have
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different sensitivities with respect to η and α.

∂DP/∂η

∂DP/∂α
=

(∂DP/∂XD)∂XD/∂η

(∂DP/∂XD)∂XD/∂α
=
∂XD/∂η

∂XD/∂α

where ∂XD
∂η

and ∂XD
∂α

are:

∂XD

∂η
=
∂(C ·XDC)

∂η
= C · ∂XDC

∂η
+XDC ·

∂C

∂η

∂XD

∂α
=
∂(C ·XDC)

∂α
= C · ∂XDC

∂α
+XDC ·

∂C

∂α
= XDC ·

∂C

∂α

where the last equality holds because ∂XDC
∂α

= 0.

Now, let us think of a leverage.

lev =
D(X0)

E(X0) +D(X0)
≈

(1−τi)C
r

(1−τcd)
r−µ̂ X0 + τcdiC

r

⇒ ∂lev/∂η

∂lev/∂α
=

(∂lev/∂C)∂C/∂η

(∂lev/∂C)∂C/∂α
=
∂C/∂η

∂C/∂α

Thus,

∂DP/∂η

∂DP/∂α
6= ∂lev/∂η

∂lev/∂α

Two points are worth making. First, we point out that ∂DP/∂η
∂DP/∂α

< ∂lev/∂η
∂lev/∂α

because XDC
∂C
∂η
<

∂XD
∂η

< 0. Second, when ∂XDC
η

= 0, the above becomes equality and implies that leverage

and default probability cannot separately identify α and η. �

C.5. Upward Refinancing

Even when upward refinancing is allowed, the economic channels, discussed in Section 3.2,

still hold. As debt becomes more costly, firms internalize higher costs and optimally choose

to de-lever and refinance less frequently.
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Figure 7: Illustration of trade-off theory when upward refinancing is allowed

When η = 0 (left panel), firm value is maximum at 80.23 when optimal coupon C is 0.66

and XU is 3.7. However, η 6= 0 (right panel), firm value is maximum at 79.75 when coupon

C is 0.59 and XU = 3.75. This clearly illustrates that high η implies lower firm value, lower

leverage and less frequent upward refinancing.

C.6. The Whole Economy

Here, I examine the case when upward refinancing is suppressed. I show that the value of

the entire economy, D(X) +E(X) +G(X), increases over η as lower default frequencies lead

to smaller loss of default cost. This can be easily seen below:

D(X) + E(X) +G(X) =
X

r − µ̂
+ (A2 +B2 +G2)

(
X

C ·XDC

)λ−
where

(A2 +B2 +G2)/C = −[α(1− τcd) + τcd] ·
XDC

r − µ̂

Here, α(1− τcd)XDCr−µ̂ is the deadweight loss from the firms as a whole whereas τcd
XDC
r−µ̂ is the

government’s loss of future tax revenue.
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D. Data Variables

D.1. Firm-level Variable Definitions

D.1.1. Variables Excluding Default Probabilities

• Earnings growth: ẽi,t+1 = log

(∑K
j=0OIADPQi,t+1−j∑K
j=0OIADPQi,t−j

− 1

)
whereK is set to 8 andOIADPQ

is operating income after depreciation.

• Market beta: calculated based on rolling window of 24 months of monthly returns.

• Leverage: DLTTQ+DLCQ
DLTTQ+DLCQ+ME

where DLTTQ, DLCQ and ME are long-term debt,

short-term debt and market equity, respectively.

D.1.2. Default Probabilities

Because level of default probability is an important matching moment, it warrants a separate

discussion. At large, there are two ways to derive default probability. The first is the Merton

distance-to-default model, which is based on Merton (1974). The second is based on the

hazard model and is used by several papers including Campbell, Hilscher and Szilagyi (2008).

I use the former approach, which is more compatible with the model-implied moments that

use Merton-style default probability. Specifically, I follow Bharath and Shumway (2008)

to construct default probability, which is found to closely match various corporate default

probability measures. Its definition is

π = Φ

(
− log V

B
− (µv − σ2

v

2
)

σv

)

where Φ is a cumulative normal distribution function, V is the market value of assets, B is

the amount of debt that’s due for that quarter, µv is the expected asset return and σv is the

asset return volatility. Because V , B, µv and σv are all unobservable, each of these warrant

a separate discussion.

First, let us discuss how I derive B and V . In order to derive distance-to-default over the

next one year, Campbell, Hilscher and Szilagyi (2008) and Vassalou and Xing (2004) assume

that short-term debt plus one half long-term debt come due in a year. As Campbell et al.

noted, “This convention is a simple way to take account for the fact that long-term debt
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may not mature until after the horizon of the distance to default calculation.” Extending

upon this convention, in order to derive distance-to-default in the next quarter as opposed

to next year, Gomes, Grotteria and Wachter (2018) assume that one quarter of Campbell et

al.’s comes due within the next quarter. Accordingly, I set B to DLCQ/4+DLTTQ/8. Due

to the lack of data on market value of debt, I use B to proxy market value of debt and set

V to market value of equity plus B. Second, following Bharath and Shumway (2008), I use

monthly equity returns to calculate average equity returns and set it to µv. Third, following

Bharath and Shumway (2008), I set σv to

σv =
E

E + F
σE +

F

E + F
(0.05/

√
3 + 0.25 · σE)

where σE is the quarterly volatility of the equity returns and 0.05/
√

3 + 0.25 · σE is the

quarterly volatility of the bond that is due in a quarter. I estimated σE using the daily

returns of trailing 3 months.

D.1.3. Tax Rates

First, I augment the sample with panel data of corporate marginal tax rates,21 which were

constructed according to Graham (1996a,b). They provide both before-financing marginal

tax rates (MTR) and after-financing MTR. Both measure firms’ MTR by incorporating

many features present in the tax code, such as tax-loss carryforwards and carrybacks, the

investment tax credit, and the alternative minimum tax. Before-financing MTR are based

on taxable income before financing expenses are deducted, whereas after-financing MTR are

based on taxable income after financing expenses are deducted. As Graham (1998) argues,

by construction, after-financing MTR are endogenously affected by the choice of financing.

Because the model treats τc exogenous of firms’ financing decision, this paper uses before-

financing MTR to set corporate earnings tax rates τc

Second, I closely follow Graham (2000) to construct τi and τd. As documented in Graham

(2000), I set τi = 47.4% for 1981 or prior, 40.7% between 1982 and 1986, 33.1% for 1987,

28.7% between 1988 and 1992, and 29.6% afterwards. Based on these estimates for τi, I

estimate τd as [d + (1 − d)gα]τi. The dividend-payout ratio d is the firm-quarter-specific

dividend distribution divided by trailing twelve-quarters moving average of earnings. Since

21I would like to thank John Graham for sharing panel data of corporate marginal tax rates. https:
//faculty.fuqua.duke.edu/˜jgraham/taxform.html. I impute missing marginal tax rates with
the time-series average for each firm if the firm is covered in Graham’s database or panel-wide-average if the
firm is not covered at all.
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d needs to be less than or equal to 1, if d is greater than 1, I set it to 1. If dividend is missing,

I set d = 0. The proportion of long-term capital gains that is taxable (g) is 0.4 before 1987

and 1.0 afterwards. I assume that the variable measuring the benefits of deferring capital

gains, α, equals 0.25. The long-term capital gains rate, gτi has a maximum value of 0.28

between 1987 and 1997, 0.2 between 1998 and 2003 (Taxpayer Relief Act of 1997) and 0.15

afterwards (Jobs and Growth Tax Relief Reconciliation Act of 2003).

It is worth noting that τc is different across firms because firms face different tax-loss

carryforwards/carrybacks, the investment tax credit and the alternative minimum tax. τd is

different across firms because dividend-payout ratios are different. However, for given year,

τi is the same across firms because I assume that marginal investors face the same τi. Also,

I assume that τc and τi stay constant for all four quarters for any given year (due to data

limitation) whereas τd can potentially change every quarter due to varying dividend-payout

ratios.

D.2. Aggregate Variables

D.2.1. Variable Definitions

• Aggregate earning: Source: NIPA, Section 1, Table 1.14, Series: Line 8 Net Operating

Surplus, Quarterly series from 1947Q1 to 2016Q4

• Consumer price index: Source: FRED, Series: CPIAUCNS (Consumer Price Index for

All Urban Consumers: All Items), Monthly series from 1913Jan through 2016Dec

• Nominal risk free rate: Source: FRED, Series: TB3MS (3-Month Treasury Bill: Sec-

ondary Market Rate), Monthly series from 1934Jan through 2016Dec

D.2.2. Variable Construction

• Realized Inflation=[CPI(t)−CPI(t− 1)]/CPI(t− 1) where CPI(t) is the consumer

price index in year-quarter t computed as the average monthly CPI for that year-

quarter.

E. Magnitude of Credit Spread

Using the estimates reported in Table 5, as noted in Table 6’s column (5), quarterly credit

spreads are 191 bp. These credit spreads are much larger than what is empirically observed
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and contrast with Morellec, Nikolov and Schurhoff (2012)’s success in matching quarterly

credit spreads at 53bp. The main reason for this discrepancy is the value used for earnings

growth volatility, σF . Using σF = 0.138022 that is reported in Morellec et al. and keeping

everything else equal, my model-implied quarterly credit spreads are 56bp, which is very

close to Morellec’s. The large sensitivity of credit spreads with respect to σF is noted in

Morellec et al.’s Table 1.

However, lowering σF decreases quarterly default probabilities from 0.36% to 0.003%,

which is counterfactually small. More importantly, σ̂F = 0.2444 is a relatively conservative

measure, as implied earnings growth variance is under-matched relative to its data counter-

part (see Table 4). More specifically, if σF is chosen just to match earnings growth moments,

then σ̂F = 0.2786, which is apparently greater than σ̂F = 0.2444. Lastly, the current model

features bonds with infinite maturity and thus is not suitable to match data counterparts

that have finite maturity. Noting this limitation, it is still interesting to study how much

credit spreads change over η and thus I continue reporting such results.

F. Bankruptcy Reform Act 1978 (BRA)

First, let us review the literature’s stance on how BRA changed shareholder recovery rate.

Hackbarth, Haselmann and Schoenherr (2015) argues that BRA increased shareholder recov-

ery rate due to four specific clauses. First, relative to the old code, BRA added equity as one

additional class to confirm a reorganization plan. Second, managers were given a 120-day

exclusivity period to propose the plan. Third, if no plan could be agreed upon, a new proce-

dure, called cramdown, allowed firms to continue operating while a buyer was sought. This

was considered a costly and time-consuming process and thus acted as a disciplinary tool in

negotiations in favor of shareholders. Lastly, firms could now declare bankruptcy even when

firms were solvent, thus shareholders can use the threat of bankruptcy as a strategic tool

against creditors. Thus, BRA increased shareholder recovery rate.

Now, let us discuss how BRA could have changed default cost. Prior to 1978, as discussed

in Section 2, an increasing number of firms sought to file under shareholder-friendly Chapter

11 rather than Chapter 10. However, applying for Chapter 11 required an expensive hearing

(LoPucki and Whitford, 1990). Moreover, as discussed in Section 2, the prior bankruptcy

laws were considerably ambiguous (Posner, 1997; King, 1979). BRA addressed both of these

22Morellec et al. report annual volatility of earnings growth at 28.86%. Thus, σF =

√
0.14432 − (b̂σ̂A)2 =

0.1380.
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issues. BRA permitted creditors to take less than full payment, in order to expedite or

insure the success of the reorganization.23 This effectively made it easy to deviate from

APR. BRA reduced the ambiguity present in the bankruptcy law by spelling out a number

of provisions important in enabling the shareholders to reorganize (Skeel, 2001)24 and this

could have reduced friction in the bankruptcy process. Taken together, this could decrease

time spent in bankruptcy and thus reduce lawyers’ fees, which are typically charged by the

hour, and opportunity cost caused by delayed investment due to uncertain future and loss

of business relationships with customers and suppliers. In other words, BRA could have

effectively decreased default cost.25 However, the above argument goes against one of the

notorious bankruptcy cases in the post-BRA era, specifically that of Eastern Airlines, which

lost 50% of its value during bankruptcy (Weiss and Wruck, 1998). Again, it is not clear

how BRA changed default cost. Obvious way to test my hypothesis is to check how BRA

changed time spent in bankruptcy. However, data on bankruptcy cases during pre-BRA are

limited and thus makes it hard to compare. This warrants a need for a structural estimation

that can identify changes in unobservable firm characteristics.

23H.R. Rep No. 595, 95th Cong., 1st Sess. 224 (1978))
24The list includes an automatic stay, an exclusive period, the ability to use cash collateral and/or obtain

post-petition financing, the ability to assume or reject leases and other executory contracts, the ability to
sell assets free and clear of liens, the ability to retain and compensate key employees and the ability to reject
or renegotiate labor contracts and pension benefits.

25This explanation is consistent with the literature’s use of time spent in bankruptcy as a proxy for default
cost (Bris, Welch and Zhu, 2006).
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