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Abstract—In this paper we propose a (2, n) visual crypto-
graphic scheme for color images having low pixel expansion,
when n = 3t, with t ≥ 3. We use the Latin square aided
construction of a (2, n)-VTS for black and white images of
Adhikari and Bose [1] to improve upon the pixel expansion of
the (2, n)-VTS for color images obtained by Adhikari and Sikdar
[2]. The method has been applied to obtain (2, n)-color VTS with
three and six colors, and finally generalized to k colors, where no
two colors add up to give the third color. Our scheme reduces
the pixel expansion dramatically and the the color ratios are
reasonably good. Moreover, for small values on n our method is
superior, both in terms of pixel expansion and color ratios.

I. INTRODUCTION

In this paper we consider the problem of encrypting written
material (printed text, hand- written notes, pictures, etc.) in a
perfectly secure way which can be decoded directly by the
human visual system. This is the famous concept of visual
cryptography which was introduced by Naor and Shamir [12].
It is a new cryptographic paradigm that enables a secret
image to be split into n shares, each share being printed on a
transparency. The shares are distributed among n participants
of whom only some are qualified to recover the original image.
The secret image is reconstructed by stacking a certain number
k (2 ≤ k ≤ n) of these transparencies from the set of qualified
participants. If fewer than k transparencies are superimposed,
then it is impossible to decode the original image. The result-
ing cryptographic scheme is called a (k, n)-Visual Threshold
Scheme (VTS). Since the reconstruction is done by the human
visual system, no computations are involved during decoding
unlike traditional cryptographic schemes where a fair amount
of computation is needed to reconstruct the plain text.

The schemes proposed by Naor and Shamir [12] involved
black and white images. Further research have extended the
idea to gray-scale images [7], color images [2], [9], [10],
[11], and general access structure [3]. Droste [8] considered
the problem sharing multiple images among n participants.
An alternative reconstruction method for (2, n)-VTS, which
improves upon the contrast, was later proposed by by Noar
and Shamir [13]. Blundo et al. [4], [5], [6] studied (2, n)-VTS
for black and white images having optimal relative contrast.

In this paper we study the problem of (2, n)-VTS for
color images. Using the Latin square aided construction of of
Adhikari and Bose [1] and the construction of Adhikari and
Sikdar [2] we obtain a (2, n)-VTS for color images having low
pixel expansion. We obtain a (2, n)-color VTS with colors

cyan, yellow, and green when n = 3t with t ≥ 3, having
pixel expansion 4t(t − 1). This is a dramatic improvement
over the scheme of Adhikari and Sikdar [2], where the pixel
expansion is exponential in n. Naturally, we lose in terms of
color ratios, however, the compromise seems to be reasonable.
The color ratio of the colors cyan and yellow in our scheme is
bounded from below by 1/4 and that of green is 1/t. We obtain
similar results for a (2, n)-VTS with six colors. Moreover, the
scheme generalizes to k colors such that no two colors can be
combined to give the third color. The pixel expansion of our
scheme is 2kt(t− 1) and the color ratios of the all the colors
are bounded below by 1/2k. In comparison, the construction
of Adhikari and Sikdar [2] has pixel expansion 2km, where
m =

(
n

bn/2c
)
, and color ratios are bounded from below by

3/4k.
In Section II we give the mathematical formulation of visual

threshold schemes and introduce several relevant definitions.
In Section III we review some of the major results in (2, n)-
VTS for both black and white and color images obtained so
far. Our results are presented in Section IV, where we obtain
a series of results for (2, n)-VTS in color images with having
low pixel expansion. In Section V we summarize and give
some directions for future work.

II. PRELIMINARIES

A. The Model

Let P = {1, 2, . . . , n} be a set of elements called partic-
ipants, and let 2P denote the set of all subsets of P . Let
ΓQual and ΓForb be subsets of 2P , where ΓQual∩ΓForb = ∅.
We will refer to members of ΓQual as qualified sets and the
members of ΓForb as forbidden sets. The pair (ΓQual, ΓForb)
is called the access structure of the scheme. We assume that
the secret image consists of a collection of black and white
pixels, each pixel being encrypted separately. To understand
the encryption process consider the case where the secret
image consists of just a single black or white pixel. On
encryption, this pixel appears in the n shares distributed to
the participants. However, in each share the pixel is subdivided
into m subpixels (m is the pixel expansion), each of which is
either black or white. It is important to note that the shares are
printed on transparencies, and that a white subpixel is actually
an area where nothing is printed, and therefore left transparent.
We assume that the subpixels are sufficiently small and close
enough so that the eye averages them to some shade of grey.



We can represent this with an n ×m boolean matrix S[i, j],
where S[i, j] = 1 if and only if the j-th subpixel in the i-
th share is black. When the shares are stacked together, the
perceived grey level is proportional to the number of ones
in the boolean OR of the m-vectors representing the shares
of each participant. When the secret image consists of more
than one pixel, we encrypt each pixel separately. We give the
following definition of a visual cryptography scheme for a
general access structure which is taken directly from Atienese,
Blundo, De Santis, and Stinson [4]. Also, OR V is used to
denote the boolean operation OR of a set of vectors with result
V . The Hamming weight w(V ) is the number of ones in the
boolean vector V .

Definition 1: Let (ΓQual,ΓForb) be an access structure on
a set of n participants. Two collections (multisets) of n ×m
Boolean matrices C0 and C1 constitute a visual cryptographic
scheme (ΓQual, ΓForb,m)-VTS if there exists values α(m)
and {tX}X∈ΓQual

satisfying:
(i) Any qualified set X = {i1, i2, . . . , ip} ∈ ΓQual

can recover the shared image by stacking their
transparencies. Formally, for any M ∈ C0, the OR
V of the rows {i1, i2, . . . , ip} satisfies w(V ) ≤
tX − mα(m), whereas, for any M ∈ C1 we have
w(V ) ≥ tX .

(ii) Any forbidden set X = {i1, i2, . . . , ip} ∈ ΓForb has
no information on the shared image. Formally, the
two collections of p×m matrices Dt, with t ∈ {0, 1},
obtained by restricting each n × m matrix in Ct

to rows i1, . . . , ip are indistinguishable in the sense
that they contain the same matrices with the same
frequencies.

In order that the recovered image is clearly reconstructible,
it is important that the grey level of a black pixel be darker
than that of a white pixel. Informally, the difference in the grey
levels of the two pixel types is called contrast. We want the
contrast to be as large as possible. Three variables control the
perception of black and white regions in the recovered image:
a threshold value (t), a relative difference (α), and the pixel
expansion (m). The threshold value is a numeric value that
represents a grey level that is perceived by the human eye as
the color black. The value mα is the contrast, which we want
to be as large as possible. We require that mα ≥ 1 to ensure
that black and white areas will be distinguishable. Each pixel
of the original image will be encrypted into n pixels, each of
which consist of m subpixels. To share a white (respectively
black) pixel, the dealer randomly chooses one of the matrices
in C0 (respectively C1), and distributes row i to participant
i. Thus, the chosen matrix defines the m subpixels in each
of the n transparencies. Note that in the definition above we
allow a matrix to appear more than once in C0 (C1). Finally,
note that the size of the collections C0 and C1 need not be
the same.

B. Definitions

Instead of working with the collections C0 and C1, it is
convenient to consider only two n × m boolean matrices,

S0 and S1 called basis matrices which satisfy the following
definition:

Definition 2: Let (ΓQual, ΓForb) be a general access struc-
ture on a set of n participants. A (ΓQual, ΓForb,m)-VTS with
pixel expansion m, relative difference α(m), and a set of
thresholds {tX}X∈ΓQual

is realized using the n × m basis
matrices S0 and S1 if the following two conditions hold:

(i) If X = {i1, i2, . . . , ip} ∈ ΓQual, then the OR V of
the rows i1, i2, . . . , ip of S0 satisfies w(V ) ≤ tX −
mα(m); whereas, for S1 it results that w(V ) ≥ tX .

(ii) If X = {i1, i2, . . . , ip} ∈ ΓForb, the two p × m
matrices obtained by restricting S0 and S1 to rows
i1, i2, . . . , ip are equal up to a column permutation.

The collections C0 and C1 are obtained by permuting the
columns of the corresponding basis matrix (S0 for C0 and S1

for C1) in all possible ways. Note that, in this case, the sizes
of the collections C0 and C1 are the same.

Now we modify the basis matrices S0 and S1 by a random
permutation to ensure that the participants cannot decipher the
actual color of pixel from less number of shares than required.
For each pixel P , we generate a random permutation π of the
set {1, 2, . . . , m}. If P is a black pixel, then apply π to the
columns of S0. Otherwise, apply π to the columns of S1. Call
the resulting matrix T . For 1 ≤ i ≤ n, row i of T comprises
the m subpixels of P in the i-th share. This is called the share
distribution algorithm.

A (k, n) threshold structure is any access structure
(ΓQual, ΓForb) in which ΓQual = {B ⊆ P : |B| = k}
and Γ = {B ⊆ P : |B| ≤ k − 1}. In any (k, n)-threshold
VTS, the image is visible if any k of the n participants
stack their transparencies, but totally invisible if fewer than k
transparencies are stacked together or analyzed by any other
method. In a strong (k, n)-threshold VTS, the image remains
visible if more than k participants stack their transparencies.

The difference in the grey level of a black pixel and a white
pixel in the recovered image determines the clarity of the
recovered image. To measure this, the concept of relative con-
trast was first introduced in Naor and Shamir [12], who called
it relative difference. For a (2, n)-VTS with pixel expansion
m, for any pair of participants i < j, (i, j = 1, 2, . . . , n), let
H0{i, j} (respectively H1{i, j}) be the n-bit vector obtained
by taking the component-wise OR of the rows i and j of S0

(respectively S1). Let w(H0{i, j}) (respectively w(H1{i, j}))
denote the number of ones in H0{i, j} (respectively H1{i, j}).
The relative difference of the scheme is defined as

min
1≤i<j≤n

[w(H1{i, j})− w(H0{i, j})]
m

where the minimum is over all pairs of rows i and j of S1.

III. PRIOR WORK

After the publication of Naor and Shamir’s [12] classical
paper introducing the notion of visual cryptology, there has
been a series of works on the different aspects of visual
threshold schemes for black and white, gray level [7] and color
images [2], [11].



In this section we discuss some of the important results
obtained so far in the context both black and white and color
(2, n)-VTS.

A. (2, n) Visual Threshold Scheme For Black and White Im-
ages

As mentioned earlier the goodness of a visual threshold is
determined largely by two parameters the pixel expansion m
and the relative difference α(m). The problem of constructing
VTS with best contrast has been extensively studied by Blundo
et al. [4], [5], [6]. Blundo et. al [6] presented a (2, n)-VTS in
which relative difference is optimal by constructing the n×m
basis matrices S0 and S1. The columns of S1 consist of all
binary n vectors of weight bn/2c. Hence, the pixel expansion
m =

(
n

bn/2c
)

and any row in S1 has weight equal to
(

n−1
bn/2c−1

)
.

S0 is constructed from n identical row vectors of length m and
weight

(
n−1

bn/2c−1

)
. Then, they prove the following theorem:

Theorem 1: (Blundo, De Santis, and Stinson [6]) In any
(2, n)-threshold visual cryptographic scheme with n ≥ 2 and
pixel expansion m, the relative contrast α(m) satisfies α(m) ≤
α∗(n) = bn/2cdn/2e/(n(n − 1)). Moreover, for any n ≥ 2
there exists a strong (2, n)-visual cryptographic scheme with
pixel expansion m =

(
n

bn/2c
)

and α(m) = α∗(n).
Recall that a (v, k, λ)-BIBD (balanced incomplete block

design) is a pair (X ,B), where X is a set of v elements (called
points) and B is a collection of subsets of X (called blocks),
such that each block contains exactly k points and each pair
of points is a subset of exactly λ blocks. In a (v, k, λ)-BIBD,
each point occurs in exactly r = λ(v − 1)/(k − 1) blocks,
and the total number of blocks is b = vr/k The number r is
called the replication number of the BIBD.

Blundo et al. [6] also proves the following two theorems
which indicates that a suitable BIBD, if it exists, can be used
to obtain (2, n)-VTS for black and white images.

Theorem 2: (Blundo, De Santis, and Stinson [6]) Suppose
n is even. Then there exists a (2, n)-threshold VTS with pixel
expansion m and (optimal) relative difference α(m) = α∗(n)
if and only if there exists an (n, n/2, m(n − 2)/(4n − 4))-
BIBD.

Theorem 3: (Blundo, De Santis, and Stinson [6]) If a
(n, k, λ)-BIBD exists, then there exists (2, n)-VTS scheme
with pixel expansion m = b = λ(n2−n)/(k2−k) and relative
difference α(n) = (r − λ)/b = k(n− k)/n(n− 1).

The problem of obtaining (2, n)-VTS with reduced pixel
expansion was first addressed by Adhikari and Bose [1]. They
constructed a (2, n) VTS for black and white images with
very low pixel expansion whenever n = 3t, with t ≥ 3, using
properties of Latin squares. Though the relative difference in
this case is far from optimal, it is reasonably good in a practical
situation.

Theorem 4: (Adhikari and Bose [1]) For any n of the form
n = 3t, with t ≥ 3, there exists a (2, n)-VTS with pixel
expansion t(t− 1) and relative difference 1/t− 1/(t(t− 1)).

The basis matrix S1 that is constructed for proving the above
theorem has two important properties. Firstly, every row in
S1 has exactly t − 1 ones, the rest are zeros. Moreover, the

hamming weight of boolean OR of any two rows is 2(t−1)−
λ, where λ is either 0 or 1.

B. (2, n) Visual Threshold Schemes For Color Images

Construction of a visual threshold for color images is a
challenging problem. We begin with the definition of a color
VTS.

Definition 3: Let us suppose we can generate all the colors
in the secret image using the color set C = {c1, c2, . . . , cJ}.
A set of J n × m matrices Gi with entries from the set
{0, 1, c1, c2, . . . , cJ} form a (k, n) visual threshold scheme if
the following properties are satisfied:

(i) For any i, (1 ≤ i ≤ J), the m-vector obtained by
superimposing any k rows of Gi has at least Li

entries which are ci, each of the remaining colors
cj appear at most U j

i times in this m-vector.
(ii) For any subset {i1, i2, . . . , ij} ⊂ {1, 2, . . . , n}, the

submatrices G′i obtained by restricting each Gi to
the rows {i1, i2, . . . , ij} are identical up to a column
permutation.

Here the Li’s signify lower bounds and the U j
i ’s signify

upper bounds. The true color ci must appear at least Li times
when two shares for a pixel of color ci are combined, other
colors cj may appear on superimposing two arbitrary shares
for ci, but they do so at most U j

i times. The second property is
related to security and it ensures that no set of k−1 participants
or fewer can decipher the secret image.

The notion of relative difference in black and white schemes
gets modified into the notion of color ratio for color images,
which measures the contrast of every color separately. The
formal definition is as follows:

Definition 4: Let the (i, j)-th pixel of the secret image have
color c and suppose that we are working in a (k, n)-VTS
for color images. The color ratio of the (i, j)-th pixel in the
reconstructed image is the ratio of the number of subpixels
that possess the true color by the total number of subpixels,
when k transparencies from qualified participants are stacked
together.

It is conceivable that the encryption strategy is such that the
color ratios of the different pixels in the reconstructed image
are different. In this case,we could define the color ratio of a
scheme to be the minimum value of the ratio defined above,
the minimum being taken over all possible different colored
pixels. On the other hand, the encryption strategy could be so
regular that each pixel, irrespective of its color, has the same
color ratio. In this case, we need not define the color ratio
separately for each pixel of the reconstructed image. In such
a case, if the color ratio of each pixel is R, we will say that
the encoding scheme attains a color ratio R.

Koga et al. [11] proposed a construction of an (n, n)-VTS
with colors {c1, c2, . . . , ck}. Their construction is defined over
a bounded upper semi-lattice. From the basis matrices of a
(t, t)-VTS for color images, they have constructed basis matri-
ces of a (t, n)-VTS for color images. The disadvantage of their
scheme is that when the number of shares increases, the pixel
expansion shoots up, the color ratio decreases correspondingly.



Since their scheme has no positive lower bound on the color
ratio, the reconstructed image becomes progressively darker
as the number of shares increases.

Adhikari and Sikdar [2] propose a new (2, n) threshold
schemes which attains a reasonably good lower bound on the
color ratios which depends only on the number of colors and
not on the number of shares n. Moreover, their color ratios are
significantly more than those obtained by Koga and Iwamoto
[9] and Koga et al. [11]. They proved the following two results
for a (2, n) VTS having three or six colors:

Theorem 5: (Adhikari and Sikdar [2]) For any n ≥ 3, there
exists a (2, n) color VTS with base colors Cyan (C), Yellow
(Y), and Green (G) with pixel expansion 4α∗(n) and color
ratios

RC = RY =
{ 3/8 + 1/8(n− 1), if n is even,

3/8 + 1/8n, if n is odd;

RG =
{ 1/4 + 1/4(n− 1), if n is even,

1/4 + 1/4n, if n is odd.

For n = 2, the color ratio of the (2, n) color VTS is 1/2 and
the pixel expansion is 4.

Theorem 6: (Adhikari and Sikdar [2]) For any n ≥ 3, there
exists a (2, n) color VTS with base colors Red (R), Green (G),
Blue (B), Cyan (C), Yellow (Y), and Magenta (M) with pixel
expansion 6α∗(n) and color ratios

RY = RC = RM =
{ 1/4 + 1/12(n− 1), if n is even,

1/4 + 1/12n, if n is odd;

RR = RG = RB =
{ 1/6 + 1/6(n− 1), if n is even,

1/6 + 1/6n, if n is odd.

If n = 2, then the pixel expansion is 6 and the color ratio of
the scheme is 1/3.

They also proved that if the secret image has the colors
C = {c1, c2, . . . , ck} such that no two colors ci and cj in
C can be combined to produce a third color cl in C, then
the color ratio of their scheme is lower bounded by 3/4k.
However, since their construction uses the basis matrix for the
optimal relative difference [6], the pixel expansion of their
scheme is, exponential in n.

IV. (2, n)-VTS FOR COLOR IMAGES WITH LOW PIXEL
EXPANSION

In this paper we improve upon the pixel expansions, albeit
at the cost of color ratios, obtained in Theorem 5 and Theorem
6. The construction is very much similar that of Adhikari and
Sikdar [2], and also uses the (2, n)-VTS of Adhikari and Bose
[1], which uses Latin square design.

The results are presented in three different subsections. In
the first section a (2, n)-VTS with three base colors is ob-
tained. Several optimality criteria, including pixel expansion,
color ratios, and presence of nuisance colors, are studied. The
next section contains a similar result with six colors, and in the
final section we generalize our scheme to k colors, whenever
no two colors can be combined to give a third color.

A. (2, n)-VTS With Three Base Colors

Suppose that the original image is composed of only three
colors, namely Cyan (C), Yellow (Y) and Green (G), with C +
Y = G. We will first construct a (2, 2)-VTS with the color
set C = {C, Y,G}. To do this, it is sufficient to construct
the basis matrices corresponding to the colors C, Y and G
respectively. These basis matrices are given below:

XC =
(

C 0 Y 1
0 C 1 Y

)
,

XY =
(

Y 0 C 1
0 Y 1 C

)
,

XG =
(

C Y 0 1
Y C 0 1

)
.

To construct a (2, n)-color VTS (n ≥ 3) with base colors C,
Y , and G, we first consider the basis matrix S1 of any (2, n)-
VTS for black and white images. To construct our (2, n)-color
VTS, we will use the basis matrices of the (2, 2) scheme as
templates in the construction of the basis matrices of the (2, n)
scheme. SC , SY and SG, the basis matrices for the (2, n)
scheme, are defined below. SC is an n× 4m matrix obtained
in terms of S1 by replacing a 0 in S1 by the first row of
XC and a 1 in S1 by the second row of XC . SY and SG

are constructed in a similar fashion. One can verify that the
i-th rows (1 ≤ i ≤ n) of the matrices SC , SY and SG thus
obtained are identical up to a column permutation.

In Theorem 5, Adhikari and Sikdar take S1 to be the matrix
for obtaining optimal relative contrast as described by Blundo
et al. [6].

In the following theorem, we prove the existence of (2, n)-
VTS for three colors with low pixel expansion and reasonably
good color ratios, by taking S1 to be the matrix obtained
from the proof of Theorem 4. This matrix was constructed by
Adhikari and Bose [1] using the properties of a Latin square.

Theorem 7: For any n = 3t (t ≥ 3), there exists a (2, n)
color VTS with base colors Cyan (C), Yellow (Y), and Green
(G) with pixel expansion 4t(t − 1) and color ratios RC =
RY = 1/4 + 1/2t and RG = 1/t.

Proof: Take S1 to be the basis matrix obtained by the
(2, n)-VTS using Latin Squares in Theorem 4. The pixel
expansion of their scheme is t(t − 1), where n = 3t, with
t ≥ 3. The existence of a (2, n) VTS with three colors and the
required pixel expansion now follows from the construction of
the basis matrices SC , SY , and SG with the matrices XC , XY ,
and XG as templates and starting with S1.

Now, observe that the number of (1, 1)′ pairs in S1{i, j} is
λ, where λ =0 or 1. The number of (1, 0)′ pairs in S1{i, j} =
t − 1 − λ. From symmetry, the number of (0, 1)′ pairs in
S1{i, j} = t − 1 − λ. Each (1, 1)′ or (0, 0)′ pair in S1{i, j}
gives one Cyan (or one Yellow) pixel, and each (0, 1)′ or
(1, 0)′ gives two Cyan (or two Yellow) pixels each.

Since XC and XY are symmetric we get,

RC = RY =



2(t− 1− λ) + 2(t− 1− λ) + {t(t− 1)− 2(t− 1− λ)}
4t(t− 1)

≈ 1/4 + 1/2t

For XG, only the patterns (0, 1)′ or (1, 0)′ gives two Green
pixels. Thus, we have RG = 4(t−1−λ)

4t(t−1) ≈ 1/t.
Nuisance Colors: Observe that each share contains the original
base colors C, Y , and G along with white (0) and black (1).
If the encoded pixel is colored cyan then on superimposing
any two shares, the resulting reconstructed pixel will have
the colors cyan, yellow, black, and white. Note that the color
yellow is unwanted here, because too many yellow subpixels
may fool the visual system into thinking this as a yellow pixel.
We will call such unwanted colors nuisance colors. Suppose
that the encoded pixel has color ci, and on superimposing two
arbitrary shares, we find some subpixels with color cj (cj 6=
black, white). Then we define cj to be a nuisance color for ci

and we denote the number of such subpixels in a reconstructed
pixel for ci by N(cj , ci) .

In this case, yellow is a nuisance color for cyan and we
denote the number of yellow subpixels in a cyan pixel by
N(Y,C). Similarly for a yellow pixel, the nuisance color
is cyan and we denote the number of cyan subpixels by
N(C, Y ). Finally, a green pixel has as nuisance colors both
cyan and yellow and we denote their numbers by N(C, G)
and N(Y,G), respectively.

Note that we have not defined white or black as nuisance
colors. This is because the presence of white subpixels serve
to make the image lighter, but they do not hinder the visual
system from discerning the true color of a pixel. Black
subpixels darken the image, but again, they do not hinder the
visual system from discerning the color of a pixel.

Now, we shall compute the value of N(Y,C). Observe that
when the i-th and j-th rows of SC are superimposed the
nuisance color yellow occurs when patterns (1, 1)′ or (0, 0)′

occurs in S1{i, j}, each of which contributes one yellow pixel
to he superimposed image. When the basis matrix S1 is from
the Latin Square design of Theorem 4 the pattern (0, 0)′

occurs λ times where λ =0 or 1. The pattern (0, 0)′ occurs
t(t−1)−2(t−1−λ)−λ times. Therefore, we get N(Y,G) =
t(t−1)−2(t−1−λ). The fraction of the subpixel which have
color yellow is N(Y, C)/m ≤ 1/4. From symmetry, it follows
that N(Y, C) = N(C, Y ). For the green pixel the number
of cyan or yellow colored pixels is t(t − 1) − 2(t − 1 − λ).
Therefore, (N(C, G) + N(Y, G))/m ≤ 1/2.

B. (2, n)-Color VTS with Six Base Colors

Now, suppose that the original image is made up of exactly
six colors namely Red (R), Green (G), Blue (B), Cyan (C),
Yellow (Y), and Magenta (M), such that Note that C +Y = G,
C + M = B, and Y + M = R. Consider the following six
matrices as templates:

XY =
(

Y 0 C M 1 1
0 Y 1 1 C M

)
,

XC =
(

C 0 M Y 1 1
0 C 1 1 M Y

)

XM =
(

M 0 Y C 1 1
0 M 1 1 Y C

)

XR =
(

Y M C 1 1 0
M Y 1 C 0 1

)

XG =
(

Y C M 1 1 0
C Y 1 M 0 1

)

XB =
(

M C Y 1 1 0
C M 1 Y 0 1

)
.

Let S1 be a basis matrix for any (2, n) black and white VTS.
To construct a (2, n)-color VTS it is sufficient to construct
the basis matrices SR, SG, SB , SC , SY , and SM for the colors
R, G,B, C, Y, and M respectively. For n = 2, we have
SP = XP where P = C, Y, M, R,G, B. Now we consider
our (2, n)-color VTS with n ≥ 3. We define SR as an n×6m
matrix that is constructed by replacing each occurrence of a
0 in S1 by the first row of XR and that of a 1 by the second
row of XR. SG, SB , SC , SY , and SM are constructed in a
similar fashion. Note that the i-th rows of the matrices SR,
SG, SB , SC , SY , and SM thus obtained are identical up to a
column permutation.

Adhikari and Sikdar [2] take S1 to be the matrix for
obtaining optimal relative contrast as described by Blundo et
al. [6] in Theorem 6 to get a (2, n)-VTS for six colors.

In the following theorem, we prove the existence of (2, n)-
VTS for six colors with low pixel expansion, by taking S1 to
be the matrix obtained by Adhikari and Bose [1] using Latin
squares design (Theorem 4). The proof is exactly similar to
that of Theorem 7.

Theorem 8: For any n = 3t (t ≥ 3), there exists a (2, n)
color VTS with base colors Red (R), Green (G), Blue (B),
Cyan (C), Yellow (Y), and Magenta (M) with pixel expansion
6t(t−1) and color ratios RY = RC = RM = 1/6+1/3t and
RR = RG = RB = 2/3t.

C. Generalization To Arbitrary Number of Colors

If the secret image has the colors C = {c1, c2, . . . , ck} such
that no two colors ci and cj ∈ C can be combined to produce
a third color cl ∈ C, then for each color ci ∈ C we define
matrix Xci as shown in Equation 1.

Note that Xci has 2k columns. We define Sci in terms of
Xci and the basis matrix of any (2, n) black and white S1 as
follows: Sci is an n× 2mk matrix obtained by replacing the
zeros of S1 by the first row of Xci and the the ones of S1 by
the second row of Xci .

Again, in the same way as in Theorems 7 and 8 we obtain
the following theorem for arbitrary number of colors by using
S1 as in Adhikari and Bose [1].

Theorem 9: For any n = 3t where t ≥ 3, there exists a
(2, n) color VTS with a set C of k colors, such that no two
of C can be combined to obtain a third color, having pixel
expansion 2kt(t−1) and color ratios R(Ci) = 1/2k+1/kt ≈
1/2k.



Xci =
(

ci 0 c1 . . . ci−1 ci+1 . . . ck 1 . . . 1 1 . . . 1
0 ci 1 . . . 1 1 . . . 1 c1 . . . ci−1 ci+1 . . . ck

)
. (1)

Note that the color ratios of all the colors in this setup
is bounded below by 1/2k. This is unlike the situations in
Theorems 7 and 8, where the color ratios of some of the colors
decreases as the number of shares increase. Moreover, the
analogous result obtained by Adhikari and Sikdar [2] using S1

as in Blundo et al. [6] is bounded below by 3/4k. Therefore,
we lose the contrast only by a factor of 1/4k, but dramatically
improve upon the pixel expansion.

V. CONCLUSIONS

In this paper we study the problem of constructing (2, n)-
VTS schemes with low pixel expansion and reasonably good
contrasts. A construction of a (2, n)-VTS for black and white
pixels using Latin squares has been used to extend the results
of Adhikari and Sikdar [2] for (2, n)-VTS for color images,
to obtain schemes with low pixel expansion and reasonable
color ratios.

Similar results can also be obtained with the help of BIBD’s.
Careful interpretation of such results needs to be done to
understand its implications on color ratios and pixel expansion.
These results may also be helpful in the construction of (2, n)-
color VTS with optimal color ratios. Generalizing the scheme
to (k, n)-VTS for color images is another interesting problem.
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