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Abstract

This paper studies identifying the coefficients in a system of linear equations that
share a mismeasured explanatory variable. We characterize the sharp identification
regions for the coefficients under the classical measurement error assumption and
demonstrate the identification gain that results from analyzing the equations jointly as
opposed to separately. Further, to conduct a sensitivity analysis, we derive the sharp
identification regions under any configuration of three auxiliary assumptions that
weaken benchmark point-identifying assumptions. The first weakens the assumption
of “no measurement error” by imposing an upper bound on the “noise to signal”
ratio. The second controls the fit of the model by imposing upper bounds on the
coefficients of determination that would obtain in each equation had there been no
measurement error. The third weakens the assumption that the variance matrix of
the disturbances is diagonal by specifying the signs of the correlations among the
cross-equation disturbances, if at all. For inference, the paper implements results on
intersection bounds. Using data from COMPUSTAT, the paper applies its framework
to study the effects of cash flow on the investment, saving, and debt of corporate firms
in the US when Tobin’s q is used as an error-laden proxy for a firm’s marginal q.
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1 Introduction

Sometimes a mismeasured explanatory variable appears in multiple linear equations of in-

terest which are nonetheless estimated separately. What, if any, is the identification gain

that results from analyzing the system’s equations jointly, as opposed to separately, when

a common explanatory variable suffers from classical measurement error? What are use-

ful auxiliary assumptions that can help identify the system’s coefficients? How are the

system’s coefficients jointly sensitive to deviations from these auxiliary assumptions? To

address these questions, we show how the identification region for each equation’s coeffi-

cients depends on the extent of the measurement error in the proxy for the common latent

variable. When analyzing each equation separately, researchers might forgo information

about the accuracy of the proxy that obtains when using the other equations. Further,

they may reach incoherent conclusions that implicitly rest on different inference, derived

from each equation separately, on the extent of the measurement error in the proxy. In

contrast, we demonstrate how analyzing the system of equations jointly can yield tighter

sharp identification regions for the system’s coefficients than the single equation analysis.

Further, by analyzing the system of equations jointly, the paper’s framework guides the

researcher toward employing useful but also compatible identifying assumptions.

Specifically, we study identifying the coefficients in a system of linear equations that

share a mismeasured explanatory variable. Building on partial identification results in the

presence of measurement error in e.g. Klepper and Leamer (1984), Leamer (1987), Bollinger

(2003), and Chalak and Kim (2018), we characterize the sharp identification regions for

the coefficients on the latent variable and the (correctly measured) covariates under the

classical measurement error assumption and demonstrate the identification gain that re-

sults from analyzing the equations jointly as opposed to separately. Roughly speaking,

this is akin to studying the efficiency gain that results from jointly estimating seemingly

unrelated regressions (e.g. Zellner, 1962). Further, to tighten the bounds and conduct a

sensitivity analysis, we derive the sharp identification regions under any configuration of

the following three auxiliary assumptions. As we show, each of these assumptions weak-

ens a stronger benchmark assumption that point identifies the system’s coefficients. The

first auxiliary assumption weakens the assumption of “no measurement error” by imposing
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an upper bound on the (net-of-the covariates) “noise to signal” ratio (i.e. the ratio of

the variance of the measurement error to that of the latent variable net-of-the covariates).

The second controls the fit of the model by imposing upper bounds on the coefficients of

determination that would obtain in each equation had there been no measurement error.

The third weakens the assumption that the variance matrix of the equation disturbances is

diagonal by specifying the signs of the correlations among the cross-equation disturbances,

if at all. We do not require a particular configuration of these auxiliary assumptions. In-

stead, we characterize the mapping from each configuration to the identification regions of

the coefficients. We then conduct a sensitivity analysis that studies the consequences of

deviating from the benchmark point-identifying assumptions. To facilitate inference, we

express the identification regions for the coefficients in terms of intersection bounds. We

then combine and implement results from Chernozhukov, Rigobon, and Stoker (2010) and

Chernozhukov, Lee, and Rosen (2013). The resulting framework delivers a specification

test for the imposed assumptions and enables inference under sequentially stronger identi-

fying assumptions, whereby a researcher can gain confidence in results that hold true under

weaker assumptions.

To illustrate our framework, we study estimating the effects of a firm’s cash flow (internal

funds) on its investment, saving, and debt. After accounting for the firm’s marginal q (the

firm’s expected marginal return of capital), various theories offer contradictory predictions

about the sign of the effect of cash flow on each of these outcomes. Because researchers do

not directly observe marginal q, it is common to use Tobin’s q (the ratio of the firm’s market

value to its assets’ replacement value, e.g. the “market-to-book” ratio) as an error-laden

proxy for marginal q. To proceed, the literature employs various econometric methods that

impose different assumptions on the measurement error in Tobin’s q. These methods yield

mixed empirical conclusions, sometimes corroborating contradictory theoretical predictions,

about the direction of the effects of cash flow on investment (e.g. Erickson and Whited

(2000, 2012) and Almeida, Campello, and Galvao (2010)), saving (e.g. Almeida, Campello,

and Weisbach (2004) and Riddick and Whited (2009)), and debt (e.g. Rajan and Zingales

(1995) and Erickson, Jiang and Whited (2014)). Importantly, the literature estimates each

of the investment, saving, and debt equations separately. Using data from COMPUSTAT,
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we apply our framework to study the joint effects of cash flow on the investment, saving,

and debt of corporate firms in the US when Tobin’s q serves as an error-laden proxy for a

firm’s marginal q. Analyzing the equations jointly, as opposed to separately, tightens the

identification regions considerably and sometimes determines the sign of the effects of cash

flow without imposing stronger assumptions. In particular, the joint effects of cash flow

on investment, saving, and debt can be zero if and only if Tobin’s q is a noisy proxy for

marginal q, with a low reliability ratio. Otherwise, if Tobin’s q is a moderately accurate

proxy then cash flow affects investment and saving positively and debt negatively.

More broadly, this paper’s econometrics framework can be useful in any context in

which an error-laden proxy for a latent variable appears in multiple equations. For example,

individual latent “ability” may affect multiple labor market outcomes, such as wage and

hours worked, and is often proxied by a test score, such as IQ. Similarly, a medical test

score may serve as a proxy for a latent health status that may affect multiple aspects of a

patient’s behavior.

The paper is organized as follows. Section 2 introduces the data generating assump-

tions and notation. Section 3 derives the sharp identification regions under the classical

measurement error assumption and any configuration of the auxiliary assumptions. Section

4 illustrates the identification results using a numerical example. Section 5 describes the

estimation and inference procedure. Section 6 applies the paper’s framework to study the

effects of cash flow on corporate behavior. Section 7 concludes. Supplementary material

and mathematical proofs are gathered in the Online Appendix.

2 Data Generation and Assumptions

We assume that the data is generated as follows.

Assumption A1 Data Generation: (i) Let (X
k×1

′, W
1×1
, Y
p×1

′)′ be a random vector with a finite

variance. (ii) Let a structural system generate the random variables η
p×1

, ε
1×1

, U
1×1

, X, W ,

and Y such that

Y ′ = X ′β + Uδ + η′ and W = U + ε (1)

with constant slope coefficients. The researcher observes realizations of (X ′,W, Y ′)′ but not
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of (U, η′, ε).

A1 decomposes the proxy W into the “signal” component1 U and the “noise” or error

ε. We are interested in identifying the effects δj and βj of U and X on Yj for j = 1, ..., p as

encoded in the jth outcome equation,

Yj = X ′βj + Uδj + ηj. (2)

X denotes the observed determinants that drive Y . Our framework does not require the

presence of these covariates, so X may be empty. When present, we allow X to enter all

the Yj equations, as can often occur in systems where multiple outcomes are determined

jointly. When Cov[(η′, ε)′, X] = 0, as we will assume shortly, excluding a component of X

from a Yj equation can point identify the system coefficients since the excluded variable

can serve as an instrumental variable (see the discussion following Theorem 3.1). We do

not require such exclusion restrictions. Here, the challenge in identifying (δ, β) is due

to U being unobserved and possibly correlated with X. In particular, we maintain two

standard assumptions about the other unobservables η and ε. First, the “disturbance” η

is uncorrelated with (X ′, U)′.

Assumption A2 Uncorrelated Disturbance: Cov[η, (X ′, U)′] = 0.

Second, the measurement error ε is uncorrelated with (X ′, U, η).

Assumption A3 Uncorrelated measurement error: Cov[ε, (X ′, U, η)′] = 0.

Assumptions A1-A3 are the classical error-in-variables assumptions (see e.g. Wooldridge,

2002, p. 80). We briefly comment on certain related papers that either weaken or strengthen

A1-A3. In the case of a single equation with p = 1, Lewbel (1997) and Erickson and Whited

(2002) strengthen A1-A3 by imposing additional restrictions on the higher order moments of

(η, ε, U,X ′) that may point identify2 (β, δ). We do not require these stronger assumptions3.

1The structure Y ′ = X ′β+ V γ + η′ and W = V ψ+ ε, with V unobserved, is observationally equivalent
to A1. Provided the scale ψ 6= 0, only the ratio δ ≡ γ

ψ of the coefficients on V may be (partially) identified.
To ease the notation, we use the simpler representation in which U ≡ V ψ.

2Note that if X = (X ′1, X
′
2)′ and one further requires E[(η′, ε)′|X1] = E[(η′, ε)′] then it may be possible

to point identify (β′, δ)′ in Y ′ = X ′β + Wδ + η′ − εδ by generating an instrument for W as a function of
X1 that is excluded from X2.

3For instance, unlike in Erickson and Whited (2002), A1-A3 allow the system variables to be jointly
normally distributed.
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Instead, we impose the uncorrelation assumptions A2-A3 and study partially identifying δ

and β. DiTraglia and Garcia-Jimeno (2017) relax A2 to allow X (or its instrument) to be

endogenous and, similarly to this paper’s joint equation analysis, they advocate analyzing

jointly the assumptions imposed on instrument exogeneity and measurement error. Krasker

and Pratt (1986) and Erickson and Whited (2005) relax A3 and characterize how highly

correlated should W and U be in order to identify the sign of δ or of a component of

β. Klepper and Leamer (1984) and Bollinger (2003) characterize the sharp identification

regions for δ and β under A1-A3. Chalak and Kim (2018) extend these results when U is

a scalar to relax the proxy exclusion restriction in A1 by allowing W to affect Y directly.

Whereas the papers discussed above consider a scalar outcome with p = 1, Leamer (1987)

studies the identification of the coefficients under A1-A3 when X is empty and Y and

U are vectors of arbitrary dimensions. Here, we build on these papers and study the

identification gain that results from imposing the auxiliary assumptions A4-A6 discussed

below. For concreteness and to gain analytical tractability, we focus on the case where U

and W are scalars and Y is a p×1 vector, as we maintain in the empirical application when

studying the firm investment, saving, and debt equations. This enables us to operate in

a simpler context and to demonstrate how this type of sensitivity analysis can be usefully

implemented in empirical work.

2.1 Notation

To shorten the notation, for generic random vectors A and B, we write:

σ2
A ≡ V ar(A) and σA,B ≡ Cov(A,B).

When A and B are nondegenerate scalars, rA,B ≡ σA,B
σAσB

denotes the correlation between

A and B. Further, when σC,B is square and nonsingular, we use the following succinct

notation for the linear instrumental variable (IV) regression estimand and residual

bA.B|C ≡ σ−1
C,BσC,A and ε′A.B|C ≡ [A− E(A)]′ − [B − E(B)]′bA.B|C

so that by construction E(εA.B|C) = 0 and Cov(C, εA.B|C) = 0. In particular, bA.B|C is

the vector of slope coefficients associated with B in a linear IV regression of A on (1, B′)′
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using instruments (1, C ′)′. If B = C, we obtain the linear regression estimand and residual

bA.B ≡ bA.B|B and εA.B ≡ εA.B|B. Last, for a scalar A, we denote by

R2
A.B ≡ σ−2

A (σA,Bσ
−2
B σB,A) ≡ bB.AbA.B

the population coefficient of determination (R-squared) from a regression4 of A on B.

2.2 Linear Projection

Recall that under A2-A3, Cov[(η, ε)′, X] = 0. Thus, provided σ2
X is nonsingular, projecting

W and Y onto X gives bW.X = bU.X and

bY.X = β + bW.Xδ. (3)

Further, using Ã ≡ εA.X as a shorthand notation for the residual from the regression of a

vector A on X, we employ the following convenient system of projected linear equations:

Ỹ ′ = Ũδ + η̃′ and W̃ = Ũ + ε̃ (4)

to study identifying δ. The identification region for β then obtains using equation (3).

2.3 Auxiliary Assumptions

To tighten the identification regions obtained under A1-A3 and conduct a sensitivity analy-

sis, we consider the auxiliary assumptions A4-A6 that weaken three benchmark assumptions.

We do not require A4-A6. Instead, we characterize the identification gain that results from

imposing any configuration of these auxiliary assumptions.

Klepper and Leamer (1984), Klepper (1988), and Chalak and Kim (2018) employ as-

sumptions similar to A4 and A5 when p = 1. Since we consider multiple equations, p ≥ 1,

we also study assumption A6, introduced below. Specifically, the first auxiliary assumption

weakens the “no measurement error” assumption σ2
ε = 0 by imposing an upper bound κ

on the net-of-X “noise to signal ratio.”

Assumption A4 Bounded Net-of-X Noise to Signal Ratio: σ2
ε ≤ κσ2

Ũ
where 0 ≤ κ.

4If σ2
B is singular, we set R2

A.B = R2
A.Bo

where Bo is a maximal linearly independent subset of B.
Further, if either σ2

A = 0 or σ2
B = 0 then we set rA.B = 0 and R2

A.B = 0.
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For example, A4 reduces to the “no measurement error” assumption σ2
ε = 0 when

κ = 0 whereas setting κ = 1 assumes that, after projecting on X, the variance of the

measurement error is at most as large as the variance of U , σ2
ε ≤ σ2

Ũ
. Given A1-A3, A4

equivalently imposes a lower bound 1
1+κ

on ρ, the net-of-X “signal to total variance ratio”:

1

1 + κ
≤ ρ ≡

σ2
Ũ

σ2
W̃

=
σ2
Ũ

σ2
Ũ

+ σ2
ε

.

Further, since ρ ≡ σ2
Ũ

σ2
W̃

=
R2
W.U−R

2
W.X

1−R2
W.X

(e.g. DiTraglia and Garcia-Jimeno, 2017, eq. (20)),

A4 equivalently sets a lower bound κ∗ ≡ 1+κR2
W.X

1+κ
on the “reliability ratio” R2

W.U , so that

R2
W.X ≤ κ∗ ≤ R2

W.U . One may resort to any of these equivalent interpretations of A4.

Consider the coefficient of determination R2
Ỹj .Ũ
≡ 1−

σ2
ηj

σ2
Ỹj

in the Ỹj equation from display

(4). By A1-A3 and since W measures U with error, Lemma D.1 in the Online Appendix

gives that R2
Ỹj .W̃

≤ R2
Ỹj .Ũ

. The second auxiliary assumption controls the fit of the model

by imposing a bound τj on how large can R2
Ỹj .Ũ

be.

Assumption A5 Bounded Net-of-X Coefficient of Determination: R2
Ỹj .Ũ
≤ τj where 0 <

τj and R2
Ỹj .W̃

≤ τj ≤ 1 for j = 1, .., p.

Since R2
A.(X′,B)′ =

σ2
Ã

σ2
A

(R2
Ã.B̃
− 1) + 1, A5 equivalently imposes an upper bound τ ∗j ≡

σ2
Ỹj

σ2
Yj

(τj − 1) + 1 on the coefficient of determination R2
Yj .(X′,U)′ ≡ 1 −

σ2
ηj

σ2
Yj

in the Yj equation

from display (2). We let τ ≡ (τ1, ..., τp)
′ and τ ∗ ≡ (τ ∗1 , ..., τ

∗
p )′.

The third auxiliary assumption weakens the assumption that σ2
η is diagonal by specifying

the sign of the correlation rηj ,ηh among the cross-equation disturbances, if at all.

Assumption A6 Disturbance Correlation Sign Restriction: cjh ≤ rηj ,ηh ≤ cjh where

(cjh, cjh) ∈ {(−1, 0), (0, 1), (0, 0), (−1, 1)}.

A6 encodes the sign restrictions (if any) imposed in A6 on the 1
2
p(p − 1) off-diagonal

elements of σ2
η. For example, (cjh, cjh) = (−1, 0) encodes that rηj ,ηh ≤ 0 whereas if A6 does

not restrict the sign of rηj ,ηh then we set (cjh, cjh) = (−1, 1). We collect these restrictions

in the matrix c
1
2
p(p−1)×2

= (c, c) where c = (c12, ..., c(p−1)p)
′ and c = (c12, ..., c(p−1)p)

′. For

example, when σ2
η is assumed to be diagonal, we set c = 0.
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Online Appendix A extends A6 to A′6 which sets cjh ≤ rηj ,ηh ≤ cjh with −1 ≤ cjh ≤

cjh ≤ 1. In particular, A′6 may restrict the sign and/or magnitude of the correlation rηj ,ηh .

While A′6 is conceptually similar to A6, the expression for the identification region under

A1-A′6 is more complex. To ease the exposition, we report these results in the Online

Appendix. Here and in the empirical analysis in Section 6, we focus on specifying the sign

of rηj ,ηh , if at all, which can be more salient in empirical work and is sometimes more easily

inferred from economic theory.

As we show in Section 3, whereas A4 directly restricts the net-of-X signal to total

variance ratio ρ (i.e. the extent of the measurement error), A5 and A6 indirectly restrict

ρ. We vary κ, τ , and c in A4-A6 to conduct a sensitivity analysis that weakens the no

measurement error assumption κ = 0 (or R2
Ỹj .W̃

= τj in A5), controls the fit of the model

(R2
Ỹj .W̃

≤ τj), and weakens the assumption that σ2
η is diagonal (c = 0). Conversely, we

study for what configuration of (κ, τ, c) does the identification region admit a plausible

value or range e.g. for a component of δ or β. To keep the exposition concise, we impose

A4-A6 throughout and obtain the results when A4, A5, or A6 is not binding as a special

case in which κ→ +∞, τ = (1, ..., 1)′, or c is such that (cjh, cjh) = (−1, 1) for all j < h.

3 Identification

We study identifying δ, and consequently β = bY.X − bW.Xδ, under A1-A3 and demonstrate

how considering the Y equations jointly can improve on the bounds that obtain when

analyzing each Yj equation separately. Moreover, we study the consequences of imposing

any configuration of A4-A6 on the identification regions for δ and β.

3.1 Characterization Theorem

From Theorem 3.1, under A1-A3, the moments in V ar[(Ỹ ′, W̃ )′] can be expressed as

σ2
W̃

= σ2
Ũ

+ σ2
ε , σW̃ ,Ỹ = σW̃ ,Ũδ = σ2

Ũ
δ, and σ2

Ỹ
= δ′σ2

Ũ
δ + σ2

η.

Dividing σW̃ ,Ỹ by σ2
W̃

, we obtain that

bỸ .W̃ = ρδ where ρ ≡
σ2
Ũ

σ2
W̃

=
σ2
Ũ

σ2
Ũ

+ σ2
ε

. (5)
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Since the (net-of-X) “noise to signal ratio” ρ satisfies 0 ≤ ρ ≤ 1, we obtain the classic

“attenuation bias” whereby bỸj .W̃ understates the magnitude of δj and has its sign. If there

is no measurement error (σ2
ε = 0) then ρ = 1 and bỸ .W̃ = δ. If U and X are perfectly

collinear (σ2
Ũ

= 0) then ρ = 0 and bỸ .W̃ does not identify δ. Similarly, normalizing σ2
Ỹ

by

σ2
W̃

gives that

σ−2

W̃
σ2
Ỹ

= δ′ρδ + σ−2

W̃
σ2
η, (6)

where we have that

Γ ≡ σ−2

W̃
σ2
η is positive semi-definite (denoted by 0 � Γ). (7)

For example, the normalized covariance of the cross-equation disturbances is given by

Γjh ≡ σ−2

W̃
σηj ,ηh = σ−2

W̃
σỸj ,Ỹh − δjρδh. (8)

As we show in Corollary 3.2, the system of (in)equalities (3,5,6,7) exhausts the informa-

tion on (ρ, δ, β,Γ) implied by A1-A3. The auxiliary assumptions A4-A6 impose additional

restrictions on the parameters. A4 requires that 1
1+κ
≤ ρ, A5 imposes the lower bound

σ2
Ỹj

σ2
W̃j

(1− τj) ≤ Γjj, and A6 may specify the (weak) sign of Γjh.

When U and X are not perfectly collinear, i.e. ρ 6= 0, Theorem 3.1 uses equations (3,5,6)

to express δ, β, and Γ as functions D, B, and G of ρ. This mapping enables characterizing

the identification region for (ρ, δ, β,Γ) in terms of restrictions on ρ only and facilitates a

sensitivity analysis that studies the consequences of deviating from the “no measurement

error” assumption ρ = 1.

Theorem 3.1 Assume A1-A3 and let V ar[(X ′, U)′] be nonsingular so that 0 < ρ. Then

δ = D(ρ) ≡ 1

ρ
bỸ .W̃ ,

β = B(ρ) ≡ bY.X − bW.X
1

ρ
bỸ .W̃ , and

Γ = G(ρ) ≡ σ−2

W̃
σ2
Ỹ
− b′

Ỹ .W̃

1

ρ
bỸ .W̃ .

Theorem 3.1 reveals how if there is no measurement error (ρ = 1) then (δ, β,Γ) is

point identified. Further, even when ρ < 1, bỸj .W̃ = 0 if and only if (δj, βj,Γjh) =

(0, bYj .X , σ
−2

W̃
σỸj ,Ỹh). Similarly, if the lth element bW.X,l of bW.X is 0 then βl = bY.X,l.
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Last, as discussed in Section 2, if Xl is excluded from the Yj equation so that βjl =

bYj .X,l − bW.X,l 1
ρ
bỸj .W̃ = 0 then, provided bYj .X,l 6= 0, ρ is point identified and it follows that

(δ, β,Γ) is also point identified.

3.2 Identification Regions

We characterize the sharp identification regions for (ρ, δ, β,Γ) under A1-A3 and any con-

figuration of the auxiliary assumptions A4-A6 (i.e. any (k, τ, c) value). Corollary 3.2 states

the general result. We then discuss several special cases.

Corollary 3.2 Under the conditions of Theorem 3.1 and A4-A6 for j, h = 1, ..., p with

j < h, (ρ, δ, β,Γ) is partially identified in the sharp set5

J k,τ,c ≡ {(r,D(r), B(r), G(r)) : 0 � G(r),
1

1 + κ
≤ r ≤ 1,

σ2
Ỹj

σ2
W̃j

(1− τj) ≤ Gjj(r), and

cjh ≤ sgn(Gjh(r)) ≤ cjh for j, h = 1, ..., p and j < h}.

Further, ρ, δ, β, and Γ are partially identified in the sharp sets

Rk,τ,c = [R2
W̃ .Ỹ

, 1] ∩ [
1

1 + κ
, 1] ∩pj=1 [

1

τj
R2
W̃ .Ỹj

, 1]

p⋂
j,h=1
j<h

Rc
jh,

where

Rc
jh =



bỸj .W̃
bỸh.W̃

σ−2

W̃
σỸj ,Ỹh

if (cjh, cjh) = (0, 0) and σ−2

W̃
σỸj ,Ỹh 6= 0

(−∞,
bỸj .W̃

bỸh.W̃

σ−2

W̃
σỸj ,Ỹh

] if (cjh, cjh) ∈ {(−1, 0), (0, 1)} and sgn(σ−2

W̃
σỸj ,Ỹh) 6∈ [cjh, cjh]

[
bỸj .W̃

bỸh.W̃

σ−2

W̃
σỸj ,Ỹh

,∞) if (cjh, cjh) ∈ {(−1, 0), (0, 1)} and sgn(σ−2

W̃
σỸj ,Ỹh) ∈ [cjh, cjh]\{0}

∅ if (cjh, cjh) 6= (−1, 1), − sgn(bỸj .W̃ bỸh.W̃ ) /∈ [cjh, cjh], and σ−2

W̃
σỸj ,Ỹh = 0

(−∞,∞) otherwise

Dk,τ,c = {D(r) : r ∈ Rk,τ,c}, Bk,τ,c = {B(r) : r ∈ Rk,τ,c}, and Gk,τ,c = {G(r) : r ∈ Rk,τ,c}.

Using the system of (in)equalities (3,5,6,7) and the mappings in Theorem 3.1, Corollary

3.2 characterizes the identification region J k,τ,c for (ρ, δ, β,Γ). As shown in the proof of

5For a ∈ R, define the sign function: sgn(a) = −1 if a < 0 , sgn(a) = 0 if a = 0, and sgn(a) = 1 if
a > 0.
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Corollary 3.2, J k,τ,c is sharp since for every (r, d, b, g) ∈ J k,τ,c there exists (U∗, η∗, ε∗),

with
σ2
Ũ∗
σ2
W̃

= r and G(r) = σ−2

W̃
σ2
η̃∗ , that satisfy A2-A6 and that could have generated Y

and W according to A1. Further, Corollary 3.2 derives the projections Rk,τ,c, Dk,τ,c, Bk,τ,c,

and Gk,τ,c of the joint region J k,τ,c onto the support of the components ρ, δ, β, and Γ.

Each of these projected regions is sharp - for example, for every d ∈ Dk,τ,c there exists

(r, d, b, g) ∈ J k,τ,c. Thus, Corollary 3.2 exhausts the information on (ρ, δ, β,Γ) in A1-A6.

It is useful to examine the projected identification regions in Corollary 3.2 under se-

quentially stronger configurations of (k, τ, c). First, suppose that (cjh, cjh) = (−1, 1) for

all j, h = 1, ..., p with j < h, so that A6 is not binding. Then Rc
jh = (−∞,∞). In

this case, we sometimes drop the superfluous superscript c and obtain Rk,τ,c = Rk,τ ≡

[R2
W̃ .Ỹ

, 1] ∩ [ 1
1+κ

, 1] ∩pj=1 [ 1
τj
R2
W̃ .Ỹj

, 1]. If κ→∞ and τ = (1, ..., 1)′ then A4 and A5 are also

not binding and we sometimes drop the κ and τ superscripts. Provided R2
W̃ .Ỹ

6= 0, we

obtain Rk,τ,c = R ≡ [R2
W̃ .Ỹ

, 1] since max{R2
W̃ .Ỹ1

, ..., R2
W̃ .Ỹp
} ≤ R2

W̃ .Ỹ
. In this case, Corollary

3.2 reduces to the bounds in Leamer (1987), specialized to a scalar mismeasured U , after

projecting on the covariates X. As discussed in Leamer (1987), the joint-equations bounds

improve on the single-equation bounds that obtain using each Yj equation separately. In

particular, if the dimension of Y is p = 1 then Corollary 3.2 gives the single-equation

bounds for ρ, δ, and β under classical measurement error (see e.g. Chalak and Kim, 2018,

corollary 3.5). As the dimension of Y increases, R2
W̃ .Ỹ

may increase and the joint-equations

bounds R for ρ may become tighter. Instead, if κ <∞ or τj < 1 for some j (or both) then

A4 or A5 (or both) is in effect. In this case, if R2
W̃ .Ỹ
≤ max{ 1

1+κ
, 1
τ1
R2
W̃ .Ỹ1

, ..., 1
τp
R2
W̃ .Ỹp
} then

imposing A4 and A5 increases the lower bound on ρ. In turn, this leads to tighter bounds

on (δ, β,Γ) via the mappings in Theorem 3.1. In the limit, setting κ = 0 or τj = R2
W̃ .Ỹj

yields ρ = 1 and therefore point identifies (δ, β,Γ).

Next, consider imposing A6. To illustrate how restricting the sign of the off-diagonal

elements in σ2
η can help identify δ and β, consider the Yj and Yh equations and substitute

for U = W − ε in the Yj equation:

Yj = X ′βj +Wδj − εδj + ηj,

Yh = X ′βh + Uδh + ηh.
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Under A1-A3, if σηj ,ηh = 0 then Cov[(ε, ηj)
′, Yh] = 0. In this case, analyzing the Yj and

Yh equations jointly reveals how Yh may serve as an instrument for W to point identify

(δj, β
′
j)
′ = bYj .(W,X′)′|(Yh,X′)′ . Indeed, Corollary 3.2 shows that, even when A4-A5 are not

binding, if σηj ,ηh = 0 (i.e. (cjh, cjh) = (0, 0)) then, provided σ−2

W̃
σỸj ,Ỹh 6= 0, ρ =

bỸj .W̃
bỸh.W̃

σ−2

W̃
σỸj ,Ỹh

is point identified. When bỸj .W̃ |Ỹh exists and is nonzero, we can express ρ =
bỸj .W̃

bỸj .W̃ |Ỹh
as

the ratio of the regression and IV regression estimands. It follows from the mappings in

Theorem 3.1 that the full vector of system coefficients (ρ, δ, β,Γ) is point identified, with

δj = bỸj .W̃ |Ỹh and βj = bYj .X−bW.XbỸj .W̃ |Ỹh as obtains via the IV regression bYj .(W,X′)′|(Yh,X′)′ .

What if σηj ,ηh = 0 fails? Corollary 3.2 answers this question by deriving the identifica-

tion regions for ρ, δ, and β under weaker restriction in A6 on the sign of Γjh ≡ σ−2
W σηj ,ηh .

First, if the identification region Gk,τjh identifies the sign of Γjh when A6 is not binding (i.e.

when (cjh, cjh) = (−1, 1) for all j < h) then imposing the (correct) sign restriction on Γjh

in A.6 is uninformative about ρ, δ, and β. Otherwise, restricting the sign of Γjh in A6 can

rule out a region of Rk,τ . Specifically, recall that Gk,τjh is given by

Gk,τjh = {σ−2

W̃
σỸj ,Ỹh − bỸj .W̃

1

r
bỸh.W̃ : r ∈ Rk,τ}.

Thus, provided σ−2

W̃
σỸj ,Ỹh is nonzero6, 0 ∈ int(Gk,τjh ) if and only if

bỸj .W̃ bỸh.W̃

σ−2

W̃
σỸj ,Ỹh

∈ int(Rk,τ ).

Corollary 3.2 demonstrates how restricting the sign of Γjh can rule out elements ofRk,τ that

are either smaller or larger than
bỸj .W̃

bỸh.W̃

σ−2

W̃
σỸj .Ỹh

, as encoded in Rc
jh. In turn, this can tighten the

identification regions for δ and β. Last, if Corollary 3.2 yields Rk,τ,c = ∅ then the model is

misspecified and we reject the assumptions imposed in A1-A6.

To conclude this section, we point out that imposing restrictions on the signs and/or

magnitudes of some of the coefficients δj or βjl may tighten the identification region of ρ,

and therefore of δ, β, and Γ using Theorem 3.1’s mappings. We do not pursue this here;

instead, we focus on the auxiliary assumptions A4-A6 which do not directly restrict δ or β.

6If σ−2
W̃
σỸj ,Ỹh

= 0 then restricting the sign of Γjh is either contradictory or uninformative about ρ,
depending on the sign of bỸj .W̃

bỸh.W̃
, as encoded in Rc

jh.
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4 Numerical Example

To illustrate the shape of the identification regions in Section 3, we consider the following

numerical example. We generate X, W , and Y according to A1, as follows:

X = Uϕ+ ηX , W = U + ε, and Yj = X1βj1 +X2βj2 + Uδj + ηj for j = 1, 2, 3,

where ηX
2×1
≡ (ηX1 , ηX2)

′, X
2×1
≡ (X1, X2)′, η

3×1
≡ (η1, η2, η3)′, and Y

3×1
≡ (Y1, Y2, Y3)′. We let

ηX , U , ε, and η be jointly independent and normally distributed with mean 0 so that A2

and A3 hold. We allow the components of ηX (respectively η) to be correlated. It follows

that (X ′,W, Y ′) is normally distributed and we can analytically express the identification

regions for ρ, δ, and β in terms of the elements of V ar[(η′X , U, ε, η
′)′]. In this example, we

set the equation coefficients to

β =

 1 0.7
0.85 0.95
1.1 1.2

 , δ =

 0.7
1.05
0.84

 , and ϕ =

[
0.3
0.14

]
,

and the variances of ηX , U , ε, and η to

σ2
ε = 3, σ2

U = 5, σηX =

[
1 0.14

0.14 1

]
, and σ2

η =

 1.1 −0.31 0.63
−0.31 1.99 −0.59
0.63 −0.59 2.25

 .
We obtain that ρ = 0.53 and thus any restriction 0.89 = σ2

ε

σ2
Ũ

≤ κ in A4 is valid. Further,

we obtain that R2
W̃ .Ỹ1

= 0.31, R2
W̃ .Ỹ2

= 0.34, R2
W̃ .Ỹ3

= 0.27, and R2
W̃ .Ỹ

= 0.44.

Using a grid search, we approximate 4 types of identification regions, illustrated in

Figure 1. The first is the single-equation identification regions Sj that consider each Yj

equation separately. The second is the joint-equations region J that considers the Y

equations jointly. Sj and J obtain under A1-A3 only (i.e. when κ = ∞, τ = (1, 1, 1)′,

and (cjh, cjh) = (−1, 1) for all j < h). The third identification region is the joint-equations

bounds J κ,τ that obtains under A1-A5, with κ = 1 and τ = (0.7, 0.7, 0.7)′. The fourth region

J κ,τ,c obtains under A1-A6, with κ and τ as in J κ,τ , where c imposes the (correct) sign

restrictions rη1,η2 ≤ 0, rη1,η3 ≥ 0, rη2,η3 ≤ 0. Figure 1 illustrates these regions by plotting

their two dimensional projections onto the (ρ, δj), (ρ, βj1), and (ρ, βj2) spaces for j =

1, 2, 3. The plus sign denotes the true parameter values. Further, the asterisk corresponds
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to the regression estimand bY.(W,X′)′ and the cross sign corresponds to the identification

region J κ,τ,c∗ (the IV regression estimand) where c∗ incorrectly sets ση1,η2 = 0 and leaves

ση1,η3 and ση2,η3 unrestricted. Each graph in Figure 1 superimposes 4 identification regions

represented in different shades. The darker regions are nested within the lighter regions.

The lightest and second lightest shades correspond respectively to the single-equation and

joint-equations identification regions Sj and J . The second darkest region corresponds to

the joint-equations region J κ,τ and yields the lower bound 1
1+κ

= 0.5 in Rκ,τ . Last, the

darkest region corresponds to the joint-equations region J κ,τ,c.

Table 1 uses the analytical expressions in Section 3 to report several bounds, including

those that correspond to the projections in Figure 1. The first and second columns report

the sharp projections of the single-equation and joint-equations identification regions Sκ,τj
for j = 1, 2, 3 and J κ,τ respectively under A1-A5. Note that projecting Sκ,τj yields different

bounds for ρ, depending on j. The third column reports the joint-equations bounds J κ,τ,c

under A1-A6 with the (correct) sign restrictions rη1,η2 ≤ 0, rη1,η3 ≥ 0, rη2,η3 ≤ 0. The fourth

column reports the (IV regression) point estimand J κ,τ,c∗ where c∗ incorrectly assumes

that ση1,η2 = 0, with ση1,η3 and ση2,η3 unrestricted. The last column reports the regression

estimand bY.(W,X′)′ which would point identify δ and β if there is no measurement error

in W . Table 1 reports the bounds when κ = ∞ and τ = (1, 1, 1)′ (i.e. when A4-A5 are

not binding) in the upper panel as well as when κ = 1 and τ = (0.7, 0.7, 0.7)′ in the lower

panel. Figure 1 and Table 1 illustrate how the true parameter values are elements of the

nested sets J κ,τ,c ⊆ Sκ,τ1 × ...× Sκ,τp which become tighter as stricter valid restrictions on

κ, τ , and/or c are imposed.

5 Estimation and Inference

For inference, we implement a procedure that delivers 1− α (e.g. 50% or 95%) confidence

regions for each of the partially identified parameters ρ, δj, βjl, and Γjh for j, h = 1, ..., p

and l = 1, ..., k. The procedure consists of three steps. First, we express each of the bounds
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in Corollary 3.2 as a function7 of the vector of estimands8

π ≡ (vec(bY.(W,X′)′)
′, b′W.(Y,X′)′ , b

′
W.(Y1,X′)′ , ..., b

′
W.(Yp,X′)′ , vec(bY.X)′, b′W.X , σ

−2

W̃
vec(σ2

Ỹ
)′)′,

where9 vec(σ2
Ỹ

) collects the 1
2
p(p+ 1) variance and covariance elements of σ2

Ỹ
. Further, we

construct an estimator π̂ for π and give conditions under which π̂ is
√
n consistent and

asymptotically normally distributed. Second, we employ results on intersection bounds to

construct a 1− α confidence region CRρ
1−α for the parameter ρ that is partially identified

in Rκ,τ,c for any (κ, τ, c) configuration. The last step uses the mappings, given in Theorem

3.1, that express δj, βjl, and Γjh as functions of (π, ρ) to construct 1−α confidence regions

for the partially identified parameters δj, βjl, and Γjh.

5.1 Estimation of π

We estimate π using the plug-in estimator π̂:

π̂ ≡ (vec(b̂Y.(W,X′)′)
′, b̂′W.(Y,X′)′ , b̂

′
W.(Y1,X′)′ , ..., b̂

′
W.(Yp,X′)′ , vec(b̂Y.X)′, b̂′W.X , σ̂

−2

W̃
vec(σ̂2

Ỹ
)′),

Specifically, given observations {Ai, Bi}ni=1 corresponding to random column vectors A and

B, let Ā ≡ 1
n

∑n
i=1Ai and denote the sample covariance (with σ̂2

A = σ̂A,A) and the linear

regression estimator and sample residuals by:

σ̂A,B ≡
1

n

n∑
i=1

(Bi− B̄)(Ai− Ā)′, b̂A.B ≡ σ̂−2
B σ̂A,B, and ε̂′A.B,i ≡ (Ai− Ā)′− (Bi− B̄)′b̂A.B.

Under conditions sufficient for the law of large numbers and central limit theorem (see

e.g. White (2001) for primitive conditions), the estimator π̂ for π is
√
n consistent and

asymptotically normally distributed. For this, let µ2
A = E(AA′) and define the square

block-diagonal matrix Q:

Q ≡ diag{ I
p×p
⊗µ2

(1,W,X′)′ , µ
2
(1,Y,X′)′ , µ

2
(1,Y1,X′)′ ..., µ

2
(1,Yp,X′)′ , Ip×p

⊗µ2
(1,X′)′ , µ

2
(1,X′)′ , I

1
2
p(p+1)× 1

2
p(p+1)

⊗σ2
W̃
},

7An alternative would express the bounds in Corollary 3.2 as a function of V ar[(1, Y ′,W,X ′)′] and
constructs an estimator for these moments.

8Throughout this discussion, we assume that σ2
Ỹ

is nonsingular. Otherwise, we drop the redundant Y

elements from (Y,X ′)′ in b′W.(Y,X′)′ and R2
W̃ .Ỹ

.
9Let A

m×q
= [ A1

m×1
, ..., Aq

m×1
]. Then vec(A)

mq×1
≡ (A′1, ..., A

′
q)
′. Further, if q = m and A is symmetric then

we let vec(A)
1
2m(m+1)×1

≡ [A11, ..., Amm, A12, ..., A1m, ...., A(m−1)1, ..., A(m−1)m]′ collect the diagonal and upper-

diagonal elements of A.
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where the moments in the diagonal blocks correspond to the estimands in π.

Theorem 5.1 Assume A1(i) and that Q is nonsingular. Suppose further that:

(i) 1
n

∑n
i=1(1, Y ′i ,Wi, X

′
i)
′(1, Y ′i ,Wi, X

′
i)

p→µ2
(1,Y ′,W,X′)′ and

(ii) n−1/2

n∑
i=1



vec[(1,Wi, X
′
i)
′εY.(W,X′)′,i]

(1, Yi, X
′
i)
′εW.(Y,X′)′,i

(1, Y1i, X
′
i)
′εW.(Y1,X′)′,i
...

(1, Ypi, X
′
i)
′εW.(Yp,X′)′,i

vec[(1, X ′i)
′εY.X,i]

(1, X ′i)
′εW.X,i

vec(εY.X,iε
′
Y.X,i − σ2

Ỹ
)


d→N(0,Ξ) where Ξ ≡ V ar



vec[(1,W,X ′)′εY.(W,X′)′ ]
(1, Y,X ′)′εW.(Y,X′)′

(1, Y1, X
′)′εW.(Y1,X′)′
...

(1, Yp, X
′)′εW.(Yp,X′)′

vec[(1, X ′)′εY.X ]
(1, X ′)′εW.X
vec(εY.Xε

′
Y.X)


.

Then
√
n(π̂−π)

d→N(0,Σ) where Σ obtains by removing from Σ∗ ≡ Q−1ΞQ′−1 the rows and

columns corresponding to the regression intercepts.

We estimate Σ using the relevant submatrix of the heteroskedasticity-robust estimator

Σ̂∗ ≡ Q̂−1Ξ̂Q̂′−1 for Σ∗ (see e.g. White, 1980). For example, we estimate the component

Cov(XεYj .X , XεYh.X) of Ξ using its counterpart 1
n

∑n
i=1Xiε̂Yj .X,iε̂Yh.X,iX

′
i in Ξ̂.

5.2 Inference on ρ

To form a 1− α confidence region for the parameter ρ that is partially identified in Rκ,τ,c,

we express the identification region for ρ as a finite number of intersection bounds

Rκ,τ,c(λ) ≡ [ρlo(λ), ρuo(λ)] ≡ ∩Mv=1[ρlv(λ), ρuv(λ)] ≡ ∩Mv=1Rv(λ),

which may depend on a vector of nuisance parameters λ
2T×1

(T ≡ 1
2
p(p− 1)), a function of

π:

λ
2T×1

= (σ−2

W̃
σỸ1,Ỹ2 , σ

−2

W̃
σỸ1,Ỹ3 , ..., σ

−2

W̃
σỸp−1,Ỹp

, bỸ1.W̃ bỸ2.W̃ , bỸ1.W̃ bỸ3.W̃ , ..., bỸp−1.W̃
bỸp.W̃ ).

Further, for a given λ, each of the bounds ρlv(λ) and ρuv(λ) can be expressed as a function

of π. For example, in the numerical example in Section 4, the identification region Rκ,τ,c
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under A1-A6 (with Γ12 ≤ 0, Γ13 ≥ 0, and Γ23 ≤ 0) for ρ is

Rκ,τ,c(λ) = ∩8
v=1[ρlv(λ), ρuv(λ)]

= [R2
W̃ .Ỹ

, 1] ∩ [
1

1 + κ
, 1] ∩ [

1

τ1

R2
W̃ .Ỹ1

, 1] ∩ [
1

τ2

R2
W̃ .Ỹ2

, 1] ∩ [
1

τ3

R2
W̃ .Ỹ3

, 1]

∩ (−∞,
bỸ1.W̃ bỸ2.W̃
σ−2

W̃
σỸ1,Ỹ2

] ∩ [
bỸ1.W̃ bỸ3.W̃
σ−2

W̃
σỸ1,Ỹ3

,∞) ∩ (−∞,
bỸ2.W̃ bỸ3.W̃
σ−2

W̃
σỸ2,Ỹ3

]

where the last three intersected regions Rc
12(λ), Rc

13(λ), and Rc
23(λ) in Rκ,τ,c(λ) obtain

from Corollary 3.2 based on the signs of the nuisance parameters (here T = 3)

λ
2T×1

= (σ−2

W̃
σỸ1,Ỹ2 , σ

−2

W̃
σỸ1,Ỹ3 , σ

−2

W̃
σỸ2,Ỹ3 , bỸ1.W̃ bỸ2.W̃ , bỸ1.W̃ bỸ3.W̃ , bỸ2.W̃ bỸ3.W̃ ).

Thus, λ determines whether eachRc
jh(λ) is ∅, (−∞,∞), (−∞,

bỸj .W̃
bỸh.W̃

σ−2

W̃
σỸj ,Ỹh

), or [
bỸj .W̃

bỸh.W̃

σ−2

W̃
σỸj ,Ỹh

,∞).

5.2.1 Known Nuisance Parameters

First, suppose that the nuisance parameter λ is known (or that A6 is not binding and λ

is irrelevant). As discussed in Manski and Pepper (2009) and Chernozhukov, Lee, and

Rosen (2013), the sample analog estimator R̂κ,τ,c(λ) ≡ ∩Mv=1 [ρ̂lv(λ), ρ̂uv(λ)] tends to be bi-

ased “inward” in finite samples, leading to estimates that are narrower on average than

Rκ,τ,c(λ). Further, the sampling error may vary with v, across the intersected regions

Rv(λ), which complicates the inference on Rκ,τ,c(λ). To overcome these difficulties, we

follow Chernozhukov, Lee, and Rosen (2013) and use the “precision-corrected” estimators

for ρlv(λ) and ρuv(λ), v ∈ V ≡ {1, ...,M} in order to construct estimators for ρlo(λ) and

ρuo(λ) as follows:

ρ̂lo(λ; 1−α21) ≡ sup
v∈V

[ρ̂lv(λ)−cl1−α21
(λ)selv(λ)] and ρ̂uo(λ; 1−α21) ≡ inf

v∈V
[ρ̂uv(λ)+cu1−α21

(λ)seuv(λ)]

where 1− α21 is a significance level with α21 ≤ 1
2
, selv(λ) (seuv(λ)) is the standard error for

the plug-in estimators ρ̂lv(λ) (ρ̂uv(λ)), and cl1−α21
(λ) (cu1−α21

(λ)) is a suitably selected critical

value, discussed below, such that

Pr[ρ̂lo(λ; 1−α21) ≤ ρlo(λ)] ≥ 1−α21− o(1) and Pr[ρuo(λ) ≤ ρ̂uo(λ; 1−α21)] ≥ 1−α21− o(1).

In particular, setting α21 = 1
2

yields half-median-unbiased estimators ρ̂lo(λ; 1
2
) and ρ̂uo(λ; 1

2
).

Using Bonferroni’s inequality yields the confidence region CIR1−α21
(λ) for the set Rκ,τ,c(λ):

CIR1−α21
(λ) ≡ [ρ̂lo(λ; 1−α21

2
), ρ̂uo(λ; 1−α21

2
)] such that lim inf

n→∞
Pr[Rκ,τ,c(λ)⊆CIR1−α21

(λ)] ≥ 1−α21.
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CIR1−α21
(λ) is a valid, but conservative, confidence region for ρ ∈ Rκ,τ,c(λ). To conduct

inference on ρ directly, we invert a test statistic that combines the lower and upper bounds.

This yields an asymptotically valid 1 − α21 (e.g. 95%) confidence regions CIρ1−α21
(λ) for

the parameter ρ that is partially identified in Rκ,τ,c(λ):

lim inf
n→∞

Pr[ρ∈CIρ1−α21
(λ)] ≥ 1− α21.

In particular, we apply the results in10 Chernozhukov, Lee, and Rosen (2013, theorem

4 and example 1) for estimation and inference with parametrically estimated bounding

functions in a “saturated” model with a finite number of intersections. To select cl1−α21
(λ)

and cu1−α21
(λ) and construct the bias-adjusted estimates ρ̂lo(λ; 1 − α21) and ρ̂uo(λ; 1 − α21)

and the confidence region CIρ1−α21
(λ), we implement their algorithm 1. For brevity, we

describe the details of the algorithm in Online Appendix B.1.

5.2.2 Estimated Nuisance Parameters

In practice, λ must be estimated and the confidence regions must be adjusted to account

for this estimation. Since λ is a function of π, we have that
√
n(λ̂ − λ)

d→N(0,Σλ), where

Σλ obtains using the delta method, and the estimators λ̂ and Σ̂λ are the plug-in estimators

that use π̂. We then construct a 1− α22 confidence region Λ1−α22 for λ
2T×1

by inverting the

Wald statistic which has an asymptotic χ2
2T distribution:

Λ1−α22 = {` :
√
n(λ̂− `)′Σ̂−1

λ

√
n(λ̂− `) ≤ cλ1−α22

}

where cλ1−α22
is the 1−α22 quantile of χ2

2T . By Proposition 3 of Chernozhukov, Rigobon, and

Stoker (2010), we form the union over ` ∈ Λ1−α22 to obtain the bias-corrected estimators

ρ̂lo(1− α2) = min
`∈Λ1−α22

ρ̂lo(`; 1− α21) and ρ̂uo(1− α2) = max
`∈Λ1−α22

ρ̂uo(`; 1− α21)

where α2 = α21 + α22, such that:

Pr[ρ̂lo(1− α2) ≤ ρlo] ≥ 1− α2 − o(1) and Pr[ρuo ≤ ρ̂uo(1− α2)] ≥ 1− α2 − o(1),

as well as the 1− α2 (e.g. 95%) confidence regions CIρ1−α2
for ρ ∈ Rκ,τ,c:

CRρ
1−α2

=
⋃

`∈Λ1−α22

CIρ1−α21
(`) such that lim inf

n→∞
Pr[ρ∈CRρ

1−α2
] ≥ 1− α2

10See also Chernozhukov, Kim, Lee, and Rosen (2015).
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Note that if CRρ
1−α2

= ∅ then we reject, at the 1−α2 significance level, the assumptions

imposed in A1-A6. For example, if CRρ
0.95 = ∅ when c = 0 then one rejects (under A1-A5)

that σ2
η is diagonal. Otherwise, imposing tighter restrictions on (κ, τ, c) can yield a tighter

confidence region. This depends on the extent of the identification gain from imposing

A4-A6 as well as on the precision of the estimates, including the nuisance parameters λ.

For example, if the sign of σ−2

W̃
σỸj ,Ỹh is imprecisely estimated then forming the union over

Λ1−α22 may effectively mute the impact of the σηj ,ηh restriction in A6 on CRρ
1−α2

.

In the empirical application, we report the confidence regions CRρ
0.5, which conveys

similar information to the half-median-unbiased bound estimates, as well as CRρ
0.95. For

this, we set α22 = 0.02 and let α21 = 0.48 or α21 = 0.03 respectively.

5.3 Inference on δj, βjl, and Γjh

Each identification region for δj, βjl, and Γjh for j, h = 1, ..., p, j < h, and l = 1, ..., k in

Corollary 3.2 is of the form

θ ∈ Hk,τ,c = {H(π; r) : r ∈ Rκ,τ,c},

where Rκ,τ,c is the identification region for ρ under any given (κ, τ, c) configuration, and

H(·; r) is a function of π, given in Theorem 3.1. For example,

Dκ,τ,cj = {1

r
bỸj .W̃ : r ∈ Rκ,τ,c}.

Using the delta method, we have that for each r ∈ (0, 1], the estimator H(π̂; r) for H(π; r)

is consistent and asymptotically normally distributed:

√
n(H(π̂; r)−H(π; r))

d→N(0,∇πH(π; r)Σ∇πH(π; r)′).

For brevity, Online Appendix B.2 gives the expressions for H(π; r) and ∇πH(π; r) for each

of the parameters δj, βjl, and Γjh. IfRκ,τ,c is known then, by proposition 2 of Chernozhukov,

Rigobon, and Stoker (2010), one can construct a confidence region for θ by forming the

union of CRθ
1−α1

(r) over r ∈ Rκ,τ,c. When Rκ,τ,c is estimated, the confidence region must

be adjusted accordingly. Using the 1 − α2 confidence region CRρ
1−α2

for ρ ∈ Rκ,τ,c, we

construct an asymptotically valid 1−α1−α2 confidence region CRθ
1−α1−α2

for θ ∈ Hk,τ,c by
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applying Proposition 3 of Chernozhukov, Rigobon, and Stoker (2010) to form the union:

CRθ
1−α1−α2

=
⋃

r∈CRρ1−α2

CRθ
1−α1

(r).

In the empirical application, we report the confidence regions CRθ
0.5 and CRθ

0.95 for δj

and βjl (or the vector (β1l, ..., βpl)
′). For this, we set α21 = α22 = 0.02 and let α1 = 0.46 or

α1 = 0.01 respectively.

6 Tobin’s q in Corporate Investment, Saving, and Debt

Equations

How does a firm’s cash flow affect its investment, saving, and debt? After accounting for

a firm’s marginal q, q theory predicts that cash flow does not affect a firm’s investment

(under the classical assumptions11, Tobin’s q is a sufficient statistic for the optimal invest-

ment policy). Further, given marginal q, various theoretical models predict that cash flow

may affect a firm’s saving and debt either positively or negatively. For instance, Almeida,

Campello, and Weisbach (2004) study a model, in which cash flow is not related to produc-

tivity shocks and physical capital depreciates completely in a single period, that predicts

that cash flow affects a firm’s saving positively. On the other hand, under the assumptions

that cash flow may be related to productivity and that physical capital may depreciate

partially in a single period, the model in Riddick and Whited (2009) predicts that the

effect of cash flow on a firm’s saving is negative. Similarly, tradeoff theory (see e.g. Miller,

1977) predicts that a firm with a high cash flow faces a lower expected bankruptcy cost and

borrows more whereas pecking order theory (see e.g. Myers and Majluf, 1984) postulates

that a firm with a high cash flow borrows less because external financing is costly relative

to internal funds.

Because marginal q is unobserved, researchers often employ Tobin’s q as a proxy for it.

The literature imposes different assumptions on the measurement error in Tobin’s q and

reports contradictory findings. For example, Erickson and Whited (2000, 2012) apply the

econometric method in Erickson and Whited (2002), which uses higher order moments12

11This result assumes quadratic investment adjustment costs, constant return to scale, perfect competi-
tion, and an efficient financial market (see Hayashi, 1982).

12Erickson and Whited (2002) strengthen A2-A3 to require ε, η, and (X ′, U)′ to be jointly independent.
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to point identify the equation coefficients, and cannot reject that the effect of cash flow

on investment may be zero, thereby corroborating the prediction of q theory. Almeida,

Campello, and Galvao (2010) use lagged variables in a panel structure as instrumental

variables to address the measurement error in Tobin’s q and find that cash flow affects

investment positively, contradicting the theoretical prediction in the absence of financing

frictions (see also Fazzari, Hubbard, and Petersen, 1988; Gilchrist and Himmelberg 1995;

Love, 2003). Similarly, using regression analysis, Almeida, Campello, and Weisbach (2004)

find that a firm’s cash flow affects its saving positively whereas Riddick and Whited (2009)

use higher order moments to account for measurement error in Tobin’s q and find that cash

flow affects saving negatively. Last, Rajan and Zingales (1995) and Hennessy and Whited

(2005) study firm profitability and cash flow respectively and find that either variable

negatively affects debt (see also Gomes and Schmid (2010)) and Erickson, Jiang and Whited

(2014) corroborate this finding for profitability when using higher order moments to account

for measurement error.

We build on this literature and apply this paper’s framework to examine the iden-

tification gain that results from considering the investment, saving, and debt equations

jointly under the classical measurement error assumption. Further, we conduct a sensitiv-

ity analysis that studies the robustness of the empirical estimates to deviations from the

no measurement error assumption, restrictions on the fit of the model, or deviations from

the assumption that the variance matrix of the disturbances is diagonal.

6.1 Data

We follow the literature closely in selecting the sample and constructing the variables

(see e.g. Almeida and Campello, 2007; Erickson and Whited, 2012; Erickson, Jiang, and

Whited, 2014). Specifically, we use data from COMPUSTAT on industrial firms13 between

1970 to 2017. We remove financial firms (Standard Industrial Classification (SIC) code 6000

to 6999) and regulated firms (SIC code 4900 to 4999). To exclude small firms, we delete

observations in which a firm has at most $2 million in real total assets (COMPUSTAT

item: AT) or $5 million in real capital (COMPUSTAT item: PPEGT) at either the end or

13Specifically, we apply 4 firm filters: INDFMT=INDL (industrial), DATAFMT=STD (standardized
data reporting), POPSRC=D (domestic (North American)), and CONSOL=C (consolidated).
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the beginning of a time period. Further, we deflate all the Compustat items that enter into

the construction of the variables by the Federal Reserve Economic Data’s (yearly average)

Producer Price Index, with 1982 as a base year. For each cross section, we construct the

variables as follows and normalize14 them by the firm’s total assets15. We define investment

as capital expenditure (CAPX) normalized by the beginning-of-the-period total assets AT.

Saving is defined as a one-year change in cash and short-term investments (CHE) normal-

ized by the beginning-of-the-period AT. We use gross debt to define leverage as short and

long-term debt (DLTT+DLC) divided by the current AT. We measure (lagged) Tobin’s Q

at the beginning of the period by (PRCC F×CSHO)+AT−CEQ−TXDB
AT

where PRCC F is stock

price, CSHO is number of common shares outstanding, CEQ is common equity, and TXDB

is deferred taxes. We define16 cash flow as the sum of income before extraordinary items

(IB) and depreciation and amortization (DP) normalized by the beginning-of-the-period

AT. Last, we define firm size as the natural logarithm of real net sales (SALE). In what

follows, Y1, Y2, and Y3 denote investment, saving, and debt respectively, U denotes the un-

observed17 marginal q, W denotes Tobin’s q and serves as a proxy for U , X1 denotes cash

flow, and X2 denotes firm size18. Section 6.6 considers including asset tangibility X3 in X,

defined by the total net property, plant and equipment (PPENT) divided by the current

AT. We delete firm-year observations with missing data on one of these variables. Last,

we winsorize the smallest and largest percentile of the variables in the panel in order to

limit the impact of outliers. The final sample is an unbalanced panel of 161, 960 firm-year

observations, with 3, 375 firms per year on average. Table 2 reports the summary statistics

14We deflate flow variables by the firm’s beginning-of-the-period (i.e. lagged) total assets and stock
variables by the current period’s total assets.

15The investment literature deflates the variables by either the firm’s capital or its total assets (see e.g.
Erickson and Whited, 2012). Since we also consider the saving and debt equations, we construct Tobin’s q
as the “market-to-book ratio” and deflate all the variables by total assets, as is common in these literatures
(e.g. Riddick and Whited (2009) and Erickson, Jiang, and Whited, (2014)).

16Alternatively, the literature sometimes examine the effect of profitability (defined by operating income
before depreciation (OIBDP) normalized by the beginning-of-the-period AT) on e.g. debt. Cash flow and
profitability are highly correlated in our sample.

17We treat Y and X as perfectly measured whereas we let W measure U with error. It is of interest to
extend the analysis to allow several or all variables to be measured with error (see e.g. Erickson, Jiang,
and Whited, 2014), e.g. due to different accounting practices. Nevertheless, we note that, unlike Y and
X, the expected marginal return on capital U (marginal q) is intrinsically unobserved.

18We follow the saving and debt literatures and condition on firm size (see e.g. Almedia, Campello, and
Weisbach (2004), Riddick and Whited (2009), and Erickson, Jiang and Whited (2014)).
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for the panel variables.

6.2 Bounds under Sequentially Stronger Assumptions

We begin our analysis by applying our framework to each cross section in our sample. This

allows the equation coefficients to vary across years. For example, Erickson, Jiang and

Whited (2014) provide evidence suggesting that the assumption that the slope coefficients

are constant over time may not hold. To illustrate our results, Sections 6.2 and 6.3 focus on

the middle year in our sample, 1993. Sections 6.4 and 6.5 report the results for all the cross

sections and for the full panel respectively. Table 3 reports the 50% and 95% confidence

regions in 1993 for ρ, δj, and βjl when κ =∞ and τ = (1, 1, 1)′, with A4 and A5 not binding.

Column 1 reports the results corresponding to the single equation bounds Sκ,τj . This yields

different identification regions for ρ across the investment, saving, and debt equations and

wide bounds on the cash flow coefficients in each of these equations. Column 2 reports

the results for the joint-equations bounds J κ,τ . Considering the three equations jointly

yields considerably tighter identification regions than the single-equations bounds. For

example, the single-equation 50% and 95% confidence regions for the effect of cash flow

on saving are [−∞, 0.181] and (−∞, 0.223) respectively whereas the corresponding joint-

equation confidence regions are [−0.115, 0.181] and (−0.270, 0.223). Nevertheless, in year

1993, the 95% confidence region for each of the effects of cash flow on investment, saving

and debt in J κ,τ contains 0. For example, the 95% confidence region for the effect β11 of

a $1 increase in cash flow on investment is (−0.397, 0.278). Column 3 reports the results

for J κ,τ,c when A6 sets c such that the investment and saving disturbances are negatively

correlated, the investment and debt disturbances are positively correlated, and the saving

and debt disturbances are negatively correlated. This yields comparable confidence regions

to J κ,τ . In this case, the identification gain from imposing A6 (with the c configuration

above) is offset by the decrease in the precision of the estimates. Column 4 reports the

(IV-type) results under J κ,τ,c∗ when A6 sets c∗ = 0 so that the variance matrix of the

disturbances is diagonal. For instance, c∗ = 0 rules out that the disturbances contain a

common component (a fixed effect) that simultaneously influences the firm’s investment,

saving, and debt. We do not reject this specification in year 1993 and obtain the 95%
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confidence region (0.050, 0.244) for the net-of-X signal to total variance ratio ρ (note that

the 50% confidence region for ρ is empty). Last, column 5 reports the results from the

regression estimator which would be consistent if there is no measurement error in Tobin’s q.

The regression estimates for δ1, δ2, and δ3 are possibly attenuated relative to the bounds in

J κ,τ , J κ,τ,c, and J κ,τ,c∗ . Further, the regression estimates that cash flow affects investment

and saving positively (β11 > 0 and β21 > 0) and debt negatively (β31 < 0).

Table 4 illustrates the consequences of imposing A4 and A5 and reports the results for

year 1993 when κ = 1.166 and τ = (0.886, 0.896, 0.898)′, so that the estimated κ∗ and τ ∗

are 0.5 and (0.9, 0.9, 0.9)′. Setting κ∗ = 0.5 assumes that at least half of the variance of

Tobin’s q is due to marginal q. For instance, this coincides with the largest reliability ratio

estimate (0.473 with standard error 0.064) for the market-to-book ratio obtained using

the fifth order cumulant estimator in Erickson, Jiang, and Whited (2014, table 5). Setting

τ ∗j = 0.9 assumes that, in each equation, the coefficient of determination19 would not exceed

0.9 had there been no measurement error. Under these settings, the A4 restriction that

the reliability ratio R2
W.U is at least as large as 50% forces the identification regions Sκ,τj ,

J κ,τ , and J κ,τ,c (with c encoding the same sign restrictions as in Table 3) to coincide. The

bounds imply that cash flow affects investment and saving positively and debt negatively.

Last, the 95% confidence region for J κ,τ,c∗ , when A6 assumes that σ2
η is diagonal, is empty

and the data rejects this specification at the 5% level. Thus, in year 1993, under A1-A3

and A5, imposing a moderate lower bound κ∗ = 0.5 on the reliability ratio of Tobin’s q is

incompatible with the assumption that the cross-equation disturbances are uncorrelated.

6.3 Sensitivity Analysis

If κ = 0 then there is no measurement error and (δ, β,Γ) is point identified. Next, we study

the sensitivity of the identification regions for the cash flow coefficients βj1 for j = 1, 2, 3 to

deviations from κ = 0. For this, we set τ = (1, 1, 1)′ in A5 and directly control the extent

of the measurement error by varying κ in A4. Using the sample from the middle year 1993,

Figure 2 plots the 50% and 95% confidence regions for the partially identified β11, β21 and

β31 as κ ranges from 0 to ∞ (or equivalently as κ∗ ranges from 1 to R2
W.X). It plots the

19R2
Ỹ1.W̃

, R2
Ỹ2.W̃

, and R2
Ỹ3.W̃

are estimated to be 3.66%, 0.9%, and 3.56% respectively.
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regions under A1-A4 when each equation is analyzed separately (Sκj ), the three equations

are analyzed jointly (J κ), and the three equations are analyzed jointly and A6 is imposed

(J κ,c with c set as in Tables 3 and 4). The 95% confidence region for the effect β11, β21, or

β31 of cash flow contains 0 only when the reliability ratio R2
W.U is at least as small as 16.6%

(κ ≥ 6.02), 17.3% (κ ≥ 5.66), and 24.1% (κ ≥ 3.55) respectively. Otherwise, β11 and β21

are each estimated to be significantly positive and β31 to be negative.

Table 5 studies the joint consequences of measurement error on the identification of

the coefficients (β11, β21, β31) on cash flow in the three equations. This safeguards against

maintaining empirical conclusions about β11, β21, and β31 that rest on different implicit

inference, derived from each equation separately, on the extent of the measurement error

in Tobin’s q. Further, it enables testing theories that consider multiple outcomes simul-

taneously. For this, we construct a 95% confidence region for (β11, β21, β31) under A1-A4

and report the smallest κ, and the corresponding largest κ∗, such that a null hypotheses

about (β11, β21, β31) is not rejected. In particular, if the reliability ratio of the proxy ex-

ceeds κ∗, the reported threshold value of κ∗, then the null hypothesis is rejected. Table 5

considers the 8 possible null hypotheses corresponding to the possible signs of the elements

of (β11, β21, β31). In one extreme, for all values of κ∗, the hypothesis that cash flow affects

investment and saving positively and debt negatively is not rejected. In another extreme, if

the reliability ratio of Tobin’s q is larger than 15.7% then any hypothesis on (β11, β21, β31)

in which the effect of cash flow on investment and saving is zero (or nonpositive) is rejected.

Further, under the maintained assumptions, the joint effects of cash flow on investment,

saving, and debt can be zero if and only if Tobin’s q is a noisy proxy for marginal q, with a

reliability ratio less than 17.7%. Otherwise, if Tobin’s q is a moderately accurate proxy for

marginal q, with R2
W.U ≥ 25.7%, then any joint theory of investment, saving, and debt that

does not predict (0 < β11, 0 < β21, β31 < 0) is rejected under the maintained assumptions.

6.4 Results for all the Cross Sections

Whereas Sections 6.2 and 6.3 focus on the middle year 1993, Figure 3 plots the 50% and

95% confidence regions for βj1 (the coefficients on cash flow) that is partially identified in

Bj1, Bc∗
j1 , or Bκ,τ,cj1 , j = 1, 2, 3, for each cross section in our sample (years 1970 to 2017). The
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first column reports the joint equations bounds for βj1 ∈ Bj1 under A1-A3. In some years,

the 95% confidence region for the coefficient on cash flow in the investment, saving, or debt

equations contain zero. Otherwise, the 95% confidence region for the effect of cash flow

falls in the positive range for investment or saving and in the negative range for debt. The

second column report the bounds for βj1 ∈ Bc∗
j1 under A1-A3 and the A6 diagonal restriction

c∗ = 0. We reject this specification in 19 of the 48 years at the 96% level (i.e. CRρ
0.96 = ∅

and hence CRθ
0.95 = ∅). When nonempty, the confidence regions for βj1 ∈ Bc∗

j1 yield mixed

results across different years. The third column reports the bounds for βj1 ∈ Bκ,τ,cj1 under

A1-A6 where, for each year, we set κ and τ such that the estimated κ∗ and τ ∗ are 0.5 and

(0.9, 0.9, 0.9). Setting κ∗ = 0.5 assumes that Tobin’s q is a moderately accurate proxy for

marginal q. Further, as before, c sets rη1,η2 ≤ 0, rη1,η3 ≥ 0, rη2,η3 ≤ 0 in A6. We reject this

specification at the 96% level in 5 years (1973, 1974, 1978, 1984, and 2008). For most of the

remaining years, under this specification, the 95% confidence region for the effect of cash

flow falls in the positive range for investment or saving and in the negative range for debt.

Interestingly, we note that, in the last column of Figure 3, the time trends in the effects

of cash flow on investment and saving appear relatively flat. In contrast, the magnitude of

the effect of cash flow on debt diminishes over time. We leave investigating this time-series

trend to other work.

6.5 Results for the Full Panel

Although the paper’s framework does not require panel data, we illustrate how it can be

applied to the full panel. As in e.g. Almeida, Campello, and Galvao (2010) and Erickson,

Jiang, and Whited (2014), we assume that the slope coefficients are constant over time

and we maintain that the data on firms are missing at random from certain years of the

unbalanced panel. We note that imposing assumptions on the serial correlation of the

measurement error may generate instruments that can point identify the system coefficients

(see e.g. Almeida, Campello, and Galvao (2010) who employ similar panel data methods to

estimate the coefficient on cash flow in the investment equation). To keep the scope of the

paper focused and manageable, we leave a detailed study of using panel data to estimate

a system of equations with mismeasured variables to other work. Instead, our goal here is
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to provide a basic extension of our framework to the panel case, as summarized in Online

Appendix C.

We treat the number of time periods in the panel as fixed and the number of firms

to be large. After stacking each firm’s observations, our analysis proceeds analogously to

the cross section case. In particular, the robust standard errors for π are clustered at the

firm level. We consider the panel case without fixed effects as well as when the outcome

equations include year and firm fixed effects. In the latter case, we include the year indicator

variables in X and we remove the firm fixed effects by applying a within transformation20.

We note that in this case the auxiliary assumptions A4-A6 should be interpreted relative

to the within-transformed variables21. See Online Appendix C for further details.

Table 6 replicates the analysis in Tables 3 and 4 using the full panel and reports the

results for the cash flow coefficients. As in the cross section analysis, the joint equation

bounds improve substantially over the single equation bounds. Specifically, for the specifi-

cation under A1-A3 without fixed effects, the 95% confidence regions for the effect of cash

flow βj1 ∈ Bj1 falls in the positive range for investment and in the negative range for debt.

Imposing the A6 sign restrictions encoded in c tightens the bounds further (βj1 ∈ Bc
j1) and

the effect of cash flow on saving is now estimated to be positive at the 95% level. On the

other hand, we reject at the 96% level the specification that imposes the diagonal restric-

tion in A6 (βj1 ∈ Bc∗
j1 ). We also report the bounds when A4-A5 set κ and τ such that κ∗

and τ ∗ are estimated to be 0.5 and (0.9, 0.9, 0.9)′ respectively. This yields 95% confidence

regions that are close to the regression estimates, whereby cash flow is estimated to affect

investment and saving positively and debt negatively. Last, similar results obtain when

including year and firm fixed effects in the equations, except that the sign of the effect of

cash flow on investment is no longer recovered under only A1-A3 but remains significantly

positive under the sign restrictions in A6.

20Alternatively, one can consider (first-)differencing the data.
21One may consider imposing assumptions on the serial correlation of the variables to facilitate relating

the (sensitivity analysis) restrictions imposed on the within-transformed variables via (κ, τ, c) to equivalent
(or sufficient) restrictions on the level variables.
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6.6 Accounting for Asset Tangibility

Similarly to e.g. Hennessy and Whited (2005), the specification for the debt equation above

does not condition on the tangibility of the firm’s assets. Following some specifications for

the debt equation (e.g. Rajan and Zingales (1995) and Erickson, Jiang and Whited (2014)),

we replicate our analysis after augmenting X to include X3, the firm’s asset tangibility.

Here too, we do not require that X3 is excluded from the investment and saving equations -

instead, we allow X3 to freely affect all the system’s outcome variables. The analysis yields

results that are qualitatively similar in certain respects to the results above. Specifically,

Figure 4 in the Online Appendix replicates Figure 3, after augmenting X with X3, and

yields results that share similar features. Here too, the bounds for βj1 ∈ Bj1 sometimes

fall in the positive (negative) range for investment and saving (debt). We note that, after

accounting for asset tangibility, we reject the diagonal specification in A1-A6 (βj1 ∈ Bc∗
j1 ),

reported in the second column, in 5 (as opposed to 19) of the 48 years. Further, the bounds

under A1-A6 (βj1 ∈ Bκ,τ,cj1 ) in the last column remain close to the regression estimates and

this specification is now rejected in 11 (as opposed to 5) years. Last, Table 7 in the Online

Appendix replicates the panel data analysis in Table 6 after augmenting X with X3 and,

here too, the results share similar features to those in Table 6. To summarize the differences,

for the specification without fixed effects, the 95% confidence region for the effect of cash

flow on investment under A1-A3 now contains zero but remains in the positive range when

the disturbance sign restrictions are imposed in A6. Also, for the specification with year

and firm fixed effects, the estimates for the effect of debt remain negative whereas the sign

of the effect of cash flow on investment and saving is no longer recovered under A1-A3 nor

after imposing the sign restrictions in A6. The bounds for βj1 ∈ Bκ,τ,cj1 when A1-A6 assume

that Tobin’s q is a moderately accurate proxy of marginal q continue to be close to the

regression estimates, with cash flow estimated to affect investment and saving positively

and debt negatively.
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7 Conclusion

This paper studies the identification of the coefficients in a system of linear equations that

share a mismeasured explanatory variable. We characterize the sharp identification regions

for the coefficients under the classical measurement error assumption and demonstrate the

identification gain that results from analyzing the equations jointly as opposed to sepa-

rately. To tighten these regions and conduct a sensitivity analysis, we characterize the

sharp identification regions under any configuration of three auxiliary assumptions that

weaken benchmark point-identifying assumptions. The first weakens the assumption of

“no measurement error” by imposing an upper bound on the net-of-the covariates “noise

to signal” ratio. The second controls the fit of the model by imposing an upper bound

on the coefficients of determination that would obtain in each equation had there been no

measurement error. The third weakens the assumption that the variance matrix of the

disturbances is diagonal by specifying the signs of the covariances of the cross-equation

disturbances, if at all. For inference, we implement results on intersection bounds. Using

data from COMPUSTAT, we apply our framework to study the effects of cash flow on the

investment, saving, and debt of corporate firms in the US when Tobin’s q is used as an

error-laden proxy for marginal q. We find that analyzing the equations jointly, as opposed

to separately, tightens the identification regions considerably and sometimes permits recov-

ering the sign of the effects of cash flow without imposing stronger assumptions. Further,

the effects of cash flow on investment, saving, and debt can be zero if and only if Tobin’s

q is a noisy proxy for marginal q, with a low reliability ratio. Otherwise, cash flow affects

investment and saving positively and debt negatively.

Several extensions are of interest. It would be useful to extend this paper’s econometrics

framework to accommodate multiple latent variables, a nonlinear specification, or weaker

assumptions on the measurement error. Further, the paper’s empirical results call for the

development of theoretical models that jointly determine the firm’s investment, saving, and

debt. Also, the results stress the benefits of improved measures of Tobin’s q in identify-

ing the investment, saving, and debt equation coefficients (see e.g. Erickson and Whited

(2005, 2008) and Peters and Taylor (2017)). Another inquiry would further investigate the

estimated decrease over time in the magnitude of the effect of cash flow on debt.
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Figure 1: Identification regions Sj (light) for j = 1, 2, 3, J , J κ,τ , and J κ,τ,c (dark) for
κ = 1, τ = (0.7, 0.7, 0.7)′ and c set to the (correct) sign restrictions rη1,η2 ≤ 0, rη1,η3 ≥ 0,
rη2,η3 ≤ 0. The plus, asterisk, and cross signs correspond to the true parameter values,
bY.(W,X′)′ , and J κ,τ,c∗ respectively, where c∗ incorrectly sets ση1,η2 = 0 (with ση1,η3 and ση2,η3
unrestricted).
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Table 1: Numerical Example

DGP Sκ,τj J κ,τ J κ,τ,c J κ,τ,c∗ bY.(W,X′)′

κ→∞ and τ = (1, 1, 1)′

ρ 0.527 [0.315 , 1] [0.441 , 1] [0.441 , 0.604] 0.604
δ1 0.700 [0.369 , 1.171] [0.369 , 0.835] [0.610 , 0.835] 0.610 0.369
β11 1 [0.551 , 1.316] [0.871 , 1.316] [0.871 , 1.086] 1.086 1.316
β12 0.700 [0.543 , 0.811] [0.655 , 0.811] [0.655 , 0.730] 0.730 0.811
ρ 0.527 [0.342 , 1] [0.441 , 1] [0.441 , 0.604] 0.604
δ2 1.050 [0.553 , 1.618] [0.553 , 1.253] [0.915 , 1.253] 0.915 0.553
β21 0.850 [0.308 , 1.324] [0.656 , 1.324] [0.656 , 0.979] 0.979 1.324
β22 0.950 [0.761 , 1.116] [0.882 , 1.116] [0.882 , 0.995] 0.995 1.116
ρ 0.527 [0.269 , 1] [0.441 , 1] [0.441 , 0.604] 0.604
δ3 0.840 [0.442 , 1.643] [0.442 , 1.003] [0.732 , 1.003] 0.732 0.442
β31 1.100 [0.334 , 1.479] [0.945 , 1.479] [0.945 , 1.203] 1.203 1.479
β32 1.200 [0.932 , 1.333] [1.146 , 1.333] [1.146 , 1.236] 1.236 1.333

κ = 1 and τ = (0.7, 0.7, 0.7)′

ρ 0.527 [0.500 , 1] [0.500 , 1] [0.500 , 0.604] 0.604
δ1 0.700 [0.369 , 0.737] [0.369 , 0.737] [0.610 , 0.737] 0.610 0.369
β11 1 [0.965 , 1.316] [0.965 , 1.316] [0.965 , 1.086] 1.086 1.316
β12 0.700 [0.688 , 0.811] [0.688 , 0.811] [0.688 , 0.730] 0.730 0.811
ρ 0.527 [0.500 , 1] [0.500 , 1] [0.500 , 0.604] 0.604
δ2 1.050 [0.553 , 1.106] [0.553 , 1.106] [0.915 , 1.106] 0.915 0.553
β21 0.850 [0.797 , 1.324] [0.797 , 1.324] [0.797 , 0.979] 0.979 1.324
β22 0.950 [0.931 , 1.116] [0.931 , 1.116] [0.931 , 0.995] 0.995 1.116
ρ 0.527 [0.500 , 1] [0.500 , 1] [0.500 , 0.604] 0.604
δ3 0.840 [0.442 , 0.884] [0.442 , 0.884] [0.732 , 0.884] 0.732 0.442
β31 1.100 [1.058 , 1.479] [1.058 , 1.479] [1.058 , 1.203] 1.203 1.479
β32 1.200 [1.185 , 1.333] [1.185 , 1.333] [1.185 , 1.236] 1.236 1.333

This table reports population identification regions and point estimands.
σ2
ε

σ2
Ũ

= 0.89 and R2
W̃ .Ỹ

= 0.44. c

correctly sets (c12, c12) = (c23, c23) = (−1, 0) and (c13, c13) = (0, 1) whereas c∗ incorrectly sets

(c∗12, c
∗
12) = (0, 0) and (c∗13, c

∗
13) = (c∗23, c

∗
23) = (−1, 1).
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Table 2: Summary statistics based on 161,959 firm-year observations in an unbalanced
panel from year 1970 to 2017, with an average of 3,375 firms per year. In each year,
investment, saving, debt, cash flow, and asset tangibility are normalized by the firm’s total
assets, Tobin’s q is the market-to-book ratio, and firm size is the log of the firm’s sales.

Investment Saving Debt Tobin’s Q Cash Flow Firm Size Tangibility
mean 0.084 0.009 0.261 1.633 0.071 5.327 0.354

std dev 0.098 0.106 0.214 1.147 0.137 1.949 0.236
min 0.002 -0.298 0.000 0.526 -0.536 0.391 0.022
max 0.593 0.541 1.016 7.364 0.390 10.216 0.925
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Table 3: Bounds for the Investment, Saving, and Debt Equations for Year 1993. κ = ∞
(κ∗ = R2

W.X = 2.71%) and τ = (1, 1, 1)′.

Sκ,τj J κ,τ J κ,τ,c J κ,τ,c∗ bY.(W,X′)′

ρ [0.037 , 1] [0.076 , 1] [0.069 , 1] - -
(0.019 , 1) (0.055 , 1) (0.051 , 1) (0.050 , 0.244) -

δ1 [0.016 , 1.136] [0.016 , 0.360] [0.016 , 0.409] [0.055 , 0.400] 0.018
(0.012 , 1.382) (0.012 , 0.438) (0.012 , 0.497) (0.041 , 0.486) (0.013 , 0.022)

β11 [-1.308 , 0.242] [-0.243 , 0.242] [-0.309 , 0.242] [-0.297 , 0.187] 0.228
(-1.800 , 0.278) (-0.397 , 0.278) (-0.484 , 0.278) (-0.467 , 0.229) (0.190 , 0.266)

β12 [-0.010 , 0.052] [-0.010 , 0.009] [-0.010 , 0.012] [-0.008 , 0.012] -0.009
(-0.012 , 0.073) (-0.012 , 0.016) (-0.012 , 0.020) (-0.010 , 0.019) (-0.011 , -0.007)

ρ [0.009 , 1] [0.076 , 1] [0.069 , 1] - -
(0.000 , 1) (0.055 , 1) (0.051 , 1) (0.050 , 0.244) -

δ2 [0.007 , ∞] [0.007 , 0.213] [0.007 , 0.242] [0.025 , 0.237] 0.009
(0.002 , ∞) (0.002 , 0.309) (0.002 , 0.351) (0.008 , 0.343) (0.004 , 0.015)

β21 [-∞ , 0.181] [-0.115 , 0.181] [-0.154 , 0.181] [-0.146 , 0.154] 0.165
(-∞ , 0.223) (-0.270 , 0.223) (-0.328 , 0.223) (-0.317 , 0.203) (0.120 , 0.209)

β22 [-0.003 , ∞] [-0.003 , 0.009] [-0.003 , 0.010] [-0.002 , 0.010] -0.002
(-0.004 , ∞) (-0.004 , 0.014) (-0.004 , 0.016) (-0.003 , 0.016) (-0.004 , -0.000)

ρ [0.035 , 1] [0.076 , 1] [0.069 , 1] - -
(0.024 , 1) (0.055 , 1) (0.051 , 1) (0.050 , 0.244) -

δ3 [-1.641 , -0.033] [-0.697 , -0.033] [-0.791 , -0.033] [-0.773 , -0.115] -0.035
(-1.873 , -0.028) (-0.796 , -0.028) (-0.903 , -0.028) (-0.883 , -0.097) (-0.041 , -0.030)

β31 [-0.311 , 1.994] [-0.311 , 0.654] [-0.311 , 0.787] [-0.202 , 0.762] -0.287
(-0.372 , 2.728) (-0.372 , 0.961) (-0.372 , 1.136) (-0.276 , 1.103) (-0.352 , -0.221)

β32 [-0.078 , 0.012] [-0.026 , 0.012] [-0.031 , 0.012] [-0.030 , 0.008] 0.011
(-0.107 , 0.016) (-0.038 , 0.016) (-0.045 , 0.016) (-0.044 , 0.012) (0.008 , 0.015)

The sample size is 3,454 observations. Y1, Y2, and Y3 denote Investment, Saving, and Debt respectively

and X = [Cash Flow,Firm Size]. c sets (c12, c12) = (c23, c23) = (−1, 0) and (c13, c13) = (0, 1) whereas

c∗ = 0. 50% and 95% confidence regions are in brackets and parentheses respectively.
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Table 4: Bounds for the Investment, Saving, and Debt Equations for Year 1993. κ = 1.1658
(κ̂∗ = 50%) and τ = (0.8857, 0.8955, 0.8978)′ (τ̂ ∗ = (0.9, 0.9, 0.9)′).

Sκ,τj J κ,τ J κ,τ,c J κ,τ,c∗ bY.(W,X′)′

ρ [0.486 , 1] [0.486 , 1] [0.486 , 1] - -
(0.486 , 1) (0.486 , 1) (0.486 , 1) - -

δ1 [0.016 , 0.040] [0.016 , 0.040] [0.016 , 0.040] - 0.018
(0.012 , 0.049) (0.012 , 0.049) (0.012 , 0.049) - (0.013 , 0.022)

β11 [0.188 , 0.242] [0.188 , 0.242] [0.188 , 0.242] - 0.228
(0.151 , 0.278) (0.151 , 0.278) (0.151 , 0.278) - (0.190 , 0.266)

β12 [-0.010 , -0.008] [-0.010 , -0.008] [-0.010 , -0.008] - -0.009
(-0.012 , -0.006) (-0.012 , -0.006) (-0.012 , -0.006) - (-0.011 , -0.007)

ρ [0.486 , 1] [0.486 , 1] [0.486 , 1] - -
(0.486 , 1) (0.486 , 1) (0.486 , 1) - -

δ2 [0.007 , 0.024] [0.007 , 0.024] [0.007 , 0.024] - 0.009
(0.002 , 0.034) (0.002 , 0.034) (0.002 , 0.034) - (0.004 , 0.015)

β21 [0.134 , 0.181] [0.134 , 0.181] [0.134 , 0.181] - 0.165
(0.090 , 0.223) (0.090 , 0.223) (0.090 , 0.223) - (0.120 , 0.209)

β22 [-0.003 , -0.001] [-0.003 , -0.001] [-0.003 , -0.001] - -0.002
(-0.004 , 0.001) (-0.004 , 0.001) (-0.004 , 0.001) - (-0.004 , -0.000)

ρ [0.486 , 1] [0.486 , 1] [0.486 , 1] - -
(0.486 , 1) (0.486 , 1) (0.486 , 1) - -

δ3 [-0.077 , -0.033] [-0.077 , -0.033] [-0.077 , -0.033] - -0.035
(-0.088 , -0.028) (-0.088 , -0.028) (-0.088 , -0.028) - (-0.041 , -0.030)

β31 [-0.311 , -0.212] [-0.311 , -0.212] [-0.311 , -0.212] - -0.287
(-0.372 , -0.148) (-0.372 , -0.148) (-0.372 , -0.148) - (-0.352 , -0.221)

β32 [0.008 , 0.012] [0.008 , 0.012] [0.008 , 0.012] - 0.011
(0.005 , 0.016) (0.005 , 0.016) (0.005 , 0.016) - (0.008 , 0.015)

The sample size is 3,454 observations. Y1, Y2, and Y3 denote Investment, Saving, and Debt respectively

and X = [Cash Flow,Firm Size]. c sets (c12, c12) = (c23, c23) = (−1, 0) and (c13, c13) = (0, 1) whereas

c∗ = 0. 50% and 95% confidence regions are in brackets and parentheses respectively.
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Figure 2: 50% (dark) and 95% (light) confidence regions for the partially identified coef-
ficients βj1 on cash flow for j = 1, 2, 3 (investment, saving, and debt) for year 1993. We
set τ = (1, 1, 1)′ and consider the regions Sκj , J κ, and J κ,c when κ ∈ [0,∞) and c sets
(c12, c12) = (c23, c23) = (−1, 0) and (c13, c13) = (0, 1). The vertical dashed line indicates
the smallest κ (largest κ∗) value such that the 95% confidence region contains zero. This
corresponds to 6.018 (0.1658), 5.662 (0.1732), and 3.552 (0.2409) for j = 1, 2, 3 respectively.
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Table 5: Joint test for the possible signs of the components of (β11, β21, β31) under A1-A4

at the 5% level for year 1993. κ∗ is the largest κ∗ such that H0 is not rejected. κ is the
smallest κ such that H0 is not rejected.

β11 − − − − + + + +
H0 β21 − − + + − − + +

β31 + − + − + − + −
κ∗ 0.157 0.157 0.177 0.177 0.197 0.197 0.257 1
κ 6.483 6.483 5.486 5.486 4.723 4.723 3.230 0
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Figure 3: 50% (dark) and 95% (light) confidence regions for βj1 (cash flow) for j = 1, 2, 3
(investment, saving, and debt) from year 1970 to 2017. We consider the regions Bj1, Bc∗

j1 ,
and Bκ,τ,cj1 where c∗ = 0, κ and τ are such that κ̂∗ = 0.5 and τ̂ ∗ = (0.9, 0.9, 0.9)′, and c is
such that (c12, c12) = (c23, c23) = (−1, 0) and (c13, c13) = (0, 1). The shaded vertical bars
indicate years in which the maintained assumptions are rejected at the 96% level.
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Table 6: Bounds on the Cash Flow Coefficients in the Investment, Saving, and Debt Equa-
tions Using the Full Panel

Sκ,τj J κ,τ J κ,τ,c J κ,τ,c∗ bY.(W,X′)′

Results without fixed effects for κ =∞ and τ = (1, 1, 1)′

β11 [-0.242 , 0.197] [0.096 , 0.197] [0.193 , 0.197] - 0.196
(-0.258 , 0.198) (0.092 , 0.198) (0.192 , 0.198) - (0.187 , 0.205)

β21 [-0.279 , 0.124] [-0.010 , 0.124] [0.120 , 0.124] - 0.124
(-0.296 , 0.126) (-0.016 , 0.126) (0.119 , 0.126) - (0.116 , 0.131)

β31 [-0.352 , 0.453] [-0.352 , -0.087] [-0.352 , -0.345] - -0.351
(-0.355 , 0.485) (-0.355 , -0.076) (-0.355 , -0.341) - (-0.369 , -0.332)

Results without fixed effects for κ∗ = 0.5 and τ ∗ = (0.9, 0.9, 0.9)′

β11 [0.189 , 0.197] [0.189 , 0.197] [0.193 , 0.197] - 0.196
(0.187 , 0.198) (0.187 , 0.198) (0.192 , 0.198) - (0.187 , 0.205)

β21 [0.115 , 0.124] [0.115 , 0.124] [0.120 , 0.124] - 0.124
(0.113 , 0.126) (0.113 , 0.126) (0.119 , 0.126) - (0.116 , 0.131)

β31 [-0.352 , -0.333] [-0.352 , -0.333] [-0.352 , -0.345] - -0.351
(-0.355 , -0.330) (-0.355 , -0.330) (-0.355 , -0.341) - (-0.369 , -0.332)

Results with year and firm fixed effects for κ =∞ and τ = (1, 1, 1)′

β11 [-0.627 , 0.130] [-0.493 , 0.130] [0.017 , 0.130] - 0.129
(-0.632 , 0.131) (-0.497 , 0.131) (0.016 , 0.131) - (0.122 , 0.137)

β21 [-2.504 , 0.172] [-0.248 , 0.172] [0.096 , 0.172] - 0.172
(-2.542 , 0.173) (-0.255 , 0.173) (0.094 , 0.173) - (0.161 , 0.182)

β31 [-0.367 , 17.982] [-0.367 , -0.270] [-0.367 , -0.349] - -0.366
(-0.368 , 18.855) (-0.368 , -0.265) (-0.368 , -0.347) - (-0.381 , -0.351)

Results with year and firm fixed effects for κ∗ = 0.5 and τ ∗ = (0.9, 0.9, 0.9)′

β11 [0.084 , 0.130] [0.084 , 0.130] [0.084 , 0.130] 0.129
[0.083 , 0.131] [0.083 , 0.131] [0.083 , 0.131] - (0.122 , 0.137)

β21 [0.141 , 0.172] [0.141 , 0.172] [0.141 , 0.172] - 0.172
(0.139 , 0.173) (0.139 , 0.173) (0.139 , 0.173) - (0.161 , 0.182)

β31 [-0.367 , -0.359] [-0.367 , -0.359] [-0.367 , -0.359] - -0.366
(-0.368 , -0.357) (-0.368 , -0.357) (-0.368 , -0.357) - (-0.381 , -0.351)

The sample is an unbalanced panel of 161,959 firm-year observations. Y1, Y2, and Y3 denote Investment,

Saving, and Debt respectively and X = [Cash Flow,Firm Size]. When year fixed effects are included, X

also includes year indicator variables. When firm fixed effects are included, the equations’ variables

undergo a within transformation. c sets (c12, c12) = (c23, c23) = (−1, 0) and (c13, c13) = (0, 1) whereas

c∗ = 0. Robust standard errors for π are clustered by firm. 50% and 95% confidence regions are in

brackets and parentheses respectively.
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Tobin’s q and Corporate Investment, Saving, and Debt”

Karim Chalak1 Daniel Kim

University of Virginia University of Pennsylvania

A Restricting the Correlations among the Disturbances

We extend A6 to A′6 which restricts the sign and/or magnitude of the correlation rηj ,ηh

between ηj and ηh.

Assumption A′
6 Disturbance Correlation Restriction: cjh ≤ rηj ,ηh ≤ cjh where −1 ≤

cjh ≤ cjh ≤ 1.

In particular, provided σ2
Ỹj
σ2
Ỹh
6= 0, from the proof of Corollary A.1 we have that

rηj ,ηh =
ρrỸj ,Ỹh − rW̃ ,Ỹj

rW̃ ,Ỹh

(ρ−R2
W̃ .Ỹj

)
1
2 (ρ−R2

W̃ .Ỹh
)
1
2

.

A′6 may restrict the sign of rηj ,ηh as encoded by the sign of the function

Sjh(r) ≡ r × rỸj ,Ỹh − rW̃ ,Ỹj
rW̃ ,Ỹh

.

Further, A′6 may restrict the magnitude of rηj ,ηh (either r2
ηj ,ηh
≤ c2 or c2 ≤ r2

ηj ,ηh
) as encoded

by the sign of the function

Mjh(r; c) ≡ (r × rỸj ,Ỹh − rW̃ ,Ỹj
rW̃ ,Ỹh

)2 − c2(r −R2
W̃ .Ỹj

)(r −R2
W̃ .Ỹh

).

As shown in the proof of Corollary A.1, when R2
Ỹj .Ỹh

6= 1, the discriminant of the quadratic

function Mjh(·; c) is given by

∆jh(c) ≡ c2[R4
W̃ .(Ỹj .Ỹh)′

(1−R2
Ỹj .Ỹh

)2 − (1− c2)(R2
W̃ .Ỹj
−R2

W̃ .Ỹh
)2],

1Karim Chalak (corresponding author), Department of Economics, University of Virginia,
chalak@virginia.edu. Daniel Kim, The Wharton School, University of Pennsylvania, kim-
danie@wharton.upenn.edu.
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and, when R2
Ỹj .Ỹh

6= c2, the roots of Mjh(·; c) are given by

ρ−jh(c) ≡
Fjh(c)−∆jh(c)

1
2

2(R2
Ỹj .Ỹh

− c2)
and ρ+

jh(c) ≡
Fjh(c) + ∆jh(c)

1
2

2(R2
Ỹj .Ỹh

− c2)

where

Fjh(c) ≡ −R2
W̃ .(Ỹj ,Ỹh)′

(1−R2
Ỹj .Ỹh

) + (1− c2)(R2
W̃ .Ỹj

+R2
W̃ .Ỹh

).

Corollary A.1 uses Sjh(r) and Mjh(r) to encode the sign and magnitudes restrictions in A′6

and to express the identification region for (ρ, δ, β,Γ) under A1-A′6.

Corollary A.1 Under the conditions of Theorem 3.1, A4, A5, and A
′
6 for j, h = 1, ..., p

with j < h, (ρ, δ, β,Γ) is partially identified in the sharp set

J k,τ,c ≡ {(r,D(r), B(r), G(r)) : 0 � G(r),
1

1 + κ
≤ r ≤ 1,

σ2
Ỹj

σ2
W̃j

(1− τj) ≤ Gjj(r),

and cjh ≤
Gjh(r)

[Gjj(r)Ghh(r)]
1
2

≤ cjh for j, h = 1, ..., p and j < h}.

Further, ρ is partially identified in the sharp set

Rk,τ,c = [R2
W̃ .Ỹ

, 1] ∩ [
1

1 + κ
, 1] ∩pj=1 [

1

τj
R2
W̃ .Ỹj

, 1]

p⋂
j,h=1
j<h

Rc
jh,

with

Rc
jh =


r :

Sjh(r) ≤ 0 and Mjh(r; cjh) ≤ 0 ≤Mjh(r; c̄jh) if cjh ≤ c̄jh ≤ 0 and σ2
Ỹj
σ2
Ỹh
6= 0

{Sjh(r) ≤ 0 and Mjh(r; cjh) ≤ 0} or
{0 ≤ Sjh(r) and Mjh(r; c̄jh) ≤ 0} if cjh < 0 < c̄jh and σ2

Ỹj
σ2
Ỹh
6= 0

0 ≤ Sjh(r) and Mjh(r; c̄jh) ≤ 0 ≤Mjh(r; cjh) if 0 ≤ cjh ≤ c̄jh and σ2
Ỹj
σ2
Ỹh
6= 0

r ∈ ∅ if 0 /∈ [cjh, c̄jh] and σ2
Ỹj
σ2
Ỹh

= 0.

−∞ < r <∞ if 0 ∈ [cjh, c̄jh] and σ2
Ỹj
σ2
Ỹh

= 0.


,

where, provided σ2
Ỹj
σ2
Ỹh
6= 0, we have

0 ≤ Sjh(r)⇔


rW̃ ,Ỹj

rW̃ ,Ỹh

rỸj ,Ỹh
≤ r when 0 < rỸj ,Ỹh

rW̃ ,Ỹj
rW̃ ,Ỹh

≤ 0 when rỸj ,Ỹh = 0

r ≤
rW̃ ,Ỹj

rW̃ ,Ỹh

rỸj ,Ỹh
when rỸj ,Ỹh < 0

,
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and if R2
Ỹj .Ỹh

= 1 then 0 ≤Mjh(r; c) = (1− c2)(r −R2
W̃ .Ỹj

)2 whereas if R2
Ỹj .Ỹh

6= 1 then

0 ≤Mjh(r; c)⇔

−∞ < r <∞ when 0 < c2 < 1−
R4
W̃ .(Ỹj .Ỹh)

′ (1−R2
Ỹj .Ỹh

)2

(R2
W̃ .Ỹj

−R2
W̃ .Ỹh

)2

r ∈ (−∞, ρ−jh(c)] ∪ [ρ+
jh(c),∞) when c2 = 0 < R2

Ỹj .Ỹh
or 1−

R4
W̃ .(Ỹj .Ỹh)

′ (1−R2
Ỹj .Ỹh

)2

(R2
W̃ .Ỹj

−R2
W̃ .Ỹh

)2
≤ c2 < R2

Ỹj .Ỹh

r ≤
−R2

W̃ .Ỹj
R2
W̃ .Ỹh

R2
W̃ .(Ỹj ,Ỹh)

′−(R2
W̃ .Ỹj

+R2
W̃ .Ỹh

)
when c2 = R2

Ỹj .Ỹh
and R2

W̃ .(Ỹj ,Ỹh)′
< R2

W̃ .Ỹj
+R2

W̃ .Ỹh

0 ≤ (1−R2
Ỹj .Ỹh

)R2
W̃ .Ỹj

R2
W̃ .Ỹh

when c2 = R2
Ỹj .Ỹh

and R2
W̃ .(Ỹj ,Ỹh)′

= R2
W̃ .Ỹj

+R2
W̃ .Ỹh

−R2
W̃ .Ỹj

R2
W̃ .Ỹh

R2
W̃ .(Ỹj ,Ỹh)

′−(R2
W̃ .Ỹj

+R2
W̃ .Ỹh

)
≤ r when c2 = R2

Ỹj .Ỹh
and R2

W̃ .Ỹj
+R2

W̃ .Ỹh
< R2

W̃ .(Ỹj ,Ỹh)′

r ∈ [ρ+
jh(c), ρ

−
jh(c)] when R2

Ỹj .Ỹh
< c2

Last, δ, β, and Γ are partially identified in the sharp sets Dk,τ,c = {D(r) : r ∈ Rk,τ,c},

Bk,τ,c = {B(r) : r ∈ Rk,τ,c}, and Gk,τ,c = {G(r) : r ∈ Rk,τ,c}.

The bounds in Corollary A.1 yield those from Corollary 3.2 when (cjh, cjh) is set to

(−1, 0), (0, 1), (0, 0), or (−1, 1). In particular, when R2
Ỹj .Ỹh

6= 0, the proof of Corollary A.1

gives

ρ−jh(0) = ρ+
jh(0) =

rW̃ ,Ỹj
rW̃ ,Ỹh

rỸj ,Ỹh
=
σW̃ ,Ỹj

σW̃ ,Ỹh

σ2
W̃
σỸj ,Ỹh

,

so that 0 ≤Mjh(ρ; 0)⇔ ρ ∈ (−∞,∞) and Mjh(ρ; 0) ≤ 0⇔ ρ =
σW̃ ,Ỹj

σW̃ ,Ỹh

σ2
W̃
σỸj ,Ỹh

. Also,

ρ−jh(−1) = ρ−jh(1) = R2
W̃ .(Ỹj ,Ỹh)′

and ρ+
jh(−1) = ρ+

jh(1) = 0.

Thus, when R2
Ỹj .Ỹh

< 1, Mjh(ρ; 1) = Mjh(ρ;−1) ≤ 0 ⇔ ρ ∈ (−∞, 0] ∪ [R2
W̃ .(Ỹj ,Ỹh)′

,∞).

Since R2
W̃ .(Ỹj ,Ỹh)′

≤ R2
W̃ .Ỹ

, this magnitude restriction is not binding in Rk,τ,c. It follows that

Corollary A.1 yields the same bound Rk,τ,c from Corollary 3.2, with Rc
jh determined by

the magnitude restriction encoded in Mjh(ρ; 0) ≤ 0 when cjh = c̄jh = 0 and by the sign

restrictions, if any, encoded in Sjh(r) otherwise.

3



B Supplementary Material on Inference

B.1 Algorithm for Inference on ρ

In order to apply only one algorithm that delivers ρ̂lo(λ; 1 − α21), ρ̂uo(λ; 1 − α21), and

CIρ1−α21
(λ), it is useful to adopt the following notation. For r ∈ [0, 1], we let

gl(π; r, λ) = (gl1(π; r, λ), ..., glM(π; r, λ)) where glv(π; r, λ) ≡ r − ρlv(λ) for v = 1, ...,M , and

gu(π; r, λ) = (gu1 (π; r, λ), ..., guM(π; r, λ)) where guv (π; r, λ) ≡ ρuv(λ)− r for v = 1, ...,M.

Thus, ρlv(λ) = −glv(π; 0, λ) and2 ρuv(λ) = gu(π; 0, λ). Further, we collect all the lower and

upper bounds, denoted by gcv(π; r, λ) for v = 1, ..., 2M , into

gc(π; r, λ) = (gl(π; r, λ)′, gu(π; r, λ)′)′.

We estimate gc(π; r, λ) using the consistent plug-in estimator gc(π̂; r, λ). Using the delta

method, the linearly independent subset gc∗(π̂; r, λ) of gc(π̂; r, λ) (recall that some of bounds

in gc(π; r, λ) are constant or linearly dependent, e.g. in the single equation case or under

the diagonal restrictions in A6) is asymptotically normally distributed:

√
n(gc∗(π̂; r, λ)− gc∗(π; r, λ))

d→N(0,∇πg
c
∗(π; r, λ)Σ∇πg

c
∗(π; r, λ)′).

Note that ∇πg
c(π; r, λ) does not depend on r. Section B.2 collects the expressions for

gc(π; r, λ), and ∇πg
c(π; r, λ).

Next, for each ` ∈ Λ1−α22 , we implement algorithm 1 in Chernozhukov, Lee, and Rosen

(2013). To compute, CIρ1−α21
(`), we invert a test statistic and perform a grid search over

(0, 1]. For a thorough discussion of the algorithm3, we refer the reader to Chernozhukov,

Lee, and Rosen (2013) and Chernozhukov, Kim, Lee, and Rosen (2015).

1. Let α ≤ 1
2

and Vc ≡ V l ∪ Vu ≡ {1, ...,M} ∪ {M + 1, ..., 2M}.

If the target output is:

2We employ gl(π; 0, λ) to transform the lower bounds for ρ into upper bounds for −ρ. We then use a
single algorithm (for an upper bound) when estimating the lower and upper bounds for ρ.

3We adjust the algorithm in Chernozhukov, Lee, and Rosen (2013) slightly since some of our bounds are
deterministic (e.g ρ ≤ 1). Specifically, we use the estimated bounds to calculate the critical value. Then we
report the smallest upper bound among the precision-corrected estimators and the deterministic bounds.

4



(a) ρ̂lo(`; 1− α) or ρ̂uo(`; 1− α) then set m = l or u and r = 0.

(b) CIρ1−α(`) then set m = c and r ∈ (0, 1].

2. Set γ̃ = 1− 0.1
logn

. Simulate S draws Z1, .., ZS from N(0, I2M).

3. For each v ∈ Vc, compute4 ĥ(v; `) = [1(v = 1), ...,1(v = 2M)][∇πg
c(π̂; r, `)Σ̂∇πg

c(π̂; r, `)′]
1
2

and set se(v; `) = 1√
n

∥∥∥ĥ(v; `)
∥∥∥.

4. Define Vm+ = {v ∈ Vm : se(v; `) 6= 0}. Compute

cVm(γ̃; `) = γ̃-quantile of { sup
v∈Vm+

ĥ(v; `)Zs∥∥∥ĥ(v; `)
∥∥∥ , s = 1, ..., S}

and

V̂m = {v ∈ Vm+ : gmv (π̂; 0, `) ≤ min
v∈Vm+

[gmv (π̂; 0, `)+cVm(γ̃; `)se(v; `)]+2cVm(γ̃; `)se(v; `)}.

5. Compute

cV̂m(`) = (1− α)-quantile of { sup
v∈V̂m

ĥ(v; `)Zs∥∥∥ĥ(v; `)
∥∥∥ , s = 1, ..., S}.

6. Compute

gmo (π̂; r, `) = inf
v∈Vm

[gmv (π̂; r, `)) + cV̂m(`)se(v; `)]

If m = l or u then report

ρ̂lo(`; 1− α) = −glo(π̂; 0, `) or ρ̂uo(`; 1− α) = guo (π̂; 0, `)

Otherwise, if m = c then report

CIρ1−α(`) = {r ∈ (0, 1] : gco(π̂; r, `) ≥ 0}.

In the single equation bounds or when A6 does not bind, the value ` of the nuisance

parameters does not affect the bounds. Otherwise, let t = 1, ..., T enumerate the T ≡
1
2
p(p−1) (jt, ht) pairs, jt, ht = 1, ..., p with jt < ht, that correspond to the first T components

4∇πgc(π̂; r, `)Σ̂∇πgc(π̂; r, `)′ may be positive semi-definite and its matrix square root is computed using
a singular value decomposition.
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of λ. From Corollary 3.2, we have that if ` is such that (cjtht , cjtht) 6= (−1, 1), −sgn(`T+t) /∈

[cjtht , cjtht ], and `t = 0 then Rc
jtht

(`) = ∅. As such, we drop from Λ1−α22 the elements that

satisfy these conditions since these have no effect on CRρ
1−α2

=
⋃

`∈Λ1−α22

CIρ1−α21
(`). For the

remaining components ` of Λ1−α22 , CI
ρ
1−α21

(`) depends only on the signs (negative, zero, or

positive) of the elements of the first T components of `
2T×1

. To speed up the computation,

we remove from Λ1−α22 the components that are redundant, so that each admissible sign

configuration of the first T components of ` is represented only once in
⋃

`∈Λ1−α22

CIρ1−α21
(`).

B.2 Delta Method

Recall that the nuisance parameters λ ≡ gλ(π), the vector of lower and upper bounds

gcv(π; r, λ) in the intersection bounds algorithm for inference on ρ, and the parameters δj,

βjl, and Γjh, j, h = 1, ..., p and l = 1, ..., k, (written in the form θ ≡ H(π; ρ)) can all be

expressed as functions of the estimands

π′
1×B
≡ ( π′1

1×p(k+1)

, π′2
1×(p+k)

, π
′

3
1×p(1+k)

, π
′

4
1×pk

, π
′

5
1×k

, π
′

6
1×p
, π

′

7
1× 1

2
p(p−1)

)

= [vec(bY.(W,X′)′)
′, b′W.(Y,X′)′ , (b

′
W.(Y1,X′)′ , ..., b

′
W.(Yp,X′)′), vec(bY.X)′,

b′W.X , σ
−2

W̃
(σ2

Ỹ1
, ..., σ2

Ỹp
), σ−2

W̃
(σỸ1,Ỹ2 , ..., σ

2
Ỹp−1,Ỹp

)].

Since the plug-in estimator π̂ satisfies
√
n(π̂ − π)

d→N(0,Σ), the delta method gives

√
n(λ̂− λ)

d→N(0,∇πg
λ(π)Σ∇πg

λ(π)′),
√
n(gc∗(π̂; r, λ)− gc∗(π; r, λ))

d→N(0,∇πg
c
∗(π; r, λ)Σ∇πg

c
∗(π; r, λ)′), and

√
n(H(π̂; r)−H(π; r))

d→N(0,∇πH(π; r)Σ∇πH(π; r)′),

for any r ∈ (0, 1]. In what follows, we provide specific expressions for gλ, ∇πg
λ(π),

gc(π; r, λ), ∇πg
c(π; r, λ), H(π; r) and ∇πH(π; r).

B.2.1 Nuisance Parameters

The 2T = p(p− 1) nuisance parameters are collected in

λ = (λ1, · · · , λ2T )′ = gλ(π) ≡ (σ−2

W̃
σỸ1,Ỹ2 , ..., σ

−2

W̃
σ2
Ỹp−1,Ỹp

, bỸ1.W̃ bỸ2.W̃ , ..., bỸp−1.W̃
bỸp.W̃ )′.
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It follows that, for t = 1, ..., T , the components of ∇πg
λ(π)

p(p−1)×B
are given by

∇πg
λ
t (π)

1×B
=

[
0

1×[p(k+1)+(p+k)+p(1+k)+pk+k+p]
ı′t

1× 1
2
p(p−1)

]
where ıt

1
2
p(p−1)×1

is the unit vector with 1 in the tth position and 0 elsewhere, and for t =

T + 1, ..., 2T

∇πg
λ
t (π)

1×B
=

[
ı′jt
1×p
⊗
[
bỸht .W̃

0
1×k

]
+ ı′ht

1×p
⊗
[
bỸjt .W̃

0
1×k

]
0

1×[(p+k)+p(1+k)+pk+k+p+ 1
2
p(p−1)]

]
.

B.2.2 Lower and Upper Intersection bounds

Consider the joint equation bounds with λ = `∗ with (cjtht , cjtht) ∈ {(−1, 0), (0, 1)} and

sgn(`∗t ) ∈ [cjtht , cjtht ]\{0} for t = 1, ..., T . In this case, we have gc(π; r, λ) = (gl(π; r, λ)′, gu(π; r, λ)′)′

with

gl(π; r, `∗)
M×1

=



r −R2
W̃ .Ỹ

r − 1
1+κ

r − 1
τ1
R2
W̃ .Ỹ1

...
r − 1

τp
R2
W̃ .Ỹp

r −
bỸ1.W̃

bỸ2.W̃

σ−2

W̃
σỸ1,Ỹ2

...

r −
bỸp−1.W̃

bỸp.W̃

σ−2

W̃
σỸp−1,Ỹp


and gu(π; r, `∗)

M×1

=



1− r
1− r
1− r

...
1− r
∞
...
∞


where M ≡ 2 + p+ T (recall T ≡ 1

2
p(p− 1)) and

R2
W̃ .Ỹ

= bỸ .W̃ bW̃ .Ỹ =

p∑
h=1

bYh.(W,X′)′,1bW.(Y ′,X′)′,h and R2
W̃ .Ỹj

= bỸj .W̃ bW̃ .Ỹj
= bYj .(W,X′)′,1bW.(Yj ,X′)′,1.

In this case, the components of ∇πg
c(π; r, `∗)
2M×B

are given by

1. For v = 1

∇πg
c
1(π; r, `∗)
1×B

=

[ ∑p
h=1 ı

′
h

1×p
⊗
[
−bW.(Y ′,X′)′,h 0

1×k

] [
−bỸ .W̃

1×p
0

1×k

]
0
]

2. for v = 2,

∇πg
c
2(π; r, `∗)
1×B

= 0,
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3. for v = 2 + j and j = 1, ..., p

∇πg
c
v(π; r, `∗)
1×B

=

[
ı′j

1×p
⊗
[
− 1
τj
bW̃ .Ỹj

0
1×k

]
0

1×(p+k)
ı′j

1×p
⊗
[
− 1
τj
bỸj .W̃ 0

1×k

]
0
]

4. for v = 2 + p+ t and t = 1, ...., T ,

∇πg
c
v(π; r, `∗)
1×B

=

[
∇π1g

l
v(π; r, `∗)

1×p(k+1)

0 ∇π7g
l
v(π; r, `∗)

1× 1
2
p(p−1)

]
,

where

∇π1g
l
v(π; r, `∗)

1×p(k+1)

= ∇π1(r −
bỸjt .W̃

bỸht .W̃

σ−2

W̃
σỸjt ,Ỹht

)

= (σ−2

W̃
σỸjt ,Ỹht

)−1{ ı′jt
1×p
⊗
[
−bỸht .W̃ 0

1×k

]
+ ı′ht

1×p
⊗
[
−bỸjt .W̃ 0

1×k

]
}

and

∇π7g
l
v(π; r, `∗)

1× 1
2
p(p−1)

= ∇π7(r −
bỸjt .W̃

bỸht .W̃

σ−2

W̃
σỸjt ,Ỹht

) = ı′t
1×T
⊗

bỸjt .W̃
bỸht .W̃

(σ−2

W̃
σỸjt ,Ỹht

)2
,

5. for v = 2 + p+ T + 1, ..., 2(2 + p+ T )

∇πg
c
v(π; r, `∗)
1×B

= 0

Above, we set λ = `∗ where (cjtht , cjtht) ∈ {(−1, 0), (0, 1)} and sgn(`∗t ) ∈ [cjtht , cjtht ]\{0}

for t = 1, ..., T ≡ 1
2
p(p − 1). More generally, we consider any arbitrary ` ∈ Λ1−α22 and

define the matrix P
2M×2M

(M ≡ 2 + p+T ) to operationalize how the nuisance parameters λ

determines whether Rc
jh contains an upper or lower bound, if at all, according to Corollary

3.2. In particular, for λ = `, we let

gc(π; r, `)
2M×1

= Pgc(π; r, `∗)
2M×1

and ∇πg
c(π; r, `)

2M×B
= P∇πg

c(π; r, `∗)
2M×B

where we set the vth row Pv of P as follows, for t = 1, ..., 1
2
p(p− 1):

1. Set P = I
2M×2M

.

2. If (cjtht , cjtht) = (0, 0) and `t 6= 0 then change PM+(2+p+t) to −ı2+p+t.

3. If (cjtht , cjtht) ∈ {(−1, 0), (0, 1)} and sgn(`t) 6∈ [cjtht , cjtht ] then change (a) P2+p+t to

ıM+(2+p+t) and (b) PM+(2+p+t) to −ı2+p+t.
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4. If (cjtht , cjtht) ∈ {(−1, 0), (0, 1)} and sgn(`t) ∈ [cjtht , cjtht ]\{0} then keep (a) P2+p+t

as ı2+p+t and (b) PM+(2+p+t) as ıM+(2+p+t).

5. Otherwise, change P2+p+t to ıM+(2+p+t).

Moreover, for the jth single equation bounds, P mutes the irrelevant bounds as follows:

1. Change P1 to ıM+(2+p+1)

2. For h = 1, ..., p, if h 6= j then change P2+h to ıM+(2+p+h)

3. For t = 1, ..., 1
2
p(p− 1), change P2+p+t to ıM+(2+p+t).

B.2.3 δj, βjl, and Γjh

We have that δj is given by:

δj = Dj(π; r) ≡ 1

r
bỸj .W̃ for j = 1, ..., p,

where we let π enter explicitly in Dj. It follows that

∇πDj(π; r)
1×B

=

[
ı′j

1×p
⊗
[

1
r

0
1×k

]
0
]
.

Similarly, βjl is given by:

βjl = Bjl(π; r) ≡ bYj .X,l − bW.X,l
1

r
bỸj .W̃ for j = 1, ..., p and l = 1, ..., k

It follows that

∇πBjl(r)
1×B

=

[
ı′j

1×p
⊗
[
−1
r
bW.X,l 0

1×k

]
0

1×(p+k)
0

1×p(k+1)
ı′j

1×p
⊗ ı′l

1×k
− ı′l

1×k
⊗ 1

r
bỸj .W̃ 0

1×p
0

1× 1
2
p(p−1)

]
.

Last, Γjh is given by:

Γjh = Gjh(π; r) ≡ σ−2

W̃
σỸj ,Ỹh − bỸj .W̃

1

r
bỸh.W̃ for j ≤ h and j, h = 1, ..., p.

Letting ı′(j,h)

1× 1
2
p(p+1)

take the value 1 at the entry (j, h) corresponding to σ−2

W̃
σỸj ,Ỹh , we have

∇πGjh(π; r)
1×B

=

[
ı′j

1×p
⊗
[
−1
r
bỸh.W̃ 0

1×k

]
+ ı′h

1×p
⊗
[
−1
r
bỸj .W̃ 0

1×k

]
0 ı′(j,h)

1× 1
2
p(p+1)

]
.
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Joint Confidence Regions We sometimes construct a confidence region for the vector of

parameters β·l = (β1l, β2l, β3l)
′ associated with the variable Xl in the system of Y equations.

For a given (κ, τ, c) and α1, α21 and α22, we construct a 1− α2 confidence region CRρ
1−α2

for ρ. For each r ∈ CRρ
1−α2

, the delta method gives the asymptotic distribution of the

plug-in estimator B̂·1(π; r) for

B·1(π; r) = bY.X,l − bW.X,l
1

r
bỸ .W̃ .

Specifically, we have that

√
n(B·1(π̂; r)−B·1(π; r))

d→N(0,ΣB·1(r)) where ΣB·1(r) = ∇πB·1(π; r)Σ∇πB·1(π; r)′

and ∇πB·1(π; r)
p×B

stacks the expressions ∇πBjl(π; r)
1×B

for j = 1, ..., p derived above. We

construct a 1 − α1 confidence region CRB·1
1−α1

(r) for B·1(π; r), by inverting the following

Wald statistic which has an asymptotic χ2
p distribution:

CRB·1
1−α1

(r) = {b·1 ∈ B∗·1 :
√
n(B·1(π̂; r)− b·1)′Σ−1

B·1
(r)
√
n(B·1(π̂; r)− b·1) ≤ c1−α1}

where c1−α1 denotes the 1−α1 quantile of χ2
p and where we search over an initial neighbor-

hood B∗·1. For instance, we let B∗·1 be the cube that contains each of the p unidimensional

95% confidence regions:

B∗·1 = {(b11, ..., bp1) : Bj1(π̂; r)−3se(Bj1(π̂; r)) ≤ bj1 ≤ Bj1(π̂; r)+3se(Bj1(π̂; r)) for j = 1, ..., p}.

Last, we construct the confidence region CRβ·1
1−α1−α2

for β·1 by forming the union:

CRβ·1
1−α1−α2

=
⋃

r∈CRρ1−α2

CRB·1
1−α1

(r)

and use CRβ·1
1−α1−α2

to form decisions regarding a null hypothesis for (β11, ..., βp1).

C Extension of the Framework to Panel Data

Consider the unbalanced panel equations with firm fixed effects γi:

Yit
1×p

′ = γi
1×p

′ +X ′it
1×k

β
k×p

+ Uit
1×1

δ
1×p

+ ηit
1×p

′ and Wit
1×1

= Uit
1×1

+ εit
1×1

for i = 1, ..., n and t ∈ Si.
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We assume that the data is missing at random from certain time periods. Specifically, we let

T denote5 the total number of time periods in the panel and Si, for i = 1, ..., n, denote the

subset of T in which the data on firm i are observed, with Ti denoting the cardinality of Si.

When time fixed effects are included, Xit contains Ti− 1 indicator variables corresponding

to the years in Si. We let E(ηit) = µη and E(εit) = µε for i = 1, .., n and t ∈ Si and we

consider the case where n is large relative to T1, ..., Tn.

Letting Āi ≡ 1
Ti

∑
t∈Si

Ait and Äit ≡ Ait − Āi, the fixed effect γi drops out from the Ÿit

equation:

Ÿ ′it
1×p

= Ẍ ′it
1×k

β
k×p

+ Üit
1×1

δ
1×p

+ η̈′it
1×p

and Ẅit
1×1

= Üit
1×1

+ ε̈it
1×1
.

Letting Äi
Ti×k
≡ [Ä′i1, ..., Ä

′
iTi

]′, we obtain the panel analogue of assumption A1:

Ÿi
Ti×p

= Ẍi
Ti×k

β
k×p

+ Üi
Ti×1

δ
1×p

+ η̈i
Ti×p

and Ẅi
Ti×1

= Üi
Ti×1

+ ε̈i
Ti×1

for i = 1, ..., n.

Suppose that A2-A3 hold for this equation. Specifically, let

Cov[ηit, (Xis, Uis)] = 0 and Cov[εit, (Xis, Uis, ηis)] = 0 for i = 1, ..., n and t, s ∈ Si.

This imposes “strict exogeneity” across time periods, as is common when applying a within

transformation. Given that Äit ≡ Ait − 1
Ti

∑
t∈Si

Ait, we obtain

Cov[η̈it, (Ẍis, Üis)] = 0 and Cov[ε̈it, (Ẍis, Üis, η̈is)] = 0 for i = 1, ..., n and t, s ∈ Si.

Let the binary indicator Iit, i = 1, ..., n and t = 1, ..., T denote whether the observation

(Yit, Xit,Wit) is missing (at random). Let Ii
T×1

stack Iit for t = 1, ..., T . Let

σÄi,B̈i ≡ E( Ä′i
a×Ti

B̈i
Ti×b

) = E(
∑
t∈Si

Äit
a×1

B̈′it
1×b

) =
T∑
t=1

E(IitÄit
a×1

B̈′it
1×b

) =
T∑
t=1

E(Iit)E(Äit
a×1

B̈′it
1×b

).

In particular, we have σẌi,η̈i = 0 and σẌi,ε̈i = 0. Further, let

bÄi.B̈i ≡ σ−2

B̈i
σB̈i,Äi and ε′

Äit.B̈it
≡ Ä′it − B̈′itbÄi.B̈i .

Then, provided σ2
Ẍi

is nonsingular,

β = bŸi.Ẍi − bẄi.Ẍi
δ.

5The number of time periods T should not be confused with the dimension of the nuisance parameter
λ

2T×1
in Online Appendix B.
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Let Ãit ≡ εÄit.Ẍit and Ãi = [Ã′i1, ..., Ã
′
iTi

]′. By A1-A3, we obtain

Ỹi
Ti×p

= Ũi
Ti×1

δ
1×p

+ η̃i
Ti×p

and W̃i
Ti×1

= Ũi
Ti×1

+ ε̃i
Ti×1

.

In particular, we have

σ2
W̃i

= σ2
Ũi

+ σ2
ε̃i

, σW̃i,Ỹi
= σW̃i,Ũi

δ = σ2
Ũi
δ, and σ2

Ỹi
= δ′σ2

Ũi
δ + σ2

η̃i
.

Provided σ2
W̃i

is nonsingular, we have

bW̃i.Ỹi
= σ−2

W̃i
σW̃i,Ỹi

= ρδ and σ−2

W̃i
σ2
Ỹi

= δ′ρδ + σ−2

W̃i
σ2
η̃i
,

where

ρ = σ−2

W̃i
σ2
Ũi

= E(
∑
t∈Si

W̃itW̃
′
it)
−1E(

∑
t∈Si

ŨitŨ
′
it).

Given ρ 6= 0, we obtain the representation from Theorem 3.1 and we can apply the results

of the paper to the transformed variables. For inference, we use the robust standard

errors that are clustered at the firm level. For example, we estimate bÄi.B̈i and εÄi.B̈i
Ti×a

=

(ε′
Äi1.B̈i1

, ..., ε′
ÄiTi .B̈iTi

)′ using their plug in sample analogues

b̂Äi.B̈i ≡ (
1

n

n∑
i=1

B̈′i
b×Ti

B̈i
Ti×b

)−1(
1

n

n∑
i=1

B̈′i
b×Ti

Äi
Ti×a

) and ε̂′
Äit.B̈it
1×a

= Ä′it − B̈′itb̂Äi.B̈i

and estimate the asymptotic variance of
√
n(b̂Äi.B̈i − bÄi.B̈i) by

(
1

n

n∑
i=1

B̈′i
b×Ti

B̈i
Ti×b

)−1(
1

n

n∑
i=1

B̈′i
k×Ti

ε̂Äi.B̈i
Ti×p

ε̂′
Äi.B̈i
p×Ti

B̈′i
Ti×k

)(
1

n

n∑
i=1

B̈′i
b×Ti

B̈i
Ti×b

)−1

Note that the interpretation of A4-A6 applies to the stacked and within-transformed

variables. In particular, A4 assumes that

σ2
ε̃i

= E(
∑
t∈Si

ε̃2
it) =

T∑
t=1

E(Iit)E(ε̃2
it) ≤ κσ2

Ũi
= κE(

∑
t∈Si

Ũ2
it) = κ

T∑
t=1

E(Iit)E(Ũ2
it).

For this to hold, it suffices that E(ε̃2
it) ≤ κE(Ũ2

it) for t = 1, ..., T . A5 assumes that

R2
Ỹji.Ũi

= 1−
σ2
η̃ji

σ2
Ỹji

= 1−
E(
∑

t∈Si η̃
2
jit)

E(
∑

t∈Si Ỹ
2
jit)

= 1−
∑T

t=1 E(Iit)E(η̃2
jit)∑T

t=1E(Iit)E(Ỹ 2
jit)
≤ τj,

12



and it suffices for this that R2
Ỹjit.Ũit

= 1−
σ2
η̃jit

σ2
Ỹjit

≤ τj for t = 1, ..., T . And A6 assumes that

cjh ≤ rη̃ji,η̃hi =
E(
∑

t∈Si η̃jitη̃hit)

E(
∑

t∈Si η̃
2
jit)

1
2E(

∑
t∈Si η̃

2
hit)

1
2

=

∑T
t=1E(Iit)E(η̃jitη̃hit)

[
∑T

t=1E(Iit)E(η̃2
jit)]

1
2 [
∑T

t=1 E(Iit)E(η̃2
hit)]

1
2

≤ cjh,

which holds if one imposes the same sign restriction on Cov(η̃jit, η̃hit) for t = 1, ..., T.

The panel analysis without fixed effects proceeds similarly but omits the within trans-

formation (i.e. it sets γi = γ for i = 1, ..., n and Äit = Ait − 1
n

1
Ti

n∑
i=1

∑
t∈Si

Ait).

D Mathematical Proofs

Proof of Theorem 3.1: By A2-A3, Cov[(η′, ε)′, X] = 0. Since V ar(X) is nonsingular, A1

gives

β = bY.X − bW.Xδ.

A2-A3 also give σŨ ,ε = 0 and σŨ ,η = σε,η = 0. Using ε̃ = ε−E(ε) and η̃ = η−E(η) together

with Ỹ ′ = Ũδ + η̃′ and W̃ = Ũ + ε̃, we have

σ2
W̃

= σ2
Ũ

+ σ2
ε , σW̃ ,Ỹ = σW̃ ,Ũδ = σ2

Ũ
δ, and σ2

Ỹ
= δ′σ2

Ũ
δ + σ2

η.

Since V ar[(X ′, U)′] is nonsingular, σ2
Ũ
6= 0. Thus, σ2

W̃
6= 0 and

bỸ .W̃ ≡ σ−2

W̃
σW̃ ,Ỹ = ρδ and σ−2

W̃
σ2
Ỹ

= δ′ρδ + Γ.

Since ρ 6= 0, we obtain

δ = D(ρ) ≡ 1

ρ
bỸ .W̃

β = B(ρ) ≡ bY.X − bW.XD(ρ) = bY.X − bW.X
1

ρ
bỸ .W̃ , and

Γ = G(ρ) ≡ σ−2

W̃
σ2
Ỹ
−D(ρ)′ρD(ρ) = σ−2

W̃
σ2
Ỹ
− b′

Ỹ .W̃

1

ρ
bỸ .W̃ .

Lemma D.1 Under the conditions of Theorem 3.1, R2
Ỹj .W̃

≤ R2
Ỹj .Ũ

.
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Proof of Lemma D.1: If σ2
Ỹj

= 0, set R2
Ỹj .W̃

= R2
Ỹj .Ũ

= 0. If 0 < σ2
Ỹj

, we have

R2
Ỹj .W̃

=
σ2
W̃

σ2
Ỹj

b2
Ỹj .W̃

=
σ2
W̃

σ2
Ỹj

(δjρ)2 and

R2
Ỹj .Ũ

= 1−
σ2
ηj

σ2
Ỹj

=
1

σ2
Ỹj

(σ2
Ỹj
− σ2

ηj
) =

1

σ2
Ỹj

δ2
jσ

2
Ũ

=
σ2
W̃

σ2
Ỹj

δ2
jρ

It follows that

R2
Ỹj .Ũ
−R2

Ỹj .W̃
=
σ2
W̃

σ2
Ỹj

(δ2
jρ− δ2

jρ
2) =

σ2
W̃

σ2
Ỹ

ρ(1− ρ)δ2
j ≥ 0.

Proof of Corollary 3.2: The identification set J k,τ,c obtains from A1-A6 and the

(V ar[(Ỹ ′, W̃ )′]) moments given by (in)equalities (3,5,6,7), using the expressions in The-

orem 3.1. To show that J k,τ,c is sharp, let d = D(r), b = B(r), and g = G(r). We

show that for each (r, d, b, g) ∈ J k,τ,c there exist random variables (U∗, η∗, ε∗) such that

Y ′ = X ′b + U∗d + η∗ and W = U∗ + ε∗ that satisfy A2-A6. Specifically, (X,U∗, ε∗, η∗)

satisfy A2-A3, Cov[η∗, (X ′, U∗)′] = 0, Cov[ε∗, (η∗, X ′, U∗)′] = 0. Further,
σ2
Ũ∗
σ2
W̃

= r and thus

A4 holds, σ2
ε∗ ≤ κσ2

Ũ∗
. Last, G(r) = σ−2

W̃
σ2
η̃∗ and therefore A5 holds since, when σ2

Ỹj
6= 0,

1−
σ2
η∗j

σ2
Ỹj

=
σ2
W̃

σ2
Ỹj

(
σ2
Ỹj

σ2
W̃

−Gjj(r)) ≤
σ2
W̃

σ2
Ỹj

[
σ2
Ỹj

σ2
W̃

−
σ2
Ỹj

σ2
W̃

(1− τj)] = τj,

and A6 holds since cjh ≤ sgn(Gjh(r)) ≤ cjh.

To construct these variables we proceed similarly to Chalak and Kim (2018, proof of

corollary 3.2). In particular, we let V be any random variable such that Ṽ ≡ εV.X is

nondegenerate and satisfies

σW̃ .Ṽ =
√
rσṼ σW̃ and σỸ .Ṽ =

1√
r
σṼ σW̃

σỸ .W̃
σ2
W̃

.

Note that these covariance restrictions are coherent. Specifically,

V ar(Ṽ , W̃ , Ỹ ′) =

 σ2
Ṽ

√
rσṼ σW̃

σṼ σW̃√
r

σW̃ .Ỹ

σ2
W̃√

rσṼ σW̃ σ2
W̃

σW̃ .Ỹ
σṼ σW̃√

r

σỸ .W̃
σ2
W̃

σỸ ,W̃ σ2
Ỹ


is positive semi-definite because 0 < σ2

Ṽ
and its Schur complement

0 � σ2
(W̃ ,Ỹ ′)′

− σ(W̃ ,Ỹ ′)′,Ṽ σ
−2

Ṽ
σṼ ,(W̃ ,Ỹ ′)′ =

[
(1− r)σ2

W̃
0

0 σ2
W̃
G(r)

]
14



is positive semi-definite since it is block diagonal with 0 ≤ (1− r)σ2
W̃

and 0 � G(r).

For instance, to construct V , set σṼ to some value (e.g. σṼ = 1) and let ϑ be any

random variable that is uncorrelated with (X ′,W, Y )′ (e.g. a residual from a regression on

(X ′,W, Y ′)). When σ2
(W̃ ,Ỹ ′)′

is nonsingular, one can use the above restrictions on σW̃ .Ṽ and

σỸ .Ṽ to construct bṼ .(W̃ ,Ỹ ′)′ and the scalar

κ = { 1

σ2
ϑ

[σ2
Ṽ
− b′

Ṽ .(W̃ ,Ỹ ′)′
σ2

(W̃ ,Ỹ ′)
bṼ .(W̃ ,Ỹ ′)′ ]}

1
2

(κ is set such that the variance of the generated Ṽ is σ2
Ṽ

) in order to generate

Ṽ = (W̃ , Ỹ )bṼ .(W̃ ,Ỹ ′)′ + κϑ.

If σ2
(W̃ ,Ỹ )′

is singular, one can generate Ṽ by omitting the redundant Ỹ components from

the above regression construction. Last, V = X ′bV.X+ Ṽ +E[V −X ′bV.X ] obtains by setting

bV.X and E(V ) to some value (e.g. zero).

Then it suffices to construct U∗, ε∗, and η∗ as follows

W ≡ (X ′, V )bW.(X′,V )′ + {εW.(X′,V )′ + E[W − (X ′, V )bW.(X′,V )′} ≡ U∗ + ε∗,

and, if r 6= 1,

Y ≡ (X ′, V, ε∗)bY.(X′,V,ε∗)′+{εY.(X′,V,ε∗)′+E[Y−(X ′, V, ε∗)bY.(X′,V,ε∗)′ ]} ≡ (X ′, V, ε∗)bY.(X′,V,ε∗)′+η
∗

whereas if r = 1 then rW̃ ,Ṽ = 1 and εW.(X′,V )′ = εW̃ .Ṽ = 0 and

Y = (X ′, V )bY.(X′,V )′ + {εY.(X′,V )′ + E[Y − (X ′, V )bY.(X′,V )′ ]} ≡ (X ′, V )bY.(X′,V )′ + η∗.

In particular, (X,U∗, ε∗, η∗) satisfy A2-A3 since by construction Cov[η∗, (X ′, U∗)′] = 0 and

Cov[ε∗, (η∗, X ′, U∗)′] = 0. To verify that A1 holds, note that if r 6= 1,

Y = V bỸ .Ṽ +X ′(bY.X − bV.XbỸ .Ṽ ) + ε∗bY.ε∗ + {εY.(X′,V,ε∗)′ + E[Y − (X ′, V, ε∗)bY.(X′,V,ε∗)′ ]}

= V bW̃ .Ṽ d+X ′(bW.X − bV.XbW̃ .Ṽ )d+X ′(bY.X − bW.Xd) + ε∗bY.ε∗ + η∗

= (X ′, V )bW.(X′,V )′d+X ′b+ η∗

≡ U∗d+X ′b+ η∗
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where the first equality uses Cov[ε∗, (X ′, V )′] = 0 and partitioned regression, the second

equality makes use of

bỸ .Ṽ = σ−2

W̃
σỸ .Ṽ = σ−2

W̃

1√
r
σW̃σṼ

σỸ .W̃
σ2
W̃

= σ−2

W̃

1

r
σW̃ .Ṽ bỸ .W̃ = bW̃ .Ṽ d,

and the third equality uses partitioned regression, b = bY.X − bW.Xd, and

bY.ε∗ = bỸ .εW.(X′,V )′
=
σỸ ,εW.(X′,V )′

σ2
εW.(X′,V )′

=
1

σ2
εW̃ .Ṽ

Cov(Ỹ , W̃ − Ṽ bW̃ .Ṽ )

=
1

(1− r)σ2
W̃

[σỸ .W̃ −
( 1√

r
σW̃σṼ

σỸ .W̃
σ2
W̃

)
√
rσṼ σW̃

σ2
Ṽ

] = 0.

If r = 1, a similar calculation gives,

Y = (X ′, V )bY.(X′,V )′ + {εY.(X′,V )′ + E[Y − (X ′, V )bY.(X′,V )′ ]}

= (X ′, V )bW.(X′,V )′d+X ′b+ η∗ ≡ U∗d+X ′b+ η∗.

Last, to verify that A4-A6 hold, it suffices to verify that

σ2
Ũ∗

σ2
W̃

=
V ar(Ṽ bW̃ .Ṽ )

σ2
W̃

=
σ2
W̃ .Ṽ

σ2
Ṽ
σ2
W̃

= r, and

G(r) = σ−2

W̃
σ2
Ỹ
− b′

Ỹ .W̃

1

r
bỸ .W̃ = σ−2

W̃
(d′σ2

Ũ∗
d+ σ2

η̃∗)− b′Ỹ .W̃
1

r
bỸ .W̃ = σ−2

W̃
σ2
η̃∗ .

Next, we derive the identification region Rk,τ,c for ρ. First, we show that R2
W̃ .Ỹ
≤ ρ ≤ 1.

If σỸ ,W̃ = 0 then R2
W̃ .Ỹ

= 0 ≤ ρ ≤ 1. Suppose that σỸ ,W̃ 6= 0. Since 0 < ρ and 0 � Γ then

for any vector x
p×1

, we have

0 ≤ ρx′σ−2

W̃
σ2
Ỹ
x− x′b′

Ỹ .W̃
bỸ .W̃x.

Suppose that σ2
Ỹ

is positive definite so that 0 < σW̃ ,Ỹ σ
−2

Ỹ
σỸ ,W̃ (this is without loss of

generality since we can drop the redundant Ỹ components otherwise). In particular, for

x = σ−2

Ỹ
σỸ ,W̃ , we obtain

R2
W̃ .Ỹ

= σ−2

W̃
σW̃ ,Ỹ σ

−2

Ỹ
σỸ ,W̃ =

(σW̃ ,Ỹ σ
−2

Ỹ
)σỸ ,W̃σ

−2

W̃
σ−2

W̃
σW̃ ,Ỹ (σ−2

Ỹ
σỸ ,W̃ )

(σW̃ ,Ỹ σ
−2

Ỹ
)σ−2

W̃
σ2
Ỹ

(σ−2

Ỹ
σỸ ,W̃ )

≤ ρ ≤ 1.

Second, by A4, we have 1 − ρ = σ2
ε

σ2
W̃

≤ κ
σ2
Ũ

σ2
W̃

= κρ and thus ρ ∈ [ 1
1+κ

, 1]. Third, by A5,

we have that for j = 1, ..., p, R2
Ỹj .Ũ

= (1 −
σ2
ηj

σ2
Ỹj

) ≤ τj (recall that if σ2
Ỹj

= 0 then we set
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R2
Ỹj .Ũ

= R2
W̃ .Ỹj

= 0). Multiplying by
σ2
Ỹj

σ2
W̃

and substituting for Γjj we obtain

b′
Ỹj .W̃

1

ρ
bỸj .W̃ =

σ2
Ỹj

σ2
W̃

− (σ−2

W̃
σ2
Ỹj
− b′

Ỹj .W̃

1

ρ
bỸj .W̃ ) ≤ τj

σ2
Ỹj

σ2
W̃

and thus 1
τj
R2
W̃ .Ỹj

= 1
τj
b2
Ỹj .W̃

σ2
W̃

σ2
Ỹj

≤ ρ ≤ 1. Last, the set Rc
jh obtains since 0 < ρ and

Γjh = Gjh(ρ) = σ−2

W̃
σỸj ,Ỹh − bỸj .W̃

1
ρ
bỸh.W̃ so that

Gjh(ρ) ≤ 0 if and only if


bỸj .W̃

bỸh.W̃

σ−2

W̃
σỸj .Ỹh

≤ ρ when σ−2

W̃
σỸj .Ỹh < 0

0 ≤ bỸj .W̃ bỸh.W̃ when σ−2

W̃
σỸj .Ỹh = 0

ρ ≤
bỸj .W̃

bỸh.W̃

σ−2

W̃
σỸj .Ỹh

when 0 < σ−2

W̃
σỸj .Ỹh

.

Combining the results, we have ρ ∈ Rk,τ,c = [R2
W̃ .Ỹ

, 1] ∩ [ 1
1+κ

, 1] ∩pj=1 [ 1
τj
R2
W̃ .Ỹj

, 1]
p

∩
j,h=1
j<h

Rc
jh.

To show that Rk,τ,c is sharp, it suffices to show that every r ∈ Rk,τ,c corresponds to a

point (r, d, b, g) ∈ J k,τ,c. First, we show that 0 � G(r). If R2
W̃ .Ỹ

= 0 then G(r) = σ−2

W̃
σ2
Ỹ
�

0. Otherwise, note that

G(1) = σ−2

W̃
σ2
Ỹ
− b′

Ỹ .W̃
bỸ .W̃ = σ−2

W̃
[σ2
Ỹ
− σỸ ,W̃σ

−2

W̃
σW̃ ,Ỹ ] = σ−2

W̃
E(εỸ .W̃ ε

′
Ỹ .W̃

) � 0.

Further, when R2
W̃ .Ỹ
6= 0, 0 � G(R2

W̃ .Ỹ
). Specifically, 0 < σ4

W̃
R2
W̃ .Ỹ

and

σ4
W̃
R2
W̃ .Ỹ

G(R2
W̃ .Ỹ

) = (R2
W̃ .Ỹ

σ2
W̃

)σ2
Ỹ
− σỸ ,W̃σW̃ ,Ỹ = V ar(b′

W̃ .Ỹ
Ỹ )σ2

Ỹ
− σỸ ,W̃σW̃ ,Ỹ � 0

since and for any vector x
p×1

, applying the Cauchy–Schwarz inequality gives

x′V ar(b′
W̃ .Ỹ

Ỹ )σ2
Ỹ
x− x′σỸ ,W̃σW̃ ,Ỹ x

= V ar(b′
W̃ .Ỹ

Ỹ )V ar(x′Ỹ )− [Cov(x′Ỹ , W̃ )]2

= V ar(b′
W̃ .Ỹ

Ỹ )V ar(x′Ỹ )− [Cov(x′Ỹ , b′
W̃ .Ỹ

Ỹ )]2 ≥ 0

where we make use of W̃ ′ = Ỹ ′bW̃ .Ỹ +ε′
W̃ .Ỹ

and Cov(Ỹ , εW̃ .Ỹ ) = 0 in the last equality. Then

for any r ∈ Rk,τ,c ⊆ [R2
W̃ .Ỹ

, 1] there exists 0 ≤ λ ≤ 1 such that 1
r

= λ+ (1− λ) 1
R2
W̃ .Ỹ

and it

follows that

0 � G(r) = λG(1) + (1− λ)G(R2
W̃ .Ỹ

).
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Clearly, 1
1+κ
≤ r ≤ 1. Further, for j = 1, ..., p, if σ2

Ỹj
= 0 then we set 1

τj
R2
W̃ .Ỹj

= 0 ≤ r

whereas if σ2
Ỹj
6= 0 then 1

τj
b2
Ỹj .W̃

σ2
W̃

σ2
Ỹj

= 1
τj
R2
W̃ .Ỹj

≤ r implies that
σ2
Ỹj

σ2
W̃

(1− τj) ≤
σ2
Ỹj

σ2
W̃

− b2
Ỹj .W̃

1
r

=

Gjj(r). Last, from the expression for Gjh(r), we have that cjh ≤ sgn(Gjh(r)) ≤ cjh for

every r ∈ Rk,τ,c and j, h = 1, ..., p with j < h.

The sharp bounds Dk,τ , Bk,τ , and Gk,τ for δ, β, and Γ follow from the mappings D(·),

B(·), and G(·) in Theorem 3.1.

Proof of Theorem 5.1: First, for random column vectors A and B, we collect the

regression intercept and slope estimands as follows

A′ = [E(A)′ − E(B)′bA.B] +B′bA.B + ε′A.B ≡ (1, B′)b∗A.B + ε′A.B.

Given observations {Ai, Bi}ni=1, denote the linear regression intercept (b̂0
A.B) and slope (b̂A.B)

estimators and the sample residual (ε̂A.B,i) by:

b̃A.B = (b̂0
A.B, b̂

′
A.B)′ ≡ (

1

n

n∑
i=1

(1, B′i)
′(1, B′i))

−1(
1

n

n∑
i=1

(1, B′i)
′A′i) and ε̂′A.B,i ≡ A′i−(1, B′i)b̃A.B.

Further, we collect into π∗ the following estimands

π∗ ≡ [vec(b∗Y.(W,X′)′)
′, b∗′W.(Y,X′)′ , b

∗′
W.(Y1,X′)′ , ..., b

∗′
W.(Yp,X′)′ , vec(b

∗
Y.X)′, b∗′W.X , σ

−2

W̃
vec(σ2

Ỹ
)′],

and into π̃ the corresponding estimators:

π̃ ≡ [vec(b̃Y.(W,X′)′)
′, b̃′W.(Y,X′)′ , b̃

′
W.(Y1,X′)′ , ..., b̃

′
W.(Yp,X′)′ , vec(b̃Y.X)′, b̃′W.X , σ̂

−2

W̃
vec(σ̂2

Ỹ
)′].

Last, let µ̂2
A = 1

n

∑n
i=1AiA

′
i,

Q̂ ≡ diag{ I
p×p
⊗µ̂2

(1,W,X′)′ , µ̂
2
(1,Y,X′)′ , µ̂

2
(1,Y1,X′)′ , ..., µ̂

2
(1,Yp,X′)′ , Ip×p

⊗µ̂2
(1,X′)′ , µ̂

2
(1,X′)′ , I

1
2
p(p+1)× 1

2
p(p+1)

⊗σ̂2
W̃
}.

and

L ≡ 1

n

n∑
i=1

[vec((1,Wi, X
′
i)
′εY.(W,X′)′,i)

′, (1, Yi, X
′
i)εW.(Y,X′)′,i,

(1, Y1i, X
′
i)εW.(Y1,X′)′,i, ..., (1, Ypi, X

′
i)εW.(Yp,X′)′,i, vec((1, X

′
i)
′εY.X,i)

′, (1, X ′i)
′εW.X,i, vec(εY.X,iε

′
Y.X,i−σ2

Ỹ
)′]′.

Recall that Q is finite (by A1(i)) and nonsingular. For a symmetric matrix C and a

vector D, let C1 denote the submatrix that removes the last 1
2
p(p + 1) row and column of

C and let D1 be the subvector that removes the last 1
2
p(p+ 1) row of D. Then

√
n(π̃1 − π∗1) = Q̂−1

1

√
nL1 = (Q̂−1

1 −Q−1
1 )
√
nL1 +Q−1

1

√
nL1.
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Since (i) gives Q̂−1
1 −Q−1

1 = op(1) and (ii) gives
√
nL1

d→N(0,Ξ1), we obtain that
√
n(π̃1−

π∗1) = Q−1
1

√
nL1 +op(1)

d→N(0,Σ∗1). Moreover, it follows from µ̂2
(1,X′)′

p→ µ2
(1,X′)′ ,

√
n(b̃Yj .X−

b∗Yj .X) = Op(1), and 1
n

∑n
i=1εYj .X,i(1, X

′
i)
′ = E[εYj .X(1, X ′)′] + op(1) = op(1) for j = 1, ..., p

that for any j, h = 1, ..., p

n−
1
2
∑n

i=1ε̂Yj .X,iε̂Yh.X,i

= n−
1
2
∑n

i=1(εYj .X,i − (1, X ′i)(b̃Yj .X − b∗Yj .X))(εYh.X,i − (1, X ′i)(b̃Yh.X − b∗Yh.X))

= n−
1
2
∑n

i=1εYj .X,iεYh.X,i − [
1

n

∑n
i=1εYj .X,i(1, X

′
i)]
√
n(b̃Yh.X − b∗Yh.X)

− [
1

n

∑n
i=1εYh.X,i(1, X

′
i)]
√
n(b̃Yj .X − b∗Yj .X) + (b̃Yh.X − b∗Yh.X)′µ̂2

(1,X′)′
√
n(b̃Yj .X − b∗Yj .X)

= n−
1
2
∑n

i=1εYj .X,iεYh.X,i + op(1).

Similarly, by (i), we have that

1

n

∑n
i=1ε̂Yj .X,iε̂Yh.X,i = E(εYj .XεYh.X)+op(1) = σỸj ,Ỹh+op(1) and

1

n

∑n
i=1ε̂

2
W.X,i = σ2

W̃
+op(1).

Thus, since n−1/2
∑n

i=1 εYj .X,iεYh.X,i is Op(1) by (ii), we have that for j, h = 1, ..., p

√
n

1
n

∑n
i=1ε̂Yj .X,iε̂Yh.X,i

1
n

∑n
i=1ε̂

2
W.X,i

= (σ2
W̃

)−1n−
1
2
∑n

i=1εYj .X,iεYh.X,i + op(1).

Together with
√
n(π̃1 − π∗1) = Q−1

1

√
nL1 + op(1), we obtain by (i) and (ii) that

√
n(π̃ − π∗) = Q−1

√
nL+ op(1)

d→N(0,Σ∗)

and therefore that the subvector
√
n(π̂ − π)

d→N(0,Σ).

Proof of Corollary A.1: The identification set J k,τ,c obtains from A1-A′6 and the

(V ar[(Ỹ , W̃ )′]) the moments given by (in)equalities (3,5,6,7), using the expressions in The-

orem 3.1. The sharpness proof in Corollary 3.2 implies that J k,τ,c is sharp. Specifically,

since G(r) = σ−2

W̃
σ2
η̃∗ , we have that cjh ≤ rη̃∗j ,η̃∗h ≤ cjh.

To derive Rk,τ,c, for j, h = 1, ..., p and j < h, consider the restriction

cjh ≤ Γjh =
Gjh(ρ)

[Gjj(ρ)Ghh(ρ)]
1
2

=
σ−2

W̃
σỸj ,Ỹh − bỸj .W̃

1
ρ
bỸh.W̃

(σ−2

W̃
σ2
Ỹj
− 1

ρ
b2
Ỹj .W̃

)
1
2 (σ−2

W̃
σ2
Ỹh
− 1

ρ
b2
Ỹh.W̃

)
1
2

≤ c̄jh.
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If σ2
Ỹj

= 0 or σ2
Ỹh

= 0 then σ2
ηj

= 0 or σ2
ηh

= 0 and cjh ≤ σηj ,ηh ≤ c̄jh is either incorrect

(if 0 6∈ [cjh, c̄jh]) or uninformative about ρ (if 0 ∈ [cjh, c̄jh]). Suppose that σ2
Ỹj
6= 0 and

σ2
Ỹh
6= 0. Multiplying the numerator and denominator by 0 < ρσ2

W̃
σ−1

Ỹj
σ−1

Ỹh
gives

cjh ≤
ρrỸj ,Ỹh − rW̃ ,Ỹj

rW̃ ,Ỹh

(ρ−R2
W̃ .Ỹj

)
1
2 (ρ−R2

W̃ .Ỹh
)
1
2

≤ c̄jh.

The expression for Rc
jh then follows from encoding the sign of rηj ,ηh via the function

Sjh(r) ≡ r × rỸj ,Ỹh − rW̃ ,Ỹj
rW̃ ,Ỹh

and the magnitude of rηj ,ηh (r2
ηj ,ηh
≤ c2 or c2 ≤ r2

ηj ,ηh
) via the quadratic function

Mjh(r; c) ≡ (r × rỸj ,Ỹh − rW̃ ,Ỹj
rW̃ ,Ỹh

)2 − c2(r −R2
W̃ .Ỹj

)(r −R2
W̃ .Ỹh

).

By Corollary 3.2, we obtain that ρ ∈ Rk,τ,c = [R2
W̃ .Ỹ

, 1]∩ [ 1
1+κ

, 1]∩pj=1 [ 1
τj
R2
W̃ .Ỹj

, 1]
p

∩
j,h=1
j<h

Rc
jh.

In addition, Rk,τ,c is sharp since every r ∈ Rk,τ,c corresponds to a point (r, d, b, g) ∈ J k,τ,c.

Specifically, if r ∈ Rk,τ,c then 1
1+κ
≤ r ≤ 1, 0 � G(r), and R2

Ỹj .Ũ
≤ τj for j = 1, ..., p by

Corollary 3.2. Further, from the sign and magnitude restrictions in Sjh(r) and Mjh(r; c),

we have that cjh ≤
Gjh(r)

[Gjj(r)Ghh(r)]
1
2
≤ c̄jh for every r ∈ Rk,τ,c ⊆ Rc

jh and j, h = 1, ..., p with

j < h.

Next, we examine the behavior of Sjh(r) and Mjh(r; c) when σ2
Ỹj
σ2
Ỹh
6= 0. First, we have

that

0 ≤ Sjh(r)⇔


rW̃ ,Ỹj

rW̃ ,Ỹh

rỸj ,Ỹh
≤ r when 0 < rỸj ,Ỹh

rW̃ ,Ỹj
rW̃ ,Ỹh

≤ 0 when rỸj ,Ỹh = 0

r ≤
rW̃ ,Ỹj

rW̃ ,Ỹh

rỸj ,Ỹh
when rỸj ,Ỹh < 0

.

Further, if R2
Ỹj .Ỹh

= 1 then

Mjh(r; c) = (1− c2)(r −R2
W̃ .Ỹj

)2 ≥ 0.

Suppose instead that R2
Ỹj .Ỹh

6= 1. We obtain

Mjh(r; c) = r2R2
Ỹj .Ỹh

+R2
W̃ .Ỹj

R2
W̃ .Ỹh

− 2r × rỸj ,ỸhrW̃ ,Ỹj
rW̃ ,Ỹh

− c2r2 + c2r(R2
W̃ .Ỹj

+R2
W̃ .Ỹh

)− c2R2
W̃ .Ỹj

R2
W̃ .Ỹh

= r2(R2
Ỹj .Ỹh

− c2) + r[−2rỸj ,ỸhrW̃ ,Ỹj
rW̃ ,Ỹh

+ c2(R2
W̃ .Ỹj

+R2
W̃ .Ỹh

)] + (1− c2)R2
W̃ .Ỹj

R2
W̃ .Ỹh

= r2(R2
Ỹj .Ỹh

− c2) + r[R2
W̃ .(Ỹj ,Ỹh)′

(1−R2
Ỹj .Ỹh

)− (1− c2)(R2
W̃ .Ỹj

+R2
W̃ .Ỹh

)]

+ (1− c2)R2
W̃ .Ỹj

R2
W̃ .Ỹh

,
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where the last equality makes use of

R2
W̃ .(Ỹj ,Ỹh)′

=
[
rW̃ ,Ỹj

rW̃ ,Ỹh

] [ 1 rỸj ,Ỹh
rỸh,Ỹj 1

]−1 [
rW̃ ,Ỹj

rW̃ ,Ỹh

]
=
R2
W̃ ,Ỹj

+R2
W̃ ,Ỹh

− 2rW̃ ,Ỹj
rỸj ,ỸhrW̃ ,Ỹh

1−R2
Ỹj .Ỹh

.

If c2 = R2
Ỹj .Ỹh

then Mjh(·; c) is a linear function

Mjh(r; rỸj ,Ỹh) = r[R2
W̃ .(Ỹj ,Ỹh)′

(1−R2
Ỹj .Ỹh

)− (1−R2
Ỹj .Ỹh

)(R2
W̃ .Ỹj

+R2
W̃ .Ỹh

)]

+ (1−R2
Ỹj .Ỹh

)R2
W̃ .Ỹj

R2
W̃ .Ỹh

= (1−R2
Ỹj .Ỹh

){r[R2
W̃ .(Ỹj ,Ỹh)′

− (R2
W̃ .Ỹj

+R2
W̃ .Ỹh

)] +R2
W̃ .Ỹj

R2
W̃ .Ỹh
}

and

0 ≤Mjh(r; c)⇔
r ≤

−R2
W̃ .Ỹj

R2
W̃ .Ỹh

R2
W̃ .(Ỹj ,Ỹh)

′−(R2
W̃ .Ỹj

+R2
W̃ .Ỹh

)
when c2 = R2

Ỹj .Ỹh
and R2

W̃ .(Ỹj ,Ỹh)′
< R2

W̃ .Ỹj
+R2

W̃ .Ỹh

0 ≤ (1−R2
Ỹj .Ỹh

)R2
W̃ .Ỹj

R2
W̃ .Ỹh

when c2 = R2
Ỹj .Ỹh

and R2
W̃ .(Ỹj ,Ỹh)′

= R2
W̃ .Ỹj

+R2
W̃ .Ỹh

−R2
W̃ .Ỹj

R2
W̃ .Ỹh

R2
W̃ .(Ỹj ,Ỹh)

′−(R2
W̃ .Ỹj

+R2
W̃ .Ỹh

)
≤ r when c2 = R2

Ỹj .Ỹh
and R2

W̃ .Ỹj
+R2

W̃ .Ỹh
< R2

W̃ .(Ỹj ,Ỹh)′

Otherwise, if c2 6= R2
Ỹj .Ỹh

, the discriminant of Mjh(·; c) is

∆jh(c) = [R2
W̃ .(Ỹj ,Ỹh)′

(1−R2
Ỹj .Ỹh

)− (1− c2)(R2
W̃ .Ỹj

+R2
W̃ .Ỹh

)]2 − 4(1− c2)(R2
Ỹj .Ỹh

− c2)R2
W̃ .Ỹj

R2
W̃ .Ỹh

= [R2
W̃ .(Ỹj ,Ỹh)′

(1−R2
Ỹj .Ỹh

)− (1− c2)(R2
W̃ .Ỹj

+R2
W̃ .Ỹh

)]2

− (1− c2)4R2
Ỹj .Ỹh

R2
W̃ .Ỹj

R2
W̃ .Ỹh

+ 4c2(1− c2)R2
W̃ .Ỹj

R2
W̃ .Ỹh

= [R2
W̃ .(Ỹj ,Ỹh)′

(1−R2
Ỹj .Ỹh

)− (1− c2)(R2
W̃ .Ỹj

+R2
W̃ .Ỹh

)]2

− (1− c2)[R2
W̃ .(Ỹj ,Ỹh)′

(1−R2
Ỹj .Ỹh

)− (R2
W̃ .Ỹh

+R2
W̃ .Ỹj

)]2 + 4c2(1− c2)R2
W̃ .Ỹj

R2
W̃ .Ỹh

= c2R4
W̃ .(Ỹj .Ỹh)′

(1−R2
Ỹj .Ỹh

)2 − c2(1− c2)(R2
W̃ .Ỹj

+R2
W̃ .Ỹh

)2 + 4c2(1− c2)R2
W̃ .Ỹj

R2
W̃ .Ỹh

= c2{R4
W̃ .(Ỹj .Ỹh)′

(1−R2
Ỹj .Ỹh

)2 − (1− c2)[(R2
W̃ .Ỹj

+R2
W̃ .Ỹh

)2 − 4R2
W̃ .Ỹj

R2
W̃ .Ỹh

]}

= c2[R4
W̃ .(Ỹj .Ỹh)′

(1−R2
Ỹj .Ỹh

)2 − (1− c2)(R2
W̃ .Ỹj
−R2

W̃ .Ỹh
)2].

In particular, ∆jh(c) < 0 if and only if

0 < c2 < 1−
R4
W̃ .(Ỹj .Ỹh)′

(1−R2
Ỹj .Ỹh

)2

(R2
W̃ .Ỹj
−R2

W̃ .Ỹh
)2

.
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Further, we have that 1−
R4
W̃ .(Ỹj .Ỹh)

′ (1−R2
Ỹj .Ỹh

)2

(R2
W̃ .Ỹj

−R2
W̃ .Ỹh

)2
≤ R2

Ỹj .Ỹh
since if c2 = R2

Ỹj .Ỹh
then

∆jh(c) = [R2
W̃ .(Ỹj ,Ỹh)′

(1−R2
Ỹj .Ỹh

)− (1− c2)(R2
W̃ .Ỹj

+R2
W̃ .Ỹh

)]2 − 4(1− c2)(R2
Ỹj .Ỹh

− c2)R2
W̃ .Ỹj

R2
W̃ .Ỹh

= (1−R2
Ỹj .Ỹh

)2[R2
W̃ .(Ỹj ,Ỹh)′

− (R2
W̃ .Ỹj

+R2
W̃ .Ỹh

)]2 ≥ 0

and if R2
Ỹj .Ỹh

= 0 then

1−
R4
W̃ .(Ỹj .Ỹh)′

(1−R2
Ỹj .Ỹh

)2

(R2
W̃ .Ỹj
−R2

W̃ .Ỹh
)2

= 1−
(R2

W̃ ,Ỹj
+R2

W̃ ,Ỹh
)2

(R2
W̃ .Ỹj
−R2

W̃ .Ỹh
)2
≤ 0 = R2

Ỹj .Ỹh
.

It follows that if 0 < c2 < 1−
R4
W̃ .(Ỹj .Ỹh)

′ (1−R2
Ỹj .Ỹh

)2

(R2
W̃ .Ỹj

−R2
W̃ .Ỹh

)2
then c2 < R2

Ỹj .Ỹh
and

0 ≤Mjh(r; c)⇔ −∞ < r <∞.

If c2 6= R2
Ỹj .Ỹh

and 0 ≤ ∆jh(c) then define

Fjh(c) ≡ −R2
W̃ .(Ỹj ,Ỹh)′

(1−R2
Ỹj .Ỹh

) + (1− c2)(R2
W̃ .Ỹj

+R2
W̃ .Ỹh

),

so that Mjh(ρ; c) has the two roots

ρ−jh(c) ≡
Fjh(c)−∆jh(c)

1
2

2(R2
Ỹj .Ỹh

− c2)
and ρ+

jh(c) ≡
Fjh(c) + ∆jh(c)

1
2

2(R2
Ỹj .Ỹh

− c2)
.

We then have that

0 ≤Mjh(r; c)⇔

{
r ∈ (−∞, ρ−jh(c)] ∪ [ρ+

jh(c),∞) when c2 < R2
Ỹj .Ỹh

r ∈ [ρ+
jh(c), ρ

−
jh(c)] when R2

Ỹj .Ỹh
< c2 .

Combining these results, yields the equivalence between 0 ≤Mjh(r; c) and the range of r.

The sharp bounds Dk,τ,c, Bk,τ,c, and Gk,τ,c follow from the mappings D(·), B(·), and

G(·) in Theorem 3.1.
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Figure 4: 50% (dark) and 95% (light) confidence regions for βj1 (cash flow) for j = 1, 2, 3
(investment, saving, and debt) from year 1970 to 2017, when X includes asset tangibility.
We consider the regions Bj1, Bc∗

j1 , and Bκ,τ,cj1 where c∗ = 0, κ and τ are such that κ̂∗ = 0.5 and
τ̂ ∗ = (0.9, 0.9, 0.9)′, and c is such that (c12, c12) = (c23, c23) = (−1, 0) and (c13, c13) = (0, 1).
The shaded vertical bars indicate years in which the maintained assumptions are rejected.
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Table 7: Bounds on the Cash Flow Coefficients in the Investment, Saving, and Debt Equa-
tions Using the Full Panel and Accounting for Asset Tangibility

Sκ,τj J κ,τ J κ,τ,c J κ,τ,c∗ bY.(W,X′)′

Results without fixed effects for κ =∞ and τ = (1, 1, 1)′

β11 [-0.134 , 0.144] [-0.028 , 0.144] [0.130 , 0.144] - 0.143
(-0.142 , 0.145) (-0.033 , 0.145) (0.129 , 0.145) - (0.136 , 0.150)

β21 [-0.438 , 0.122] [-0.014 , 0.122] [0.111 , 0.122] - 0.121
(-0.456 , 0.124) (-0.019 , 0.124) (0.109 , 0.124) - (0.114 , 0.129)

β31 [-0.419 , 1.242] [-0.419 , -0.248] [-0.419 , -0.405] - -0.418
(-0.423 , 1.294) (-0.423 , -0.242) (-0.423 , -0.402) - (-0.436 , -0.400)

Results without fixed effects for κ∗ = 0.5 and τ ∗ = (0.9, 0.9, 0.9)′

β11 [0.127 , 0.144] [0.127 , 0.144] [0.130 , 0.144] - 0.143
(0.125 , 0.145) (0.125 , 0.145) (0.129 , 0.145) - (0.136 , 0.150)

β21 [0.108 , 0.122] [0.108 , 0.122] [0.111 , 0.122] - 0.121
(0.106 , 0.124) (0.106 , 0.124) (0.109 , 0.124) - (0.114 , 0.129)

β31 [-0.419 , -0.401] [-0.419 , -0.401] [-0.419 , -0.405] - -0.418
(-0.423 , -0.398) (-0.423 , -0.398) (-0.423 , -0.402) - (-0.436 , -0.400)

Results with year and firm fixed effects for κ =∞ and τ = (1, 1, 1)′

β11 [-0.629 , 0.130] [-0.480 , 0.130] [-0.481 , 0.130] - 0.129
(-0.634 , 0.131) (-0.484 , 0.131) (-0.485 , 0.131) - (0.122 , 0.137)

β21 [-2.267 , 0.170] [-0.273 , 0.170] [-0.274 , 0.170] - 0.170
(-2.300 , 0.172) (-0.279 , 0.172) (-0.280 , 0.172) - (0.159 , 0.181)

β31 [-0.369 , 32.655] [-0.369 , -0.315] [-0.369 , -0.315] - -0.368
(-0.370 , 35.443) (-0.370 , -0.31) (-0.370 , -0.309) - (-0.383 , -0.353)

Results with year and firm fixed effects for κ∗ = 0.5 and τ ∗ = (0.9, 0.9, 0.9)′

β11 [0.083 , 0.130] [0.083 , 0.130] [0.083 , 0.130] - 0.129
(0.083 , 0.131) (0.083 , 0.131) (0.083 , 0.131) - (0.122 , 0.137)

β21 [0.136 , 0.170] [0.136 , 0.170] [0.136 , 0.170] - 0.170
(0.135 , 0.172) (0.135 , 0.172) (0.135 , 0.172) - (0.159 , 0.181)

β31 [-0.369 , -0.364] [-0.369 , -0.364] [-0.369 , -0.364] - -0.368
(-0.370 , -0.362) (-0.370 , -0.362) (-0.370 , -0.362) - (-0.383 , -0.353)

The sample is an unbalanced panel of 161,959 firm-year observations. Y1, Y2, and Y3 denote Investment,

Saving, and Debt respectively and X = [Cash Flow,Firm Size,Asset Tangibility]. When year fixed effects

are included, X also includes year indicator variables. When firm fixed effects are included, the

equations’ variables undergo a within transformation. c sets (c12, c12) = (c23, c23) = (−1, 0) and

(c13, c13) = (0, 1) whereas c∗ = 0. Robust standard errors for π are clustered by firm. 50% and 95%

confidence regions are in brackets and parentheses respectively.
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