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The United States educational policy requires that K-12 students participate in annual standardized tests.

As a result, school districts that have traditionally utilized ongoing “formative” assessments of student

progress, are increasingly relying on additional, costly “interim” assessments. In addition, some districts

are experimenting with merit-based incentives that tie teachers’ bonuses to student performance on state

tests. We examine the relationship between information on student performance and monetary incentives

for teachers using a two-period principal-agent model. In our model, the school district (principal) chooses

whether to invest in interim assessments, and, also, how much merit-based compensation to offer to teachers,

while the teachers (agents) decide on the level of effort to exert in each period. We use two-state (“proficient”

vs. “not proficient”) Markovian dynamics to describe the evolution of student readiness for the tests, and

assume the presence of information asymmetry between the teachers and the school district regarding the

student readiness level.

Our analysis shows that, for schools that are not proficient at the beginning of the year, the return from

merit-based incentives is always greater than the return from information derived from interim assessments.

For schools that begin the year on track to achieve proficiency, there exist settings where investing in the

interim assessment is optimal, such as when the district has a low budget and the formative assessment is

reasonably accurate. However, we also establish that there are settings where the provision of additional

information about the student mid-year performance has a demotivating effect on teachers.

1. Introduction

Performance-based contracts have long been identified as a way to incentivize workers when direct

oversight is not possible. Yet, the effectiveness of such contracts depends on far more than simply

the level of incentives offered – workers must also have access to the resources and information

necessary to do their jobs, which often require additional monetary expenditures by the company.

In this paper, we study a system where employers often combine monetary incentives and invest-

ment in additional information: K-12 education in the United States. Student assessments as a

source of information on the quality of ongoing educational process have been an integral part

of the U.S. education system for decades (Linn 2000), but the form and extent of testing have

varied considerably over time and across the individual states. With the passage of the No Child

Left Behind Act of 2001 (NCLB), a greater emphasis was placed on frequent testing based on a

well-defined set of standards. In particular, states were required to ensure student “proficiency”
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on state tests in reading and math by 2013-14, and the individual schools were required to show

“adequate yearly progress” (AYP) for all student groups as well as key subgroups, such as minority

students and students in special education (United States General Accounting Office 2003, Klein

2015, Dillon and Rotherham 2007). In 2009, the $4.35 billion Race to the Top Fund (RTTT) was

launched with a focus on four core goals: updating educational standards; building data systems

to measure student performance and inform educators; “recruit[ing], develop[ing], reward[ing], and

retain[ing]” effective teachers and principals; and turning around low-performing schools (U.S.

Department of Education 2009). Partly due to RTTT, school districts have been experimenting

with pay-for-performance contracts for teachers designed to improve educational outcomes.

Perie et al. (2007) describe three types of assessments frequently used in the U.S. K-12 system:

formative, summative, and interim. Formative assessments are used by educators to obtain ongoing

information about student understanding of the material being taught. Summative assessments are

given at the end of an instructional period, often a year or a semester, to check student knowledge

against a broad set of content standards. These standards, set by an external entity rather than

by an individual teacher, specify the body of knowledge and/or a set of skills a student should

acquire at each grade level. Finally, interim assessments lie between these two types of assessments.

Interim assessments are used to evaluate students against a specific set of achievement goals, and

the results from these assessments guide teaching within the classroom and inform decisions more

broadly at the school and district level. Interim assessments have become increasingly popular as

districts seek to evaluate student performance across different schools on the standards expected

to be met by the year’s end. These assessments are prepared by external evaluation bodies and are

considered to be much more reliable but also much more costly indicators of student performance

than formative assessments. Thus, for a school district, investing in a mid-year interim assessment

provides an accurate measure of student progress but can also divert funds from performance-based

incentives for teachers. Although in practice school districts invest in both, currently much more

money is allocated towards ongoing assessments than towards additional teacher compensation. For

example, the Teacher Incentive Fund, established by Congress in 2006 to provide grants to support

performance-based teacher and principal compensation in high-needs schools, allocated $225 million

for such awards in 2016. At the same time, total U.S. spending on classroom assessments in 2013-14

was $1.3 billion per year, up from $434 million in 2001-02 (Cavanagh 2015). Yet, despite the vast

sums of money being spent on these two approaches to improving educational outcomes, to the

best of our knowledge, there are no studies of their relative effectiveness.

In this paper, we seek to address this gap in the extant literature. We analyze the problem faced

by a school district that wants to maximize the probability of students being “proficient” on the

end-of-the-year standardized test by allocating a fixed budget between an “interim” assessment
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and a merit-based incentive for teachers. In our model, the district plays the role of a principal

that, on the one hand, can provide an agent (teachers) with financial incentives tied to the achieved

educational outcome, and, on the other hand, can, at a cost, improve the quality of the information

set under which the agent operates. Since the educational process unfolds over a protracted period

of time (e.g., a year) and the additional information on the state of student proficiency is provided

by the interim assessment in the middle of this process, our model uses a two-period dynamic

principal-agent framework. If the district invests in an interim assessment midway through the

school year, both the district and the teachers will know the state of student proficiency at that

time; otherwise, they will receive less accurate information from a low-cost formative assessment.

To reflect an information asymmetry between the school district and the teachers likely to be

present in many educational settings, we assume that, while the district’s knowledge of the mid-

year state of student preparedness relies entirely on the assessment results, the teachers, through

their daily interactions with students, may have an informational advantage over the district and

may be able to gauge the exact state of student preparedness even under the “imperfect” formative

assessment. To capture settings with varying degrees of this information asymmetry, we assume

that the district can estimate the likelihood that teachers have perfect information on the mid-year

state of student proficiency. In addition to the information provided by the interim assessment,

the district may offer teachers a merit-based bonus, which they earn if a sufficient portion of their

students show “proficiency” on the year-end standardized test. Teachers respond to both the merit-

based incentive and the information they possess about mid-year student progress by choosing

a dynamic policy that defines their effort levels. In our model, we use a scalar as a simplified

representation of the multiple levers a teacher can use to influence educational outcomes, such as

spending extra time working with students or creating detailed lesson plans.

Our analysis pursues two main goals. First, we aim to build a model that can assist school

districts in resolving the trade-offs they face in allocating limited funds among popular mechanisms

for achieving high student performance. While in practice each district knows the “price tag”

associated with additional testing, there exist no clear guidance on estimating the benefit of a

mid-year test in achieving the year-end “proficiency” targets. Thus, our main focus is on assessing

the value of additional information brought in by the interim assessments for a particular school

district using a small number of parameters that can be estimated in practical settings. Our second

goal is to understand how the value of additional information is shaped by the effectiveness of

teachers’ efforts in improving and maintaining student performance, by the quality of information

delivered by “noisy” but free formative assessments, and by the degree of information asymmetry

between the teachers and the school district.
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We quantify the degree of disadvantage suffered by schools with low-performing students. In

particular, we show that for schools that begin the year already “behind” in terms of student per-

formance, a school district is always better off investing their entire budget into the merit-based

incentives. For schools that begin the year on track to achieve proficiency, we show that extra infor-

mation on mid-year student performance may produce diametrically opposed results, depending

on the accuracy of the formative assessment and the available budget. Counterintuitively, when

teachers rely on a low-accuracy formative assessment, the provision of more accurate information

on mid-year student performance via an interim assessment, irrespective of the cost, is demotivat-

ing and has negative consequences on the end-of-year student achievement outcome. In this case, in

the absence of accurate mid-year information, teachers are more likely to believe that students are

performing well, based on their knowledge of student proficiency at the beginning of the year. This,

in turn, makes it easier to incentivize teachers to exert high levels of effort. At the same time, for a

more accurate formative assessment, the extra information delivered by the interim assessment can

be valuable for realistic budget values. This paradox arises because, as the formative assessment

increases in accuracy, teachers place more weight on the assessment results and less on the fact

that students began the year in a high-performance state. Then, the interim assessment is optimal

when teachers are more likely to believe the true intermediate state is not-proficient under the

formative assessment. Interestingly, we find that when teachers are able to perfectly detect high

student performance, the district should “revert” to the formative assessment. In this case, the

main effect of information is, again, demotivational, since it will reduce the likelihood that teachers

exert effort when the school “slips” to a low-performance state in the middle of the year.

The rest of the paper is organized as follows. In Section 2, we discuss the relevant literature. Our

model is presented in Section 3, followed by its analysis in Sections 4 and 5. Finally, in Section 6,

we discuss our results and future avenues of research.

2. Literature Review

Our analysis draws on the principal-agent model literature in economics and operations manage-

ment, as well as the literature on performance pay in K-12 education.

The role of information in principal-agent models has been studied extensively. In particular,

there is much work that considers the optimal policy when the agent has, or can independently

gain, private information about the production environment. For example, Baron and Myerson

(1982) derive the optimal regulatory policy for a monopolistic firm with privately-known costs.

Lewis and Sappington (1997) determine the optimal contract to incentivize the agent to acquire

and reveal information. Crémer et al. (1998) study when it is optimal for the principal to induce

the agent to gather additional information at a cost. On the other hand, multi-period dynamic
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models account only for a rather small, and a more recent, fraction of the vast principal-agent

literature. Fudenberg et al. (1990) introduce stochastic elements to a dynamic principal-agent

model and identify conditions under which a long-term contract can be implemented as a sequence

of short-term contracts. Plambeck and Zenios (2000) provide an analysis of a previously intractable

setting relying on assumptions about the “economic structure” of principal-agent interaction, and

Fuloria and Zenios (2001) build upon this dynamic model in the context of healthcare contracting.

Shumsky and Pinker (2003) study the compensation system a firm should offer a gatekeeper who

has private knowledge about the complexity of a customer’s problem and their ability to treat it.

Zhang and Zenios (2008) use a dynamic principal-agent model with hidden information, where the

state is known to the agent but not to the principal. Chu and Sappington (2009) characterize the

optimal contract when a principal and agent begin with symmetric information but the agent will

ultimately acquire superior information.

Our approach follows the spirit of these models: in our model, the agent (teachers) solves a

dynamic program to determine the optimal effort allocation policy. The dynamic nature of the

agent’s response in our model is dictated by the setting we describe: the information brought in

by additional costly testing is revealed “in the middle” of a protracted instruction period, poten-

tially altering the agent’s decision-making process and, thus, requiring a “closed-loop” modeling

approach. The principal’s ability to invest in the enhancement of the information set used by the

agent is a distinguishing, novel feature of our analysis.

More broadly, our work is also related to the supply chain literature on asymmetric cost infor-

mation. For example, Corbett and De Groote (2000) study a supplier’s optimal quantity discount

policy when the buyer’s cost is unknown. Ha (2001) analyzes a supplier-buyer relationship with

asymmetric cost information under stochastic, price-sensitive demand. Lutze and Özer (2008)

characterize a promised-lead time contract, which includes an optimal promised lead time and

corresponding payments, that a supplier should offer a retailer who has private information about

shortage costs. Additionally, our research relates to work that characterizes the relationship between

worker effort and labor costs, e.g. Tan and Netessine (2014).

In our model, the overall effort level of the agent is affected by the monetary incentive offered by

the principal and contingent on achieving a pre-specified performance level. In this regard, our work

adds to a rich stream of papers focused on contracting and performance pay, also commonly called

“merit pay,” in K-12 education in the United States. On the theoretical side, Murnane and Cohen

(1986) use the microeconomics contracting framework to argue that merit-pay contracts may be

difficult to implement in education settings. They argue that the very nature of the teaching process

makes it difficult for supervisors to articulate why some teachers may receive merit pay but others

do not, which can lead to dissatisfaction for teachers that do not receive the reward. Similarly,
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Johnson (1984) points out potential negative effects of teacher-level merit compensation such as

harmful competition among teachers and low morale. The lack of precise guidelines that teachers

can follow to earn the reward is another complicating factor for the use of merit-based incentives.

The concern about rewarding only some teachers within a school can be ameliorated through the

use of school-level, rather than teacher-level, incentives (Clotfelter and Ladd 1996). Still, empirical

work suggests that teacher-level incentives remain common, and in the presence of such incentives

schools can mitigate the potential negative effects by making merit pay inconspicuous or awarding

it to almost everyone (Murnane and Cohen 1986). In our work, we assume that teachers within

a school form a homogeneous group that can earn a school-level reward. Additionally, although

teaching remains as much an art as a science, providing teachers with timely information about

their progress toward achieving performance targets may alleviate teachers’ uncertainty about

the path to earning a merit-based reward. The growing availability of interim assessments has

made it easier for districts to do just that, and, in our model, we explore the new dynamics

brought in by these assessments. In more recent work, Barlevy and Neal (2012) propose a pay-

for-percentile incentive scheme that overcomes some of the unintended consequences of existing

pay-for-performance schemes, such as coaching and scale manipulation. In our work, we take it as

given that schools will use a generic incentive scheme and consider how a district should allocate

resources to maximize the probability of achieving a goal. We do not specify the precise type of

incentive scheme, only the transition probabilities that determine the likelihood that teachers will

earn the reward.

The empirical evidence on the effects of merit pay remains mixed. Eberts et al. (2002) find that

teacher-level merit pay improved student retention but negatively impacted student attendance and

course passing rates, with student GPAs remaining unchanged. Figlio and Kenny (2007) use survey

data from 390 schools to show that merit pay (defined as “at least one [teacher] ... reported having

a merit pay bonus”) is correlated with higher test scores. Springer et al. (2011) implemented a

short-term, experimental teacher-level performance pay program in Metro Nashville Public Schools

(MNPS) where teachers were eligible for up to $15,000 per year in bonuses based on student test-

score gains. Although the program did not have a significant, lasting effect on student test scores, it

did impact the way some teachers approached their jobs: while 80 percent of teachers believed that

the program did not change their teaching practices, teachers in the “treatment group” were more

likely to collaborate with other teachers and align their instruction with test preparation. Fryer

(2013) studies an experimental school-level incentive program in over 200 high-needs New York

City public schools, which was implemented as a randomized school-based trial from the 2007-08

school year through the 2009-10 school year. The author finds no evidence that financial incentives

lead to improvements in student performance outcomes or in teacher or student behavior.
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The results from the longer-term merit-pay experiments seem to suggest that the positive effects

of such interventions, if any, may not show up immediately. Dee and Wyckoff (2015) analyze

IMPACT, the teacher evaluation reform introduced during the 2009-10 school year in the Dis-

trict of Columbia Public Schools. IMPACT offers strong financial incentives for highly effective

teachers, where effectiveness is determined based on multiple components, such as classroom obser-

vation scores and students’ performance on standardized tests. The researchers find that for highly

effective teachers, the base pay incentives for scoring “highly effective” for another year were asso-

ciated with a seven-percentile increase in teacher effectiveness. Unlike many earlier studies that

focused specifically on short-term, experimental performance pay programs, IMPACT is a multi-

pronged, long-term program. Chiang et al. (2017) evaluate the Teacher Incentive Fund (TIF), a

program which was established by the U.S. Congress in 2006 and “which provides grants to sup-

port performance-based compensation systems for teachers and principals in high-need schools.”

Specifically, they evaluate ten districts in which the pay-for-performance component of TIF was

randomly assigned. The program was implemented over a four-year period, and, by the second

year, it led to a slight increase in student achievement that held steady in the remaining years of

the program. In this program, although most educators received a bonus, the actual bonus level

was differentiated based on the performance of their students.

These empirical studies focus specifically on the impact of a performance-based incentive and do

not consider the influence of mid-year assessments on teaching practices and student performance.

In our analysis, we focus on identifying the school districts that, in the presence of merit-based

teacher compensation, may benefit from additional information brought in by interim assessments

as well as the the school districts that are better off using formative assessments.

3. Model: Combining Assessments and Merit-Based Pay to Achieve
Proficiency

In this section, we present a dynamic principal-agent model that captures the interaction between

the school district (principal) and the group of teachers at a school (agent). In our model, the district

explores the option of investing in additional information on the state of student performance and

providing incentives to maintain or achieve standards of performance, and teachers respond to

information and incentives by selecting a dynamic policy defining their effort levels.

3.1. Time Horizon, System States and Actions

Consider a discrete-time, two-period model, with time indices t= 0,1 corresponding to the begin-

ning of periods 1 and 2, respectively, and the index t= 2 corresponding to the end of period 2 and

indicating the time at which the proficiency of the student body at the school is measured via a

state-administered standardized assessment. At time t= 0,1,2, the school proficiency is given by
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βt ∈ {P,N}, which indicates whether that school is “proficient” (P) or “not proficient” (N). We

define “proficient” to mean that a sufficient fraction of the school’s students are either on track to

satisfy state-imposed learning standards at t= 0,1 or satisfy these standards at t= 2. (See Table 1

for the description of our notation.)

In each period, teachers decide how much effort to allocate towards activities they believe will

improve student performance. We use et ≥ 0, t= 0,1 to denote the teachers’ effort level in period

t+1. Two features of our approach to modeling teachers’ effort are important to underscore. First,

in our model, we assume that the school’s teachers are homogeneous and act as a group, with et

reflecting teachers’ joint effort. This assumption approximates a more complex reality where the

effort levels of individual teachers will vary, with et reflecting the “average” school-level effort. We

believe such a modeling simplification is justified since, in practice, the proficient/not-proficient

designation is often applied to the entire school, as are the performance-based incentives. Modeling

the “average” effort level thus allows us to focus on the “first-order” effect of the incentives.

Second, we approximate the multidimensional nature of efforts that teachers make in reality by a

single “aggregate” measure represented by a scalar. Although no single measure can be a perfect

representation of teachers’ efforts, this scalar can be a proxy, for example, for the extra time that

teachers may spend working with students.

We use vector e = (e0, e1) to represent the effort level decisions for the two periods. The evo-

lution of the student proficiency state in each period is influenced by the state in the beginning

of the period and by the teachers’ effort decision in that period. Figure 1 illustrates the state

transition diagram for the discrete-time Markov chain in each period, where α(e) represents the

effort-dependent probability of transitioning from “N” in the beginning to “P” in the end of the

time period, and δ(e) represents the respective probability of transitioning from “P” to “N.”

Figure 1 Transition probabilities between proficient (“P”) and not proficient (“N”) states during each time

period as functions of effort level.

In modeling α(e) (the probability of moving to a proficient state) and 1− δ(e) (the probability

of remaining in a proficient state), we use the simplest functional form that reflects the standard

assumptions of monotonicity and non-increasing return-on-effort:
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Notation Description

t= 0,1,2 Time indices corresponding to beginning of period 1, begin-
ning of period 2, and end of period 2, respectively

βt State of proficiency at time t, either proficient (P) or not
proficient (N)

α(e) Probability of transitioning from N to P as a function of
effort e at any period t

δ(e) Probability of transitioning from P to N as a function of
effort e at any period t

AN Not-proficient response-to-effort parameter
AP Proficient response-to-effort parameter
λ Effort level at which the marginal impact of effort on prob-

ability of transitioning to P is 0
q Probability teachers know the true intermediate state

regardless of assessment choice
zI District’s choice of assessment, either interim (1) or forma-

tive (0)
X1 Result of formative assessment at t= 1, either proficient (P)

or not proficient (N)
φP |N , φP |P Probability X1 = P given β1 =N,P , respectively
π Merit-based incentive
γ Marginal cost of effort at time t
St State of the system at time t
B School’s available budget
F Cost of interim assessment
et (St, π, zI) Effort at time t as a function of state St, merit-based incen-

tive π, and assessment decision zI
(e∗0 (S0, π, zI) , e

∗
1 (S1, π, zI)) Teachers’ optimal response policy

Pr∗ [S2|S0] District’s estimate of the probability school is in proficient
state at t = 2 under optimal teachers’ response policy for
fixed π and zI

Pr∗zI [S2|S0] Probability school is in proficient state at t = 2 under
optimal teachers’ response policy and optimal merit-based
incentive for fixed zI

Table 1 Description of model’s notation.

Assumption 1.

α(e) =

{
AN
(
e
λ

)
, if 0≤ e≤ λ,

AN , if λ≤ e,
(1)

1− δ(e) =

{
AP
(
e
λ

)
, if 0≤ e≤ λ,

AP , if λ≤ e,
(2)

where λ> 0 and 0<AN ≤AP ≤ 1.

Under Assumption 1, probabilities α(e) and 1− δ(e) are monotonic and concave in e, with λ

designating the maximum effort level producing an increase in the probability of being in the

proficient state at the end of period. In reality, teachers always exhibit non-zero “base” effort that

results in a non-zero probability of reaching proficiency, and our model treats e as “additional”
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effort that can be elicited through merit-based incentives, resulting in enhanced probability of

reaching the proficient state. Note that in (1) and (2) we normalize both the base effort and

the base proficiency probability to 0. The maximum probability values AN and AP reflect the

co-produced nature of teaching, where the outcome depends both on the teachers’ and students’

efforts. Thus, teachers’ efforts alone may not guarantee that the proficient state is reached if AN

and AP are less than 1. The condition AN ≤AP implies that it is more difficult to attain proficiency

than to maintain it. The literature supports this assumption: Davison et al. (2004) suggest that

groups of students often have difficulty overcoming even small achievement gaps, while Neal and

Schanzenbach (2010) argue that the incentives for teachers in many school-accountability systems

inevitably lead to students at the lowest end of the achievement distribution getting “left behind.”

Finally, we assume that the transition dynamic described by (1)-(2) is stationary and does not

depend on the time period. This stationarity assumption is reasonable given that the time periods

we consider correspond to several months.

3.2. Interim and Formative Assessments: Cost and Information Structure

We assume that the teachers’ choice of effort levels cannot be directly observed by the school

district. Furthermore, the initial state β0 is known to both the teachers and the district, and the

final state β2 will be made known to both parties after the final standardized assessment. However,

both the teachers and the district may have imperfect knowledge of the intermediate state of the

system β1: students are assessed at the end of period 1 (at t= 1) to determine whether the school

is in the proficient or not-proficient state, but this assessment may be inaccurate. The degree of

accuracy depends on the type of assessment used. In particular, the district chooses between two

options: to administer an interim assessment or to rely exclusively on a formative assessment. An

interim assessment has a fixed cost F that the district must incur and perfectly reveals β1, the

state of the system at t= 1, whereas a formative assessment does not incur any additional cost for

the district but is less accurate than the interim assessment. For either choice, both the teachers

and the school district will know the results of the assessment at t = 1. Additionally, while the

district relies solely on assessments to gauge student progress, teachers are able to use multiple

inputs based on their daily interactions with students. Therefore, we let teachers be one of two

types: the type that knows the true intermediate state, β1, regardless of the assessment choice

(T = 1) or the type that relies entirely on the assessment results (T = 0). The district assumes that

teachers are the first type with probability q.

We use X1 ∈ {P,N} to denote the result of the formative assessment. That is, X1 = P (X1 =N)

if the formative assessment indicates that the school is in the proficient (not-proficient) state at
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t= 1. The probability that the formative assessment result X1 takes a particular value given the

true intermediate state β1 is captured by the parameters φP |P and φP |N , where

Pr [X1 = P |β1 = P ] = φP |P , (3)

Pr [X1 = P |β1 =N ] = φP |N . (4)

We assume that the formative assessment can never perfectly assess the mid-year state, i.e. it is

never the case that φP |P = 1 and φP |N = 0. Furthermore, we assume that the probability that the

formative assessment returns the proficient result (X1 = P ) when the true intermediate state β1 is

proficient cannot be lower than the same probability when the true intermediate state β1 is not

proficient:

Assumption 2. φP |P ≥ φP |N .

3.3. District Decisions and the Timeline of Events

For the analysis of the district’s decision problem, we introduce the following notation. First, we

use the binary variable zI to indicate the district’s choice of assessment type:

zI =

{
0, if district relies exclusively on formative assessment,

1, if district chooses interim assessment.
(5)

Second, as noted above, we use the binary variable T to indicate whether teachers are the type

that know the true state at t= 1 regardless of assessment choice:

T =

{
0, if teacher relies exclusively on assessment result to gauge student progress,

1, if teachers know the true intermediate state, β1, regardless of zI ,
(6)

where the district believes that T = 1 with probability q.

At t= 0, the district chooses the type of assessment to administer at the end of period 1 and

offers teachers a compensation contract that includes a base pay component we normalize to zero

and a merit (performance-based) pay component:

w= π1β2=P (π, zI) , (7)

where π > 0 is the level of merit-based incentive and

1β2=P (π, zI) =

{
1, if β2 = P,

0, if β2 =N.
(8)

Teachers know the type of assessment the district chose and the terms of the contract at t = 0,

and they receive compensation at t = 2. The payment of the reward at a single point in time is

consistent with current practice in the field of education. For example, Fryer (2013) describes an

incentive scheme in New York City Public Schools in which teachers were given a reward based on
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annual performance targets. Chiang et al. (2017) study the implementation of the Teacher Incentive

Fund (TIF) in ten school districts. They state that in seven out of ten of districts in the study,

teachers received their one-time reward during the subsequent school year.

The timeline of events is illustrated in Figure 2. At the beginning of period 1 (at t= 0), β0 is

known to both the teachers and the district. Based on this information, the district chooses the

type of assessment (zI) and the merit pay component (π). The teachers respond by determining

the policy they will use in selecting their effort levels at t = 0 and t = 1. Given the initial state

of the system and the effort level teachers select at t = 0 (e0), the system transitions to state

β1. Then, depending on the school district’s choice of assessment, the school either conducts an

interim assessment or relies on a formative assessment at the end of period 1. If the district invests

in an interim assessment, both the teachers and the district will know the proficiency state β1

(Figure 2a). If the district relies on a formative assessment, the teachers and the district will be

given the result X1; the district will use this to estimate the probability that the proficiency state

β1 is proficient or not proficient, whereas teachers will do the same only if they do not know the true

intermediate state based on their personal knowledge (Figure 2b). Based on the assessment results

and the teacher type, teachers select the effort level (e1) to be applied in period 2 (at t= 1). At

the end of period 2 (at t= 2), a standardized assessment is administered and the proficiency state

β2 is revealed to both the teachers and the school district. The teachers are then paid according

to the compensation contract (7).

Figure 2 Timeline of events: proficiency states (β0, β1, and β2), the outcome of the formative assessment

(X1), and teachers’ actions (e0 and e1) when a) the district chooses interim assessment (zI = 1) and when b) the

district relies exclusively on formative assessment (zI = 0).

We assume that both the district and the teachers are risk-neutral. Below we describe the

problems faced by the teachers (agent) and the district (principal).
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3.4. Teachers’ Problem: Dynamic Response to District’s Decisions

Given the type of assessment and merit-based contract that the district proposes, teachers choose

the effort levels that maximize their expected merit-based compensation net of the cost of effort

they incur. In modeling the teachers’ cost, we use a simple linear functional form representing

stationary and constant marginal cost-of-effort.

Assumption 3. The teachers’ cost-of-effort at time t= 0,1 is given by c (et) = γet, with γ > 0.

Note that the teachers’ decision problem is represented by a two-period dynamic program, where

their decision in period 2 depends on the information they receive at the end of period 1, and the

decision in period 1 is influenced by the policy they adopt for period 2. In order to provide a formal

description of the teachers’ problem, we define

S0 = β0, (9)

S1 =

{
(X1, e0,S0) , if zI = 0 and T = 0,

β1, if zI = 1 or T = 1,
(10)

and

S2 = β2, (11)

to describe the states of the system at t= 0,1, and 2, respectively. The teachers will use the states

at t= 0 and t= 1 to make their effort decisions at t= 0 and t= 1, respectively. Note that the state

of the system at t= 1 has different “content” depending on both the teacher type and whether the

interim or formative assessment is used. In particular, if their information about the proficiency

at t= 1 is imprecise (zI = 0 and T = 0), the teachers must use both the initial state S0 as well as

their action taken at t= 0 (e0) to calculate the expected net earnings stemming from their action

at t= 1 (e1), as we will show below. For each combination of the district’s decisions (π, zI), we can

use the notation in (9)-(11) to express the dynamic program that teachers solve as

Jt(St) = max
et≥0

[E [Jt+1 (ht+1 (et,St))]− γet] , t= 0,1, (12)

where the expectation is taken over the random state of the system ht+1 (et,St) at time t+ 1 and

J2(S2) =

{
π, if S2 = P,

0, if S2 =N.
(13)

For convenience, we summarize the description of the state ht+1 (et,St), for each state-action com-

bination (et,St) in Lemma B1 in the Appendix.

To emphasize the connection between the district’s decision and the teachers’ response, we will

use (e∗0 (S0, π, zI) , e
∗
1 (S1, π, zI)) to denote the optimal effort policy, i.e., the policy that solves the

dynamic program (12)-(13) for a given set of district decisions (π, zI).



Virudachalam, Savin, and Steinberg
14 Investing in Performance in K-12 Education

3.5. District’s Problem: Choosing the Optimal Assessment-Incentive Combination

For each school, the district wants to select the assessment type and matching merit pay com-

pensation to incentivize teachers to choose effort levels that will maximize the school’s probability

of being in the proficient state when the standardized test is administered. The total amount of

investment in the information provided by the interim assessment and the incentive payments is

limited by budget B. Because each district is likely to manage a number of schools, we assume

that it is acceptable for payments to a particular school to exceed the allocated budget, as long

as the budget constraint is satisfied in expectation. In order to formulate the district’s decision

problem, we use, at the slight abuse of notation, Pr∗[S2 = P |S0] to denote, for fixed π and zI ,

the probability that the school is in the proficient state at t= 2 under the optimal-response teach-

ers’ policy (e∗0 (S0, π, zI) , e
∗
1 (S1, π, zI)), given that the school starts in the state S0 and taking into

account the district’s uncertainty about teacher type. Then, for given initial performance state S0,

the district’s decision can be expressed as the following optimization problem:

max
π≥0,zI∈{0,1}

Pr∗[S2 = P |S0] (14)

s.t. πPr∗[S2 = P |S0] +FzI ≤B. (15)

In summary, (14)-(15) and (12)-(13) describe a principal-agent problem where a principal selects

the combination of information set and incentives for the agent and the agent’s response is repre-

sented by a dynamic programming policy.

Below we provide an analysis of this principal-agent problem. First, in the next Section, we

estimate “base-case” values for some of the parameters of our model using publicly available data.

Next, for a given type of assessment, we describe the optimal merit pay selection and the optimal

teachers’ response policy (Section 4). Then, we analyze the problem of the optimal selection of the

assessment type (Section 5).

3.6. Estimating the Base-Case Problem Parameters

To estimate “base-case” parameters for our model, we rely on the data from several sources.

First, we use results from the DC Comprehensive Assessment System (DC CAS), the end-of-year

standardized tests for District of Columbia Public Schools (DCPS) (District of Columbia Public

Schools 2018b). This is a publicly-available dataset that includes eight years of school performance

data (2006-07 through 2013-14) for both reading and math. For each school year, the number and

percentage of test takers that fall into each proficiency category (below basic, basic, proficient, and

advanced) are given by school and grade level for both the reading and math assessments.

We base school-level proficiency targets on the 2006-07 annual measurable objectives for DCPS,

as stated in the Assessment and Accountability Manual (District of Columbia Office of the State
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Figure 3 Probability of achieving proficiency (P ) at the end of a given year based on the state of proficiency

(P or N) in the previous year by subject for District of Columbia Public Schools from 2006-2014.

Superintendent of Education 2011). In particular, for each subject, we average the elementary and

secondary targets for the 2006-07 school year and round to the nearest integer. Thus, we define a

school as being in the proficient state if at least 45 percent of students are proficient or above in

reading and at least 40 percent of students are proficient or above in math. We use these target

values for all of the school years in the dataset. Using these values, we calculate that the overall

probability that a proficient school remains in the proficient state the following year is 84 percent

for the reading assessment and 60 percent for the math assessment, and the probability that a

not-proficient school moves to the proficient state is 12 percent for reading and 14 percent for

math. We average these and use 72 percent as an estimate of AP and 13 percent as an estimation

of AN . Although we recognize that AP and AN are likely to depend on each school, we rely on the

aggregate district-wide data in the absence of a sufficient number of data points for each individual

school.

According to Topol et al. (2012), “school districts are spending an average of $15–$20 or more

per student on interim assessments and data management systems to house their test data.” DCPS

enrollment was approximately 45,000 during this period across 115 schools (District of Columbia

Public Schools 2018a), which suggests a district-wide cost of at least $675,000–$900,000 if the

district chooses to implement interim assessments, or approximately $5,870–$7,826 per school.

Because Topol et al. (2012) suggest that this is a lower bound on interim assessment expenditures,

for our base case, we let F = $7,500.

The most difficult values to parameterize in our model are the maximum effort level producing

an increase in the probability of transitioning to the proficient state (λ) and the marginal cost of

effort (γ). The product λγ represents the maximum cost to teachers for exerting additional effort.

Recall that IMPACT is one of the few programs where financial incentives produced measurable

results; in that program, rewards ranged from $5,000 to $25,000 per teacher, although only a subset

of teachers were eligible for rewards at the upper end of that range. Furthermore, the average

number of full-time teachers at a DC public school is 35 (District of Columbia Public Schools
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2018c). Based on these values, we assume that the average maximum cost of effort per teacher is

$10,000; for one school, λγ is $350,000.

Finally, we recognize that the accuracy of formative assessments can vary greatly depending on

the teacher and setting. Throughout the paper, we consider a case where the formative assessment

has a high likelihood of returning a false positive result,
(
φP |P , φP |N

)
= (0.9,0.5). We also consider

cases where the formative assessment detects proficiency reasonably well (φP |P = 0.9) or perfectly

(φP |P = 1) and φP |N varies, and when the formative assessment detect low-performance reasonably

well (φP |N = 0.1) and φP |P varies.

The base case values of the parameters is shown in Table 2.

Parameter Value
AP 0.72
AN 0.13
λγ, in $000’s/school 350
F, in $000’s/school 7.5
Teachers per school 35

Table 2 The base-case parameter values.

In the following analysis we use the base-case parameter values to illustrate the properties of the

optimal effort policies for teachers and the optimal merit-based incentives and assessments for the

school district.

4. Impact of Assessment Choice

In this section, we begin by considering the case where both the district and teachers rely on a

formative assessment (Figure 2b) of the state of student performance at t= 1. The district selects

a merit-based incentive level π to maximize the probability that the school will be in the proficient

state at t= 2. The formative assessment result X1 does not perfectly reflect the state of proficiency

at t = 1, β1; the degree of imperfection is characterized by (3)-(4). For any given value of π, we

solve the dynamic program that determines the optimal teachers’ effort policy. Using this result, we

then consider the teachers’ effort levels in the case where teachers have perfect information about

the intermediate state, either because the district invests in an interim assessment (Figure 2a) or

based on the teachers’ first-hand knowledge of student progress (Figure 2b). Finally, based on the

teachers’ response to incentives, we determine the optimal level of merit-based incentive under

both formative and interim assessments.
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4.1. Optimal Teachers’ Effort Policy in the Presence of Merit-Based Incentive

The teachers’ problem is a two-period dynamic program (12)-(13). We begin by characterizing,

for given π, the teachers’ effort decision at the beginning of period 2 (i.e., at t= 1). The teachers’

“profit-to-go” function at t= 1 is

J1 (S1) = max
e1≥0

[πPr [S2 = P |S1]− γe1] , (16)

where the state of the system at t= 1 is given in (10), i.e.,

S1 =

{
(X1, e0,S0) , if zI = 0 and T = 0,

β1, if zI = 1 or T = 1.
(17)

Here and below we omit, for simplicity, the designation (π, zI) when referring to the profit-to-go

functions and the optimal effort levels. In particular, we use e∗1 (S1) to denote the optimal effort

level at t= 1:

e∗1 (S1) = arg max
e1≥0

[πPr [S2 = P |S1]− γe1] . (18)

For the analysis below, we use

π̂=
π

λγ
and ê∗1 (S1) =

e∗1 (S1)

λ
(19)

to represent the scaled merit-based incentive level and optimal scaled effort level. Additionally, we

use P1 (S1) to represent the merit-based incentive threshold at t= 1, and

P̂1 (S1) =
P1 (S1)

λγ
, (20)

to represent the scaled merit-based incentive threshold. Finally, for convenience, we define

m(e0,S0) =

{
1− δ(e0), if S0 = P,

α(e0), if S0 =N.
(21)

Proposition 1 describes the optimal effort level at t= 1.

Proposition 1. a) The optimal scaled effort level at t= 1 is given by

ê∗1 (S1) =

{
0, if 0≤ π̂ < P̂1 (S1) ,

1, if P̂1 (S1)≤ π̂,
(22)

where

P̂1 (S1) =
1

Pr [β1 = P |S1] (AP −AN) +AN
(23)

and

Pr [β1 = P |S1] =


φP |Pm(e0,S0)

φP |Pm(e0,S0)+φP |N (1−m(e0,S0))
, if S1 = (P,e0,S0) ,

(1−φP |P )m(e0,S0)

(1−φP |P )m(e0,S0)+(1−φP |N)(1−m(e0,S0))
, if S1 = (N,e0,S0) .

(24)

b) For all values of π̂, S0, and e0, ê∗1 (P,e0,S0)≥ ê∗1 (N,e0,S0).
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When teachers do not know the true intermediate state (T = 0 and zI = 0), they rely on both the

result of the formative assessment X1 and the effort level at t= 0, e0 to estimate the probability

that the school is in the proficient state and select their effort level at t= 1. This reflects the reality

that teachers often use multiple inputs, e.g., ongoing daily observation, throughout the course of

the school year to gauge student progress, weighting those inputs based on their experience. (22)

reflects general features of the optimal effort levels that will apply under a broad range of concave

response-to-effort functions that display smaller marginal response at the not-proficient state, and

a broad range of convex cost-of-effort functions. First, as expected, the optimal effort level is a

non-decreasing function of the merit-based incentive level selected by the school district. Second,

the optimal effort level when the assessment result is proficient is at least as high as the optimal

effort level when the result is not-proficient, holding all else constant. This is driven by the greater

difficulty of achieving proficiency faced by teachers at a school in the not-proficient state. Thus, the

schools that fall behind may require higher rewards for their teachers in order to reach the proficient

state, even in the absence of any other differences between performing and non-performing schools.

In practice, this need for extra incentives is further compounded by the fact that more effective

teachers tend to be distributed towards more advantaged schools (Clotfelter et al. 2006).

The optimal effort level at t= 1 under perfect information is the special case when φP |P = 1 and

φP |N = 0. We describe this result in Section A1 in the Appendix.

Next, consider the teachers’ effort level decision at t= 0. The teachers’ profit-to-go function at

that time is

J0(S0) = max
e0≥0

[E [J1 (h1 (e0,S0))]− γe0] , (25)

where for all zI , from (9),

S0 = β0 (26)

describes the state of the system at t = 0. The probability distribution of h1 (e0,S0) is given by

(B2). We use e∗0 (S0) to denote the effort level that optimizes this function:

e∗0 (S0) = arg max
e0≥0

[E [J1 (h1 (e0,S0))]− γe0] , (27)

where we represent the optimal scaled effort by

ê∗0 (S0) =
e∗0 (S0)

λ
. (28)

Furthermore, P0 (S0) is the merit-based incentive threshold at t= 0, and

P̂0 (S0) =
P0 (S0)

λγ
(29)

is the scaled merit-based incentive threshold.
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For the analysis below, we define the following constants:

A1 =
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

)
A2
P

(
1−φP |P

)
+AP (1−AP )

(
1−φP |N

) , (30)

A2 =
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

)
(1−AP )

(
1−φP |N

) (
APφP |P −ANφP |N

) , (31)

R1 =
AP
(
1−φP |P

)
+ (1−AP )

(
1−φP |N

)
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

) , (32)

R2 =
1 +AP

(
φP |P −φP |N

)
AP
(
APφP |P −ANφP |N

) , (33)

and the following sets of (AP ,AN) values:

S1 =

{
(AP ,AN)

∣∣∣∣0≤AP −AN ≤ AN
AP

}
, (34)

S2 =

{
(AP ,AN)

∣∣∣∣ ANAP <AP −AN ≤A1

}
, (35)

S3 ={(AP ,AN) |A1 <AP −AN ≤A2} , (36)

S4 ={(AP ,AN) |A2 <AP −AN} . (37)

Our subsequent results depend, on the one hand, upon the relationship between the individual

values of the response-to-effort paramaters AP and AN , and, on the other hand, the set these values

jointly belong to. The different sets of (AP ,AN) pairs are illustrated in Figure 4. In general, there

exist at most four distinct sets, and when teachers have perfect information, either through testing

or because of the teacher type, the number of sets decreases to two (Figure 4b). Broadly, when

AP and AN are close, the pair is in S1, and, as the distance between the parameters increases, the

set to which the pair belongs changes to S2, then to S3, and finally, for some values of AP , to S4.
Observe that the shape of each region depends on the parameters φP |P and φP |N , and S4 does not

always span the entire range of AP . As the difference between φP |P and φP |N increases, S4 spans

a greater range of AP values.

Using these regions, we characterize the optimal scaled effort level ê∗0 (S0) and the scaled profit-

to-go function Ĵ0(S0) at t= 0.

Proposition 2. The optimal scaled effort at t= 0 is

ê∗0 (S0) =

{
0, if 0≤ π̂ < P̂0 (S0) ,

1, if P̂0 (S0)≤ π̂,
(38)

where

P̂0 (S0) =


1

AN (AP−AN )
, if S0 =N,

1
AP (AP−AN )

, if S0 = P and (AP ,AN)∈ S1 ∪S2,
R1, if S0 = P and (AP ,AN)∈ S3,
R2, if S0 = P and (AP ,AN)∈ S4.

(39)
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Figure 4 The shaded areas indicate different regions of interest for pairs of the parameters AP and AN . In

Region I, (AP ,AN ) ∈ S1 ∪S2; in Region II, (AP ,AN ) ∈ S3; and in Region III, (AP ,AN ) ∈ S4, where a) φP |P = 0.9,

φP |N = 0.5, b) φP |P = 1, φP |N = 0.

As with the effort level at t= 1, there exists a minimum positive level of the merit-based incentive

necessary to induce a positive effort level. When the school begins in the not-proficient state, the

optimal effort level and profit-to-go functions are independent of the accuracy parameters φP |P

and φP |N , due to the high level of reward necessary to induce positive effort at t= 0. Specifically,

when the initial state is not proficient, if the reward is high enough to incentivize positive effort at

t= 0, then it is always high enough to incentivize positive effort at t= 1, regardless of whether the

intermediate state is proficient or not. Therefore, the uncertainty from the formative assessment is

no longer a factor, and the optimal effort decision is driven entirely by the initial state and effort

level at t= 0.

For schools that begin the year in the proficient state, the functional form of the optimal effort

level may be influenced by the accuracy of the formative assessment. When the response-to-effort

parameters AP and AN are sufficiently close, i.e., when (AP ,AN) ∈ S1 ∪ S2, the functional form

of teacher effort does not depend on the accuracy parameters, although the accuracy parameters

do impact the boundary for S2. This is to be expected: when the transition probability between

the states does not significantly vary with the starting state, the accuracy of formative assessment

results is less important. Presumably, this is the case for schools that have a long history of being

in the proficient (not-proficient) state, where the probability of transitioning to the proficient state

is likely to be high (low) regardless of the starting state in that particular instance. As AP and AN

diverge, the accuracy parameters play a more important role in determining the functional form

of effort and a positive value of the scaled reward is necessary to ensure a positive teacher effort.
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In Section A2 in the Appendix, we describe additional properties of the merit-based incentive

threshold at t= 0, including the value of the threshold under perfect information; as when t= 1,

this is the special case when φP |P = 1 and φP |N = 0.

4.2. Optimal Merit-Based Incentive

Using the characterization of the optimal teachers’ response policy in the presence of merit-based

incentives supported by information about the state of the system at t= 1, we analyze the district’s

decision on the optimal incentive level. The district’s optimization problem, (14)-(15), is

max
π≥0

Pr∗[S2 = P |S0] (40)

s.t. πPr∗[S2 = P |S0] +FzI ≤B, (41)

where we hold zI fixed and Pr∗ [S2 = P |S0] is the probability that the system will be in the proficient

state at t = 2 under the optimal teachers’ response to the merit-based incentive π. We derive a

complete characterization of this quantity in Lemma B3 in the Appendix.

We represent the scaled budget by B̂ and the scaled fixed cost of the interim assessment by F̂ :

B̂ =
B

λγ
, F̂ =

F

λγ
, (42)

and define the following constants:

B1 =

(
AP
(
1−φP |P

)
+ (1−AP )

(
1−φP |N

)
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

))(A2
P +AN (1−AP )

)
, (43)

B2 =

(
1 +

ANφP |N

AP
(
APφP |P −ANφP |N

))(1 +AP
(
φP |P −φP |N

))
, (44)

B3 =R2

(
qA2

P + (1− q)
(
A2
PφP |P +AN (1−AP )φP |N

))
, (45)

B4 = (1 +AP )

(
q+ (1− q)

(
A2
PφP |P +AN (1−AP )φP |N

A2
P

))
. (46)

Recall that R1 and R2 are given in (32) and (33), and q characterizes the probability that teachers

know the true state at t= 1 regardless of the assessment choice.

It is straightforward to show that the district’s estimate of the probability of achieving proficiency

in the final state is a non-decreasing function of the merit-based incentive π (see Proposition B1

in the Appendix), a property that facilitates the search for the optimal level of the merit-based

incentive. Proposition 3 describes the optimal choice of the scaled merit-based incentive π̂∗ as a

function of the district’s scaled budget.

Proposition 3. If the district relies on the formative assessment (zI = 0) and there is a mod-

erate level of information asymmetry (0< q < 1), the optimal scaled merit-based incentive can be

characterized as follows.
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a) For S0 =N ,

π̂∗ =


0, if 0≤ B̂ < 1,
1
AN
, if 1≤ B̂ < 1 + 1

AP−AN
,

1
AN (AP−AN )

, if 1 + 1
AP−AN

≤ B̂.
(47)

b) For S0 = P and (AP ,AN)∈ S1,

π̂∗ =


0, if 0≤ B̂ < 1,
1
AN
, if 1≤ B̂ < 1 + AN

AP (AP−AN )
,

1
AP (AP−AN )

, if 1 + AN
AP (AP−AN )

≤ B̂.
(48)

c) For S0 = P and (AP ,AN)∈ S2,

π̂∗ =



0, if 0≤ B̂ < (1− q)
(

1 + AN
AP (AP−AN )

)
,

1
AP (AP−AN )

, if (1− q)
(

1 + AN
AP (AP−AN )

)
≤ B̂ < 1 +AP + (1− q)

(
AN(1−A2

P )
A2

P

)
,

1+AP

A2
P
, if 1 +AP + (1− q)

(
AN(1−A2

P )
A2

P

)
≤ B̂ < 1 +AP

(
AP
AN
− 1
)
,

1
AN
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂.

(49)

d) For S0 = P , (AP ,AN)∈ S3, and
(

1− (AP −AN)− AN

A2
P

)(
1−φP |N

)
≤ 1−φP |P ,

π̂∗ =



0, if 0≤ B̂ < (1− q)B1,

R1, if (1− q)B1 ≤ B̂ < 1 +AP + (1− q)
(
AN(1−A2

P )
A2

P

)
,

1+AP

A2
P
, if 1 +AP + (1− q)

(
AN(1−A2

P )
A2

P

)
≤ B̂ < 1 +AP

(
AP
AN
− 1
)
,

1
AN
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂.

(50)

e) For S0 = P , (AP ,AN)∈ S3, and 1−φP |P <
(

1− (AP −AN)− AN

A2
P

)(
1−φP |N

)
,

π̂∗ =



0, if 0≤ B̂ < q(1 +AP ),
1+AP

A2
P
, if q(1 +AP )≤ B̂ < qA2

PR1 + (1− q)B1,

R1, if qA2
PR1 + (1− q)B1 ≤ B̂ < 1 +AP

(
AP
AN
− 1
)
,

1
AN
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂.

(51)

f) For S0 = P , (AP ,AN)∈ S4, and
(
AP (AP−AN )−AN

AP

)
φP |N ≤ 1−φP |P ,

π̂∗ =



0, if 0≤ B̂ < q(1 +AP ),
1+AP

A2
P
, q(1 +AP )≤ B̂ <B3,

R2, if B3 ≤ B̂ < qA2
PR1 + (1− q)B1,

R1, if qA2
PR1 + (1− q)B1 ≤ B̂ < 1 +AP

(
AP
AN
− 1
)
,

1
AN
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂.

(52)
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g) For S0 = P , (AP ,AN)∈ S4, and 1−φP |P <
(
AP (AP−AN )−AN

AP

)
φP |N ,

π̂∗ =



0, if 0≤ B̂ < (1− q)B2,

R2, if (1− q)B2 ≤ B̂ <B4,
1+AP

A2
P
, if B4 ≤ B̂ < qA2

PR1 + (1− q)B1,

R1, if qA2
PR1 + (1− q)B1 ≤ B̂ < 1 +AP

(
AP
AN
− 1
)
,

1
AN
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂.

(53)

As expected, the optimal reward is non-decreasing in the scaled budget B̂. Furthermore, the

formative assessment accuracy parameters φP |P and φP |N play a key role in determining the optimal

reward only when the school begins the year in the proficient state, and when AP and AN are

sufficiently different, i.e. (AP ,AN) ∈ S3 ∪ S4. As one would expect, the degree of the district’s

uncertainty about whether teachers have perfect knowledge of the intermediate state, q, matters

in the cases where the accuracy of the mid-year assessment affects the teachers’ effort decision.

This includes the case where (AP ,AN) ∈ S2, since the formative assessment accuracy affects the

boundary of that region. We characterize the settings without information asymmetry (q= 0) and

with extreme information asymmetry (q= 1) in Section A3 in the Appendix.

5. Choosing the Best Assessment

Using the analysis of Section 4, we now turn to the district’s optimal choice of assessment for a

particular school. Recall the district’s optimization problem given in (14)-(15):

max
π≥0,zI∈{0,1}

Pr∗[S2 = P |S0] (54)

s.t. πPr∗[S2 = P |S0] +FzI ≤B. (55)

For a given budget B and cost F , the optimal choice can be either the interim or formative assess-

ment, or both. A complete characterization of the optimal assessment choice for any combination

of problem parameters is presented in Proposition B2 in the Appendix.

As one might expect, there are two trivial settings where the choice of assessment does not

change the probability that the school is in the proficient state at the end of the year. First, when

the budget is sufficiently small (B <BL), the school district can never afford to offer a reward that

is high enough to induce teachers to exert positive effort. Therefore, there is always zero probability

of achieving proficiency in the final period. Conversely, when the budget is large (B ≥BU) and the

cost of the interim assessment is sufficiently small, the school district can offer a reward that is high

enough to incentivize maximum effort levels throughout the school year for any value of the state at

t= 1, S1. In this second case, the probability of achieving proficiency reaches the maximum possible

level regardless of the assessment choice. The values of BL and BU depend on the parameters.
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Specifically, in Proposition B2, we show that BL may depend on the accuracy parameters (φP |N ,

φP |P ) and response-to-effort parameters (AN , AP ) as well as the level of information asymmetry

(q), whereas BU depends only on the response-to-effort parameters.

In Proposition 4 below, we describe two settings where the district does not benefit from investing

in additional information even for non-trivial budget levels.

Proposition 4. Consider a setting where teachers have imperfect information about the state

at t= 1 (q < 1).

a) When the school begins the year in the not-proficient state, S0 =N , the formative assessment

is optimal.

b) Suppose the school begins the year in the proficient state, S0 = P , and φP |P < 1, AN

A2
P
<AP −

AN , q < AN (1−AP )

A2
P
+AN (1−AP )

. Then, there exists φ̄P |N < φP |P such that for all φP |N ∈
(
φ̄P |N , φP |P

]
, the

formative assessment is optimal.

Proposition 4a states that when the school begins the year in the not-proficient state (S0 =N),

there is never any benefit from investing in the interim assessment. In this case, the low probability

that the school will achieve proficiency at t= 2 means that a high level of reward is necessary to

incentivize teachers to exert effort. Furthermore, the reward needed to incentivize teachers at t= 0

is always higher than the reward needed to incentivize teachers at t= 1, as shown in Corollary A4.

Therefore, if the district offers a sufficiently high merit-based incentive, teachers will be incentivized

to exert effort throughout the year, regardless of how students progress. On the other hand, if

the reward offered is too low to incentivize effort at t = 0, teachers know with certainty that

students will remain in the not-proficient state at t= 1. In either case, teachers’ effort decisions are

driven entirely by the merit-based incentive and do not change based on additional information.

This finding is consistent with the way some urban districts incentivize effort. For example, DC

Public Schools’ IMPACT offers significantly higher rewards to teachers in high-poverty schools,

recognizing the need to offer higher incentives for teachers facing greater challenges.

In Proposition 4b, we consider settings with low information asymmetry where the response-

to-effort parameters are sufficiently different and when the initial state is proficient. When the

formative assessment cannot perfectly recognize high-performance and the accuracy parameters

are sufficiently close, it is always optimal for the district to rely on the formative assessment. In

particular, we show that the formative assessment is the only optimal assessment choice for non-

trivial budget values. Broadly, this suggests that when the formative assessment is not particularly

informative (φP |P and φP |N are close), teachers will be inclined to rely on their knowledge of the

initial state and the level of effort exerted at t = 0. Because of this, when the school begins the

year in the proficient state, it is cheaper to incentivize effort both at t = 0 and at t = 1 under
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the formative assessment than to incentivize effort in any setting under the interim assessment.

Then, any subsequent increases in the budget that allow the district to incentivize effort under the

interim assessment can never result in a better chance of achieving proficiency in the final period

under the interim assessment.

We illustrate the value of information in Figure 5, where value is determined by comparing

the probability that the school is in the proficient state at the end of the year under the interim

assessment (perfect information) and formative assessment (imperfect information). Specifically,

we indicate whether information has a positive, negative, or zero value for regions based on the

accuracy parameter φP |P and the district’s scaled budget B̂. Figure 5a shows the case where the

interim assessment is free (F̂ = 0) and there is no information asymmetry (q = 0), and Figure 5b

shows the case where information has a cost (F̂ = 0.5) and there is some information asymmetry

(q= 0.5). In both figures, we see that information has zero value for small and large budgets. The

boundary on the upper zero-value region corresponds to B̂U , the threshold indicating when the

budget becomes trivially large, and the boundary on the lower zero-value region corresponds to

B̂L, the threshold indicating the highest budget that is trivially small. Notice that as F̂ increases,

B̂U increases while B̂L decreases.

Figure 5 Regions showing where information has positive (+), negative (–), or zero value by accuracy

parameter φP |P and scaled budget B̂ when a) F̂ = 0 and q= 0 and b) F̂ = 0.5 and q= 0.5 (AP = 0.72, AN = 0.13,

φP |N = 0.1).

Strikingly, there are large regions where information has a negative value. In particular, this is

true for smaller values of φP |P and moderate, i.e. non-trivial, values of the budget, as described by

Proposition 4b. For low values of φP |P , the probability that β1 = P given the formative assessment

resultX1 is high for bothX1 = P andX1 =N , which results in low merit-based incentive thresholds.
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Therefore, as the budget increases from zero, the district will first be able to afford incentivizing

teachers under the formative assessment, for all possible scenarios (i.e., at t= 0 and at t= 1 for

X1 = P and X1 =N). Figure 5b suggests that this result holds even for large levels of information

asymmetry.

For higher values of φP |P , there is greater variation in whether or not information is valuable.

The optimal assessment choice in this region is driven by two factors. First, when S0 = P , the

reward threshold at t= 1 for X1 =N under the formative assessment is increasing in φP |P . This

threshold is less than the reward threshold at t = 0 for small values of φP |P , but it exceeds the

threshold at t= 0 for large values of φP |P . This is in contrast to the interim assessment, for which

the reward threshold at t = 1 when β1 = N always exceeds the reward threshold at t = 0 when

S0 = P . Second, recall that the district is constrained by its expected costs. Paradoxically, this

means that a district may only be able to afford incentivizing effort under an assessment that

results in a lower probability of the school achieving proficiency at t= 2 even if the reward amount

is higher than what it would have been under the alternative assessment choice.

In Figure 5a, as φP |P increases, information first becomes valuable (at φP |P ≈ 0.85) when the

budget can no longer support a reward under the formative assessment; because the incentive

threshold at t= 0 under the formative assessment is increasing in φP |P in this region, so are the

district’s expected costs. However, at this point, the district can afford to offer a similar level of

reward under the interim assessment, due to the lower probability of achieving proficiency at t= 2.

Hence, information has a positive value in this case.

Once φP |P is sufficiently high, the merit-based incentive threshold at t= 1 when X1 =N exceeds

that under the formative assessment at t= 0. For φP |P values in this region, as the budget increases,

the district can first afford to incentivize positive effort at t= 0 and at t= 1 when the mid-year

assessment result is proficient under the formative assessment; this results in a small region where

information has a negative value. Once the budget is large enough to support incentivizing effort at

t= 0 and at t= 1 for a proficient mid-year result under both the formative and interim assessments,

the district is better off investing in the interim assessment. Finally, when the budget is large enough

to support always incentivizing effort under the formative assessment, including when X1 = N ,

investing in the interim assessment becomes counterproductive.

Notice that as φP |P approaches 1, there is a small region of φP |P for which information always

has negative value adjacent to the region where information has positive value. For these high

values of φP |P , teachers almost always exert effort when the true state is proficient, and they also

exert effort when the true state is not proficient with probability φP |N . If the district invested in

information in this case, the additional benefit from always exerting effort when the true state is

proficient is outweighed by the lost chance of recovering from falling into the not-proficient state.



Virudachalam, Savin, and Steinberg
Investing in Performance in K-12 Education 27

Finally, as one might expect, as q increases, the set of values for which information has pos-

itive value shrinks and the set for which information has negative value increases. Interestingly,

this occurs when the belief that teachers may have perfect information lowers the probability of

achieving proficiency under the formative assessment, thereby decreasing the district’s expected

cost from offering rewards and allowing the districting to offer rewards at a lower budget.

6. Discussion

In this paper, we consider the tradeoffs faced by a school district that must allocate a fixed budget

between merit-based incentives for teachers and an interim assessment that gives precise infor-

mation about mid-year student proficiency. We study this setting using a dynamic, two-period

principal-agent modeling framework with hidden information, where the school district is the prin-

cipal and the teachers at a given school the agent. Using a stylized model, we characterize the

teachers’ optimal effort policy for a given level of merit-based incentive under each type of assess-

ment. We also describe the district’s optimal level of performance-based incentives and choice of

assessment.

Notably, we establish that for low-performing schools, i.e., schools that begin the year being

“behind,” the school district never benefits from investing in additional information via the interim

assessment. In this case, the challenge of achieving proficiency at the end of the year is great, and a

commensurately high incentive must be offered to encourage teachers to exert effort throughout the

school year. If such an incentive is offered, teachers will always exert maximal effort, regardless of

mid-year student progress. Thus, districts are better off investing their entire budget in merit-based

incentives.

For schools that begin the year on track to achieve proficiency, whether or not the additional

information is a valuable investment depends on the accuracy of the formative assessment. Specifi-

cally, in the absence of clear information, teachers are inclined to believe that the state will remain

proficient if they exert effort in the first half of the academic year. This, in turn, makes it easier

to motivate teachers using incentives. In this case, the district is better off foregoing investment in

the interim assessment; doing so enables them to incentivize maximal effort throughout the year.

On the other hand, when the formative assessment more accurately relays the true mid-year

state of proficiency, the school district generally benefits from investing in information for low

budget values. In this case, the relative accuracy of the formative assessment makes teachers less

likely to rely on their knowledge of students’ high performance at the beginning of the year, which

consequently raises the level of merit-based incentive required to motivate them. An exception

to this is when the formative assessment almost perfectly determines when the school is in the

proficient state: then, investing in information has minimal impact on teachers’ behavior when
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students peform well on the mid-year assessment, but reduces teachers’ effort when students have

fallen behind. In such settings, the school district should rely on the formative assessment. Finally,

for larger budgets, the school district is able to afford to incentivize teachers to exert maximal effort

throughout the year when they are relying on the formative assessment. In this case, investing in

the interim assessment is no longer optimal.

We recognize that our model has several limitations. First, we characterize effort as a single-

dimensional decision made solely by teachers. In practice, teaching and the effort put into it consist

of many distinct components, such as lesson planning and professional development. Moreover,

students also make an effort decision: they actively determine the type and level of their own effort

to exert throughout the year. The information provided by an interim assessment may allow both

students and teachers to target their effort more effectively, resulting in a higher probability of

students succeeding at no additional “cost” to teachers. We expect that extending our work to

include such features will broaden the range of settings for which mid-year perfromance information

has a positive value. Furthermore, we focus on the level of proficiency attained by a school and do

not take into account student “growth.” Student growth targets are designed to standardize the

level of effort necessary for teachers and districts to meet their performance goals, regardless of the

initial state of student proficiency. In reality, both measures are important for school accountability.

A simple way to adapt our model to this setting is by assuming that every school starts in the

“proficient” state, and letting high-performing and low-performing schools vary in terms of how

easily they can transition to the proficient state or recover from falling behind.

We believe the insights derived from our stylized model are noteworthy. In practice, school

districts often focus on the potential benefits from providing additional information, but not on

the potential drawbacks stemming from it. Our analysis identifies settings where extra information

is beneficial, but also settings where it may have a demotivating effect. We view our model as the

first step in exploring the rich and complex environment of education.
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Appendix for “Investing in Performance: Information and Merit-Based
Incentives in K-12 Education”
A1. Merit-Based Incentive Threshold at t= 1 Under Perfect

Information

Corollary A1 describes the merit-based incentive threshold – that is, the minimum level of merit-

based incentive for which teachers are incentivized to exert effort – in the case where either the

district invests in a perfectly-informative interim assessment (zI = 1) or the teachers are able to

accurately gauge student knowledge regardless of the assessment type (T = 1).

Corollary A1. When teachers have perfect information about the state at t= 1, the minimum

level of scaled merit-based incentive necessary to induce positive effort at t= 1 under the optimal

effort policy is given by

P̂1 (S1) =

{
1
AP
, if S1 = P,

1
AN
, if S1 =N.

(A1)

Proof of Corollary A1

The result follows from Proposition 1 using φP |P = 1 and φP |N = 0. �

The closed-form expressions for the teachers’ optimal effort level at t= 1 provided in Corollary A1

are intuitive and stem from Assumptions 1 and 3, which we make on the functional form of the

teachers’ response-to-effort and cost-of-effort functions. Note that in the perfect information case,

when S1 = P (S1 =N), ê∗1 (S1) depends only on AP (AN).

Figure A1 Optimal scaled effort at t= 1, ê∗1, as a function of the per-teacher merit-based incentive π for

different values of the state S1 when teachers have perfect information (“base-case” parameter set: AP = 0.72,

AN = 0.13, λγ = $350,000, 35 teachers per school).

The results of Corollary A1 are illustrated in Figure A1. The optimal scaled effort level at t= 1,

ê∗1 (S1), is shown as a function of the merit-based incentive level π for different values of the state

S1. Figure A1 illustrates the dramatic difference, for realistic values of problem parameters, in the

levels of incentives required to generate teachers’ response in proficient and not-proficient states:
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approximately, $14,000 vs. $77,000. While specific values of estimates we obtain rely heavily on

our assumption set, the gap in required incentives is driven by the corresponding disparity in how

far teachers’ efforts go in the two states, and is likely to remain significant under a wide range of

alternative assumptions.

A2. Properties of the Merit-Based Incentive Threshold at t= 0

In the following result, we describe the minimum reward necessary to incentivize positive effort at

t= 0 for the special case where teachers know the true intermediate state (zI = 1 or T = 1).

Corollary A2. When teachers have perfect information about the intermediate state at t= 1,

the minimum level of merit-based incentive necessary to induce positive effort at t= 0 under the

optimal effort policy is

P̂0 (S0) =


1

AN (AP−AN )
, if S0 =N,

1
AP (AP−AN )

, if S0 = P and (AP ,AN)∈ S1,
1+AP

A2
P
, if S0 = P and (AP ,AN)∈ S4.

(A2)

Proof of Corollary A2

The result is obtained from Proposition 2 using φP |P = 1 and φP |N = 0. �

When teachers have perfect information about the state at t= 1, the decision-making at t= 0

is different from that at t= 1 in an important way: at t= 0 the threshold value of the merit-based

pay required to induce positive effort depends on the characteristics of both proficient and not-

proficient states rather than only on the response-to-effort parameter of the state the school is in at

t= 0. (In the last case in Corollary A2, the region determination depends on both AP and AN even

though the reward threshold value does not.) This result is a direct consequence of the dynamic

nature of the teachers’ effort selection problem that must account for all the future states that the

school may be in at t= 1.

Figure A2 compares the minimum level of scaled reward necessary to induce a positive effort

level at t = 0, P0 (S0), as a function of the response-to-effort parameter AN when teachers have

imperfect and perfect information about the state at t= 1. When S0 =N , the value of the reward

threshold is independent of the assessment accuracy and higher than that in the case where the

school starts in the proficient state. When S0 = P , whether the reward threshold is higher or lower

under uncertainty (in this case, φP |P = 0.9 and φP |N = 0.5) than under perfect information depends

on the value of AN . In particular, there are three regions of AN in which a different effect dominates.

For low values of AN , teachers have a natural incentive to remain in the proficient state since

AN is significantly smaller than AP . This effect is more pronounced under uncertainty than under

perfect information (zI = 1 or T = 1), which makes it less costly to induce positive effort under the
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Figure A2 P0 (S0), the minimum level of per-teacher merit-based incentive required to induce positive effort at

t= 0 as a function of the response to effort parameter AN for S0 =N and S0 = P under both perfect and

imperfect (φP |P = 0.9 and φP |N = 0.5) information (AP = 0.72).

formative assessment. As AN increases, there is a critical point at which the difference between AN

and AP becomes secondary. Initially at this point, teachers overestimate the possibility of being

in the not-proficient state relative to having perfect information, which results in a higher reward

threshold under uncertainty. However, as AN continues to increase, the greater responsiveness-to-

effort under the not-proficient state eventually leads to a lower reward threshold under uncertainty.

Finally, at another critical point of AN , the proximity of AN to AP acts as a disincentive to exert

effort at t= 0, so the reward threshold increases as AN increases. Once AN is sufficiently close to

AP , the threshold is independent of the accuracy of the formative assessment. In addition to these

qualitative trends, it is important to point out two quantitative outcomes observed under realistic

“base-case” parameter values. First, the monetary incentive required to induce teachers’ response

at t= 0 is several times higher in the not-proficient state (around $135,000) than in the proficient

state (around $35,000). Second, in either state our estimates for this incentive level at t = 0 are

around two times higher than those for the corresponding level at t= 1, reaching impractical values.

Note that the accuracy of formative assessments only slightly modulates these outcomes.

To further illustrate the nuances of the relationship between accuracy and responsiveness-to-

effort, Figure A3 shows the reward threshold under imperfect information for φP |P = 0.9 as a

function of φP |N , relative to the perfect information case. The figure suggests that, for smaller values

of φP |N , a not-proficient assessment result is given greater weight in the imperfect information case

than under perfect information, making it more costly to induce effort under uncertainty. However,

as φP |N increases, becoming closer to φP |P and therefore less informative, teachers rely more on

the initial state (S0 = P ) and the effort at t= 0 than on the assessment result. This leads to under-

weighting the likelihood of being in the not-proficient state at t= 1; consequently, a lower reward
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Figure A3 The minimum level of per-teacher merit-based incentive required to induce positive effort at t= 0

for S0 = P as a function of the accuracy parameter φP |N and different values of φP |P relative to the perfect

information case (AP = 0.72,AN = 0.13).

is necessary to induce positive effort. The discontinuity at φP |N = 0.21 occurs when the (AP ,AN)

region changes from S4 to S3.

Figures A2 and A3 illustrate an interesting outcome: in some settings, it is less costly to incen-

tivize teachers to exert effort when they have imperfect information about the intermediate state

of the system, than under perfect information. In Corollary A3, we show that this outcome always

holds for two special cases.

Corollary A3. For S0 = P , suppose that either φP |P = 1 and φP |N > 0 or that φP |P = φP |N .

Additionally, suppose AN is sufficiently smaller than AP , so that (AP ,AN)∈ S4 when φP |P = 1 and

(AP ,AN) ∈ S2 when φP |P = φP |N . Then, the merit-based incentive threshold at t = 0, P0 (S0), is

lower when teachers have imperfect information about the intermediate state than when they have

perfect information.

Proof of Corollary A3

From (31),

A2 =
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

)
(1−AP )

(
1−φP |N

) (
APφP |P −ANφP |N

) . (A3)

When φP |P = 1,

A2 =
AN

AP −ANφP |N
, (A4)

and from (37),

(AP ,AN)∈ S4 ⇐⇒ A2 <AP −AN ⇐⇒ AN < (AP −AN)
(
AP −ANφP |N

)
. (A5)
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For any value of AP , this statement holds for sufficiently small AN , since

lim
AN→0+

AN = 0<A2
P = lim

AN→0+
(AP −AN)

(
AP −ANφP |N

)
. (A6)

Next, compare the merit-based incentive thresholds under perfect and imperfect information

when (AP ,AN)∈ S4. If S0 = P and (AP ,AN)∈ S4, from (39) and (A2),

P̂0 (S0) =

{
R2, if zI = 0 and T = 0,
1+AP

A2
P
, if zI = 1 or T = 1,

(A7)

where from (33),

R2 =
1 +AP

(
φP |P −φP |N

)
AP
(
APφP |P −ANφP |N

) . (A8)

Then,

R2 ≤
1 +AP
A2
P

⇐⇒
1 +AP

(
φP |P −φP |N

)
AP
(
APφP |P −ANφP |N

) ≤ 1 +AP
A2
P

⇐⇒ 1−φP |P ≤
(

(AP −AN)− AN
AP

)
φP |N .

(A9)

Note that

(AP ,AN)∈ S4⇒
AN
AP
≤AP −AN , (A10)

so the right-hand side of (A9) is non-negative. Therefore, (A9) holds when φP |P is sufficiently large

relative to φP |N . In particular, this always holds when φP |P = 1.

From (30),

A1 =
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

)
A2
P

(
1−φP |P

)
+AP (1−AP )

(
1−φP |N

) . (A11)

When φP |P = φP |N ,

A1 =
A2
P +AN (1−AP )

A2
P +AP (1−AP )

, (A12)

and from (35),

(AP ,AN)∈ S2 ⇐⇒
AN
AP

<AP −AN ≤A1 ⇐⇒
AN
AP

<AP −AN ≤
A2
P +AN (1−AP )

A2
P +AP (1−AP )

. (A13)

For any value of AP , there exists AN sufficiently small that this statement holds. Specifically, for

all AP , the above statement holds when AN = 0.

Again, compare the merit-based incentive thresholds under perfect and imperfect information

when AN is sufficiently small relative to AP , i.e. (AP ,AN) ∈ S2 for imperfect information and

(AP ,AN)∈ S4 for perfect information. In this case, if S0 = P , from (39) and (A2),

P̂0 (S0) =

{
1

AP (AP−AN )
, if zI = 0 and T = 0,

1+AP

A2
P
, if zI = 1 or T = 1.

(A14)
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Now,

1

AP (AP −AN)
≤ 1 +AP

A2
P

⇐⇒ AP ≤ (1 +AP ) (AP −AN) ⇐⇒ AN
AP
≤AP −AN , (A15)

which always holds in this case. �

In Corollary A3, we consider two settings when the initial state is proficient: first, if the formative

assessment correctly identifies when the true intermediate state is proficient but does not always

identify when the true state is not-proficient, and second, if the formative assessment results are

completely uninformative, i.e., where the probability of getting a proficient assessment result is

independent of the true state of proficiency. In these settings, if the probability of transitioning

to the proficient state is significantly higher when starting in the proficient state than in the not-

proficient state, then it is cheaper to incentivize teachers to exert effort when they have imperfect

information about the intermediate state. When φP |P = 1, the lower likelihood of a not-proficient

result tempers the high “penalty” effect from a small AN . In the case where φP |P = φP |N , the

formative assessment provides no useful information, so teachers place greater weight on the initial

state being proficient.

The following result formalizes sufficient conditions for our observation that the level of merit-

based compensation necessary to incentivize positive effort at t= 0 is higher than the corresponding

threshold at t= 1 for either state of the system.

Corollary A4. Suppose the initial state is not proficient (S0 =N) or suppose the initial state

is proficient (S0 = P ) and (AP ,AN)∈ S1. Then, for all S1, the reward threshold to induce positive

effort at t= 0 is greater than the reward threshold to induce positive effort at t= 1: P0 (S0)>P1 (S1).

Proof of Corollary A4

From (39),

P̂0 (S0) =


1

AN (AP−AN )
, if S0 =N,

1
AP (AP−AN )

, if S0 = P and (AP ,AN)∈ S1 ∪S2,
R1, if S0 = P and (AP ,AN)∈ S3,
R2, if S0 = P and (AP ,AN)∈ S4,

(A16)

and from (23) and (24),

P̂1 (S1) =


φP |Pm(e0,S0)+φP |N (1−m(e0,S0))

AP φP |Pm(e0,S0)+ANφP |N (1−m(e0,S0))
, if S1 = (P,e0,S0) ,

(1−φP |P )m(e0,S0)+(1−φP |N)(1−m(e0,S0))

AP (1−φP |P )m(e0,S0)+AN(1−φP |N)(1−m(e0,S0))
, if S1 = (N,e0,S0) .

(A17)

Then, from (B22)-(B25),

P̂1 (X1, e0,S0)≤
1

AN
for all X1 and S0. (A18)
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Therefore, for all X1, P̂1 (X1, e0,N) is bounded above by P̂0(N).

Consider the case where S0 = P . For (AP ,AN) ∈ S1 ∪S2, the threshold at t= 0 always exceeds

the threshold at t= 1 if

1

AP (AP −AN)
≥ 1

AN
⇐⇒ AN

AP
≥AP −AN . (A19)

This always holds when (AP ,AN)∈ S1 and never holds when (AP ,AN)∈ S2.

When (AP ,AN)∈ S3, the threshold at t= 0 cannot exceed every reward threshold at t= 1, since

P̂0 (P ) =R1 =
AP
(
1−φP |P

)
+ (1−AP )

(
1−φP |N

)
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

) ≥ 1

AN
⇐⇒ AN ≥AP , (A20)

which is impossible under Assumption 1.

When (AP ,AN) ∈ S4, it is possible for the threshold at t= 0 to exceed the threshold at t= 1,

since

P̂0 (P ) =R2 =
1 +AP

(
φP |P −φP |N

)
AP
(
APφP |P −ANφP |N

) ≥ 1

AN
⇐⇒ AN

APφP |P
≥AP −AN . (A21)

�

When the school begins the year in the not-proficient state or the probability of achieving pro-

ficiency does not significantly depend on the starting state, then inducing positive effort earlier in

the year is more costly. In such settings, a district with a limited budget may benefit from allocat-

ing non-monetary resources or incentives during this period. For example, in practice classroom

observations tend to occur towards the end of the school year; our results suggest there is additional

value to be gained from scheduling a greater portion of classroom observations earlier in the year.

Finally, the following result describes the monotonicity properties of ê∗0 for the perfect information

case.

Corollary A5. In the perfect information case, the optimal scaled effort ê∗0 (S0) is non-

decreasing in π̂ and non-decreasing in AP for S0 = P and S0 = N . In addition, ê∗0 (P ) is non-

increasing in AN .

Proof of Corollary A5

From (38), it is clear that ê∗0 (S0) is non-decreasing in π̂.

Next, consider ê∗0 (P ). When φP |P = 1 and φP |N = 0, (AP ,AN)∈ S1 and (AP ,AN)∈ S4 are equiv-

alent to 0≤AP ≤
AN+
√
A2

N
+4AN

2
and

AN+
√
A2

N
+4AN

2
<AP ≤ 1. Then, we have from (A2)

P̂0 (P ) =


1

AP (AP−AN )
, if 0≤AP ≤

AN+
√
A2

N
+4AN

2
,

1+AP

A2
P
, if

AN+
√
A2

N
+4AN

2
<AP ≤ 1.

(A22)
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Suppose AP is fixed. For sufficiently small AN , the scaled reward threshold required to induce

positive effort is 1+AP

A2
P

, which does not change with AN . Once AN is sufficiently large, so that

AP ≤
AN+
√
A2

N
+4AN

2
, the value of P̂0 (P ) is at least as large as the corresponding value when AN is

small:

1

AP (AP −AN)
≥ 1 +AP

A2
P

⇐⇒ AN
AP
≥AP −AN , (A23)

which holds for AP ≤
AN+
√
A2

N
+4AN

2
. Furthermore, the threshold 1

AP (AP−AN )
is increasing in AN .

Therefore, when φP |P = 1 and φP |N = 0, the reward threshold is increasing in AN , so ê∗0 (P ) is

non-increasing in AN .

Next, suppose that AN is fixed. When AP is small, the scaled reward threshold is 1
AP (AP−AN )

,

which is decreasing in AP . As AP increases, the reward threshold eventually becomes 1+AP

A2
P

. From

(A23), this is smaller than the initial threshold value, and under Assumption 1, it is straightforward

to show that this threshold is decreasing in AP . Therefore, the reward threshold is decreasing in

AP , so ê∗0 (P ) is non-decreasing in AP .

Now, consider ê∗0 (N). The scaled reward threshold required for positive effort is 1
AN (AP−AN )

, and

this value is decreasing in AP . Therefore, ê∗0 (N) is non-decreasing in AP . �

Corollary A5 states that, as expected, a higher merit-based incentive results in higher effort

levels. Furthermore, increasing the proficient response-to-effort parameter AP results in a higher

optimal effort. Intuitively, as AP increases and the not-proficient response-to-effort parameter AN

remains fixed, it becomes comparatively easier to remain in the proficient state than to transition

to the proficient state from the not-proficient state. Therefore, teachers are incentivized to exert

a higher effort level in order to remain in the proficient state. The reverse logic holds when the

initial state is proficient and AN is increasing relative to a fixed AP . These effects are evident in

Figure A2.

However, the effect of AN on optimal effort levels when starting in the not-proficient state is

less straightforward. Figure A4 shows the optimal scaled effort level at t= 0, ê∗0, as a function of

AN when the system starts in the not-proficient state for fixed π. (Note that this result does not

depend on the accuracy of teachers’ information about mid-year student progress.) For low values

of AN , starting in the not-proficient state is a great disadvantage; teachers react to increases in

AN by scaling up their efforts. Once AN becomes sufficiently high (and the not-proficient state

becomes sufficiently close to the proficient one in terms of the effect of teachers’ effort) the teachers

react to further increases in AN in a way that is similar to their reaction if they were in a proficient

state. In practice, this means that teachers’ effort levels earlier in the school year may slip if the

consequences for students’ future performance falling to the not-proficient state are either too
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severe or non-existent. Realistically, it is far more likely that consequences will be too severe, since

students that fall behind are more likely to have a harder time transitioning to the proficient state.

As π increases, the range of values of AN which incentivize positive effort expands.

Figure A4 Optimal scaled effort at t= 0 as a function of not-proficient response-to-effort parameter AN when

starting in the not-proficient state (AP = 0.72, π= $100,000/teacher).

A3. Optimal Incentives for No-Information-Asymmetry and
Maximum-Information-Asymmetry Cases

Note that, in the extreme settings with no information asymmetry between the district and the

teachers (q = 0) and with maximum information asymmetry (q = 1), the optimal level of merit-

based pay exhibits discontinuities and cannot always be obtained using the corresponding limits

of the expressions in Proposition 3. The following result describes the optimal level of the scaled

merit-based incentive π̂∗ when the district chooses to rely on the formative assessment and believes

that that the teachers have no additional knowledge of the intermediate state.

Proposition A1. When the district relies on the formative assessment (zI = 0) and believes

that the teachers have no additional information about the intermediate state (q= 0), the optimal

scaled merit-based incentive can be characterized as follows.

a) For S0 =N ,

π̂∗ =


0, if 0≤ B̂ < 1,
1
AN
, if 1≤ B̂ < 1 + 1

AP−AN
,

1
AN (AP−AN )

, if 1 + 1
AP−AN

≤ B̂.
(A24)

b) For S0 = P and (AP ,AN)∈ S1,

π̂∗ =


0, if 0≤ B̂ < 1,
1
AN
, if 1≤ B̂ < 1 + AN

AP (AP−AN )
,

1
AP (AP−AN )

, if 1 + AN
AP (AP−AN )

≤ B̂.
(A25)
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c) For S0 = P and (AP ,AN)∈ S2,

π̂∗ =

{
0, if 0≤ B̂ < 1 + AN

AP (AP−AN )
,

1
AP (AP−AN )

, if 1 + AN
AP (AP−AN )

≤ B̂.
(A26)

d) For S0 = P and (AP ,AN)∈ S3,

π̂∗ =

{
0, if 0≤ B̂ <B1,

R1, if B1 ≤ B̂.
(A27)

e) For S0 = P and (AP ,AN)∈ S4,

π̂∗ =


0, if 0≤ B̂ <B2,

R2, if B2 ≤ B̂ <B1,

R1, if B1 ≤ B̂.
(A28)

Proof of Proposition A1

When the district relies on the formative assessment (zI = 0), the school district’s maximization

problem is as given in (40)-(41):

max
π≥0

Pr∗[S2 = P |S0] (A29)

s.t. πPr∗[S2 = P |S0]≤B, (A30)

with Pr∗[S2 = P |S0] given in (B108)-(B114) but with q= 0.

In the proof of Proposition B1, we show that Pr∗[S2 = P |S0] is a non-decreasing step function of

π̂. Therefore, the expression on the left-hand side of the district’s constraint (41) is an increasing

function of π̂, and we must consider the value of the objective function (40) at each of the endpoints

of each interval of π̂ that corresponds to a “step.” We assume that if Pr∗ [S2 = P |S0] is constant

over a region of π̂ and any value of π̂ in that region is optimal, the district will choose the smallest

value of π̂ in that region.

To determine the optimal merit-based incentive π̂∗ and the corresponding probability that the

final state is proficient, we must consider the several cases stated in Proposition B1 that determine

the characterization of Pr∗ [S2 = P |S0].

Begin with the case where S0 = N , where Pr∗ [S2 = P |S0] is given by (B108). Then, π̂∗ =

1
AN (AP−AN )

if

λγ

AN (AP −AN)
(AN (1 +AP −AN))≤B ⇐⇒ 1 +

1

AP −AN
≤ B̂. (A31)

Similarly, π̂∗ = 1
AN

if

λγ

AN
(AN)≤B <

λγ

AN (AP −AN)
(AN (1 +AP −AN)) ⇐⇒ 1≤ B̂ < 1 +

1

AP −AN
. (A32)
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These results are stated in (A24). We follow similar steps for the cases where S0 = P , using the

functional forms for the Pr∗ [S2 = P |S0] given by (B109)-(B114). �

As in the case for 0 < q < 1, the optimal reward levels are non-decreasing in the budget, and

the accuracy of the formative assessment matters most when the initial state is proficient and

AP and AN are sufficiently different, i.e. (AP ,AN) ∈ S3 ∪ S4, since R1 and R2 both depend on

φP |P and φP |N . Interestingly, when (AP ,AN) ∈ S2 ∪S3, depending on the size of the budget, it is

optimal for the district to either offer no merit-based reward or a reward high enough to incentivize

positive effort at both t = 0 and t = 1. Thus, for districts where there is a moderate difference

between the marginal impact of effort in the proficient and not-proficient states and where there is

no information asymmetry between the district and the teachers, the district is always better off

choosing a reward level that will incentivize positive effort across the entire year, if the budget is

sufficiently large.

Finally, Proposition A2 describes the optimal level of the scaled merit-based incentive π̂∗ when

the district chooses an interim assessment or there is maximum information asymmetry between

the district and teachers.

Proposition A2. When the district invests in the interim assessment (zI = 1) or there is max-

imum information asymmetry between the school district and teachers (q= 1), the optimal scaled

merit-based incentive is as follows.

a) For S0 =N ,

π̂∗ =


0, if 0≤ B̂− F̂ zI < 1,
1
AN
, if 1≤ B̂− F̂ zI < 1 + 1

AP−AN
,

1
AN (AP−AN )

, if 1 + 1
AP−AN

≤ B̂− F̂ zI .
(A33)

b) For S0 = P and (AP ,AN)∈ S1,

π̂∗ =


0, if 0≤ B̂− F̂ zI < 1,
1
AN
, if 1≤ B̂− F̂ zI < 1 + AN

AP (AP−AN )
,

1
AP (AP−AN )

, if 1 + AN
AP (AP−AN )

≤ B̂− F̂ zI .
(A34)

c) For S0 = P and (AP ,AN)∈ S4,

π̂∗ =


0, if 0≤ B̂− F̂ zI < 1 +AP ,
1+AP

A2
P
, if 1 +AP ≤ B̂− F̂ zI < 1 +AP

(
AP
AN
− 1
)
,

1
AN
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂− F̂ zI .

(A35)

Proof of Proposition A2

In this case, the school district’s maximization problem is as given in (40)-(41):

max
π≥0

Pr∗[S2 = P |S0] (A36)

s.t. πPr∗[S2 = P |S0] +FzI ≤B, (A37)
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with Pr∗[S2 = P |S0] given in (B108)-(B114) but with q= 1.

In the proof of Proposition B1, we show that Pr∗[S2 = P |S0] is a non-decreasing step function of

π̂. Therefore, the expression on the left-hand side of the district’s constraint (41) is an increasing

function of π̂, and we must consider the value of the objective function (40) at each of the endpoints

of each interval of π̂ that corresponds to a “step.” We assume that if Pr∗ [S2 = P |S0] is constant

over a region of π̂ and any value of π̂ in that region is optimal, the district will choose the smallest

value of π̂ in that region.

To determine the optimal merit-based incentive π̂∗ and the corresponding probability that the

final state is proficient, we must consider the several cases stated in Proposition B1 that determine

the characterization of Pr∗ [S2 = P |S0].

Begin with the case where S0 = N , where Pr∗ [S2 = P |S0] is given by (B108). Then, π̂∗ =

1
AN (AP−AN )

if

λγ

AN (AP −AN)
(AN (1 +AP −AN))≤B−FzI ⇐⇒ 1 +

1

AP −AN
≤ B̂− F̂ zI . (A38)

Similarly, π̂∗ = 1
AN

if

λγ

AN
(AN)≤B−FzI <

λγ

AN (AP −AN)
(AN (1 +AP −AN)) ⇐⇒ 1≤ B̂− F̂ zI < 1 +

1

AP −AN
.

(A39)

These results are stated in (A33). We follow similar steps for the cases where S0 = P , using

the functional forms for the Pr∗ [S2 = P |S0] given by (B109) and (B114); the other cases are not

feasible in this setting.

�

In the setting where, under formative assessment, there is the highest degree information asym-

metry between the district and the teachers, teachers are naturally inclined to exert high effort in

order to maintain proficiency throughout the year, when the school starts the year in the proficient

state. As a result, the school district can induce positive effort while offering teachers a smaller

reward.

Figure A5 illustrates the non-monotonic effect of φP |N on the reward that the district should

offer teachers. Figure A5a shows the case with no information asymmetry between the district

and the teachers (q = 0). Similar to the value of the reward required to induce positive effort at

t = 0 illustrated in Figure A3, there are two regions where the optimal reward is elevated: first,

for near-zero φP |N , and second, when φP |N is just large enough so that there is a high rate of false

proficient results but the formative assessment results are still somewhat informative. In the first

region, as φP |N approaches zero, the formative assessment almost always correctly assesses when

the true state is not proficient, but underreports when the true state is proficient, leading teachers
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Figure A5 The optimal reward level π∗, in $000’s per teacher, as a function of the accuracy parameter φP |N

for S0 = P and different values of φP |P when a) q= 0 and b) q= 0.1 compared to the reward under the interim

assessment (AP = 0.72; AN = 0.13; F = $7,500 per school; B = $700,000 per school).

to overweight the possibility of being in the not-proficient state. Notice that for the second effect,

there is a small region where the perceived probability of being in the not-proficient state is so high

that the budget does not support the incentive level necessary to induce effort, and, therefore, the

optimal reward drops to 0. Both effects decrease as φP |N increases. Ultimately, this leads to a lower

optimal reward threshold than under the perfect information case, as the formative assessment

carries little actionable information and teachers place greater weight on the initial state being

proficient.

Figure A5b shows the case with small information asymmetry between the district and the

teachers, i.e., the case where the district believes that there is small probability that teachers know

the true intermediate state (q= 0.1). As in the case of q= 0, there remain regions of φP |N for which

a higher incentive level is optimal. However, the non-zero probability that teachers may respond

to the incentives as they would under perfect information results in the optimal reward level being

bounded below by the reward under perfect information.
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B1. Proofs of Analytical Results

Lemma B1. Define

m(e0,S0) =

{
1− δ(e0), if S0 = P,

α(e0), if S0 =N.
(B1)

Then,

Pr [h1 (e0,S0) = (P,e0,S0)] =m(e0,S0)φP |P + (1−m(e0,S0))φP |N , (B2)

and

Pr [h2 (e1,S1) = P ] = (1− δ (e1))Pr [β1 = P |S1] +α (e1) (1−Pr [β1 = P |S1]) , (B3)

where

Pr [β1 = P |S1] =


φP |Pm(e0,S0)

φP |Pm(e0,S0)+φP |N (1−m(e0,S0))
, if S1 = (P,e0,S0) ,

(1−φP |P )m(e0,S0)

(1−φP |P )m(e0,S0)+(1−φP |N)(1−m(e0,S0))
, if S1 = (N,e0,S0) .

(B4)

Proof of Lemma B1

When zI = 0 and T = 0, the value of β1 is not known with certainty, and at t = 1, the result of

the formative assessment, X1, is revealed. Focusing on X1 = P , we have to consider two possible

combinations for S1: (P,e0, P ) and (P,e0,N). The probability of having the first combination is

the sum of two probabilities: the one having β1 = P and then generating X1 = P ((1− δ (e0))φP |P )

and the one having β1 =N and then generating X1 = P (δ (e0)φP |N). Thus, we obtain the first line

in (B2). The derivation of the second line in (B2) follows the same steps.

The analysis for t = 2 involves two steps. First, (B3) connects the probability that β1 = P to

the probability that β2 = P as well, accounting for transitions between β1 = P and β1 = N and

β2 = P . Second, (B4) looks at four possible values of the state at t= 1, (X1, e0,S0): S1 = (P,e0, P ),

S1 = (N,e0, P ), S1 = (P,e0,N), and S1 = (N,e0,N). For each of these states, (B1)-(B4) express

the probability that β1 = P . Below we show the derivation of this probability for the case of

S1 = (P,e0, P ); the derivations for the remaining cases follows the same steps. Using Bayes’ rule,

we have

Pr [β1 = P |X1 = P,e0,S0 = P ]

=
Pr [X1 = P |β1 = P,e0,S0 = P ]Pr [β1 = P |e0,S0 = P ]

Pr [X1 = P |β1 = P,e0,S0 = P ]Pr [β1 = P |e0,S0 = P ] +Pr [X1 = P |β1 =N,e0,S0 = P ]Pr [β1 =N |e0,S0 = P ]

=
φP |P (1− δ (e0))

φP |P (1− δ (e0)) +φP |Nδ (e0)
. (B5)

When zI = 1 or T = 1, the probabilities are obtained by letting φP |P = 1 and φP |N = 0. In this

case, β1 is known exactly, and the response to the effort levels at both t= 0 and t= 1 is described

by (1)-(2). �
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Proof of Proposition 1

a) The maximization in the expression for the profit-to-go function for t= 1 when zI = 0 and T = 0

is carried over a concave function of e1 for any value of S1. In particular, using (B3) and (16), this

is represented by

J1(S1) = max
e1≥0

[π ((1− δ (e1))Pr [β1 = P |S1] +α (e1) (1−Pr [β1 = P |S1]))− γe1] (B6)

= max
e1≥0

[π (Pr [β1 = P |S1] (1− δ (e1)−α (e1)) +α (e1))− γe1] , (B7)

with α (e1) and δ (e1) given by (1) and (2), respectively, and Pr [β1 = P |S1] given by (B4). For

clarity, we represent the expression under the maximization operator in (B7) by f(e1) for the

remainder of this proof. Note that f(e1) is decreasing for e1 >λ.

Let

ê∗1 (S1) =
e∗1 (S1)

λ
and Ĵ1 (S1) =

J1 (S1)

λγ
. (B8)

Then, the scaled effort level maximizing (B7) is given by

ê∗1 (S1) =

{
0, if 0≤ π̂ < P̂1 (S1) ,

1, if P̂1 (S1)≤ π̂,
(B9)

and the corresponding scaled profit-to-go function is

Ĵ1(S1) =

{
0, if 0≤ π̂ < P̂1 (S1) ,

π̂ (Pr [β1 = P |S1] (AP −AN) +AN)− 1, if P̂1 (S1)≤ π̂,
(B10)

where

P̂1 (S1) =
1

Pr [β1 = P |S1] (AP −AN) +AN
. (B11)

b) Under Assumptions 1 and 2, we have Pr [β1 = P |S1 = (P,e0,S0)] ≥
Pr [β1 = P |S1 = (N,e0,S0)], which can be shown using the expressions given in (B4) through

simple algebraic transformations of this inequality. Therefore,

P̂1 (P,e0,S0)≤ P̂1 (N,e0,S0) , (B12)

so that, for all values of the scaled merit-based incentive,

ê∗1 (P,e0,S0)≥ ê∗1 (N,e0,S0) . (B13)

�

Proof of Proposition 2

In order to establish the statements of this Proposition, we will need the following result.

Lemma B2.
AN
AP
≤A1 ≤ 1, A1 ≤A2. (B14)
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Proof of Lemma B2

From (30),

A1 =
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

)
A2
P

(
1−φP |P

)
+AP (1−AP )

(
1−φP |N

) , (B15)

and from (31),

A2 =
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

)
(1−AP )

(
1−φP |N

) (
APφP |P −ANφP |N

) . (B16)

Under Assumptions 1 and 2, it is clear that A1 ≤ 1, and that

A1 ≥
AN
AP
⇐⇒

A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

)
A2
P

(
1−φP |P

)
+AP (1−AP )

(
1−φP |N

) ≥ AN
AP

⇐⇒ A2
P (AP −AN)

(
1−φP |P

)
≥ 0. (B17)

Under the same assumptions, the following also holds:

A2 ≥A1 ⇐⇒ A2
P

(
1−φP |P

)
+ (1−AP )

(
1−φP |N

) (
AP
(
1−φP |P

)
+ANφP |N

)
≥ 0. (B18)

The profit-to-go function for t= 0 when zI = 0 and T = 0 is given by (25). Expanding this gives

J0(S0) = max
e0≥0

[Pr [h1 (e0,S0) = (N,e0,S0)]J1 (N,e0,S0) +Pr [h1 (e0,S0) = (P,e0,S0)]J1 (P,e0,S0)− γe0] ,
(B19)

with Pr [h1 (e0,S0)] given in (B2) and J1 (S1) given in (B10).

Now, the value of J1 (S1) depends on P̂1 (S1), where, from (23) and (24),

P̂1 (S1) =


φP |Pm(e0,S0)+φP |N (1−m(e0,S0))

φP |Pm(e0,S0)AP+φP |N (1−m(e0,S0))AN
, if S1 = (P,e0,S0) ,

(1−φP |P )m(e0,S0)+(1−φP |N)(1−m(e0,S0))

(1−φP |P )m(e0,S0)AP+(1−φP |N)(1−m(e0,S0))AN
, if S1 = (N,e0,S0) .

(B20)

Using Assumptions 1 and 2, we can order the bounds on π̂ from (B20):

P̂1 (P,e0,S0)≤ P̂1 (N,e0,S0) . (B21)

Furthermore, both terms in (B21) are decreasing functions of e0 and are maximized when e0 = 0

and minimized when e0 = λ. Therefore,

ANφP |P + (1−AN)φP |N

AN
(
APφP |P + (1−AN)φP |N

) ≤ P̂1 (P,e0,N)≤ 1

AN
, (B22)

AN
(
1−φP |P

)
+ (1−AN)

(
1−φP |N

)
AN
(
AP
(
1−φP |P

)
+ (1−AN)

(
1−φP |N

)) ≤ P̂1 (N,e0,N)≤ 1

AN
, (B23)

APφP |P + (1−AP )φP |N
A2
PφP |P +AN (1−AP )φP |N

≤ P̂1 (P,e0, P )≤ 1

AN
, (B24)

AP
(
1−φP |P

)
+ (1−AP )

(
1−φP |N

)
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

) ≤ P̂1 (N,e0, P )≤ 1

AN
. (B25)
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Suppose that S0 =N . Then, we consider three regions of π̂, where the bounds of each region are

functions of e0. In each region, we characterize the functional form of J0(N) and determine the

optimal value of e0.

For convenience, in the following analysis we represent the profit-to-go function in Region r by

Jr0 (S0), where r= 1,2,3,.

Region 1: 0≤ π̂ < P̂1 (P,e0,N) . In this case, (B19) becomes

J1
0 (N) = max

e0≥0
[−γe0] . (B26)

Since this function is always decreasing in e0, then e∗0,1 = 0 and J1
0 (N) = 0.

Region 2: P̂1 (P,e0,N)≤ π̂ < P̂1 (N,e0,N). In this case, (B19) becomes

J2
0 (N) = max

e0≥0

[
φP |Pα(e0) (APπ−λγ) +φP |N (1−α(e0)) (ANπ−λγ)− γe0

]
. (B27)

For clarity, represent the expression being maximized by f(e0). Then,

f ′(e0) =

{
ANφP |P

λ
(APπ−λγ)− ANφP |N

λ
(ANπ−λγ)− γ, if 0≤ e0 ≤ λ,

−γ, if λ≤ e0.
(B28)

This is clearly negative for e0 ≥ λ. Furthermore, f ′(e0) is non-decreasing when 0≤ e0 ≤ λ if

and only if

ANφP |P
λ

(APπ−λγ)−
ANφP |N

λ
(ANπ−λγ)− γ ≥ 0 ⇐⇒ π̂≥

1 +AN
(
φP |P −φP |N

)
AN
(
APφP |P −ANφP |N

) .
(B29)

Thus,

e∗0,2 =


0, if π̂ <

1+AN(φP |P−φP |N)
AN(AP φP |P−ANφP |N)

,

λ, if
1+AN(φP |P−φP |N)

AN(AP φP |P−ANφP |N)
≤ π̂,

(B30)

and

J2
0 (N) =


φP |N (ANπ−λγ) , if π̂ <

1+AN(φP |P−φP |N)
AN(AP φP |P−ANφP |N)

,

φP |PAN (APπ−λγ) +φP |N (1−AN) (ANπ−λγ)−λγ, if
1+AN(φP |P−φP |N)

AN(AP φP |P−ANφP |N)
≤ π̂.

(B31)

From (B23), the maximum upper bound for π̂ in this region is 1
AN

. However,

1 +AN
(
φP |P −φP |N

)
AN
(
APφP |P −ANφP |N

) > 1

AN
. (B32)

Therefore, in this region, e∗0 = 0.
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Region 3: P̂1 (N,e0,N)≤ π̂. In this case, (B19) becomes

J3
0 (N) =max

e0≥0

[(
1−α (e0)φP |P − (1−α (e0))φP |N

)
(
π

((
1−φP |P

)
α(e0)AP +

(
1−φP |N

)
(1−α(e0))AN(

1−φP |P
)
α(e0) +

(
1−φP |N

)
(1−α(e0))

)
−λγ

)
+
(
α (e0)φP |P + (1−α (e0))φP |N

)(
π

(
φP |Pα(e0)AP +φP |N (1−α(e0))AN

φP |Pα(e0) +φP |N (1−α(e0))

)
−λγ

)
− γe0

]
=max

e0≥0
[π (α(e0)AP + (1−α(e0))AN)−λγ− γe0] . (B33)

For clarity, represent the expression being maximized by f(e0). Then,

f ′(e0) =

{
AN

π
λ

(AP −AN)− γ, if 0≤ e0 ≤ λ,
−γ, if λ≤ e0.

(B34)

The function is strictly decreasing for e0 ≥ λ, and when 0 ≤ e0 ≤ λ, the function is non-

decreasing if and only if

AN
π

λ
(AP −AN)− γ ≥ 0 ⇐⇒ π̂≥ 1

AN (AP −AN)
. (B35)

Thus,

e∗0,3 =

{
0, if π̂ < 1

AN (AP−AN )
,

λ, if 1
AN (AP−AN )

≤ π̂,
(B36)

and the profit-to-go function is

J3
0 (N) =

{
ANπ−λγ, if π̂ < 1

AN (AP−AN )
,

ANπ (1 +AP −AN)− 2λγ, if 1
AN (AP−AN )

≤ π̂.
(B37)

Combining the analysis of these three regions, we have that when S0 =N ,

ê∗0 =

{
0, if 0≤ π̂ < 1

AN (AP−AN )
,

1, if 1
AN (AP−AN )

≤ π̂,
(B38)

and the corresponding profit-to-go function is

Ĵ0(N) =

{
0, if 0≤ π̂ < 1

AN (AP−AN )
,

AN (1 +AP −AN) π̂− 2, if 1
AN (AP−AN )

≤ π̂.
(B39)

Next, suppose that S0 = P . Again, we consider three regions for the value of π̂. In each region,

we characterize the functional form of J0(P ) and determine the optimal value of e0.

Region 1: 0≤ π̂ < P̂1 (P,e0, P ) . In this case, (B19) becomes

J1
0 (P ) = max

e0≥0
[−γe0] . (B40)

Since this function is always decreasing in e0, then

e∗0,1 = 0 and J1
0 (P ) = 0. (B41)



Virudachalam, Savin, and Steinberg
B6 Investing in Performance in K-12 Education

Region 2: P̂1 (P,e0, P )≤ π̂ < P̂1 (N,e0, P ). In this case, (B19) becomes

J2
0 (P ) = max

e0≥0

[
φP |P (1− δ(e0)) (APπ−λγ) +φP |Nδ(e0) (ANπ−λγ)− γe0

]
. (B42)

For clarity, represent the expression being maximized by f(e0). Then,

f ′(e0) =

{
φP |P

AP
λ

(APπ−λγ)−φP |N AP
λ

(ANπ−λγ)− γ, if 0≤ e0 ≤ λ,
−γ, if λ≤ e0.

(B43)

This is negative for e0 ≥ λ and non-decreasing when 0≤ e0 ≤ λ if and only if

φP |P
AP
λ

(APπ−λγ)−φP |N
AP
λ

(ANπ−λγ)− γ ≥ 0

⇐⇒ APφP |P (AP π̂− 1)−APφP |N (AN π̂− 1)≥ 1

⇐⇒ π̂
(
APφP |P −ANφP |N

)
≥

1 +APφP |P −APφP |N
AP

⇐⇒ π̂≥R2, (B44)

where from (33),

R2 =
1 +AP

(
φP |P −φP |N

)
AP
(
APφP |P −ANφP |N

) . (B45)

Then, when π̂ is in Region 2,

e∗0,2 =

{
0, if π̂ <R2,

λ, if R2 ≤ π̂,
(B46)

and the profit-to-go function is

J2
0 (P ) =

{
φP |N (ANπ−λγ) , if π̂ <R2,

APφP |P (APπ−λγ) +φP |N (1−AP ) (ANπ−λγ)−λγ, if R2 ≤ π̂.
(B47)

Consider the threshold value for π̂ necessary to incentivize a positive effort level in (B46).

We compare this to the maximum and minimum value of π̂ in this region. First, the minimum

value for the lower bound of this region of π̂ is
AP φP |P+φP |N (1−AP )

AP φP |PAP+φP |N (1−AP )AN
. This is less than the

threshold value for π̂, since

APφP |P +φP |N (1−AP )

APφP |PAP +φP |N (1−AP )AN
<R2 ⇐⇒ A2

PφP |P
(
φP |N − 1

)
<ANφP |N

(
1−AP

(
1−φP |P

))
,

(B48)

where the left-hand side of the inequality is negative and the right-hand side is positive under

Assumptions 1 and 2.

From (B25), the maximum upper bound for π̂ in this region is 1
AN

. Comparing this maximum

upper bound to the threshold value for π̂ in (B47),

R2 ≥
1

AN
⇐⇒ AN

APφP |P
≥AP −AN . (B49)
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Region 3: P̂1 (N,e0, P )≤ π̂. In this case, (B19) becomes

J3
0 (P ) =max

e0≥0

[(
1− (1− δ (e0))φP |P − δ (e0)φP |N

)
(
π

((
1−φP |P

)
(1− δ(e0))AP +

(
1−φP |N

)
δ(e0)AN(

1−φP |P
)

(1− δ(e0)) +
(
1−φP |N

)
δ(e0)

)
−λγ

)

+
(
(1− δ (e0))φP |P + δ (e0)φP |N

)(
π

(
φP |P (1− δ(e0))AP +φP |Nδ(e0)AN

φP |P (1− δ(e0)) +φP |Nδ(e0)

)
−λγ

)
− γe0

]
=max

e0≥0
[(π ((1− δ(e0))AP + δ(e0)AN)−λγ)− γe0] . (B50)

For clarity, represent the expression being maximized by f(e0). Then,

f ′(e0) =

{
AP π

λ
(AP −AN)− γ, if 0≤ e0 ≤ λ,

−γ, if λ≤ e0.
(B51)

The function is strictly decreasing for e0 ≥ λ, and when 0 ≤ e0 ≤ λ, the function is non-

decreasing if and only if

APπ

λ
(AP −AN)− γ ≥ 0 ⇐⇒ π̂≥ 1

AP (AP −AN)
. (B52)

Thus,

e∗0,3 =

{
0, if π̂ < 1

AP (AP−AN )
,

λ, if 1
AP (AP−AN )

≤ π̂,
(B53)

and the corresponding profit-to-go function is

J3
0 (P ) =

{
ANπ−λγ, if π̂ < 1

AP (AP−AN )
,

π (AN +AP (AP −AN))− 2λγ, if 1
AP (AP−AN )

≤ π̂.
(B54)

Whether the lower bound on π̂ required for e∗0 = λ is stronger than the lower bound on π̂ for

this region depends on the values of the parameters.

Using these results, we can consider four regions of π̂, where the bounds are no longer a function

of e0:

• 0≤ π̂ < AP φP |P+(1−AP )φP |N
A2

P
φP |P+AN (1−AP )φP |N

,

• AP φP |P+(1−AP )φP |N
A2

P
φP |P+AN (1−AP )φP |N

≤ π̂ <R1,

• R1 ≤ π̂ < 1
AN

,

• 1
AN
≤ π̂ <∞.

Recall from (32) that

R1 =
AP
(
1−φP |P

)
+ (1−AP )

(
1−φP |N

)
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

) . (B55)
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Case 1: 0≤ π̂ < AP φP |P+(1−AP )φP |N
A2

P
φP |P+AN (1−AP )φP |N

. In this case, (B19) becomes

J0(P ) = J1
0 (P ) = max

e0≥0
[−γe0] , (B56)

so that e∗0 = 0 and J0(P ) = 0, as given in (B41).

Case 2:
AP φP |P+(1−AP )φP |N

A2
P
φP |P+AN (1−AP )φP |N

≤ π̂ <R1. In this case, (B19) becomes

J0(P ) =

J
1
0 (P ), if 0≤ e∗0 < λ

AP

(
1− (AP π̂−1)φP |P

(AP π̂−1)φP |P+(1−AN π̂)φP |N

)
,

J2
0 (P ), if λ

AP

(
1− (AP π̂−1)φP |P

(AP π̂−1)φP |P+(1−AN π̂)φP |N

)
≤ e∗0.

(B57)

From (B41),

e∗0,1 = 0 and J1
0 (P ) = 0, (B58)

and, from (B46) and (B47),

e∗0,2 =

{
0, if π̂ <R2,

λ, if R2 ≤ π̂,
(B59)

and

J2
0 (P ) =

{
φP |N (ANπ−λγ) , if π̂ <R2,

APφP |P (APπ−λγ) +φP |N (1−AP ) (ANπ−λγ)−λγ, if R2 ≤ π̂.
(B60)

Then, e∗0 = λ if and only ifR2 ≤ π̂ and π̂ satisfies the bounds for this case. Now, the threshold

value for π̂ necessary to ensure a positive effort level is greater than the lower bound on π̂ in

this case, since

R2 =
1 +AP

(
φP |P −φP |N

)
AP
(
APφP |P −ANφP |N

) ≥ APφP |P + (1−AP )φP |N
A2
PφP |P +AN (1−AP )φP |N

⇐⇒APφP |P
(
AP
(
1−φP |N

)
+ANφP |N

)
+AN (1−AP )φP |N ≥ 0, (B61)

which clearly holds under Assumption 1 and 2.

Furthermore, the threshold value of π̂ is less than the upper bound on π̂ in this case if and

only if

R2 <R1 ⇐⇒
1 +AP

(
φP |P −φP |N

)
AP
(
APφP |P −ANφP |N

) < AP
(
1−φP |P

)
+ (1−AP )

(
1−φP |N

)
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

)
⇐⇒A2 <AP −AN , (B62)

where from (31),

A2 =
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

)
(1−AP )

(
1−φP |N

) (
APφP |P −ANφP |N

) . (B63)

Therefore, the optimal effort level in this case is determined by two subcases.
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Subcase 1: If

A2 <AP −AN , (B64)

then the optimal effort level is

e∗0 =

{
0, if

AP φP |P+(1−AP )φP |N
A2

P
φP |P+AN (1−AP )φP |N

≤ π̂ <R2,

λ, if R2 ≤ π̂ <R1,
(B65)

and the corresponding profit-to-go function is

J0(P ) =


0, if

AP φP |P+(1−AP )φP |N
A2

P
φP |P+AN (1−AP )φP |N

≤ π̂ <R2,

APφP |P (APπ−λγ) +φP |N (1−AP ) (ANπ−λγ)−λγ,

if R2 ≤ π̂ <
AP (1−φP |P )+(1−AP )(1−φP |N)

A2
P (1−φP |P )+AN (1−AP )(1−φP |N)

.

(B66)

Subcase 2: If

AP −AN ≤A2, (B67)

then the optimal effort level and the corresponding profit-to-go function are, respectively,

e∗0 = 0 and J0(P ) = 0. (B68)

Case 3: R1 ≤ π̂ < 1
AN

. In this case, (B19) becomes

J0(P ) =


J1
0 (P ), if 0≤ e∗0 < λ

AP

(
1− (AP π̂−1)φP |P

(AP π̂−1)φP |P+(1−AN π̂)φP |N

)
,

J2
0 (P ), if λ

AP

(
1− (AP π̂−1)φP |P

(AP π̂−1)φP |P+(1−AN π̂)φP |N

)
≤ e∗0 < λ

AP

(
1− (AP π̂−1)(1−φP |P )

(AP π̂−1)(1−φP |P )+(1−AN π̂)(1−φP |N)

)
,

J3
0 (P ), if λ

AP

(
1− (AP π̂−1)(1−φP |P )

(AP π̂−1)(1−φP |P )+(1−AN π̂)(1−φP |N)

)
≤ e∗0.

(B69)

The values of these profit-to-go functions and the associated optimal effort levels are as follows.

From (B41),

e∗0,1 = 0 and J1
0 (P ) = 0, (B70)

and from (B46) and (B47),

e∗0,2 =

{
0, if π̂ <R2,

λ, if R2 ≤ π̂,
(B71)

and

J2
0 (P ) =

{
φP |N (ANπ−λγ) , if π̂ <R2,

APφP |P (APπ−λγ) +φP |N (1−AP ) (ANπ−λγ)−λγ, if R2 ≤ π̂.
(B72)
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Furthermore, from (B53) and (B54),

e∗0,3 =

{
0, if π̂ < 1

AP (AP−AN )

λ, if 1
AP (AP−AN )

≤ π̂
(B73)

and

J3
0 (P ) =

{
ANπ−λγ, if π̂ < 1

AP (AP−AN )

π (AN +AP (AP −AN))− 2λγ, if 1
AP (AP−AN )

≤ π̂.
(B74)

Consider the threshold value for π̂ necessary to ensure a positive effort level in (B53). This

is greater than the lower bound on π̂ in this case if and only if

1

AP (AP −AN)
≥R1 =

AP
(
1−φP |P

)
+ (1−AP )

(
1−φP |N

)
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

) ⇐⇒ A1 ≥AP −AN , (B75)

where from (30),

A1 =
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

)
A2
P

(
1−φP |P

)
+AP (1−AP )

(
1−φP |N

) . (B76)

Similarly, this is less than the upper bound on π̂ in this case if and only if

1

AP (AP −AN)
<

1

AN
⇐⇒ AN

AP
<AP −AN . (B77)

Combining this, we have three subcases.

Subcase 1: If

AP −AN ≤
AN
AP

, (B78)

then the optimal effort level and the corresponding profit-to-go function are

e∗0 = 0 and J0 (P ) = 0. (B79)

Subcase 2: If
AN
AP

<AP −AN ≤A1, (B80)

then the optimal effort level is

e∗0 =

{
0, if R1 ≤ π̂ < 1

AP (AP−AN )
,

λ, if 1
AP (AP−AN )

≤ π̂ < 1
AN
,

(B81)

and the corresponding profit-to-go function is

J0 (P ) =

{
0, if R1 ≤ π̂ < 1

AP (AP−AN )
,

π (AN +AP (AP −AN))− 2λγ, if 1
AP (AP−AN )

≤ π̂ < 1
AN
.

(B82)
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Subcase 3: If

A1 <AP −AN , (B83)

then the optimal effort level and the corresponding profit-to-go function are

e∗0 = λ and J0 (P ) = π (AN +AP (AP −AN))− 2λγ. (B84)

Case 4: 1
AN
≤ π̂ <∞. In this case, (B19) becomes

J0(N) = J3
0 (P ). (B85)

Recall from (B53) and (B54) that

e∗0,3 =

{
0, if π̂ < 1

AP (AP−AN )
,

λ, if 1
AP (AP−AN )

≤ π̂,
(B86)

and the corresponding profit-to-go function is

J3
0 (P ) =

{
ANπ−λγ, if π̂ < 1

AP (AP−AN )
,

π (AN +AP (AP −AN))− 2λγ, if 1
AP (AP−AN )

≤ π̂.
(B87)

Then, there are two subcases.

Subcase 1: If

1

AP (AP −AN)
≤ 1

AN
⇐⇒ AN

AP
≤AP −AN , (B88)

then

e∗0 = λ and J0(P ) = π (AN +AP (AP −AN))− 2λγ. (B89)

Subcase 2: If

1

AP (AP −AN)
>

1

AN
⇐⇒ AP −AN <

AN
AP

, (B90)

then

e∗0 =

{
0, if 1

AN
≤ π̂ < 1

AP (AP−AN )
,

λ, if 1
AP (AP−AN )

≤ π̂,
(B91)

and the corresponding profit-to-go function is

J0(P ) =

{
ANπ−λγ, if 1

AN
≤ π̂ < 1

AP (AP−AN )
,

π (AN +AP (AP −AN))− 2λγ, if 1
AP (AP−AN )

≤ π̂.
(B92)

Finally, we determine the optimal effort level and profit-to-go function for different regions of

AP −AN . From Lemma B2, AN
AP
≤A1 ≤A2. Then, we consider four cases to determine the value of

the optimal effort level and the optimal profit-to-go function.
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Case 1: (AP ,AN)∈ S1 The optimal effort level is

ê∗0 =

{
0, if 0≤ π̂ < 1

AP (AP−AN )
,

λ, if 1
AP (AP−AN )

≤ π̂,
(B93)

and the corresponding profit-to-go function is

J0(P ) =

{
0, if 0≤ π̂ < 1

AP (AP−AN )
,

π (AN +AP (AP −AN))− 2λγ, if 1
AP (AP−AN )

≤ π̂.
(B94)

Case 2: (AP ,AN)∈ S2 The optimal effort level is

e∗0 =

{
0, if 0≤ π̂ < 1

AP (AP−AN )
,

λ, if 1
AP (AP−AN )

≤ π̂,
(B95)

and the corresponding profit-to-go function is

J0 (P ) =

{
0, if 0≤ π̂ < 1

AP (AP−AN )
,

π (AN +AP (AP −AN))− 2λγ, if 1
AP (AP−AN )

≤ π̂.
(B96)

Case 3: (AP ,AN)∈ S3 The optimal effort level is

e∗0 =

{
0, if 0≤ π̂ <R1,

λ, if R1 ≤ π̂,
(B97)

and the corresponding profit-to-go function is

J0(P ) =

{
0, if 0≤ π̂ <R1,

π (AN +AP (AP −AN))− 2λγ, if R1 ≤ π̂.
(B98)

Case 4: (AP ,AN)∈ S4 The optimal effort level is

e∗0 =

{
0, if 0≤ π̂ <R2,

λ, if R2 ≤ π̂,
(B99)

and the corresponding profit-to-go function is

J0(P ) =


0, if 0≤ π̂ <R2,

APφP |P (APπ−λγ) +φP |N (1−AP ) (ANπ−λγ)−λγ, if R2 ≤ π̂ <R1,

π (AN +AP (AP −AN))− 2λγ, if R1 ≤ π̂.
(B100)

�

Lemma B3. Recall that e∗0 (S0) and e∗1 (S1) are the optimal teachers’ effort policies. Let e∗0 (S0)

and e∗1 (S1) denote the policies in the special case where z = 1 or T = 1.

Then, for the general case where the district chooses to rely on the formative assessment,

Pr∗[S2 = P |S0 = P ] = (1− q)
[
(1− δ (e∗0 (P ))) (1− δ (e∗1 (P,e∗0 (P ) , P )))φP |P

+ δ (e∗0 (P ))α (e∗1 (P,e∗0 (P ) , P ))φP |N
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+ (1− δ (e∗0 (P ))) (1− δ (e∗1 (N,e∗0 (P ) , P )))
(
1−φP |P

)
+δ (e∗0 (P ))α (e∗1 (N,e∗0 (P ) , P ))

(
1−φP |N

)]
+ q [(1− δ (e∗0 (P ))) (1− δ (e∗1 (P,e∗0 (P ) , P )))

+δ (e∗0 (P ))α (e∗1 (N,e∗0 (P ) , P ))] , (B101)

Pr∗[S2 = P |S0 =N ] = (1− q)
[
α (e∗0 (N)) (1− δ (e∗1 (P,e∗0 (N) ,N)))φP |P ,

+ (1−α (e∗0 (N)))α (e∗1 (P,e∗0 (N) ,N))φP |N

+α (e∗0 (N)) (1− δ (e∗1 (N,e∗0 (N) ,N)))
(
1−φP |P

)
+(1−α (e∗0 (N)))α (e∗1 (N,e∗0 (N) ,N))

(
1−φP |N

)]
+ q [α (e∗0 (N)) (1− δ (e∗1 (P,e∗0 (N) ,N))) ,

+(1−α (e∗0 (N)))α (e∗1 (N,e∗0 (N) ,N))] . (B102)

The probability that the final state is proficient if the district relies on the interim assessment is

obtained by letting q= 1 in (B101) and (B102).

Proof of Lemma B3

We first determine the probability that the final state is proficient under the teachers’ optimal

effort decisions assuming no information asymmetry, Pr∗[S2 = P |S0, q = 0]. Using this result, we

then calculate the probability that the final state is proficient for any q, Pr∗[S2 = P |S0].

When S0 = P , we have

Pr [β1 = P |S1] =


φP |P (1−δ(e∗0(P )))

φP |P (1−δ(e∗0(P )))+φP |N(δ(e∗0(P )))
, if S1 = (P,e∗0 (P ) ,S0) ,

(1−φP |P )(1−δ(e∗0(P )))
(1−φP |P )(1−δ(e∗0(P )))+(1−φP |N)(δ(e∗0(P )))

, if S1 = (N,e∗0 (P ) ,S0) .
(B103)

Then, with (B2) and (B3),

Pr∗[S2 = P |S0 = P, q= 0] =(1− δ (e∗1 (X1, e
∗
0 (P ) , P )))Pr [β1 = P |S1] +α (e∗1 (X1, e

∗
0 (P ) , P )) (1−Pr [β1 = P |S1])

=Pr [S1 = (P,e∗0 (P ) , P )] ((1− δ (e∗1 (P,e∗0 (P ) , P )))Pr [β1 = P |S1 = (P,e∗0 (P ) ,S0)]

+α (e∗1 (P,e∗0 (P ) , P )) (1−Pr [β1 = P |S1 = (P,e∗0 (P ) ,S0)]))

+Pr [S1 = (N,e∗0 (P ) , P )] ((1− δ (e∗1 (N,e∗0 (P ) , P )))Pr [β1 = P |S1 = (N,e∗0 (P ) ,S0)]

+α (e∗1 (N,e∗0 (P ) , P )) (1−Pr [β1 = P |S1 = (N,e∗0 (P ) ,S0)]))

=(1− δ (e∗0 (P ))) (1− δ (e∗1 (P,e∗0 (P ) , P )))φP |P

+ δ (e∗0 (P ))α (e∗1 (P,e∗0 (P ) , P ))φP |N

+ (1− δ (e∗0 (P ))) (1− δ (e∗1 (N,e∗0 (P ) , P )))
(
1−φP |P

)
+ δ (e∗0 (P ))α (e∗1 (N,e∗0 (P ) , P ))

(
1−φP |N

)
. (B104)
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To determine the probability that the final state is proficient, recall that the teachers rely on the

assessment results with probability 1− q and know the true state with probability q. Then,

Pr∗[S2 = P |S0 = P ] = (1− q)
[
(1− δ (e∗0 (P ))) (1− δ (e∗1 (P,e∗0 (P ) , P )))φP |P

+ δ (e∗0 (P ))α (e∗1 (P,e∗0 (P ) , P ))φP |N

+ (1− δ (e∗0 (P ))) (1− δ (e∗1 (N,e∗0 (P ) , P )))
(
1−φP |P

)
+δ (e∗0 (P ))α (e∗1 (N,e∗0 (P ) , P ))

(
1−φP |N

)]
+ q [(1− δ (e∗0 (P ))) (1− δ (e∗1 (P,e∗0 (P ) , P )))

+δ (e∗0 (P ))α (e∗1 (N,e∗0 (P ) , P ))] (B105)

Following similar steps, when S0 =N , the probability that the final state is proficient assuming

teachers rely only on the assessment result is

Pr∗[S2 = P |S0 =N,q= 0] =α (e∗0 (N)) (1− δ (e∗1 (P,e∗0 (N) ,N)))φP |P ,

+ (1−α (e∗0 (N)))α (e∗1 (P,e∗0 (N) ,N))φP |N

+α (e∗0 (N)) (1− δ (e∗1 (N,e∗0 (N) ,N)))
(
1−φP |P

)
+ (1−α (e∗0 (N)))α (e∗1 (N,e∗0 (N) ,N))

(
1−φP |N

)
, (B106)

and the probability the final state is proficient for any q is

Pr∗[S2 = P |S0 =N ] = (1− q)
[
α (e∗0 (N)) (1− δ (e∗1 (P,e∗0 (N) ,N)))φP |P ,

+ (1−α (e∗0 (N)))α (e∗1 (P,e∗0 (N) ,N))φP |N

+α (e∗0 (N)) (1− δ (e∗1 (N,e∗0 (N) ,N)))
(
1−φP |P

)
+(1−α (e∗0 (N)))α (e∗1 (N,e∗0 (N) ,N))

(
1−φP |N

)
(
]

+ q [α (e∗0 (N)) (1− δ (e∗1 (P,e∗0 (N) ,N))) ,

+(1−α (e∗0 (N)))α (e∗1 (N,e∗0 (N) ,N))] . (B107)

�

Proposition B1. The probability that the state at t= 2 is proficient (S2 = P ) can be described

as follows.

a) For S0 =N ,

Pr∗[S2 = P |S0 =N ] =


0, if 0≤ π̂ < 1

AN
,

AN , if 1
AN
≤ π̂ < 1

AN (AP−AN )
,

AN (1 +AP −AN) , if 1
AN (AP−AN )

≤ π̂.
(B108)
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b) For S0 = P and (AP ,AN)∈ S1,

Pr∗[S2 = P |S0 = P ] =


0, if 0≤ π̂ < 1

AN
,

AN , if 1
AN
≤ π̂ < 1

AP (AP−AN )
,

A2
P +AN (1−AP ) , if 1

AP (AP−AN )
≤ π̂.

(B109)

c) For S0 = P and (AP ,AN)∈ S2,

Pr∗[S2 = P |S0 = P ] =


0, if 0≤ π̂ < 1

AP (AP−AN )
,

(1− q) (A2
P +AN (1−AP )) , if 1

AP (AP−AN )
≤ π̂ < 1+AP

A2
P
,

A2
P + (1− q) (AN (1−AP )) , if 1+AP

A2
P
≤ π̂ < 1

AN
,

A2
P +AN (1−AP ) , if 1

AN
≤ π̂.

(B110)

d) For S0 = P , (AP ,AN)∈ S3, and
(

1− (AP −AN)− AN

A2
P

)(
1−φP |N

)
≤ 1−φP |P ,

Pr∗[S2 = P |S0 = P ] =


0, if 0≤ π̂ <R1,

(1− q) (A2
P +AN (1−AP )) , if R1 ≤ π̂ < 1+AP

A2
P
,

A2
P + (1− q) (AN (1−AP )) , if 1+AP

A2
P
≤ π̂ < 1

AN
,

A2
P +AN (1−AP ) , if 1

AN
≤ π̂.

(B111)

e) For S0 = P , (AP ,AN)∈ S3, and 1−φP |P <
(

1− (AP −AN)− AN

A2
P

)(
1−φP |N

)
,

Pr∗[S2 = P |S0 = P ] =


0, if 0≤ π̂ < 1+AP

A2
P
,

qA2
P , if 1+AP

A2
P
≤ π̂ <R1,

A2
P + (1− q) (AN (1−AP )) , if R1 ≤ π̂ < 1

AN
,

A2
P +AN (1−AP ) , if 1

AN
≤ π̂.

(B112)

f) For S0 = P , (AP ,AN)∈ S4, and
(
AP (AP−AN )−AN

AP

)
φP |N ≤ 1−φP |P ,

P r∗[S2 = P |S0 = P ] =



0, if 0≤ π̂ < 1+AP

A2
P
,

qA2
P , if 1+AP

A2
P
≤ π̂ <R2,

qA2
P + (1− q)

(
A2
PφP |P +AN (1−AP )φP |N

)
, if R2 ≤ π̂ <R1,

A2
P + (1− q)AN (1−AP ) , if R1 ≤ π̂ < 1

AN
,

A2
P +AN (1−AP ) , if 1

AN
≤ π̂.

(B113)

g) For S0 = P , (AP ,AN)∈ S4, and 1−φP |P <
(
AP (AP−AN )−AN

AP

)
φP |N ,

P r∗[S2 = P |S0 = P ] =



0, if 0≤ π̂ <R2,

(1− q)
(
A2
PφP |P +AN (1−AP )φP |N

)
, if R2 ≤ π̂ < 1+AP

A2
P
,

qA2
P + (1− q)

(
A2
PφP |P +AN (1−AP )φP |N

)
, if 1+AP

A2
P
≤ π̂ <R1,

A2
P + (1− q)AN (1−AP ) , if R1 ≤ π̂ < 1

AN
,

A2
P +AN (1−AP ) , if 1

AN
≤ π̂.

(B114)
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Proof of Proposition B1

First, consider the probability that the final state is proficient when the district relies on the

formative assessment and there is no information asymmetry. This is (B101) and (B102) evaluated

at q= 0.

Now, from (23) in Proposition 1, the minimum level of scaled merit-based incentive necessary

to induce positive effort at t= 1 is

P̂1 (S1) =
1

Pr [β1 = P |S1] (AP −AN) +AN
, (B115)

where, from (24),

Pr [β1 = P |S1] =


φP |Pm(e0,S0)

φP |Pm(e0,S0)+φP |N (1−m(e0,S0))
, if S1 = (P,e0,S0) ,

(1−φP |P )m(e0,S0)

(1−φP |P )m(e0,S0)+(1−φP |N)(1−m(e0,S0))
, if S1 = (N,e0,S0) .

(B116)

Therefore,

P̂1 (S1) =


φP |Pm(e0,S0)+φP |N (1−m(e0,S0))

φP |Pm(e0,S0)AP+φP |N (1−m(e0,S0))AN
, if S1 = (P,e0,S0) ,

(1−φP |P )m(e0,S0)+(1−φP |N)(1−m(e0,S0))

(1−φP |P )m(e0,S0)AP+(1−φP |N)(1−m(e0,S0))AN
, if S1 = (N,e0,S0) ,

(B117)

and, under Assumptions 1 and 2,

0≤ P̂1 (P,e0,S0)≤ P̂1 (N,e0,S0)≤
1

AN
. (B118)

Suppose S0 =N . From Proposition 2,

ê∗0 (N) =

{
0, if 0≤ π̂ < 1

AN (AP−AN )
,

1, if 1
AN (AP−AN )

≤ π̂.
(B119)

Then, plugging (B119) into (B117),

P̂1 (S1) =


1
AN
, if 0≤ π̂ < 1

AN (AP−AN )
,

1
AN

(
ANφP |P+(1−AN )φP |N
AP φP |P+(1−AN )φP |N

)
, if 1

AN (AP−AN )
≤ π̂ and S1 = (P,e0,S0) ,

1
AN

(
AN(1−φP |P )+(1−AN )(1−φP |N)
AP (1−φP |P )+(1−AN )(1−φP |N)

)
, if 1

AN (AP−AN )
≤ π̂ and S1 = (N,e0,S0) .

(B120)

Therefore, from (22),

ê∗1 (P,e∗0,N) = ê∗1 (N,e∗0,N) =

{
0, if 0≤ π̂ < 1

AN
,

1, if 1
AN
≤ π̂.

(B121)

Plugging (B121) into (B102), the school will be in the proficient state at t = 2 when q = 0 with

probability

Pr∗[S2 = P |S0 =N ] =


0, if 0≤ π̂ < 1

AN
,

AN , if 1
AN
≤ π̂ < 1

AN (AP−AN )
,

AN (1 +AP −AN) , if 1
AN (AP−AN )

≤ π̂.
(B122)
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Since this value does not depend on φP |P or φP |N , the probability of achieving proficiency does

not depend on the accuracy with which teachers know the intermediate state. Therefore, (B122)

characterizes the probability of achieving proficiency for all q ∈ [0,1]. Furthermore, it is clear

that Pr∗[S2 = P |S0 = N ] is non-decreasing in π̂ and bounded below by 0 and above by 1 under

Assumption 1.

Suppose S0 = P . Then, we consider two cases depending on the values of the parameters AP ,

AN , φP |P , and φP |N .

Case 1: If (AP ,AN)∈ S1, from Proposition 2, the optimal effort level at t= 0 is

ê∗0 =

{
0, if 0≤ π̂ < 1

AP (AP−AN )
,

1, if 1
AP (AP−AN )

≤ π̂.
(B123)

Then, plugging this into (B117),

P̂1 (S1) =


1
AN
, if 0≤ π̂ < 1

AP (AP−AN )
,

AP φP |P+(1−AP )φP |N
A2

P
φP |P+AN (1−AP )φP |N

, if 1
AP (AP−AN )

≤ π̂ and S1 = (P,e0,S0) ,

AP (1−φP |P )+(1−AP )(1−φP |N)
A2

P (1−φP |P )+AN (1−AP )(1−φP |N)
, if 1

AP (AP−AN )
≤ π̂ and S1 = (N,e0,S0) .

(B124)

In this case,
1

AN
≤ 1

AP (AP −AN)
. (B125)

Then, the optimal effort level at t= 1 is

ê∗1 (P,e∗0, P ) = e∗1 (N,e∗0, P ) =

{
0, if 0≤ π̂ < 1

AN
,

1, if 1
AN
≤ π̂.

(B126)

Plugging this into (B101) gives

Pr∗[S2 = P |S0 = P ] =


0, if 0≤ π̂ < 1

AN
,

AN , if 1
AN
≤ π̂ < 1

AP (AP−AN )
,

A2
P +AN (1−AP ) , if 1

AP (AP−AN )
≤ π̂.

(B127)

Again, this value does not depend on φP |P or φP |N , so the probability of achieving proficiency

does not depend on the accuracy with which teachers know the intermediate state. Therefore,

(B127) represents the probability of achieving proficiency for all q ∈ [0,1]. Furthermore, it is

clear that Pr∗[S2 = P |S0 = P ] is non-decreasing in π̂ and bounded below by 0 and above by

1 under Assumption 1.

Case 2: For AN
AP

< AP −AN , we again calculate the probability that the final state is proficient

when q= 0. Using these results, we then calculate the district’s evaluation of the probability of

achieving proficiency when q= 1. We consider three subcases based on the parameter values.
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Subcase 1: If (AP ,AN)∈ S2, from Proposition 2, the optimal effort level at t= 0 is

ê∗0 =

{
0, if 0≤ π̂ < 1

AP (AP−AN )
,

1, if 1
AP (AP−AN )

≤ π̂.
(B128)

Then, plugging this into (B117),

P̂1 (S1) =


1
AN
, if 0≤ π̂ < 1

AP (AP−AN )
,

AP φP |P+(1−AP )φP |N
A2

P
φP |P+AN (1−AP )φP |N

, if 1
AP (AP−AN )

≤ π̂ and S1 = (P,e0,S0) ,

R1, if 1
AP (AP−AN )

≤ π̂ and S1 = (N,e0,S0) ,

(B129)

where, from (32),

R1 =
AP
(
1−φP |P

)
+ (1−AP )

(
1−φP |N

)
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

) . (B130)

Now,

1

AP (AP −AN)
<

1

AN
, (B131)

and from (B75)

1

AP (AP −AN)
≥R1 ⇐⇒ A1 ≥AP −AN , (B132)

which is a condition for this case. Recall from (30)

A1 =
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

)
A2
P

(
1−φP |P

)
+AP (1−AP )

(
1−φP |N

) . (B133)

Furthermore, from Proposition 1,

P̂1 (P,e0,S0)≤ P̂1 (N,e0,S0) . (B134)

Then, the optimal effort level at t= 1 is

ê∗1 (P,e∗0, P ) = ê∗1 (N,e∗0, P )
∗

=

{
0, if 0≤ π̂ < 1

AP (AP−AN )
,

1, if 1
AP (AP−AN )

≤ π̂.
(B135)

Plugging this into (B101) when q= 0 gives

Pr∗[S2 = P |S0 = P ] =

{
0, if 0≤ π̂ < 1

AP (AP−AN )
,

A2
P +AN (1−AP ) , if 1

AP (AP−AN )
≤ π̂.

(B136)

It is clear that Pr∗[S2 = P |S0 = P ] is non-decreasing in π̂ and bounded below by 0 and

above by 1 under Assumption 1.
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Subcase 2: If (AP ,AN)∈ S3, from Proposition 2, the optimal effort level at t= 1 is

ê∗0 =

{
0, if 0≤ π̂ <R1,

1, if R1 ≤ π̂.
(B137)

Plugging this into (B117),

P̂1 (S1) =


1
AN
, if 0≤ π̂ <R1,

AP φP |P+(1−AP )φP |N
A2

P
φP |P+AN (1−AP )φP |N

, if R1 ≤ π̂ and S1 = (P,e0,S0) ,

R1, if R1 ≤ π̂ and S1 = (N,e0,S0) .

(B138)

Now,

R1 ≤
1

AN
, (B139)

and, from Proposition 1,

P̂1 (P,e0,S0)≤ P̂1 (N,e0,S0) . (B140)

Then, the optimal effort level at t= 2 is

ê∗1 (P,e∗0, P ) = ê∗1 (N,e∗0, P ) =

{
0, if 0≤ π̂ <R1,

1, if R1 ≤ π̂.
(B141)

Plugging this into (B101) when q= 0 gives

Pr∗[S2 = P |S0 = P ] =

{
0, if 0≤ π̂ <R1,

A2
P +AN (1−AP ) , if R1 ≤ π̂.

(B142)

In the expression above, it is clear that Pr∗[S2 = P |S0 = P ] is non-decreasing in π̂ and

bounded below by 0 and above by 1 under Assumption 1.

Subcase 3: If (AP ,AN)∈ S4, from Proposition 2, the optimal effort level at t= 0 is

e∗0 =

{
0, if 0≤ π̂ <R2,

λ, if R2 ≤ π̂.
(B143)

Then, plugging this into (B117),

P̂1 (S1) =


1
AN
, if 0≤ π̂ <R2,

AP φP |P+(1−AP )φP |N
A2

P
φP |P+AN (1−AP )φP |N

, if R2 ≤ π̂ and S1 = (P,e0,S0) ,

R1, if R2 ≤ π̂ and S1 = (N,e0,S0) .

(B144)

From (B61),

R2 ≥
APφP |P + (1−AP )φP |N

A2
PφP |P +AN (1−AP )φP |N

(B145)

always holds under Assumptions 1 and 2, and from (B62),

R2 <R1 ⇐⇒ A2 <AP −AN , (B146)
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which is a condition for this case. Then, the optimal effort level at t= 1 is

e∗1 (P,e∗0, P ) =

{
0, if 0≤ π̂ <R2,

λ, if R2 ≤ π̂,
(B147)

and

e∗1 (N,e∗0, P ) =

{
0, if 0≤ π̂ <R1,

λ, if R1 ≤ π̂,
(B148)

and, from (B101),

Pr∗[S2 = P |S0 = P ] =


0, if 0≤ π̂ <R2,

A2
PφP |P +AN (1−AP )φP |N , if R2 ≤ π̂ <R1,

A2
P +AN (1−AP ) , if R1 ≤ π̂.

(B149)

In the expression above, it is clear that Pr∗[S2 = P |S0 = P ] is non-decreasing in π̂ and

bounded below by 0 and above by 1 under Assumptions 1 and 2.

Using the results from the subcases, we calculate the probability that the system is in the

proficient state when q = 1. Note that the teachers’ response under perfect information is

identical to the response under a perfectly accurate formative assessment (φP |P = 1, φP |N = 0).

In that case, A1 =A2 = AN
AP

, so Subcases 1 and 2 are never feasible. Furthermore, R1 = 1
AN

and R2 = 1+AP

A2
P

.

Therefore, in the case where there is maximum information asymmetry between the district

and teachers (q= 1) and AN
AP

<AP −AN ,

Pr∗[S2 = P |S0 = P ] =


0, if 0≤ π̂ < 1+AP

A2
P
,

A2
P , if 1+AP

A2
P
≤ π̂ < 1

AN
,

A2
P +AN (1−AP ) , if 1

AN
≤ π̂.

(B150)

Finally, using the results from the subcases and (B150), we can characterize the the probability

of achieving proficiency in the final state for any value of q for each subcase in Case 2.

Subcase 1: (AP ,AN)∈ S2. If q= 0, from (B136),

Pr∗[S2 = P |S0 = P ] =

{
0, if 0≤ π̂ < 1

AP (AP−AN )
,

A2
P +AN (1−AP ) , if 1

AP (AP−AN )
≤ π̂.

(B151)

Now,

1

AP (AP −AN)
<

1 +AP
A2
P

⇐⇒ AN
AP

<AP −AN , (B152)

which always holds in this case.

Therefore, for any q,

Pr∗[S2 = P |S0 = P ] =


0, if 0≤ π̂ < 1

AP (AP−AN )
,

(1− q) (A2
P +AN (1−AP )) , if 1

AP (AP−AN )
≤ π̂ < 1+AP

A2
P
,

A2
P + (1− q) (AN (1−AP )) , if 1+AP

A2
P
≤ π̂ < 1

AN
,

A2
P +AN (1−AP ) , if 1

AN
≤ π̂.

(B153)
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Subcase 2: (AP ,AN)∈ S3. If q= 0, from (B142),

Pr∗[S2 = P |S0 = P ] =

{
0, if 0≤ π̂ <R1

A2
P +AN (1−AP ) , if R1 ≤ π̂,

(B154)

where, from (32),

R1 =
AP
(
1−φP |P

)
+ (1−AP )

(
1−φP |N

)
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

) . (B155)

First, note that

R1 ≤
1

AN
⇐⇒ AN ≤AP , (B156)

which holds under Assumption 1.

Furthermore,

R1 ≤
1 +AP
A2
P

⇐⇒
(

1− (AP −AN)− AN
A2
P

)(
1−φP |N

)
≤ 1−φP |P . (B157)

Therefore, we must consider two possibilities. If
(

1− (AP −AN)− AN

A2
P

)(
1−φP |N

)
≤ 1 −

φP |P ,

Pr∗[S2 = P |S0 = P ] =


0, if 0≤ π̂ <R1,

(1− q) (A2
P +AN (1−AP )) , if R1 ≤ π̂ < 1+AP

A2
P
,

A2
P + (1− q) (AN (1−AP )) , if 1+AP

A2
P
≤ π̂ < 1

AN
,

A2
P +AN (1−AP ) , if 1

AN
≤ π̂.

(B158)

Finally, if 1−φP |P <
(

1− (AP −AN)− AN

A2
P

)(
1−φP |N

)
,

Pr∗[S2 = P |S0 = P ] =


0, if 0≤ π̂ < 1+AP

A2
P
,

qA2
P , if 1+AP

A2
P
≤ π̂ <R1,

A2
P + (1− q) (AN (1−AP )) , if R1 ≤ π̂ < 1

AN
,

A2
P +AN (1−AP ) , if 1

AN
≤ π̂.

(B159)

Subcase 3: (AP ,AN)∈ S4. If q= 0, from (B149),

Pr∗[S2 = P |S0 = P ] =


0, if 0≤ π̂ <R2,

A2
PφP |P +AN (1−AP )φP |N , if R2 ≤ π̂ <R1,

A2
P +AN (1−AP ) , if R1 ≤ π̂.

(B160)

First, recall from (B156) that R1 ≤ 1
AN

. Furthermore, when (AP ,AN) ∈ S4, as defined in

(37), then R1 >
1+AP

A2
P

. To see this, first note that

R1 >
1 +AP
A2
P

⇐⇒
(1−AP ) (A2

P −AN (1 +AP ))
(
1−φP |N

)
A2
P

> 1−φP |P (B161)



Virudachalam, Savin, and Steinberg
B22 Investing in Performance in K-12 Education

and

(AP ,AN)∈ S4 ⇐⇒
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

)
(1−AP )

(
1−φP |N

) (
APφP |P −ANφP |N

) <AP −AN
⇐⇒ 1−φP |P <

(1−AP )
(
(AP −AN)

(
APφP |P −ANφP |N

)
−AN

) (
1−φP |N

)
A2
P

.

(B162)

Now,

(1−AP ) (A2
P −AN (1 +AP ))

(
1−φP |N

)
A2
P

≥
(1−AP )

(
(AP −AN)

(
APφP |P −ANφP |N

)
−AN

) (
1−φP |N

)
A2
P

⇐⇒ AP ≥APφP |P −ANφP |N , (B163)

which always holds under Assumptions 1 and 2. Therefore,

(AP ,AN)∈ S4⇒R1 >
1 +AP
A2
P

. (B164)

Then, there are two possibilities to consider: 1+AP

A2
P
≤R2 and R2 <

1+AP

A2
P

, where from (33)

R2 =
1 +AP

(
φP |P −φP |N

)
AP
(
APφP |P −ANφP |N

) . (B165)

Now,

1 +AP
A2
P

≤R2 ⇐⇒
φP |N

1−φP |P
≤ AP
A2
P −ANAP −AN

⇐⇒
(
AP (AP −AN)−AN

AP

)
φP |N ≤ 1−φP |P , (B166)

where we use that AP −AN > AN
AP

, since (AP ,AN)∈ S4.

Therefore, if (
AP (AP −AN)−AN

AP

)
φP |N ≤ 1−φP |P , (B167)

then

Pr∗[S2 = P |S0 = P ] =



0, if 0≤ π̂ < 1+AP

A2
P
,

qA2
P ,

1+AP

A2
P
≤ π̂ <R2,

qA2
P + (1− q)

(
A2
PφP |P +AN (1−AP )φP |N

)
, if R2 ≤ π̂ <R1,

A2
P + (1− q)AN (1−AP ) , if R1 ≤ π̂ < 1

AN
,

A2
P +AN (1−AP ) , if 1

AN
≤ π̂.

(B168)

Otherwise, if

1−φP |P <
(
AP (AP −AN)−AN

AP

)
φP |N , (B169)
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then

Pr∗[S2 = P |S0 = P ] =



0, if 0≤ π̂ <R2,

(1− q)
(
A2
PφP |P +AN (1−AP )φP |N

)
, if R2 ≤ π̂ < 1+AP

A2
P
,

qA2
P + (1− q)

(
A2
PφP |P +AN (1−AP )φP |N

)
, if 1+AP

A2
P
≤ π̂ <R1,

A2
P + (1− q)AN (1−AP ) , if R1 ≤ π̂ < 1

AN
,

A2
P +AN (1−AP ) , if 1

AN
≤ π̂.

(B170)

It is straightforward to show that, in all of these cases, Pr∗[S2 = P |S0 = P ] and Pr∗[S2 = P |S0 =

P ] are non-decreasing in π̂ and are always between 0 and 1.

�

Proof of Proposition 3

When the district relies on the formative assessment (zI = 0), the school district’s maximization

problem is as given in (40)-(41):

max
π≥0

Pr∗[S2 = P |S0] (B171)

s.t. πPr∗[S2 = P |S0]≤B, (B172)

with Pr∗[S2 = P |S0] given in (B108)-(B114).

In the proof of Proposition B1, we show that Pr∗[S2 = P |S0] is a non-decreasing step function of

π̂. Therefore, the expression on the left-hand side of the district’s constraint (41) is an increasing

function of π̂, and we must consider the value of the objective function (40) at each of the endpoints

of each interval of π̂ that corresponds to a “step.” We assume that if Pr∗ [S2 = P |S0] is constant

over a region of π̂ and any value of π̂ in that region is optimal, the district will choose the smallest

value of π̂ in that region.

To determine the optimal merit-based incentive π̂∗ and the corresponding probability that the

final state is proficient, we must consider the several cases stated in Proposition B1 that determine

the characterization of Pr∗ [S2 = P |S0].

We begin with the case where S0 = N and Pr∗ [S2 = P |S0] is given by (B108). Then, π̂∗ =

1
AN (AP−AN )

if

λγ

AN (AP −AN)
(AN (1 +AP −AN))≤B ⇐⇒ 1 +

1

AP −AN
≤ B̂. (B173)

Similarly, π̂∗ = 1
AN

if

λγ

AN
(AN)≤B <

λγ

AN (AP −AN)
(AN (1 +AP −AN)) ⇐⇒ 1≤ B̂ < 1 +

1

AP −AN
. (B174)

These results are stated in (47). We follow similar steps for the cases where S0 = P , using the

functional forms for Pr∗ [S2 = P |S0] given by (B109)-(B114).

�
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Lemma B4. The probability that the final state is proficient under the optimal incentive levels

(47)-(53) when q < 1 and zI = 0 can be expressed as follows.

a) For S0 =N ,

Pr∗zI [S2 = P |S0 =N ] =


0, if 0≤ B̂ < 1,

AN , if 1≤ B̂ < 1 + 1
AP−AN

,

AN (1 +AP −AN) , if 1 + 1
AP−AN

≤ B̂.
(B175)

b) For S0 = P and (AP ,AN)∈ S1,

Pr∗zI [S2 = P |S0 = P ] =


0, if 0≤ B̂ < 1,

AN , if 1≤ B̂ < 1 + AN
AP (AP−AN )

,

A2
P +AN (1−AP ) , if 1 + AN

AP (AP−AN )
≤ B̂.

(B176)

c) For S0 = P and (AP ,AN)∈ S2,

Pr∗zI [S2 = P |S0 = P ] =



0, if 0≤ B̂ < (1− q)
(

1 + AN
AP (AP−AN )

)
,

(1− q) (A2
P +AN (1−AP )) ,

if (1− q)
(

1 + AN
AP (AP−AN )

)
≤ B̂ < 1 +AP + (1− q)

(
AN(1−A2

P )
A2

P

)
,

A2
P + (1− q) (AN (1−AP )) ,

if 1 +AP + (1− q)
(
AN(1−A2

P )
A2

P

)
≤ B̂ < 1 +AP

(
AP
AN
− 1
)
,

A2
P +AN (1−AP ) , if 1 +AP

(
AP
AN
− 1
)
≤ B̂.

(B177)

d) For S0 = P , (AP ,AN)∈ S3, and
(

1− (AP −AN)− AN

A2
P

)(
1−φP |N

)
≤ 1−φP |P ,

Pr∗zI [S2 = P |S0 = P ] =



0, if 0≤ B̂ < (1− q)B1,

(1− q) (A2
P +AN (1−AP )) ,

if (1− q)B1 ≤ B̂ < 1 +AP + (1− q)
(
AN(1−A2

P )
A2

P

)
,

A2
P + (1− q)AN (1−AP ) ,

if 1 +AP + (1− q)
(
AN(1−A2

P )
A2

P

)
≤ B̂ < 1 +AP

(
AP
AN
− 1
)
,

A2
P +AN (1−AP ) , if 1 +AP

(
AP
AN
− 1
)
≤ B̂.

(B178)

e) For S0 = P , (AP ,AN)∈ S3, and 1−φP |P <
(

1− (AP −AN)− AN

A2
P

)(
1−φP |N

)
,

Pr∗zI [S2 = P |S0 = P ] =


0, if 0≤ B̂ < q(1 +AP ),

qA2
P , if q(1 +AP )≤ B̂ < qA2

PR1 + (1− q)B1,

A2
P + (1− q)AN (1−AP ) , if qA2

PR1 + (1− q)B1 ≤ B̂ < 1 +AP

(
AP
AN
− 1
)
,

A2
P +AN (1−AP ) , if 1 +AP

(
AP
AN
− 1
)
≤ B̂.

(B179)



Virudachalam, Savin, and Steinberg
Investing in Performance in K-12 Education B25

f) For S0 = P , (AP ,AN)∈ S4, and
(
AP (AP−AN )−AN

AP

)
φP |N ≤ 1−φP |P ,

P r∗zI [S2 = P |S0 = P ] =



0, if 0≤ B̂ < q(1 +AP ),

qA2
P , if q(1 +AP )≤ B̂ <B3,

qA2
P + (1− q)

(
A2
PφP |P +AN (1−AP )φP |N

)
,

if B3 ≤ B̂ < qA2
PR1 + (1− q)B1,

A2
P + (1− q)AN (1−AP ) ,

if qA2
PR1 + (1− q)B1 ≤ B̂ < 1 +AP

(
AP
AN
− 1
)
,

A2
P +AN (1−AP ) , if 1 +AP

(
AP
AN
− 1
)
≤ B̂.

(B180)

g) For S0 = P , (AP ,AN)∈ S4, and 1−φP |P <
(
AP (AP−AN )−AN

AP

)
φP |N ,

P r∗zI [S2 = P |S0 = P ] =



0, if 0≤ B̂ < (1− q)B2,

(1− q)
(
A2
PφP |P +AN (1−AP )φP |N

)
,

if (1− q)B2 ≤ B̂ <B4,

qA2
P + (1− q)

(
A2
PφP |P +AN (1−AP )φP |N

)
,

if B4 ≤ B̂ < qA2
PR1 + (1− q)B1,

A2
P + (1− q)AN (1−AP ) ,

if qA2
PR1 + (1− q)B1 ≤ B̂ < 1 +AP

(
AP
AN
− 1
)
,

A2
P +AN (1−AP ) , if 1 +AP

(
AP
AN
− 1
)
≤ B̂.

(B181)

Proof of Lemma B4

The expessions in the Lemma are straightforward to calculate using the probability functions from

Proposition B1 and the optimal merit-based incentive from Proposition 3.

When S0 =N , from (B108),

Pr∗[S2 = P |S0 =N ] =


0, if 0≤ π̂ < 1

AN
,

AN , if 1
AN
≤ π̂ < 1

AN (AP−AN )
,

AN (1 +AP −AN) , if 1
AN (AP−AN )

≤ π̂,
(B182)

and from (47),

π̂∗ =


0, if 0≤ B̂ < 1,
1
AN
, if 1≤ B̂ < 1 + 1

AP−AN
,

1
AN (AP−AN )

, if 1 + 1
AP−AN

≤ B̂.
(B183)

Then,

Pr∗zI [S2 = P |S0 =N ] =


0, if 0≤ B̂ < 1,

AN , if 1≤ B̂ < 1 + 1
AP−AN

,

AN (1 +AP −AN) , if 1 + 1
AP−AN

≤ B̂.
(B184)

We evalaute the remaining cases using the same approach.
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Note that the setting where q= 0, for which the optimal merit-based incentive is given in Propo-

sition A1, is characterized by this case as well. To see this, notice that when q= 0, B2 =B3, where

B2 and B3 are given in (44) and (45), respectively.

�

Lemma B5. The probability that the final state is proficient under the optimal incentive levels

(47)-(53) when q= 1 can be expressed as follows.

a) For S0 =N ,

Pr∗zI [S2 = P |S0 =N ] =


0, if 0≤ B̂− F̂ zI < 1,

AN , if 1≤ B̂− F̂ zI < 1 + 1
AP−AN

,

AN (1 +AP −AN) , if 1 + 1
AP−AN

≤ B̂− F̂ zI .
(B185)

b) For S0 = P and (AP ,AN)∈ S1,

Pr∗zI [S2 = P |S0 = P ] =


0, if 0≤ B̂− F̂ zI < 1,

AN , if 1≤ B̂− F̂ zI < 1 + AN
AP (AP−AN )

,

A2
P +AN (1−AP ) , if 1 + AN

AP (AP−AN )
≤ B̂− F̂ zI .

(B186)

c) For S0 = P , (AP ,AN)∈ S4,

Pr∗zI [S2 = P |S0 = P ] =


0, if 0≤ B̂− F̂ zI < 1 +AP ,

A2
P , if 1 +AP ≤ B̂− F̂ zI < 1 +AP

(
AP
AN
− 1
)
,

A2
P +AN (1−AP ) , if 1 +AP

(
AP
AN
− 1
)
≤ B̂− F̂ zI .

(B187)

Proof of Lemma B5

This is a special case of Lemma B4 with q = 1, φP |P = 1, φP |N = 0, and the available budget B̂ is

replaced by B̂− F̂ zI .

�

Proposition B2. Let Z∗ denote the set of optimal decisions, z∗I , for the district.

1. For any budget value B, either there exists F ∗ ≤B such that

Z∗ =

{
{1} or {0,1} , if F ≤ F ∗,
{0} , if F >F ∗,

(B188)

or Z∗ = {0} for all F .

2. There exists BL ≥ 0 such that, for B <BL, Z∗ = {0,1} for all F ≤B.

3. There exists BU ≥BL such that, for B ≥BU ,

Z∗ =

{
{0,1} , if F ≤ F ∗ <B,
{0} , if F >F ∗.

(B189)
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4. Define

F̂ ∗ =
F ∗

λγ
, B̂L =

BL
λγ

, B̂U =
BU
λγ

. (B190)

Then, the values of F̂ ∗, B̂L, and B̂U are given as follows.

a) For S0 =N ,

F̂ ∗ =


B̂, if 0≤ B̂ < 1,

B̂− 1, if 1≤ B̂ < 1 + 1
AP−AN

,

B̂− 1− 1
AP−AN

, if 1 + 1
AP−AN

≤ B̂,
(B191)

and B̂L = B̂U = 1.

b) For S0 = P and (AP ,AN)∈ S1,

F̂ ∗ =


B̂, if 0≤ B̂ < 1,

B̂− 1, if 1≤ B̂ < 1 + AN
AP (AP−AN )

,

B̂− 1− AN
AP (AP−AN )

, if 1 + AN
AP (AP−AN )

≤ B̂,
(B192)

and B̂L = B̂U = 1.

c) For S0 = P , (AP ,AN)∈ S4, and either q= 1, or φP |P = 1, φP |N = 0,

F̂ ∗ =


B̂, if 0≤ B̂ < 1 +AP ,

B̂− 1−AP , if 1 +AP ≤ B̂ < 1 +AP

(
AP
AN
− 1
)
,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B193)

and B̂L = B̂U = 1 +AP .

d) For S0 = P , (AP ,AN)∈ S2, and q < AN (1−AP )

A2
P
+AN (1−AP )

,

F̂ ∗ =

B̂, if 0≤ B̂ < (1− q)
(

1 + AN
AP (AP−AN )

)
,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B194)

and the interim assessment is never optimal, for any value of F̂ , if

(1− q)
(

1 +
AN

AP (AP −AN)

)
≤ B̂ < 1 +AP

(
AP
AN
− 1

)
. (B195)

Additionally,

B̂L =

1 +AP , if q≤ AN−A2
P (AP−AN )

AP (AP−AN )+AN
,

(1− q)
(

1 + AN
AP (AP−AN )

)
, if

AN−A2
P (AP−AN )

AP (AP−AN )+AN
< q < AN (1−AP )

A2
P
+AN (1−AP )

,
(B196)

and B̂U = 1 +AP

(
AP
AN
− 1
)

.
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e) For S0 = P , (AP ,AN)∈ S2, and AN (1−AP )

A2
P
+AN (1−AP )

≤ q < 1,

F̂ ∗ =


B̂, if 0≤ B̂ < (1− q)

(
1 + AN

AP (AP−AN )

)
,

B̂− 1−AP , if 1 +AP ≤ B̂ < 1 +AP + (1− q)
(
AN(1−A2

P )
A2

P

)
,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B197)

and the interim assessment is never optimal, for any value of F̂ , if

(1− q)
(

1 +
AN

AP (AP −AN)

)
≤ B̂ < 1 +AP or

1 +AP + (1− q)
(
AN (1−A2

P )

A2
P

)
≤ B̂ < 1 +AP

(
AP
AN
− 1

)
. (B198)

Additionally, B̂L = (1− q)
(

1 + AN
AP (AP−AN )

)
and B̂U = 1 +AP

(
AP
AN
− 1
)

.

f) For S0 = P , (AP ,AN) ∈ S3, and either
(

1− (AP −AN)− AN

A2
P

)(
1−φP |N

)
≤ 1 − φP |P , q <

AN (1−AP )

A2
P
+AN (1−AP )

, or (AP ,AN)∈ S3, 1−φP |P <
(

1− (AP −AN)− AN

A2
P

)(
1−φP |N

)
, q= 0,

F̂ ∗ =

{
B̂, if 0≤ B̂ < (1− q)B1,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B199)

and the interim assessment is never the optimal choice if

(1− q)B1 ≤ B̂ < 1 +AP

(
AP
AN
− 1

)
. (B200)

Additionally, when
(

1− (AP −AN)− AN

A2
P

)(
1−φP |N

)
≤ 1−φP |P ,

B̂L =

{
1 +AP , if q <Q1,

(1− q)B1, if Q1 ≤ q < AN (1−AP )

A2
P
+AN (1−AP )

,
(B201)

and when 1−φP |P <
(

1− (AP −AN)− AN

A2
P

)(
1−φP |N

)
and q= 0, B̂L = 1 +AP . In all cases, B̂U =

1 +AP

(
AP
AN
− 1
)

.

g) For S0 = P , (AP ,AN)∈ S3,
(

1− (AP −AN)− AN

A2
P

)(
1−φP |N

)
≤ 1−φP |P , and AN (1−AP )

A2
P
+AN (1−AP )

≤

q < 1,

F̂ ∗ =


B̂, if 0≤ B̂ < (1− q)B1,

B̂− 1−AP , if 1 +AP ≤ B̂ < 1 +AP + (1− q)
(
AN(1−A2

P )
A2

P

)
,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B202)

and the interim assessment is never the optimal choice if

(1− q)B1 ≤ B̂ < 1 +AP or 1 +AP + (1− q)
(
AN (1−A2

P )

A2
P

)
≤ B̂ < 1 +AP

(
AP
AN
− 1

)
. (B203)
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Additionally, B̂L = (1− q)B1 and B̂U = 1 +AP

(
AP
AN
− 1
)

.

h) For S0 = P and either (AP ,AN)∈ S3, 1−φP |P <
(

1− (AP −AN)− AN

A2
P

)(
1−φP |N

)
, 0< q < 1,

or (AP ,AN)∈ S4, max
(
AP (AP−AN )−AN

AP
, AN (1−AP )

A2
P

)
φP |N ≤ 1−φP |P , and 0< q < 1,

F̂ ∗ =


B̂, if 0≤ B̂ < q(1 +AP ),

B̂− 1−AP , if 1 +AP ≤ B̂ < qA2
PR1 + (1− q)B1,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B204)

and the interim assessment is never the optimal choice if

q(1 +AP )≤ B̂ < 1 +AP or qA2
PR1 + (1− q)B1 ≤ B̂ < 1 +AP

(
AP
AN
− 1

)
. (B205)

Additionally, B̂L = q (1 +AP ) and B̂U = 1 +AP

(
AP
AN
− 1
)

.

i) For S0 = P , (AP ,AN) ∈ S4,
(
AP (AP−AN )−AN

AP

)
φP |N ≤ 1− φP |P <

(
AN (1−AP )

A2
P

)
φP |N , and 0 <

q < 1,

F̂ ∗ =


B̂, if 0≤ B̂ < q(1 +AP ),

B̂− 1−AP , if 1 +AP ≤ B̂ <B3,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B206)

and the interim assessment is never the optimal choice if

q(1 +AP )≤ B̂ < 1 +AP or B3 ≤ B̂ < 1 +AP

(
AP
AN
− 1

)
. (B207)

Additionally, B̂L = q (1 +AP ) and B̂U = 1 +AP

(
AP
AN
− 1
)

.

j) For S0 = P , (AP ,AN)∈ S4, and either
(
AN (1−AP )

A2
P

)
φP |N ≤ 1−φP |P <

(
AP (AP−AN )−AN

AP

)
φP |N ,

q < 1, or max
(
AP (AP−AN )−AN

AP
, AN (1−AP )

A2
P

)
φP |N ≤ 1 − φP |P , ANφP |N

(
1 +AP

(
φP |P −φP |N

))
<

A2
P

(
1−

(
φP |P −φP |N

)) (
APφP |P −ANφP |N

)
, and q= 0,

F̂ ∗ =


B̂, if 0≤ B̂ < (1− q)B2,

B̂− 1−AP , if 1 +AP ≤ B̂ < qA2
PR1 + (1− q)B1,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B208)

and the interim assessment is never the optimal choice if

(1− q)B2 ≤ B̂ < 1 +AP or qA2
PR1 + (1− q)B1 ≤ B̂ < 1 +AP

(
AP
AN
− 1

)
. (B209)

Additionally, B̂L = (1− q)B2 and B̂U = 1 +AP

(
AP
AN
− 1
)

.

k) For S0 = P , (AP ,AN) ∈ S4, and either 1− φP |P <min
(
AP (AP−AN )−AN

AP
, AN (1−AP )

A2
P

)
φP |N , 0≤

q <Q6, or
(
AP (AP−AN )−AN

AP

)
φP |N ≤ 1−φP |P <

(
AN (1−AP )

A2
P

)
φP |N , q= 0,

F̂ ∗ =

{
B̂, if 0≤ B̂ < (1− q)B2,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B210)
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and the interim assessment is never the optimal choice if

(1− q)B2 ≤ B̂ < 1 +AP

(
AP
AN
− 1

)
. (B211)

Additionally, if 1−φP |P <min
(
AP (AP−AN )−AN

AP
, AN (1−AP )

A2
P

)
φP |N , then

B̂L =

{
1 +AP , if 0≤ q <Q5,

(1− q)B2, if Q5 ≤ q <Q6,
(B212)

and if
(
AP (AP−AN )−AN

AP

)
φP |N ≤ 1−φP |P <

(
AN (1−AP )

A2
P

)
φP |N and q= 0, then

B̂L =

{
1 +AP , if ANφP |N

(
1 +AP

(
φP |P −φP |N

))
≥A2

P

(
1−

(
φP |P −φP |N

)) (
APφP |P −ANφP |N

)
,

B2, if ANφP |N
(
1 +AP

(
φP |P −φP |N

))
<A2

P

(
1−

(
φP |P −φP |N

)) (
APφP |P −ANφP |N

)
.

(B213)

For all cases, B̂U = 1 +AP

(
AP
AN
− 1
)

.

l) For S0 = P , (AP ,AN)∈ S4, 1−φP |P <min
(
AP (AP−AN )−AN

AP
, AN (1−AP )

A2
P

)
φP |N , and Q6 ≤ q < 1,

F̂ ∗ =


B̂, if 0≤ B̂ < (1− q)B2,

B̂− 1−AP , if 1 +AP ≤ B̂ <B4,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B214)

and the interim assessment is never the optimal choice if

(1− q)B2 ≤ B̂ < 1 +AP or B4 ≤ B̂ < 1 +AP

(
AP
AN
− 1

)
. (B215)

Additionally, B̂L = (1− q)B2 and B̂U = 1 +AP

(
AP
AN
− 1
)

.

m) For S0 = P , (AP ,AN) ∈ S4, max
(
AP (AP−AN )−AN

AP
, AN (1−AP )

A2
P

)
φP |N ≤ 1 − φP |P ,

ANφP |N
(
1 +AP

(
φP |P −φP |N

))
≥A2

P

(
1−

(
φP |P −φP |N

)) (
APφP |P −ANφP |N

)
, and q= 0,

F̂ ∗ =


B̂, if 0≤ B̂ <B2,

B̂− 1−AP , if B2 ≤ B̂ <B1,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B216)

and the interim assessment is never the optimal choice if

B1 ≤ B̂ < 1 +AP

(
AP
AN
− 1

)
. (B217)

Additionally, B̂L = 1 +AP and B̂U = 1 +AP

(
AP
AN
− 1
)

.
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Proof of Proposition B2

In order to establish the statements of this Proposition, we will need the following result.

Lemma B6. We define the following constants:

Q1 =
AP

A2
P +AN (1−AP )

(
(AN (1−AP )−AP )

(
1−φP |P

)
+ (1−AP ) (AP − 2AN)

(
1−φP |N

)
AP
(
1−φP |P

)
+ (1−AP )

(
1−φP |N

) )
,

(B218)

Q2 =
A2
P

AN (1−AP )
+ 1−

(1 +AP )
(
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

))
AP
(
1−φP |P

)
+ (1−AP )

(
1−φP |N

) , (B219)

Q3 =

1+AP
R2
−A2

PφP |P −AN (1−AP )φP |N

A2
P −A2

PφP |P −AN (1−AP )φP |N
, (B220)

Q4 =
B1− 1−AP
B1−A2

PR1

, (B221)

Q5 = 1−
AP (1 +AP )

(
APφP |P −ANφP |N

)(
1 +AP

(
φP |P −φP |N

)) (
AP
(
APφP |P −ANφP |N

)
+ANφP |N

) , (B222)

Q6 =
AN (1−AP )φP |N −A2

P

(
1−φP |P

)
A2
PφP |P +AN (1−AP )φP |N

, (B223)

where, from (43),

B1 =

(
AP
(
1−φP |P

)
+ (1−AP )

(
1−φP |N

)
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

))(A2
P +AN (1−AP )

)
. (B224)

These constants have the following properties.

a) Q2 ≥ 1.

b) If
(
AP (AP−AN )−AN

AP

)
φP |N ≤ 1−φP |P <

(
AN (1−AP )

A2
P

)
φP |N , then Q3 ≥ 1.

c) If (AP ,AN)∈ S4, then Q4 > 1.

d) Q5 < 1.

e) Q6 < 1.

f) If 1−φP |P <
(
AN (1−AP )

A2
P

)
φP |N , then Q6 > 0.

Proof of Lemma B6

a) Using (B219),

Q2 ≥ 1 ⇐⇒ A2
P

AN (1−AP )
+ 1−

(1 +AP )
(
A2
P

(
1−φP |P

)
+AN (1−AP )

)
AP
(
1−φP |P

)
+ (1−AP )

≥ 1

⇐⇒ A2
P

AN (1−AP )
≥

(1 +AP )
(
A2
P

(
1−φP |P

)
+AN (1−AP )

)
AP
(
1−φP |P

)
+ (1−AP )

⇐⇒ A2
P

(
AP −AN

(
1−A2

P

)) (
1−φP |P

)
≥
(
A2
N

(
1−A2

P

)
−A2

P

)
(1−AP ) , (B225)

where the left-hand side of the inequality is always nonnegative and the right-hand side of the

inequality is always nonpositive under Assumptions 1 and 2. Therefore, the statement always holds.
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b) Suppose
(
AP (AP−AN )−AN

AP

)
φP |N ≤ 1−φP |P <

(
AN (1−AP )

A2
P

)
φP |N . From (B220),

Q3 =

1+AP
R2
−A2

PφP |P −AN (1−AP )φP |N

A2
P −A2

PφP |P −AN (1−AP )φP |N
. (B226)

The denominator in this expression is negative, since

A2
P −A2

PφP |P −AN (1−AP )φP |N < 0 ⇐⇒ 1−φP |P <
(
AN (1−AP )

A2
P

)
φP |N , (B227)

which holds by assumption in this case. Then, using (33),

Q3 ≥ 1 ⇐⇒
1+AP
R2
−A2

PφP |P −AN (1−AP )φP |N

A2
P −A2

PφP |P −AN (1−AP )φP |N
≥ 1

⇐⇒
(1 +AP )AP

(
APφP |P −ANφP |N

)
1 +AP

(
φP |P −φP |N

) ≤A2
P

⇐⇒ A2
P (1 +AP )φP |P −ANAP (1 +AP )φP |N ≤A2

P +A3
P

(
φP |P −φP |N

)
⇐⇒ 0≤AP

(
1−φP |P

)
+
(
AN (1 +AP )−A2

P

)
φP |N

⇐⇒
(

(AP (AP −AN)−AN)

AP

)
φP |N ≤ 1−φP |P , (B228)

where, again, the last line holds by assumption in this case.

c) Recall that

(AP ,AN)∈ S4 ⇐⇒
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

)
(1−AP )

(
1−φP |N

) (
APφP |P −ANφP |N

) <AP −AN
⇐⇒ 1−φP |P <

1−AP
A2
P

(
1−φP |N

) (
(AP −AN)

(
APφP |P −ANφP |N

)
−AN

)
.

(B229)

From (B221),

Q4 =
B1− 1−AP
B1−A2

PR1

, (B230)

where under Assumption 1 and using the definitions of R1 and B1 from (32) and (43),

B1−A2
PR1 =AN (1−AP )

(
AP
(
1−φP |P

)
+ (1−AP )

(
1−φP |N

)
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

))> 0. (B231)

Then,

Q4 > 1 ⇐⇒ B1− 1−AP
B1−A2

PR1

> 1

⇐⇒ A2
PR1 > 1 +AP

⇐⇒ (1−AP )
(
A2
P −AN (1 +AP )

) (
1−φP |N

)
>A2

P

(
1−φP |P

)
⇐⇒

(
1− (AP −AN)− AN

A2
P

)(
1−φP |N

)
> 1−φP |P . (B232)
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This upper bound on 1−φP |P is weaker than existing upper bound in this case, since(
1− (AP −AN)− AN

A2
P

)(
1−φP |N

)
>

1−AP
A2
P

(
1−φP |N

) (
(AP −AN)

(
APφP |P −ANφP |N

)
−AN

)
⇐⇒ A2

P −A2
P (AP −AN)−AN > (AP −AN) (1−AP )

(
APφP |P −ANφP |N

)
−AN (1−AP )

⇐⇒ AP (1−AP ) (AP −AN)> (AP −AN) (1−AP )
(
APφP |P −ANφP |N

)
⇐⇒ AP >APφP |P −ANφP |N , (B233)

which always holds under Assumptions 1 and 2.

d) Using (B222),

Q5 < 1 ⇐⇒ 1−
AP (1 +AP )

(
APφP |P −ANφP |N

)(
1 +AP

(
φP |P −φP |N

)) (
AP
(
APφP |P −ANφP |N

)
+ANφP |N

) < 1

⇐⇒ 0<
AP (1 +AP )

(
APφP |P −ANφP |N

)(
1 +AP

(
φP |P −φP |N

)) (
AP
(
APφP |P −ANφP |N

)
+ANφP |N

) , (B234)

which always holds under Assumptions 1 and 2.

e) Using (B223),

Q6 < 1 ⇐⇒
AN (1−AP )φP |N −A2

P

(
1−φP |P

)
A2
PφP |P +AN (1−AP )φP |N

< 1 ⇐⇒ A2
P > 0, (B235)

which always holds under Assumption 1.

f) Suppose 1−φP |P < AN (1−AP )

A2
P

φP |N . Then,

Q6 > 0 ⇐⇒
AN (1−AP )φP |N −A2

P

(
1−φP |P

)
A2
PφP |P +AN (1−AP )φP |N

> 0 ⇐⇒
(
AN (1−AP )

A2
P

)
φP |N > 1−φP |P ,

(B236)

which holds by the initial assumption. �

Let Z∗ denote the set of optimal decisions, z∗I , for the district, so Z∗ ∈ {{0} ,{1} ,{0,1}}. Define

F ∗ ≤B such that

Z∗ =

{
{1} or {0,1} , if F ≤ F ∗,
{0} , if F >F ∗.

(B237)

That is, for a given budget value, if F ∗ exists, it is the maximum value of the cost of the interim

assessment F for which the interim assessment is an optimal choice of assessment.

Furthermore, define BL ≥ 0 such that for B < BL, both the interim and formative assessment

are optimal choices (Z∗ = {0,1}) for all F ≤B. Additionally, define BU ≥BL such that for B ≥BU ,

both the interim and formative assessment are optimal choices (Z∗ = {0,1}) when F ≤ F ∗ < B,

and only the formative assessment is optimal (Z∗ = {0}) when F >F ∗.

For different combinations of the parameters and initial state S0, we consider whether F ∗ exists,

and, if so, determine its value. Using this, we can determine the value of BL and BU in each case.
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For S0 =N , recall from (B175) that

Pr∗zI [S2 = P |S0 =N ] =


0, if 0≤ B̂− F̂ zI < 1,

AN , if 1≤ B̂− F̂ zI < 1 + 1
AP−AN

,

AN (1 +AP −AN) , if 1 + 1
AP−AN

≤ B̂− F̂ zI .
(B238)

Then, for S0 =N ,

F̂ ∗ =


B̂, if 0≤ B̂ < 1,

B̂− 1, if 1≤ B̂ < 1 + 1
AP−AN

,

B̂− 1− 1
AP−AN

, if 1 + 1
AP−AN

≤ B̂,
(B239)

and B̂L = B̂U = 1.

For S0 = P and (AP ,AN)∈ S1, recall from (B176) that

Pr∗zI [S2 = P |S0 = P ] =


0, if 0≤ B̂− F̂ zI < 1,

AN , if 1≤ B̂− F̂ zI < 1 + AN
AP (AP−AN )

,

A2
P +AN (1−AP ) , if 1 + AN

AP (AP−AN )
≤ B̂− F̂ zI .

(B240)

Then, for S0 = P and (AP ,AN)∈ S1,

F̂ ∗ =


B̂, if 0≤ B̂ < 1,

B̂− 1, if 1≤ B̂ < 1 + AN
AP (AP−AN )

,

B̂− 1− AN
AP (AP−AN )

, if 1 + AN
AP (AP−AN )

≤ B̂,
(B241)

and B̂L = B̂U = 1.

We now consider the case where S0 = P and (AP ,AN)∈ S2 ∪S3 ∪S4. When the district believes

teachers have perfect information (which occurs if φP |P = 1 and φP |N = 0; q= 1; or zI = 1), then the

probability that the final state is proficient is determined by evaluating (B180)-(B181) for q = 1,

φP |P = 1, and φP |N = 0. (Note that we consider only these equations since S2 and S3 are empty

sets for these parameter values.) In this case,

Pr∗zI [S2 = P |S0 = P ] =


0, if 0≤ B̂− F̂ zI < 1 +AP ,

A2
P , if 1 +AP ≤ B̂− F̂ zI < 1 +AP

(
AP
AN
− 1
)
,

A2
P +AN (1−AP ) , if 1 +AP

(
AP
AN
− 1
)
≤ B̂− F̂ zI .

(B242)

Then, when S0 = P , (AP ,AN)∈ S4, and q= 1,

F̂ ∗ =


B̂, if 0≤ B̂ < 1 +AP ,

B̂− 1−AP , if 1 +AP ≤ B̂ < 1 +AP

(
AP
AN
− 1
)
,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B243)

and B̂L = B̂U = 1 +AP .

When S0 = P , (AP ,AN)∈ S2 ∪S3 ∪S4, and q < 1, we must compare (B242) when zI = 1 to each

of the settings described by (B177)-(B181). Therefore, we consider five cases.
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Case 1: S0 = P and (AP ,AN)∈ S2. If zI = 0, from (B177),

Pr∗zI [S2 = P |S0 = P ] =



0, if 0≤ B̂ < (1− q)
(

1 + AN
AP (AP−AN )

)
,

(1− q) (A2
P +AN (1−AP )) ,

if (1− q)
(

1 + AN
AP (AP−AN )

)
≤ B̂ < 1 +AP + (1− q)

(
AN(1−A2

P )
A2

P

)
,

A2
P + (1− q) (AN (1−AP )) ,

if 1 +AP + (1− q)
(
AN(1−A2

P )
A2

P

)
≤ B̂ < 1 +AP

(
AP
AN
− 1
)
,

A2
P +AN (1−AP ) , if 1 +AP

(
AP
AN
− 1
)
≤ B̂.

(B244)

We consider two subcases.

Subcase 1: Suppose

(1− q)
(

1 +
AN

AP (AP −AN)

)
≥ 1 +AP ⇐⇒ q≤ AN −A2

P (AP −AN)

AP (AP −AN) +AN
. (B245)

If 0≤ B̂ < (1− q)
(

1 + AN
AP (AP−AN )

)
,

F̂ ∗ = B̂. (B246)

If (1− q)
(

1 + AN
AP (AP−AN )

)
≤ B̂ < 1 + AP + (1− q)

(
AN(1−A2

P )
A2

P

)
, then the probability

when zI = 1 exceeds that when zI = 0 if and only if

A2
P ≥ (1− q)

(
A2
P +AN (1−AP )

)
⇐⇒ q≥ AN (1−AP )

A2
P +AN (1−AP )

. (B247)

But, this bound on q is infeasible given (B245), since

AN (1−AP )

A2
P +AN (1−AP )

>
AN −A2

P (AP −AN)

AP (AP −AN) +AN
⇐⇒ AP −AN >

AN
AP

, (B248)

which always holds in this case. Therefore, the interim assessment is never optimal.

If 1+AP +(1− q)
(
AN(1−A2

P )
A2

P

)
≤ B̂ < 1+AP

(
AP
AN
− 1
)

, the interim assessment is never

optimal for q < 1.

Finally, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

F̂ ∗ = B̂− 1−AP
(
AP
AN
− 1

)
. (B249)

In this case, B̂L = 1 +AP and B̂U = 1 +AP

(
AP
AN
− 1
)

.

Subcase 2: Suppose instead that

AN −A2
P (AP −AN)

AP (AP −AN) +AN
< q. (B250)
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If 0≤ B̂ < (1− q)
(

1 + AN
AP (AP−AN )

)
, then

F̂ ∗ = B̂. (B251)

If (1− q)
(

1 + AN
AP (AP−AN )

)
≤ B̂ < 1 +AP , the interim assessment is never optimal, even

for F̂ = 0, as long as q < 1.

If 1 +AP ≤ B̂ < 1 +AP + (1− q)
(
AN(1−A2

P )
A2

P

)
, then the probability the final state is

proficient when zI = 1 exceeds that when zI = 0 if and only if

A2
P ≥ (1− q)

(
A2
P +AN (1−AP )

)
⇐⇒ q≥ AN (1−AP )

A2
P +AN (1−AP )

. (B252)

This is a stronger lower bound on q than that in (B250), since

AN (1−AP )

A2
P +AN (1−AP )

>
AN −A2

P (AP −AN)

AP (AP −AN) +AN
⇐⇒ AP −AN >

AN
AP

, (B253)

which always holds in this case. Then,

F̂ ∗ = B̂− 1−AP . (B254)

If instead

q <
AN (1−AP )

A2
P +AN (1−AP )

, (B255)

then the interim assessment is never optimal, even for F̂ = 0.

If 1+AP +(1− q)
(
AN(1−A2

P )
A2

P

)
≤ B̂ < 1+AP

(
AP
AN
− 1
)

, the interim assessment is never

optimal for q < 1.

Finally, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

F̂ ∗ = B̂− 1−AP
(
AP
AN
− 1

)
. (B256)

In this case, B̂L = (1− q)
(

1 + AN
AP (AP−AN )

)
and B̂U = 1 +AP

(
AP
AN
− 1
)

.

Combining this, we have that if S0 = P , (AP ,AN)∈ S2, and q < AN (1−AP )

A2
P
+AN (1−AP )

, then

F̂ ∗ =

B̂, if 0≤ B̂ < (1− q)
(

1 + AN
AP (AP−AN )

)
,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B257)

and the interim assessment is never optimal, for any value of F̂ , if

(1− q)
(

1 +
AN

AP (AP −AN)

)
≤ B̂ < 1 +AP

(
AP
AN
− 1

)
. (B258)
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Additionally,

B̂L =

1 +AP , if q≤ AN−A2
P (AP−AN )

AP (AP−AN )+AN
,

(1− q)
(

1 + AN
AP (AP−AN )

)
, if

AN−A2
P (AP−AN )

AP (AP−AN )+AN
< q < AN (1−AP )

A2
P
+AN (1−AP )

,
(B259)

and B̂U = 1 +AP

(
AP
AN
− 1
)

.

If S0 = P , (AP ,AN)∈ S2, and q≥ AN (1−AP )

A2
P
+AN (1−AP )

, then

F̂ ∗ =


B̂, if 0≤ B̂ < (1− q)

(
1 + AN

AP (AP−AN )

)
,

B̂− 1−AP , if 1 +AP ≤ B̂ < 1 +AP + (1− q)
(
AN(1−A2

P )
A2

P

)
,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B260)

and the interim assessment is never optimal, for any value of F̂ , if

(1− q)
(

1 +
AN

AP (AP −AN)

)
≤ B̂ < 1 +AP or

1 +AP + (1− q)
(
AN (1−A2

P )

A2
P

)
≤ B̂ < 1 +AP

(
AP
AN
− 1

)
. (B261)

Additionally, B̂L = (1− q)
(

1 + AN
AP (AP−AN )

)
and B̂U = 1 +AP

(
AP
AN
− 1
)

.

Case 2: S0 = P , (AP ,AN)∈ S3, and
(

1− (AP −AN)− AN

A2
P

)(
1−φP |N

)
≤ 1−φP |P . Then, if zI = 0,

from (B178),

Pr∗zI [S2 = P |S0 = P ] =



0, if 0≤ B̂ < (1− q)B1,

(1− q) (A2
P +AN (1−AP )) ,

if (1− q)B1 ≤ B̂ < 1 +AP + (1− q)
(
AN(1−A2

P )
A2

P

)
,

A2
P + (1− q) (AN (1−AP )) ,

if 1 +AP + (1− q)
(
AN(1−A2

P )
A2

P

)
≤ B̂ < 1 +AP

(
AP
AN
− 1
)
,

A2
P +AN (1−AP ) , if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B262)

where from (43),

B1 =

(
AP
(
1−φP |P

)
+ (1−AP )

(
1−φP |N

)
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

))(A2
P +AN (1−AP )

)
. (B263)

Again, we compare the bounds on the budget terms in (B242) and (B262). Now,

B1 ≥ 1 +AP ⇐⇒ (AN (1−AP )−AP )
(
1−φP |P

)
≥ (1−AP ) (2AN −AP )

(
1−φP |N

)
. (B264)

We consider two cases.
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Subcase 1: Suppose

(1− q)B1 > 1 +AP ⇐⇒ Q1 > q, (B265)

where, as stated in (B218),

Q1 =
AP

A2
P +AN (1−AP )

(
(AN (1−AP )−AP )

(
1−φP |P

)
+ (AP −A2

P − 2AN (1−AP ))
(
1−φP |N

)
AP
(
1−φP |P

)
+ (1−AP )

(
1−φP |N

) )
.

(B266)

If 0 ≤ B̂ < (1− q)B1, then F̂ ∗ = B̂. If (1− q)B1 ≤ B̂ < 1 +AP + (1− q)
(
AN(1−A2

P )
A2

P

)
,

then, again, the probability of final proficiency under the interim assessment exceeds that

under the formative if and only if

A2
P ≥ (1− q)

(
A2
P +AN (1−AP )

)
⇐⇒ q≥ AN (1−AP )

A2
P +AN (1−AP )

. (B267)

However, this is never feasible: the lower bound on q is greater than the upper bound for

this case, given by (B265), since

AN (1−AP )

A2
P +AN (1−AP )

≥Q1 ⇐⇒ A2
P

(
1−φP |P

)
≥ (1−AP )

(
A2
P −AN (1 +AP )

) (
1−φP |N

)
⇐⇒ 1−φP |P ≥

(
1− (AP −AN)− AN

A2
P

)(
1−φP |N

)
, (B268)

and the last line is a condition for this case. Therefore, the interim assessment is never

optimal.

If 1+AP +(1− q)
(
AN(1−A2

P )
A2

P

)
≤ B̂ < 1+AP

(
AP
AN
− 1
)

, the interim assessment is never

optimal. Finally, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

F̂ ∗ = B̂− 1−AP
(
AP
AN
− 1

)
. (B269)

In this case, B̂L = 1 +AP and B̂U = 1 +AP

(
AP
AN
− 1
)

.

Subcase 2: Suppose

Q1 ≤ q. (B270)

If 0≤ B̂ < (1− q)B1, F̂
∗ = B̂. If (1− q)B1 ≤ B̂ < 1 +AP , the interim assessment is never

the optimal choice.

If 1 + AP ≤ B̂ < 1 + AP + (1− q)
(
AN(1−A2

P )
A2

P

)
, then, again, the probability of final

proficiency under the interim assessment exceeds that under the formative if and only if

A2
P ≥ (1− q)

(
A2
P +AN (1−AP )

)
⇐⇒ q≥ AN (1−AP )

A2
P +AN (1−AP )

. (B271)
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As shown in (B268), this bound on q is stronger than the bound in (B270). Then, if

q≥ AN (1−AP )

A2
P
+AN (1−AP )

,

F̂ ∗ = B̂− 1−AP , (B272)

and if q < AN (1−AP )

A2
P
+AN (1−AP )

, the interim assessment is never optimal.

If 1 +AP + (1− q)
(
AN(1−A2

P )
A2

P

)
≤ B̂ < 1 +AP

(
AP
AN
− 1
)

and q < 1, the interim assess-

ment is never optimal.

Finally, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

F̂ ∗ = B̂− 1−AP
(
AP
AN
− 1

)
. (B273)

In this case, B̂L = (1− q)B1 and B̂U = 1 +AP

(
AP
AN
− 1
)

.

When combining the results from Subcases 1 and 2, recall from (B268) that

Q1 ≤
AN (1−AP )

A2
P +AN (1−AP )

. (B274)

Then, if S0 = P , (AP ,AN) ∈ S3,
(

1− (AP −AN)− AN

A2
P

)(
1−φP |N

)
≤ 1 − φP |P , and q <

AN (1−AP )

A2
P
+AN (1−AP )

,

F̂ ∗ =

{
B̂, if 0≤ B̂ < (1− q)B1,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B275)

and the interim assessment is never the optimal choice if

(1− q)B1 ≤ B̂ < 1 +AP

(
AP
AN
− 1

)
. (B276)

Additionally,

B̂L =

{
1 +AP , if q <Q1,

(1− q)B1, if Q1 ≤ q < AN (1−AP )

A2
P
+AN (1−AP )

,
(B277)

and B̂U = 1 +AP

(
AP
AN
− 1
)

.

If S0 = P , (AP ,AN) ∈ S3,
(

1− (AP −AN)− AN

A2
P

)(
1−φP |N

)
≤ 1 − φP |P , and q ≥

AN (1−AP )

A2
P
+AN (1−AP )

,

F̂ ∗ =


B̂, if 0≤ B̂ < (1− q)B1,

B̂− 1−AP , if 1 +AP ≤ B̂ < 1 +AP + (1− q)
(
AN(1−A2

P )
A2

P

)
,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B278)

and the interim assessment is never the optimal choice if

(1− q)B1 ≤ B̂ < 1 +AP or 1 +AP + (1− q)
(
AN (1−A2

P )

A2
P

)
≤ B̂ < 1 +AP

(
AP
AN
− 1

)
.

(B279)

Additionally, B̂L = (1− q)B1 and B̂U = 1 +AP

(
AP
AN
− 1
)

.
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Case 3: S0 = P , (AP ,AN)∈ S3, and 1−φP |P <
(

1− (AP −AN)− AN

A2
P

)(
1−φP |N

)
. If zI = 0, from

(B179),

Pr∗zI [S2 = P |S0 = P ] =


0, if 0≤ B̂ < q(1 +AP ),

qA2
P , if q(1 +AP )≤ B̂ < qA2

PR1 + (1− q)B1,

A2
P + (1− q) (AN (1−AP )) , if qA2

PR1 + (1− q)B1 ≤ B̂ < 1 +AP

(
AP
AN
− 1
)
,

A2
P +AN (1−AP ) , if 1 +AP

(
AP
AN
− 1
)
≤ B̂.

(B280)

First, consider the case where q= 0. Then,

Pr∗zI [S2 = P |S0 = P ] =

{
0, if 0≤ B̂ <B1,

A2
P +AN (1−AP ) , if B1 ≤ B̂ < 1 +AP

(
AP
AN
− 1
)
.

(B281)

In this case, it always holds that

B1 ≥ 1 +AP . (B282)

To see this, recall from (B264) that

B1 ≥ 1 +AP ⇐⇒ (AN (1−AP )−AP )
(
1−φP |P

)
≥ (1−AP ) (2AN −AP )

(
1−φP |N

)
⇐⇒ 1−φP |P ≤

(
(1−AP ) (2AN −AP )

AN (1−AP )−AP

)(
1−φP |N

)
. (B283)

(B283) always holds, since, comparing this upper bound on 1−φP |P to the upper bound in

this case,(
1− (AP −AN)− AN

A2
P

)(
1−φP |N

)
<

(
(1−AP ) (2AN −AP )

AN (1−AP )−AP

)(
1−φP |N

)
⇐⇒

(
1− (AP −AN)− AN

A2
P

)
(AN (1−AP )−AP )> (1−AP ) (2AN −AP )

⇐⇒
(
A2
P −A2

P (AP −AN)−AN
)

(AP −AN (1−AP )) +A3
P (AP − 2AN)<A2

P (AP − 2AN)

⇐⇒ A2
P (AP −AN) (1 +AN (1−AP ))−AN (AP −AN (1−AP ))<A2

P (AP − 2AN)

⇐⇒ AN
(
1−A2

P

)
−ANAP

(
1−A2

P

)
<AP (1−AP )

(
1−A2

P

)
⇐⇒ AN <AP , (B284)

which holds under Assumption 1.

Then, comparing (B281) to (B242), when 0 ≤ B̂ < B1, F̂
∗ = B̂. When B1 ≤ B̂ < 1 +

AP

(
AP
AN
− 1
)

, the interim assessment is never optimal. Finally, when 1 +AP

(
AP
AN
− 1
)
≤ B̂,

F̂ ∗ = B̂− 1−AP
(
AP
AN
− 1
)

.

Then,

F̂ ∗ =

{
B̂, if 0≤ B̂ <B1,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B285)
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and the interim assessment is never the optimal choice if

B1 ≤ B̂ < 1 +AP

(
AP
AN
− 1

)
. (B286)

Additionally, B̂L = 1 +AP and B̂U = 1 +AP

(
AP
AN
− 1
)
.

Next, consider the case where 0< q < 1. If 0≤ B̂ < q(1 +AP ), then F̂ ∗ = B̂.

Consider the bounds on the budget terms in (B242) and (B280). Now,

1 +AP ≥ qA2
PR1 + (1− q)B1

⇐⇒ 1 +AP ≥ qA2
P

(
AP
(
1−φP |P

)
+ (1−AP )

(
1−φP |N

)
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

))

+ (1− q)

((
AP
(
1−φP |P

)
+ (1−AP )

(
1−φP |N

))
(A2

P +AN (1−AP ))

A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

) )
⇐⇒ q≥Q2, (B287)

where, as stated in (B219),

Q2 =
A2
P

AN (1−AP )
+ 1−

(1 +AP )
(
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

))(
AP
(
1−φP |P

)
+ (1−AP )

(
1−φP |N

)) . (B288)

From Lemma B6, Q2 ≥ 1. Therefore, since q < 1≤Q2, (B287) is never feasible. If q(1 +AP )≤

B̂ < 1 +AP , the interim assessment is never optimal. If 1 +AP ≤ B̂ < qA2
PR1 + (1− q)B1 and

since q < 1,

F̂ ∗ = B̂− 1−AP . (B289)

If qA2
PR1 + (1− q)B1 ≤ B̂ < 1 +AP

(
AP
AN
− 1
)

and since q < 1, the interim assessment is never

optimal.

Finally, for all 0< q < 1, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

F̂ ∗ = B̂− 1−AP
(
AP
AN
− 1

)
. (B290)

Combining this, if S0 = P , (AP ,AN)∈ S3, 1−φP |P <
(

1− (AP −AN)− AN

A2
P

)(
1−φP |N

)
, and

0< q < 1,

F̂ ∗ =


B̂, if 0≤ B̂ < q(1 +AP ),

B̂− 1−AP , if 1 +AP ≤ B̂ < qA2
PR1 + (1− q)B1,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B291)

and the interim assessment is never the optimal choice if

q(1 +AP )≤ B̂ < 1 +AP or qA2
PR1 + (1− q)B1 ≤ B̂ < 1 +AP

(
AP
AN
− 1

)
. (B292)
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Additionally, B̂L = q (1 +AP ) and B̂U = 1 +AP

(
AP
AN
− 1
)

.

If S0 = P , (AP ,AN)∈ S3, 1−φP |P <
(

1− (AP −AN)− AN

A2
P

)(
1−φP |N

)
, and q= 0,

F̂ ∗ =

{
B̂, if 0≤ B̂ <B1,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B293)

and the interim assessment is never the optimal choice if

B1 ≤ B̂ < 1 +AP

(
AP
AN
− 1

)
. (B294)

Additionally, B̂L = 1 +AP and B̂U = 1 +AP

(
AP
AN
− 1
)
.

Case 4: S0 = P , (AP ,AN)∈ S4, and
(
AP (AP−AN )−AN

AP

)
φP |N ≤ 1−φP |P . If zI = 0, from (B180),

Pr∗zI [S2 = P |S0 = P ] =



0, if 0≤ B̂ < q(1 +AP ),

qA2
P , if q(1 +AP )≤ B̂ <B3

qA2
P + (1− q)

(
A2
PφP |P +AN (1−AP )φP |N

)
,

if B3 ≤ B̂ < qA2
PR1 + (1− q)B1,

A2
P + (1− q)AN (1−AP ) , if qA2

PR1 + (1− q)B1 ≤ B̂ < 1 +AP

(
AP
AN
− 1
)
,

A2
P +AN (1−AP ) , if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B295)

where from (45),

B3 =R2

(
qA2

P + (1− q)
(
A2
PφP |P +AN (1−AP )φP |N

))
, (B296)

and from (32) and (33),

R1 =
AP
(
1−φP |P

)
+ (1−AP )

(
1−φP |N

)
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

) , (B297)

R2 =
1 +AP

(
φP |P −φP |N

)
AP
(
APφP |P −ANφP |N

) . (B298)

We first consider the special case where q= 0. Recall that when q= 0, B2 =B3. Then,

Pr∗zI [S2 = P |S0 = P ] =


0, if 0≤ B̂ <B2

A2
PφP |P +AN (1−AP )φP |N , if B2 ≤ B̂ <B1,

A2
P +AN (1−AP ) , if B1 ≤ B̂.

(B299)

In this case, it always holds that B1 ≥ 1 +AP . To see this, recall from (B264) that

B1 < 1 +AP ⇐⇒
(
1−φP |P

)
>

(
(1−AP ) (2AN −AP )

AN (1−AP )−AP

)(
1−φP |N

)
. (B300)

Furthermore, recall from (B229) that

(AP ,AN)∈ S4⇒ 1−φP |P <
1−AP
A2
P

(
1−φP |N

) (
(AP −AN)

(
APφP |P −ANφP |N

)
−AN

)
.

(B301)
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Then, (B300) is never feasible, since, comparing bounds on 1−φP |P ,

1−AP
A2
P

(
1−φP |N

) (
(AP −AN)

(
APφP |P −ANφP |N

)
−AN

)
>

(
(1−AP ) (2AN −AP )

AN (1−AP )−AP

)(
1−φP |N

)
⇐⇒

(
(AP −AN)

(
APφP |P −ANφP |N

)
−AN

)
(AN (1−AP )−AP )<A2

P (2AN −AP )

⇐⇒
(
APφP |P −ANφP |N

)
(AN (1−AP )−AP )<−

(
A2
P +AN (1−AP )

)
⇐⇒

(
APφP |P −ANφP |N −AP

)
(AP −AN)>AN

(
1−AP

(
APφP |P −ANφP |N

))
, (B302)

which never holds under Assumption 1, since the left-hand side of the inequality is negative

and the right-hand side of the inequality is positive.

Furthermore, note that

B2 ≥ 1 +AP

⇐⇒

(
1 +

ANφP |N

AP
(
APφP |P −ANφP |N

))(1 +AP
(
φP |P −φP |N

))
≥ 1 +AP

⇐⇒
(
A3
PφP |P + (1−AP )ANAPφP |N

) (
φP |P −φP |N

)
≥A3

PφP |P −
(
1 +A2

P

)
ANφP |N

⇐⇒ ANφP |N
(
1 +AP

(
φP |P −φP |N

))
≥A2

P

(
1−

(
φP |P −φP |N

)) (
APφP |P −ANφP |N

)
,

(B303)

and

A2
P ≥A2

PφP |P +AN (1−AP )φP |N ⇐⇒ 1−φP |P ≥
(
AN (1−AP )

A2
P

)
φP |N . (B304)

Then, suppose 1−φP |P ≥
(
AN (1−AP )

A2
P

)
φP |N and

ANφP |N
(
1 +AP

(
φP |P −φP |N

))
≥A2

P

(
1−

(
φP |P −φP |N

)) (
APφP |P −ANφP |N

)
. (B305)

If 0 ≤ B̂ < 1 + AP , then F̂ ∗ = B̂. If 1 + AP ≤ B̂ < B2, then F̂ ∗ = B̂. If B2 ≤ B̂ < B1, then

F̂ ∗ = B̂ − 1 − AP . If B1 ≤ B̂ < 1 + AP

(
AP
AN
− 1
)

, then the formative assessment is always

optimal. If 1 +AP

(
AP
AN
− 1
)
≤ B̂, then F̂ ∗ = B̂− 1−AP

(
AP
AN
− 1
)

.

Next, suppose 1−φP |P <
(
AN (1−AP )

A2
P

)
φP |N and

ANφP |N
(
1 +AP

(
φP |P −φP |N

))
≥A2

P

(
1−

(
φP |P −φP |N

)) (
APφP |P −ANφP |N

)
. (B306)

If 0 ≤ B̂ < 1 + AP , then F̂ ∗ = B̂. If 1 + AP ≤ B̂ < B2, then F̂ ∗ = B̂. If B2 ≤ B̂ < B1, then

the formative assessment is always optimal. If B1 ≤ B̂ < 1 +AP

(
AP
AN
− 1
)

, then the formative

assessment is always optimal. If 1 +AP

(
AP
AN
− 1
)
≤ B̂, then F̂ ∗ = B̂− 1−AP

(
AP
AN
− 1
)

.

Third, suppose 1−φP |P ≥
(
AN (1−AP )

A2
P

)
φP |N and

ANφP |N
(
1 +AP

(
φP |P −φP |N

))
<A2

P

(
1−

(
φP |P −φP |N

)) (
APφP |P −ANφP |N

)
. (B307)
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If 0 ≤ B̂ < B2, then F̂ ∗ = B̂. If B2 ≤ B̂ < 1 + AP , then the formative assessment is always

optimal. If 1 + AP ≤ B̂ < B1, then F̂ ∗ = B̂ − 1 − AP . If B1 ≤ B̂ < 1 + AP

(
AP
AN
− 1
)

, then

the formative assessment is always optimal. If 1 + AP

(
AP
AN
− 1
)
≤ B̂, then F̂ ∗ = B̂ − 1 −

AP

(
AP
AN
− 1
)

.

Finally, suppose

ANφP |N
(
1 +AP

(
φP |P −φP |N

))
<A2

P

(
1−

(
φP |P −φP |N

)) (
APφP |P −ANφP |N

)
(B308)

and 1− φP |P <
(
AN (1−AP )

A2
P

)
φP |N . If 0≤ B̂ < B2, then F̂ ∗ = B̂. If B2 ≤ B̂ < 1 +AP , then the

formative assessment is always optimal. If 1 +AP ≤ B̂ <B1, then the formative assessment is

always optimal. If B1 ≤ B̂ < 1+AP

(
AP
AN
− 1
)

, then the formative assessment is always optimal.

If 1 +AP

(
AP
AN
− 1
)
≤ B̂, then F̂ ∗ = B̂− 1−AP

(
AP
AN
− 1
)

.

We can combine these results as follows.

If S0 = P , (AP ,AN) ∈ S4, max
(
AP (AP−AN )−AN

AP
, AN (1−AP )

A2
P

)
φP |N ≤ 1 − φP |P ,

ANφP |N
(
1 +AP

(
φP |P −φP |N

))
≥A2

P

(
1−

(
φP |P −φP |N

)) (
APφP |P −ANφP |N

)
, and q= 0,

F̂ ∗ =


B̂, if 0≤ B̂ <B2,

B̂− 1−AP , if B2 ≤ B̂ <B1,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B309)

and the interim assessment is never the optimal choice if

B1 ≤ B̂ ≤ B̂ < 1 +AP

(
AP
AN
− 1

)
. (B310)

Additionally, B̂L = 1 +AP and B̂U = 1 +AP

(
AP
AN
− 1
)

.

If S0 = P , (AP ,AN) ∈ S4, max
(
AP (AP−AN )−AN

AP
, AN (1−AP )

A2
P

)
φP |N ≤ 1 − φP |P ,

ANφP |N
(
1 +AP

(
φP |P −φP |N

))
< A2

P

(
1−

(
φP |P −φP |N

)) (
APφP |P −ANφP |N

)
, and q = 0,

then

F̂ ∗ =


B̂, if 0≤ B̂ <B2,

B̂− 1−AP , if 1 +AP ≤ B̂ <B1,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B311)

and the interim assessment is never the optimal choice if

B2 ≤ B̂ ≤ B̂ < 1 +AP and B1 ≤ B̂ < 1 +AP

(
AP
AN
− 1

)
. (B312)

Additionally, B̂L =B2 and B̂U = 1 +AP

(
AP
AN
− 1
)

.

Finally, if S0 = P , (AP ,AN) ∈ S4,
(
AP (AP−AN )−AN

AP

)
φP |N ≤ 1 − φP |P <

(
AN (1−AP )

A2
P

)
φP |N ,

and q= 0, then

F̂ ∗ =

{
B̂, if 0≤ B̂ <B2,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B313)
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and the interim assessment is never the optimal choice if

B2 ≤ B̂ ≤ B̂ < 1 +AP

(
AP
AN
− 1

)
. (B314)

Additionally,

B̂L =

{
1 +AP , if ANφP |N

(
1 +AP

(
φP |P −φP |N

))
≥A2

P

(
1−

(
φP |P −φP |N

)) (
APφP |P −ANφP |N

)
,

B2, if ANφP |N
(
1 +AP

(
φP |P −φP |N

))
<A2

P

(
1−

(
φP |P −φP |N

)) (
APφP |P −ANφP |N

)
,

(B315)

and B̂U = 1 +AP

(
AP
AN
− 1
)

.

For 0< q < 1, we consider three possible subcases:

• 1 +AP <B3

• B3 ≤ 1 +AP < qA
2
PR1 + (1− q)B1

• qA2
PR1 + (1− q)B1 ≤ 1 +AP

First,

1 +AP <B3 ⇐⇒
1 +AP
R2

−A2
PφP |P −AN (1−AP )φP |N < q

(
A2
P −A2

PφP |P −AN (1−AP )φP |N
)

⇐⇒


Q3 < q, if 1−φP |P >

(
AN (1−AP )

A2
P

)
φP |N ,

Q3 > q, if 1−φP |P <
(
AN (1−AP )

A2
P

)
φP |N ,

AP −AN < AN

A2
P
, if 1−φP |P =

(
AN (1−AP )

A2
P

)
φP |N ,

⇐⇒


Q3 < q, if 1−φP |P >

(
AN (1−AP )

A2
P

)
φP |N ,

1> q, if 1−φP |P <
(
AN (1−AP )

A2
P

)
φP |N ,

AP −AN < AN

A2
P
, if 1−φP |P =

(
AN (1−AP )

A2
P

)
φP |N ,

(B316)

where, as stated in (B220),

Q3 =

1+AP
R2
−A2

PφP |P −AN (1−AP )φP |N

A2
P −A2

PφP |P −AN (1−AP )φP |N
, (B317)

and from Lemma B6, we apply that if
(
AP (AP−AN )−AN

AP

)
φP |N ≤ 1−φP |P <

(
AN (1−AP )

A2
P

)
φP |N ,

then Q3 ≥ 1. Furthermore, recall that we assume q < 1 in this case.

Second,

qA2
PR1 + (1− q)B1 ≤ 1 +AP ⇐⇒ q

(
A2
PR1−B1

)
≤ 1 +AP −B1

⇐⇒ q≥Q4, (B318)

where, as stated in (B221),

Q4 =
B1− 1−AP
B1−A2

PR1

, (B319)
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and we use that

A2
PR1 <B1 ⇐⇒ 0<AP

(
1−φP |P

)
+ (1−AP )

(
1−φP |N

)
, (B320)

which holds under Assumptions 1 and 2. However, from Lemma B6, Q4 > 1 when (AP ,AN)∈
S4. Therefore, this case is never feasible.

Third,

B3 ≤ 1 +AP < qA
2
PR1 + (1− q)B1

⇐⇒


q≤Q3 and q <Q4, if 1−φP |P >

(
AN (1−AP )

A2
P

)
φP |N ,

Q3 ≤ q <Q4, if 1−φP |P <
(
AN (1−AP )

A2
P

)
φP |N ,

AP −AN ≥ AN

A2
P

and q <Q4, if 1−φP |P =
(
AN (1−AP )

A2
P

)
φP |N ,

⇐⇒

q≤Q3, if 1−φP |P >
(
AN (1−AP )

A2
P

)
φP |N ,

AP −AN ≥ AN

A2
P
, if 1−φP |P =

(
AN (1−AP )

A2
P

)
φP |N ,

(B321)

where we apply Lemma B6.

In all cases, if 0≤ B̂ < q(1 +AP ),

F̂ ∗ = B̂. (B322)

For larger budget levels, we must separately consider each of the cases described above.

Subcase 1: Suppose one of the followings sets of conditions holds:

Q3 < q and 1−φP |P >
(
AN (1−AP )

A2
P

)
φP |N ,

or 1−φP |P <
(
AN (1−AP )

A2
P

)
φP |N ,

or AP −AN <
AN
A2
P

and 1−φP |P =

(
AN (1−AP )

A2
P

)
φP |N . (B323)

Then, 1 +AP <B3.

If q(1 +AP )≤ B̂ < 1 +AP , the interim assessment is never optimal. If 1 +AP ≤ B̂ <B3

and q < 1,

F̂ ∗ = B̂− 1−AP . (B324)

If B3 ≤ B̂ < qA2
PR1 + (1− q)B1, the probability of final proficiency under the interim

assessment exceeds that under the formative if and only if

A2
P ≥ qA2

P + (1− q)
(
A2
PφP |P +AN (1−AP )φP |N

)
⇐⇒ A2

P

(
1−φP |P

)
−AN (1−AP )φP |N ≥ q

(
A2
P

(
1−φP |P

)
−AN (1−AP )φP |N

)
⇐⇒ 1−φP |P ≥

(
AN (1−AP )

A2
P

)
φP |N . (B325)
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Then, if 1−φP |P ≥
(
AN (1−AP )

A2
P

)
φP |N ,

F̂ ∗ = B̂− 1−AP . (B326)

If instead 1−φP |P <
(
AN (1−AP )

A2
P

)
φP |N , the interim assessment is not optimal.

If qA2
PR1 +(1− q)B1 ≤ B̂ < 1+AP

(
AP
AN
− 1
)

and q < 1, the interim assessment is never

optimal.

Subcase 2: Suppose one of the following sets of conditions holds:

q≤Q3 and 1−φP |P >
(
AN (1−AP )

A2
P

)
φP |N ,

or AP −AN ≥
AN
A2
P

and 1−φP |P =

(
AN (1−AP )

A2
P

)
φP |N . (B327)

Then, B3 ≤ 1 +AP < qA
2
PR1 + (1− q)B1.

If q(1 +AP ) ≤ B̂ < 1 +AP , the interim assessment is never optimal. If 1 +AP ≤ B̂ <

qA2
PR1 + (1− q)B1, the probability under the interim assessment exceeds that under the

formative if and only if

A2
P ≥ qA2

P + (1− q)
(
A2
PφP |P +AN (1−AP )φP |N

)
⇐⇒ 1−φP |P ≥

(
AN (1−AP )

A2
P

)
φP |N , (B328)

which is a necessary condition in this case, as stated in (B327). Then,

F̂ ∗ = B̂− 1−AP . (B329)

If qA2
PR1 + (1− q)B1 ≤ B̂ < 1 +AP

(
AP
AN
− 1
)

, the interim assessment is never optimal.

Finally, for all q, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

F̂ ∗ = B̂− 1−AP
(
AP
AN
− 1

)
. (B330)

Combining this, if S0 = P , (AP ,AN)∈ S4, max
(
AP (AP−AN )−AN

AP
, AN (1−AP )

A2
P

)
φP |N ≤ 1−φP |P ,

and 0< q < 1,

F̂ ∗ =


B̂, if 0≤ B̂ < q(1 +AP ),

B̂− 1−AP , if 1 +AP ≤ B̂ < qA2
PR1 + (1− q)B1,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B331)

and the interim assessment is never the optimal choice if

q (1 +AP )≤ B̂ < 1 +AP or qA2
PR1 + (1− q)B1 ≤ B̂ < 1 +AP

(
AP
AN
− 1

)
. (B332)
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If S0 = P , (AP ,AN) ∈ S4,
(
AP (AP−AN )−AN

AP

)
φP |N ≤ 1− φP |P <

(
AN (1−AP )

A2
P

)
φP |N , and 0 <

q < 1,

F̂ ∗ =


B̂, if 0≤ B̂ < q(1 +AP ),

B̂− 1−AP , if 1 +AP ≤ B̂ <B3,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B333)

and the interim assessment is never the optimal choice if

q(1 +AP )≤ B̂ < 1 +AP or B3 ≤ B̂ < 1 +AP

(
AP
AN
− 1

)
. (B334)

Additionally, in both cases, B̂L = q (1 +AP ) and B̂U = 1 +AP

(
AP
AN
− 1
)

.

Case 5: S0 = P , (AP ,AN)∈ S4, and 1−φP |P <
(
AP (AP−AN )−AN

AP

)
φP |N . If zI = 0,

Pr∗zI [S2 = P |S0 = P ] =



0, if 0≤ B̂ < (1− q)B2,

(1− q)
(
A2
PφP |P +AN (1−AP )φP |N

)
,

if (1− q)B2 ≤ B̂ <B4,

qA2
P + (1− q)

(
A2
PφP |P +AN (1−AP )φP |N

)
,

if B4 ≤ B̂ < qA2
PR1 + (1− q)B1,

A2
P + (1− q)AN (1−AP ) ,

if qA2
PR1 + (1− q)B1 ≤ B̂ < 1 +AP

(
AP
AN
− 1
)
,

A2
P +AN (1−AP ) , if 1 +AP

(
AP
AN
− 1
)
≤ B̂− F̂ zI .

(B335)

Recall that

(AP ,AN)∈ S4 ⇐⇒
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

)
(1−AP )

(
1−φP |N

) (
APφP |P −ANφP |N

) <AP −AN . (B336)

We consider four possible cases:

• 1 +AP < (1− q)B2

• (1− q)B2 ≤ 1 +AP <B4

• B4 ≤ 1 +AP < qA
2
PR1 + (1− q)B1

• qA2
PR1 + (1− q)B1 ≤ 1 +AP

First,

1 +AP < (1− q)B2 ⇐⇒ q <Q5, (B337)

where from (44),

B2 =

(
1 +

ANφP |N

AP
(
APφP |P −ANφP |N

))(1 +AP
(
φP |P −φP |N

))
, (B338)
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and from (B222) and Lemma B6,

Q5 = 1−
AP (1 +AP )

(
APφP |P −ANφP |N

)(
1 +AP

(
φP |P −φP |N

)) (
AP
(
APφP |P −ANφP |N

)
+ANφP |N

) < 1. (B339)

Additionally, from (46),

B4 = (1 +AP )

(
q+ (1− q)

(
A2
PφP |P +AN (1−AP )φP |N

A2
P

))
. (B340)

Since (1− q)B2 <B4, then

1 +AP < (1− q)B2⇒ 1 +AP <B4

⇐⇒ A2
P

(
1−φP |P

)
−AN (1−AP )φP |N < q

(
A2
P

(
1−φP |P

)
−AN (1−AP )φP |N

)
⇐⇒ 1−φP |P <

(
AN (1−AP )

A2
P

)
φP |N . (B341)

Second,

(1− q)B2 ≤ 1 +AP <B4 ⇐⇒ q≥Q5 and 1−φP |P <
(
AN (1−AP )

A2
P

)
φP |N . (B342)

Third,

1 +AP < qA
2
PR1 + (1− q)B1 ⇐⇒ q <Q2, (B343)

so

B4 ≤ 1 +AP < qA
2
PR1 + (1− q)B1 ⇐⇒ q <Q2 and 1−φP |P ≥

(
AN (1−AP )

A2
P

)
φP |N

⇐⇒ 1−φP |P ≥
(
AN (1−AP )

A2
P

)
φP |N , (B344)

where we use q < 1 and, from Lemma B6, Q2 ≥ 1.

Fourth,

qA2
PR1 + (1− q)B1 ≤ 1 +AP ⇐⇒ q≥Q2, (B345)

but under Lemma B6, this is never feasible.

Using these results, we must consider three cases. In all cases, if 0≤ B̂ < (1− q)B2,

F̂ ∗ = B̂. (B346)

For larger budget levels, we must separately consider each case.
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Subcase 1: Suppose q <Q5 and 1−φP |P <
(
AN (1−AP )

A2
P

)
φP |N . If (1− q)B2 ≤ B̂ <B4, the prob-

ability under the interim assessment exceeds that under the formative if and only if

A2
P ≥ (1− q)

(
A2
PφP |P +AN (1−AP )φP |N

)
⇐⇒ q≥Q6, (B347)

where from (B223),

Q6 =
AN (1−AP )φP |N −A2

P

(
1−φP |P

)
A2
PφP |P +AN (1−AP )φP |N

. (B348)

However, this is never feasible in this case, since

Q6 ≤Q5 ⇐⇒AP
(
APφP |P −ANφP |N

) (
1−

(
φP |P −φP |N

))
≤(

1 +AP
(
φP |P −φP |N

)) (
ANφP |N +AP

(
1−φP |P

))
⇐⇒

(
AP (AP −AN)−AN

AP

)
φP |N ≤ 1−φP |P , (B349)

which contradicts a condition for this case. Then, the interim assessment is never optimal.

If B4 ≤ B̂ < qA2
PR1 + (1− q)B1, the probability under the interim assessment exceeds

that under the formative if and only if

A2
P ≥ qA2

P + (1− q)
(
A2
PφP |P +AN (1−AP )φP |N

)
⇐⇒ 1−φP |P ≥

(
AN (1−AP )

A2
P

)
φP |N ,

(B350)

which violates a condition in this case. Then, the interim assessment is never optimal.

If qA2
PR1 +(1− q)B1 ≤ B̂ < 1+AP

(
AP
AN
− 1
)

and q < 1, the interim assessment is never

optimal.

Subcase 2: Suppose q ≥Q5 and 1− φP |P <
(
AN (1−AP )

A2
P

)
φP |N . If (1− q)B2 ≤ B̂ < 1 +AP , the

interim assessment is never optimal. If 1+AP ≤ B̂ <B4, the probability under the interim

assessment exceeds that under the formative if and only if (B347) holds. As shown in

(B349), Q6 >Q5, in this case. Therefore, if q≥Q6,

F̂ ∗ = B̂− 1−AP , (B351)

and if Q5 ≤ q <Q6, the interim assessment is never optimal.

If B4 ≤ B̂ < qA2
PR1 + (1− q)B1, the probability under the interim assessment exceeds

that under the formative if and only if (B350) holds, but this violates a condition of this

case. Therefore, the interim assessment is never optimal.

If qA2
PR1 +(1− q)B1 ≤ B̂ < 1+AP

(
AP
AN
− 1
)

and q < 1, the interim assessment is never

optimal.
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Subcase 3: Suppose 1−φP |P ≥
(
AN (1−AP )

A2
P

)
φP |N . If (1− q)B2 ≤ B̂ < 1+AP , the interim assess-

ment is never optimal.

If 1 + AP ≤ B̂ < qA2
PR1 + (1− q)B1, the probability under the interim assessment

exceeds that under the formative if and only if (B350) holds, which is a necessary condition

in this case. Then,

F̂ ∗ = B̂− 1−AP . (B352)

If qA2
PR1 +(1− q)B1 ≤ B̂ < 1+AP

(
AP
AN
− 1
)

and q < 1, the interim assessment is never

optimal.

Finally, for all q, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

F̂ ∗ = B̂− 1−AP
(
AP
AN
− 1

)
. (B353)

Combining this, if S0 = P , (AP ,AN) ∈ S4, q < Q5, and 1 − φP |P <

min
(
AP (AP−AN )−AN

AP
, AN (1−AP )

A2
P

)
φP |N ,

F̂ ∗ =

{
B̂, if 0≤ B̂ < (1− q)B2,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B354)

and the interim assessment is never the optimal choice if

(1− q)B2 ≤ B̂ < 1 +AP

(
AP
AN
− 1

)
. (B355)

Additionally, in this case, B̂L = 1 +AP and B̂U = 1 +AP

(
AP
AN
− 1
)

.

If S0 = P , (AP ,AN)∈ S4, 1−φP |P <min
(
AP (AP−AN )−AN

AP
, AN (1−AP )

A2
P

)
φP |N , and q≥Q6,

F̂ ∗ =


B̂, if 0≤ B̂ < (1− q)B2,

B̂− 1−AP , if 1 +AP ≤ B̂ <B4,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B356)

and the interim assessment is never the optimal choice if

(1− q)B2 ≤ B̂ < 1 +AP or B4 ≤ B̂ < 1 +AP

(
AP
AN
− 1

)
. (B357)

Additionally, in this case, B̂L = (1− q)B2 and B̂U = 1 +AP

(
AP
AN
− 1
)

.

If S0 = P , (AP ,AN)∈ S4, 1−φP |P <min
(
AP (AP−AN )−AN

AP
, AN (1−AP )

A2
P

)
φP |N , and Q5 ≤ q <Q6,

F̂ ∗ =

{
B̂, if 0≤ B̂ < (1− q)B2,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B358)
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and the interim assessment is never the optimal choice if

(1− q)B2 ≤ B̂ < 1 +AP

(
AP
AN
− 1

)
. (B359)

Additionally, in this case, B̂L = (1− q)B2 and B̂U = 1 +AP

(
AP
AN
− 1
)

.

If S0 = P , (AP ,AN)∈ S4, and
(
AN (1−AP )

A2
P

)
φP |N ≤ 1−φP |P <

(
AP (AP−AN )−AN

AP

)
φP |N ,

F̂ ∗ =


B̂, if 0≤ B̂ < (1− q)B2,

B̂− 1−AP , if 1 +AP ≤ B̂ < qA2
PR1 + (1− q)B1,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B360)

and the interim assessment is never the optimal choice if

(1− q)B2 ≤ B̂ < 1 +AP or qA2
PR1 + (1− q)B1 ≤ B̂ < 1 +AP

(
AP
AN
− 1

)
. (B361)

Additionally, in this case, B̂L = (1− q)B2 and B̂U = 1 +AP

(
AP
AN
− 1
)

.

�

Proof of Proposition 4

a) This follows from the statement of Proposition B2a, since BL =BU in this case.

b) We first show that for φP |N sufficiently close to φP |P , S4 is the empty set for all values of AP

and AN . We then consider the optimal choice of assessment for (AP ,AN)∈ S2 ∪S3.

Recall from (37) that

S4 ={(AP ,AN) |A2 <AP −AN} , (B362)

where from (31),

A2 =
A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

)
(1−AP )

(
1−φP |N

) (
APφP |P −ANφP |N

) . (B363)

Now,

A2
P

(
1−φP |P

)
+AN (1−AP )

(
1−φP |N

)
(1−AP )

(
1−φP |N

) (
APφP |P −ANφP |N

) <AP −AN
⇐⇒

A2
P

(
1−φP |P

)
(1−AP )

(
1−φP |N

) +AN < (AP −AN)
(
APφP |P −ANφP |N

)
. (B364)

The left-hand side of the inequality is increasing in φP |N and the right-hand side of the inequality

is decreasing in φP |N . Taking the limit of each side as φP |N approaches φP |P gives the following

results:

lim
φP |N→φP |P

A2
P

(
1−φP |P

)
(1−AP )

(
1−φP |N

) +AN =
A2
P

(1−AP )
+AN (B365)
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and

lim
φP |N→φP |P

(AP −AN)
(
APφP |P −ANφP |N

)
= φP |P (AP −AN)

2
. (B366)

Then, for φP |N sufficiently large, (B364) cannot hold, since

A2
P

(1−AP )
+AN <φP |P (AP −AN)

2 ⇐⇒ A2
P

(1−AP ) (AP −AN)
2 +AN <φP |P , (B367)

but the left-hand side of the inequality is greater than 1 and the right-hand side is less than or

equal to 1. Then, there exists φ̄P |N,4 <φP |P such that for all φP |N ≥ φ̄P |N,4, S4 is null.

Next, we consider the district’s optimal policy when q is small
(
q < AN (1−AP )

A2
P
+AN (1−AP )

)
, φP |N suffi-

ciently large (φP |N ≥ φ̄P |N,4), and AN and AP sufficiently different (AP −AN > AN

A2
P

, so (AP ,AN)∈
S2 ∪S3). Notice that AN

A2
P
≥ AN

AP
, so when AP < 1, the feasible set of (AP ,AN) is a subset of S2 ∪S3.

When S0 = P , (AP ,AN) ∈ S2, and q < AN (1−AP )

A2
P
+AN (1−AP )

, then F ∗, BL, and BU are given by Case d

in Proposition B2 ((B194) and (B195)). Recall that in this case,

F̂ ∗ =

B̂, if 0≤ B̂ < (1− q)
(

1 + AN
AP (AP−AN )

)
,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B368)

and the interim assessment is never optimal, for any value of F̂ , if

(1− q)
(

1 +
AN

AP (AP −AN)

)
≤ B̂ < 1 +AP

(
AP
AN
− 1

)
. (B369)

Additionally,

B̂L =

1 +AP , if q≤ AN−A2
P (AP−AN )

AP (AP−AN )+AN
,

(1− q)
(

1 + AN
AP (AP−AN )

)
, if

AN−A2
P (AP−AN )

AP (AP−AN )+AN
< q < AN (1−AP )

A2
P
+AN (1−AP )

,
(B370)

and B̂U = 1 +AP

(
AP
AN
− 1
)

.

Now, q is non-negative by assumption, but

AN
A2
P

<AP −AN ⇒
AN −A2

P (AP −AN)

AP (AP −AN) +AN
< 0. (B371)

Therefore, for 0≤ q < AN (1−AP )

A2
P
+AN (1−AP )

,

B̂L = (1− q)
(

1 +
AN

AP (AP −AN)

)
. (B372)

Then, for all B̂ ∈
[
B̂L, B̂U

)
, only the formative assessment is optimal.

Next, we determine the optimal assessment when (AP ,AN) ∈ S3. When S0 = P , (AP ,AN) ∈ S3,
and q = 0, then F ∗, BL, and BU are given by Case f in Proposition B2 ((B199) and (B200)). To

determine these values for non-zero q, consider the following inequality:(
1− (AP −AN)− AN

A2
P

)(
1−φP |N

)
≤ 1−φP |P . (B373)
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The left-hand side of the above inequality is decreasing in φP |N and the right-hand side is fixed.

Then,

lim
φP |N→φP |P

(
1− (AP −AN)− AN

A2
P

)(
1−φP |N

)
=

(
1− (AP −AN)− AN

A2
P

)(
1−φP |P

)
, (B374)

and (
1− (AP −AN)− AN

A2
P

)(
1−φP |P

)
≤ 1−φP |P ⇐⇒ − (AP −AN)− AN

A2
P

≤ 0, (B375)

which always holds under Assumption 1. In fact, the left-hand side of the inequality is always

strictly less than 0. Therefore, there exists φ̄P |N,3 < φP |P such that for all φP |N ≥ φ̄P |N,3, (B373)

holds. Then, for φP |N ≥ φ̄P |N,3, this Case f in Proposition B2 holds for all q < AN (1−AP )

A2
P
+AN (1−AP )

. Recall

that in this case,

F̂ ∗ =

{
B̂, if 0≤ B̂ < (1− q)B1,

B̂− 1−AP
(
AP
AN
− 1
)
, if 1 +AP

(
AP
AN
− 1
)
≤ B̂,

(B376)

and the interim assessment is never the optimal choice if

(1− q)B1 ≤ B̂ < 1 +AP

(
AP
AN
− 1

)
. (B377)

Additionally, when
(

1− (AP −AN)− AN

A2
P

)(
1−φP |N

)
≤ 1−φP |P ,

B̂L =

{
1 +AP , if q <Q1,

(1− q)B1, if Q1 ≤ q < AN (1−AP )

A2
P
+AN (1−AP )

,
(B378)

where from (B218),

Q1 =
AP

A2
P +AN (1−AP )

(
(AN (1−AP )−AP )

(
1−φP |P

)
+ (1−AP ) (AP − 2AN)

(
1−φP |N

)
AP
(
1−φP |P

)
+ (1−AP )

(
1−φP |N

) )
.

(B379)

In all cases, B̂U = 1 +AP

(
AP
AN
− 1
)

.

Now, Q1 is a non-increasing function of φP |N , since

∂Q1

∂φP |N
=−

AP (1−AP ) (AP (AP −AN + 1−AN) +AN (1−AP ))
(
1−φP |P

)
(A2

P +AN (1−AP ))
(
AP
(
1−φP |P

)
+ (1−AP )

(
1−φP |N

))2 ≤ 0. (B380)

Note that when φP |P = 1, Q1 is positive and no longer depends on φP |N . For φP |P < 1,

Q1 = 0

⇐⇒ AP
A2
P +AN (1−AP )

(
(AN (1−AP )−AP )

(
1−φP |P

)
+ (1−AP ) (AP − 2AN)

(
1−φP |N

)
AP
(
1−φP |P

)
+ (1−AP )

(
1−φP |N

) )
= 0

⇐⇒ (1−AP ) (AP − 2AN)
(
1−φP |N

)
= (AP −AN (1−AP ))

(
1−φP |P

)
⇐⇒ φP |N = 1−

(AP −AN (1−AP ))
(
1−φP |P

)
(1−AP ) (AP − 2AN)

. (B381)
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This value is bounded above by φP |P , since

1−
(AP −AN (1−AP ))

(
1−φP |P

)
(1−AP ) (AP − 2AN)

<φP |P

⇐⇒ 1−φP |P <
(AP −AN (1−AP ))

(
1−φP |P

)
(1−AP ) (AP − 2AN)

⇐⇒ − A2
P

(1−AP )
<AN , (B382)

which always holds under Assumption 1. Therefore, for φP |P < 1 and φP |N > 1 −
(AP−AN (1−AP ))(1−φP |P )

(1−AP )(AP−2AN )
, the formative assessment is the optimal choice for all B̂ ∈

[
B̂L, B̂U

)
.

Finally, let

φ̄P |N = max

(
φ̄P |N,3, φ̄P |N,4,1−

(AP −AN (1−AP ))
(
1−φP |P

)
(1−AP ) (AP − 2AN)

)
. (B383)

Then, for φP |P < 1, φP |N ∈
(
φ̄P |N , φP |P

]
, and AP −AN > AN

A2
P

, the formative assessment is always

optimal.

�
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