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We show that demanding team incentives to be robust to nonquantifiable uncertainty
about the game played by the agents leads to contracts that align the agents’ interests.
Such contracts have a natural interpretation as team-based compensation. Under bud-
get balance they reduce to linear contracts, thus identifying profit-sharing, or equity, as
an optimal contract absent a sink or a source of funds. A linear contract also gives the
best profit guarantee to an outside residual claimant. These contracts still suffer from
the free-rider problem, but a positive guarantee obtains if and only if the technology
known to the contract designer is sufficiently productive.

KEYWORDS: Moral hazard, robustness, teams, incentives, interest alignment, opti-
mal contracts, linear contracts, maxmin.

1. INTRODUCTION

THE STANDARD CONTRACT-THEORETIC approach to motivating teams, pioneered by
Holmström (1982), emphasizes informational aspects of the problem. It holds that any
signal informative of an agent’s action be used to determine his compensation. A rec-
ognized shortcoming of this approach is that it leads to contracts that are sophisticated
and highly context-dependent. Moreover, because the focus is on individual performance,
team-based pay that aligns the agents’ compensation emerges only under very specific as-
sumptions about technology. This contrasts with incentive schemes observed in practice,
which tend to be simpler and often include team-based compensation even if information
about individual performance may be available. For instance, partnerships commonly op-
erate under profit-sharing agreements, firms use team incentives to motivate employees,
and academic economists share credit equally for coauthored papers.

In this paper, we investigate foundations for such simple incentive schemes by consid-
ering contracts that are robust to nonquantifiable uncertainty about the game played by
the agents. Our model is based on the classic team production problem, where the agents
take costly unobservable actions, which jointly determine a stochastic contractible out-
put. Our main specification assumes all parties to be risk-neutral and that the agents are
protected by limited liability, but allows for a general production technology.

The game is common knowledge among the agents, perhaps by virtue of their expertise,
or because it is simply evident now that they have been called to act. However, inspired
by Carroll’s (2015) work on the foundations of linear contracts in principal-agent prob-
lems, we assume that the principal designing the contract only knows some of the actions
available to each agent, and hence she only knows some of the action profiles in the game.
Realizing that the game may be bigger than she thinks, but not having a prior on the set of
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possible games, the principal evaluates contracts based on their guaranteed performance
across all games consistent with her knowledge.

Our first result shows that guaranteeing good performance either in terms of the ex-
pected surplus for a budget balanced team, or in terms of the principal’s profit if she is
the residual claimant, requires the contract to align the agents’ interests. That is, each
agent’s compensation should covary positively and linearly with the compensation of all
other agents. Such a contract is affine in some one-dimensional aggregate of the output
(but not necessarily in the output itself), so it can be naturally interpreted as prescribing
team-based pay. Thus, team-based compensation emerges even though richer measures
of performance may be available under the action profiles known to the principal.

The necessity of interest alignment derives from the fact that when a contract induces
disagreement about the ranking of (stochastic) outputs among the agents, then—should
the game provide an opportunity for it—an agent may seek individual gain at a social
cost. We show that for essentially any contract that fails to align the agents’ interests,
there is a game where such selfish actions create a “race to the bottom,” with the unique
equilibrium output distribution concentrated at the worst possible output. In a sense, the
construction generalizes the well-known problematic incentive properties of rank-order
tournaments (e.g., Lazear (1989)), showing that for robustness, they are the overriding
concern. While the result is reminiscent of Carroll’s (2015) linearity result, the two are
logically independent. On one hand, the definition of interest alignment only involves the
payments to the agents, so every contract trivially aligns the agents’ interests in the single-
agent case. On the other hand, a contract that aligns the agents’ interests need not be
linear in the value of output.

For contracts that are budget balanced among the agents, interest alignment is equiv-
alent to paying each agent a fixed share of the output’s monetary value. We show that
some such linear contract achieves the best surplus guarantee subject to budget balance,
thus singling out profit-sharing, or equity, as an optimal arrangement. Along the way, we
characterize the optimal guarantee, which is made tractable by the fact that any contract
that aligns interests induces a potential game among the agents.

We also show that a linear contract achieves the best guarantee for the principal’s profit.
By our first result, we can focus on contracts that align the agents’ interests. The candi-
date optimal contracts can then be represented as consisting of a function specifying the
agents’ total compensation for each output, and of shares determining how it is divided
among the agents. We show that, holding the shares fixed, total compensation should be
linear in the output’s value, and so the contract should be linear overall. Heuristically,
a linear contract aligns interests across all parties, including the principal.

Whether the optimal guarantees for surplus and profit are positive depends on the
severity of the free-rider problem. Unlike in the case of one agent, it is not enough that
some known action profile generates a positive surplus. Instead, the condition that char-
acterizes known production technologies for which the optimal guarantees are nontrivial
requires a social planner to be able to generate positive surplus in a model where the
agents’ costs are appropriately inflated to account for the robustness concern. Thus, even
absent setup costs, only sufficiently profitable teams are worth forming.

While our results are the strongest with risk-neutrality, Section 6 shows that nontriv-
ial performance guarantees require team-based compensation also when agents are risk-
averse. The agents’ interests must then be aligned in the utility space, which translates to
monetary payments that covary positively across agents in the sense that if one agent’s
pay increases, so does the pay of all other agents. Thus, the basic logic holds irrespective
of risk attitudes. Even collinearity of payments can be recovered for a subset of CRRA
preferences.
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The question of foundations for linear contracts has received a great deal of attention
in the one-agent case, starting with Holmström and Milgrom (1987). See Carroll (2015)
for a review of this literature. As we focus on the contracts’ guaranteed performance,
our work belongs to the literature studying worst-case optimal contracts in various set-
tings; see, for example, Hurwicz and Shapiro (1978), Chung and Ely (2007), Chassang
(2013), Frankel (2014), Garrett (2014), Yamashita (2015), Carroll (2017), Carroll and Se-
gal (2019), and Marku and Ocampo Diaz (2019).1 Similar robustness concerns motivate
the work on robust mechanism design following Bergemann and Morris (2005), and the
analysis of approximately optimal contracts in locally misspecified models by Madarász
and Prat (2017).

Theoretical explanations for the use of profit-sharing and for the prevalence of part-
nerships as an organizational form have been put forth by Garicano and Santos (2004)
and Levin and Tadelis (2005), among others. Che and Yoo (2001) show that team-based
pay can be a part of the optimal mix of formal and relational incentives in a repeated
partnership problem where the agents can monitor each others’ actions.

Finally, the need to align the agents’ interests resonates with some themes in the ex-
tensive management literature on teams. For example, Hackman (2002) posits that a key
enabling condition for work-team effectiveness is the existence of a compelling direction
that should specify ends but not means. Interpreting the “means” as the agents’ actions
and the “ends” as the contractible output, a contract that aligns the agents’ interests pro-
vides just that.2

2. MODEL

We consider a principal motivating a team consisting of one or more agents, indexed
by i = 1� � � � � I. The team’s observable output y is an element of a finite set Y held fixed
throughout the analysis. Its intrinsic value is denoted v(y). For example, v(y) may be the
expected market value of the team’s production conditional on the signal y , or it may
reflect how the principal aggregates different dimensions of performance. We denote by
y0 the least desirable output and set its value to zero: v(y0) = minv(Y ) = 0. (Output y0

can be chosen arbitrarily among the minimizers if there are many.) To avoid trivialities,
we assume that maxv(Y ) > 0.

A (production) technology for the team is a tuple (A�c�F), where A := ×I
i=1Ai is the fi-

nite set of action profiles, c :A→ RI
+ is the profile of cost functions, and F :A → �(Y ) is

the family of output distributions. We restrict attention to technologies where each agent’s
cost depends only on his own action, that is, ci(a) = ci(ai). Any technology describes a
version of the classic moral-hazard-in-teams problem: every agent takes an unobservable
action ai ∈ Ai at a private cost ci(ai) ≥ 0, and the resulting action profile a = (a1� � � � � aI)
determines the output distribution F (a) ∈ �(Y ).

The principal can motivate the agents with monetary rewards contingent on the real-
ized output. We assume that the agents are protected by limited liability, meaning that
payments to them have to be nonnegative. An incentive scheme, or a contract, is thus
a function w : Y → RI

+ that specifies a payment profile w(y) = (w1(y)� � � � �wI(y)) for

1The literature has continued to grow since our paper was first circulated. Most closely related are Carroll
and Walton (2021) who give an alternative proof for going from our aligned-interest contracts to a linear
principal-optimal contract, and Kambhampati (2022) who studies robust performance evaluation of agents
who are known to be operating identical unknown technologies, but who cannot affect each others’ output.

2This is true quite literally: the parameter d in our Lemma 3.1(iii) is the direction of the ray in RI
+ along

which all payment profiles lie.
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each output y . Agent i’s net payoff is then wi(y) − ci(ai), with the principal receiving
v(y) − ∑

i wi(y). All parties are assumed risk neutral, but we discuss risk-averse agents in
Section 6.

We say that the contract w is budget balanced if the value of output is shared by the
agents, that is, if

∑
i wi(y) = v(y) for all y .

The principal designs the contract either to maximize surplus subject to budget balance,
or to maximize her profits. However, she does so without full knowledge of the game
played by the agents. Specifically, we assume that the true technology is common knowl-
edge among the agents, but the principal only knows of some technology (A0� c0�F 0),
referred to as the known technology. The principal believes that the true technology may
be any technology (A�c�F) such that A ⊇ A0 and (c�F)|A0 = (c0�F 0). That is, the true
technology contains the action profiles known to the principal, and the true costs and out-
put distributions associated with these profiles conform with the principal’s knowledge.
To simplify notation, we suppress the cost functions and output distributions, writing A0

and A for the known and the true technology, respectively.
We assume that the known technology A0 contains a zero-cost action for each agent.

This simplifies some of the arguments without affecting our results qualitatively.3 As we
assume nothing about the associated output distributions, the loss in scope is minimal.

A contract w and the (true) technology A induce a normal form game �(w�A), where
agent i’s expected payoff is ui(a;w�A) := EF (a)[wi(y)] − ci(ai). We write E (w�A) for its
set of mixed strategy Nash equilibria. An equilibrium exists because A was assumed finite.
In case there are many, we adopt the usual partial-implementation assumption from con-
tract theory and focus on the equilibrium that is best for the principal’s objective.4 Thus,
the expected surplus induced by the contract w given technology A is

S(w�A) := max
σ∈E(w�A)

(
EF (σ)

[
v(y)

] −
∑
a

σ (a)
∑
i

ci(ai)
)
�

where F (σ) is the outcome distribution induced by F and the strategy profile σ . Similarly,
the principal’s expected profit from the contract w given technology A is

V (w�A) := max
σ∈E(w�A)

EF (σ)

[
v(y) −

∑
i

wi(y)
]
�

Faced with the uncertainty about the game played by the agents, the principal ranks
contracts according to their guaranteed expected performance over all possible (finite)
technologies. For the surplus and profits, these guarantees are, respectively,

S(w) := inf
A⊇A0

S(w�A) and V (w) := inf
A⊇A0

V (w�A)�

3See the working paper version (Dai and Toikka (2018)), where we did not make this assumption.
4This minimizes the departure from the standard model and ensures the existence of an optimal contract.

However, essentially the same results hold under the alternative assumption that the agents play the worst
equilibrium for the principal among equilibria that are not strictly Pareto dominated for the agents, but in this
case optimal contracts may only exist in the sense of a limit. We omit the details in the interest of space. In
contrast, simply selecting the worst equilibrium for the principal does not work as then all contracts only have
a trivial guarantee. This is because we can simply add a profile ā of zero-cost actions such that (1) ā leads
to output y0 for sure, and (2) so does any profile where only one agent has deviated from ā. Then ā is an
equilibrium with output y0 no matter the contract or what other actions are available.
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We say that a contract is team-optimal if it maximizes S(w) over all budget-balanced con-
tracts. A contract is principal-optimal if it maximizes V (w) over all contracts. Note that
S(w) ≥ 0, since each agent can ensure a zero payoff by playing a zero-cost action in A0

i

given any technology A ⊇A0. On the other hand, the zero contract w ≡ 0 yields a nonneg-
ative expected profit from any technology, and hence V (0) ≥ 0.

Some remarks regarding the formulation are in order. It is worth noting that we have
deliberately assumed that a contract can only condition on the outcome y . This assump-
tion captures the essence of our robustness exercise: we are interested in the performance
of a fixed contract in varying circumstances. We thus explicitly rule out the possibility of
tailoring the contract to the technology by asking the agents to report it to the principal.5

The most immediate interpretation is that the principal is designing a contract for a
single team, not fully aware of the game the agents are playing. This could reflect the
agents’ superior knowledge of the situation, or be due to the principal having to design
the contract before the details, or the team’s members, are known. The principal can,
however, envision and evaluate all possible outputs that may arise as a result of the team’s
activities, that is, she knows the set Y and the mapping v : Y → R. That Y is held fixed is
not restrictive as our main results do not require output distributions to have full support.

An alternative interpretation is that the contract is to be used in a number of different
situations, perhaps by different teams, and we want it to guarantee good performance in
all of them. For the profit guarantee, an example might be a large firm utilizing multiple
self-managed teams. The realized situation (captured by A) may be apparent to the team,
but too costly to communicate or verify. Hence, the firm resorts to designing a contract
based only on the aspects common to all situations (captured by A0).

For team-optimal contracts, the principal corresponds to a “social planner” designing
a robustly optimal budget balanced contract. While we are agnostic about the interpreta-
tion, perhaps the most natural one is to view this as a normative exercise. The multiteam
interpretation could then have us looking, for instance, for a standardized contract for dif-
ferent kinds of partnerships. An example of such a contract is a profit-sharing agreement
common in professional services.

3. NECESSITY OF INTEREST ALIGNMENT

We start the analysis by showing that for a contract to have a meaningful surplus or
profit guarantee, it is essentially necessary for it to align the agents’ interests in the fol-
lowing sense.

DEFINITION 3.1: A contract w aligns the agents’ interests if for every pair of agents i and
j, and every pair of output distributions F and G on Y , EF [wi(y)] > EG[wi(y)] implies
EF [wj(y)] ≥ EG[wj(y)].

That is, if some agent strictly prefers output distribution F to output distribution G
under contract w (gross of costs), then so does any other agent (at least weakly).

5If asking the agents to report the technology were allowed, then with two or more agents it would be
possible to partially implement the Bayesian profit-maximizing contract for the true technology by using a
mechanism that chooses the Bayesian optimal contract for the reported technology whenever the agents’ re-
ports agree, and which “punishes” the agents with the zero contract if any reports disagree. With three or
more agents, the Bayesian surplus-maximizing contract could be implemented similarly. But as is typical in
the implementation literature, the two-agent case is more difficult because then it is not obvious to tell who
deviated when reports disagree, and budget balance prevents punishing both agents simultaneously. As this
issue is orthogonal to our analysis, we do not pursue it further.
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FIGURE 1.—The set W = co(w(Y )) for I = 2. (a) A contract that aligns the agents’ interests. (b)–(d) Con-
tracts that fail to align the agents’ interests.

A contract that does not satisfy Definition 3.1 is said to fail to align the agents’ interests.
Any constant contract, such as the zero contract, aligns the agents’ interests. Note also

that all contracts satisfy Definition 3.1 vacuously if the team consists of just one agent.
We will use the following geometric characterization of interest alignment.

LEMMA 3.1: The following four properties of a contract w are equivalent:
(i) The contract w aligns the agents’ interests.

(ii) For all pairs of agents i and j, the set wi�j(Y ) :={(wi(y)�wj(y)) : y ∈ Y} is contained
in a ray in R2

+, that is, wi�j(Y ) ⊂{wi�j + di�jt : t ∈R+} for some wi�j� di�j ∈ R2
+.

(iii) All payment profiles are contained in a ray in RI
+, that is, w(Y ) ⊂ {w + dt : t ∈ R+}

for some w�d ∈RI
+.

(iv) There exist outputs y and y with w(y) ≥ w(y) such that, for every output y ∈ Y , we
have w(y) = (1 − λ)w(y) + λw(y) for some λ ∈ [0�1].

We provide a more detailed proof in the Appendix, but Lemma 3.1 follows essentially
just by observing that the set of possible expected payment profiles under contract w is

W := co
(
w(Y )

) = {
x ∈RI

+ : x = EF

[
w(y)

]
for some F ∈ �(Y )

}
�

Therefore, w aligns the agents’ interests in the sense of Definition 3.1 if and only if for
all x�x′ ∈ W , xi > x′

i implies xj ≥ x′
j for all agents i and j, or equivalently, if W (and

hence w(Y )) is contained in a ray in RI
+. A contract that aligns the agents’ interests thus

prescribes team-based compensation in a strong sense: the agents’ payments covary posi-
tively and linearly. Moreover, the parameter λ = λ(y) in Lemma 3.1(iv) can naturally be
interpreted as measuring the team’s performance on a scale from zero to one.

Figure 1 depicts the set W for some contracts that do or do not align the agents’ inter-
ests in the case of two agents. Panel (b) corresponds to a tournament where the agents’
interests are diametrically opposed—the antithesis of interest alignment.

It is worth noting that Definition 3.1 only concerns the agents, and so it is silent on how
the payments relate to the value of output v(y). For example, while any contract where
each wi is linear in v(y) aligns the agents’ interests, so does a contract that pays a bonus
bi to all agents conditional on some output ŷ and that otherwise pays nothing. Thus,
Definition 3.1 does not imply linearity in output value in general, but the next lemma
shows that it does do so under budget balance.

LEMMA 3.2: A contract w is budget balanced and aligns the agents’ interests if and only if
there are shares (α1� � � � �αI) ∈ [0�1]I such that

∑
i αi = 1 and wi(y) = αiv(y) for all i and y .
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PROOF: Clearly, a contract of this form is budget balanced and aligns the agents’ in-
terests. For the converse, note that by budget balance we can take y ∈ arg maxy v(y) and
y = y0 in Lemma 3.1(iv). Fixing y , we sum over i and use budget balance again to get
v(y) = ∑

i wi(y) = (1−λ)
∑

i wi(y0) +λ
∑

i wi(y) = (1−λ)v(y0) +λv(y) = λv(y). Hence,
λ= v(y)/v(y). Noting that wi(y0) = 0 by limited liability and budget balance, we thus have
wi(y) = (wi(y)/v(y))v(y), so taking αi = wi(y)/v(y) yields the result. Q.E.D.

Our first main result shows that any contract that fails to align the agents’ interests can
be easily improved upon regardless of whether we are interested in profits or surplus.

THEOREM 3.1: If a contract w fails to align the agents’ interests, then V (w) ≤ V (0). If,
in addition, w is budget balanced, then S(w) ≤ S(w′) for every contract w′ that is budget
balanced and aligns the agents’ interests.

That is, the profit guarantee of a contract that fails to align the agents’ interests is no
better than that of the zero contract. And if the contract is also budget balanced, then
its guaranteed expected surplus is weakly worse than the guarantee obtained by arbitrar-
ily distributing shares to the agents. These results imply, inter alia, that we can restrict
attention to contracts that align the agents’ interests when searching for optimal ones.

Before turning to the proof, we note that Theorem 3.1 can be strengthened under a
mild restriction on the known technology A0. We say that an action profile a ∈ A0 satis-
fies full support if either F (a) has full support on Y , or F (a) equals δy0 , the Dirac mea-
sure at the worst output y0. We say that the action profile a satisfies costly production if
EF (a)[v(y)] > 0 implies ci(ai) > 0 for some agent i. The next result shows that under either
assumption, interest alignment is a necessary condition for a contract to improve on the
trivial guarantee.

THEOREM 3.2: Suppose that each action profile in the known technology satisfies full sup-
port or costly production. If a contract w fails to align the agents’ interests, then V (w) ≤ 0
and S(w) ≤ 0.

We note for future reference that if w is budget balanced, then the necessity of interest
alignment obtains under an even milder condition, requiring only that any action profile
that yields the maximum output value with certainty not be costless to all agents.

LEMMA 3.3: Suppose that for all a ∈ A0, suppF (a) ⊆ arg maxy∈Y v(y) implies ci(a) > 0
for some agent i. If a budget balanced contract w fails to align the agents’ interests, then
S(w) ≤ 0.

Of course, the above results are silent on whether contracts that do align the agents’
interests actually improve on the trivial guarantees. We address this question in Sec-
tions 4 and 5, which consider, respectively, team-optimal and principal-optimal contracts.

The key idea behind Theorem 3.1 is that when a contract fails to align the agents’ inter-
ests, it is possible to use the agents’ disagreement over output distributions to add actions
to the game so as to eliminate any equilibria in known actions and to drive the equilibrium
output to y0. The next example illustrates this in essentially the simplest non-trivial case:
a rank-order tournament with two agents.
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FIGURE 2.—The game �(w�A) for Example 3.1. To see that a′ is the unique equilibrium, fix a mixed strategy
equilibrium σ . If the support of σ is contained in A0, then some agent i’s expected payoff is at most b/2,
whereas deviating to a′

i yields b for sure. Hence, a′
i must be in the support of σi for some agent i. But then a′

−i

is the unique best response for agent −i, and thus σ−i(a′
−i) = 1. This in turn implies σi(a′

i) = 1. Therefore, σ
is the pure-strategy profile a′.

EXAMPLE 3.1: Let I = 2. An output is a pair (y1� y2) ∈ Y ⊂ R2
+, with Y = {0�1� � � � � ȳ}2

for some integer ȳ > 0. Let v(y) = y1 + y2 so that the worst output is y0 = (0�0). The
known technology A0 can be arbitrary. Say, one could assume that any a0

i ∈A0
i only affects

the distribution of yi.
A tournament is a contract w that gives a prize b to the agent who produces the most,

and splits the prize equally in case of a tie. That is, wi(y) = b > 0 if yi > y−i, wi(y) = b/2 if
yi = y−i, and wi(y) = 0 if yi < y−i. See Figure 1(b). As is well known, this motivates agent i
to not only increase yi, but also to reduce y−i via refusing help, stealing, or sabotage (e.g.,
Lazear (1989)). Formally, consider a technology A ⊃ A0 such that Ai := A0

i ∪ {a′
i} with

ci(a′
i) = 0 for i = 1�2. Let F (a′

1� a
0
2) = δ(1�0) and F (a0

1� a
′
2) = δ(0�1) for all a0

i ∈ A0
i , i = 1�2.

Then playing the new action a′
i wins the tournament for sure against any a0

−i ∈ A0
−i. Finally,

let F (a′) = δ(0�0) so that nothing is produced if both agents play the new action.
Figure 2 shows that a′ is the unique equilibrium of the game �(w�A) induced by the

technology A. Thus, V (w�A) = v(0�0)−b= −b and V (w) ≤ V (w�A) = −b < 0 ≤ V (0),
that is, the zero contract has a better guarantee than the tournament, consistent with
Theorem 3.1.

3.1. Proof of Theorems 3.1 and 3.2

The main part of the proof is showing that for essentially any contract that fails to align
the agents’ interests, one can find a game whose unique equilibrium output distribution
assigns arbitrarily high probability to the worst output y0. This is Lemma 3.5 below, which
generalizes Example 3.1 by using a more elaborate construction than the one used for the
tournament. However, there is a “nuisance case” that has to be treated separately, and we
do so first in Lemma 3.4. The theorems are then shown to follow from these two lemmas.

Given a contract w, let

Y ∗ :=
I⋂

i=1

arg max
y∈Y

wi(y)�

By definition, any y ∈ Y ∗ simultaneously maximizes the payment to every agent. The set
Y ∗ may be nonempty even if w fails to align the agents’ interests (see Figure 1(d), where
Y ∗ consists of the outputs that map to the tip of the pointy end of the set W ). The nuisance
case arises if the agents can ensure that the output is in Y ∗ at zero cost to all agents as
there is then in general no way to drive the output to y0. The next lemma shows that such
contracts are nevertheless uninteresting as they perform worse than the zero contract
or any budget balanced contract that aligns interests, and that under the assumptions of
Theorem 3.2 they have at most a zero profit guarantee and cannot satisfy budget balance.
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LEMMA 3.4: Let w be a contract different from the zero contract. Suppose there exists
a∗ ∈ A0 such that suppF (a∗) ⊆ Y ∗ and c(a∗) = 0. Then the following properties hold:

(i) V (w) < V (0).
(ii) If w fails to align the agents’ interests and if each action profile in the known technol-

ogy has full support or costly production, then V (w) < 0.
(iii) If w is budget balanced, then S(w) ≤ S(w′) for every contract w′ that is budget bal-

anced and aligns the agents’ interests.
(iv) If each action profile in the known technology has full support or costly production,

then w is not budget balanced.

We relegate the proof to the Appendix, but the idea is straightforward: As the action
profile a∗ in Lemma 3.4 gives the agents their maximum payments under contract w at
zero cost, it is an equilibrium given any technology A ⊇ A0. This may potentially yield a
positive profit or surplus guarantee. However, as c(a∗) = 0, the agents would be happy to
play a∗ also under the zero contract, which of course would give even more profit. This
observation underlies part (i) of Lemma 3.4. The assumptions in part (ii) strengthen the
conclusion from V (w) < V (0) to V (w) < 0 as they imply that the value of output given
a∗ is zero. Part (iii) follows by observing that under budget balance, the outputs in Y ∗

must maximize the value of output. Thus, a∗ yields maxv(Y ) at zero cost, and hence it
is a surplus-maximizing equilibrium under any contract that pays a fixed share to each
agent, no matter what other actions are available. Finally, part (iv) follows as generating
maxv(Y ) with certainty at zero cost is inconsistent with full support or costly production.

With Lemma 3.4 out of the way, the proof comes down to the following result.

LEMMA 3.5: Let w be a contract that fails to align the agents’ interests. Suppose that for
all a ∈ A0, suppF (a) ⊆ Y ∗ implies c(a) �= 0. Then there exists a sequence of technologies
An ⊇A0, each with a unique equilibrium output distribution Fn ∈ �(Y ), such that Fn → δy0 .

Before turning to the proof, let us verify that Theorems 3.1 and 3.2 indeed follow from
the preceding two results. Observe first that under the assumptions of Lemma 3.5, we have
V (w) ≤ V (w�An) ≤ EFn[v(y)] → 0 and S(w) ≤ S(w�An) ≤ EFn[v(y)] → 0. Therefore,
Theorem 3.1 follows by noting that any contract that fails to align the agents’ interests is
covered by either parts (i) and (iii) of Lemma 3.4, or by Lemma 3.5. As for Theorem 3.2,
the assumption about A0 matters only in the case covered by Lemma 3.4, where part (ii)
then gives V (w) < 0, and part (iv) shows that that case is then impossible under budget
balance. Hence, we have V (w) ≤ 0 and S(w) ≤ 0.

It remains to establish Lemma 3.5. Throughout the proof, we fix a contract w that fails
to align the agents’ interests, and assume that, for all a ∈ A0, suppF (a) ⊆ Y ∗ implies
c(a) �= 0. Observe that w fails Lemma 3.1(ii) for some pair of agents. Relabeling if neces-
sary, we assume without loss of generality that this is agents 1 and 2.

We proceed in two steps. First, we construct a preliminary technology that eliminates
equilibria in known actions. We then amend it to drive the equilibrium output to y0.6

6The proof has a “divide and conquer” flavor, making it similar in spirit to Abreu and Matsushima (1992).
However, as we construct the worst-case game separately for each contract, the designer of the game knows
the agents’ preferences here. Hence, viewed as an implementation problem, ours is nontrivial only because of
the existence of the known actions, which have no counterpart in the implementation literature. Thus, even
setting aside the different solution concepts, Abreu and Matsushima’s construction cannot be applied in our
setting, nor can ours be applied in theirs.
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Preliminary Technology A∗. Define the technology A∗ ⊃ A0 as follows. For each
agent i, let A∗

i := A0
i ∪ {a∗

i} and ci(a∗
i ) = 0. Note that a∗

i is a least-cost action for agent
i. It will be helpful to think of a∗

i as an action that allows agent i to “veto” any outcome
that could arise under the known technology.

We define output distributions for action profiles in A∗ \A0 by specifying first the cor-
responding expected payment profiles with the help of the following lemma.

LEMMA 3.6: There exist (not necessarily all distinct) points z1� � � � � zI in W such that∑
i

zi
i >

∑
i

EF (a)

[
wi(y) − ci(ai)

]
for all a ∈ A0� (3.1)

z
j
j > zi

j for all j ∈{1�2}� i ∈{1� � � � � I} with i �= j� and (3.2)

z
j
j ≥ zi

j for all i� j ∈{3� � � � � I}� (3.3)

That is, each agent j prefers zj to any other point zi (strictly so if j ∈ {1�2}), but it is
infeasible for all agents to simultaneously get their preferred payoff zj

j under the known
technology.

To sketch the proof of Lemma 3.6, consider the case of two agents so that condition
(3.3) holds vacuously. Let z1 and z2 be agent 1’s and agent 2’s favorite points in W . On
one hand, if z1 and z2 are distinct as in Figures 1(b) and (c), then (3.1) and (3.2) are
clearly satisfied. On the other hand, if z1 = z2, then Y ∗ �= ∅ and W must have a nonempty
interior so that it resembles Figure 1(d). We can then choose z1 and z2 in the interior of
W to satisfy (3.2). Moreover, since any a with suppF (a) ⊆ Y ∗ has ci(ai) > 0 for some i
by assumption, choosing z1 and z2 close enough to the pointy end will also satisfy (3.1).
The proof in the Appendix provides the details and also covers the case of more than two
agents.

Now fix points z1� � � � � zI in W satisfying (3.1)–(3.3). For each a ∈ A∗ \A0, let

x(a) :=
⎧⎨
⎩
zj if (a1� a2) �= (a∗

1� a
∗
2) and j = min{i : ai = a∗

i}�

x∗ := 1
2
z1 + 1

2
z2 if (a1� a2) = (a∗

1� a
∗
2)�

(3.4)

and let the corresponding output distribution be any distribution F (a) ∈ �(Y ) with
EF (a)[w(y)] = x(a). This completes the description of the technology A∗.

Continuing with the interpretation of a∗
i as a veto action, (3.4) says that any agent j

can veto the play and force the payment profile zj if all other agents play known actions.
If multiple agents veto, then the tie is broken in favor of the agent with the lowest index,
expect when both agents 1 and 2 veto, in which case x∗, the average of z1 and z2, is chosen.

The next lemma lists some key properties that any A ⊇ A∗ inherits from A∗.

LEMMA 3.7: Every technology A ⊇A∗ satisfies the following properties:
(i) If σ is a mixed strategy profile with suppσ ⊆A0, then there exists an agent i for whom

ui(a∗
i � σ−i;w�A) > ui(σ;w�A).

(ii) ui(a∗
i � a−i;w�A) ≥ ui(a0

i � a−i;w�A) for all i, all a0
i ∈A0

i , and all a−i ∈ A∗
−i \A0

−i.
(iii) The inequality in part (ii) is strict for i = 1�2.

Part (i) rules out equilibria in known actions. It follows because, by (3.4), any agent i
who unilaterally deviates from σ to a∗

i earns zi
i (as ci(a∗

i ) = 0), whereas the sum of the
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agents’ expected payments under σ is less than
∑

i z
i
i by (3.1). Part (ii) shows that a∗

i

weakly dominates any known action a0
i if at least one other agent plays the veto action,

and part (iii) shows that this dominance is strict for agents 1 and 2. Both claims follow by
inspection of (3.4) given our choice of z1� � � � � zI ; see the proof in the Appendix for the
details.

The “tie-breaking” built into (3.4) in case multiple agents play a∗
i favors agents 1 and

2. This can be shown to imply that in any equilibrium of �(w�A∗), agents 1 and 2 play
(a∗

1� a
∗
2). More generally, for all suitably chosen A ⊇ A∗, at least one of them forgoes all

actions in A0:

LEMMA 3.8: Suppose A⊇ A∗ is a technology where Ai = A∗
i for all i > 2 and where

ui

(
a∗
i � a−i;w�A

) ≥ ui

(
a0
i � a−i;w�A

)
for all i, all a0

i ∈ A0
i , and all a−i ∈ A−i \A∗

−i� (3.5)

Then σ1(A0
1)σ2(A0

2) = 0 for every σ ∈ E (w�A).

The proof in the Appendix uses Lemma 3.7(i) and the weak dominance conditions in
Lemma 3.7(ii) and (3.5) to first show that if all agents assign positive probability to known
actions, then a∗

i strictly dominates all a0
i ∈ A0

i for some agent i, which contradicts agent
i assigning positive probability to A0

i . Thus, some set of agents must play known actions
with probability zero. We then use Lemma 3.7(iii) to show that this set contains agent 1
or 2.

We are now in a position to prove Lemma 3.5. There are two cases to consider depend-
ing on how the profile x∗ defined in (3.4) is located relative to w(y0).

Case 1: wj(y0) ≥ x∗
j for some j ∈{1�2}. Without loss of generality, assume w1(y0) ≥ x∗

1.
To ensure strict incentives, fix ε ∈ (0�1) and take Fε ∈ �(Y ) such that Fε(y0) > 1 − ε and
EFε[w1(y)] > x∗

1. This is feasible for any ε > 0 as x∗
1 = 1

2z
1
1 + 1

2z
2
1 < z1

1 ≤ maxw1(Y ) by (3.2).
Define the technology Ā ⊃ A∗ ⊃ A0 by letting Ā1 := A∗

1 ∪ {ā1} with c1(ā1) = 0, and
letting Āi := A∗

i for i �= 1. Let F (a) := Fε for all a ∈ Ā such that a1 = ā1. That is, agent
1 is the only one who has an additional action ā1 beyond the actions in the preliminary
technology A∗. By playing ā1, agent 1 can unilaterally force the distribution Fε, and he
will do so in every equilibrium:

LEMMA 3.9: If σ is an equilibrium of �(w�Ā), then σ1(ā1) = 1.

PROOF: We verify first that technology Ā satisfies (3.5). It suffices to consider i �= 1 as
Ā−1 \ A∗

−1 = ∅. Note that if i �= 1, then every a−i ∈ Ā−i \ A∗
−i has a1 = ā1. Thus, for any

such a−i, we have ui(a∗
i � a−i;w�Ā) −ui(a0

i � a−i;w�Ā) = ci(a0
i ) ≥ 0 as agent i cannot affect

the output if agent 1 plays ā1. Thus, Lemma 3.8 applies, and we have σ1(A0
1)σ2(A0

2) = 0
for all σ ∈ E (w�Ā).

Suppose first that σ2(A0
2) = 0 so that agent 2 plays a∗

2 with probability 1. We then have
u1(ā1� a

∗
2� a−{1�2};w�Ā) = EFε[w1(y)] > x∗

1 = u1(a∗
1� a

∗
2� a−{1�2};w�Ā) > u1(a0

1� a
∗
2� a−{1�2};

w�Ā) for all a0
1 ∈A0

1 and all a−{1�2} ∈ Ā−{1�2}, where the last inequality is by Lemma 3.7(iii).
Therefore, ā1 is agent 1’s unique best response and σ1(ā1) = 1 as desired.

Suppose then that σ1(A0
1) = 0, but σ1(ā1) < 1. Then σ1(a∗

1) = 1 − σ1(ā1) > 0 and we
have u2(a∗

2�σ−2;w�Ā) − u2(a0
2�σ−2;w�Ā) = σ1(ā1)c2(a0

2) + σ1(a∗
1)(x∗

2 − z1
2 + c2(a0

2)) > 0
for all a0

2 ∈ A0
2, where the strict inequality follows as x∗

2 − z1
2 = 1

2 (z2
2 − z1

2) > 0 by (3.2). This
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implies σ2(A0
2) = 0, which was shown above to imply σ1(ā1) = 1, contradicting σ1(ā1) < 1.

We conclude that σ1(ā1) = 1 as desired. Q.E.D.

Lemma 3.9 implies that the unique equilibrium output distribution in �(w�Ā) is Fε,
which converges to δy0 as ε → 0. This establishes the claim in Lemma 3.5 for Case 1.

Case 2: wj(y0) < x∗
j for all j ∈ {1�2}. In this case, W1�2 := co(w1�2(Y )) has a nonempty

interior relative to R2, denoted int(W1�2). (Otherwise, as w fails Lemma 3.1(ii) for agents 1
and 2 by assumption, W1�2 must be a strictly decreasing line segment. But then w1(y0) < x∗

1
implies w2(y0) > x∗

2.) Given any x ∈ RI
+, write x1�2 := (x1�x2) ∈ R2

+.
We construct a technology Â ⊃ A∗ ⊃ A0 as follows. Let Âi := A∗

i for each agent i > 2.
Let Â1 := A∗

1 ∪ {a1
1� a

3
1� � � � � a

K−1
1 }, where K ≥ 2 is an even number to be specified below,

and let Â2 := A∗
2 ∪ {a2

2� a
4
2� � � � � a

K
2 }. Let ci(ak

i ) = 0 for i ∈ {1�2} and 1 ≤ k ≤ K. That is,
only agents 1 and 2 have additional actions beyond those in the preliminary technology
A∗, and hence most of the arguments that follow will only involve the two of them.

We will next specify expected payment profiles in W , which will be used to define the
output distributions associated with action profiles involving new actions. Figures 3 and 4
illustrate schematically the projections of these profiles to agents 1 and 2, and how they
are assigned to their actions; it may be helpful to refer to them along the way.

By perturbing it if necessary, we can assume that x∗
1�2 ∈ int(W1�2).7 We approximate

w(y0) ∈ W by fixing ε > 0 and taking Fε ∈ �(Y ) to be a distribution with full support
on Y such that Fε(y0) > 1 − ε. Then wε

1�2(y0) := EFε[w1�2(y)] ∈ int(W1�2), and for ε small

w2

w1

x∗
1�2

x1
1�2

x2
1�2

� � �

xK−2
1�2

xK−1
1�2

wε
1�2(y0)

x1�2

L�

FIGURE 3.—Construction of the sequence (x0
1�2 = x∗

1�2�x
1
1�2� � � � � x

K−1
1�2 �xK

1�2 = wε
1�2(y0)) in the proof of

Lemma 3.5. (Here, K = 6.) The shaded area is L�.

7Conditions (3.1) and (3.2) involve finitely many strict inequalities. Thus, when int(W1�2) is nonempty, we
can perturb z1 and z2 so that z1

1�2 and z2
1�2 lie in int(W1�2). Then x∗

1�2 = 1
2z

1
1�2 + 1

2z
2
1�2 ∈ int(W1�2) by convexity of

W . Moreover, for small enough perturbations, we continue to have wj (y0) < x∗
j for all j ∈{1�2}.
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FIGURE 4.—Assignment of expected payment profiles to action profiles a ∈A such that a1 /∈A0
1 or a2 /∈A0

2.
Note that for such a, the expected payment profile depends only on a1 and a2. Furthermore, we have
ci(a∗

i ) = ci(ak
i ) = 0 for i ∈ {1�2} and 1 ≤ k ≤ K. Thus, this matrix also directly shows u1(a1� a2� a−{1�2};w�A)

for a1 /∈A0
1 and u2(a1� a2� a−{1�2};w�A) for a2 /∈A0

2.

enough, we have x∗
1�2 > wε

1�2(y0), which we assume to be the case henceforth. Moreover,
we can then fix x ∈W such that x1�2 ∈ int(W1�2) and x1�2 <wε

1�2(y0).
Let L be the line segment connecting x∗

1�2 and wε
1�2(y0) in R2

+. Given � > 0, let L� be
the �-neighborhood of L, that is, L� := {x1�2 ∈ R2

+ : ‖x1�2 − z1�2‖ < � for some z1�2 ∈ L}.
Because x∗

1�2 > wε
1�2(y0) > x1�2 and all three points lie in the convex open set int(W1�2),

we can take �> 0 small enough so that L� ⊆ int(W1�2) and x1�2 < z1�2 for all z1�2 ∈ L�. We
then choose the even number K ≥ 2 and points x1

1�2� � � � � x
K−1
1�2 in L� such that the sequence

(x0
1�2 = x∗

1�2�x
1
1�2� � � � � x

K−1
1�2 �xK

1�2 =wε
1�2(y0)) satisfies the following conditions:

1. Among any two consecutive points, agent 1 prefers the odd one: for all k odd,

xk
1 > xk+1

1 and xk
1 > xk−1

1 �

2. Agent 2 has the opposite preference: for all k odd,

xk
2 < xk+1

2 and xk
2 < xk−1

2 �

See Figure 3 for an illustration. We map each point xk
1�2, 0 ≤ k ≤ K, to a point xk in W

by letting x0 = x∗ and xK =wε(y0) := EFε[w(y)], and by taking xk for k /∈{0�K} to be any
point in W whose image in W1�2 is xk

1�2.
We will need another sequence (η0� � � � �ηK/2) in W with η0

1�2 < · · · < ηK/2
1�2 < x1�2. Such

a sequence can be found, because x1�2 ∈ int(W1�2). Note that we have ηl
1�2 < x1�2 < xk

1�2 for
all k and l, because each xk

1�2 was chosen from L�, which dominates x1�2.
To complete the description of technology Â, we assign the above expected payment

profiles to action profiles in Â \ A∗ according to Figure 4. Finally, we assume that the
profile xK = wε(y0) is generated by Fε, that is, F (aK−1

1 � aK
2 � a−{1�2}) = Fε for all a−{1�2} ∈

Â−{1�2}. For any other expected payment profile, the corresponding output distribution
can be taken to be any F ∈ �(Y ) that generates it. We will write ui(a) := ui(a;w�Â) as
(w�Â) are held fixed in what follows.

Let us verify that the technology Â so defined satisfies the assumptions of Lemma 3.8.

LEMMA 3.10: Technology Â satisfies (3.5) and the inequality in it is strict for i = 1�2.
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PROOF: For agent 1, we have u1(a∗
1� a−1) − u1(a0

1� a−1) = η1
1 − η0

1 + c1(a0
1) > 0 for all

a−1 ∈ Â−1 \A∗
−1, since any such a−1 has a2 ∈{a2

2� � � � � a
K
2 }, in which case we can read agent

1’s payoff from the top two rows in Figure 4 up to the cost of action a0
1, and since η1 >η0

by construction.
Agent 2 is treated analogously. The only difference arises if a−2 ∈ Â−2 \ A∗

−2 contains
a1

1. Then u2(a∗
2� a−2) − u2(a0

2� a−2) = x1
2 −η0

2 + c2(a0
2) > 0, since x1

2 >η0
2 by construction.

If i > 2, then ui(a∗
i � a−i) − ui(a0

i � a−i) = ci(a0
i ) ≥ 0 for all a0

i ∈ A0
i and a−i ∈ Â−i \ A∗

−i,
since any such a−i has a1 ∈ Â1 \A∗

1 or a2 ∈ Â2 \A∗
2, implying that agent i cannot affect y .

Q.E.D.

LEMMA 3.11: If σ is an equilibrium of �(w�Â), then σ1(aK−1
1 ) = 1 and σ2(aK

2 ) = 1.

PROOF: Let σ ∈ E (w�Â). We show first that σ1(A0
1) = σ2(A0

2) = 0. By Lemma 3.8, we
have σ1(A0

1)σ2(A0
2) = 0. Suppose σ2(A0

2) = 0 so that suppσ−1 ⊆ Â−1 \ A0
−1. We claim

that then u1(a∗
1�σ−1) > u1(a0

1�σ−1) for all a0
1 ∈ A0

1. To see this, note that the inequal-
ity u1(a∗

1� a−1) − u1(a0
1� a−1) > 0 holds for all a−1 ∈ A∗

−1 \ A0
−1 by Lemma 3.7(iii) and

for all a−1 ∈ Â−1 \ A∗
−1 by Lemma 3.10. Thus, it holds for all a−1 ∈ suppσ−1. This im-

plies σ1(A0
1) = 0. The same argument shows that σ1(A0

1) = 0 implies σ2(A0
2) = 0. Hence,

σ1(A0
1) = σ2(A0

2) = 0 as desired.
Because σ1(A0

1) = σ2(A0
2) = 0, we can eliminate row A0

1 and column A0
2 in Figure 4.

The remaining matrix is solvable by iterated elimination of strictly dominated strategies:
a1

1 dominates a∗
1 since x1

1 > x0
1, x2

1 > η1
1, and η2

1 > η1
1 by construction. And once a∗

1 is
eliminated, a2

2 dominates a∗
2 since x2

1 < x2
2, η1

2 < x3
2, and η1

2 <η2
2.

To complete the argument, suppose we have already eliminated all rows and columns
except for rows ak

1 � � � � � a
K−1
1 and columns ak+1

2 � � � � � aK
2 for some 1 ≤ k ≤ K − 3 odd.

Then ak+2
1 dominates ak

1 because xk+2
1 > xk+1

1 for k odd, and because xk+3
1 > η

(k+3)/2
1 and

η
(k+5)/2
1 >η

(k+3)/2
1 (if k<K − 3). Thus, we can eliminate row ak

1 . But then ak+3
2 dominates

ak+1
2 because xk+3

2 > xk+2
2 for k odd, and because xk+4

2 > η
(k+3)/2
2 and η

(k+5)/2
2 > η

(k+3)/2
2 (if

k < K − 3). Thus, we can eliminate column ak+1
2 . Therefore, only row aK−1

1 and column
aK

2 survive, implying that σ1(aK−1
1 ) = 1 and σ2(aK

2 ) = 1 as desired. Q.E.D.

By Lemma 3.11, the unique equilibrium output distribution in �(w�Â) is Fε, which
converges to δy0 as ε → 0. This establishes Lemma 3.5 for Case 2, completing the proof.

4. TEAM-OPTIMAL CONTRACTS

We now turn to team-optimal contracts, which maximize the surplus guarantee S(w)
subject to budget balance. The following result collects our main findings. For the state-
ment, say that a contract w is linear (in value of output) if wi = αiv for some αi ∈ [0�1] for
each agent i. Under budget balance, this is equivalent to w aligning the agents’ interests
by Lemma 3.2.

THEOREM 4.1:
(i) There exists a linear team-optimal contract.
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(ii) A team-optimal contract w guarantees positive expected surplus (i.e., S(w) > 0) if and
only if the known technology A0 satisfies

max
a∈A0

(
EF (a)

[
v(y)

] −
∑
i

ci(ai) − 2
∑
i�j:i �=j

√
ci(ai)cj(aj)

)
> 0� (4.1)

(iii) A linear team-optimal contract can be found by taking any profile a ∈ A0 that attains
the maximum in (4.1) and defining each agent’s share by

αi =
√
ci(ai)

I∑
j=1

√
cj(aj)

(with 0/0 = 1/I by convention)� (4.2)

(iv) Suppose there does not exist a ∈ A0 such that c(a) = 0 and EF (a)[v(y)] = maxv(Y ).
Then every team-optimal contract that guarantees positive expected surplus is linear.

Part (i) of Theorem 4.1 shows that profit-sharing, or equity, is a robustly optimal con-
tract for a team absent a sink or a source of funds. By part (ii), such a contract has a
positive surplus guarantee if and only if the known technology is sufficiently productive
as the maximand in (4.1) is the expected surplus minus an extra cost term. Part (iii) pro-
vides a formula for the optimal shares. Finally, part (iv) gives a sufficient condition for
all team-optimal contracts to be linear, which is weak enough to hold in most cases of
interest.

Theorem 3.1 implies that in establishing the above results, it is enough to consider bud-
get balanced contracts that align the agents’ interests, or equivalently, budget balanced
linear contracts. We start by deriving a formula for the surplus guarantee S(w) for such
contracts.

Fix a budget balanced linear contract w with associated shares (α1� � � � �αI) for the
agents. Given any technology A ⊇ A0, let P be the mapping A → R ∪ {−∞} defined
by

P(a) := EF (a)

[
v(y)

] −
∑
i

ci(ai)
αi

� (4.3)

where 0/0 = 0 and x/0 = ∞ for x > 0 by convention. Let U0(w) := maxa∈A0 P(a). Note
that U0(w) depends only on A0, and it is well-defined and nonnegative even if αi = 0 for
some agent i because each A0

i contains a zero-cost action by assumption.

LEMMA 4.1: If w is a budget balanced linear contract, then S(w) = U0(w).

Before proving the result, let us heuristically interpret the guarantee U0(w). Suppose
momentarily that A0 consists of one action profile a0 with c(a0) > 0. Consider trying to
reduce surplus relative to a0 by giving agent 1 a new zero-cost action a′

1. We can get agent
1 to deviate to a′

1 as long as EF (a′
1�a

0
−1)[α1v(y)] > EF (a0)[α1v(y)] − c1(a0

1), or

EF (a′
1�a

0
−1)

[
v(y)

]
> EF (a0)

[
v(y)

] − c1

(
a0

1

)
α1

�
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That is, we can lower the expected value of output by at most c1(a0
1)/α1, which is more

than agent 1’s cost saving of c1(a0
1) if α1 < 1. This is just the usual free-rider problem:

agent 1’s deviation imposes a negative externality on the other agents. Having added the
action a′

1, we can then also give agent 2 a zero-cost action a′
2 to reduce the expected value

of output further by c2(a0
2)/α2. Continuing this way, we obtain a zero-cost profile a′ with

expected surplus EF (a′)[v(y)] ≈ EF (a0)[v(y)] − ∑
i ci(a

0
i )/αi, which equals U0(w) when A0

is a singleton. In other words, the guarantee is obtained by exhausting opportunities for
free-riding.

Lemma 4.1 follows from the next two lemmas. The first one shows that there always ex-
ists an equilibrium with surplus weakly greater than U0(w), which implies S(w) ≥ U0(w).

LEMMA 4.2: Suppose w is a budget balanced linear contract, A is a technology that con-
tains A0, and a∗ ∈ arg maxa∈A P(a). Then a∗ ∈ E (w�A) and EF (a∗)[v(y)] − ∑

i ci(a
∗
i ) ≥

U0(w).

PROOF: The key observation is that a budget balanced linear contract w induces a
potential game between the agents.8 To see this, fix a technology A ⊇ A0. Then each
agent’s payoff is ui(a) = EF (a)[αiv(y)] − ci(ai), and for any agent i with a positive share
αi > 0, we have

ui(ai� a−i) − ui

(
a′
i� a−i

) = αi

(
P(ai� a−i) −P

(
a′
i� a−i

))
for all ai� a

′
i ∈ Ai, and all a−i ∈A−i.

Hence, if all agents’ shares are positive, then P is a weighted potential for the game
�(w�A), which implies arg maxa∈A P(a) ⊆ E (w�A). Moreover, this inclusion holds even
if some agents’ shares are zero. This is because any a∗ ∈ arg maxa∈A P(a) has ci(a∗

i ) = 0
if αi = 0. Thus, a∗

i maximizes ui(ai� a
∗
−i) = −ci(ai) for such agents, whereas a∗

j remains a
best response for all agents with αj > 0 as their payoff function can still be derived from
the function P as above.9 To complete the proof, we note that the inequality follows, since
we have

EF (a∗)

[
v(y)

] −
∑
i

ci
(
a∗
i

) ≥ EF (a∗)

[
v(y)

] −
∑
i

ci
(
a∗
i

)
αi

= max
a∈A

P(a) ≥ max
a∈A0

P(a) =U0(w)�

where the second inequality is by A ⊇ A0 and the last equality is by definition of U0(w).
Q.E.D.

We then show that the surplus guarantee is no higher than U0(w).

LEMMA 4.3: Suppose w is a budget balanced linear contract, and G is a distribution on
Y such that EG[v(y)] >U0(w). Then there exists a technology A ⊇ A0 such that F (σ) = G
and

∑
i ui(σ;w�A) = EG[v(y)] for all σ ∈ E (w�A).

Note that letting EG[v(y)] → U0(w) implies S(w) ≤U0(w), establishing Lemma 4.1.10

8All concepts and results related to potential games used in the analysis can be found in Monderer and
Shapley (1996). Any contract that aligns the agents’ interests can be shown to induce a type of potential game
between the agents, but we will not need the general form of this result.

9If some agents’ shares are zero, then P is not a potential for �(w�A), but it can be shown that �(w�A) is
still a generalized ordinal potential game. As this will not be used in the analysis, we omit the details.

10Lemma 4.3 holds vacuously if U0(w) = maxv(Y ). But in that case we have S(w) ≤U0(w) a fortiori.
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We prove Lemma 4.3 in the Appendix. To outline the idea, suppose all agents’ shares
are positive for simplicity. Consider a technology A ⊇ A0 where each agent has a new
action a′

i with ci(a′
i) = 0, and F (a′) = G. Completing the description of A so that

a′ ∈ E (w�A) is easy. This is because EF (a′)[v(y)] = EG[v(y)] > U0(w) = maxa∈A0 P(a),
implying that a′ maximizes P on A0 ∪{a′}. Thus, if we set F (a) = δy0 for all a /∈A0 ∪{a′},
then {a′}= arg maxa∈A P(a) and a′ is an equilibrium of �(w�A) by Lemma 4.2. However,
the complication is that the game �(w�A) so defined could have other equilibria. The
proof deals with this by carefully choosing F (a) for a /∈ A0 ∪ {a′} to make a′ the only
equilibrium.

We are now ready to prove Theorem 4.1. Part (i) follows by Theorem 3.1 and a continu-
ity and compactness argument, which we relegate to the Appendix. As for parts (ii) and
(iii), Lemma 4.1 implies that linear team-optimal contracts and the optimal surplus guar-
antee correspond to the solutions and the value of the following maximization problem:

max
α∈[0�1]I :∑i αi=1

U0(w) = max
a∈A0

max
α∈[0�1]I :∑i αi=1

(
EF (a)

[
v(y)

] −
∑
i

ci(ai)
αi

)
�

By standard arguments, the inner maximum is achieved for any a ∈ A0 by (4.2). Sub-
stituting these shares back into the objective yields (4.1). Part (iv) is immediate from
Lemma 3.3.

5. PRINCIPAL-OPTIMAL CONTRACTS

We then consider principal-optimal contracts, which maximize the principal’s guaran-
teed expected profit V (w). By Theorem 3.1, we can restrict attention to contracts that
align the agents’ interests as any contract that fails to do so is no better than the zero
contract. However, unlike in the case of budget balanced contracts studied in the previ-
ous section, this restriction by itself does not imply any relationship between the value of
output and the agents’ compensation. Nevertheless, we show that a linear contract is still
optimal.

THEOREM 5.1: (i) There exists a linear principal-optimal contract.
(ii) A principal-optimal contract w guarantees a positive expected profit (i.e., V (w) > 0)

if and only if the known technology A0 satisfies (4.1).
(iii) If every action profile in the known technology A0 satisfies full support, then every

principal-optimal contract that guarantees a positive expected profit is linear.

Theorem 5.1 parallels our findings for team-optimal contracts. Part (i) shows the opti-
mality of linear contracts, and part (iii) provides a condition for their uniqueness. By part
(ii), the same condition that characterizes whether a team-optimal contract can guarantee
positive surplus is necessary and sufficient for the optimal profit guarantee to be positive.
Note that the optimal contract depends only on v(y) even if the signal y is richer in the
sense that v is not invertible. When I = 1, these results replicate Carroll’s (2015) result
for principal-agent problems (save for Y here being finite as opposed to compact). In that
case, (4.1) simplifies to the requirement that some known action yield positive expected
surplus.

The rest of this section is devoted to deriving the results in Theorem 5.1. Along the
way, we obtain a formula for the profit guarantee of a linear contract, which can be used
to find an optimal one. We comment on this at the end of the section.
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As a first step, we give a convenient representation for the candidate optimal contracts.
By Theorem 3.1, we can focus on contracts that align the agents’ interest. Moreover, we
can take the lowest payment to each agent to be zero, because otherwise we could weakly
increase the principal’s profit by subtracting a constant from the agent’s compensation as
this does not affect incentives.11 By Lemma 3.1(iv), there then exists some output y ∈ Y

that gives the zero payment simultaneously to all agents, that is, w(y) = 0. A contract with
this property is said to be anchored at the origin.

Any contract w that aligns the agents’ interests and is anchored at the origin has the
following representation. Let w̄(y) := ∑

i wi(y) denote the agents’ total compensation at
the output y . Then there are shares α= (α1� � � � �αI) ∈ [0�1]I ,

∑
i αi = 1, such that for all i,

wi(y) = αiw̄(y) for all y ∈ Y� (5.1)

Conversely, any pair (w̄�α), where the total compensation w̄ : Y →R+ has min w̄(Y ) = 0,
defines via (5.1) a contract that aligns the agents’ interests and is anchored at the origin.
To see this, consider an auxiliary model where the value of each output y is w̄(y) instead
of v(y); the analog of output y0 exists since w is anchored at the origin. The contract
w is budget balanced and aligns the agents’ interests in this model, so (5.1) follows by
Lemma 3.2.12 The converse is obvious. We will think of any linear contract as a special
case of (5.1) where w̄(y) = βv(y) for some β ≥ 0 so that wi(y) = αiβv(y).

Using (5.1), we can view even a nonlinear contract w as a budget balanced linear con-
tract in the auxiliary model, allowing us to recycle results from Section 4. To avoid confu-
sion, let

P̄(a) := EF (a)

[
w̄(y)

] −
∑
i

ci(ai)
αi

�

where we have replaced v(y) with w̄(y) in the definition of P(a) in (4.3), and where αi is
agent i’s share in (5.1). We then define Ū0(w) := maxa∈A0 P̄(a).

To shorten the statement of results, we say that a contract w is eligible if it (i) aligns the
agents’ interests, (ii) is anchored at the origin, and (iii) satisfies V (w) > 0 and V (w) ≥
V (0). This adapts Carroll’s (2015) notion of an eligible contract to the multiagent setting,
parts (i) and (ii) being the novel requirements. The set of eligible contracts may be empty
as the best profit guarantee may be zero in violation of (iii). However, if V (w) > 0 for
some anchored contract w, then this contract is eligible unless V (w) < V (0), in which case
the zero contract is eligible. In particular, any principal-optimal contract with a positive
guarantee is eligible.

The following characterization is similar to the single-agent case.

LEMMA 5.1: Let w be an eligible contract, different from the zero contract. Then

V (w) = min
G∈�(Y )

EG

[
v(y) − w̄(y)

]
subject to EG

[
w̄(y)

] ≥ Ū0(w)� (5.2)

Moreover, if G achieves the minimum, then EG[w̄(y)] = Ū0(w).

11Given a contract w, define the contract w′ by w′(y) := w(y) − (minw1(Y )� � � � �minwI (Y )) (y ∈ Y ). Then
w′ ≤ w and E(w�A) = E(w′�A) for all A⊇A0, and hence V (w′) ≥ V (w).

12If w is the zero contract, then the auxiliary model does not satisfy maxv(Y ) = max w̄(Y ) > 0. However,
the zero contract clearly satisfies (5.1).
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The proof of Lemma 5.1 builds directly on our results for team-optimal contracts. To
see that V (w) is not less than the minimum, interpret w as a budget balanced linear
contract in a model where v(y) = w̄(y). Then Lemma 4.2 implies that any technology
A ⊇ A0 has an equilibrium a∗ such that EF (a∗)[w̄(y)] ≥ EF (a∗)[w̄(y)] − ∑

i ci(a
∗
i ) ≥ Ū0(w).

Thus, V (w) is at least the minimum profit under distributions satisfying the constraint in
(5.2).

In the other direction, take any G ∈ �(Y ) such that EG[w̄(y)] > Ū0(w). Interpret w
again as a budget balanced linear contract with v(y) = w̄(y). Then Lemma 4.3 gives us a
technology A ⊇ A0 where G is the unique equilibrium output distribution. The proof in
the Appendix uses this fact to bound V (w) from above by the minimum in (5.2).

Lemma 5.1 yields a formula for the profit guarantee for any eligible linear contract w,
which is valid also for the zero contract.

LEMMA 5.2: Let w be an eligible linear contract, with wi(y) = αiβv(y) for each i. Then

V (w) = (1 −β) max
a∈A0

(
EF (a)

[
v(y)

] −
∑
i

ci(ai)
βαi

)
� (5.3)

where 0/0 = 0 and x/0 = ∞ for x > 0 by convention.

Note that if I = 1, then α1 = 1 and (5.3) reduces to the single-agent formula by Chas-
sang (2013) and Carroll (2015).

PROOF: If w is different from the zero contract and G achieves the minimum in (5.2),
then

V (w) = (1 −β)EG

[
v(y)

] = 1 −β

β
EG

[
w̄(y)

] = 1 −β

β
Ū0(w)�

The formula in (5.3) now follows by writing out Ū0(w).
If w is the zero contract, then the agents can only play zero-cost actions. (Recall that

each A0
i contains such an action by assumption.) Any a ∈ A0 with c(a) = 0 is an equilib-

rium given any technology A ⊇ A0, and hence V (0) = maxEF (a)[v(y)] over a ∈ A0 such
that c(a) = 0. This agrees with the formula in the lemma, given the conventions involv-
ing 0. Q.E.D.

LEMMA 5.3: There exists a linear contract w∗ such that V (w∗) ≥ V (w) for every linear
contract w. Moreover, V (w∗) > 0 if and only if the known technology satisfies (4.1).

PROOF: If no linear contract is eligible, then V (0) = 0 and the zero contract is optimal
within the class of linear contracts. If there exists an eligible linear contract, then the claim
follows by continuity of (5.3) in β and αi.

If (4.1) holds, then S(w) = U0(w) = maxa∈A0 (EF (a)[v(y)] − ∑
ci(ai)/αi) > 0 for some

α ∈ [0�1]I with
∑

αi = 1 by Theorem 4.1(ii) and Lemma 4.1. By continuity, (5.3) is posi-
tive for this same α for β < 1 close enough to 1. Conversely, if (4.1) is not satisfied, then
(1 − β) maxa∈A0 (EF (a)[v(y)] − ∑

ci(ai)/βαi) ≤ (1 − β)U0(w) = (1 − β)S(w) ≤ 0 for all
α ∈ [0�1]I with

∑
αi = 1 and all β ≤ 1 by Theorem 4.1(ii) and Lemma 4.1. Therefore,

(5.3) is nonpositive for any linear contract with β≤ 1. (If β> 1, then profit is nonpositive
a fortiori.) Q.E.D.
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With these facts about linear contracts established, it remains to show that the best lin-
ear contract is optimal among all contracts. Consider the representation (5.1). We will
show that any contract can be (weakly) improved by making the total compensation w̄
linear in the value of output while keeping the agents’ shares, α, fixed. As w̄ is one-
dimensional, we draw here on the single-agent case. In particular, the following lemma,
whose proof we relegate to the Appendix, identifies a supporting hyperplane to the set of
pairs (w̄(y)� v(y) − w̄(y)) under contract w, which will be used to define the improvement
contract.

LEMMA 5.4: Let w be an eligible contract, different from the zero contract. Then there exist
numbers κ and λ, with λ > 0, such that

v(y) − w̄(y) ≥ κ+ λw̄(y) for all y ∈ Y� (5.4)

V (w) = κ+ λŪ0(w)� (5.5)

Given an eligible contract w �= 0 and numbers κ, λ satisfying (5.4) and (5.5), define the
affine contract w′ by

w̄′(y) := 1
1 + λ

v(y) − κ

1 + λ
and w′

i(y) := αiw̄
′(y)� (5.6)

where αi is agent i’s share in the representation (5.1) of the original contract w. Then
w̄′(y) ≥ w̄(y) ≥ 0 for all y ∈ Y by (5.4), and thus w′

i ≥ 0 for all i as required by our defini-
tion of a contract. Note that w̄′(y0) = −κ/(1 + λ) ≥ 0 implies κ ≤ 0.

The affine contract w′ can be improved by removing the constant payment, which does
not affect the agents’ incentives. That is, define the linear contract w′′ by setting

w′′
i (y) := αi

1 + λ
v(y) = w′

i(y) + αiκ

1 + λ
≤w′

i(y)� (5.7)

where the inequality holds because, as noted above, κ ≤ 0.

LEMMA 5.5: Suppose w is an eligible contract, different from the zero contract, that sat-
isfies (5.4) and (5.5), and w′′ is the linear contract defined by (5.7). Then V (w′′) ≥ V (w).
Moreover, if every a ∈ A0 satisfies full support and w is not linear, then V (w′′) > V (w).

PROOF: Fix the contract w. Let w′ and w′′ be the affine and linear contracts defined by
(5.6) and (5.7). Observe first that since w̄(y) ≤ w̄′(y) = w̄′′(y) − κ/(1 + λ) for all y ∈ Y ,
we have

Ū0(w) ≤ max
a∈A0

(
EF (a)

[
w̄′′(y) − κ

1 + λ

]
−

∑
i

ci(ai)
αi

)
= Ū0

(
w′′) − κ

1 + λ
� (5.8)

The contract w′′, being linear, satisfies (5.1). Reinterpreting it as a budget-balanced con-
tract we apply Lemma 4.2 (with the substitutions v(y) = w̄′′(y) and U0(w′′) = Ū0(w′′))
to find for any technology A ⊇ A0 a pure-strategy equilibrium a∗ ∈ E (w′′�A) such that
EF (a∗)[w̄′′(y)] ≥ Ū0(w′′). But E (w′�A) = E (w′′�A) as the constants do not affect incen-
tives. Thus, a∗ ∈ E (w′�A) and

EF (a∗)

[
w̄′(y)

] = EF (a∗)

[
w̄′′(y)

] − κ

1 + λ
≥ Ū0

(
w′′) − κ

1 + λ
≥ Ū0(w)�
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where the last inequality is by (5.8). Moreover, w′ satisfies (5.4) by construction, and thus

V
(
w′�A

) ≥ EF (a∗)

[
v(y) − w̄′(y)

] ≥ κ+ λEF (a∗)

[
w̄′(y)

] ≥ κ+ λŪ0(w) = V (w)� (5.9)

where the last step is by (5.5). Because A was arbitrary, this implies V (w′) ≥ V (w). Now
V (w′′) = V (w′) − κ/(1 + λ) ≥ V (w′) shows that V (w′′) ≥ V (w) as desired.

It remains to show strict inequality for nonlinear contracts under full support. If w′

is not linear (i.e., if κ < 0), then V (w′′) > V (w′) ≥ V (w). So suppose w′ is linear, and
every a ∈ A0 has full support, that is, F (a) �= δy0 implies suppF (a) = Y for all a ∈ A0.
If w is not linear, then w̄(y) ≤ w̄′(y) = w̄′′(y) − κ/(1 + λ) holds with strict inequality for
some y ∈ Y . Furthermore, because w is eligible, we have Ū0(w) > 0 by Lemma 5.1, and
so the maximum in Ū0(w) is achieved by some a ∈ A0 such that F (a) has full support.
This implies that the inequality in (5.8) is strict. The strict inequality carries through to
imply that in (5.9), V (w′�A) is bounded above V (w) uniformly in A ⊇ A0. Therefore,
V (w′′) ≥ V (w′) > V (w). Q.E.D.

We can now show the claims in Theorem 5.1 using the previous lemmas.

PROOF OF THEOREM 5.1: For part (i), let w be a contract that aligns the agents’ inter-
ests and is anchored at the origin. If w is not eligible, then V (w) ≤ V (0). If w is eligible,
then V (w) ≤ V (w′′) for a linear contract w′′ by Lemma 5.5. Thus, either way, V (w) is less
than the guarantee of some linear contract, and hence the claim follows by Lemma 5.3.

Part (ii) follows from part (i) and Lemma 5.3.
For part (iii), suppose all a ∈ A0 have full support, and w is a nonlinear principal-

optimal contract and thus anchored at the origin. If V (w) > 0, then w is eligible, and
V (w) < W (w′′) for a linear contract w′′ by Lemma 5.5, contradicting optimality of w.

Q.E.D.

When (4.1) holds, a linear principal-optimal contract can be found by maximizing (5.3)
with respect to β and α. (Otherwise, the zero contract is optimal.) It is easier to first find
the optimal shares for each a ∈ A0, and then maximize with respect to a. So fix a ∈ A0.
Given any β > 0, maximizing (5.3) with respect to α amounts to finding team-optimal
shares in a model where the value of output is βv(y). These shares α(a) are given by
(4.2), and for fixed a they are independent of β. Similarly, maximizing (5.3) with respect
to β given any α gives the principal-optimal share in a single-agent model where each
action a ∈ A0 costs C(a�α) := ∑

i ci(ai)/αi. Carroll (2015) shows that this is given by
β(a�α) = √

C(a�α)/EF (a)[v(y)]. Substituting these shares back into (5.3) gives

(√
EF (a)

[
v(y)

] −
√
C

(
a�α(a)

) )2 =
(√

EF (a)

[
v(y)

] −
∑
i

√
ci(ai)

)2

�

Maximizing the above expression over the set of known action profiles yields a maximizer
a∗ ∈ A0, which can be substituted back into the formulas for the shares to obtain the
optimal contract α∗ = α(a∗) and β∗ = β(a∗�α∗).

6. RISK-AVERSE AGENTS

The necessity of interest alignment can be generalized to risk-averse agents. To this
end, suppose that each agent’s payoff under a contract w : Y → RI

+ is of the form
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ûi(wi(y)) − ci(ai) for an increasing, concave function ûi : R+ → R that is continuous
at 0 with ûi(0) = 0. The model is otherwise as in Section 2. In particular, the prin-
cipal is still a risk-neutral utilitarian, and so the expected surplus given a contract w
and a technology A now takes the form S(w�A) = maxσ∈E(w�A)

∑
i ui(σ;w�A), with

ui(a;w�A) = EF (a)[ûi(wi(y)) − ci(ai)]. The surplus guarantee is defined the same way
as before: S(w) = infA⊇A0 S(w�A).

The following definition generalizes the condition in Lemma 3.1(iii) to this setting.

DEFINITION 6.1: A contract w aligns the agents’ interests in utilities if the set of all
payment-utility profiles û(w(Y )) := {(û1(w1(y))� � � � � ûI(wI (y))) : y ∈ Y} is contained in
a ray in RI

+, that is, if û(w(Y )) ⊂{u+ dt : t ∈ R+} for some u�d ∈RI
+.

Any contract satisfying Definition 6.1 prescribes team-based compensation in the sense
that all payment profiles (w1(y)� � � � �wI(y)), y ∈ Y , lie on a one-dimensional path in RI

+
and wi(y) >wi(y ′) implies wj(y) ≥wj(y ′) for all i, j, y , y ′. Thus, the agents’ compensation
covaries positively, but not necessarily linearly.

THEOREM 6.1: If a contract w fails to align the agents’ interests in utilities, then V (w) ≤
V (0). If, in addition, w is budget balanced, then there exists a budget-balanced contract w′

that aligns the agents’ interests in utilities such that S(w) ≤ S(w′).

Theorem 6.1 generalizes Theorem 3.1 to show the necessity of interest alignment for
risk-averse agents. (A minor difference is that now, in the budget-balanced case, we only
have the existence of some interest-aligned contract w′ that improves on w.) The proof is
essentially the same after we change variables by defining w̃i(y) := ûi(wi(y)) so that the
principal’s payoff is v(y) − ∑

i û
−1
i (w̃i(y)). Then w aligns the agents’ interests in utilities

if and only if w̃ satisfies Definition 3.1. Lemma 3.5 applies to w̃ verbatim as its proof
makes no reference to the cost of the contract to the principal. The adjustment required
to Lemma 3.4 is handled in the Appendix.

With interests aligned in the utility space, the properties of payments depend on the
utility functions. For example, collinearity can be recovered for particular CRRA prefer-
ences.

LEMMA 6.1: Suppose the agents’ preferences over money are represented by symmetric
power utility functions (i.e., ûi(x) = xρ for some ρ ∈ (0�1] independent of i). Let w be a
contract that is anchored at the origin. Then w aligns the agents’ interests in utilities if and
only if it aligns the agents’ interests in the sense of Definition 3.1.

The proof is immediate from the properties of the power utility, and hence omitted.
Any budget balanced contract is necessarily anchored at the origin, and so is any

principal-optimal contract. Thus, with symmetric power utility functions, optimal con-
tracts have the agents’ compensation covarying positively and linearly as in the risk-
neutral case.

7. CONCLUDING REMARKS

We have shown that demanding team incentives to be robust to nonquantifiable uncer-
tainty about the game played by the agents leads to contracts that align the agents’ in-
terests. Under budget balance such contracts are equivalent to linear contracts, implying
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that a linear scheme has the best surplus guarantee for a budget balanced team. A linear
contract was also shown to have the best profit guarantee to an outside residual claimant.
These optimal linear contracts still suffer from the free-rider problem, but if the known
technology is sufficiently productive, a positive guarantee remains.

Aligning the agents’ interests not only limits a contract’s downside, it may also increase
its upside as it motivates the agents to take advantage of unexpected opportunities to
help and to allocate tasks efficiently. This upside is lost on our worst-case analysis. (See
Itoh (1991) and Garicano and Santos (2004) for incentives to help and to refer clients
in Bayesian models.) Note that if the opportunities are not unexpected (i.e., if they are
part of the known technology), then they do affect our analysis: withholding help or not
referring a task to a better agent are examples of the kind of negative actions that drive
the worst case.

Finally, considering the worst case over all games consistent with the known technology
is a strong assumption, which facilitates tractable analysis and yields sharp predictions
about optimal contracts. Robustness is, however, only one of many considerations affect-
ing contract design, and contracts observed in practice reflect it to varying degrees. A nat-
ural way to try to incorporate this into the analysis would be to restrict the set of games
deemed possible, with smaller sets resulting in less limitations on contract form. Identify-
ing subsets of games for which the analysis remains tractable is a nontrivial problem left
for future work.

APPENDIX

A.1. Proofs for Section 3

PROOF OF LEMMA 3.1: Suppose in negation of (i) that there exist agents i, j and distri-
butions F�G ∈ �(Y ) such that EF [wi(y)] > EG[wi(y)] and EF [wj(y)] < EG[wj(y)]. Then
co(wi�j(Y )) = {EF [(wi(y)�wj(y))] : F ∈ �(Y )} is not contained in a ray in R2

+, and hence
neither is wi�j(Y ) in negation of (ii). Thus, (ii) implies (i). Conversely, if (ii) fails, then
co(wi�j(Y )) is not contained in a ray in R2

+ and we can find F�G ∈ �(Y ) such that
EF [wi(y)] > EG[wi(y)] and EF [wj(y)] < EG[wj(y)] in negation of (i). Thus, (i) implies
(ii).

Suppose w satisfies (iii). Then w(Y ) is contained in a ray in RI
+, the projection of which

to agents i and j’s payments is a ray in R2
+, which contains wi�j(Y ). Thus, (iii) implies

(ii). Conversely, suppose w satisfies (ii). If w is constant, then it clearly satisfies (iii), so
suppose wi is not constant for some agent i. By (ii), we can write wj = αjwi +βj for some
αj ≥ 0 and βj ∈ R for all j. Then w(y) = (α1wi(y) +β1� � � � �wi(y)� � � � �αIwi(y) +βI), so
every w(y) clearly lies on the same ray in RI

+, which is (iii).
The equivalence of (iii) and (iv) is immediate as Y is finite. Q.E.D.

PROOF OF LEMMA 3.3: Suppose w is a budget balanced contract that fails to align the
agents’ interests. By budget balance, we have Y ∗ ⊆ arg maxy∈Y v(y). The condition in
Lemma 3.3 then implies that for all a ∈ A0, suppF (a) ⊆ Y ∗ ⊆ arg maxy∈Y v(y) implies
c(a) �= 0. Thus, Lemma 3.5 applies, which gives S(w) ≤ 0. Q.E.D.

PROOF OF LEMMA 3.4: Part (i): Fix a∗ ∈ A0 as in the lemma. Consider a technology
A′ ⊇ A0 such that A′

i = A0
i ∪ {a′

i} with ci(a′
i) = 0 and F (a′

i� a−i) = F (a∗) for all i and all
a−i ∈ A′

−i. Then each agent can ensure his highest feasible payoff maxwi(Y ) by playing
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a′
i. This implies that any equilibrium σ ∈ E (w�A′) can assign positive probability only to

a such that c(a) = 0 and suppF (a) ⊆ Y ∗. Hence,

V
(
w�A′) ≤ max

a∈A′:c(a)=0 and suppF (a)⊆Y ∗ EF (a)

[
v(y) −

∑
i

wi(y)
]

= max
a∈A0:c(a)=0 and suppF (a)⊆Y ∗

EF (a)

[
v(y) −

∑
i

wi(y)
]

< max
a∈A0:c(a)=0 and suppF (a)⊆Y ∗

EF (a)

[
v(y)

]
≤ V (0)� (A.1)

Above, the second line follows from the first one, since the set of distributions associ-
ated with zero-cost profiles is the same in A′ and A0; the strict inequality follows, since
wi(y) > 0 for all y ∈ Y ∗ for some agent i because w is different from the zero contract;
the last inequality follows since every a ∈ A0 with c(a) = 0 is an equilibrium under the
zero contract given any A ⊇A0. Thus, V (w) ≤ V (w�A′) < V (0).

Part (ii): Consider the third line in (A.1). If a ∈A0 has costly production, then c(a) = 0
implies EF (a)[v(y)] = 0. If it has full support, then suppF (a) ⊆ Y ∗ implies F (a) = δy0 ,
since Y ∗ � Y whenever w fails to align the agents’ interests. Thus, EF (a)[v(y)] = 0 for all
feasible a, and so the maximum is zero. Thus, V (w) ≤ V (w�A′) < 0.

Part (iii): Suppose that w is budget balanced so that
∑

i wi(y) = v(y) for all y .
Then Y ∗ ⊆ arg maxy∈Y

∑
i wi(y) = arg maxy∈Y v(y). Thus, suppF (a∗) ⊆ arg maxy∈Y v(y).

We claim that a∗ ∈ E (w′�A) for any budget-balanced contract w′ that aligns the agents’
interests and any technology A ⊇ A0. Indeed, w′

i is of the form w′
i(y) = αiv(y) for some

αi ≥ 0 by Lemma 3.2. So a∗ gives all agents their highest feasible payoff under w′ as it
maximizes v(y) at zero cost. Hence, a∗ is an equilibrium. Because A was arbitrary, this
implies that S(w′) ≥ EF (a∗)[v(y)] = maxv(Y ) ≥ S(w).

Part (iv): Suppose w is budget balanced so that Y ∗ ⊆ arg maxy∈Y v(y) � Y . If a∗ has
costly production, then suppF (a∗) ⊆ Y ∗ = arg maxy∈Y v(y) implies c(a∗) �= 0, which con-
tradicts c(a∗) = 0. If a∗ has full support, then suppF (a∗) ⊆ Y ∗ � Y implies F (a∗) = δy0 ,
which contradicts suppF (a∗) ⊆ Y ∗ ⊆ arg maxy∈Y v(y). Q.E.D.

PROOF OF LEMMA 3.6: Consider condition (3.1). Take any z1� � � � � zI in W such that
zi
i = maxwi(Y ) for all i. Let a ∈ A0. If suppF (a) � Y ∗, then

∑
i z

i
i = ∑

i maxwi(Y ) >∑
iEF (a)[wi(y)], and hence the inequality in (3.1) holds at a as costs are nonnegative. If

suppF (a) ⊆ Y ∗ so that
∑

i z
i
i = ∑

i maxwi(Y ) = ∑
iEF (a)[wi(y)], then the assumption in

Lemma 3.5 implies that we have
∑

i ci(ai) > 0, and thus the inequality in (3.1) again holds
at a. Therefore, (3.1) is satisfied. Moreover, by finiteness of A0, we can fix η> 0 such that
(3.1) is satisfied by any collection of points z1� � � � � zI such that zi

i ≥ maxwi(Y ) − η for
all i.

We will choose zi ∈W for all i > 2 as follows. Fix yi ∈ arg maxy∈Y wi(y) and write H for
the uniform distribution on Y . Let Gi := (1 − θ)δyi + θH, and let zi := EGi

[w(y)], where
θ > 0 is common for all i > 2 and small enough so that zi

i ≥ maxwi(Y ) − η. This choice
satisfies (3.3) as each zi is perturbed by the same amount of uniform noise.

It remains to fix z1 and z2. Suppose first that arg maxy∈Y w1(y) ∩ arg maxy∈Y w2(y) = ∅.
Let zj = w(y) for some y ∈ arg maxy∈Y wj(y) for j = 1�2. Then z

j
j = maxwj(Y ) > zi

j for



ROBUST INCENTIVES FOR TEAMS 1607

all i �= j, where the inequality for i > 2 follows because such zi is generated by Gi with full
support and wj is not constant. Thus, (3.2) holds. Moreover, we have zi

i ≥ maxwi(Y ) −η
for all i, which implies (3.1), proving the lemma for this case.

Consider then the remaining case where arg maxy∈Y w1(y) ∩ arg maxy∈Y w2(y) contains
some output ȳ . Then the projection of W to the payments to agents 1 and 2, or W1�2, is a
convex set with a nonempty interior relative to R2

+. (Otherwise it would be a nondecreas-
ing line segment, which would align the interests of agents 1 and 2.) This implies that we
can find points z1 and z2 in W , arbitrarily close to w(ȳ), such that zj

j > zi
j for i� j ∈ {1�2},

i �= j.13 Choosing z1 and z2 sufficiently close to w(ȳ) ensures that we also have z
j
j > zi

j for
i > 2, because wj(ȳ) = maxwj(Y ) > zi

j for j ∈ {1�2} and i /∈ {1�2} as each zi is generated
by a full support distribution. This establishes (3.2). Moreover, for z1 and z2 close enough
to w(ȳ) we also have zi

i ≥ maxwi(Y ) −η for all i, which in turn implies (3.1). Q.E.D.

PROOF OF LEMMA 3.7: Part (i): Fix a mixed strategy profile σ with suppσ ⊆ A0. By
(3.4), any agent i who deviates to a∗

i gets ui(a∗
i � σ−i;w�A) = zi

i − ci(a∗
i ) = zi

i . Summing
over i gives

∑
i

ui

(
a∗
i � σ−i;w�A

) =
∑
i

zi
i >

∑
a∈A0

σ (a)
∑
i

EF (a)

[
wi(y) − ci(ai)

] =
∑
i

ui(σ;w�A)�

where the inequality is by (3.1). Therefore, ui(a∗
i � σ−i;w�A) > ui(σ;w�A) for some

agent i.
Part (ii): Fix agent i, a0

i ∈ A0, and a−i ∈ A∗
−i \ A0

−i. Let j be the lowest index among
agents −i for which aj /∈ A0

j . If i > j, then (3.4) implies that i can affect the expected
payments only if i = 2, and hence

ui

(
a∗
i � a−i;w�A

) − ui

(
a0
i � a−i;w�A

) = 1{i=2}

(
x∗

2 − z1
2

) + ci
(
a0
i

) ≥ 0� (A.2)

where x∗
2 − z1

2 = 1
2 (z2

2 − z1
2) > 0 by (3.2). On the other hand, if i < j �= 2, then (3.4) implies

ui

(
a∗
i � a−i;w�A

) − ui

(
a0
i � a−i;w�A

) = zi
i − z

j
i + ci

(
a0
i

) ≥ 0� (A.3)

where zi
i − z

j
i ≥ 0 by (3.2) or (3.3). Finally, if i < j = 2, then i = 1 and (3.4) implies

u1(a∗
1� a−1;w�A) − u1(a0

1� a−1;w�A) = x∗
1 − z2

1 + c1(a0
1) > 0, where x∗

1 − z2
1 > 0 by (3.2).

Part (iii): Inspecting the proof of part (ii), the inequality in (A.2) is strict if i = 2. Simi-
larly, the inequality in (A.3) is strict for i ∈{1�2} by (3.2). Q.E.D.

PROOF OF LEMMA 3.8: Let σ ∈ E (w�A) where A ⊇ A∗ satisfies (3.5). We will write
ui(a) := ui(a;w�A) to simplify notation. We show first that σi(A0

i ) = 0 for some agent
i. Suppose not. Let σ̂i(ai) := σi(ai)/σi(A0

i ) for all ai ∈ A0
i , all i. Then σ̂ is a mixed strat-

egy profile with supp σ̂ ⊆ A0. By Lemma 3.7(i), there exists an agent i and an action
a0
i ∈ supp σ̂i ⊆ suppσi such that ui(a∗

i � σ̂−i) > ui(a0
i � σ̂−i). Moreover, Lemma 3.7 and (3.5)

13Choose 2-vectors (z1
1� z

1
2) and (z2

1� z
2
2) in int(W1�2) ⊂ R2

+ with the desired properties, and then choose any
I-vectors z1 and z2 in W ⊂RI

+ whose projections in W1�2 are (z1
1� z

1
2) and (z2

1� z
2
2), respectively.
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imply ui(a∗
i � a−i) ≥ ui(a0

i � a−i) for all a−i ∈ A−i \A0
−i. We thus have

ui

(
a∗
i � σ−i

) =
∏
j �=i

σj

(
A0

j

) ∑
a−i∈A0−i

σ̂−i(a−i)u
(
a∗
i � a−i

) +
∑

a−i /∈A0−i

σ−i(a−i)ui

(
a∗
i � a−i

)

>
∏
j �=i

σj

(
A0

j

) ∑
a−i∈A0−i

σ̂−i(a−i)u
(
a0
i � a−i

) +
∑

a−i /∈A0−i

σ−i(a−i)ui

(
a0
i � a−i

)

= ui

(
a0
i � σ−i

)
�

which contradicts a0
i ∈ suppσi.

If I = 2, then we are done. So suppose I > 2 and assume towards contradiction that
σ1(A0

1)σ2(A0
2) > 0. Consider agent 1. As argued above, we have σi(A0

i ) = 0 for some i > 2,
and thus suppσ−1 ⊆A−1 \A0

−1. Therefore, u1(a∗
1� a−1;w�A)−u1(a0

1� a−1;w�A) ≥ 0 for all
a0

1 ∈ A0
1 and all a−1 ∈ suppσ−1 by (3.5) and Lemma 3.7(ii). Furthermore, if a2 ∈ A0

2, then
the inequality is strict as then u1(a∗

1� a−1;w�A) −u1(a0
1� a−1;w�A) = z1

1 − z
j
1 + c1(a0

1) > 0,
where j = min{i > 2 : ai = a∗

i} and z1
1 > z

j
1 by (3.2). Because σ2(A0

2) > 0, this implies that
a∗

1 is a strictly better response than any a0
1 ∈ A0

1, contradicting σ1(A0
1) > 0. Q.E.D.

A.2. Proofs for Section 4

PROOF OF THEOREM 4.1: Parts (ii)–(iv) are proven in the main text. For part (i), iden-
tify the space of budget balanced linear contracts with the set B :={α ∈ [0�1]I : ∑i αi = 1},
and write S(α) for the surplus guarantee of contract α. By Theorem 3.1 and Lemma 3.2,
it suffices to show that S(α) is an upper semicontinuous function of α on the compact set
B. Fix a sequence (αn) in B converging to some α ∈ B. (Since B is finite dimensional, any
norm will do.) We need to show that S(α) ≥ lim supn S(αn). By moving to a subsequence
if necessary, we can assume that S(αn) converges to lim supn S(αn). Fix any technology
A ⊇ A0 and denote by σn the equilibrium of �(αn�A) that achieves S(αn�A). Extracting
a further subsequence if necessary, we can assume that the sequence (σn) converges to
some σ ∈ �(A). Since the agents’ payoffs are continuous in α, the profile σ is an equi-
librium of �(α�A) by the upper hemicontinuity of the Nash equilibrium correspondence.
We thus have

S(α�A) ≥ EF (σ)

[
v(y)

] −
∑
a

σ (a)
∑
i

ci(a)

= lim
n

(
EF (σn)

[
v(y)

] −
∑
a

σn(a)
∑
i

ci(a)
)

= lim
n
S
(
αn�A

) ≥ lim
n
S
(
αn

)
�

Since A ⊇A0 was arbitrary, this implies S(α) ≥ limn S(αn) as desired. Q.E.D.

PROOF OF LEMMA 4.3: Fix a budget balanced linear contract w and a distribution G ∈
�(Y ) such that EG[v(y)] >U0(w). Let O := {i : αi > 0} and N := {i : αi = 0} so that O is
the set of “owners” and N the set of “nonowners.” By budget balance, 0 ≤|N|< I.

Construct a technology A ⊇ A0 as follows. Let Ai := A0
i ∪ {a′

i} with ci(a′
i) = 0 for all

i ∈ O, and let Ai := A0
i for all i ∈ N . Let F (a) = G for all a ∈ A such that aO = a′

O . We
will complete the construction of A so that in every equilibrium σ , the owners play a′

O

and the nonowners play (possibly mixed) zero-cost actions. Then F (σ) = G as desired.
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We define the outcome distributions for the remaining action profiles as follows. Let
0 < ε|N|+1 < ε|N|+2 < · · · < εI := EG[v(y)] −U0(w), to be used to provide strict incentives.
We assume that each εk is small enough to satisfy the finitely many restrictions imposed
on it by (A.5) below. Fix any a ∈ A \ A0. Let J := {i ∈ O : ai = a′

i} ∪ N . Then |J| > |N|
because at least one owner i plays a′

i in all the profiles in A \A0. Let

E(a) := max
âJ∈A0

J

(
EF (âJ �a−J )

[
v(y)

] −
∑
j∈J

cj(âj)
αj

)
� (A.4)

Note that E(a) depends only on the profile a−J (i.e., on the actions of the agents in O \J),
and it is nonnegative and well-defined even if N �= ∅ as the maximum selects zero-cost
actions for all j ∈ N . We define the output distribution for a to be some F (a) ∈ �(Y )
such that

EF (a)

[
v(y)

] =
{
E(a) + ε|J| if E(a) < maxv(Y )�
E(a) if E(a) = maxv(Y )�

(A.5)

where the second case is a nuisance that has to be accounted for as v(y) is bounded. (Note
that in the first case, feasibility requires ε|J| ≤ maxv(Y )−E(a); letting a range over A\A0

then defines at most finitely many inequalities involving ε|J| as we commented above.)
We verify that this construction is consistent with us already having defined F (a) = G

for all a ∈ A with aO = a′
O . Suppose |J|= I so that the profile a above has aO = a′

O . Then
(A.4) gives E(a) = U0(w) < EG[v(y)] ≤ maxv(Y ). Thus, by (A.5) the distribution F (a)
satisfies EF (a)[v(y)] = E(a) + εI = U0(w) + εI = EG[v(y)] by definition of εI .

LEMMA A.1: Suppose a ∈ A is such that cj(aj) = 0 for all j ∈N . Then ui(a′
i� a−i) ≥ ui(a)

for all i ∈ O. Moreover, if aO �= a′
O , then the inequality is strict for some i ∈O.

PROOF: Consider agent i ∈ O. Suppose first that a ∈ A0 and cj(aj) = 0 for all j ∈ N .
Then

ui(a) = αi

(
EF (a)

[
v(y)

] − ci(ai)
αi

−
∑
j∈N

cj(aj)
αj

)

≤ αi min
{
E

(
a′
i� a−i

) + ε|N|+1�maxv(Y )
}

= αiEF (a′
i�a−i)

[
v(y)

] = ui

(
a′
i� a−i

)
� (A.6)

where the first equality follows as cj(aj) = 0 for all j ∈ N , the inequality uses (A.4) with
J = N ∪{i}, and the penultimate equality is by (A.5). To see that the inequality is strict for
some i ∈ O, note that if equality holds in (A.6), then the minimum must select the second
case as ε|N|+1 > 0, which implies that EF (a)[v(y)] = maxv(Y ) and ci(ai) = 0. Therefore, if
this holds for all i ∈ O, then the profile a ∈ A0 yields maxv(Y ) at zero cost, implying that
U0(w) = maxv(Y ), which contradicts EG[v(y)] >U0(w).

Assume then that a ∈ A \ A0, with cj(aj) = 0 for all j ∈ N . If ai = a′
i, then the claim is

true trivially, so suppose there is an agent i ∈ O with ai ∈ A0
i . Then i /∈ J and (A.5) gives

ui(a) = αi

(
EF (a)

[
v(y)

] − ci(ai)
αi

)
= αi

(
min

{
E(a) + ε|J|�maxv(Y )

} − ci(ai)
αi

)
� (A.7)
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Suppose first that the minimum in (A.7) is attained only by the first case. Then (A.4)
implies that the far right-hand side of (A.7) equals

αi

(
max
âJ∈A0

J

(
EF (âJ �a−J )

[
v(y)

] −
∑
j∈J

cj(âj)
αj

)
+ ε|J| − ci(ai)

αi

)

<αi min
{

max
âJ∪{i}∈A0

J∪{i}

(
EF (âJ∪{i}�a−J∪{i})

[
v(y)

] −
∑

j∈J∪{i}

cj(âj)
αj

)
+ ε|J∪{i}|�maxv(Y )

}

= αi min
{
E

(
a′
i� a−i

) + ε|J∪{i}|�maxv(Y )
}

= αiEF (a′
i�a−i)

[
v(y)

]
= ui

(
a′
i� a−i

)
� (A.8)

where the inequality is strict because ε|J| < ε|J∪{i}|, the equality that follows it is by (A.4),
and the penultimate equality is by (A.5). Thus, ui(a) < ui(a′

i� a−i).
If instead the minimum in (A.7) is attained by the second case, then E(a) = maxv(Y )

by (A.5), and (A.4) implies that the far right-hand side of (A.7) equals

αi

(
maxv(Y ) − ci(ai)

αi

)
= αi

(
max
âJ∈A0

J

(
EF (âJ �a−J )

[
v(y)

] −
∑
j∈J

cj(âj)
αj

)
− ci(ai)

αi

)

≤ αi max
âJ∪{i}∈A0

J∪{i}

(
EF (âJ∪{i}�a−J∪{i})

[
v(y)

] −
∑

j∈J∪{i}

cj(âj)
αj

)

≤ αi min
{
E

(
a′
i� a−i

) + ε|J∪{i}|�maxv(Y )
}

= αiEF (a′
i�a−i)

[
v(y)

]
= ui

(
a′
i� a−i

)
� (A.9)

where the second inequality uses (A.4), and the penultimate equality is by (A.5). There-
fore, ui(a) ≤ ui(a′

i� a−i).
It remains to show that the inequality is strict for some i ∈ O if aO �= a′

O . Because (A.8)
contains a strict inequality, agent i ∈ O with ai �= a′

i can be indifferent between ai and a′
i

only if (A.9) holds as a chain of equalities. Suppose this is the case. Because ε|J∪{i}| > 0,
then the minimum on the third line in (A.9) must select the second case, which together
with the left-hand side of (A.9) implies that ci(ai) = 0. Therefore, if aO �= a′

O and every
agent i ∈O is indifferent between ai and a′

i, then ci(ai) = 0 for all i /∈ J. Furthermore, the
case covered by (A.9) only arises if E(a) = maxv(Y ), and thus (A.4) implies that we have

maxv(Y ) = max
âJ∈A0

J

(
EF (âJ �a−J )

[
v(y)

] −
∑
j∈J

cj(âj)
αj

)

= max
âJ∈A0

J

(
EF (âJ �a−J )

[
v(y)

] −
∑
j∈J

cj(âj)
αj

−
∑
i/∈J

ci(ai)
αi

)
≤ U0(w) < EG

[
v(y)

]
�

where the second equality follows because ci(ai) = 0 for all i /∈ J, and the weak inequality
is by definition of U0(w). Thus, EG[v(y)] > maxv(Y ), a contradiction. Q.E.D.
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To complete the proof of Lemma 4.3, note that all agents in N can clearly only play zero-
cost actions with positive probability in any equilibrium because their shares are zero.
Consider any mixed strategy profile σ where this is true. Suppose σj(a′

j) < 1 for some
agent j ∈ O. Then some profile a ∈ A with aO �= a′

O is realized with positive probability
under σ . By Lemma A.1, there exists an agent i ∈ O (who could be agent j) for whom a′

i

is a strictly better response to a−i than ai. Moreover, Lemma A.1 also shows that a′
i is a

weakly better response than any a0
i ∈ A0

i against all ã−i ∈ A−i such that ck(ãk) = 0 for all
k ∈ N . Therefore, playing a′

i with probability 1 is a profitable deviation from σi for agent
i, and thus σ is not an equilibrium. We conclude that all σ ∈ E (w�A) have σi(a′

i) = 1 for
all i ∈ O. Q.E.D.

A.3. Proofs for Section 5

PROOF OF LEMMA 5.1: That V (w) is not less than the minimum is shown in the main
text.

To prove the converse, note that the feasible set in (5.2) is compact, so the minimum is
achieved at some G∗. Let π := EG∗[v(y)−w̄(y)]. We show below that Ū0(w) < max w̄(Y ).
Thus, we can approximate G∗ with a sequence (Gn) such that EGn[w̄(y)] > Ū0(w) and
EGn[v(y) − w̄(y)] → π as the objective is continuous in G.14 Interpreting w as a budget
balanced linear contract in a model where v(y) = w̄(y), Lemma 4.3 implies that for each
Gn there exists a technology An ⊇ A0 for which Gn is the unique equilibrium output
distribution. Hence, V (w) ≤ V (w�An) = EGn[v(y) − w̄(y)] → π as desired.

To show that Ū0(w) < max w̄(Y ), suppose to the contrary that Ū0(w) = max w̄(Y ). The
definition of Ū0(w) then implies that there exists a profile a ∈ A0 such that c(a) = 0 and
suppF (a) ⊆ arg maxy∈Y w̄(y) = Y ∗, where the equality holds because w aligns the agents’
interests. Thus, V (w) < V (0) by Lemma 3.4(i), contradicting the eligibility of w.

It remains to show that any minimizer satisfies the constraint with equality. Let G∗

be a minimizer. Because w is eligible, we have V (w) = EG∗[v(y) − w̄(y)] > 0. Observe
that if EG∗[w̄(y)] > Ū0(w), then the mixture G := (1 − ε)G∗ + εδy0 is feasible for any
ε > 0 small enough. But v(y0) − w̄(y0) = −w̄(y0) ≤ 0, which in turns implies that we have
EG[v(y) − w̄(y)] ≤ (1 − ε)V (w) < V (w), which contradicts G∗ being a minimizer. We
conclude that EG∗[w̄(y)] = Ū0(w). Q.E.D.

PROOF OF LEMMA 5.4: We adapt the proof of Lemma 3 in Carroll (2015) to the
present setting. Let B := co({(w̄(y)� v(y) − w̄(y)) : y ∈ Y}) and C := {(u�v) : u >
Ū0(w) and v < V (w)}. Then B and C are disjoint subsets of R2 by Lemma 5.1. Thus, by
the separating hyperplane theorem, there exist numbers κ, λ, and μ, with (λ�μ) �= (0�0),
such that

κ+ λu−μv ≤ 0 for all (u�v) ∈ B� (A.10)

κ+ λu−μv ≥ 0 for all (u�v) ∈ C� (A.11)

Furthermore, letting G∗ be some distribution that achieves the minimum in (5.2), the
point (EG∗[w̄(y)]�EG∗[v(y) − w̄(y)]) lies in the closure of both B and C, and we thus have

κ+ λEG∗
[
w̄(y)

] −μEG∗
[
v(y) − w̄(y)

] = 0� (A.12)

14For example, take Gn to be the mixture (1 − 1
n

)G∗ + 1
n
δȳ for some ȳ ∈ arg maxy∈Y w̄(y).
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We will show that λ > 0 and μ > 0. Inequality (A.11) implies that λ ≥ 0 and μ ≥ 0, so it
suffices to show that these inequalities are strict.

Suppose toward contradiction that μ = 0. Then λ > 0, and inequalities (A.10) and
(A.11) imply maxy∈Y w̄(y) ≤ −κ/λ ≤ Ū0(w). Thus, Ū0(w) = max w̄(Y ). But in the proof
of Lemma 5.1 above it is shown that this contradicts the eligibility of w. On the other hand,
if λ= 0, then μ> 0, and (A.10) and (A.11) imply miny∈Y (v(y)−w̄(y)) ≥ κ/μ≥ V (w). But
miny∈Y (v(y) − w̄(y)) ≤ (v(y0) − w̄(y0)) ≤ 0, so V (w) ≤ 0, contradicting eligibility of w.

Now rescale (κ�λ�μ) so that μ = 1. Then (A.10) and (A.12) imply (5.4) and (5.5).
Q.E.D.

A.4. Proof for Section 6

PROOF OF THEOREM 6.1: Fix a contract w : Y → RI
+ that fails to align the agents’ in-

terests in utilities. Then the contract w̃ := (û1 ◦ w1� � � � � ûI ◦ wI) : Y → RI
+ fails to align

the agents’ interests in the equivalent model with risk-neutral agents where the princi-
pal’s payoff is given by v(y) − ∑

i û
−1
i (w̃i(y)). Furthermore, because each function ûi is

increasing, we have Y ∗ := ∩i arg maxy∈Y w̃i(y) = ∩i arg maxy∈Y wi(y).
Suppose first that for all a ∈ A0, suppF (a) ⊆ Y ∗ implies c(a) �= 0. Applying Lemma 3.5

to w̃ gives a sequence of technologies An ⊇ A0 with unique equilibrium output distri-
butions Fn → δy0 . Thus, V (w̃) ≤ EFn[v(y) − ∑

i û
−1
i (w̃i(y))] ≤ EFn[v(y)] → 0. Moreover,

if w is budget balanced, then limited liability implies wi(y0) = 0 for all i. We thus have
S(w̃) ≤ EFn[

∑
i w̃i(y)] = EFn[

∑
i ûi(wi(y))] → ∑

i ûi(wi(y0)) = 0. That is, this case is cov-
ered by Lemma 3.5 just like in the risk-neutral case.

For the rest of the proof, suppose there exists a∗ ∈ A0 such that suppF (a∗) ⊆ Y ∗ and
c(a∗) = 0. Then Lemma 3.4(i) applies to w̃ verbatim because, by inspection, the cost of
payments to the principal only appears in the proof in display (A.1), which clearly still
holds when the principal’s payoff is v(y) − ∑

i û
−1
i (w̃i(y)). Thus, V (w̃) ≤ V (0).

It remains to handle the case where w is budget balanced. Denote by (ū1� � � � � ūI) the
maximum payment-utility levels under contract w, that is, ūi := ûi(wi(y)) for all y ∈ Y ∗.
Define a budget balanced contract w′ as follows. Let y ∈ Y . Take λ ∈ [0�1] such that∑

i

û−1
i (λūi) = v(y) ∈ [0�maxv(Y )]�

To see that this is feasible, note that the left-hand side equals 0 when λ = 0 as each ui is
an increasing function with ui(0) = 0. On the other hand, when λ = 1 the left-hand side
equals

∑
i û

−1
i (ūi) = ∑

i maxwi(Y ) = maxv(Y ) by definition of ūi and budget balance,
which implies that Y ∗ = arg maxy v(y) whenever the former is nonempty. Thus, equality
holds for some λ ∈ [0�1] by the intermediate value theorem. Now define w′(y) by letting
w′

i(y) = û−1
i (λūi) for all i. The contract w′ so defined is budget balanced by construction.

It also aligns the agents’ interests in utilities as for each y ∈ Y , we have ûi(w′
i(y)) = λūi

for all i for some constant λ ∈ [0�1] that is independent of i.
To finish the proof, we observe that a∗ ∈ E (w′�A) for all A ⊇A0, because under a∗ the

output is sure to be in Y ∗ and c(a∗) = 0, giving each agent i the maximal feasible payoff
of ūi. Thus, S(w′) = ∑

i ūi ≥ S(w). Q.E.D.
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