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We develop a theory of how the value of an agent’s information advantage depends
on the persistence of information. We focus on strategic situations with strict conflict
of interest, formalized as stochastic zero-sum games where only one of the players ob-
serves the state that evolves according to a Markov operator. Operator Q is said to
be better for the informed player than operator P if the value of the game under Q is
higher than under P regardless of the stage game. We show that this defines a convex
partial order on the space of ergodic Markov operators. Our main result is a full charac-
terization of this partial order, intepretable as an ordinal notion of persistence relevant
for games. The analysis relies on a novel characterization of the value of a stochastic
game with incomplete information.

KEYWORDS: Dynamic games, incomplete information, Markov chains.

1. INTRODUCTION

IN MANY STRATEGIC SETTINGS, an agent has to decide how to make use of an information
advantage, trading off short-term benefits from the use of the information against the
cost of revealing some of it through his actions. Examples of such situations range from
insider trading to international conflicts. In more formal terms, the problem is embedded
in dynamic game-theoretic models where players have private information about the state
of the world. The optimal use of information then depends on how likely, and for how
long, the information is expected to remain relevant in the future. For instance, if the state
is distributed independently across the periods of interaction, then revealing information
about its current value is costless, which contrasts with the decidedly more careful calculus
by Aumann and Maschler (1995) for the case where the state remains fixed forever.

Motivated by this observation, we develop a theory of how the value of an agent’s in-
formation advantage depends on the persistence of information. Following Aumann and
Maschler (1995), we focus on strategic situations with strict conflict of interest, formalized
as zero-sum games, as for such games the value provides an unambiguous, single-valued
solution concept that facilitates comparison of information structures. However, as we
discuss below, the notion of persistence that emerges from our analysis also characterizes
the comparative statics of the (limit) equilibrium-payoff set in a class of repeated Bayesian
non-zero-sum games studied by Athey and Bagwell (2008), Escobar and Toikka (2013),
and Hörner, Takahashi, and Vieille (2015), among others.

Specifically, we consider discounted stochastic zero-sum games where only the maxi-
mizer observes the current state of a Markov chain that is governed by a transition matrix,
or operator, P . In every period, the players are engaged in the same zero-sum stage game
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1922 M. PĘSKI AND J. TOIKKA

g, where payoffs depend on the state observed by the maximizer. The minimizer’s only in-
formation about the state is given by the maximizer’s past actions and his understanding
of the data generating process.

As a discounted zero-sum game, the above game has a value; we focus on the limit
value as the discount factor converges to 1. This is crucial for tractability. It also makes
our results directly comparable to those in the literature. Importantly, the trade-off be-
tween short-term gains and future losses from the use of information—absent in Aumann
and Maschler’s analysis of undiscounted games with a permanent state—remains relevant
even in the limit if the state is ergodic.

Our first result, Theorem 1, shows that the (limit) value of the game can be computed
from an auxiliary one-shot problem where the maximizer can choose the information
structure subject to it being stable under operator P in a certain sense. Theorem 1 yields
Aumann and Maschler’s formula for the permanent state as a special case and comple-
ments the results of Renault (2006) and Neyman (2008), who showed the existence of the
value and optimal strategies for Markov games with one-sided incomplete information.
Our auxiliary problem can be viewed as a dynamic persuasion or information design prob-
lem where a principal commits to an information revelation policy, though in contrast to
Kamenica and Gentzkow (2011), or Ely (2017), here also the principal takes an action.

In order to study the effects of persistence—our main object of interest—we restrict
attention to ergodic operators. Given two such operators P and Q, we say that Q is better
for the maximizer than P if, for every game g, the (limit) value of the stochastic game
under Q is higher than under P . We show that this relation is a partial order on the
space of ergodic operators. Our main result, Theorem 2, characterizes this partial order.
A series of corollaries describes it further.

Theorem 2 suggests interpreting our partial order as an ordinal notion of persistence.
To explain this, we adopt the standard view of an information structure (also known as
an experiment) as a probability distribution over posterior beliefs about the state. In the
game, the minimizer’s information changes from one period to another due to the state
transition described by operator P . If the distribution of his beliefs is ν at the end of the
period, then it is Pν at the beginning of the next one. Intuitively, because the transition is
stochastic, we would expect it to lead to loss of information. If this is true in the precise
sense that ν is more informative than Pν according to the Blackwell ordering, then we say
that ν is stabilizable under P . (Any stationary ν has this property since then the informa-
tion revealed by the maximizer during the period leads from Pν back to ν, and hence ν is
more informative than Pν.)

Now consider two operators, P and Q. If Pν is (Blackwell) more informative than Qν,
then this means that information is more persistent under P than under Q. Theorem
2 shows that Q is better for the maximizer than P if and only if, for all distributions ν
stabilizable under P , Pν is more informative than Qν.

To illustrate, consider the following simple example due to Renault (2006).

EXAMPLE 1: There are two states. The maximizer chooses U or D, the minimizer
chooses L or R. Stage-game payoffs are given in Figure 1, where in each cell the first
entry is the payoff in state 1 and the second the payoff in state 2. The state remains the
same with probability ρ and changes with probability 1 − ρ. The invariant distribution
assigns equal probability to both states (for any 0< ρ< 1).

In Example 1, the maximizer wants to match his action to the state, but doing so reveals
the state to the minimizer. This is harmless if ρ= 1

2 (i.e., if the state is i.i.d.), but comes at
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L R

U 1�0 0�0

D 0�0 0�1

FIGURE 1.—Stage-game payoffs for Example 1.

a cost if ρ > 1
2 as then the minimizer knows that the state is likely to remain the same. In

particular, Hörner, Rosenberg, Solan, and Vieille (2010) showed that the (limit) value of
the game is ρ

4ρ−1 for ρ ∈ [ 1
2 �

2
3 ], and Aumann and Maschler (1995) showed that it equals 1

4

for ρ= 1 (given a symmetric prior).1
It follows from our results that the value of the game in Example 1, albeit still elusive,

is nevertheless monotone decreasing in ρ on [ 1
2 �1). And this is true for any stage game,

not just for the one depicted in Figure 1. More generally, in the special case of two states,
whether one ergodic operator is better for the maximizer than another depends on a
simple comparison of the eigenvalues of the two operators.

The best case for the maximizer in Example 1 is ρ = 1
2 . This finding is general: the

maximal elements of our partial order are operators under which the state is i.i.d. across
periods. The worst case in Example 1 is a permanent state (i.e., ρ= 1). Surprisingly, this is
not a general result. For each ergodic operator, there does exist a game in which the max-
imizer would be worse off if the state was permanent. But for a large class of operators,
there also exist games for which the ranking is reversed. Example 2 in Section 4 illustrates
the idea. As a result, for any ergodic operator P , the permanent state case is either worse
than or incomparable to P .

One can interpret our analysis as pertaining to the (limit) minmax value in re-
peated Bayesian non-zero-sum games with ergodic types. Hörner, Takahashi, and Vieille
(2015) showed that under independent private values and perfect monitoring, the limit
equilibrium-payoff set consists of all incentive-feasible payoffs above the minmax value.
Building on their result, we show in the Supplemental Material (Pęski and Toikka (2017))
that the limit equilibrium-payoff set is decreasing (in the sense of set inclusion) in our
partial order. Heuristically, this follows because players can be punished more effectively
when their types are more predictable. Requiring the comparative static to hold for all
stage games yields the converse that identifies our relation as the appropriate one.

Long-run values of Markov decision problems and repeated zero-sum games were stud-
ied in independent prior work by Renault and Venel (2012, 2017). We comment on the
connection to their results in Section 3.

Anderson and Smith (2013) studied deception using a continuous-time game with a
permanent state. The trade-off between short-term gains and future losses from the use
of information arises in their model because of discounting.

Finally, our analysis is partly inspired by Blackwell’s (1953) comparison of experiments
and its extension to zero-sum games by Gossner and Mertens (2001), Pęski (2008), and
Shmaya (2006). (See Gossner (2000), and Bergemann and Morris (2016) for non-zero-
sum games.) To see the connection, note that the maximizer’s action provides a signal
about the state to the minimizer. Noise is then added to this signal by the state transi-
tion. That is, different operators “garble” the signal to varying degrees. The analogy is
imperfect as the signal here is endogenous, and the operator determines not only the in-

1Bressaud and Quas (2014) extended the range for which the value is known to about ρ ∈ [ 1
2 �0�719].
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formation, but also the payoffs in the next period. Nevertheless, we develop a formal link
between the problems in the ergodic case.

2. MODEL

Throughout this paper, S is the finite state space with at least two elements, and �S
denotes the set of all probability distributions on S. A Markov transition matrix on S is
a non-negative |S| × |S| matrix whose columns sum to 1. As usual, we can view any such
matrix as a (linear) operator P : �S → �S. Operator P is ergodic if it is irreducible and
aperiodic. We say that π ∈ �S is an invariant distribution of P if π = Pπ. If P is ergodic,
its unique invariant distribution is denoted πP .

A zero-sum game on the state space S is a tuple (A�B�g), where A and B are finite
action sets and g :A× B× S→ R is a payoff function extended to �(A× B× S) by ex-
pected utility, as usual. The interpretation is that g(a�b� s) is the payoff of the maximizer
if he plays a, the minimizer plays b, and the state is s. In what follows, we vary the game
(A�B�g), keeping the state space S fixed. To simplify notation, we typically suppress the
action sets and denote a zero-sum game simply by g.

A stochastic zero-sum game with incomplete information is a tuple (δ�π�g�P) con-
sisting of a discount factor δ ∈ [0�1), an initial distribution π ∈ �S, a zero-sum game g,
and an operator P . The game proceeds in discrete time, indexed by t ∈N, as follows. The
initial state s0 is drawn according to π and it transitions between time periods according
to P . In each period t, the maximizer is informed of the state st before choosing an action;
the minimizer never observes the state. The players choose actions simultaneously, with
both observing the realized action profile (at� bt). The maximizer’s payoff is given by the
discounted average (1 − δ)∑t δ

tg(at� bt� st). Payoffs are not observable.2
Because only the maximizer observes the state, we refer to him as the informed player

and to the minimizer as the uninformed player. It turns out that the latter has a my-
opic best-response, so an alternative interpretation is that there is an informed long-run
player facing a sequence of uninformed short-run players who observe their predecessors’
actions, but not their payoffs.

Let vδ(π;g�P) be the value of the stochastic zero-sum game (δ�π�g�P). (Existence
for δ < 1 is standard; see, e.g., Mertens, Sorin, and Zamir (2015).) Renault (2006) showed
that, as discounting vanishes, the value converges to a well-defined limit that in the ergodic
case is independent of the initial distribution.3

LEMMA 0: For every initial distribution π, every game g, and every operator P , the limit
v(π;g�P)= limδ→1 v

δ(π;g�P) exists. Furthermore, if P is ergodic, then the limit is indepen-
dent of π, and we denote it by v(g�P).

In what follows, we focus on the limit value v(π;g�P), henceforth referred to simply
as the value. As is clear from Example 1 in the Introduction, the value depends on the
operator P . Our goal is to describe this relationship. Below, we introduce the notation
and recall some standard definitions needed for this.

We work with the space �2S = �(�S) of Borel probability measures on �S, interpreted
as the space of distributions of beliefs about the state, endowed with the weak topology.

2This assumption has bite only for the minimizer as the maximizer observes the triplet (at� bt� st).
3Renault (2006) considered undiscounted games, but it is well known that limδ→1 v

δ(π;g�P) equals the
limit of values of undiscounted T -period games as T → ∞ (see, e.g., Sorin (2002), Lemma 3.1).
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Given any μ ∈ �2S and operator P , let Eμ= ∫ pdμ(p) ∈ �S denote the expected value
of μ, and let Pμ ∈ �2S denote the distribution for which

∫
f dPμ = ∫ f ◦ P dμ for each

continuous function f : �S→ R.
A mean-preserving spread (or a splitting) is a measurable mapping m : �S → �2S such

that Em(p) = p for each p. Let M be the space of mean-preserving spreads. For any
μ�μ′ ∈ �2S, we say that μ′ is (Blackwell) more informative than μ, or μ ≤B μ′, if there
exists m ∈M such that for each continuous function f : �S→ R,∫

f (p)dμ′(p)=
∫ (∫

f (q)dm(q|p)
)
dμ(p)�

We also write μ′ = μ∗m. That is, if μ′ and μ are distributions of the minimizer’s posterior
beliefs, then his information about the state under μ′ is better than under μ in the sense
of Blackwell (1953). Finally, we recall the following familiar characterization: μ ≤B μ′ if
and only if for each concave function f : �S→ R,

∫
f dμ′ ≤ ∫ f dμ.

3. CHARACTERIZATION OF VALUE

We start by characterizing the value. To sketch the idea, note that the relevant state
variable in the game is the minimizer’s belief about the state. This well-known observa-
tion generalizes the fact that, in a repeated zero-sum game of complete information, it
is impossible to provide intertemporal incentives and the value is just the value of the
stage game. Here, since there is a payoff-relevant state unobservable to the minimizer,
the analogous result is that play is Markov in the minimizer’s belief.

We refer to the minimizer’s belief at the beginning of the period as the prior, reserv-
ing the term posterior for the belief the minimizer forms at the end of the period after
observing the maximizer’s action, but before the state transitions.

Any strategy for the maximizer that is Markov with respect to the minimizer’s prior
induces via Bayes’s rule a mean-preserving spread m : �S → �2S that associates to each
prior p a distribution m(p) over posteriors. The mapping m encapsulates how much in-
formation the maximizer’s actions reveal about the state as a function of the prior. The
key to our characterization is to note that, rather than having the maximizer choose a
strategy, we can think of him first choosing the mapping m determining the information
revelation policy, and then choosing a stage-game strategy subject to it not revealing more
information than m.4

For any information revelation policy m, there are many strategies that reveal no more
information than m. For each prior p, we denote by ĝ(m(p)) the maximizer’s optimal
stage-game payoff among such strategies. Formally, given a game g and a distribution
ν ∈ �2S over posteriors, let

ĝ(ν)= min
β∈�B

∫
max
a∈A

g(a�β�q)dν(q)� (3.1)

As the minimum over terms linear in ν, this defines a concave function ĝ : �2S→ R.

4The idea of decomposing a strategy into revelation of information and an action choice measurable with
respect to this information is central to Aumann and Maschler’s (1995) celebrated cavu theorem. As we explain
below, our characterization is a generalization of that result. Similar ideas have been used elsewhere in the
literature on dynamic games with incomplete information; see, for example, De Meyer (2010) or Gensbittel
(2015). (We are grateful to a referee for these examples.)
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We can interpret ĝ(m(p)) as the value of the following auxiliary game: The common
prior on the state is p. First, the minimizer chooses a mixed strategy β ∈ �B. Then an
exogenous device sends a signal about the state such that the induced distribution of
posteriors is m(p). Finally, the maximizer chooses an action a ∈ A conditional on the
realized posterior q. (The action being measurable with respect to the posterior ensures
that it does not reveal more information than the signal.)

Together, the operator P and an information revelation policym induce a Markov chain
on the minimizer’s prior beliefs: given a distribution of priors μ ∈ �2S, the distribution
of posteriors is μ ∗m, and the distribution of the next period’s priors is P(μ ∗m). The
maximizer’s long-run payoff in the stochastic game is the expectation of ĝ(m(p)) under
an invariant distribution of priors, that is, under some μ with P(μ ∗m)= μ. The (limit)
value is obtained by letting the maximizer choose m and μ subject to μ being invariant
and containing at least as much information about the state as the minimizer would have
if the maximizer did not reveal any information.

The relevant measure of the minimizer’s information in the absence of information
revelation is given by the long-run distribution of his priors, defined as

ψπ�P = lim
δ→1
(1 − δ)

∑
t

δtPteπ ∈ �2S�

where eπ ∈ �2S is a distribution concentrated on π (i.e., a Dirac measure at π). Note that
ψπ�P is the long-run average distribution of beliefs, not the long-run average belief; the
latter (viewed as a Dirac measure) can be less informative than the former.5

We then have the following novel characterization of value.

THEOREM 1: For every initial distribution π, every game g, and every operator P ,

v(π;g�P)= max
(μ�m)∈�2S×M:ψπ�P≤Bμ and P(μ∗m)≤Bμ

∫
ĝ
(
m(p)

)
dμ(p)� (3.2)

Consistent with the heuristic derivation preceding the theorem, the proof in Section 6
shows that the maximum is in fact achieved by some (μ�m) such that P(μ∗m)= μ. How-
ever, allowing for inequality in the sense of Blackwell ordering in the second constraint is
convenient for the purposes of establishing Theorem 2 below.

It is instructive to consider the following special cases. First, let π be an invariant distri-
bution of P . If the maximizer never reveals any information, then the minimizer’s belief
stays constant at π. Thus, in this case, we have ψπ�P = eπ and the constraint eπ ≤B μ is
equivalent to the familiar martingale condition Eμ= π.

Second, suppose the state is permanent. Then P is the identity operator I and the
second constraint becomes μ ∗m ≤B μ. This can hold only if m maps each p to a point
mass at p and hence reveals no information. But the constraint places no restrictions on
μ. As any π is invariant for I, we thus recover Aumann and Maschler’s (1995) formula

v(π;g� I)= max
μ∈�2S:Eμ=π

∫
ĝ(p)dμ(p)= cav ĝ(π)�

5For example, if π = (1�0) and P = (
0 1

1 0
) so that the state alternates, then the minimizer knows the state

in every period. In this case, ψπ�P ∈ �2S assigns equal weight to beliefs (1�0) and (0�1), whereas the average
belief is ( 1

2 �
1
2 ) ∈ �S. Clearly, ψπ�P is strictly more informative than e( 1

2
1
2 )

.
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where, with abuse of notation, ĝ(p)= ĝ(ep) is the value of our auxiliary game given prior
p when no information is revealed (also known as the non-revealing game), and cav ĝ is
the smallest concave function �S→ R greater than ĝ(p) at every p.

Third, let P be ergodic. Then absent information revelation, the minimizer’s beliefs
converge to the invariant distribution πP . Thus, ψπ�P = eπP and the first constraint be-
comes Eμ = πP . This shows that the value is independent of π. Moreover, Eμ = πP is
implied by the second constraint.6 Therefore, we have

v(g�P)= max
(μ�m)∈�2S×M:P(μ∗m)≤Bμ

∫
ĝ
(
m(p)

)
dμ(p)� (3.3)

It is in this form that Theorem 1 is used in the next section.
Finally, in the i.i.d. case, the ergodic formula (3.3) simplifies further. We then have

P(μ ∗m)= eπP for every μ and m, so the constraint becomes eπP ≤B μ, or Eμ= πP . As
it no longer involves m, it is clearly optimal to have m fully reveal the state by definition
of ĝ in (3.1). But then, since the probability of each state s is just πP(s) under any μ such
that Eμ= πP , we have

v(g�P)= min
β∈�B

∫
max
a∈A

g(a�β� s)dπP(s)�

Of course, the expression on the right is just the value of the stage game g.
Although Theorem 1 plays a key role in our analysis, the characterization is in general

not tractable enough for the purposes of computing the value. For example, we have not
been able to calculate the value of the game in Example 1. Given (μ�m), the integral in
(3.2) is relatively easy to compute. However, the constraint P(μ ∗m)≤B μ has fixed point
flavor and is not easy to characterize.

Independent prior work by Renault and Venel (2017) characterized the long-run value
for a class of Markov decision problems and repeated games, which includes our setting
as a special case. (The results were circulated several years earlier; see Renault and Venel
(2012).) Because of its generality, Renault and Venel’s formula is much more complicated
than that in Theorem 1. Importantly, as they allow actions to affect state transitions, it
is impossible to separate the choice of actions from the choice of stationary belief dis-
tributions in a meaningful way as is done in (3.2) via the function ĝ; this separation is
instrumental for the comparison of operators. Our proof of Theorem 1 and Renault and
Venel’s proof of their result are unrelated. In fact, because the results are stated in very
different terms, the connection between them is not apparent at first sight. We elaborate
on this in the Supplemental Material, where we sketch a direct proof of their equivalence
for ergodic operators.

4. COMPARISON OF OPERATORS

We are now ready to describe how the value of the game to the informed player depends
on the operator governing the evolution of the state. We focus on ergodic operators as
the value is then independent of the initial distribution, allowing for cleaner comparisons.
(See Section 5 for comparison of all operators.)

Formally, we seek to characterize the following relation.

6If μ= P(μ ∗m) ∗m′ for some m′ ∈ M, then Eμ= E[P(μ ∗m) ∗m′] = PEμ. Thus, Eμ= πP .
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DEFINITION 1: For any ergodic operators P and Q, we say that Q is better for the in-
formed player than P , or P 	Q, if for every game g, v(g�P)≤ v(g�Q).

We are interested in representing the relation 	 in terms of conditions that depend
only on the operators P and Q, making no reference to strategic behavior or games. The
following result provides two solutions to this problem.

THEOREM 2: For any ergodic operators P and Q, the following are equivalent:
(a) P 	Q.
(b) For every (μ�m) ∈ �2S×M such that P(μ ∗m)≤B μ, we have Q(μ ∗m)≤B μ.
(c) For every ν ∈ �2S such that Pν ≤B ν, we have Qν ≤B Pν.

Conditions (b) and (c) give alternative characterizations of 	. Condition (b) shows the
connection to Theorem 1: it simply says that every information structure (μ�m) that is
feasible in the maximization problem in (3.3) under P is also feasible under Q. It is then
immediate that (b) implies (a). There is a simple intuition for this.

Recall that the maximum is achieved by some (μ�m) with P(μ ∗m)= μ. Suppose that
operator P is replaced by Q such that Q(μ ∗ m) ≤B μ. Consider an augmented game
where at the beginning of each period, the maximizer can reveal information about the
state using a costless signalling device. If the maximizer plays the Markov strategy corre-
sponding to m, with μ the distribution of priors, then the distribution of the next period’s
priors is Q(μ ∗m). Thus, if the maximizer uses the device at the beginning of each pe-
riod to reveal information from Q(μ ∗m) to μ, then his payoff in the augmented game
under Q is equal to the value of the original game under P . Because the device reveals
information without any benefit, not using it should only increase the maximizer’s payoff.

For the converse, we assume in negation of (b) that the feasible sets are not nested for
operators P and Q, and then construct a game g such that v(g�P) > v(g�Q) in negation
of (a). We turn to the proof in Section 7 where we also prove the equivalence of (b) and
(c), the latter a simple restatement of the former in terms of posteriors.

Condition (c) suggests interpreting 	 as a notion of persistence. To see this, let ν be
the distribution of posteriors. Then Qν ≤B Pν is exactly the condition for the distribution
of the next period’s priors to be more informative under P than under Q. In this sense
the state—or, more precisely, the information about it—is more persistent under P than
under Q. Condition (c) requires this to hold only for any ν that is stabilizable under P in
the sense that Pν ≤B ν. Note that such ν are exactly the distributions that arise as invariant
distributions of posteriors under some information revelation policy m, since invariance
requires Pν ∗m= ν.

We now present several corollaries to Theorem 2 that describe the relation 	 further.
The first one shows that 	 is a convex partial order under which operators can be ranked
only if their invariant distributions coincide.

COROLLARY 1: Let P , Q, and Q′ be ergodic.
(a) If P 	Q or Q	 P , then πP = πQ.
(b) If P 	Q and Q	 P , then P =Q.
(c) If P 	Q and P 	Q′, then for every λ ∈ (0�1), P 	 λQ+ (1 − λ)Q′.

Part (a) can be deduced from Theorem 2, but the intuition is best seen from a di-
rect argument. Namely, for any P and Q such that πP 
= πQ, we can find trivial games
g′ and g′′ such that v(g′�P) > v(g′�Q) and v(g′′�P) < v(g′′�Q). Say, pick any states s′
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and s′′ such that πP(s′) > πQ(s′) and πP(s
′′) < πQ(s′′). Let g′(s�a�b) = 1{s = s′} and

g′′(s�a�b) = 1{s = s′′}. This gives v(g′�P) = πP(s
′) > πQ(s′) = v(g′�Q) and v(g′′�P) =

πP(s
′′) < πQ(s′′)= v(g′′�Q) as desired.

Part (b) shows that 	 is antisymmetric. Since 	 is obviously reflexive and transitive, it
thus partially orders the space of ergodic operators. Part (c) shows that 	 is convex in the
sense that, for any operator P , the set of operators that are better for the informed player
than P (i.e., the upper-contour set of P) is convex.

We then give a partial characterization of 	, which refines the interpretation of 	 as a
form of persistence suggested by Theorem 2. To this end, let Λ be the set of non-negative
infinite sequences λ1�λ2� � � � � λ∞ such that

∑
λn = 1. (Note that the sequence is indexed

by n ∈ N∪{∞}.) Given an ergodic operator P and λ ∈Λ, define P(λ)= λ1P+λ2P
2 +· · ·+

λ∞P∞. Here, P∞ is the operator that maps any belief to the unique invariant distribution
of the operator P .

COROLLARY 2: Let P and Q be ergodic.
(a) If Q= P(λ) for some λ ∈Λ, then P 	Q.
(b) If P 	Q, then for every p ∈ �S, there exists λp ∈Λ such that Qp= P(λp)p.
(c) If P 	Q and P has only real eigenvalues, then Q= P(λ) for some λ ∈Λ.

The first part shows thatQ being a convex combination of the powers of P is a sufficient
condition for Q to be better for the informed player than P . Heuristically, the operator
P(λ) is less persistent than P in that it amounts, roughly, to applying P multiple times
between each period. This means that more noise is added to the uninformed player’s
information between periods under P(λ) than under P . Thus, revealing information un-
der P(λ) is less costly than under P , explaining part (a) of Corollary 2. (This intuition
is only partial as the operator does not only determine the uninformed player’s informa-
tion but also the next period’s payoffs. But since πP = πP(λ), the payoffs are “the same on
average.”)

Part (b) of Corollary 2 shows that Q being a convex combination of the powers of P is
also necessary for P 	Q in the sense that for every p ∈ �S, there exist some weights λp
such that Qp= P(λp)p. These weights generally depend on the distribution p. However,
if P has only real eigenvalues (say, because P is symmetric, or because there are only two
states), then λ can be chosen independently of p by part (c) of Corollary 2. Together,
parts (a) and (c) imply that for such P , having Q = P(λ) for some λ fully characterizes
P 	Q.7

Corollary 2 allows us to establish a connection to Blackwell’s garblings.8 To see this,
reinterpret each operator P as describing the conditional distribution of a signal observed
by a decision maker given the value of an underlying unobservable state of the world.
Recall that operator P is better for the decision maker than operator Q according to
Blackwell’s ordering if and only if there exists an operator M , called a garbling, such that
Q =MP . Now observe that P(λ) =∑n λnP

n = (
∑

n λnP
n−1)P . Thus, part (a) of Corol-

lary 2 can be rephrased as saying that a sufficient condition for P 	Q is that Q=MP for
a garbling of the formM =∑n λnP

n−1, λ ∈Λ. Similarly, part (b) shows that the point-wise
existence of such a garbling is necessary in general, and parts (a) and (c) show that the
existence of a garbling of this form characterizes the upper-contour set of P under 	 if P

7We show in the Supplemental Material that this characterization does not extend to operators with complex
eigenvalues by constructing P and Q such that P 	Q, but Q 
= P(λ) for all λ ∈Λ.

8We thank Lones Smith for pointing out the connection.



1930 M. PĘSKI AND J. TOIKKA

FIGURE 2.—Comparison of operators P =M(ρ) and Q=M(ξ).

has only real eigenvalues. Heuristically, garbling the minimizer’s information is good for
the maximizer. But in contrast to Blackwell’s decision maker, not all garblings work here,
because the transitions described by the operator are payoff-relevant in the game.

Corollary 2 yields an eigenvalue characterization when there are only two states:

COROLLARY 3: If |S| = 2, then every ergodic operator P has exactly two eigenvalues, 1 and
φP ∈ (−1�1). For any two such operators P andQ, we have P 	Q if and only if (a) πP = πQ,
and (b) if φP ≥ 0, then φQ ∈ [0�φP], and if φP ≤ 0, then φQ ∈ [φP�φ2

P].
PROOF: Every stochastic operator has the eigenvalue 1. Ergodicity implies the exis-

tence of the second eigenvalue φP ∈ (−1�1). Since P has only real eigenvalues, parts (a)
and (c) of Corollary 2 show that P 	Q is equivalent to having Q= P(λ) for some λ ∈Λ,
which in turn is equivalent to πP = πQ and φQ =∑k≥1 λkφ

k
P , implying the result. Q.E.D.

Corollary 3 covers our introductory example, thus providing an answer to the question
about monotonicity left open by Hörner et al. (2010):

EXAMPLE 1—Continued: The state remains the same with probability ρ and changes
with probability 1 − ρ, so the operator is of the form

M(ρ)=
[
ρ 1 − ρ

1 − ρ ρ

]
� 0< ρ< 1�

The invariant distribution assigns equal probability to both states for any ρ, and the small-
est eigenvalue is equal to φ= 2ρ− 1. Hence, by Corollary 3, the value to the maximizer is
monotone decreasing in ρ on [ 1

2 �1). We also see that it is increasing in ρ on (0� 1
2 ]. Finally,

it is straightforward to verify Corollary 2 for this case. Say, let Q =M(ξ) and P =M(ρ)

for 1
2 ≤ ξ < ρ< 1. Putting λ1 = ξ− 1

2
ρ− 1

2
and λ∞ = 1 − λ1, we then have Q= λ1P + λ∞P∞.

The operators M(ρ) considered in Example 1 are indexed by the probability ρ of the
state not changing. The one-dimensional parameterization allows us to visualize the re-
striction of the partial order 	 to this class of symmetric operators—see Figure 2.

In Example 1, the best case for the maximizer is to have the state be i.i.d. across periods.
This is a general result. In order to state it, for any π ∈ �S, write Dπ for the operator that
maps each p to π and thus generates a sequence of i.i.d. draws from π. Then DπP = P∞

for each P , and parts (a) of Corollaries 1 and 2 show that the i.i.d. operators Dπ , π ∈ �S,
are the maximal elements of the partial order 	.
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L R

U −2�0�3 0�−2�3

D −1�1�0 1�−1�0

FIGURE 3.—Stage-game payoffs for Example 2.

COROLLARY 4: Let π ∈ �S. Then P 	Dπ for every ergodic operator P with πP = π.

Corollary 4 is not surprising: with i.i.d. states, the maximizer has all the benefits and no
cost of revealing information. In the other direction, one might conjecture that the value
of any game under an ergodic operator P is larger than the value of the same game with
a permanent state. Surprisingly, this is not true for every P .

COROLLARY 5: Let P be ergodic.
(a) v(g�P) > v(πP;g� I) for some game g.
(b) v(g�P) ≥ v(πP;g� I) for every game g if and only if there exists λ ∈ [0�1) such that

P = λI + (1 − λ)DπP .

Corollary 5 shows that no ergodic operator P is worse than the permanent state, but
not every ergodic operator P is comparable to I given initial distribution πP .

Part (b) implies that if P is not a convex combination of the identity operator I and
the i.i.d. operatorDπP , then there exists a game g′ such that v(πP;g′�P) < v(πP;g′� I). To
see why such a game can be found, recall from Theorem 1 that with a permanent state,
the value is computed as if the maximizer induced some distribution of priors for the
minimizer through an initial revelation, and then stayed at the realized prior by playing
a non-revealing strategy for the rest of the game. But when the state evolves over time,
so do the minimizer’s beliefs. It is only under the condition in part (b) that it is possible
to replicate any distribution of priors from the permanent case. This issue arises already
when there are two states, but it is best illustrated with the following three-state example.
(See also the discussion following Theorem 2′ below.)

EXAMPLE 2: There are three states, S = {s1� s2� s3}. The maximizer chooses U or D,
the minimizer chooses L or R. Stage-game payoffs are given in Figure 3 where each cell
contains the payoff from a given action profile in all three states. The initial distribution
is π = ( 1

3 �
1
3 �

1
3). It is easy to see that it is optimal for the minimizer to play L if p1 ≥ p2

and to play R if p2 ≥ p1, where p= (p1�p2�p3) is his current prior.
If the state is permanent, it is optimal for the maximizer to play U if s = s3 and to play

D otherwise. The value of the game is 2
3 · 0 + 1

3 · 3 = 1. Note that the minimizer only
ever learns whether the state is s3 or not. That is, after the first period his belief is either
( 1

2 �
1
2 �0) or (0�0�1), and it remains constant for the rest of the game.

Suppose then that after the initial draw, transitions are given by the operator

P =

⎡
⎢⎢⎢⎣

1 − 2ε ε ε

ε
1
2

− ε

2
1
2

− ε

2

ε
1
2

− ε

2
1
2

− ε

2

⎤
⎥⎥⎥⎦ �
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where ε ∈ (0� 1
3). Note that πP = ( 1

3 �
1
3 �

1
3). If the maximizer now plays the optimal strategy

from the permanent state case, then upon observing U , the minimizer’s next period prior
is (ε� 1

2 − ε
2 �

1
2 − ε

2 ). That is, the minimizer correctly anticipates s2 to be more likely than
s1, and he plays R. Similarly, playing D would be followed by the minimizer playing L.
Thus the expected payoff from this strategy is now strictly less than 1, which was the value
under a permanent state. On the other hand, if the maximizer does not always play U
when s = s3, then his payoff must again be less than 1, since the minimizer’s strategy
ensures an expected average payoff of at most 0 from the other two states.

5. EXTENSIONS

1. Comparison of all operators. Since S is finite, almost all operators are ergodic. More-
over, the proof of Corollary 5(a) can be easily adapted to show that for any ergodic op-
erator P and any non-ergodic operator Q for which πP is invariant, there exists a game
g such that v(g�P) > v(πP;g�Q). Therefore, no ergodic operator is worse than any non-
ergodic operator. Nevertheless, as Corollary 5(b) shows, unexpected behavior emerges
at the boundary of the set of operators. To explain it—and to prove Corollary 5(b)—we
extend Theorem 2 to all operators. As the proof is the same, it is this general version we
prove in Section 7.

The value now depends on the initial distribution, motivating the next definition.

DEFINITION 2: For any initial distribution π and operators P and Q, we say that Q is
better for the informed player than P given π, or P 	π Q, if for every game g, v(π;g�P)≤
v(π;g�Q).

Note that if P and Q are ergodic, then P 	Q if and only if P 	π Q for every π.

THEOREM 2′: For any π ∈ �S and operators P and Q, the following are equivalent:
(a) P 	π Q.
(b) ψπ�Q ≤B ψπ�P and for every pair (μ�m) ∈ �2S × M such that ψπ�P ≤B μ and P(μ ∗

m)≤B μ, we have Q(μ ∗m)≤B μ.
(c) ψπ�Q ≤B ψπ�P and for every ν ∈ �2S such that ψπ�P ≤B ν and Pν ≤B ν, we have Qν ≤B

Pν.

The new common part in conditions (b) and (c), ψπ�Q ≤B ψπ�P , requires the distribution
of the minimizer’s long-run beliefs to be less informative under Q than under P absent
any information revelation. This is clearly necessary for P 	π Q; otherwise we can find a
game g where only the minimizer has an action and for which v(π;g�P) > v(π;g�Q) by
the virtue of his better information under Q.

There are two important cases where the condition ψπ�Q ≤B ψπ�P can be omitted. First,
if π is an invariant distribution of both P and Q, then the condition is satisfied a priori as
ψπ�P =ψπ�Q = eπ . Second, if P and Q are ergodic, then ψπ�P ≤B ψπ�Q reduces to πP = πQ,
which for ergodic operators is implied by the second part of conditions (b) or (c).

The only other change to conditions (b) and (c) compared to Theorem 2 is the need
to explicitly require μ and ν to respect the minimizer’s information absent revelations.
These are best seen as feasibility constraints. For example, ψπ�P ≤B μ ensures that μ can
be obtained with some information revelation policy under operator P starting from π.
Otherwise, the interpretation of conditions (b) and (c) is the same as in Theorem 2. Note
that in the ergodic case, these extra conditions are implied by P(μ∗m)≤B μ and Pν ≤B ν,
respectively. Thus, in this case, the statement of Theorem 2′ reduces to that of Theorem 2.
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Armed with Theorem 2′, we can understand the finding in Corollary 5(b) as follows. Ob-
serve that (c) impliesQν ≤B ν, so we can view the second part of (c) as having two require-
ments: (c1) any (feasible) ν stabilizable under P is stabilizable underQ (i.e.,ψπ�P ≤B ν and
Pν ≤B ν implyQν ≤B ν), and (c2) for such ν, Pν is more informative thanQν. It is because
of (c1) that there are cases where operator P is in some intuitive sense more persistent
than operator Q, but P 	π Q does not hold as some distributions stabilizable under P are
not stabilizable under Q.

To further illustrate this and the use of Theorem 2′ for comparison of non-ergodic op-
erators, let |S| = 2 and π = ( 1

2 �
1
2). Let A be the operator that deterministically alternates

between the states. Then condition (c) implies that A 	π I, but the converse does not
hold. Indeed, π is invariant for both I and A, and thus we have ψπ�I = ψπ�A = eπ . How-
ever, whereas any ν with Eν = π is stabilizable under I, only a symmetric ν is stabilizable
underA. (For an example where I is strictly better, consider an asymmetric game where it
is optimal to reveal one of the states when the state is permanent. Replicating this strategy
under A inadvertently reveals the wrong state in every other period.)
We then briefly comment on the extensions developed in the Supplemental Material.

2. Imperfect monitoring. The fact that the maximizer observes the minimizer’s action
plays no role in the analysis. As for the minimizer, the results readily extend to imper-
fect monitoring games where he only observes a noisy public signal whose distribution Fa
depends on the maximizer’s action a. If we replace “every game g” with “every imper-
fect monitoring game (g�F)” in Definition 2, Theorem 2′ holds verbatim: one direction
follows as perfect monitoring is a special case, the other because our characterization of
value still holds if ĝ is suitably redefined.

3. Public signals. It is also possible to accommodate public information about the cur-
rent state, modeled as a public signal observed at the beginning of each period. Such
a signal puts a lower bound on how much information can be revealed. Formally, this
appears as an exogenous mean-preserving spread that acts on the minimizer’s priors at
the start of each period, before the application of the information revelation policy m.
Let v(g�P�F) be the value given ergodic operator P and public signal distribution F .
Rank operator-signal pairs by writing (P�F) 	 (Q�G) if v(g�P�F) ≤ v(g�Q�G) for ev-
ery game g. With these definitions, results similar to the ergodic version of Theorem 1
and Theorem 2 continue to hold. In particular, (P�F) 	 (Q�G) if and only if for every
ν ∈ �2S such that Pν∗nF ≤B ν, we haveQν∗nG ≤B Pν∗nF . Here, nF and nG are the mean-
preserving spreads induced by F and G. Note that taking P = Q gives a comparison of
public signals.

4. Discounting. Comparison of operators for a fixed discount factor is difficult in gen-
eral, but we note here a simple sufficient condition. Fix any operator P . If Q= λP + (1 −
λ)Dπ for some λ ∈ [0�1] and some invariant distribution π of P , then for every game g, we
have vδ(π;g�P)≤ vδ(π;g�Q) for all δ < 1. In particular, this implies that in Example 1,
the value is decreasing in ρ on [ 1

2 �1] for any fixed δ.

6. PROOF OF THEOREM 1

Fix an initial distribution π, game g, and operator P . The proof has four steps.

6.1. Recursive Formula for the Value

Given a prior p ∈ �S and a stage-game strategy α ∈ (�A)S , denote by α(a) =∑
s α(a|s)p(s) the expected probability of playing action a. For any a with α(a) > 0, de-
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fine the posterior belief qα�p(a) ∈ �S by

qα�p(s|a)= α(a|s)p(s)
α(a)

�

Let να�p ∈ �2S denote the induced distribution over posterior beliefs. That is,

να�p(q)=
∑
a

1
{
qα�p(a)= q}α(a)� (6.1)

Notice that Eνα�p = p, that is, the average posterior is equal to the prior.
The following recursion is well known (cf. Proposition 5.1 in Renault (2006); see

Mertens, Sorin, and Zamir (2015), for the discounted case).

LEMMA 1: For every δ < 1 and every p ∈ �S,

vδ(p;g�P)= min
β∈�B

max
α∈(�A)S

∑
a

α(a)
(
(1 − δ)g(a�β�qα�p(a))+ δvδ(Pqα�p(a);g�P))� (6.2)

Moreover, vδ(p;g�P) is concave in p.

We observe first that we can rewrite this recursion with the maximizer choosing a dis-
tribution ν over posteriors and an action a for each posterior q.

LEMMA 2: For every δ < 1 and every p ∈ �S,

vδ(p;g�P)= min
β∈�B

max
ν∈�2S:Eν=p

∫ (
(1 − δ)max

a∈A
g(a�β�q)+ δvδ(Pq;g�P)

)
dν(q)

= max
ν∈�2S:Eν=p

(1 − δ)ĝ(ν)+ δ
∫
vδ(Pq;g�P)dν(q)�

(6.3)

Note that the second line in (6.3) shows that vδ(p;g�P) is the value of a Markov deci-
sion problem where the state is p, the action is ν, and the current payoff is ĝ(ν).

PROOF: We show first that vδ(p;g�P) is not smaller than the right-hand side of the
first line in (6.3). For each β ∈ �B, let νβ be a solution to the maximization prob-
lem on the first line of (6.3), and let γβ : �S → A be a measurable selection γβ(q) ∈
arg maxa∈A g(a�β�q).9 Define αβ ∈ (�A)S by setting, for any s with p(s) > 0,

αβ(a|s)= 1
p(s)

∫
q(s)1

{
γβ(q)= a}dνβ(q)� (6.4)

(Actions for states s such that p(s)= 0 can be taken to be arbitrary.) We then have

∑
a

αβ(a)g
(
a�β�qαβ�p(a)

)= ∫ max
a∈A

g(a�β�q)dνβ(q)�

9The existence of νβ follows from the continuity of the integral with respect to the measure ν and the com-
pactness of the choice set. The existence of γβ follows by standard results about the existence of measurable
solutions to continuous and compact maximization problems e.g., Aliprantis and Border (2007), Theorem
18.19.
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Thus, the objective in the minimization problem on the first line in (6.3) equals

(1 − δ)
∑
a

αβ(a)g
(
a�β�qαβ�p(a)

)+ δ∫ vδ(Pq;g�P)dνβ(q)

≤ (1 − δ)
∑
a

αβ(a)g
(
a�β�qαβ�p(a)

)+ δ∫ vδ(Pq;g�P)dναβ�p(q)

=
∑
a

αβ(a)
(
(1 − δ)g(a�β�qαβ�p(a))+ δvδ(Pqαβ�p(a);g�P))

≤ max
α∈(�A)S

∑
a

α(a)
(
(1 − δ)g(a�β�qα�p(a))+ δvδ(Pqα�p(a);g�P))�

where ναβ�p on the second line is the distribution over posteriors defined by (6.1); the
first inequality follows because ναβ�p ≤B νβ by construction,10 and the value is concave in
the initial distribution by Lemma 1; the third line follows from the second by unraveling
the definitions. By inspection, the last line is the objective function in the minimization
problem in (6.2), so the claim follows by Lemma 1.

We show then that vδ(p;g�P) is not larger than the right-hand side of the first line
of (6.3). For each β ∈ �B, let αβ ∈ (�A)S be a solution to the maximization problem
in (6.2). Let ναβ�p be the induced distribution over posteriors defined by (6.1), and let
ταβ�p(q) ∈ �A denote a measurable version of the conditional distribution over actions
given posterior q. Then,∑

a

αβ(a)
(
(1 − δ)g(a�β�qαβ�p(a))+ δvδ(Pqαβ�p(a);g�P))

=
∫ (
(1 − δ)g(ταβ�p(q)�β�q)+ δvδ(Pq;g�P))dναβ�p(q)

≤ max
ν∈�2S:Eν=p

∫ (
(1 − δ)max

a∈A
g(a�β�q)+ δvδ(Pq;g�P)

)
dν(q)�

where the last line is the objective function in the minimization problem on the first line
of (6.3). Thus, the claim follows by Lemma 1.

The second equality in (6.3) follows from Fan’s (1953) minmax theorem (notice that
the expression is linear in ν and convex in β) and the definition of ĝ in (3.1). Q.E.D.

6.2. Discounted Value

The recursive formula (6.3) implies the following “approximately stationary” charac-
terization of the discounted value. For any δ < 1, define

ψδπ�P = (1 − δ)
∑
t

δtPteπ ∈ �2S�

10To see this, note that we can generate νβ in two steps by first drawing an action a according to αβ (with
p as the prior), and then drawing a posterior belief q according to the conditional distribution over posteriors
given a. Then, by construction, ναβ�p is the distribution of posteriors after the first step, and the second step
amounts to a mean-preserving spread.
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Then ψδπ�P is the discounted average distribution of the minimizer’s beliefs if the maxi-
mizer reveals no information.

LEMMA 3: For every δ < 1, there exist a distribution μδ ∈ �2S with ψδπ�P ≤B μδ and a
mean-preserving spread mδ ∈M such that

vδ(π;g�P)=
∫
ĝ
(
mδ(p)

)
dμδ(p)� (6.5)

and for each continuous function f : �S→ R with ‖f‖∞ ≤ 1,∣∣∣∣
∫
f dP

(
μδ ∗mδ

)− ∫ f dμδ
∣∣∣∣≤ 2(1 − δ)�

The second display above implies that for δ close to 1, (μδ�mδ) is approximately sta-
tionary in the sense that P(μδ ∗mδ) is close to μδ in the weak topology.

PROOF: The objective function on the second line of (6.3) is continuous in ν, since
ĝ is continuous, and it is constant and thus measurable in p. The feasible set {ν : Eν =
p} is compact and continuous as a correspondence of p. By the Measurable Maximum
Theorem (Aliprantis and Border (2007), Theorem 18.19), the maximizer correspondence
is nonempty valued and admits a measurable selection mδ : �S→ �2S.

Let μ0 ∈ �2S be the Dirac measure at π (i.e., eπ). Define μt = P(μt−1 ∗mδ) for t ≥ 1 by
induction on t, and let μδ =∑∞

t=0(1 −δ)δtμt . By induction on t, we verify that Eμt = Ptπ,
which implies Pteπ = ePtπ ≤B μt for each t. This in turn implies ψδπ�P ≤B μδ, since the
Blackwell ordering is preserved under convex combinations.11 Equation (6.5) then follows
from repeated application of (6.3).

Finally, for each continuous function f : �S→ R such that |f | ≤ 1, we have

∫
f dP

(
μδ ∗mδ

)= ∫
f d

( ∞∑
t=0

(1 − δ)δtP(μt ∗mδ
))

=
∫
f d

( ∞∑
t=0

(1 − δ)δtμt+1

)

=
∫
f d

(
(1 − δ)μ0 +

∞∑
t=0

(1 − δ)δt+1μt+1

)

+
∞∑
t=0

(1 − δ)(δt − δt+1
)∫

f dμt+1 − (1 − δ)
∫
f dμ0

=
∫
f dμδ + (1 − δ)

∞∑
t=0

δt(1 − δ)
∫
f dμt+1 − (1 − δ)

∫
f dμ0�

The last two terms are each bounded in absolute value by (1 − δ) as desired. Q.E.D.

11That is, if νn ≤B ψn, n ∈ N, then for any λ1�λ2� � � � ≥ 0 with
∑
λn = 1,

∑
n λnνn ≤B

∑
n λnψn. Indeed, for

any concave f ,
∫
f d(

∑
n λnψn)=∑λn

∫
f dψn ≤∑λn

∫
f dνn = ∫ f d(∑λnνn).
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6.3. Maximum

Let V = {(μ�m) ∈ �2S×M :ψπ�P ≤B μ and P(μ∗m)≤B μ}, where ψπ�P = limδ→1ψ
δ
π�P .

We show that
∫
ĝ(m(p))dμ(p) attains its supremum on V , and this supremum is not

smaller than the limit of the right-hand side of (6.5). Both claims follow from the same
argument, so we combine them into a single lemma.

LEMMA 4: For every δ < 1, let (μδ�mδ) be as in Lemma 3. There exists (μ∗�m∗) ∈ V such
that

lim sup
δ→1

∫
ĝ
(
mδ(p)

)
dμδ(p)≤ sup

(μ�m)∈V

∫
ĝ
(
m(p)

)
dμ(p)

=
∫
ĝ
(
m∗(p)

)
dμ∗(p)�

PROOF: It will be useful to view �2S × M as a subset of �3S, the set of probability
distributions over �2S, endowed with the weak topology. The idea is that each pair (μ�m)
generates a distribution over �2S as follows: m assigns a point m(p) ∈ �2S to each p ∈
�S, so drawing p according to μ yields an element of �3S. Formally, take a mapping
ι : �2S×M→ �3S such that for each continuous function φ : �2S→ R,∫

φ
(
m(p)

)
dμ(p)=

∫
φ(ν)dι(μ�m)(ν)�

The above equation uniquely defines the mapping ι.
Take a sequence (μn�mn) ∈ {(μδ�mδ) : δ≥ 1 − 1

n
} ∪ V such that

lim
n→∞

∫
ĝ
(
mn(p)

)
dμn(p)= max

{
lim sup
δ→1

∫
ĝ
(
mδ(p)

)
dμδ(p)� sup

(μ�m)∈V

∫
ĝ
(
m(p)

)
dμ(p)

}
�

Because �3S is compact, we can assume (by taking a subsequence if necessary) that
the sequence (μn�mn) converges. That is, there exists a distribution ω ∈ �3S such that
limn ι(μ

n�mn)=ω. Furthermore, since ĝ is continuous, we have

lim
n→∞

∫
ĝ
(
mn(p)

)
dμn(p)= lim

n→∞

∫
ĝ(ν)dι

(
μn�mn

)
(ν)=

∫
ĝ(ν)dω(ν)�

The limit ω is a distribution over ν ∈ �2S. We let μ∗ ∈ �2S denote the induced distribu-
tion over Eν. Formally, μ∗ is defined so that for each continuous f : �S→ R,∫

f (p)dμ∗(p)=
∫
f (Eν)dω(ν)�

where the latter integral is over �2S. Let ω(·|Eν = p) be a measurable version of the
conditional distribution, and let m∗(p)= ∫ ν dω(ν|Eν = p) ∈ �2S be the expected value
of the conditional distribution. Jensen’s inequality and the concavity of ĝ imply∫

ĝ(ν)dω(ν|Eν = p)≤ ĝ(m∗(p)
)
�
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Thus, collecting from above, we have∫
ĝ
(
mn(p)

)
dμn(p)→

∫
ĝ(ν)dω(ν)

=
∫ (∫

ĝ(ν)dω(ν|Eν = p)
)
dμ∗(p)

≤
∫
ĝ
(
m∗(p)

)
dμ∗(p)�

(6.6)

Given the choice of the sequence (μn�mn), the lemma follows from the above display if
we show that the pair (μ∗�m∗) is in fact an element of V .

To this end, we note first that μn → μ∗, since for each continuous f : �S→ R,∫
f (p)dμ∗(p)=

∫
f (Eν)dω(ν)= lim

n→∞

∫
f (Eν)dι

(
μn�mn

)
(ν)

= lim
n→∞

∫
f
(
Emn(p)

)
dμn(p)

= lim
n→∞

∫
f (p)dμn(p)�

where the last equality follows since Em(p)= p for any mean-preserving spread m. Sim-
ilarly, we see that μn ∗mn → μ∗ ∗m∗ by observing that∫ (∫

f (q)dm∗(q|p)
)
dμ∗(p)=

∫ (∫ (∫
f (q)dν(q)

)
dω(ν|Eν = p)

)
dμ∗(p)

=
∫ (∫

f (q)dν(q)

)
dω(ν)

= lim
n→∞

∫ (∫
f (q)dν(q)

)
dι
(
μn�mn

)
(ν)

= lim
n→∞

∫ (∫
f (q)dmn(q|p)

)
dμn(p)�

It follows that P(μn ∗mn)→ P(μ∗ ∗m∗).
The choice of sequence (μn�mn) and Lemma 3 imply, for each f : �S→ R concave,∫

f dP
(
μn ∗mn

)− ∫ f dμn ≥ −2
n

‖f‖∞�

Letting n→ ∞ gives
∫
f dP(μ∗ ∗m∗)− ∫ f dμ∗ ≥ 0, and thus P(μ∗ ∗m∗)≤B μ∗.

Finally, notice that for each n, either there exists δn ≥ 1 − 1
n

such that ψδnπ�P ≤B μn, or
(μn�mn) ∈ V and ψπ�P ≤B μn. Therefore, for each f : �S→ R concave, we have∫

f dψπ�P = lim
n→∞

∫
f dψδnπ�P ≥ lim

n→∞

∫
f dμn =

∫
f dμ∗�

where the first equality is by definition of ψπ�P as the (weak) limit of ψδπ�P , and the last
equality follows by μn → μ∗. Thus, ψπ�P ≤B μ∗, and hence (μ∗�m∗) ∈ V . Q.E.D.
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6.4. Proof of Theorem 1

We observe first that v(π;g�P) is not larger than the right-hand side of (3.2). Indeed,
by Lemmas 0, 3, and 4, we have

v(π;g�P)= lim
δ→1

vδ(π;g�P)≤ max
(μ�m)∈V

∫
ĝ
(
m(p)

)
dμ(p)�

We then show that v(π;g�P) is not smaller than the right-hand side of (3.2). By Lemma
4, the maximum on the right-hand side is attained by some (μ∗�m∗) ∈ V .12 By the recur-
sive formula (6.3), for each δ < 1 and p ∈ �S, we have

vδ(p;g�P)≥ (1 − δ)ĝ(m∗(p)
)+ δ∫ vδ(Pq;g�P)dm∗(q|p)�

Taking expectations with respect to μ∗ gives∫
vδ(p;g�P)dμ∗(p)≥ (1 − δ)

∫
ĝ
(
m∗(p)

)
dμ∗(p)+ δ

∫
vδ(p;g�P)dP(μ∗ ∗m∗)(p)

≥ (1 − δ)
∫
ĝ
(
m∗(p)

)
dμ∗(p)+ δ

∫
vδ(p;g�P)dμ∗(p)�

where the second line follows because the discounted value is concave in p by Lemma 1,
and we have P(μ∗ ∗m∗)≤B μ∗ by (μ∗�m∗) ∈ V . Thus,∫

ĝ
(
m∗(p)

)
dμ∗(p)≤

∫
vδ(p;g�P)dμ∗(p)�

Letting δ→ 1, the Dominated Convergence Theorem and Lemma 0 imply∫
ĝ
(
m∗(p)

)
dμ∗(p)≤

∫
v(p;g�P)dμ∗(p)≤

∫
v(p;g�P)dψπ�P(p)�

where the second inequality is by ψπ�P ≤B μ∗ (since (μ∗�m∗) ∈ V ) and concavity. Thus, it
suffices to show that v(π;g�P)≥ ∫ v(p;g�P)dψπ�P(p).

For any δ < 1, a feasible strategy for the maximizer is to not reveal any information
before some period s, and then switch to the optimal strategy in period s. Hence,

vδ(π;g�P)≥ (1 − δ)
s−1∑
t=0

δtĝ(ePtπ)+ δsvδ(Psπ;g�P)�
Letting δ→ 1 gives v(π;g�P)≥ v(Psπ;g�P). Since s was arbitrary, for any γ ∈ (0�1),

v(π;g�P)≥ (1 − γ)
∑
s

γsv
(
Psπ;g�P)= ∫ v(p;g�P)dψγπ�P γ→1→

∫
v(p;g�P)dψπ�P(p)�

where we have used the definitions of ψγπ�P and ψπ�P . This establishes Theorem 1.

12Replacing P(μ ∗m) ≤B μ with P(μ ∗m) = μ in the definition of V , the proof of Lemma 4 shows that
some (μ�m) with P(μ ∗m)= μ achieves the maximum. The only change in the argument is that at the end,
| ∫ f dP(μn ∗mn)− ∫ f dμn| ≤ 2

n
‖f‖∞ → 0 for all f continuous, implying P(μ∗ ∗m∗)= μ∗.
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7. PROOF OF THEOREM 2′

We first verify that Theorem 2 follows from Theorem 2′. Let P and Q be ergodic. To
see that 2′(c) implies 2(c), let Pν ≤B ν. Then PEν = Eν, which implies Eν = πP . Thus,
ψπ�P = eπP ≤B ν, so 2′(c) implies Qν ≤B ν. Conversely, let 2(c) hold. Then the second part
of 2′(c) holds. For the first, note that PeπP = eπP . Thus, QeπP ≤B eπP by 2(c), implying
QπP = πP . But then πQ = πP and ψπ�P = ψπ�Q = eπP as desired. Theorem 2′ now implies
the equivalence of 2(a) and 2(c). The equivalence of 2(b) and 2(c) follows by the same
argument as the equivalence of (b) and (c) below.

We then turn to the proof of Theorem 2′. To see that (b) implies (c), suppose Pν ≤B ν
and ψπ�P ≤B ν. Then Pν ∗m= ν for somem ∈M, and P(Pν ∗m)= Pν. Moreover, ψπ�P =
Pψπ�P ≤B Pν, because the Blackwell order is preserved under linear transformations.13

Thus, setting μ = Pν in (b) gives Q(Pν ∗m) ≤B Pν, or Qν ≤B Pν. For the converse, let
P(μ ∗ m) ≤B μ and ψπ�P ≤B μ. Then P(μ ∗ m) ≤B μ ∗ m, so (c) implies Q(μ ∗ m) ≤B

P(μ ∗m)≤B μ. Hence, (b) and (c) are equivalent.
That (b) implies (a) follows immediately from Theorem 1, since (b) implies that any

(μ�m) feasible in (3.2) under P is feasible underQ. Thus, it only remains to show that (a)
implies (b). We establish the contrapositive.

First, suppose ψπ�Q �B ψπ�P . Then for some concave f : �S→ R, we have∫
f dψπ�Q <

∫
f dψπ�P� (7.1)

Because f is concave, there exists a set L of affine functions l : �S → R such that
f (p)= infl∈L l(p), p ∈ �S. Because �S is compact, we can assume that L is finite. (Oth-
erwise, replace f by an approximation obtained as the minimum over finitely many affine
functions. A sufficiently good approximation satisfies (7.1).) Construct game g by letting
A= {a0}, B=L, and g(a0� l� s)= l(es). Then g(a� l�p)= l(p), and

v(π;g�P)= lim
δ→1

∑
t

(1 − δ)δtf (Ptπ)= lim
δ→1

∫
f dψδπ�P =

∫
f dψπ�P�

Similarly, v(π;g�Q)= ∫ f dψπ�Q < ∫ f dψπ�P = v(π;g�P) by (7.1), contradicting (a).
Second, suppose ψπ�Q ≤B ψπ�P , but there exists (μ0�m0) ∈ �2S × M such that ψπ�P ≤B

μ0, P(μ0 ∗m0) ≤B μ0, and Q(μ0 ∗m0) �B μ0. Then there exists a concave function f :
�S→ R such that∫

f dμ0 −
∫
f dQ(μ0 ∗m0) > 0 ≥ sup

(μ�m):Q(μ∗m)≤Bμ

∫
f dμ−

∫
f dQ(μ ∗m)� (7.2)

Because f is concave, there exists a set L of affine functions l : �S→ R such that f (p)=
infl∈L l(p). Because �S is compact, we can again assume that L is finite.

We now construct a game g such that v(π;g�P) > v(π;g�Q). Let A= B = L. Recall
that for each affine function l, there exist constants gls for each s ∈ S such that l(p) =∑

s g
l
sps. (Since

∑
s ps = 1, this allows for an additive constant term in l(p).) For each

a ∈A, b ∈ B, and s ∈ S, define

g(a�b� s)= gbs − a(Qes)�

13Indeed, for all f concave,
∫
f ◦ P dν ≤ ∫ f ◦ P dψπ�P , since f ◦ P is concave and ψπ�P ≤B ν.
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where es is the Dirac measure at state s. For each β ∈ �B and q ∈ �S, observe that

max
a
g(a�β�q)=

∑
b�s

β(b)q(s)gbs − min
a
a(Qq)=

∑
b�s

β(b)q(s)gbs − f (Qq)�

Thus, for each μ ∈ �2S and m ∈M, we have

∫
ĝ
(
m(p)

)
dμ(p)=

∫ (
min
β∈�B

∫ ∑
b�s

β(b)q(s)gbs dm(q|p)−
∫
f (Qq)dm(q|p)

)
dμ(p)

=
∫

min
b∈B

∑
s

gbs p(s)dμ(p)−
∫
f (Qp)d(μ ∗m)(p)

=
∫
f (p) dμ(p)−

∫
f (p)dQ(μ ∗m)(p)�

Since ψπ�P ≤B μ0 and P(μ0 ∗m0) ≤B μ0, it then follows from Theorem 1 and inequality
(7.2) that v(π;g�P) > 0 ≥ v(π;g�Q) in negation of (a), as desired.

APPENDICES

The following appendices collect the proofs omitted in the main text. Appendix A con-
tains the proof of Corollary 2. Appendix B contains the proof of Corollary 1 (which relies
partially on Corollary 2). Appendix C contains the proof of Corollary 5.

APPENDIX A: PROOF OF COROLLARY 2

A.1. Proof of Condition (a)

Suppose that Pν ≤B ν. Then, for any n≥ 2,

ν ≥B Pν ≥ P2ν ≥B · · · ≥ Pnν�

where each subsequent inequality follows from the previous one as ≤B is preserved under
P (see footnote 13). Therefore, if Q= P(λ) for some λ ∈Λ, then we have

Qν =
(∑

λnP
n
)
ν ≤B

∑
λn
(
Pnν

)≤B Pν� (A.1)

The second inequality in (A.1) follows, because ≤B is preserved under convex combina-
tions (see footnote 11). To see the first, note that for any ψ ∈ �2S and λ ∈ (0�1),

(
λP + (1 − λ)Q)ψ≤B λPψ+ (1 − λ)Qψ� (A.2)
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Indeed, for any concave f , we can use Jensen’s inequality to obtain∫
f d
(
λPψ+ (1 − λ)Qψ)= λ∫ f (Pp)dψ(p)+ (1 − λ)

∫
f (Qp)dψ(p)

=
∫ (
λf(Pp)+ (1 − λ)f (Qp))dψ(p)

≤
∫
f
(
λPp+ (1 − λ)Qp)dψ(p)

=
∫
f
((
λP + (1 − λ)Q)p)dψ(p)

=
∫
f d
(
λP + (1 − λ)Q)ψ�

The argument clearly extends to countable convex combinations.
Condition (a) now follows by inequality (A.1) and Theorem 2(c).

A.2. Proof of Condition (b)

Suppose that there exists a distribution p ∈ �S such that Qp /∈ con{Pp�P2p� � � � �πP},
where πP is the invariant distribution of P . Fix p for the rest of the proof. We will show
that there exists μ such that Pμ ≤B μ and not Qμ ≤B Pμ, which contradicts P 	 Q by
conditions (a) and (c) of Theorem 2.

Let A0
ε = {(1 − ε)πP + εes : s ∈ S}, with es a Dirac measure at s, be a finite set of

beliefs and letAε = con A0
ε. Then, PAε ⊆Aε, πP ∈ intAε, and limε→0Aε = {πP}. For n=

1�2� � � � �∞, letD0
n = {Pp�P2p� � � � �Pnp} andDn = con D0

n. Then,Qp /∈D∞. BecauseD∞
is closed and the setsAε are arbitrarily small neighborhoods ofπP ∈D∞, there exists ε > 0
small enough so that Qp /∈ con{A0

ε ∪D0
∞}. Because Pnp→ πP , and Aε is a neighborhood

of πP , there exists n large enough so that Pmp ∈ intAε for all m > n. It follows that
P(con(A0

ε ∪D0
n))⊆ con(A0

ε ∪D0
n) and Qp /∈ con{A0

ε ∪D0
n}.

Let K = {p} ∪D0
n ∪A0

ε and let K′ = PK. For each q ∈K′, we have q ∈ con K, and there
exists a probability distribution over beliefs mq ∈ �K such that Emq = q and mq(K)= 1.
We assume that mq(p) > 0 for each q ∈ P(intA0

ε) ⊆ K′ and that mq is continuous in q.
We treatm as a mean-preserving spread (despite the fact that it is not defined on q /∈K′).

Consider a Markov process with state space K and transition function T : K → �K
given by T(q)=mPq. Let ν ∈ �K be an invariant distribution of such a process (it exists
due to the continuity of mq). Thus, Pν ∗ m = ν, or Pν ≤B ν. The choice of probability
distributions mq implies ν(p) > 0, which in turn implies Qp ∈ suppQν. Because Qp /∈
con K′ = con suppPν, we see that suppQν � con suppPν, which implies Qν �B Pν, as
desired.

A.3. Proof of Condition (c)

From now on, assume that P and Q are two ergodic operators such that P has purely
real eigenvalues, and for each p ∈ �S, we have Qp ∈ con{πP�Pp�P2p� � � � �πP}.

We recall some concepts from linear algebra. Let E = {v ∈RS :∑vs = 0} be an (S− 1)-
dimensional linear space. The operator P can be uniquely represented as a linear mapping
P̂ :E→E such that for each π ∈ �S,

P̂(π −πP)= Pπ −πP�
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From now on, we identify P̂ with P and we drop the hat from the notation. Similarly, we
identify Q with the linear mapping Q̂ it induces on E. For each v ∈E, let

Λ(v)=
{
λ ∈Λ :

∑
n

λnP
nv=Qv

}
�

The sets Λ(v) are compact and, by the hypothesis of the lemma, nonempty. Our claim
will be proven if we show that

⋂
v Λ(v) 
= ∅.

A linear subspace F ⊆ E is P-invariant, if PF ⊆ F (i.e., v ∈ F implies Pv ∈ F).
A P-invariant subspace F ⊆E is P-cyclic, if there is a vector v, a (real) eigenvalueφ, and a
multiplicity r such that v� (P−φI)v� � � � � (P−φI)r−1v is a basis for F and (P−φI)rv= 0.
The Jordan decomposition theorem says that E can be represented as a direct sum of P-
invariant P-cyclic subspaces

E =
⊕

Fm�

Let vm, φm, and rm denote the vector, the eigenvalue, and the multiplicity associated with
Fm. For each l= 1� � � � � rm, let vm�l = (P −φmI)l−1vm be the basis for space Fm.

The next result describes a representation of operators P(λ) for λ ∈Λ.

LEMMA A.1: For every λ ∈Λ, there exist pλl for l= 1� � � � � rm−1 such that the linear opera-
tor P(λ) has a representation

P(λ)=

⎡
⎢⎢⎣
pλ1 pλ2 · · · pλrm
0 pλ1 · · · pλrm−1· · · · · · · · · · · ·
0 0 · · · pλ1

⎤
⎥⎥⎦

in the basis {vm�l}rml=1. In other words, for every v=∑υlvm�l ∈ Fm,

P(λ)v=
rm∑
k=1

(
rm−k∑
l=1

pλl υ
k+l
)
vk�

PROOF: Because the above representation is preserved under convex combinations, it
is enough to demonstrate that for each n, the linear operator Pn has the above represen-
tation. The claim holds for n= 1 with p(1)0 = φ, p(1)1 = 1, and p(1)l = 0 for l > 1. Suppose
that the claim holds for n. Then, algebra shows that

p(n+1)
l =

l∑
k=1

p(n)k p
(1)
l+1−k�

which yields the desired representation. Q.E.D.

LEMMA A.2: If a linear subspace F ⊆E is P-invariant, then it is Q-invariant.

PROOF: Take any x ∈ F . Because F is an invariant subspace of P , Px�P2x� � � � ∈ F . This
implies that Qx ∈ con{0�Px�P2x� � � � } ⊆ F . Q.E.D.

Lemma A.2 implies that each Fm is Q-invariant and the restriction Q|Fm is a linear
operator from Fm to Fm.
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LEMMA A.3: There exist ql for l= 0� � � � � rm−1 such that Q|Fm has a representation

Q=
⎡
⎢⎣
q1 q2 · · · qrm
0 q1 · · · qrm−1

· · · · · · · · · · · ·
0 0 · · · q1

⎤
⎥⎦

in the basis {vm�l}rml=1. Moreover, there exists f ∗
m ∈ Fm such that for every λ ∈ Λ(f ∗

m), Q|Fm =
P(λ)|Fm .

PROOF: Let [qmkl]k�l=0�����r−1 be the representation of Q on the Q-invariant subspace Fm
in the basis vm�0� � � � � vm�r−1. Let ql = qr−l+1�rm for each l.

Define vε =∑l vm�lε
l−1. For each ε > 0, let λε ∈Λ(vε). Also, let

Iε =

⎡
⎢⎢⎣

1 0 · · · 0
0 ε−1 · · · 0

· · · · · · · · · · · ·
0 0 · · · ε−(rm−1)

⎤
⎥⎥⎦ �

Suppose that there exists l∗ ≤ rm that is the smallest index such that there exists ε > 0 and
k= 1� � � � � rm − l+ 1 such that qk�k+l∗−1 
= pλε .

By the choice of λε, (P(λε) − Q)vε = 0. Moreover, simple calculations show that for
each ε > 0,

0 = ε−(l∗−1)Iε
(
P
(
λε
)−Q)vε

= ε−(l∗−1)Iε

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
pλ

ε

l∗ − q1�l∗
)
εl

∗−1 +O(εl∗)
���(

pλ
ε

l∗ − qrm−l∗−2�rm−1

)
εrm−1 +O(εrm)(

pλ
ε

l∗ − qrm−l∗−1�rm

)
εrm

0
���
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pλ
ε

l∗ − q1�l∗ +O(ε)
���

pλ
ε

l∗ − qrm−l∗−2�rm−1 +O(ε)
pλ

ε

l∗ − qrm−l∗−1�rm
0
���
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

The equality implies that (i) paεl∗ → qk�k+l∗−1 for each k= 1� � � � � rm − l∗, and that (ii) paεl∗ =
qrm−l∗−1�rm for each ε > 0. Further, (i) and (ii) imply that, for each k,

pλ
ε

l∗ = qk�k+l∗−1 = ql∗ �
For the last claim, take any ε > 0 and let f ∗

m = vε for any ε > 0. Q.E.D.
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LEMMA A.4: For each m, take any fm ∈ Fm, and let f = ∑
fm. Then, Λ(f) =⋂

mΛ(fm) 
= ∅.

PROOF: It is easy to see that
⋂

mΛ(fm) ⊆ Λ(f). We show the other inclusion. Take
λ ∈Λ(f). Then, P(λ)f =∑P(λ)fm =∑Qfm. Because the spaces Fm are both P(λ) and
Q-invariant, P(λ)fm ∈ Fm and Qfm ∈ Fm. Because E is a direct sum of the spaces Fm, we
have P(λ)fm =Qfm for each m. This implies that λ ∈Λ(fm) for each m. Q.E.D.

We can now finish the proof of our claim. Let f ∗
m ∈ Fm be as in Lemma A.3. By

Lemma A.4, there exists λ∗ ∈⋂mΛ(f
∗
m). Moreover, by Lemma A.3, Q|Fm = P(λ∗)|Fm for

each m. Because E is a direct sum of spaces Fm, it must be that Q= P(λ∗).

APPENDIX B: PROOF OF COROLLARY 1

Part (a) is proven in the main text, so it remains to establish parts (b) and (c).

B.1. Proof of Part (b)

We start with some preliminary observations. For each belief p ∈ �S and ergodic op-
erator P , let AP(p)= con{Pp�P2p� � � � �πP}. We show that for each p 
= πP , p /∈AP(p).
Suppose not. Then, p is a convex combination of Pnp for n > 0. Because convex com-
binations are preserved under P , this implies that each Pnp is a convex combination of
Pmp for m> n, which, in turn, implies that p is a convex combination of Pnp for n > 1.
By repeating the argument m times, we see that p is a convex combination of Pnp for
n >m for any m. But Pnp→ πP , which leads to a contradiction with p 
= πP .

The above argument implies that Pp /∈AP(Pp)= con{P2p� � � � �πP}. It follows that Pp
is an extreme point of the set AP(p).

Next, take any p 
= πP and q ∈ AP(p) \ {Pp}. We show that AP(q) ⊆ AP(p) \ {Pp}.
Indeed, suppose that q =∑n λnP

np for some λ ∈ Λ. Take x ∈AP(q). Then, there exists
λ′ ∈Λ such that x=∑k λ

′
kP

kq=∑k�n λ
′
kλnP

k+np ∈ con{P2p� � � � �πP} ⊆AP(p) \ {Pp}.
We move to the proof of part (b) of Corollary 1. Suppose towards a contradiction that

P 
=Q. By part (a) of Corollary 1, there exists a belief p0 
= πP such that Pp0 
=Qp0. We
show by induction on n thatQnp0 ∈AP(p0)\{Pp0}. (Note that we can assume without loss
of generality that Pp0 
= πP ; otherwise, AP(p0)= {πP} and the set on the right-hand side
of the previous inclusion is empty.) Indeed, the claim for n= 1 is implied by condition (b)
of Corollary 2. Moreover, if the claim holds for n ≥ 1, then condition (b) of Corollary 2
and the above observation imply that Qn+1p=Q(Qnp) ∈AP(Qnp)⊆AP(p) \ {Pp}.

Because Qnp0 → πQ = πP , it follows that if P 	Q, then

AQ(p0)⊆AP(p0) \ {Pp0}�

The same argument implies that if Q	 P , then

AP(p0)⊆AQ(p0) \ {Qp0}�

Thus, if P 	Q and Q	 P , we get a contradiction: AP(p0)�AQ(p0)�AP(p0).



1946 M. PĘSKI AND J. TOIKKA

B.2. Proof of Part (c)

Take ν such that Pν ≤B ν. If P 	Q and P 	Q′, then by Theorem 2(c), Qν ≤B Pν and
Q′ν ≤B Pν. By inequality (A.2), for any λ ∈ (0�1),(

λQ+ (1 − λ)Q′)ν ≤B λQν+ (1 − λ)Q′ν ≤B Pν�

where the second inequality follows because ≤B is preserved under convex combinations
(see footnote 11). The claim now follows by Theorem 2(c).

APPENDIX C: PROOF OF COROLLARY 5

C.1. Proof of Part (a)

Constructing the game g is easy. Say, let A= B = {0�1}. Fix s0 ∈ S such that πP(s0) ≤
1/2 and define u : {0�1} × S→ R by

u(x� s)=

⎧⎪⎨
⎪⎩

0 if x= 1�
1 if x= 0 and s = s0�

−2 if x= 0 and s 
= s0�

Define g :A×B× S→ R by g(a�b� s)= u(a� s)− u(b� s).
We note first that v(πP;g� I)= 0. This follows, since for any p ∈ �S,

ĝ(p)= ĝ(ep)= max
a

∑
s

p(s)u(a� s)− max
b

∑
s

p(s)u(b� s)= 0�

which implies v(πP;g� I)= cav ĝ(πP)= 0 by Theorem 1.
We then argue that v(g�P) > 0. Note that given prior p, the minimizer’s best-response

is to play b = 0 if and only if p(s0) ≥ 2/3 > πP(s0). Suppose the maximizer plays a =
0 if s = s0 and p(s0) < 2/3; otherwise he plays the same (non-revealing) action as the
minimizer. Whenever both players play the same action, the payoff is zero by construction.
But the maximizer earns 1 whenever the actions differ. It is easy to verify that this happens
in a positive fraction of periods given the process for the minimizer’s prior induced by
the above strategy profile, because when the maximizer plays a non-revealing action, the
belief drifts towards πP by ergodicity of P . Thus, the payoff is bounded away from zero
for any δ > 0, and hence v(g�P) > 0.

C.2. Proof of Part (b)

Suppose I 	πP P . Because πP is an invariant distribution of both P and I, condition
(c) of Theorem 2′ implies that this is equivalent to condition (c′): for each ν ∈ �2S such
that Eν = πP , we have Pν ≤B ν. We show that (c′) is equivalent to condition (�): P =
λI + (1 − λ)DπP for some λ ∈ [0�1].

To see that (�) implies (c′), fix ν with Eν = πP and note that Pν = λν+ (1 −λ)πP . Then
Pν ∗m= ν for m such that m(πP)= ν and m(p)= ep for p 
= πP .

Suppose then that (c′) holds. We show first that for eachp ∈ �S, there exists λp ∈R such
that Pp= λpp+ (1 −λp)πP . Indeed, choose any belief p ∈ �S \ {πP}. Take p′ ∈ �S \ {πP}
such that πP = αp + (1 − α)p′ for some α ∈ (0�1). Such p′ exists because πP has full
support by ergodicity of P . Then p and p′ lie on a line passing through πP , and they lie on
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the opposite sides of πP . Abusing terminology, we say that such p and p′ are co-linear. Let
ν = αep + (1 − α)ep′ . Then, Pν = αePp + (1 − α)ePp′ . Because Eν = πP , we have Pν ≤B ν,
and thus Pp and Pp′ lie on the same line as p and p′. But then there exists λp ∈ R such
that Pp= λpp+ (1 − λp)πP .

We then show that λp = λp′ = λ for all p�p′ ∈ �S \{πP} for some λ ∈ R. The linearity of
P shows that λp = λp′ for all co-linear p and p′. Suppose that p and p′ are not co-linear.
Take q= 1

2p+ 1
2p

′. Then Pq= 1
2Pp+ 1

2Pp
′, or equivalently,

1
2
(
λqp+ (1 − λq)πP

)+ 1
2
(
λqp

′ + (1 − λq)πP
)

= 1
2
(
λpp+ (1 − λp)πP

)+ 1
2
(
λp′p′ + (1 − λp′)πP

)
�

It follows that
1
2
(λq − λp)(p−πP)= −1

2
(λq − λp′)

(
p′ −πP

)
�

Because p and p′ are not co-linear, it must be that λp = λp′ = λq.
Finally, we show that λ ∈ [0�1]. If λ > 1, then Pes /∈ �S for all s. If λ < 0, take co-linear

p and p′ such that πP = αp+ (1 − α)p′ and λ(1 − α) <−α. Then,

Pp= πP + λ(p−πP)= (α+ λ(1 − α))p+ (1 − α− λ(1 − α))p′ /∈ con
{
p�p′}�

contradicting Pν ≤B ν for ν = αep + (1 − α)ep′ . Hence, λ ∈ [0�1], establishing (�).
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