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IN THIS SUPPLEMENT, we provide detailed accounts of the comparative statics result for
non-zero-sum games mentioned in the Introduction and of the extensions discussed in
Section 5 of the main text. We also provide some counterexamples and discuss the rela-
tionship of Theorem 1 to the results in Renault and Venel (2017).

Section S.1 contains the application to non-zero-sum games. The sections that follow
consider imperfect public monitoring of actions (Section S.2), games with public infor-
mation about the state (Section S.3), and comparison of operators for a fixed discount
factor (Section S.4). In Section S.5, we show that the polynomial characterization implied
by Corollary 2 does not extend to operators with complex eigenvalues. And in Section S.6,
we show that P �Q does not necessarily imply a ranking of the minimizer’s information
under the corresponding optimal information structures. We conclude in Section S.7 by
discussing the connection to Renault and Venel (2017).

We use the same notation as in the main text. All numbered objects such as Sections,
Theorems, and equations are numbered S.1, S.2, etc. in this supplement. Numbers without
the prefix S refer to those in the main text.

S.1. APPLICATION TO REPEATED NON-ZERO-SUM GAMES

The partial order � can be used to characterize how the limit equilibrium payoff set
depends on the persistence of types in a class of repeated non-zero-sum games.

Specifically, let u : C×Θ→ R2 be a two-player game of incomplete information, where
C = ×2

i=1Ci is the finite set of action profiles and Θ = ×2
i=1Θi is the finite set of type

profiles. We assume that u has private values, that is, that ui(c�θ) = ui(c�θi) for all
(c�θ) ∈ C ×Θ, i= 1�2.1

A repeated Bayesian game with Markovian types consists of the infinite repetition of a
private-value game u, with the players’ types following independent Markov chains gov-
erned by ergodic stochastic operators Pi : �Θi → �Θi, i = 1�2. (That is, we have “inde-
pendent private values.”) In each period, each player i first privately observes his current
type θi ∈ Θi and then chooses an action ci ∈ Ci simultaneously with the other player.
Both players observe the realized action profile c ∈C. Payoffs are given by the discounted
average stage-game payoffs (1−δ)∑∞

t=0 δ
tu(ct� θt). Following the literature, we allow un-

mediated communication by augmenting the game with a round of simultaneous cheap
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1The restriction to two players ensures that the minmax value defined by (S.1) is indeed the value of a zero-

sum game. With more than two players, the actions of players other than i should be chosen independently.
Handling this requires additional analysis, which we leave for future investigations.
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talk in each period after the players have learned their types, but before they choose ac-
tions.

Let P = (P1�P2), and let πP = (πP1�πP2) ∈ �Θ1 × �Θ2 denote the stationary distribu-
tion of types. Consider an auxiliary static mechanism design problem with quasilinear
transfers where feasible allocations are given by C, allocation utilities are given by u, and
the type distribution is πP . Let W (u�P) ∈ R2 denote the set of incentive-feasible payoffs,
defined as the set of expected allocation utility vectors (i.e., expected payoff profiles net
of transfer payments) that can be implemented in a Bayesian Nash equilibrium with some
quasilinear transfers.2 Note that, by definition, W (u�P) depends on P only through πP .

Define player i’s limit minmax value as

wi = lim
δ→1

min
σ−i

max
σi

Eσ
[
(1 − δ)

∞∑
t=0

δtui(ct� θi�t)

]
� (S.1)

where the expectation is with respect to the probability measure over histories induced by
the strategy profile σ = (σi�σ−i) and the type process. Let

W ∗(u�P)= {w ∈W (u�P) :wi ≥wi for all i
}
	

Hörner, Takahashi, and Vieille (2015), Theorem 4 showed that if the interior of
W ∗(u�P) is nonempty and an additional non-degeneracy assumption (their Assumption
A1 on page 1815) is satisfied, then the sets of Bayes-Nash and sequential equilibrium pay-
offs converge to W ∗(u�P) as δ→ 1. Given operators P = (P1�P2), let U(P) denote the
set of finite stage games u with private values such that the nonempty-interior and non-
degeneracy assumptions are satisfied. Then W ∗(u�P) is the limit equilibrium payoff set
given any P and u ∈U(P), and we have the following comparative statics:

PROPOSITION S.1: For any pairs of ergodic operators P = (P1�P2) and Q = (Q1�Q2) on
�Θ1 × �Θ2, we have W ∗(u�Q) ⊆W ∗(u�P) for every stage game u ∈ U(P) ∩U(Q) if and
only if Pi �Qi for i= 1�2.

That is, the limit equilibrium payoff set increases (in the sense of set inclusion) as types
are made more persistent, or smaller, according to the partial order �. This follows be-
cause a player can be punished more effectively when his type is more persistent and thus
more predictable.

More precisely, suppose that Pi � Qi for i = 1�2. By Corollary 1, we then have
πP = (πP1�πP2) = (πQ1�πQ2) = πQ. Because the set W (u�P) of incentive-feasible pay-
offs depends only on the stationary distribution, this implies that the difference between
W ∗(u�P) and W ∗(u�Q) is only due to differences in the minmax values defined by (S.1).
But, by inspection, wi is the (limit) value of a stochastic zero-sum game with incomplete
information, where S =Θi and (g�A�B)= (ui�Ci�C−i). Therefore, each wi is lower un-
der Pi than under Qi by definition of �, which implies W ∗(u�Q)⊆W ∗(u�P).

The fact that each stage game u is required to satisfy the nonempty-interior and non-
degeneracy assumptions of Hörner, Takahashi, and Vieille (2015) generates some addi-
tional work in the proof of the converse. The idea is to show first that if W ∗(u�Q) ⊆

2Hörner, Takahashi, and Vieille (2015) showed that W (u�P) can be characterized as follows: Let E = {e ∈
R2 : ‖e‖ = 1}. For each e ∈ E, let N(e)= {i : ei > 0}, and define k(e)= max

∫
e · u(ρ(θ)�θ)dπP(θ), where the

maximum is over allocation rules ρ : ×i∈N(e)Θi → C . Then W (u�P)=⋂e∈E{w ∈R2 : e ·w≤ k(e)}.
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W ∗(u�P) for all stage games u ∈ U(P) ∩ U(Q), then πP = πQ. This follows by noting
that if πP �= πQ, then it is possible to construct a simple game u for which W ∗(u�Q) �
W ∗(u�P). But given that the stationary distribution under P is the same as under Q, the
set inclusion W ∗(u�Q)⊆W ∗(u�P) is equivalent to the minmax values being lower under
P than under Q. The conclusion that Pi �Qi for i= 1�2 then follows from the definition
of � by showing that the restriction u ∈U(P)∩U(Q) still allows for a sufficiently rich set
of “test games.” See the proof below for details.

REMARK S.1: The result of Hörner, Takahashi, and Vieille (2015) applies also to imper-
fect public monitoring games where monitoring has product structure and certain identi-
fiability conditions are satisfied. Using results from Section S.2 of this supplement, Propo-
sition S.1 can be shown to extend, as stated, to this larger class of games.

S.1.1. Proof of Proposition S.1

Given the above discussion, it remains to show that W ∗(u�Q) ⊆ W ∗(u�P) for all u ∈
U(P)∩U(Q) implies Pi �Qi, i= 1�2.

Preliminaries. We make two preliminary observations. First, we note that given any er-
godic operators P = (P1�P2) and any fixed number of actions for the players, the non-
degeneracy assumption of Hörner, Takahashi, and Vieille (2015) holds for an open and
dense set of games. For k� l ∈N, let Uk�l = Rkl(|Θ1|+|Θ2|) be the set of games u : C×Θ→ R2

with private values such that |C1| = k and |C2| = l. Let U0
k�l(P)⊆Uk�l be the nonempty set

of games u that satisfy Assumption A1 of Hörner, Takahashi, and Vieille (2015), p. 1815.
Take any u ∈U0

k�l(P). Assumption A1 is a requirement that u does not satisfy certain lin-
ear equalities (since the relative values are linear in u). Hence, it continues to hold for
any u′ sufficiently close to u, showing that U0

k�l(P) is open in Uk�l. To show denseness, let
u ∈Uk�l and u′ ∈U0

k�l(P). Define uλ = λu′ + (1 − λ)u ∈Uk�l for λ ∈ (0�1). Then we have
uλ ∈ U0

k�l(P) for all λ small enough, because the linear equalities in Assumption A1 for
uλ are a convex combination of the equalities for u and u′, and they do not hold for the
latter. This implies that U0

k�l(P) is dense in Uk�l.
Second, we note that the set W ∗(u�P) varies continuously with u, implying that the

set of games u for which W ∗(u�P) has a nonempty interior is open in Uk�l. Indeed, the
setW (u�P) of incentive-feasible payoffs varies clearly continuously with u. Furthermore,
the limit minmax value wi can be viewed as the value of a stochastic zero-sum game
with incomplete information, which is continuous in payoffs by the characterization in
Theorem 1.

Equivalence of stationary distributions. We then show that W ∗(u�Q)⊆W ∗(u�P) for all
u ∈ U(P) ∩U(Q) implies πP = πQ. Suppose to the contrary that πP �= πQ. Without loss
of generality, let πP1 �= πQ1 . Fix θ̂1 ∈Θ1 such that πQ1(θ̂1) > πP1(θ̂1).

Let û ∈U2�2 be the game depicted in Figure 1. (Note that only player 1’s payoff depends
on his type.) By inspection, the minmax value is zero for both players. The expected payoff

L R

T 1{θ1 = θ̂1}�1 0�1

B 1{θ1 = θ̂1}�0 0�0

FIGURE 1.—Game û.
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under πQ from playing (T�L) regardless of the type profile is (πQ1(θ̂1)�1), and hence
(πQ1(θ̂1)�1) ∈W ∗(û�Q). On the other hand, the highest feasible payoff to player 1 under
πP is similarly obtained by playing (T�L) and it equals πP1(θ̂1) < πQ1(θ̂1). We conclude
that W ∗(û�Q)�W ∗(û�P). However, we are not quite done yet, since û is not necessarily
in U(P)∩U(Q).

Observe that W ∗(û�P) and W ∗(û�Q) have nonempty interiors. (Indeed, we have
W ∗(û�P) = con{(0�0)� (0�1)� (πP1(θ̂1)�0)� (πP1(θ̂1)�1)}, and similarly for W ∗(û�Q).)
Moreover, W ∗ varies continuously with the game on U2�2. We can thus choose from the
open and dense set U0

2�2(P) ∩ U0
2�2(Q) ⊆ U2�2 a game u close enough to û so that the

interiors of W ∗(u�P) and W ∗(u�Q) are nonempty and W ∗(u�Q) �W ∗(u�P). But then
u ∈U(P)∩U(Q), a contradiction. Therefore, πP = πQ.

Ranking of operators. Since πP = πQ and W (u�P) depends on P only through the sta-
tionary distribution, we have, for each u, W ∗(u�Q) ⊆ W ∗(u�P) if and only if the min-
max values satisfy wi(u�P) ≤ wi(u�Q) for i = 1�2. We complete the proof by showing
that if Pi � Qi for some player i, then there exists a game u ∈ U(P) ∩ U(Q) such that
wi(u�P) > wi(u�Q), contradicting W ∗(u�Q)⊆W ∗(u�P).

To this end, suppose without loss of generality that P1 �Q1. By definition of �, there
exist ε > 0 and a zero-sum game g :A× B × S → R, with S = Θ1, such that v(g�P1) >
v(g�Q1) + 2ε. Let ḡ = maxa�b�s |g(a�b� s)|. Construct a stage game as follows. Let C1 =
A∪ {c′

1} and let C2 = B ∪ {c′
2}. Define u : C ×Θ→ R2 by setting

u(c�θ)= (u1(c1� c2� θ1)�u2(c1� c2� θ2)
)=

⎧⎪⎨
⎪⎩
(
g(c1� c2� θ1)�0

)
if (c1� c2) ∈A×B�

(−ḡ− 1�0) if c1 = c′
1�

(ḡ+ 1�1) if c2 = c′
2 and c1 �= c′

1	

We observe first that, for any ergodic operators R= (R1�R2), player 1’s minmax value
satisfies w1(u�R) = v(u1�R1) = v(g�R1) ∈ [−ḡ� ḡ]. Indeed, player 1’s action c′

1 is domi-
nated by each a ∈A, and player 2’s action c′

2 is dominated by each b ∈ B for the purposes
of minimizing player 1’s payoff. Such inferior actions do not affect the value by inspection
of formula (3.2) in Theorem 1. We note also that w2 = 0.

We claim that intW ∗(u�R) �= ∅ for any ergodic R. Fix some (a�b) ∈A×B. Then∫
u(a�b�θ)dπR(θ)=

(∫
g(a�b�θ1)dπR1(θ1)�0

)
= (w�0)�

where the last equality defines w ∈ [−ḡ� ḡ]. Thus,

con
{
(−ḡ− 1�0)� (w�0)� (ḡ+ 1�1)

}⊆W (u�R)�
where the set on the left has a nonempty interior, and hence so does W (u�R). More-
over, the minmax payoffs (v(g�R)�0) are strictly worse for both players than the highest
feasible payoffs (ḡ + 1�1), implying that the interior of W ∗(u�R) is nonempty as well.
Therefore, the interiors of W ∗(u�P) and W ∗(u�Q) are nonempty.

To conclude the proof, we recall that U0
|A|+1�|B|+1(P) ∩ U0

|A|+1�|B|+1(Q) is dense in
U|A|+1�|B|+1. Hence, there exists u′ ∈U0

|A|+1�|B|+1(P)∩U0
|A|+1�|B|+1(Q) close enough to u such

that (i) intW ∗(u′�R) �= ∅ for R ∈ {P�Q}, and (ii) we have

w1

(
u′�P

)= v(u′
1�P1

)
> v(u1�P1)− ε= v(g�P1)− ε�
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and

w1

(
u′�Q

)= v(u′
1�Q1

)
< v(u1�Q1)+ ε= v(g�Q1)+ ε�

where (i) follows by our preliminary observation about the continuity of W ∗ in payoffs,
and (ii) follows because the value is continuous in payoffs by the characterization in The-
orem 1. But (ii) and the choice of g imply

w1

(
u′�P

)
> v(g�P1)− ε > v(g�Q1)+ ε >w1

(
u′�Q

)
�

whereas (i) and the choice of u′ imply u′ ∈U(P)∩U(Q), as desired. Proposition S.1 now
follows.

S.2. IMPERFECT PUBLIC MONITORING

In this section, we extend the model to incorporate imperfect public monitoring of
actions. To do so, we assume that the minimizer only observes a signal z that is drawn
from a distribution Fa ∈ �Z over some finite set Z. The distribution Fa depends on the
maximizer’s action a, but not on the minimizer’s own action. The signal is public, that is,
it is also observed by the maximizer. The observability of the minimizer’s actions plays
no role in the analysis, and hence we remain agnostic about what the maximizer observes
about them.

A zero-sum game g and monitoring structure F = ({Fa}a∈A�Z) define an imperfect
monitoring game (g�F). A stochastic imperfect monitoring game (δ�π�g�F�P) is de-
fined as the infinite repetition of the game (g�F) analogously to the case of perfect mon-
itoring considered in the main text. Let v(π;g�F�P) be the limit value of the stochastic
imperfect monitoring game as δ→ 1.

The definition of the auxiliary game ĝ in (3.1) has to be adjusted to account for the
noisy monitoring. To this end, fix a game (g�F). For each stage-game strategy α : S→ �A
and each prior p, let να�pF ∈ �2S be the distribution over posteriors induced by the strategy
α and the signal F . (More precisely, for each signal z, define qα�pF (z) ∈ �S as the posterior
after signal z. That is, for each s,

q
α�p
F (s;z)=

∑
a

Fa(z)p(s)α(a|s)
∑
a�s′
Fa(z)p

(
s′
)
α
(
a|s′) 	

We then define να�pF (q)=∑a�s�z 1{qα�pF (z)= q}Fa(z)α(a|s)p(s) for each q.)
Given ν ∈ �2S, let p= Eν and define

ĝF(ν)= min
β

max
α:να�pF ≤Bν

∑
s

p(s)g
(
α(s)�β� s

)
	 (S.2)

(We show below that the minimum and the maximum exist.) The function ĝF plays the
same role as ĝ in the main text; the two coincide if monitoring is perfect. Given a prior
p and a mean-preserving spread m, we can still interpret ĝF(m(p)) as the value of an
auxiliary one-shot game, with prior p, where the minimizer chooses his action and then
observes an exogenous signal about the state leading to the distribution of his posteriors
being m(p), and the maximizer is restricted to playing a strategy that reveals no more
information (in the Blackwell sense) than the signal.

We then have the following generalization of Theorem 1.
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THEOREM S.1: For every initial distribution π, every imperfect monitoring game (g�F),
and every operator P ,

v(π;g�F�P)= max
(μ�m)∈�2S×M :ψπ�P≤Bμ and P(μ∗m)≤Bμ

∫
ĝF
(
m(p)

)
dμ(p)	 (S.3)

The proof can be found below.
We can now extend the comparison of operators to imperfect monitoring games.

DEFINITION S.1: For any initial distribution π and any operators P and Q, we say that
Q is better for the informed player than P given π, or P �∗

π Q, if for every imperfect monitor-
ing game (g�F), v(π;g�F�P) ≤ v(π;g�F�Q). If P and Q are ergodic, then the relation
�∗
π is independent of π and we denote it by �∗.

Note that the above definition requires the comparison of values to hold for each game
g and each monitoring structure F .3 In particular, because perfect monitoring is a special
case of F , we have the following relationship.

FACT S.1: P �∗
π Q implies P �π Q.

Given Definition S.1, Theorem 2′ holds as stated in the main text if we replace �π with
�∗
π in condition (a); we include the ergodic case here as (d) for completeness.

THEOREM S.2: For any π ∈ �S and operators P and Q, the following are equivalent:
(a) P �∗

π Q.
(b) ψπ�Q ≤B ψπ�P and for every pair (μ�m) ∈ �2S × M such that ψπ�P ≤B μ and P(μ ∗

m)≤B μ, we have Q(μ ∗m)≤B μ.
(c) ψπ�Q ≤B ψπ�P and for every ν ∈ �2S such that ψπ�P ≤B ν and Pν ≤B ν, we have Qν ≤B

Pν.
If P and Q are ergodic, then each of the above conditions is equivalent to

(d) For every ν ∈ �2S such that Pν ≤B ν, we have Qν ≤B Pν.

The equivalence of (b) and (c) (and of (d), if P and Q are ergodic) is unaffected since
these conditions only involve the initial distribution π and the operators P and Q. That
(b) implies (a) follows since (b) amounts to saying that the feasible set in (S.3) under P is
a subset of that underQ. The other direction follows because, by Fact S.1, P �∗

π Q implies
P �π Q, which in turn implies (b) by Theorem 2′.

The rest of this section presents the proof of Theorem S.1. The main difficulty in ex-
tending the proof of Theorem 1 from the main text is the fact that we do not know whether
the function ĝF : �2S→ R defined by (S.2) is continuous. However, the proof of Theorem
1 relies on continuity of ĝ in only two places. First, it is used to find a measurable optimal
revelation strategy. Second, it is used in the proof of Lemma 4 to establish the existence
of a maximizer to the value problem. We show below that, with some more care, both of
these issues can be addressed.

3The alternative would be to somehow fix a monitoring structure F and only vary the game (g�A�B).
But we find Definition S.1 to be a more natural way to extend Definition 1 from the main text to imperfect
monitoring games. First, it is not immediately clear how to fix the monitoring structure independently of the
game, because in order to specify the monitoring structure F , one needs to know the action space A, which
is part of the definition of the game g. Second, this definition treats the monitoring structure and the payoff
function symmetrically.
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S.2.1. Preliminaries

Fix an initial distribution π, an imperfect monitoring game (g�F), and an operator P .
We start with preliminary definitions and results, which culminate in showing that ĝF is
upper semi-continuous.

Given a stage-game strategy α ∈ (�A)S and prior p ∈ �S, let φα�pF ∈ �(S ×A×Z) be
the induced distribution over states, actions, and signals defined by

φ
α�p
F (s�a� z)= p(s)α(a|s)Fa(z)	

We record the following observation for future reference; the proof is immediate from
the definition.

LEMMA S.1: The map (α�p) �→φ
α�p
F is continuous in the weak topology.

Given φ ∈ �(A × S × Z), let φS = margSφ. That is, φS(·) = ∑
a�z φ(·� a� z). The

marginals φZ and φS×Z are defined analogously. Let φ(·|z) ∈ �(S ×A) denote the con-
ditional distribution given z ∈Z. The marginal φS(·|z) on S is defined as above.

For each φ ∈ �(S × A × Z), let ψ(φ) ∈ �2S be the induced distribution of φS(·|z).
(That is, if q=φS(·|z) for some z, then q has probability φZ(z) under ψ(φ); otherwise q
is assigned zero probability.) Notice that να�pF =ψ(φα�pF ).

LEMMA S.2: The map φ �→ψ(φ) is continuous in the weak topology.

PROOF: For any continuous f : �S→ R and any φ ∈ �(S ×A×Z), we have∫
f (q)dψ(q|φ)=

∑
s�z:φZ(z)>0

f

(
φS×Z(s� z)
φZ(z)

)
φZ(z)�

where the right-hand side is continuous in φ. Q.E.D.

Define the correspondence A : �2S⇒ (�A)S by

A(ν)= {α ∈ (�A)S : να�EνF ≤B ν
}
	

A(ν) is the set of strategies that reveal no more information than ν given prior Eν.

LEMMA S.3: A is upper hemi-continuous and nonempty, compact, and convex-valued.

PROOF: A is nonempty-valued, since any strategy α that always plays the same action
independently of the state satisfies να�EνF = eEν ≤B ν for every ν.

Take a sequence νn and αn ∈ A(νn) such that νn → ν and αn → α for some α. Let
pn = Eνn. Then, pn → p= Eν, and for any concave f : �S→ R,∫

f (q)dψ
(
q|φαn�pnF

)= ∫ f (q)dν
αn�pn
F (q)≤

∫
f (q)dνn(q)	

The right-hand side converges to
∫
f (q)dν(q) as n→ ∞. The left-hand side converges to∫

f (q)dψ(q|φα�pF ) by Lemmas S.1 and S.2, showing that A is u.h.c. Taking νn = ν for all n
shows that A is compact-valued, since (�A)S is a bounded set in RS .
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To see convexity, let α0�α1 ∈ A(ν) and γ ∈ (0�1). Define α = γα0 + (1 − γ)α1. Let-
ting p = Eν, we then have ναi�pF ≤B ν for i = 1�2. Because the Blackwell ordering is pre-
served under convex combinations, this implies γνα0�p

F + (1 − γ)ν
α0�p
F ≤B ν. Note that

γν
α0�p
F + (1 − γ)ν

α1�p
F is the distribution of posteriors if the minimizer first observes

i = 0 with probability γ and i = 1 with probability (1 − γ), and then observes a sig-
nal generated by the correspoding strategy αi. Because this provides more information
than simply observing the signal generated by strategy α = γα0 + (1 − γ)α1, we have
ν
α�p
F ≤B γν

α0�p
F + (1 − γ)να0�p

F . It follows that α ∈A(ν). Q.E.D.

Define the function g� : �(S ×A×Z)→ R by

g�(φ)= min
β

∑
a�s�z

g(a�β� s)φ(a� s� z)	

LEMMA S.4: g� is concave and continuous.

PROOF: Concavity follows from g�(φ) being the minimum over terms linear inφ. Con-
tinuity (also at the boundary of the domain) follows by the maximum theorem. Q.E.D.

LEMMA S.5: For every ν ∈ �2S and p= Eν,

max
α∈A(ν)

g�
(
φ
α�p
F

)= min
β∈�B

max
α∈A(ν)

∑
s

p(s)g
(
α(s)�β� s

)= ĝF(ν)	
In particular, the maxima and minima in the above statement are well-defined.

PROOF: The first maximum is well-defined because φ
α�p
F is continuous in α by

Lemma S.1, g� is continuous by Lemma S.4, and A(ν) is compact by Lemma S.3. The
first equality follows by definition of g� and the minmax theorem as A(ν) is convex by
Lemma S.3. The second equality is by definitions of ĝF and A(ν). Q.E.D.

LEMMA S.6: ĝF is upper semi-continuous on �2S.

PROOF: By Lemma S.5, for each ν ∈ �2S and p= Eν,

ĝF(ν)= max
α∈A(ν)

g�
(
φ
α�p
F

)
	

Take any sequence νn → ν. For each n, let pn = Eνn and let αn ∈ A(νn) be a solution to
the maximization problem on the right-hand side of the above equation for (νn�pn). By
Lemma S.3, there exists a subsequence (νnk�αnk) and ᾱ ∈ A(ν) such that αnk → ᾱ. By
continuity (Lemmas S.1 and S.4), we have g�(φ

αnk �pnk
F )→ g�(φ

ᾱ�p
F ). Therefore, ĝF(ν) =

maxα∈A(ν) g�(φ
α�p
F )≥ g�(φᾱ�pF ). Q.E.D.

S.2.2. Proof of Theorem S.1

We now show how the proof of Theorem 1 from the main text can be adapted to the
present setting.

The first step in the proof of Theorem 1 is Lemma 2, which gives a recursion for the
discounted value. We replace it with the following analogous result.
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LEMMA S.7: For every δ < 1, there exists a (measurable) mean-preserving spread mδ ∈M
such that for every p ∈ �S,

vδ(p;g�P)= (1 − δ)ĝF
(
m(p)

)+ δ∫ vδ(Pq;g�P)dm(q|p)	

PROOF: The standard recursive formula e.g., Mertens, Sorin, and Zamir (2015) implies
that

vδ(p;g�P)= max
α∈(�A)S

min
β∈�B

(1 − δ)
∑
a�s�z

φ
α�p
F (a� s� z)g(a�β� s)+ δ

∫
vδ(Pq;g�P)dνα�pF (q)	

The right-hand side is further equal to

max
ν∈�2S:Eν=p

max
α∈A(ν)

min
β∈�B

(1 − δ)
∑
a�s�z

φ
α�p
F (a� s� z)g(a�β� s)+ δ

∫
vδ(Pq;g�P)dνα�pF (q)

= max
ν∈�2S:Eν=p

(1 − δ)
[

max
α∈A(ν)

min
β∈�B

∑
a�s�z

φ
α�p
F (a� s� z)g(a�β� s)

]
+ δ

∫
vδ(Pq;g�P)dν(q)

= max
ν∈�2S:Eν=p

(1 − δ)ĝF(ν)+ δ
∫
vδ(Pq;g�P)dν(q)	

The second line follows because vδ(p;g�P) is concave in p and να�pF ≤B ν for every α ∈
A(ν) by definition. The third line follows by Lemma S.5. To see that the maximizer on
the last line can be selected to be a measurable function of p, note that in the first display
in the proof, the maximum theorem implies that the optimal α can be selected to be a
measurable function of p. The maximizer on the last line of the second display can be
obtained as a continuous function of this optimal α. Q.E.D.

The second step in the proof of Theorem 1 is Lemma 3. Because Lemma S.7 gives us
the existence of a measurable optimal revelation policy for each δ, this step goes through
without changes if ĝ is replaced with ĝF . (The proof is otherwise verbatim.)

The third step, which establishes the existence of an optimal (μ�m), requires one ad-
justment. Continuity of ĝ is invoked in the proof of Lemma 4 in display (6.6). But because
ĝF is upper semi-continuous by Lemma S.6, display (6.6) can be replaced by

lim sup
n→∞

∫
ĝF
(
mn(p)

)
dμn(p)≤

∫
ĝF(ν)dω(ν)≤

∫
ĝ
(
m∗(p)

)
dμ∗(p)	

The rest of the argument then goes through verbatim.
The fourth step, which finishes the proof, is completed exactly as in the main text.

S.3. PUBLIC SIGNALS

In this section, we extend the model to incorporate exogenous public information about
the state. For simplicity, we assume that actions are perfectly monitored (i.e., observed
without noise) and we restrict attention to ergodic operators.

We model public information by augmenting the game from the main text with an ex-
ogenous public signal observed at the beginning of the period before actions are chosen.
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More precisely, we assume that in each period, the two players observe a signal z ∈ Z
that is drawn from a distribution Fs ∈ �Z that depends on the current state s. The signal
provides the minimizer information about the state beyond what he can infer from the
maximizer’s past actions.

In what follows, we use the following terminology for the minimizer’s beliefs:
• the belief in the beginning of the period before observing the public signal is called

the prior;
• the belief after observing the public signal, but before actions are chosen, is called

the interim belief ;
• the belief after the maximizer’s action is observed is called the posterior.

Let v(g�P�F) denote the (limit) value given game g, ergodic operator P , and public
signal F = ({Fs}s∈S�Z).4 For each prior p and signal z, let qp(z) ∈ �Z be the interim belief
after observing signal z (i.e., qp(s|z)= Fs(z)p(s)∑

s′ Fs′ (z)p(s′)
). Let nF(p) ∈ �2Z be the distribution

of these interim beliefs (i.e., nF(q|p)=∑s�z 1{qp(z)= q}p(s)Fs(z)). Then the map p �→
nF(p) is a mean-preserving spread.

The following result generalizes the ergodic case of Theorem 1 from the main text.

THEOREM S.3: For every game g, every ergodic operator P , and every public signal F ,

v(g�P�F)= max
(μ�m)∈�2S×M :P(μ∗m)∗nF≤Bμ

∫
ĝ
(
m(p)

)
dμ(p)	 (S.4)

To interpret the constraint in (S.4), let μ be the distribution of interim beliefs so that,
given revelation policy m (which now maps interim beliefs to posteriors), the distribution
of posteriors is μ ∗m. The distribution of the next period’s priors is then P(μ ∗m), from
which the distribution of the next period’s interim beliefs, P(μ ∗m) ∗ nF , is obtained by
applying the exogenous mean-preserving spread nF induced by the public signal. For μ to
be an invariant distribution of interim beliefs under this process, we thus need P(μ ∗m) ∗
nF = μ. The constraint simply relaxes this to an inequality in the sense of the Blackwell
ordering analogously to Theorem 1 in the main text.

We can now describe how the value of the game to the informed player depends on the
operator as well as the public signal.

DEFINITION S.2: For any ergodic operators P and Q and any public signals F and G,
we say that (Q�G) is better for the informed player than (P�F), or (P�F) �Pub (Q�G), if
for every game g, v(g�P�F)≤ v(g�Q�G).

Note that the case F = G yields a comparison of operators for a fixed public signal.
Similarly, letting P =Q yields a comparison of public signals for a fixed operator.

THEOREM S.4: For any ergodic operators P and Q, and any public signals F and G, the
following are equivalent:

(a) (P�F)�Pub (Q�G).
(b) For every (μ�m) ∈ �2S×M, P(μ ∗m) ∗ nF ≤B μ implies Q(μ ∗m) ∗ nG ≤B μ.
(c) For every ν ∈ �2S such that Pν ∗ nF ≤B ν, we have Qν ∗ nG ≤B Pν ∗ nF .

4We are not aware of a suitable reference for the existence of v(g�P�F)= limδ→1 v
δ(π;g�P�F), but since

the operator P is ergodic, this can be established along the lines of the simple argument given for the ergodic
case (without a public signal) in Renault (2006).
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Condition (c) shows that the pair (Q�G) is better for the informed player than the
pair (P�F) if and only if the combined effect of the state transitioning from one period
to another and the public information released by the signal result in less information
being preserved under (Q�G) than under (P�F) given any distribution of posteriors ν
stabilizable under (P�F) (in the sense that Pν ∗ nF ≤B ν; such stabilizable ν are exactly
the ones that can arise as invariant distributions of posteriors).

EXAMPLE S.1: If P = Q =Dπ for some i.i.d. operator Dπ , then, for every ν, we have
Pν = Qν =Dπν = eπ . In this case, condition (c) simplifies to the requirement that eπ ∗
nG ≤B eπ ∗nF . Thus, having (Dπ�F)�Pub (Dπ�G) for all π ∈ �S is equivalent to the public
signal G being better than the public signal F in the usual Blackwell sense of comparing
signals for decision problems.

EXAMPLE S.2: Let F =G= F∗, where F∗ is the perfectly informative signal that reveals
the current state (i.e., Z = S and Fs(s)= 1 for all s). Then nF∗ maps each p ∈ �S to a dis-
tribution over Dirac measures es, s ∈ S, such that nF∗

(es|p)= p(s). Hence, if Pν∗nF ≤B ν,
then ν can put positive probability only to Dirac measures. On the other hand, we have
PEν = Eν, which implies Eν = πP . Thus ν(es)= πP(s). In other words, there is a unique
stabilizable ν, which corresponds to the minimizer always knowing the state. Moreover,
this stabilizable distribution is the same for all operators with the same invariant distribu-
tion and we see from (c) that such operators paired with F∗ form an equivalence class. In
particular, �Pub is not a partial order.

The rest of this section is devoted to the proofs of Theorems S.3 and S.4. The former
is a simple adaptation of the proof of Theorem 1 specialized to the ergodic setting. The
latter is more challenging than the proof of Theorem 2′ since the public signal makes it
harder to construct a game that shows the necessity of (b) for (a).

S.3.1. Proof of Theorem S.3

Fix a game g, ergodic operator P , and public signal F . The proof mostly follows that of
Theorem 1. The main difference is in the recursive formula where now, if p is the current
interim belief and m is the maximizer’s information revelation policy (mapping interim
beliefs to posteriors), the distribution of the next period’s interim beliefs is Pm(p) ∗ nF ,
whereas the relevant next-period distribution (that of priors) was Pm(p) without the pub-
lic signal. More precisely, we have the following formula.

LEMMA S.8: For every δ < 1 and every p ∈ �S,

vδ(p;g�P)= max
ν∈�2S:Eν=p

(1 − δ)ĝ(ν)+ δ
∫
vδ(q;g�P)d(Pν ∗ nF)(q)	 (S.5)

The proof is the same as that of Lemma 2 in the main text and hence omitted.
The recursive formula for the discounted value implies the following stationary charac-

terization for any discount factor. (This substitutes for the “almost stationary” formula in
Lemma 3 in the proof of Theorem 1, which does not rely on ergodicity.)

LEMMA S.9: For every δ < 1, there exist a distribution μ ∈ �2S and a mean-preserving
spread m ∈M such that P(μ ∗m) ∗ nF = μ and∫

vδ(p;g�P)dμ(p)=
∫
ĝ
(
m(p)

)
dμ(p)	
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PROOF: Let Σ(p) be the set of measures ν ∈ �2S that achieve the maximum in (S.5).
Notice that the objective function is continuous and concave in ν, since ĝ is concave.
Furthermore, the feasible set {ν : Eν = p} is convex and compact, and continuous as a
correspondence of p. It follows that the solution correspondence p �→ Σ(p) is upper
hemi-continuous with nonempty, compact, and convex values.

By Theorem 19.31 from Aliprantis and Border (2007), there exist a measurable se-
lection m : �S → �2S, m(p) ∈ Σ(p), and a probability distribution μ ∈ �2S such that
P(μ ∗m) ∗ nF = μ. By (S.5), we then have
∫
vδ(p;g�P)dμ(p)=

∫ (
(1 − δ)ĝ(m(p))+ δ∫ vδ(q;g�P)d(Pm(p) ∗ nF)(q))dμ(p)�

so the result follows from the invariance P(μ ∗m) ∗ nF = μ. Q.E.D.

Let V ⊆ �2S×M be the set of (μ�m) such that P(μ∗m)∗nF ≤B μ. The next result is a
simplified version of Lemma 4 from the main text. It shows that

∫
ĝ(m(p))dμ(p) attains

its supremum on V .

LEMMA S.10: There exists (μ∗�m∗) ∈ V such that∫
ĝ
(
m∗(p)

)
dμ∗(p)= sup

(μ�m)∈V

∫
ĝ
(
m(p)

)
dμ(p)	

PROOF: Take a sequence (μn�mn) ∈ V such that

lim
n→∞

∫
ĝ
(
mn(p)

)
dμn(p)= sup

(μ�m)∈V

∫
ĝ
(
m(p)

)
dμ(p)	

As in the proof of Lemma 4 in the main text, it is useful to view �2S ×M as a subset of
�3S by embedding it with the mapping ι : �2S ×M→ �3S such that for each continuous
function φ : �2S→ R, ∫

φ
(
m(p)

)
dμ(p)=

∫
φ(ν)dι(μ�m)(ν)	

Because �3S is compact, by moving to a subsequence if necessary, we can assume that
the sequence (μn�mn) converges. That is, there exists a distribution ω ∈ �3S such that
limn ι(μ

n�mn)=ω. Notice that for each continuous φ : �2S→ R,

lim
n→∞

∫
φ
(
mn(p)

)
dμn(p)= lim

n→∞

∫
φ(ν)dι

(
μn�mn

)
(ν)=

∫
φ(ν)dω(ν)	

Constructing (μ∗�m∗) exactly as in the proof of Lemma 4, we then have∫
ĝ
(
mn(p)

)
dμn(p)→

∫
ĝ(ν)dω(ν)

=
∫ (∫

ĝ(ν)dω(ν|Eν = p)
)
dμ∗(p)≤

∫
ĝ
(
m∗(p)

)
dμ∗(p)	
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It remains to show that (μ∗�m∗) ∈ V . One shows exactly as in the proof of Lemma 4 that
μn → μ∗ and μn ∗mn → μ∗ ∗m∗, which implies that P(μn ∗mn) ∗ nF → P(μ∗ ∗m∗) ∗ nF .
Therefore, if f is concave, then∫

f dP
(
μ∗ ∗m∗) ∗ nF = lim

n→∞

∫
f dP

(
μn ∗mn

) ∗ nF ≥ lim
n→∞

∫
f dμn =

∫
f dμ∗�

where the inequality follows since (μn�mn) ∈ V for all n. Thus, (μ∗�m∗) ∈ V . Q.E.D.

To complete the proof, we show first that v(g�P�F) is not larger than the right-hand
side of (S.3). By Lemma S.9, there are pairs (μδ�mδ) ∈ V , δ < 1, such that∫

vδ(p;g�P�F)dμδ(p)=
∫
ĝ
(
mδ(p)

)
dμδ(p)≤ max

(μ�m)∈V

∫
ĝ
(
m(p)

)
dμ(p)	

(The maximum exists by Lemma S.10.) The claim now follows since the left-hand side
tends (possibly along a subsequence) to v(g�P�F) as δ→ 1 by compactness of �2S.

Next, we show that v(g�P�F) is not smaller than the right-hand side of (S.3). By Lemma
S.10, the maximum on the right-hand side is attained by some (μ∗�m∗) ∈ V . By the recur-
sive formula (S.5), for each δ < 1 and p ∈ �S, we have

vδ(p;g�P�F)≥ (1 − δ)ĝ(m∗(p)
)+ δ∫ vδ(q;g�P�F)d(Pm∗(p) ∗ nF)(q)	

Taking expectations with respect to μ∗ gives∫
vδ(p;g�P�F)dμ∗(p)

≥ (1 − δ)
∫
ĝ
(
m∗(p)

)
dμ∗(p)+ δ

∫
vδ(q;g�P�F)d(P(μ∗ ∗m∗) ∗ nF)(q)

≥ (1 − δ)
∫
ĝ
(
m∗(p)

)
dμ∗(p)+ δ

∫
vδ(p;g�P�F)dμ∗(p)�

where the second line follows by concavity of vδ(p;g�P�F) in p as (μ∗�m∗) ∈ V . Thus,∫
vδ(p;g�P�F)dμ∗(p)≥

∫
ĝ
(
m∗(p)

)
dμ∗(p)	

The claim follows by taking the limit δ→ 1. This establishes Theorem S.3.

S.3.2. Proof of Theorem S.4

The proof follows similar ideas as the proof of Theorem 2′ in the main text. The main
difference lies in the part “(a) implies (b)” which is here considerably more complicated
due to the public signal.

We start with the equivalence of (b) and (c). To see that (b) implies (c), suppose Pν ∗
nF ≤B ν. Then Pν ∗nF ∗m= ν for somem ∈M, and P(Pν ∗nF ∗m) ∗nF = Pν ∗nF . Thus,
taking μ= Pν ∗ nF , (b) implies Q(Pν ∗ nF ∗m) ∗ nG ≤B Pν ∗ nF , or Qν ∗ nG ≤B Pν ∗ nF . In
the other direction, suppose P(μ ∗m) ∗ nF ≤B μ. Then P(μ ∗m) ∗ nF ≤B μ ∗m, so, taking
ν = μ ∗m, (c) implies Q(μ ∗m) ∗ nG ≤B P(μ ∗m) ∗ nF ≤B μ.
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We then turn to the equivalence of (a) and (b). That (b) implies (a) follows immediately
from Theorem S.3 since by (b), any (μ�m) that is feasible in the maximization problem
in (S.4) given (P�F) is also feasible given (Q�G).

We show that (a) implies (b) by establishing the contrapositive. In negation of (b), let
(μ0�m0) ∈ �2S×M be such that P(μ0 ∗m0)∗nF ≤B μ0 andQ(μ0 ∗m0)∗nG �B μ0. Then,
there exists a concave function f : �S→ R such that∫

f dμ0 −
∫
f d
(
Q(μ0 ∗m0) ∗ nG)> 0

≥ sup
(μ�m):Q(μ∗m)∗nG≤Bμ

∫
f dμ−

∫
f d
(
Q(μ ∗m) ∗ nG)	 (S.6)

We will construct a sequence of zero-sum games gn such that

lim
n→∞

v(gn�P�F)≥
∫
f dμ0 −

∫
f d
(
Q(μ0 ∗m0) ∗ nG)

> sup
(μ�m):Q(μ∗m)∗nG≤Bμ

∫
f dμ−

∫
f d
(
Q(μ ∗m) ∗ nG)= lim

n→∞
v(gn�Q�G)	

Then for n large enough, v(gn�P�F) > v(gn�Q�G), contradicting (a) as desired.
Define the function f ∗ : �S→R by

f ∗(p)=
∫
f (q)dnG(q|p)=

∑
z�s

f
(
qp(z)

)
Fs(z)p(s)	

We show that f ∗ is concave. Indeed, take any λ ∈ (0�1) and p0�p1 ∈ �S and let p =
λp0 + (1 − λ)p1. Notice that

f ∗(p)=
∑
z

f
(
qp(z)

)∑
s

Fs(z)p(s)

=
∑
z

f

(
λp0(z)

p(z)
qp0(z)+ (1 − λ)p1(z)

p(z)
qp1(z)

)
p(z)

≥
∑
z

(
λp0(z)

p(z)
f
(
qp0(z)

)+ (1 − λ)p1(z)

p(z)
f
(
qp1(z)

))
p(z)

=
∑
z

(
λp0(z)f

(
qp0(z)

)+ (1 − λ)p1(z)f
(
qp1(z)

))
= λf ∗(p0)+ (1 − λ)f ∗(p1)�

where we write p(z)=∑s Fs(z)p(s) (with analogous notation for priors p0 and p1) and
use the observation that qp(z)= λp0(z)

p(z)
qp0(z)+ (1−λ)p1(z)

p(z)
qp1(z).

Because f ∗ and f are concave and �S is compact, there exist sequences of finite sets
An�Bn of affine functions l : �S → R such that f ∗(p) = lim mina∈An a(p) and f (p) =
lim minb∈Bn b(p), where convergence is uniform in p. Let f ∗

n (p) = mina∈An a(p) and
fn(p)= minb∈Bn b(p).
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We now construct the sequence of games (An�Bn�gn). Recall that for each affine func-
tion l, there are constants gls, s ∈ S, such that l(p)=∑s g

l
sps. (Since

∑
s ps = 1, this allows

for an additive constant term in l(p).) Define gn :An ×Bn × S→R by

gn(a�b� s)= gbs − a(Qes)	
(Each gn depends on n only through An�Bn.) Then for each β ∈ �B and q ∈ �S,

max
a∈An

gn(a�β�q)=
∑
b�s

β(b)q(s)gbs − min
a
a(Qq)=

∑
b�s

β(b)q(s)gbs − f ∗
n (Qq)	

Thus, for each μ ∈ �2S and m ∈M, we have∫
ĝn
(
m(p)

)
dμ(p)=

∫ (
min
β∈�Bn

∫ ∑
b�s

β(b)q(s)gbs dm(q|p)−
∫
f ∗
n (Qq)dm(q|p)

)
dμ(p)

=
∫

min
b∈Bn

∑
s

gbs p(s)dμ(p)−
∫
f ∗
n (Qp)d(μ ∗m)(p)

=
∫
fn(p)dμ(p)−

∫
f ∗
n (p)dQ(μ ∗m)(p)	

Letting n→ ∞ gives

lim
n→∞

∫
ĝn
(
m(p)

)
dμ(p)=

∫
f (p)dμ(p)−

∫
f (p)d

(
Q(μ ∗m) ∗ nG)(p)�

where we have used the definition of f ∗. Because P(μ0 ∗m0)∗nF ≤B μ0, Theorem S.3 and
the first inequality in (S.6) imply that there exists ε > 0 such that for any n large enough,

v(gn�P�F)≥
∫
ĝn
(
m0(p)

)
dμ0(p) > ε > 0	

On the other hand, by the uniform convergence of fn to f and f ∗
n to f ∗, we have

0 ≥ sup
(μ�m):Q(μ∗m)∗nG≤Bμ

∫
f dμ−

∫
f d
(
Q(μ ∗m) ∗ nG)

= sup
(μ�m):Q(μ∗m)∗nG≤Bμ

∫
f dμ−

∫
f ∗ dQ(μ ∗m)

= lim
n→∞

sup
(μ�m):Q(μ∗m)∗nG≤Bμ

∫
fn dμ−

∫
f ∗
n d
(
Q(μ ∗m) ∗ nG)= lim

n→∞
v(gn�Q�G)	

Thus, for n large enough, v(gn�Q�G) < ε < v(gn�P�F) as desired.

S.4. DISCOUNTED GAMES

In this section, we consider comparison of operators in discounted games. This is diffi-
cult in general because the discounted value vδ(π;g�P) is not easy to characterize. Never-
theless, we show here that in any stochastic game of incomplete information (δ�π�g�P),
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if π is an invariant distribution of P , then making information less persistent by “adding
noise” from the invariant distribution π is good for the informed player (i.e., it weakly
increases the value).

Recall that Dπ denotes the i.i.d. operator that maps every belief p ∈ �S to π.

THEOREM S.5: Fix any operator P . Then, for every discount factor δ, every invariant dis-
tribution π of P , and every game g,

vδ(π;g�P)≤ vδ(π;g�λP + (1 − λ)Dπ

)
for all λ ∈ [0�1]	

Some remarks are in order. First, notice that P is not assumed to be ergodic. Indeed,
when δ < 1, the value will typically depend on the initial distribution even if P is ergodic.
Instead, it is the requirement that the game be started from some invariant distribution
of P that provides just enough stationarity for the proof.

Second, for the limit value of the game under an ergodic operator P , a result analogous
to Theorem S.5 is given by Corollary 2(a) from the main text, which implies that v(g�P)≤
v(g�λP + (1 − λ)DπP ) for every game g and every λ ∈ [0�1].

Third, we note that setting λ= 0 in Theorem S.5 shows, as expected, that an i.i.d. oper-
ator is the best case for the informed player even with discounting.

With only two states, the seemingly special case covered by Theorem S.5 allows us to
rank all operators with positive eigenvalues and a common invariant distribution.

COROLLARY S.1: Let |S| = 2. Suppose operators P and Q have a common invariant dis-
tribution π and nonnegative smallest eigenvalues φP and φQ. Then, for every discount factor
δ and every game g, vδ(π;g�P)≤ vδ(π;g�Q) if and only if φP ≥φQ.

PROOF: It is easy to verify that if φP ≥φQ ≥ 0, then we have Q= λP + (1 − λ)Dπ for
some λ ∈ [0�1]. Similarly, φP <φQ implies P = λQ+ (1 − λ)Dπ for some λ ∈ [0�1). The
claim thus follows from Theorem S.5. Q.E.D.

EXAMPLE S.3: Consider Example 1 from the main text. The above corollary allows us
to rank all operators such that ρ ≥ 1

2 . In particular, the value is decreasing in ρ on [ 1
2 �1]

for any discount factor, provided that the initial distribution π is the invariant distribution
( 1

2 �
1
2).

S.4.1. Proof of Theorem S.5

Fix a stochastic game of incomplete information (δ�π�g�P), where π is an invariant
distribution of P , and fix λ ∈ [0�1].

LEMMA S.11: For every μ ∈ �2S such that Eμ= π,∫
vδ
(
λp+ (1 − λ)π;g�P)dμ(p)≥

∫
vδ(p;g�P)dμ(p)	

PROOF: Since vδ(p;g�P) is concave in p (by Lemma 1 in the main text), the result fol-
lows by noting that the distribution of priors on the right-hand side is a mean-preserving
spread of that on the left-hand side. Q.E.D.
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LEMMA S.12: For every μ ∈ �2S such that Eμ= π, and every Markov strategy α : �S →
(�A)S ,∫

vδ
(
p;g�λP + (1 − λ)Dπ

)
dμ(p)≥ (1 − δ)

∫
min
β
g
(
α(p)�β�p

)
dμ(p)

+ δ
∫
vδ
(
Pqα(p)�p;g�λP + (1 − λ)Dπ

)
dμ(p)	

PROOF: The recursive formula in Lemma 1 in the main text implies that∫
vδ
(
p;g�λP + (1 − λ)Dπ

)
dμ(p)≥ (1 − δ)

∫
min
β
g
(
α(p)�β�p

)
dμ(p)

+ δ
∫
vδ
((
λP + (1 − λ)Dπ

)
qα(p)�p;g�λP + (1 − λ)Dπ

)
dμ(p)	

Since Dπq= π for every q, the second line above equals

δ

∫
vδ
(
λPqα(p)�p + (1 − λ)π;g�λP + (1 − λ)Dπ

)
dμ(p)	

Now, Eμ= π implies via Bayes’s rule that
∫
qα(p)�p dμ(p)= π. Because π is an invariant

distribution of P , this implies that
∫
Pqα(p)�p dμ(p)= P

∫
qα(p)�p dμ(p)= Pπ = π. Thus,

the above display is not smaller than

δ

∫
vδ
(
Pqα(p)�p;g�λP + (1 − λ)Dπ

)
dμ(p)

by Lemma S.11. Q.E.D.

We can move to the proof of the theorem. LetH =⋃t A
t be the space of histories of the

informed player’s actions. Let α∗ : S×H → �A be an optimal strategy for the maximizer
in the game (δ�π�g�P) we fixed in the beginning of the proof. Let p(h) be the associated
prior after history h ∈H. For each history h= (a1� a2� 	 	 	 � at) ∈At , let γ(h) be the ex ante
probability of history h. It is straightforward to verify that

∑
h∈At γ(h)p(h)= π. Repeated

application of Lemma S.12 then gives the following sequence of inequalities:

vδ
(
π;g�λP + (1 − λ)Dπ

)
≥ min

β:H→�B
(1 − δ)g(α∗(Ø)�β�π

)+ δ∑
a1

γ(a1)v
δ
(
p(a1);g�λP + (1 − λ)Dπ

)

≥ min
β:H→�B

(1 − δ)g(α∗(Ø)�β�π
)+ δ(1 − δ)

∑
a1

γ(a1)g
(
α∗(a1)�β(a1)�p(a1)

)

+ δ2
∑
a1�a2

γ(a1� a2)v
δ
(
p(a1� a2);g�λP + (1 − λ)Dπ

)

≥ min
β:H→�B

(1 − δ)g(α∗(Ø)�β�π
)+ δ(1 − δ)

∑
a1

γ(a1)g
(
α∗(a1)�β(a1)�p(a1)

)

+ (1 − δ)δ2
∑
a1�a2

γ(a1� a2)g
(
α∗(a1� a2)�β(a1� a2)�p(a1� a2)

)
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+ δ3
∑

a1�a2�a3

γ(a1� a2� a3)v
δ
(
p(a1� a2� a3);g�λP + (1 − λ)Dπ

)
≥ · · · 	

This gives a decreasing sequence of numbers vt such that vδ(π;g�λP + (1 − λ)Dπ)≥ v1

and vt → vδ(π;g�P). Hence, vδ(π;g�λP + (1 − λ)Dπ)≥ vδ(π;g�P) as desired.

S.5. OPERATORS WITH COMPLEX EIGENVALUES

In this section, we show that the characterization given by conditions (a) and (c) of
Corollary 2 does not extend to operators with complex eigenvalues.

PROPOSITION S.2: Let S = {1�2�3}. There exist ergodic operators P and Q such that P �
Q and Q /∈ {P(λ) : λ ∈Λ}.

S.5.1. Operator P

Let π = ( 1
3 �

1
3 �

1
3) ∈ �S. For each q ∈ �S, let

d(q)= ‖q−π‖
be the distance from π. Define the operator

R=
⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦ �

which defines a rotation of the space �S. Note that d(q)= d(Rq) for each q.
Fix α= 1

2 and define the operator P by

P = αR+ (1 − α)Dπ	

Then, P is ergodic with invariant distribution π. It is easy to check that for each q,

d(Pq)= ∥∥αRq+ (1 − α)Dπq−π∥∥= ‖αRq− απ‖ = α‖Rq−π‖ = αd(Rq)= αd(q)	
LEMMA S.13: There exists κ > 0 such that for every p and q in �S, if d(q) ≤ κp, then

q ∈ con{Pp�P2p�P3p}.
PROOF: We sketch the proof. Note that con{P3p�RP3p�R2P3p} ⊆ con{Pp�P2p�P3p},

where con{P3p�RP3p�R2P3p} is an equilateral triangle whose sides are of length ad(p),
with a= 1

24

√
2. Let κ= 1

3

√
3

2 a. Then κd(p) is the radius of the largest ball that fits into this
triangle. (The argument is best seen by drawing a picture.) Q.E.D.

LEMMA S.14: For every λ ∈Λ, there exist numbers a, b, and c such that

P(λ)=
⎡
⎣a b c
c a b
b c a

⎤
⎦ 	 (S.7)
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PROOF: Recall that, by definition, Dπq = π for every q. Thus, RDπ = DπR = Dπ . It
follows that for each k,

Pk = (αR+ (1 − α)Dπ

)k = αkRk + (1 − αk)Dπ	

Thus, P(λ)=∑k λkP
k is a convex combination ofDπ and rotationsRk, k= 1�2� 	 	 	 , each

of which is equal to either R, R2, or R3. The claim now follows by verifying that any such
combination has the form (S.7) for some numbers a, b, and c. Q.E.D.

S.5.2. Operator Q

We then construct the operator Q with invariant distribution π.

LEMMA S.15: There exists an ergodic operator Q such that π is the invariant distribution
of Q and d(Qp) ≤ 1

3κd(p) for every p ∈ �S, but Q is not equal to the right-hand side of
(S.7) for any a, b, and c.

PROOF: Take

Q=

⎡
⎢⎢⎢⎢⎣

1
3

+ x 1
3

− x 1
3

1
3

− x 1
3

+ x 1
3

1
3

1
3

1
3

⎤
⎥⎥⎥⎥⎦

for sufficiently small x > 0. Q.E.D.

S.5.3. Proof of Proposition S.2

The operators P and Q constructed above satisfy Q /∈ {P(λ) : λ ∈ Λ} by Lemmas S.14
and S.15. It remains to show that P �Q.

Take any ν ∈ �2S such that Pν ≤B ν. It follows5 that

P2ν = P(Pν)≤B Pν�

and similarly, that P3ν ≤B Pν. Thus,

1
3
(
Pν+ P2ν+ P3ν

)≤B Pν	 (S.8)

By Theorem 2(c), P �Q follows if (and only if) we show that Qν ≤B Pν, or equivalently,
that for any convex function f : �S→R, we have∫

f (p)dQν(p)≤
∫
f (p)dPν(p)	 (S.9)

5We use the following easy-to-establish facts about the Blackwell order. For any μ�ψ�τ ∈ �2S and any
operator P ,

• if μ≤B ψ, then Pμ≤B Pψ;
• if μ�ψ≤ τ, then for each α ∈ (0�1), αμ+ (1 − α)ψ≤B τ. (It is enough to check that for each concave

f ,
∫
f (p)d(αμ+ (1 − α)ψ)(p)≥ ∫ f (p)dτ(p), which follows from the hypothesis.)
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So fix any convex function f . Let l : �S→R be an affine function such that l(π)= f (π)
and such that for each p, l(p)≤ f (p). Let f0(p)= f (p)− l(p). Then (S.9) is equivalent
to ∫

f (p)dPν(p)−
∫
f (p)dQν(p)=

∫
f0(p)dPν(p)−

∫
f0(p)dQν(p)

+
∫
l(p)dPν(p)−

∫
l(p)dQν(p)	

The last two terms cancel each other out. To see this, note that Pν ≤B ν implies that
Eν = π. But π is also the invariant distribution of Q, and so we have∫

l(p)dPν(p)= l(EPν)= l(PEν)= l(π)= l(QEν)= l(EQν)=
∫
l(p)dQν(p)	

Thus, it is enough to prove (S.9) for convex functions f such that

f (π)= 0 ≤ f (p) for every p ∈ �S	 (S.10)

Further, inequality (S.8) implies that it is enough to show that

0 ≤
∫
f (p)d

(
1
3
(
Pν+ P2ν+ P3ν

))
(p)−

∫
f (p)dQν(p)

=
∫ [

1
3
(
f (Pp)+ f (P2p

)+ f (P3p
))− f (Qp)]dν(p)	

This follows from the following lemma:

LEMMA S.16: Suppose that f satisfies (S.10). Then for every p ∈ �S,

1
3
(
f (Pp)+ f (P2p

)+ f (P3p
))≥ f (Qp)	

PROOF: Fix p and let q be a vector so that

Qp= 1
3
q+ 2

3
π	

Then d(q)= 3d(Qp)≤ κd(p) by the choice of operatorQ. Lemma S.13 then implies that
q ∈ con{Pp�P2p�P3p}. Let q′ be a vector on the boundary of the set con{Pp�P2p�P3p}
such that q = λq′ + (1 − λ)π for some λ ∈ (0�1). Assume without loss of generality that
q′ belongs to the interval [Pp�P2p]. (The other boundaries of con{Pp�P2p�P3p} are
handled analogously.) Because f is convex and f (π)= 0,

f (Qp)≤ 1
3
f (q)≤ 1

3
f
(
q′)≤ 1

3
max

{
f (Pp)� f

(
P2p

)}≤ 1
3
(
f (Pp)+ f (P2p

)+ f (P3p
))
�

as desired. Q.E.D.
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S.6. COMPARATIVE STATICS ON INFORMATION

A natural interesting question is what does our notion of persistence, �, imply about
behavior. A possible intuition is that a less persistent operator allows the maximizer in
some average sense to reveal more information. One way to measure this is to consider
the dispersion of the minimizer’s beliefs. If beliefs are more disperse (in the Blackwell
sense), then the minimizer’s information is better.

More formally, fix a game g. For each ergodic operator P , let (μP�mP) ∈ �2S × M
be the distribution of priors and the revelation policy that solve the value problem in
Theorem 1. Then μP is the (time-)average distribution of the minimizer’s priors and μP ∗
mP is the average distribution of his posteriors. Suppose that P �Q. The above intuition
suggests that μP ∗mP ≤B μQ ∗mQ, or perhaps μP ≤B μQ.

As it turns out, this intuition is not correct.

PROPOSITION S.3: There exist a game g and ergodic operators P and Q such that P �Q
and for every (μP�mP) and (μQ�mQ) that solve the value problems, neither μP ≤B μQ nor
μP ∗mP ≤B μQ ∗mQ.

S.6.1. Proof of Proposition S.3

Let S = {X0�X1} × {Y0�Y1}. Thus, the state space has four elements.6 Let Pα be an
ergodic operator on �S such that each of the two dimensions changes independently with
probability α. That is,

Pα =

⎡
⎢⎢⎣
(1 − α)2 α(1 − α) α(1 − α) α2

α(1 − α) (1 − α)2 α2 α(1 − α)
α(1 − α) α2 (1 − α)2 α(1 − α)
α2 α(1 − α) α(1 − α) (1 − α)2

⎤
⎥⎥⎦ �

where the rows and columns correspond to states X0Y0�X0Y1�X1Y0�X1Y1.

LEMMA S.17: For each α ∈ (0� 1
2), Pα � P2

α = P2α(1−α).

PROOF: The inequality is by Corollary 2(a). The equality is by direct calculations.
Q.E.D.

Construct a game (A�B�g) with action sets

A= {x0�x1� y0� y1} and B= {ξ0� ξ1} × {ψ0�ψ1}�
and payoff function

g(a�b� s)= gmax(a� s)− gmin(b� s)�

with

gmax(a�XkYl)=
{

2δik − 1 if a= xi�
10(2δjl − 1) if a= yj�

6It is important for our example that �S has more than one dimension. In our example, �S is three-
dimensional. It should be possible to construct a similar example with only three states, but we suspect that the
comparative statics of revealed information hold when there are only two states.
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and

gmin(ξiψj�XkYl)= 1
2
(2δik − 1)+ 20(2δjl − 1)�

where δmn denotes the Dirac measure, that is, δmn = 1 if m= n and δmn = 0 otherwise.

LEMMA S.18: For every α ∈ (0� 1
2), there exists a unique maximizer (μPα�mPα) to the value

problem. Moreover, there exists α0 ∈ (0� 1
2) such that for every α< α0 <α

′, neitherμPα ≤B μPα′
nor μPα ∗mPα ≤B μPα′ ∗mPα′ .

Proposition S.3 follows from the above lemmas, since α≤ 2α(1 − α) for α ∈ (0� 1
2).

Proof of Lemma S.18

For each belief q ∈ �S, let

Xq = ∣∣q(X1Y0)+ q(X1Y1)− q(X0Y0)− q(X0Y1)
∣∣�

Yq = ∣∣q(X0Y1)+ q(X1Y1)− q(X0Y0)− q(X1Y0)
∣∣	

Heuristically, Xq and Yq measure the quality of information, respectively, about the X-
dimension and the Y -dimension of the state. Notice that for each α, we have XPαq =
(1 − 2α)Xq and YPαq = (1 − 2α)Yq.

Recalling the definition of ĝ, we have for any ν ∈ �2S,

ĝ(ν)= min
β

∫
max
a
g(a�β�q)dν(q)

=
∫

max
a
gmax(a�q)dν(q)− max

β

∫
gmin(β�q)dν(q)

=
∫

max
a
gmax(a�q)dν(q)− max

β
gmin(β�Eν)

=
∫
hmax(q)dν(q)− hmin(Eν)�

where for each q ∈ �S,

hmax(q)= max
a

∑
s

q(s)gmax(a� s)= max{Xq�10Yq}�

hmin(q)= max
b

∑
s

q(s)gmin(b� s)= 1
2
Xq + 20Yq	

(No mixing is necessary because the players’ actions do not directly interact.)
By Theorem 1 (and the remarks afterwards), we then have

v(g�Pα)= max
(μ�m):Pα(μ∗m)=μ

∫ (∫
hmax(q)dm(q|p)− hmin

(
Em(p)

))
dμ(p)

= max
(μ�m):Pα(μ∗m)=μ

∫ ∫
hmax(q)dm(q|p)dμ(p)−

∫
hmin(p)dμ(p) (S.11)
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= max
(μ�m):Pα(μ∗m)=μ

∫
hmax(q)d(μ ∗m)(q)−

∫
hmin(p)dμ(p)

= max
(μ�m):Pα(μ∗m)=μ

∫
hmax(q)d(μ ∗m)(q)−

∫
hmin(p)dPα(μ ∗m)(p)

= max
ν:Pαν≤Bν

∫
hmax(q)dν(q)−

∫
hmin(q)dPαν(q)

= max
ν:Pαν≤Bν

∫ (
hmax(q)− hmin(Pαq)

)
dν(q)

= max
ν:Pαν≤Bν

∫ (
max{Xq�10Yq} − (1 − 2α)

(
1
2
Xq + 20Yq

))
dν(q)�

where the fifth line replaces μ ∗m with ν.
Define the four beliefs qX0� qX1� qY0qY1 ∈ �S by

qX0(X0Y0)= qX0(X0Y1)= 1
2
� qX1(X1Y0)= qX1(X1Y1)= 1

2
�

qY0(X0Y0)= qY0(X1Y0)= 1
2
� qY1(X0Y1)= qY1(X1Y1)= 1

2
	

For instance, under qX0 the minimizer knows that theX-dimension of the state is equal to
X0, but she does not know the Y -dimension and believes both values to be equally likely.
Consider the two distributions νX� νY ∈ �2S defined by

νX(qX0)= νX(qX1)= 1
2

and νY (qY0)= νY (qY1)= 1
2
	

In particular, νX assigns positive probability to two beliefs, for both of which the X-
dimension of the state is perfectly known and the Y -dimension is believed to be equal
to Y0 with probability 1

2 . In νY , the Y -dimension is known. We note that both are feasible
in the maximization problem in (S.11):

CLAIM S.1: For any α ∈ (0� 1
2), PανX ≤ νX and PανY ≤ νY . Moreover, neither νX ≤B νY

nor PανX ≤B PανY .

PROOF: Direct verification. Q.E.D.

CLAIM S.2: If 1 − 1
2(1 − 2α) < 10(1 − 2(1 − 2α)), then the problem (S.11) is uniquely

maximized by νX .

PROOF: Notice first that for each q ∈ {qX0� qX1}, Xq = 1, Yq = 0, and

max{Xq�10Yq} − (1 − 2α)
(

1
2
Xq + 20Yq

)
= 1 − 1

2
(1 − 2α)	

Moreover, for any q /∈ {qX0� qX1},

max{Xq�10Yq} − (1 − 2α)
(

1
2
Xq + 20Yq

)
< 1 − 1

2
(1 − 2α)	
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(Indeed, for any q /∈ {qX0� qX1}, either Xq < 1, or Yq > 0. Moreover, either Xq < 10Yq, or
Xq ≥ 10Yq. If Xq < 10Yq, then

max{Xq�10Yq} − (1 − 2α)
(

1
2
Xq + 20Yq

)
= 10Yq − (1 − 2α)

(
1
2
Xq + 20Yq

)

≤ 10
(
1 − 2(1 − 2α)

)
Yq < 1 − 1

2
(1 − 2α)	

If Xq ≥ 10Yq, and Xq < 1, then

max{Xq�10Yq} − (1 − 2α)
(

1
2
Xq + 20Yq

)
=Xq − (1 − 2α)

(
1
2
Xq + 20Yq

)

≤ (1 − 2(1 − 2α)
)
Xq < 1 − 1

2
(1 − 2α)	

If Xq ≥ 10Yq, and Yq > 0, then

max{Xq�10Yq} − (1 − 2α)
(

1
2
Xq + 20Yq

)
=Xq − (1 − 2α)

(
1
2
Xq + 20Yq

)

<

(
1 − 1

2
(1 − 2α)

)
Xq ≤ 1 − 1

2
(1 − 2α)	

Thus, νX achieves the maximum in (S.11) and any distribution ν that achieves the maxi-
mum must have its support concentrated on {qX0� qX1}. It is easy to check that νX is the
only such distribution that satisfies the constraint Pαν ≤ ν. Q.E.D.

CLAIM S.3: If 1 − 1
2(1 − 2α) > 10(1 − 2(1 − 2α)), then the problem (S.11) is uniquely

maximized by νY .

PROOF: The claim is proven in similar fashion as the previous claim. Q.E.D.

Finally, notice that if α0 = 10	5
39 , then for α< α0 <α

′ we have

1 − 1
2
(1 − 2α) < 10

(
1 − 2(1 − 2α)

)
and 1 − 1

2
(
1 − 2α′)> 10

(
1 − 2

(
1 − 2α′))	

Lemma S.18 thus follows from the above two claims.

S.7. CONNECTION TO RENAULT AND VENEL (2017)

As discussed at the end of Section 3, Renault and Venel (2017) (RV henceforth) studied
the long-run values of Markov decision problems (MDPs) and repeated games in a setting
general enough to include our model as a special case. Their results can be used to derive
an alternative formula for the value v(π;g�P), which is different from, but equivalent to,
that in Theorem 1. We state here Renault and Venel’s formula, specialized to our setting,
and sketch how to connect it to Theorem 1 in the case of an ergodic operator.

We use the notation from the main text. (Some of the notation used in this section is
introduced in the beginning of the proof of Theorem 1 in Section 6.) In order to avoid
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confusion, we label the additional notation introduced for the RV characterization with
the superscript “RV”.

To state the RV formula, we introduce the following auxiliary MDP, which is suggested
by the well-known Lemma 1 in the main text. Let XRV = �S be the state space of the
MDP; this is the space of the minimizer’s belief about the state in the game. Let ARV =
(�A)S be the action space of the MDP; this is the space of the maximizer’s stage-game
mixed strategies in the game. Define the per-period payoff function gRV :XRV ×ARV → R
for the MDP by

gRV (p�α)= min
β∈�B

∑
a

g
(
a�β�qα�p(a)

)
α(a);

this is the maximizer’s expected stage-game payoff in the game when the minimizer is
assumed to best-respond to the maximizer’s strategy α given his belief p about the state.
Finally, define the transition function qRV :XRV ×ARV → �XRV for the MDP by setting

qRV (p�α)= Pqα�p ∈ �XRV = �2S;
this is the distribution of the next period’s state as a function of the current state p and
current action α. Note that the transition function qRV in the MDP captures both the
revelation of information and the effect of the exogenous state transition in the game. To
see this, recall that in the game, qα�p is the distribution of the minimizer’s posteriors at
the end of the period resulting from the information revealed by the maximizer’s action
under the strategy α given prior p. Then Pqα�p is the distribution of the next period’s
priors after the state has evolved according to the transition described by the operator P .

Let vRV �δ(x) be the discounted-average value of the MDP (XRV �ARV �gRV �qRV ) start-
ing at state x given discount factor δ < 1. RV showed that the limit (or long-run) value
vRV (x)= limδ→1 v

RV �δ(x) exists.
It is well-known that our repeated zero-sum game with one-sided incomplete informa-

tion can be reduced to the above MDP. This can be seen from Lemma 1 in the main text by
applying the minmax theorem and using the above definitions. This equivalence implies
that for each p ∈ �S, we have

vRV �δ(p)= vδ(p;g�P) and vRV (p)= v(p;g�P)�
where the right-hand sides are, respectively, the discounted value and the limit value of
the game as defined in the main text. Note, in particular, that any formula for the limit
value vRV (p) thus gives a formula for the value v(p;g�P).

In order to state RV’s formula, define RRRV ⊆ (�2S) × R as the set of distribution-
payoff pairs (μ� y) for which there exists a Markov strategy α : �S→ (�A)S such that

μ=
∫
Pqα(p)�p dμ(p) and y =

∫
gRV
(
p�α(p)

)
dμ(p)	

The interpretation is that if the maximizer plays α, then μ is an invariant distribution of
the state (i.e., beliefs) and y is the associated expected long-run payoff.

RV’s characterization of the limit value is the following:

RV’S THEOREM: For every π ∈ �S,

vRV (π)= inf

⎧⎨
⎩w(π) s.t.

w : �2S→ R is affine and continuous,
∀p ∈ �S�w(p)≥ maxα w

(
qRV (p�α)

)
�

∀(μ� y) ∈RRRV �w(μ)≥ y

⎫⎬
⎭ 	 (S.12)
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(Here w(p) denotes the value of w : �2 →R at the Dirac measure ep ∈ �2S.)
On the other hand, for a fixed game g and operator P , our result is the following:

THEOREM 1: For every π ∈ �S,

v(π;g�P)= max
(μ�m)∈�2S×M:P(μ∗m)≤Bμ and ψπ�P≤Bμ

∫
ĝ
(
m(p)

)
dμ(p)	

Our proof of Theorem 1 and RV’s proof of their result are unrelated: ours is direct and
elementary, RV’s relies on some new facts about a certain metric on probability spaces.

The key advantage of Theorem 1 over RV’s Theorem for the comparison of operators
is that it separates the choice of a stationary information structure (μ�m) from the choice
of actions, and the operator P only enters the constraints. In contrast, it is unclear how to
derive Theorem 2 or 2′ starting from RV’s formula.

Given that the equivalence of the formulas is not readily apparent, it is natural to won-
der about their precise connection. We sketch here how to directly verify their equivalence
when the operator P is ergodic.7 We conjecture that a similar argument can be given for
general P .

We start by restating our formula in a form closer to RV’s result. For this, we need to
essentially undo Lemma 2 in the main text, and rewrite the problem with the maximizer
choosing a Markov strategy α : �S→ (�A)S rather than an information revelation policy
m ∈M. Omitting any technical verifications, we have

ĝ
(
m(p)

)= min
β∈�B

∫
max
a
g(a�β�q)dm(q|p)

= min
β∈�B

max
α∈(�A)S :να�p≤Bm(p)

∑
a

g
(
a�β�qα�p(a)

)
α(a)

= max
α∈(�A)S :να�p≤Bm(p)

min
β∈�B

∑
a

g
(
a�β�qα�p(a)

)
α(a)

= max
α∈(�A)S :να�p≤Bm(p)

gRV (p�α)	

Recall that in the ergodic case, Theorem 1 simplifies to

v(g�P)= max
(μ�m)∈�2S×M:P(μ∗m)=μ

∫
ĝ
(
m(p)

)
dμ(p)�

where we have also used the fact that the maximum is achieved by some (μ�m) that sat-
isfies the constraint as an equality. Substituting for ĝ(m(p)) using the expression from
above then yields, after some further manipulations (omitting again any details), a for-
mula that starts to bear some resemblance to RV’s result:

v(g�P)= max
(μ�m)∈�2S×M:P(μ∗m)=μ

∫
max

α∈(�A)2:να�p≤Bm(p)
gRV (p�α)dμ(p)

= max
(μ�m)∈�2S×M:P(μ∗m)=μ

max
α:�S→(�A)S :∀p�να�p≤Bm(p)

∫
gRV
(
p�α(p)

)
dμ(p) (S.13)

7We thank an anonymous referee for supplying some of the steps for the argument.
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= max
α:�S→(�A)S

max
μ∈�2S:P(μ∗να�·)=μ

∫
gRV
(
p�α(p)

)
dμ(p)

= max
{
y : (μ� y) ∈RRRV for some μ

}
	

We now conclude the argument by showing that RV’s formula (S.12) is in fact equiva-
lent to (S.13) when P is ergodic. Note that since vRV is concave, the functions w in (S.12)
can be taken to be such that their restriction to �S is concave. Moreover, the condition
∀p ∈ �S�w(p) ≥ maxα w(qRV (p�α)) implies that ∀p ∈ �S�w(p) ≥ w(πP). To see this,
note that one feasible strategy α is to not reveal anything about the state by always play-
ing the same action. For any such α, qRV (p�α) is just a point mass at Pp. Thus we have
w(p) ≥ w(Pp) ≥ w(P2p) ≥ · · · ≥ w(πP) by ergodicity of P and continuity of w. But πP
is in the interior of �S by ergodicity, so any w satisfying the above conditions is just a
constant function. Therefore, (S.12) simplifies to

vRV = inf
{
w ∈ R : ∀(μ� y) ∈RRRV �w≥ y}	 (S.14)

Equations (S.13) and (S.14) are equivalent by inspection.
The above argument suggests that at least in the ergodic case, our formula can be

viewed, in a sense, to be the dual of RV’s formula. However, it is important to notice
that this duality is apparent only after we transform our formula to the version stated as
(S.13). This transformation amounts to undoing the very step in the proof of Theorem
1 that allows separating the choice of a stationary belief distribution from the choice of
actions (i.e., Lemma 2), which is the key novel feature of our characterization.
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