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THIS DOCUMENT CONTAINS ADDITIONAL RESULTS and an omitted proof for
the main paper. Section S.1 contains the proof of the one-stage-deviation prin-
ciple used in the proof of Theorem 2. Section S.2 contains a detailed analysis of
Example 5. Section S.3 establishes conditions under which the allocation rule
that maximizes expected virtual surplus distorts allocations downward com-
pared to the first-best rule. Section S.4 discusses distortions in discrete type
models using the language of impulse responses. Section S.5 considers optimal
mechanisms in some classes of non-Markov environments.

All numbered items (i.e., sections, definitions, results, and equations) in this
document contain the prefix “S.” Any numbered reference that does not have
a prefix refers to an item in the main text. Please refer to the main text for
notation and definitions.

S.1. PROOF OF THE ONE-STAGE-DEVIATION PRINCIPLE

The proof of Theorem 3 in the Appendix makes use of the following lemma.

LEMMA S.1: Suppose the environment is regular and Markov. Fix an alloca-
tion rule χ ∈ X with belief system Γ ∈ Γ (χ) and define the transfer rule ψ by (7).
If a one-stage deviation from strong truthtelling is not profitable at any informa-
tion set, then arbitrary deviations from strong truthtelling are not profitable at any
information set.

PROOF: We first establish the result for the case where, for all i = 1� � � � � n,
there exist a constant Lψi and sequences (Kit)

∞
t=0 and (Mψ

i )
∞
t=0, with Lψi �‖Mψ

i ‖�
‖Ki‖<∞, such that for all t ≥ 0 and θt ∈Θt , (i)ψit(θt)≤Kit and (ii) |ψit(θt)| ≤
Lψi |θit |+Mψ

it . We then conclude the proof by showing that the transfer rule de-
fined by (7) satisfies these bounds in any regular Markov environment.1

1Heuristically, bound (i) ensures that for any possible deviation strategy, the net present value
of the payments received by the agent from period T onward is either small or negative when T
is large. Bound (ii) together with the bounds from part (ii) of the definition of Markov environ-
ments ensures that if the agent reverts to strong truthtelling in period T , the expected payments
received after the reversion are small in absolute value. Thus, the reversion will not cost the agent
much in terms of expected payments. Under Condition U-SPR, the same is true for the agent’s ex-
pected nonmonetary utility. Hence, when considering potential profitable deviations from strong
truthtelling, it suffices to check only those deviations that revert to strong truthtelling at some
finite period T .
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The usual backward-induction argument establishes that if no one-step devi-
ation from strong truthtelling is profitable, then all finite-stage deviations from
strong truthtelling are unprofitable. To establish that infinite-stage deviations
are also unprofitable, suppose in negation that there exists an agent i and
a period-s history his = (θsi � θ̂

s−1
i � xs−1

i ) (not necessarily truthful for agent i)
such that agent i raises his expected payoff at his by some ε > 0 by devi-
ating from strong truthtelling to some strategy σ̂i, assuming that all other
agents report truthfully. (All the expectations below will be conditional on his-
tory his.)

We then show that there exists some finite T > s such that reversion from σ̂i
to strong truthtelling starting in period T cannot reduce the agent’s expected
payoff by more than ε/2. For this purpose, note first that under the bounds in
part (ii) of the definition of Markov environments, the agent’s time-s expecta-
tion of his type in each period t ≥ s under any strategy is bounded as

E
[|θ̃it |] ≤φt−si |θis| +

t∑
τ=s
φt−τEiτ ≡ Sit �

Note that letting Sit ≡ 0 for t < s, we have

‖Si‖ = δs
∞∑
t=s
(δφi)

t−s|θis| +
∞∑
t=s
δt

t∑
τ=s
φt−τi |Eiτ|

= δs

1 − δφi |θis| +
∞∑
τ=s
δτ|Eiτ|

∞∑
t=τ
(δφi)

t−τ

≤ δs

1 − δφi |θis| +
1

1 − δφi ‖Ei‖<∞�

Hence, by Condition U-SPR, the expected present value (EPV) of nonmon-
etary utility flows starting in period T under any strategy is bounded in abso-
lute value by

∑∞
t=T δ

t[LiSit +Mit], and so reversion from strategy σ̂i to strong
truthtelling in period T can reduce this EPV by at most twice this amount.
Likewise, condition (ii) on payments implies that the EPV of payment flows
from strong truthtelling starting in period T is bounded in absolute value by∑∞

t=T δ
t[Lψi Sit +Mψ

it ]. As for the EPV of payment flows from period T onward
under strategy σ̂i, by condition (i), it is bounded from above by

∑∞
t=T δ

tKit .
Adding up, we see that the total expected loss due to the reversion in period T
does not exceed

∞∑
t=T
δt

[(
2Li +Lψi

)
Sit + 2Mit +Mψ

it +Kit

]
�
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Since Li�L
ψ
i �‖Si‖�‖Mi‖�‖Mψ

i ‖�‖Ki‖<∞, the loss converges to zero as T →
∞ and so it falls below ε/2 for some T large enough. But then the finite-stage
deviation to σ̂i between periods s and T is profitable, a contradiction.

We then finish the proof of Lemma S.1 by showing that the transfer rule ψ
given by (7) satisfies bounds (i) and (ii) from above. Note that it suffices to
establish the bounds separately for each of the three terms in (7), as summing
up the bounds then gives the desired bound on the flow payment.

We begin with condition (ii). The first term in (7) satisfies this bound by (19)
and ‖θ̂i‖ <∞. For the second term, using (19) and the bounds from part (ii)
of the definition of Markov environments,

∣∣δ−t
E
λi[χ�Γ ]|θt−1�θit

[
Qχ�Γ
i�t+1

(
θ̃t� θ̃i�t+1

)]∣∣(S.1)

≤AiBi
(
E
Fi�t+1(θit �χ

t−1
i (θt−1))

[|θ̃i�t+1|
] + |θ̂i�t+1|

)
≤AiBi

(
φi|θit | +Eit + |θ̂i�t+1|

)
�

which satisfies the bound since ‖Ei‖�‖θ̂i‖ < ∞. The third term satisfies the
bound by U-SPR.

Next, we turn to condition (i). Using (6) and the fact that the payments (7)
satisfy ICFOC by Theorem 2, we can write

Qχ�Γ
iτ

(
θτ−1� θiτ

) = V 〈χ�Ψ 〉�Γ
iτ

(
θτ−1� θiτ

) − V 〈χ�Ψ 〉�Γ
iτ

(
θτ−1� θ̂iτ

)
for τ = t� t + 1. Substituting in (7), omitting superscripts on V and Q to save
space, and noting that

E
λi[χ�Γ ]|θt−1�θit

[
Vi�t+1

(
θ̃t� θ̃i�t+1

)] = Vit
(
θt−1� θit

)
�

we have

ψit
(
θt

) = δ−t(
E
λi[χ�Γ ]|θt−1�θit

[
Vi�t+1

(
θti� θ̃

t
−i� θ̂i�t+1

)] − Vit
(
θt−1� θ̂it

))
(S.2)

− E
λi[χ�Γ ]|θt−1�θit

[
uit

(
θit� θ̃

t
−i�χ

t
(
θ̃t

))]
�

Now, the assumption that no agent has a profitable one-step deviation from
strong truthtelling implies in particular that, given true history (θt−1� θ̂it), agent
i does not gain by reporting θit followed by strong truthtelling, or

Vit
(
θt−1� θ̂it

) ≥ E
λi[χ�Γ ]|θt−1�θ̂it

[
Vi�t+1

(
θti� θ̃

t
−i� θ̃i�t+1

)
+ δtuit

(
θ̂it � θ̃

t
−i�χ

t
(
θti� θ̃

t
−i

))
− δtuit

(
θit� θ̃

t
−i�χ

t
(
θti� θ̃

t
−i

))]
�
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where we have used the fact that in a Markov environment, once θ̃i�t+1 is real-
ized following the misreport, the only payoff effect of the past true type being
θ̂it rather than θit is through period-t utility. Using this inequality, and also
noting that the distribution of θ̃t−i under the probability measure λi[χ�Γ ]|θt−1,
θit does not depend on θit , so that we can replace the measure in (S.2) with
λi[χ�Γ ]|θt−1, θ̂it , the payments (S.2) are bounded above as

ψit
(
θt

) ≤ δ−t
E
λi[χ�Γ ]|θt−1�θ̂it

[
Vi�t+1

(
θti� θ̃

t
−i� θ̂i�t+1

) − Vi�t+1

(
θti� θ̃

t
−i� θ̃i�t+1

)]
− E

λi[χ�Γ ]|θt−1�θ̂it
[
uit

(
θ̂it � θ̃

t
−i�χ

t
(
θti� θ̃

t
−i

))]
�

Finally, use ICFOCi�t+1 and (6) to rewrite the bound as

ψit
(
θt

) ≤ −δ−t
E
λi[χ�Γ ]|θt−1�θ̂it

[
Qi�t+1

(
θti� θ̃

t
−i� θ̃i�t+1

)]
− E

λi[χ�Γ ]|θt−1�θ̂it
[
uit

(
θ̂it � θ̃

t
−i�χ

t
(
θti� θ̃

t
−i

))]
�

and note that both terms on the right are bounded from above by a term of
a finite-norm sequence: the first term by (S.1) and ‖Ei‖�‖θ̂i‖ < ∞, and the
second by Condition U-SPR and ‖θ̂i‖<∞. Q.E.D.

S.2. DETAILS FOR EXAMPLE 5

We provide here the details omitted in the discussion of Example 5. We ver-
ify first that the environment is regular and Markov. Since Xt is bounded, the
buyer’s payoff function satisfies U-D, U-ELC, and U-SPR. The assumptions
on the process imply that 0 ≤ θt ≤ 1 for all t and, hence, the bounds from
part (ii) of the definition of Markov environments are satisfied as well. For
F-BIR, note that a state representation for the process is obtained by putting
zt(θ

t−1�xt−1� εt) = φ(θt−1) + εt . Hence, by the chain rule and formula (4),
∂Z(s)�t(θ

s� εt)/∂θs exists and the impulse responses take the form I(s)�t(θ
t) =∏t−1

τ=s φ
′(θτ). Furthermore, we have |∂Z(s)�t/∂θs| ≤ bt−s for all t ≥ s ≥ 0. Thus,

recalling that b ≥ 1, we may put C(s)�t(ε) ≡ bt for all s, t, and ε to obtain the
bounding functions C(s), since then ‖C(s)‖ ≤ ∑∞

t=0(δb)
t < ∞. Thus F-BIR is

satisfied.
The expected virtual surplus from allocation rule χ takes the form

E
λ

[
T∑
t=0

δt

(
χt

(
θ̃t

)(
a+ θ̃t − 1

η0(θ̃0)

t−1∏
τ=0

φ′(θ̃τ)

)
− (χt(θ̃

t))2

2

)]
�

and, hence, it can be maximized pointwise in time t and type history θt to obtain
the allocation rule χ given in the main text. Since the kernels satisfy F-AUT,
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we can use ex post monotonicity from Corollary 1 to verify that χ is imple-
mentable. Here, it requires that for all t = 0� � � � �T and θ ∈Θ,

T∑
s=t
δs−t

s−1∏
τ=t
φ′(θτ)χs

(
θ̂t� θ

s
−t

)

be nondecreasing in θ̂t .
We restrict attention to the case where χ prescribes an interior solution at

every history by assuming that bT ≤ aminθ0 η0(θ0). (Note that if b > 1, this
requires T to be finite; otherwise, it suffices to assume that the hazard rate η0

is bounded away from 0 and take a large enough.) Then it is enough to verify
that (i) ∂χt(θ)/∂θt ≥ 0 for all 0 ≤ t ≤ T and θ ∈ Θ∞, and (ii) ∂χs(θ)/∂θt ≥
− 1−bδ

bδ
∂χt(θ)/∂θt for all 0 ≤ t < s ≤ T , and θ ∈ Θ∞.2 If η0 is nondecreasing,

then ∂χt(θ)/∂θt ≥ 1 for all t and θ ∈ Θ∞, so condition (i) holds. As for (ii),
note that for s > t, we have

∂χs(θ)

∂θt
= ∂

∂θt

[
a+ θs − 1

η0(θ0)

s−1∏
τ=0

φ′(θτ)

]
≥ − bs−1

η0(θ0)
φ′′(θt)�

Hence, recalling that bT ≤ aminθ0 η0(θ0), we see that (ii) holds if

φ′′ ≤ 1 − bδ
bδ

1
a
�

In particular, ifφ′′ ≤ 0, then this condition always holds and χ is in fact strongly
monotone. However, if φ′′ < 1−bδ

bδ
1
a

with φ′′(y) ∈ (0� 1−bδ
bδ

1
a
] for some y ∈ (0�1),

then χ fails strong monotonicity, but it is still ex post monotone and, thus,
implementable.

S.3. DOWNWARD DISTORTIONS

One property that is often encountered in applications is that of downward
distortions. Here we establish sufficient conditions for the allocation rule that
maximizes expected virtual surplus to satisfy this property. In view of our dis-
cussion of non-Markov environments below, we state the result for the general
environment.

2To see this, note that since 0 ≤φ′ ≤ b < 1
δ

, conditions (i) and (ii) imply

∂

∂θ̂t

[
T∑
s=t
δs−t

s−1∏
τ=t
φ′(θτ)χs

(
θ̂t � θ

s
−t

)]

≥
(

1 − 1 − bδ
bδ

T∑
s=t+1

δs−t
s−1∏
τ=t
φ′(θτ)

)
∂χt(θ̂t � θ

t−1)

∂θ̂t
≥ (bδ)T ∂χt(θ̂t � θ

t−1)

∂θ̂t
≥ 0�
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Intuitively, the principal introduces downward distortions to reduce the
agents’ information rents when these rents are increasing in the allocations x.
To ensure this, we make the usual assumption that higher types have higher
marginal utilities, extending it to allow for multidimensional allocations and
types.

CONDITION U-SCP—Utility Single-Crossing Property: The set X is partially
ordered, and for all i= 1� � � � � n and θ−i ∈Θ−i,Ui(θ�x) has increasing differences
in (θi� x).

We also need to assume that the different dimensions of the allocations are
(weakly) complementary to each other in the objective function. This is done
by invoking Condition U-COMP from the main text, which was used there as
a condition for strong monotonicity.

We also invoke F-FOSD to ensure that an agent’s type in each period t > 1
is positively linked to his period-0 type, which implies that making the agent’s
utility less sensitive to his future types reduces his ex ante information rent.
Condition F-FOSD also implies that the impulse responses are nonnegative.

Finally, recall that F-AUT assumes that the process is autonomous and,
hence, the impulse responses can be written as Ii�(0)�t(θti).

We then have the following result.

PROPOSITION S.1—Downward Distortions: Suppose that ConditionsF-AUT,
F-FOSD, U-SCP, and U-COMP hold. If the allocation rule χ maximizes ex-
pected virtual surplus and the allocation rule χ∗ is efficient, then the allocation
rule given by χt(θt) ∧ χ∗

t (θ
t) for all t ≥ 0, all θt ∈Θt maximizes expected virtual

surplus and the allocation rule given by χt(θt)∨χ∗
t (θ

t) for all t ≥ 0, all θt ∈Θt is
efficient.

PROOF: Since X is a lattice, the set X of feasible allocation rules is also a
lattice with the meet and join operations defined pointwise (i.e., for each θ).
Define g : X × {−1�0} → R as

g(χ�q)≡ E
λ

[
n∑
i=0

Ui

(
θ̃�χ(θ̃)

)

+ q
n∑
i=1

1

ηi0(θ̃i0)

∞∑
t=0

Ii�(0)�t
(
θ̃ti

)∂Ui(θ̃�χ(θ̃))

∂θit

]
�

Then g(χ�0) is the expected total surplus and g(χ�−1) is the expected virtual
surplus. Condition F-AUT ensures that the stochastic process λ[χ] does not
depend on χ and that each Ii�(0)�t(θti� x

t−1
i ) does not depend on xt−1

i , which is
reflected in the formula. Condition F-FOSD ensures that each Ii�(0)�t(θti) ≥ 0.
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Together with Condition U-SCP, this ensures that g has increasing differences
in (χ�q). Together with U-COMP, this ensures that g is supermodular in χ. The
result then follows from Topkis’s theorem (see, e.g., Topkis (1998)). Q.E.D.

In particular, Proposition S.1 implies that if either the allocation χ that max-
imizes expected virtual surplus or the efficient allocation rule χ∗ is uniquely
defined with probability 1, then χ(θ)≤ χ∗(θ) with probability 1. (More gener-
ally, the set of allocation rules that solve the relaxed problem is below the set
of efficient allocation rules in the strong set order.)

Downward distortions are typical in applications that feature a single agent,
where Conditions F-AUT, F-FOSD, U-SCP, and U-COMP are often implicitly
assumed. (As discussed in the main text, Courty and Li (2000) provide a single-
agent example that violates F-FOSD and where distortions are upward.) On
the contrary, Condition U-COMP is less likely to be satisfied in settings that
feature multiple agents, because of possible capacity constraints that prevent
the choice setX from being a lattice. As a result, distortions need not be down-
ward in these applications, even if the other conditions in Proposition S.1 are
met. For example, in the bandit auctions considered in Section 5, Conditions F-
AUT and U-COMP are violated, and distortions are upward at some histories.

S.4. DISTORTIONS WITH DISCRETE TYPES

We comment here on how the logic of impulse responses can be used to un-
derstand distortions in the optimal allocation rule in models where the agent’s
types are discrete. For concreteness, we consider a buyer–seller setting simi-
lar to Example 5. That is, the buyer’s payoff is given by U1(θ�x)= ∑∞

t=0δ
tθtxt ,

with Xt = [0� x̄] for some x̄� 0, and the seller’s payoff is given by U0(θ�x)=
−∑∞

t=0δ
t x

2
t

2 . We assume now, however, that the type spaces Θt , t ≥ 0, are dis-
crete. Our first-order approach is not directly applicable to this setting, but it
can be adapted to it by focusing on local downward incentive constraints in-
stead of ICFOC and using discrete versions of the impulse responses.

For simplicity, we begin with the setting of Battaglini (2005), who consider a
Markov process over the binary type space {L�H} (i.e., Θt = {L�H} for all t).
For this setting, we can use the following state representation 〈E�G�z〉: in each
period t ≥ 1, Gt is the uniform distribution on Et = (0�1), and zt(θt−1� εt)=H
if εt > 1 − qθt−1 and zt(θt−1� εt) = L otherwise. This induces a Markov pro-
cess on the types with transition probabilities Pr{θ̃t =H|θt−1} = qθt−1 and the
assumption qH > qL ensures positive serial correlation. In this setting, the
discrete one-period-ahead impulse response can be defined as I(θt−1� θt) =

1
H−LE[z(H� ε̃t) − z(L� ε̃t)|z(θt−1� ε̃t) = θt], that is, the expected effect of the
previous type being H rather than L on the current type, given the observed
previous and current types (θt−1� θt). It is then easy to see that I(θt−1� θt)= 0
whenever the type switches, that is, θt �= θt−1. For example, when type switches
from θt−1 =L to θt =H, this means that εt > 1−qL and, therefore, εt > 1−qH ;
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hence the new type would also have been H had the previous type been H.
Similarly, when the type switches from H to L, the new type would also have
beenL had the previous type beenL. Because of the Markov nature of the pro-
cess, the impulse response of the period-t type to the period-0 type takes the
form I(0)�t(θ

t) = ∏t−1
τ=0I(θτ� θτ+1) and, therefore, as soon as the type switches,

the causal effect of the initial type is severed, ensuring efficiency from that
point onward.

Observe also that the solution to the relaxed program is efficient when the
initial type is H, since only type H’s incentive constraint is considered in the
relaxed program. These arguments yield Battaglini’s “generalized no distortion
at the top principle” (GNDTP): any switch to H yields efficiency from that
period onward. Battaglini’s other conclusion is the “vanishing distortions at the
bottom principle” (VDBP): the distortions for histories (L� � � � �L) shrink with
time. This conclusion can be understood by noting that the impulse response
at (θt−1� θt) = (L�L) is less than 1; indeed, for some of the shocks that leave
type L unchanged, had the previous type beenH instead of L, the current type
would have been H.

This logic also demonstrates that GNDTP extends to any discrete type pro-
cess that satisfies FOSD; indeed, when type θt−1 switches to the highest possi-
ble type θt = θ̄t , this implies that any previous type θ′

t−1 > θt−1 would have also
switched to θ̄t . Since the relaxed program considers only downward adjacent
incentive constraints, this means a period-(t − 1) type θ′

t−1 who pretended to
be θt−1 is no longer distinguishable from θt−1, in which case distortions should
be eliminated forever. However, the distortions need not be immediately elim-
inated by switching from θt−1 to the lowest possible type ¯θt . Indeed, since it
is the downward local incentive compatible (IC) constraints that bind in the
relaxed program and since types above θt−1 may not have switched to ¯θt by
experiencing the same shocks, thus, remaining distinguishable, this creates a
reason to distort after reporting ¯θt . We conclude that VDBP also generalizes
to multiple discrete types.

Nonetheless, as the number of discrete types increases, the results become
qualitatively closer to the continuous-type case than to Battaglini’s two-type
case, since the binding downward adjacent IC constraints start to approximate
the ICFOC constraints. For example, while GNDTP and VDPB still hold, their
relevance decreases as the number of types grows, for these properties apply
only to histories that occur with a small probability. Furthermore, as the dis-
tance between the two lowest types vanishes, distortions “at the bottom” be-
come arbitrarily small immediately from t = 1. For intermediate types, distor-
tions can, in general, be nonmonotone in type as in Example 6.

S.5. OPTIMAL MECHANISMS IN NON-MARKOV ENVIRONMENTS

We now discuss how our characterization of implementability for Markov
environments can be used to derive sufficient conditions for implementability
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in some classes of non-Markov environments, and then extend our results on
optimal mechanisms to these environments.

The difficulty in establishing sufficient conditions for implementability in
non-Markov environments stems from the fact that an agent who lied in the
past may find it optimal to continue to lie in subsequent periods. Not knowing
how the agent will optimally behave following a lie makes it hard to identify
conditions that guarantee the suboptimality of the first lie. This problem does
not arise in Markov environments, as there restricting attention to strongly
truthful equilibria is without loss of generality, but in a non-Markov environ-
ment, this restriction entails a loss. To see this, assume for simplicity, that there
are only two periods, that there is a single agent, and that there are only two
types in each period. Below we prove, by means of a counterexample, that the
following result is false.

Result. Given any indirect mechanism Ω and any strategy σ that is sequen-
tially optimal for the agent in Ω, there exists a direct mechanism ΩD with mes-
sage space equal to Θt , t = 1�2, where a strongly truthful strategy is optimal
and implements the same outcome as σ in Ω.

COUNTEREXAMPLE: The agent’s private information is θt ∈ Θ ≡ {θL�θH},
with θL�θH ∈ (0�1). The set of possible decisions isX0 = ∅ andX1 = [0�1]. The
agent’s payoff is U = θ0θ1x − p, where x ∈ X and p ∈ R. Then consider the
following choice rule: χ1(θ0� θ1) = 1 if (θ0� θ1) = (θH�θH) and χ1(θ0� θ1) = 0
otherwise; ψ(θ0� θ1)= p ∈ (θHθL�θ2

H) if (θ0� θ1)= (θH�θH) and ψ(θ0� θ1)= 0
otherwise. This choice rule can be implemented, for example, by offering the
agent the direct mechanism that corresponds to the choice rule. The following
strategy is then trivially sequentially optimal for the agent: σ0(θ0)= θ0 for any
θ0, σ1(θ0� θ1� θ̂0) = θ1 if θ̂0 = θ0, and σ1(θ0� θ1� θ̂0) = θL if θ̂0 �= θ0. It is easy
to see that there exists no direct mechanism that induces the agent to report
truthfully in each period after any possible history (including nontruthful ones)
and that implements the above choice rule.

The problem with strong truthtelling stems from the fact that a direct mech-
anism with message space Mt = Θt does not permit the mechanism to treat
differently in period t an agent with type history θt , who reported truthfully
in all periods (including the current one), from an agent with type history
◦
θt = (

◦
θt−1� θt), with

◦
θt−1 �= θt−1, who reported truthfully in period t but who

lied in the past by reporting θt−1. When the environment is not Markov, as in
the above example, requiring the strongly truthful strategy to be optimal then
precludes the possibility of implementing certain choice rules.3

3To bypass this difficulty, Townsend (1988) suggest mechanisms where at each period, each
agent is asked to report his complete type history rather than just the latest type, as in Myerson
(1986). (In other words, Townsend’s approach amounts to Markovizing the model by enlargening
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While general results for non-Markov environments are difficult (if not im-
possible) to obtain for the above reason, there are nevertheless a few special
classes of non-Markov environments that are of interest for applications and
where our results can be used to establish the implementability of the alloca-
tion rule that maximizes expected virtual surplus.

First, there are environments whose primitives are not Markov, but where
each agent i’s payoff depends on the history of received signals θti only through
a one-dimensional summary statistics ϕit(θti) whose evolution is Markov and
which enters into i’s payoff in a Markov way. As far as agent i’s incentives
are concerned, one may then simply redefine his type to be ϕit(θti), and apply
Theorem 3 and its corollaries to the Markovized environment. An example is
provided by the Gaussian updating foundations for our bandit auction appli-
cation discussed in footnote 37 in the main text. If the signals si are taken as
primitives (i.e., as types), then the model is not Markov. However, each agent
i’s period-t payoff depends only on his posterior expectation θit of his unknown
true valuation, which can be shown to follow a Markov process by routine pro-
jection results.

Second, our results readily extend to a class of time-separable non-Markov
environments that can fit many applications, including sequential auctions,
procurement, and regulation. The two key assumptions are that payoffs and
decisions separate over time, and that impulse responses depend only on cur-
rent and initial types and are nonincreasing functions thereof.

Formally, the separable environment is defined as follows. Let X = ∏∞
t=1Xt

with eachXt ⊂ R
n+1. Each agent i’s payoff takes the separable form Ui(θ�x)=∑∞

t=0 δ
tuit(θit� xit), where the flow payoff functions uit are differentiable, non-

decreasing functions of the current type θit that satisfy the following conditions:
(i) there exists a constant Ki such that for all t ≥ 0, ∂uit/∂θit < Ki, (ii) uit is
strictly increasing in xit and strictly submodular in (θit� xit), and (iii) the bounds
for Condition U-SPR are satisfied. The principal’s payoff takes the separable
form U0(θ�x)= ∑∞

t=0δ
tu0t(xt).

The agents’ types are assumed to follow processes that satisfy Conditions
F-AUT and F-FOSD. In addition, we assume that the first-period hazard rate
ηi0(θi0) of each agent i is a nondecreasing function of θi0, and that for all
i = 1� � � � � n and t ≥ 0, the impulse response function Iit(θti) depends only on
(θi0� θit) and is nonincreasing in (θi0� θit).

The above assumptions on the utility functions imply Conditions U-D and
U-ELC. Hence, for the separable environment to be regular, it suffices that the
processes satisfy Conditions F-BE and F-BIR, which we assume henceforth.
An example of a process that satisfies all of the above assumptions is given by

the state space.) With each report, an agent is then given a chance to “correct” his past lies,
in which case restricting attention to strong truthtelling is always without loss of generality by
the argument used to establish the revelation principle in static models. However, this approach
entails multidimensional reports in each period, which creates its own set of difficulties.
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the linear AR(k) process consider in Example 2, provided that the impulse
responses and shocks satisfy ‖Ii�(s)‖ < Bi, ‖E[|ε̃i|]‖ < ∞ for some Bi for all
i = 1� � � � � n and s ≥ 0 (more generally, any autoregressive integrated moving
average (ARIMA) process satisfies the above assumptions given appropriate
restrictions on coefficients).

We then have the following result.

PROPOSITION S.2—Optimal Mechanism for Separable Environments: Con-
sider the separable environment described above. Suppose that the expected virtual
surplus attains its supremum on the set of feasible allocation rules.4 Then there ex-
ists an optimal mechanism 〈χ�ψ〉 that has the following properties.

(i) The allocation rule χ is strongly monotone, and for all t ≥ 0 and θt ∈Θt ,
χt(θ

t) depends only on (θ0� θt), and for all t ≥ 0 and λ-almost every θt ,

χt
(
θt

) ∈ arg max
xt∈Xt

{
u0t(xt)(S.3)

+
n∑
i=1

(
uit(θit� xit)− 1

ηi0(θi0)
Ii�(0)�t(θi0� θit)

∂uit(θit� xit)

∂θit

)}
�

(ii) Flow payments are given by

ψit(θ0� θt)= −uit
(
θit�χit(θ0� θt)

)
(S.4)

+
∫ θit

¯θit

∂uit(r�χit(θ0� (r� θ−i�t)))
∂θit

dr for all t ≥ 1

and

ψi0(θ0)= −E
λ|θ0

[
Ui

(
θ̃i�χ(θ̃)

) +
∞∑
t=1

δtψit(θ0� θ̃t)

]
(S.5)

+
∫ θi0

¯θi0
E
λi |r

[ ∞∑
t=0

δtIi�(0)�t(θ̃i0� θ̃it)
∂uit(θ̃it�χit(θ̃t))

∂θit

]
dr�

(iii) Strongly truthful strategies form a subgame perfect equilibrium of the com-
plete information version of the model (where agents observe each others’ types).5

4This can be ensured, for example, by assuming that for all t ≥ 0, Xt is compact, and that for
all i= 1� � � � � n, t ≥ 0, and θ ∈Θ, uit(θ� ·) is continuous on Xt .

5Because valuations are private, the reader may wonder whether truthful reporting is actually
dominant in the proposed mechanism. The answer is negative; under arbitrary strategies, the
opponents’ future actions may depend on their observed allocations in a way that may induce the
agent to depart from truthful reporting.
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Before presenting the proof, we note that Proposition 1, which provides con-
ditions on the primitives that guarantee strong monotonicity of an allocation
rule that maximizes expected virtual surplus, extends to non-Markov environ-
ments by slightly modifying the statement to account for the more general pay-
off functions and processes.

PROPOSITION S.3—Primitive Conditions for Strong Monotonicity: Suppose
Conditions F-AUT and F-FOSD hold, and for all i = 0� � � � � n and t ≥ 0, Xit is
a subset of a Euclidean space. Suppose that either of the following conditions is
satisfied.

(i) Condition U-COMP holds and for all i= 1� � � � � n, agent i’s virtual utility

Ui(θ�x)− 1
ηi0(θi0)

∞∑
t=0

Ii�(0)�t
(
θti

)∂Ui(θ�x)

∂θit

has increasing differences in (θ�x), and the same is true of the principal’s utility
U0(x�θ).

(ii) Condition U-DSEP holds, and for all i= 1� � � � � n and t ≥ 0, Xit ⊂ R and
there exists a nondecreasing function ϕit :Θt

i → R
m, with m ≤ t, such that agent

i’s virtual flow utility

uit
(
θt�xt

) − 1
ηi0(θi0)

t∑
τ=0

Ii�(0)�τ
(
θτi

)∂uit(θt� xt)
∂θiτ

depends only on ϕit(θ
t
i) and xit , and has strictly increasing differences in

(ϕit(θ
t
i)� xit), while the principal’s flow utility depends only on xt .

Then, if the problem of maximizing expected virtual surplus has a solution, it
has a solution χ such that for all i= 1� � � � � n and θ−i ∈Θ−i, χi(θi� θ−i) is nonde-
creasing in θi.

The proof is identical to that of Proposition 1 and, hence, is omitted.

PROOF OF PROPOSITION S.2: Because the environment is time-separable,
allocation rule χ maximizes expected virtual surplus if and only if for all t ≥ 0
and λ-almost every θt ∈ Θt , χt(θt) satisfies (S.3). Furthermore, note that the
separable environment satisfies the conditions in part (ii) of Proposition S.3
with the functions ϕ given by ϕit(θti) = (θi0� θit) for all i = 1� � � � � n and t ≥ 0.
Hence, there exists then a maximizer that is strongly monotone and by inspec-
tion of (S.3), χt(θt) clearly depends only on (θ0� θt). This establishes prop-
erty (i).

To see that the payments given in (ii) implement the maximizer χ and that
property (iii) holds, note first that under the proposed mechanism, incentives
separate over time, starting from t = 1 onward. That is, in every period t ≥ 1
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and for any history, each agent i maximizes his payoff by simply choosing the
current message θ̂it so as to maximize his flow payoff uit + ψit . This follows
because agent i’s period-t message has no effect on the allocations in periods
τ > t, and because of the separable payoffs and F-AUT, the allocation in period
t has no effect on future payoffs or types. That under the payments given by
(ii), the agent finds it optimal to report truthfully, irrespective of his beliefs
about the other agents’ types and messages, and irrespective of whether or not
he has been truthful in the past, then follows from standard results from static
mechanism design by observing that (i) the allocation χit(θ0� θt) is monotone
in θit for all (θ−i�t � θ0) and (ii) values are private, that is, each uit depends on
θ only through θit . In other words, it is as if each agent i were facing a single-
agent static decision problem indexed by (θ−i�t � θ0). In particular, note that
reporting truthfully remains optimal even if each agent were able to observe
both his own future types, the other agents’ past, current, and future types,
and the messages sent by the other agents, thus making his beliefs completely
irrelevant.

As for period zero, we first establish the following lemma, which is similar to
Theorem 3. However, because the environment is non-Markov, the restriction
to strongly truthful strategies is, in general, with loss and, hence, the result only
provides us with a sufficient condition for implementability.6

LEMMA S.2: Suppose the environment is regular. Fix t ≥ 0 and consider a
choice rule 〈χ�ψ〉. Suppose there exists a belief system Γ ∈ Γ (χ) such that for
all i = 1� � � � � n, (i) 〈χ�ψ〉 with belief system Γ satisfies ICFOCi�t , (ii) for all
θt−1 ∈Θt−1 and θit� θ̂it ∈Θit ,∫ θit

θ̂it

[
Dχ�Γ
it

(
θt−1� r

) −Dχ◦θ̂it �Γ
it

(
θt−1� r

)]
dr ≥ 0�

where the functions D are as defined in equation (6), and (iii) strong truthtelling
is an optimal continuation strategy for agent i. Then, for all agents, a one-step
deviation from strong truthtelling is unprofitable at every period-t truthful history.

Since strong truthtelling is assumed to be an optimal continuation strategy,
the proof is the same as the proof of Theorem 3.

So as to apply Lemma S.2 to establish optimality of truthtelling in period 0,
we observe that the choice rule 〈χ�ψ〉 given in the statement of the proposi-
tion satisfies ICFOC by construction and that strong truthtelling is an optimal
continuation strategy from period 1 onward by the argument preceding the

6Note that the lemma establishes a result that holds more generally than in the context of
the separable environments. In particular, it can be useful in finite-horizon settings where incen-
tive compatibility can be established by solving each agent’s optimization problem by backward
induction.
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lemma. Hence, it remains to verify the integral monotonicity condition in the
lemma. But this follows by Corollary 1, since χ is strongly monotone and the
environment satisfies the conditions needed for strong monotonicity to imply
integral monotonicity (note that Corollary 1 does not invoke the Markov prop-
erty) and, hence, strongly truthful strategies form a PBE. Moreover, because
the beliefs used to define the period-0 transfer ψi0 in part (ii) are given by the
exogenous measure λ|θ0, truthful reporting in period 0 is in fact optimal re-
gardless of the agent’s beliefs. Together with the fact that truthful reporting is
also optimal in each subsequent period irrespective of the beliefs, this estab-
lishes that strongly truthful strategies form a subgame perfect equilibrium of
the complete information version of the model.

Finally, because each uit(θit� xit) is nondecreasing in θit and F-FOSD holds,
it is immediate to verify that under the proposed mechanism, participating is
optimal for all period-0 types. Q.E.D.

We conclude by discussing possible implementations of the profit-maximiz-
ing rule. First, consider the special case where flow payoffs are linear (i.e.,
uit(θit� xit) = θitxit) as in auctions and where types evolve according to an
AR(k) process (or, more generally, any process for which the impulse re-
sponses Iit depend only on the initial types). The implementation is then par-
ticularly simple. Suppose that there is no allocation in the first period and
consider implementation in a PBE rather than in a periodic ex post equilib-
rium (both assumptions simplify the discussion but are not essential for the
argument). In period 0, each agent i is then asked to choose from a menu of
handicaps (Ii�(0)�t(θi0)/ηi0(θi0))∞t=1, indexed by θi0, with each handicap costing
ψi0(θi0) as defined in (S.5), but with the measure λ|θ0 replaced by the measure
λi|θi0. Then in each period t ≥ 1, a handicapped VCG mechanism is played
with transfers as in (S.4). (Eső and Szentes (2007) derive this result in the spe-
cial case of a two-period model with allocation only in the second period. See
Kakade, Lobel, and Nazerzadeh (2011) for an extension to a different class of
non-Markov environments.)

This logic extends to nonlinear payoffs and more general processes, in the
sense that in the first period, the agents still choose from a menu of future plans
(indexed by the first-period type). However, in general, in the subsequent peri-
ods, the distortions will depend also on the current reports through the partial
derivatives ∂uit(θit� xit)/∂θit and through the impulse responses Ii�(0)�t(θi0� θit).
However, as long as payoffs separate over time and the impulse responses de-
pend only on initial and current types, the intermediate reports (i.e., reports in
periods 1� � � � � t − 1) remain irrelevant both for the period-t allocation and for
the period-t payments.

Finally, note that the argument used to establish sufficiency for this fam-
ily of non-Markov problems (“virtual” VCG payments in each period t > 0
along with monotonicity of the allocation rule and payments at t = 0 given by
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(S.5)) extends to a few environments where payoffs are not time-separable,
but where virtual payoffs continue to be an affine transformation of the true
payoffs with constants that depend only on the initial reports. Consider, for
example, an economy where all processes are AR(1) and where payoffs are
given by Ui = ∑∞

t=0δ
tθitxit − cit(x

t) for all i = 0� � � � � n. The dynamic virtual
surplus then coincides with the true surplus of a fictitious economy where
all agents’ payoffs are as in the original economy and where the principal’s
payoff is given by U0 − ∑n

i=1
1

ηi0(θi0)

∑∞
t=0δ

tIi�(0)�txit . Then note that irrespective
of whether or not the agents reported truthfully in period zero, the alloca-
tion rule χ that solves the relaxed program maximizes the surplus of this fic-
titious economy from period t = 1 onward. This property, together with the
fact that values are private from t = 1 onward in this fictitious economy, then
implies that incentives for truthful reporting at any period t ≥ 1 can be pro-
vided by using either the team payments of Athey and Segal (2013) or the
pivot payments of Bergemann and Välimäki (2010). Furthermore, as long as
the rule χ satisfies integral monotonicity in period 0, then incentives can also
be provided in period 0 by adding to the aforementioned payments an ini-
tial payment given by (S.5). For an application of similar ideas to a family
of problems where the dynamic virtual surplus takes the form of a multi-
plicative transformation of the true surplus, with the scale depending only on
the initial reports, see the recent paper by Kakade, Lobel, and Nazerzadeh
(2011).
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