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We develop an equilibrium search model of innovation with the possibility of multiple independent
discovery. We distinguish innovations from ideas, and we view patents as probabilistic property
rights that are constrained by the innovators’ option to keep the innovation secret. We find that the
patent system can simultaneously stimulate innovation, information disclosure and welfare. An
optimal patent may provide more or less protection than secrecy, and in many cases, it provides
less, suggesting that its main function is information spreading rather than rewarding the costs
of the innovative activity.

1. Introduction

� The standard view about patents and intellectual property rights (IPRs) is that, as they grant
the inventor a temporary monopoly, they provide inventors an incentive to innovate. Without such
a reward, the innovators would not be willing to invest as much because they would be afraid
of someone else expropriating their ideas. The trade-off here is between the inefficiency of the
monopoly and the incentive to innovate. This view underlies much of the extensive research on
patents that has been accumulated since Nordhaus’s seminal work (1969) (for surveys see, e.g.,
Denicolò, 1996; Langinier and Moschini, 2002). Evidence does not seem to fully support this
view, though. There are numerous studies suggesting that secrecy typically offers better protection
than patents (see, e.g., Cohen, Nelson, and Walsh, 2000; Arundel, 2001). This raises the question
of why firms engage in costly patenting.

Active patenting by firms is even more puzzling because another traditional rationale for the
patent system is to stimulate public disclosure of private information. A patent application should
contain sufficient information to allow a skilled person to reproduce the particular innovation.
It is not clear how the two aims of the patent system, to enhance the incentive to innovate and
to disseminate information, can be reconciled; there seems to be an inherent tension between
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them. On one hand, if patenting enhances the incentive to innovate by improving appropriability,
how can it simultaneously spread information and thereby the possibilities to imitate the patented
innovation? On the other hand, if patent protection stimulates information disclosure rather than
investments in innovation, as Gallini (2002) suggests in a survey of the empirical evidence, then
why do firms patent?

The aim of this study is to compare the effects of the patent system and secrecy on the
incentive to innovate, information spreading and welfare. We provide an explanation why firms
patent even if they have the option to resort to secrecy offering better protection. We find that, if
a patent system is effective in the sense that innovators patent their innovations rather than keep
them secret, it can stimulate both the innovative activity and information disclosure and, as a
result, improve welfare. An effective patent system can provide less protection than secrecy. To
see this, suppose that the innovators first invest in R&D and then, after finding out whether they
succeeded in producing an innovation, but when still unaware of other potential developers of the
same innovation, decide whether to patent the innovation or keep it secret. Then under a patent
system, it only pays to keep the innovation secret when the probability that a competitor comes up
with the same innovation and patents it is sufficiently small. If the probability is large, it pays to
apply for the patent even if it confers only weak protection because, otherwise, someone else gets
it, and the innovator risks infringement if she tries to capitalize her innovation. In other words,
when innovators contemplate patenting, the typical choice is not between patenting or keeping
the innovation secret but between patenting or letting the competitors patent.

Critics of strong patent protection argue that the strengthening of patent rights over the past
decades has only resulted in an increase in patenting without a corresponding increase in the
innovative activity (see, e.g., Jaffe and Lerner, 2004). Our model also incorporates this view. If
patent protection is enhanced when some innovators resort to secrecy and some patent, all that
happens is that more innovators begin to patent but R&D expenditures remain the same. Only if
everyone patents, does stronger patent protection encourage innovation.

Our view, according to which the patent system can both accelerate the pace of innovation
and spread information, necessitates that firms frequently make similar innovations. As discussed
in Granstrand (2002), the phenomenon of independent or nearly simultaneous discoveries is well
documented in ‘traditional’ industries, but we think that it especially characterizes network indus-
tries such as software, Internet, telecommunications and payment media where standardization
limits the possible paths for future technologies and, accordingly, firms concentrate their R&D
activities on the same fields. Similar views are expressed by Rahnasto (2003) and Varian, Farrell,
and Shapiro (2004). Rahnasto (2003), in particular, argues that intellectual property protection
should be reconsidered because of increased relevance of simultaneous innovation.

To highlight the intuition of one of our basic results, one can rely on the following simple
example: Two firms are engaged in R&D that results either in an innovation or failure. Suppose
first that the innovation is protected by secrecy and leaks out with probability 1 − α. When this
happens, the innovation is publicly available and production is at the competitive level. If only one
firm succeeds in R&D and the innovation does not become public, the firm earns monopoly profit
π M . If both firms succeed and their innovation does not become public, each firm earns duopoly
profit π D < π M . Assuming that the probability of success β is independent across firms, a firm’s
expected profit is β(1−β)απ M +β2απ D . If the innovation can be protected by a patent, the firms
have to decide whether to file for a patent (P) or resort to secrecy (S). This decision has to be
made before learning whether the competitor has succeeded or not. If both firms are successful
and file for the patent, each firm obtains it with probability 1/2. Let us measure patent protection
by the probability that a patent holder can exclude the competitor from using the innovation. This
probability is denoted αp below.

The expected payoffs given a competitor’s patenting strategy are represented in Table 1,
which displays the row player’s payoff in each cell. From the table, it is immediate that patenting
is a strictly dominant strategy when αp = α. Hence, by continuity, there exists an α′

p < α such
that patenting is a strictly dominant strategy even though the protection offered by the patent
is weaker than that offered by secrecy. Note that we impose no specific demand structure or
© RAND 2007.
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TABLE 1

S P

S β(1 − β)απ M + β2απ D β(1 − β)απ M

P β(1 − β)αpπ
M + β2αpπ

M β(1 − β)αpπ
M + .5β2αpπ

M

form of the duopolistic competition. For example, the argument could accommodate a standard
decreasing inverse demand function and Cournot or Bertrand competition. We could even assume
that the firms can collude in the product market if they are both successful so that π D = (1/2)π M .
Furthermore, the example generalizes readily to the case of n firms.

The example shows the logic of our result at its simplest. It incorporates some key elements
of our model, notably the decision to patent and the probabilistic view of IPRs. Our model is,
however, richer in several respects. Because the economics of IPRs is an area where policy
considerations are important, we use an equilibrium search model with nontrivial demands so
that we can calculate welfare measures. The model naturally yields the possibility that more
than one innovator comes up with the same innovation. We assume that there is a large number
of innovators as well as ideas, i.e., potential innovations. The relative number of innovators to
potential innovations tells roughly how mature and competitive an industry is, and this varies across
industries. We also allow for the possibility that the innovations become obsolete. The optimal
strength of the patent system depends on these variables, and these effects cannot be addressed
in the two-agent example. Moreover, unlike most previous studies of IPRs, we distinguish actual
innovations from unknown ideas (for an exception, see O’Donoghue, Scotchmer, and Thisse,
1998). Finally, to study the incentive effects of IPRs, we assume that the innovators can decide
how much to invest in R&D. The investment determines the probability of success, and it depends
on whether there is a patent system available and the strength of protection it offers.

Although information spreading has been a main purpose of the patent system since its
origins, it is relatively little studied in economics (Granstrand, 2002). Since the seminal article
by Horstman, MacDonald, and Slivinski (1985), there are only a few studies where secrecy is
regarded as a viable option to patenting. The works that are the closest to ours are Anton and Yao
(2004) and Denicolò and Franzoni (2004). Like Horstman, MacDonald, and Slivinski (1985),
Anton and Yao (2004) build a signalling model to study the strategic disclosure of information
through patenting and find that small innovations are fully revealed but large innovations are
mainly kept secret. Reminiscent of our findings, they show that small innovations are patented
even if patents afford weak protection. In our model, innovators either keep their innovations
fully to themselves or they become fully public, and matters of signalling do not arise. Like us,
Denicolò and Franzoni (2004) find that patenting is in general socially preferable to secrecy. They,
however, focus on the question of prior user rights in a model of sequential innovation. Using
logic similar to ours, Arora, Fosfuri and Gambardella (2001) show how the incentive to license
is decreasing in the degree of product differentiation of an industry. In their model, licensing is
an equilibrium even though it increases information spreading.

The rest of the article is organized as follows. We present the model in the next section. In
Sections 3 and 4, we consider an economy without a patent system; in Section 3, we solve for the
equilibrium and, in Section 4, we study its welfare properties. Patents are introduced in Section
5. Much of the section is devoted to the analysis of the choice between patenting and secrecy. In
Section 6, we study the incentive effects of the patent system. Finally, in Section 7, we consider
the welfare effect of patents and optimal patent policy. In Section 8, we present conclusions
and discuss the first-inventor defense. The proofs and calculations omitted in the main text are
collected in the Appendix and the supplementary Appendix at www.rje.org/sup-mat.html.

© RAND 2007.
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2. The model

� We study an infinite horizon, discrete-time economy, where time is discounted using a
common discount factor, δ ∈ (0, 1). There are risk-neutral agents, innovators, who conduct
R&D and produce the resulting innovations. The innovation process involves the Schumpeterian
distinction between inventions, which we here call ideas, and innovations. The process has two
stages, where the innovators first come up with an idea and invest amount j in it. In the second stage,
they find out whether they succeeded in producing an innovation or not. We introduce uncertainty
inherent to an innovation process by assuming that, with probability 1 − e− j , an innovator is
successful in developing the idea into an innovation.1 Thus, the probability of success is increasing
and concave in the investment. When there are no IPRs, choosing the level of investment, j, is
the only decision the innovators have to make. Once we introduce patent policy in Section 5, the
innovators also have to decide whether to file for a patent or resort to secrecy. When there are no
IPRs, the form of protection is trivially secrecy.

There is a continuum of innovators and ideas, and the innovators find ideas randomly. The
mass of innovators is normalized to unity, while the mass of ideas is I . In this setting, the number
of innovators who find any particular idea is given by a Poisson distribution with rate θ = 1/I .2

Despite the practical relevance of independent innovation, assuming that more than one inno-
vator can come up with the same idea is not crucial. All that is needed is the possibility of multiple
independent discoveries of similar innovations, such that an innovator—in choosing between se-
crecy and patenting—has to take into account the potential competition and the possibility that an
overlapping patent makes the production of the innovation difficult. We simply take this one step
further to gain tractability. Nor is the possibility of several innovators simultaneously making the
same innovation a feature that drives the results. The model would work in a similar way if an
innovator could create the same innovation that was made earlier by another innovator, but this
would be harder to analyze.

We assume that, under secrecy, an innovator can keep the innovation to herself with proba-
bility α. This means that with probability 1−α the innovation becomes public; this is the spillover
effect. If the innovation becomes public, there is free entry to its utilization, which drives pro-
duction to the competitive level. We take the probability α to be a measure of the strength of
protection under secrecy. As some innovations are complex or involve soft information, whereas
some innovations are easy to describe and reproduce, the parameter α is likely to be industry or
even innovation specific (see, e.g., Cohen, Nelson, and Walsh, 2000; Arundel, 2001). For exam-
ple, process innovations are typically better protected by secrecy than product innovations, which
are observable to users. In practice, innovators can invest in the protection technology whereas
competitors can invest to circumvent the protection, and policy makers can affect the strength of
protection through trade-secret laws. However, for our purposes, α can be taken as exogenous.
We also assume that, at the end of each period, innovations become obsolete with probability
1 − λ. This allows us to determine a steady-state equilibrium.

Because there is a possibility of multiple discovery, we need to specify the nature of com-
petition. We assume that, if more than one innovator develops the same innovation, production
takes place according to Bertrand competition. Thus, an innovator who makes an innovation
alone becomes a monopolist and otherwise production is at the competitive level. Consequently,
all innovations in the economy are such that there is production either at the monopoly or at the
competitive level. As suggested by the example in the Introduction, the form of the product-market
competition is not critical for the results.3

We normalize the marginal cost of production to zero for all innovations. For the consumption

1 Motivation for choosing this particular functional form can be found in Kultti (2003).
2 In random matching literature, this is known as the urn-ball model (e.g., Lu and McAfee, 1996). One can also

think that the innovators simultaneously choose an idea to work on using symmetric mixed strategies.
3 Cournot competition would yield essentially the same results (see Kultti and Takalo, 2006). The results do not

change qualitatively even if innovators collude to produce as a monopoly under secrecy.
© RAND 2007.
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side, we assume that there is an inverse demand function, p =
√

2−q, corresponding to each idea.4
We close the model by assuming that the innovators are also the consumers; they are symmetrically
and randomly distributed on the demand curves. Because the number of innovators is very large
(a continuum), the innovators do not take their own consumption into account in their production
decisions.5

� Timing of the events within a period. First, the innovators find ideas according to the
matching technology and make the investment j . At this stage, the innovators do not know how
many other innovators have found the same idea. Second, the innovators find out whether their
investment resulted in a new innovation (this happens with probability 1−e− j ). A new innovation
turns out to be profitable if exactly one innovator comes up with it as she gets a monopoly. If two
or more innovators come up with the same innovation or the innovation becomes public (with
probability 1−α), it is produced at the competitive level and yields zero profits. At the end of the
period, innovations (both new and old) either become obsolete (with probability 1−λ) or remain
economically viable.

It is essential that the investment in innovation is made before the innovations may become
public, but otherwise the results are robust as to the timing of the events. It is also immaterial
whether innovations may become public only once or each period.

� Steady-state stocks of innovations. We focus on a symmetric steady-state equilibrium,
which will be defined in the next section. In an equilibrium the investment j and the stocks of
innovations remain the same from one period to another and the investment is the same for all
innovators. After accounting for the differences in the total surpluses between the monopoly and
competitive innovations, different levels of steady-state stocks correspond to different welfare
levels.

Let Mt denote the period t stock of innovations that are held by one innovator, i.e., monopoly
innovations. The stock is determined at the time of production and it evolves according to the law
of motion,

Mt = λMt−1 + α�t
1,

where �t
1 gives the new innovations developed by a single innovator at period t . The period t

stock consists of two terms. The first term is the proportion of the stock from the previous period
that does not become obsolete at the end of period t − 1. The second term is the proportion of the
new monopoly innovations that does not become public. In a steady state, Mt = M and �t

1 = �1
for all t , so that

M =
α�1

1 − λ
.

That a new innovation is made exactly by one innovator requires first that at least one
innovator finds the idea and then that exactly one innovator is successful in developing the idea
into an innovation. The inflow to the stock of monopoly innovations M is thus

�1 =
∞∑

h=1
e−θ θh

h!

(
h
1

)
(1 − e− j )e−(h−1) j I = θ̃e−θ̃ I,

where we have defined θ̃ ≡ θ (1 − e− j ). The steady-state stock is then

M =
αθ̃e−θ̃

1 − λ
I. (1)

4 We use linear demands for simplicity. As the simple example in the Introduction indicates, the mechanism that
drives the results does not hinge on the specific functional form for the demand curve.

5 Whether the innovators take their own consumption into account or not is inconsequential, as utility from any
particular innovation is a negligible part of the total utility of an agent.
© RAND 2007.
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The difference between ideas and innovations shows up in the variables θ and θ̃ above: the
Poisson parameter θ = 1/I measures roughly the innovative potential of the industry, whereas θ̃ =
θ (1 − e− j ) measures actual R&D intensity, which incorporates the level of the R&D investment.

The period t stock of innovations for which the production is at the perfectly competitive
level is denoted by Ct . The inflow to the stock of competitive innovations consists of the new
innovations developed each period minus the new innovations for which there is a monopoly. The
number of new innovations developed exactly by k innovators each period is

�t
k =

∞∑
h=k

e−θ θh

h!

(
h
k

)
(1 − e− j )ke−(h−k) j I =

θ̃ ke−θ̃

k!
I. (2)

As (2) shows, for a new innovation to be made by exactly k innovators, at least k innovators must
first find the idea. Then exactly k of the innovators must be successful in developing the idea into
an innovation. As there can be any number k of developers, we must sum over k so that the total
number of new innovations is

∞∑
k=1

�t
k =

∞∑
k=1

θ̃ ke−θ̃

k!
I = (1 − e−θ̃ )I.

The stock Ct evolves according to

Ct = λCt−1 +
∞∑

k=1
�t

k − α�t
1,

where λCt−1 is the proportion of the stock of the previous period that does not become obsolete
and

∑∞
k=1 �t

k − α�t
1 is the inflow of new competitive innovations. Accordingly, in a steady state,

the stock of competitive innovations is

C =
1 − e−θ̃ − αθ̃e−θ̃

1 − λ
I. (3)

� Revenue and consumer surplus. Given inverse demand function p =
√

2−q and Bertrand
behavior with zero marginal costs, the per period revenue from a monopoly innovation is π = 1/2,
whereas all other innovations yield zero revenue. The corresponding periodic consumer surpluses
are γ = 1/4 for monopoly innovations and γc = 1 for competitive innovations. For further
reference, we record the per period aggregate revenue,

� ≡ Mπ =
αθ̃e−θ̃

2(1 − λ)
I, (4)

and the aggregate consumer surplus,

� ≡ Mγ + Cγc,

which can be, by using (1) and (3), rewritten as

� =
4(1 − e−θ̃ ) − 3αθ̃e−θ̃

4(1 − λ)
I. (5)

© RAND 2007.
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3. Equilibrium without patents

� Next we determine the equilibrium level of innovation in an industry lacking intellectual
property rights. Without IPRs, an innovator can do nothing else but invest in R&D and hope that
no one else makes the same innovation. If there are other innovators who have found the same
idea—corresponding to a situation where many firms are working on similar R&D projects—the
innovator can make profits only if she is successful in transforming the idea into an innovation and
all others fail. The successful innovator becomes a monopolist with probability α. If more than
one innovator is successful or if the innovation becomes public, competition will drive revenue
to zero.

A Nash equilibrium of the model is an infinite sequence of investment rules for each innovator
such that each sequence of rules is optimal given other innovators’ sequences.6 A steady-state
equilibrium is an equilibrium where the stocks of innovations remain at constant levels. The
equilibrium investments also remain constant in a steady-state equilibrium. We call a steady-state
equilibrium symmetric with respect to investment if all innovators invest the same amount. It
turns out that symmetry is a necessary condition for a steady-state equilibrium. A symmetric
steady-state equilibrium is thus characterized by the common constant equilibrium investment j .
In what follows, we focus on the symmetric steady-state equilibria, which we simply refer to as
equilibria.

In seeking the equilibrium investment level, we assume that all other innovators choose
investment j and the innovator under study chooses i . Because the stream of revenue from all
the previous innovations is just like fixed income without an impact on the investment, we can,
without loss of generality, focus on an innovator who has no previous monopoly innovations. The
innovator’s expected utility is given by the Bellman equation,

U 0 = max
i
{−i + ρ(i)π + � + δ[ρ(i)λU 1 + (1 − ρ(i)λ)U 0]}. (6)

The utility of the current period comes from the cost of investment−i , the probability of becoming
a monopolist ρ(i) times the monopoly revenue π and the innovator’s share of the aggregate
consumer surplus, �. If the innovator comes up with a new monopoly innovation and if this
innovation does not become obsolete at the end of the period, the continuation value is U 1. In
the complementary case, i.e., if there are others that have developed the same innovation or if the
innovation becomes public or obsolete, the innovator’s continuation value is U 0.

The probability of becoming a monopolist given investment i is

ρ(i) = (1 − e−i )α
∞∑

k=0
e−θ θ k

k!
(e− j )k = (1 − e−i )αe−θ̃ . (7)

Equation (7) tells us that, to become a monopolist, the innovator has to be successful in developing
the idea into an innovation and the resulting innovation may not become public. This happens
with probability (1 − e−i )α. If there are k other innovators that have found the same idea, none
of them should be successful. This happens with probability (e− j )k . Because there can be any
number k of other innovators, we sum over k.

The difference between U 0 and U 1 is the expected stream of revenue from one monopoly
innovation. By recalling that π = 1/2, we can hence write

U 1 = U 0 + π

∞∑
t=0

(δλ)t = U 0 +
1

2(1 − δλ)
. (8)

6 We model the pricing stage only implicitly through payoffs. Requiring subgame perfection in a game where the
innovators choose first investment and then prices would yield exactly the same results.
© RAND 2007.
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After substituting (8) and (7) for U 1 and ρ(i), we can solve (6) for the value function as

U 0 =
1

1 − δ
max

i

{
−i + (1 − e−i )e−θ̃ α

2(1 − δλ)
+ �

}
. (9)

The first-order condition to the maximization is

−1 + e−i e−θ̃ α

2(1 − δλ)
= 0. (10)

It is straightforward to check that the second-order condition holds. As all innovators are ex ante
identical, their first-order conditions are identical as well. This implies that an equilibrium is
necessarily symmetric, i.e., i = j . Consequently, (10) implies the equilibrium condition

e− j e−θ̃ =
2(1 − δλ)

α
. (11)

Condition (11) implicitly determines the equilibrium investment j as a function of the parameters.
Because θ̃ = θ (1 − e− j ), the lefthand side of (11) is a strictly decreasing function of j that goes
from one to zero as j varies from zero to infinity. Thus, the equilibrium is unique. The equilibrium
investment is positive as long as the righthand side of (11) is strictly between zero and one. The
first inequality is always satisfied because δ, λ ∈ (0, 1). For further reference, we record the
condition ensuring the second as the following lemma.

Lemma 1. The equilibrium investment is strictly positive if and only if δ > (2 − α)/(2λ).

Roughly speaking, an interior solution exists if the parameters are large enough; as all α,
δ and λ belong to the unit interval, a necessary condition for the model to be interesting is that
λ > 1/2. Because δ and λ enter the maximization problem in the innovator’s value function (9)
symmetrically, we could also define the effective discount factor as δλ and rewrite the parameter
restriction as δλ+(1/2)α > 1. In words, for a given level of the effective discount factor, protection
should be strong enough or, for a given level of protection, the innovators should put sufficient
weight on future profits. However, the size of the relevant parameter space is of little importance
because it depends on the specifics of the demand function. For instance, if we increased the
demand intercept, the parameter space would expand. In the sequel, we consider only the part of
the parameter space where the solution is interior. We also focus only on the parameters α, λ and
θ in the analysis. This is without loss of generality, as the results concerning δ are identical to
those concerning λ.

The following comparative statics show that the model behaves nicely.

Lemma 2. The equilibrium investment is increasing in the strength of protection, α. It is decreasing
in the obsolescence rate, 1 − λ, and in the ratio of innovators to ideas, θ .

Proof. See the Appendix.

Lemma 2 tells us that the larger is the spillover 1 − α or the obsolescence rate 1 − λ, the
smaller is the incentive to innovate. Similarly, if the ratio of innovators to ideas, θ , is high, as is
likely to be the case in mature industries, where possible avenues for product development are all
but exhausted, the investment in R&D is low. In contrast, in new high-tech industries, there are
more opportunities to innovate (θ is low) and a successful innovator is likely to encounter less
competition, which naturally stimulates the incentives.

4. Welfare without patents
� As we analyze steady-state equilibria, it is natural to use the periodic aggregate surplus as a
welfare measure. The welfare in the economy is given by

W ≡ − j + � + � = − j +
4(1 − e−θ̃ ) − αθ̃e−θ̃

4θ (1 − λ)
, (12)

© RAND 2007.
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where we have used (4) and (5) to substitute for the aggregate profits � and the aggregate consumer
surplus �. In the above derivation, we have also used the fact that θ = 1/I . Inserting the equilibrium
condition (11) into (12) yields the welfare in the market equilibrium with secrecy. Because of
the distortions arising from the monopoly pricing, spillovers and duplication of research effort,
one expects the market solution to differ from the second best optimum, where investment j is
chosen to maximize W .7 The first two effects tend to yield underinvestment in innovation, the third
overinvestment. Proposition 1 shows that the effects contributing to underinvestment dominate.

Proposition 1. There is too little investment in the market equilibrium compared with the second
best optimum.

Proof. See the Appendix.

Unlike in standard patent races where the possibility of overinvestment is pervasive, in our
model, markets unambiguously deliver too little innovation. A reason is that the duplication of
research here is not necessarily wasteful because it leads to greater production and consumer sur-
plus. As a result, Proposition 1 conveys the traditional rationale for technology policy: Because
of the incomplete appropriability of the social value of innovation, there is too little investment
in R&D as individual innovators do not take into account the benefits of their innovations to
consumers. The benefits do not only arise from the new innovations fully owned by their inno-
vators but also from spillovers, which expand consumer surplus as they increase the number of
innovations for which the production is at the competitive level. Technology policy tries to boost
the incentive to innovate through prizes, contract research, R&D subsidies and various IPRs. In
the next section, we turn to the last instruments and, in particular, to patents.

We point out that the underinvestment result can be sensitive to market and cost structure. For
example, the result is violated under Cournot competition if there are fixed costs of innovation,
ideas are rare and spillovers insignificant.

5. Equilibria with patents and the choice between patenting and
secrecy

� To facilitate the comparison of patent protection and secrecy, patent policy is encapsulated
in a single dimension, the strength of patent protection. It is denoted by αp ∈ [0, 1], where
αp = 1 means maximum protection, i.e., a patent gives perfect, well-defined property right with
no spillovers and αp = 0 means that the property right immediately disappears and the innovation
is made public. As with parameter α in the case of secrecy, we take αp to be the probability that the
innovator maintains her monopoly. This is a quite general definition of the strength and suggests
that patents represent uncertain property rights. In practice, there are many events that can make
a patent valueless before its formal expiration date, such as court challenges to the legal validity
of the patent, a rival’s success in inventing around the patent and legal malpractice that forfeits
the patent through the failure to renew it, observe legal formalities or reserve rights when the
technology is disclosed. In other words, we can think of αp denoting the probability that a patent
holder succeeds to exclude others from using her innovation and with complementary probability
1 − αp the patent is found invalid or it can be infringed.

The way we model patents means that, once a patent is granted, there is a single randomization
that determines whether the innovation becomes public; if not, the innovator gets an infinitely
lived, perfect property right. One can think that all uncertainties concerning the property right
conferred by the patent during the entire life of the innovation are determined by this single
randomization. Any level of protection that can be achieved using an imperfect, finitely lived
patent can be achieved using the combination of perfect, infinite patents and an appropriately
chosen initial randomization. This is a particularly appealing way to define patent protection in
this model as the length of protection under secrecy is also infinite.

7 Our definition of second best assumes that the social planner is able to adjust investment but is unable to change
the market structure.
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In practice, the protection under patent policy can be stronger or weaker than under secrecy.
We therefore allow αp to be greater or smaller than α, which is the measure of protection under
secrecy. As a result, we can consider both the traditional patent policy, where patents are assumed
to increase protection, and the view according to which patents actually decrease it because of,
say, disclosure rules and costly litigation.

We assume that αp is the decision variable of the policy makers and the individual innovators
take it as given. In addition to the investment decision, the innovators now have to choose between
patenting (p ) and secrecy (s). If an innovation is kept secret, protection is determined by α, as
in the case without a patent system. If it is patented, protection will be determined by αp. If two
or more innovators apply for the same patent, the patent holder is chosen by a lottery, where
each applicant has an equal probability of winning. When an innovator receives a patent on an
innovation, she can exclude the other developers of the same innovation from the market with
probability αp.

The innovators make the patenting decision after finding out whether their own investment
resulted in an innovation. At this stage, they do not know how many other innovators have made
the same innovation. Otherwise, the timing is as before. Thus, each period, a two-stage extensive
form game is played where, at the first stage, the innovators find ideas and simultaneously invest
in R&D and, at the second stage, find out about their success and choose patenting or secrecy. In
making the patenting decision, a successful innovator knows only her own first-stage investment.
Being successful reveals no information about the other innovators’ behavior, as the probability
of success is independent across innovators.

An equilibrium in the periodic extensive form game ascribes to each innovator an investment
and a decision rule that associates with every possible investment level the decision to patent or not.
An equilibrium of the infinite horizon game is a sequence of rules for each innovator determining
the innovator’s behavior in each period as a function of the history of the play. As in the case
without patents, we restrict attention to steady-state equilibria, where the stocks of innovations
and investment remain constant from one period to another. There are potentially three types
of such equilibria: pure strategy equilibria, where all innovations are kept secret; pure strategy
equilibria, where all innovations are patented; and mixed equilibria, where some proportion of the
innovations is kept secret while others are patented. We will refer to these classes of equilibria as
secrecy, patenting, and mixed equilibria. Because there is a continuum of innovators, we model
mixed strategies by using the distributional approach. That is, we assume that proportion σ of the
innovators use the pure strategy secrecy and proportion 1 − σ use the pure strategy patenting for
some σ ∈ [0, 1]. In equilibrium, the proportion σ is chosen to satisfy the indifference requirement
between the payoffs from the two pure strategies.

We next establish that an equilibrium with patents is necessarily symmetric with respect to
investment.

Lemma 3. In an equilibrium with patents, the investment is the same for all innovators.

Proof. The formal proof of the claim will be a part of the proof of Proposition 2, but we give a
heuristic argument here. Recall that, when choosing between secrecy and patenting, an innovator
does not know whether there are others who have made the same innovation. Furthermore, the
optimal second-stage decision is independent of the (sunk) first-stage investment. As a result, in
an equilibrium, either all successful innovators make the same decision, or, if there is mixing,
secrecy and patenting must yield exactly the same expected payoff in the second stage. This in
turn implies that the equilibrium expected utility from being successful, as calculated at the first
stage, is the same for all innovators. Therefore, also the equilibrium investment is the same for all
innovators: the marginal benefit from increasing the investment is the increase in the probability
of success times the utility from being successful. The marginal cost is simply the marginal cost
of investment. As the utility from being successful and the cost of investment is the same for all
innovators, the result follows. Q.E.D.

When a patent system is introduced, the stocks of monopoly and competitive innovations
are no longer determined by (1) and (3). In particular, the number of new monopoly innovations
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depends on whether the innovators choose patenting or secrecy. To account for all possibilities,
we determine the stocks as functions of the proportion σ ∈ [0, 1] of the innovators choosing
secrecy. As we are ultimately interested in the equilibrium stocks we can, by Lemma 3, assume
that all innovators make the same investment j . A derivation analogous8 to that in Section 2 yields
the steady-state stock of monopoly innovations,

M(σ ) =
σαθ̃e−θ̃ + αp(1 − e−(1−σ )̃θ )

1 − λ
I,

and the steady-state stock of competitive innovations,

C(σ ) =
1 − e−θ̃ − σαθ̃e−θ̃ − αp(1 − e−(1−σ )̃θ )

1 − λ
I.

It is easy to verify that M(1) and C(1) equal (1) and (3).
The periodic aggregate revenue is now given by

�(σ ) = M(σ )π =
σαθ̃e−θ̃ + αp(1 − e−(1−σ )̃θ )

2(1 − λ)
I, (13)

and the aggregate consumer surplus is given by

�(σ ) = M(σ )γ + C(σ )γc

=
4(1 − e−θ̃ ) − 3σαθ̃e−θ̃ − 3αp(1 − e−(1−σ )̃θ )

4(1 − λ)
I. (14)

Next we determine the equilibrium in an industry with a patent system. As in Section 3, we
can, without loss of generality, focus on an innovator who possesses no monopolies, patented or
otherwise. The innovator under study chooses investment i while all others choose investment j .
When each period proportion σ of the innovators opt for secrecy, the innovator’s expected utility
is given by the Bellman equation,

U 0
p(σ ) = max

i

{
−i + �(σ ) + max

{
ρp(i, σ )π + δ[ρp(i, σ )λU 1

p(σ ) + (1 − ρp(i, σ )λ)U 0
p(σ )],

ρ(i, σ )π + δ[ρ(i, σ )λU 1
p(σ ) + (1 − ρ(i, σ )λ)U 0

p(σ )]
}}

,

where U 1
p(σ ) is the value function of an innovator who possesses one monopolized innovation.

The inner maximization on the righthand side deals with the second-stage decision between
patenting and secrecy: the first term gives the expected payoff from patenting and the latter term
the expected utility from secrecy. In the above Bellman equation, ρ(i, σ ) is the probability of
becoming a monopolist when choosing investment i and secrecy, given that proportion σ of the
innovators chooses secrecy. Similarly, ρp(i, σ ) is the probability of becoming a monopolist when
choosing i and patenting. The interpretation of the other terms is analogous to (6).

Once the innovator holds a monopoly position, it no longer matters whether the position
was achieved by patenting or secrecy, as in both cases there is a single, initial randomization
determining whether the others can be excluded from using the innovation. Thus, as in (8),
the difference between U 1

p(σ ) and U 0
p(σ ) is just the expected stream of revenue 1/[2(1 − δλ)]

from one monopolized innovation. Analogously to the derivation of (9), we can then substitute
U 0

p(σ ) + [1/(2(1 − δλ))] for U 1
p(σ ) in the above Bellman equation, and solve it for the value

function,

U 0
p(σ ) =

1
1 − δ

max
i

{
−i + �(σ ) + max

{
ρp(i, σ )

2(1 − δλ)
,

ρ(i, σ )
2(1 − δλ)

}}
. (15)

8 See the supplementary Appendix for details.
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If the innovator decides to patent, her probability of obtaining a monopoly position is

ρp(i, σ ) = (1 − e−i )αp

∞∑
k=0

e−θ θ k

k!

k∑
h=0

(
k
h

)
(1 − e− j )h(e− j )k−h

h∑
l=0

(
h
l

)
(1 − σ )lσ h−1 1

l + 1
.

The factors in front of the summations on the righthand side capture the probabilities that the
innovator is successful in transforming an idea into an innovation and, if she obtains a patent, that
the others can be excluded from using the innovation. The summations determine the probability
of obtaining the patent. The first sum is over the probabilities that k other innovators find the
same idea as the innovator we study. The middle summation gives the probabilities that h of the k
other innovators succeed in developing the idea into an innovation. The last summation takes into
account the probabilities that the innovator we study receives the patent when there are l other
patent applicants among the h successful innovators. Straightforward but tedious calculations9

simplify the above expression to

ρp(i, σ ) =




(1 − e−i )αp
1 − e−(1−σ )̃θ

(1 − σ )̃θ
if σ ∈ [0, 1),

(1 − e−i )αp if σ = 1.
(16)

In the limit where σ = 1, the innovator is the only patent applicant, so she receives the patent for
sure, provided that she has succeeded in developing the idea into an innovation.

If the innovator chooses secrecy, her probability of getting a monopoly is

ρ(i, σ ) = (1 − e−i )α
∞∑

k=0
e−θ θ k

k!
(e− j )k = (1 − e−i )αe−θ̃ , (17)

which is the same as (7). In particular, ρ does not depend directly on σ , as the only case where
the innovator can obtain a monopoly position when choosing secrecy is when no other innovator
is successful with the same idea.

As (15) shows, the optimal investment, given the behavior of the other innovators, maximizes
U 0

p(σ ) with respect to i . The first-order condition depends on the outcome of the innovator’s
patenting decision. In case the innovator opts for secrecy, we have

−1 + e−i e−θ̃ α

2(1 − δλ)
= 0,

which is the same as the first-order condition without patents (10). In case the innovator patents,
the first-order condition is given by

−1 + e−i 1 − e−(1−σ )̃θ

(1 − σ )̃θ
αp

2(1 − δλ)
= 0, (18)

which, in the limit when no one else patents (i.e., when σ = 1), simplifies to

−1 + e−i αp

2(1 − δλ)
= 0. (19)

It is straightforward to verify that the second-order condition holds in each of the above cases.
In the following proposition, we show that all three different types of equilibria, characterized

by the innovators’ second-stage decisions, exist for some values of parameters. For given values

9 Details can be found in the supplementary Appendix.
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of the other parameters, the type of equilibria is determined by the strength of the patent protection
αp. Because the proof of the proposition forms the core of our analysis, we present it in the main
text despite its length.

Proposition 2. Suppose that the parameter restrictions in Lemma 1 hold so that the equilibrium
investment without patents is positive.10 Then for each patent strength αp, there is a unique steady-
state equilibrium. Furthermore, there exist patent strengths α and α such that the equilibrium is

(i) secrecy if αp ∈ [0, α];

(ii) mixed if αp ∈ (α, α);

(iii) patenting if αp ∈ [α, 1].

The cutoff patent strengths satisfy 0 < α < α < α, where α is the protection under secrecy.

Proof. Let us start with the patenting equilibria (iii). In this case, σ = 0, as all innovators patent
by definition. The equilibrium investment must satisfy the first-order condition (18) for σ = 0.
By symmetry, we see that the equilibrium investment must then be the same for all innovators,
confirming Lemma 3 for the patenting case. We denote this investment by jp. It is determined by
(18), reproduced here as

e− jp
1 − e−θ̃

θ̃
=

2(1 − δλ)
αp

, (20)

where θ̃ = θ (1− e− jp ). The lefthand side is a strictly decreasing function of jp that attains values
from one to zero as jp ranges from zero to infinity. Hence, the equilibrium investment is unique.
Comparing the equilibrium condition to equation (11), we see that the parameters on the righthand
side must satisfy restrictions analogous to Lemma 1 for the equilibrium investment to be positive.

Let us then turn to the decision to patent. By the one-shot deviation property, it is sufficient
to consider only deviations in a single period. From the inner maximization problem in the value
function U 0

p(0) in (15), we see that a deviation to secrecy is unprofitable iff

ρp(i, 0)
2(1 − δλ)

≥ ρ(i, 0)
2(1 − δλ)

,

where i is the innovator’s sunk investment. After the substitution of (16) and (17) for ρp(i, 0) and
ρ(i, 0), the condition can be simplified to

αp ≥ θ̃e−θ̃

1 − e−θ̃
α, (21)

where the righthand side is also a function of αp as θ̃ = θ (1−e− jp ) and the equilibrium investment
jp depends on αp through the first-order condition (18). The derivative of the right-hand side of
(21) with respect to αp is

d
d jp

(
θ̃e−θ̃

1 − e−θ̃
α

)
d jp

dαp
< 0,

where the inequality follows from the facts that d jp/dαp > 0 by Lemma 4 below and d [̃θe−θ̃ /

(1 − e−θ̃ )]α/d jp < 0. Thus, the righthand side of (21) is decreasing and the lefthand side in-
creasing in αp. At αp = 0, the lefthand side of (21) is zero and the righthand side is equal to
α ≤ 1, whereas at αp = 1, the righthand side is less than α ≤ 1 because it is strictly decreasing

10 If the parameter restrictions do not hold, then there is no investment without patents, but it may be possible to
induce positive investment by introducing strong enough patent protection. In this case, the successful innovators always
patent.
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in αp. Therefore, there exists a unique cutoff patent strength α such that the deviation to secrecy
is unprofitable iff αp ≥ α. This cutoff is implicitly given by

α =
θ̃e−θ̃

1 − e−θ̃
α, (22)

where jp in θ̃ is such that it satisfies the first-order condition (18) for αp = α. To show that α < α,
notice first that 1 − e−θ̃ > θ̃e−θ̃ for all θ̃ > 0. Hence, it suffices to argue that the equilibrium
investment jp is positive at αp = α, as then θ̃ = θ (1−e− jp ) > 0. We do this below by showing that
the equilibrium investment with patents at αp = α is actually equal to the equilibrium investment
without patents, which in turn is positive by assumption. Hence, there exists a cutoff α < α such
that there exists a unique patenting equilibrium iff αp ≥ α.

Consider then the secrecy equilibria (i). In a secrecy equilibrium, σ = 1 by definition. As all
innovations are kept secret, the equilibrium is characterized by the same conditions as in Section
3, where we studied an industry without patent protection. This implies that secrecy equilibria
are unique and symmetric with respect to investment, confirming Lemma 3 for the secrecy case.
However, the introduction of the patent system requires us to check that no innovator can profitably
deviate to patenting. From (15), we see that such a deviation is unprofitable iff

ρp(i, 1)
2(1 − δλ)

≤ ρ(i, 1)
2(1 − δλ)

.

Substituting for ρp(i, 1) and ρ(i, 1) from (16) and (17) and simplifying, the condition can be
written as

αp ≤ e−θ̃ α.

On the righthand side, the investment in θ̃ is the equilibrium investment without patents determined
by the equilibrium condition (11), which is independent of αp. Thus, the deviation to patenting
is unprofitable iff αp ≤ e−θ̃ α ≡ α, establishing the existence of the cutoff α. Furthermore, the
parameter restrictions of Lemma 1 imply θ̃ , α > 0, so that α > 0.

Let us then show that α < α < α. When αp = α, the innovator is indifferent between
patenting and secrecy given that all others patent. Thus, her investment jp could just as well be
determined by the first-order condition (10), reproduced here as

e− jp e−θ (1−e− jp ) =
2(1 − δλ)

α
. (23)

This has to be satisfied for the innovator’s choice jp when also all others invest jp. On the other
hand, the equilibrium investment without patents j is determined by the equilibrium condition
(11). Comparing (11) with (23), we see that jp = j > 0. As discussed above, this implies that
α < α. Furthermore, because the equilibrium investments are equal, we have

α < α iff e−θ̃ α <
θ̃e−θ̃

1 − e−θ̃
α iff 1 − e−θ̃ − θ̃ < 0.

The last inequality 1 − e−θ̃ − θ̃ < 0 holds for all θ̃ > 0. Thus, 0 < α < α < α.
Consider finally the mixed equilibria (ii). In this case, σ ∈ (0, 1). For an innovator to be

indifferent between patenting and secrecy, we must have

ρp(i, σ )
2(1 − δλ)

=
ρ(i, σ )

2(1 − δλ)
.

Substituting for ρp(i, σ ) and ρ(i, σ ) from (16) and (17) and simplifying, this becomes

αp
1 − e−(1−σ )̃θ

(1 − σ )̃θ
= αe−θ̃ . (24)
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There is a unique σ , denoted by σ̂ , that solves (24) iff αp ∈ [α, α]. It is straightforward to
verify that σ̂ is a decreasing, continuous function of αp. Furthermore, if αp = α, then σ̂ = 1,
and if αp = α, then σ̂ = 0. Thus, the proportion of the innovators that choose secrecy declines
continuously from one to zero when the patent strength increases over the range [α, α]. The
equilibrium investment for a given σ̂ must simultaneously satisfy the first-order conditions (10)
and (18). As the innovators are indifferent between secrecy and patenting, the investment must
be the same for all innovators, confirming Lemma 3 for the mixing case.

Let us then establish uniqueness. It is clear from the above that there can be no patenting
or mixed equilibria for αp ∈ [0, α]. Hence, the equilibrium must be a secrecy equilibrium. But
we argued above that, in this case, the secrecy equilibrium is unique. Similarly, for αp ∈ (α, α),
there can be no secrecy or patenting equilibria and there is a unique σ̂ corresponding to each αp.
In the last case, where αp ∈ [α, 1], there can be no secrecy or mixed equilibria and the patenting
equilibrium is unique. Q.E.D.

Proposition 2 characterizes equilibria in terms of the innovators’ second-stage decision. It
shows that the propensity to patent is an increasing function of patent strength. If patents afford
too weak protection compared with secrecy (i.e., if αp ≤ α), the innovators simply choose to keep
their innovations secret. This might be the case, e.g., for process innovations for which reverse
engineering is difficult. Patenting the process innovation would require disclosing information
about the innovation to an extent that allows a skilled person to replicate the innovation. However,
enforcing the patent would be difficult for the very same reason, as reverse engineering: it would
be hard to know from a competitor’s end product whether the patent has been infringed. In other
words, for a process innovation, the protection under secrecy α is likely to be high whereas the
protection granted by the patent αp is likely to be low.

If patent protection is sufficiently strong relative to secrecy (i.e., if αp ≥ α), all innovations
are patented. An extreme example in this direction is pharmaceutical innovations. Introducing a
new drug requires disclosing so much information that, without patents, the innovator would be
left with practically no protection.

For intermediate levels of patent protection, αp ∈ [α, α], the model predicts a mixed equilib-
rium where both secrecy and patenting coexist. To the best of our knowledge, this is the first model
where identical innovations are both kept secret and patented in equilibrium. The proportion of
patented innovations is strictly increasing in the patent strength αp in the interval [α, α].

It is not surprising that innovators waive patent protection when it is sufficiently weak, nor is
it surprising that they hold onto it when the protection is sufficiently strong. However, the cutoff
level of patent protection is strictly less than protection under secrecy (i.e., α < α). This is due to
the prisoner’s dilemma-like situation created by the patent system as demonstrated by the example
in the Introduction. If the innovator trusts secrecy, she gets positive revenue only when no other
innovator is successful with the same idea. In contrast, if the innovator patents, she not only gets
positive revenue when she is alone but also has a positive probability of receiving the patent when
there are others who have developed the same innovation. Thus, patenting is strictly better than
secrecy when they offer equal protection (i.e., when αp = α). It is then clear that we can decrease
the patent protection, at least marginally, and still preserve the innovators’ choices.

6. Incentive to innovate

� In this section, we discuss the implications of the choice between secrecy and patenting for
the incentive to invest in R&D. The comparative statics of the equilibrium investment are given
in the following lemma.

Lemma 4. The equilibrium investment is increasing in the patent strength αp in the patenting
equilibria. It is constant in αp in the secrecy and mixed equilibria. The investment is decreasing in
the obsolescence rate 1−λ and in the ratio of innovators to ideas θ in all three types of equilibria.

Proof. See the Appendix.
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The first property in Lemma 4 shows that strengthening patent protection increases the
incentive to innovate because it reduces information spreading. This constitutes the standard
justification for patent policy. The explanations for the obsolescence rate and the ratio of innovators
to ideas are the same as in the case of Lemma 2.

Whereas Lemma 4 describes the changes in the investment, the next proposition compares
the levels of investment in the industries with and without a patent system. Recall from Proposition
2 that α is the cutoff patent strength above which a patenting equilibrium prevails.

Proposition 3. If αp > α, the equilibrium investment with patents is higher than the equilibrium
investment without a patent system. If αp ≤ α, the equilibrium investment is the same with and
without patents.

Proof. The equilibrium investment without a patent system must be the same as the equilibrium
investment with patents in the secrecy equilibria, which prevails for αp ≤ α by Proposition 2.
Moreover, we show in the proof of Lemma 4 that the equilibrium investment is at the same level
in the mixed equilibria for all αp ∈ [α, α]. Hence, the equilibrium investments with and without
patents are the same for αp ≤ α. By Lemma 4, the equilibrium investment is increasing in αp in
the patenting equilibria, whereas it is constant in αp in an industry without patents. This implies
the result for αp > α. Q.E.D.

This result shows that, whenever it is optimal for all innovators to patent their innovations,
the patent system encourages R&D effort. Because the innovators choose the form of protection
that provides the highest expected profits and because they invest more the higher the benefit,
whenever all innovators actually prefer patenting to secrecy, the investments will increase. How-
ever, the strengthening of patent rights does not necessarily improve the incentive to innovate.
At the intermediate level of protection (i.e., αp ∈ [α, α]), the increase in the incentive to inno-
vate resulting from stronger patent protection is exactly offset by the increase in the number of
innovators who switch from secrecy to patenting. The key message of Proposition 3 arises from
the observation that the cutoff patent protection for increasing the investment is strictly less than
protection under secrecy (i.e., α < α). Thus, the patent system can simultaneously increase the
spillovers and enhance the incentive to invest in R&D.

7. Welfare effect of patents and optimal patent policy

� In this section, we consider the design of the optimal patent policy. Total welfare in the
patenting equilibria is, analogous to (12), given by

Wp(αp) = − jp + �(0) + �(0) = − jp +
(4 − αp)(1 − e−θ̃p )

4θ (1 − λ)
, (25)

where we have used (13) and (14) to substitute in for the aggregate profits and the aggregate
consumer surplus. To find the optimal patent policy, we must maximize (25) with respect to
patent strength αp, taking into account that the strength must be large enough for the innovators
to patent rather than opt for secrecy, i.e., that αp ≥ α. The reason why we require the equilibrium
to be a pure patenting equilibrium rather than a mixed equilibrium is that the welfare in a mixed
equilibrium is the same as in the secrecy equilibria: the equilibrium investment is the same in the
two types of equilibria as shown in Proposition 3. For the investments to be the same, it must be
that the expected profit must be the same. But an innovator can get positive profits only if she
has a monopoly. Thus, the expected number of monopolies must be the same in the two cases.
Given that the investment is the same and the expected number of monopolies is the same, also
the expected number of competitive innovations must be the same. This implies that the sum of
the aggregate profits and the aggregate consumer surplus, i.e., welfare, is the same as well.

Because we assume that, in the absence of patent policy, the spillover cannot be affected,
we first compare the welfare with and without the patent system. If the welfare without patents
is larger, the optimal patent strength will be so low that no one patents. Because in the absence
© RAND 2007.
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of patents markets generate too little investment in R&D by Proposition 1, it looks like patent
policy necessarily increases welfare at least when it boosts investments in R&D. This turns out
to be the case in the sense that the optimal patent policy can always at least replicate the welfare
without patents. However, we cannot jump to the conclusion, as patent policy involves familiar
negative welfare effects, that granting patents leads to duplication of research effort, creates
monopoly distortions, and increasing patent strength decreases the consumer surplus through
reduced spillovers. The next result shows that we can establish a patent policy where the negative
effects are offset by the positive incentive effects.

Proposition 4. There exists a patent strength such that everyone patents and social welfare is the
same as in the equilibrium without patents.

Proof. See the Appendix.

Proposition 4 implies that the optimal patent policy where all innovators patent yields
(weakly) higher welfare than the market equilibrium without intellectual property protection.
In the proof of the proposition, we show that, if patent strength is chosen such that the investment
in R&D is the same with and without patent policy (i.e., if αp = α), then the welfare under
the two regimes is the same as well. This means that, even though monopoly distortions reduce
welfare, patent policy spreads information and increases the stock of competitive innovations and
consumer surplus just enough to offset the reduction. The spreading of information is captured
here by the fact that αp = α < α.

Next we derive the optimal patent policy α∗
p, which satisfies

α∗
p = arg max

αp∈[α,1]
Wp(αp).

In this task, we need to take into account that the investment jp depends on αp through the
equilibrium condition (20).

Proposition 5. The optimal patent strength is given by α∗
p = max{α, min{α∗, 1}}, where α∗ =

[4̃θp(e−θ̃p e− jp − 1 + λ)]/(1 − e−θ̃p ) is the solution to the unrestricted program maxαp Wp(αp).

Proof. See the Appendix.

This result shows that the optimal patent policy may be constrained by the innovators’
option to choose secrecy over patenting. Somewhat surprisingly also the constraint αp ≤ 1 may
be binding at the optimum. Roughly speaking, constraint αp ≤ 1 binds when there would be little
investments in R&D without patent protection, e.g., when obsolescence rate is very high. Then
setting perfect patent protection (α∗

p = 1) is optimal despite the involved monopoly distortions,
as there is a strong need to enhance the incentive to innovate. Note that the patent protection at an
interior solution, α∗, is given in implicit form as the investment, jp, and the realized R&D-intensity,
θ̃p = θ (1 − e− jp ), on the right-hand side are functions of α∗.

Finally, we determine how the design of the optimal patent policy depends on obsolescence
rate and the R&D potential of the industry.

Proposition 6. When the innovators are sufficiently patient (i.e., when δ is sufficiently high)
the optimal patent strength α∗

p is increasing in the obsolescence rate 1 − λ. Furthermore, then
there exists a cutoff obsolescence rate such that the optimal patent policy increases the spillover
(α∗

p < α) for obsolescence rates below the cutoff and decreases the spillover (α∗
p > α) for

obsolescence rates above the cutoff.

Proof. See the supplementary Appendix.

As explained after Lemma 1, parameters δ and λ are practically equivalent from the inno-
vators’ point of view. When obsolescence rate is low and the innovators are patient, they value
future profits. As a result, they are eager to innovate, and patent protection can be made weak
to increase consumer surplus. In such circumstances, the disclosure theory of patents is justified:
© RAND 2007.
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optimal patents spread information by conferring weaker protection than secrecy. In contrast, if
obsolescence rate is high (or the innovators heavily discount future), strong patents are warranted
to restore the incentive to innovate, providing the traditional justification for patent policy.

The effect of the R&D potential of the industry on the design of optimal patent policy is
more ambiguous from the outset because an increase in θ has several effects on social welfare.
It decreases the incentive to innovate by Lemma 4, decreases the number of ideas found, and
increases the duplication of research effort. The first two effects suggest a stronger, the last one
a weaker patent protection. Proposition 7, however, shows that the duplication of research effect
unambiguously dominates.

Proposition 7. The optimal patent strength α∗
p is decreasing in the ratio of innovators to ideas θ .

Proof. See the supplementary Appendix.

Proposition 7 contrasts with the underinvestment result obtained without patents (Proposition
1). By ignoring the rights of independent innovators, the patent system inherently makes duplica-
tion of research effort more wasteful. In other words, under the patent system, only one innovator
receives the right to produce regardless of the number of innovators that have independently made
the same innovation; but without patents, duplication of research only renders innovations more
competitive. Therefore, the optimal patent strength is sensitive to the probability of independent
duplication of innovations. In industries where the innovative potential is high (θ is low), there is
little risk of independent duplication, and thus the patent protection can be strong to maximize the
number of innovations. In contrast, in industries where innovative potential is low (θ is high), it
would be better to dilute the incentive to innovate and thereby reduce overlapping R&D projects.
Combining Proposition 7 with Proposition 6 suggests that the range of parameter values where
the optimal patent policy enlarges the spillover is increasing in θ .

8. Conclusion

� Our aim is to compare the effects of the patent system and secrecy on the incentive to
innovate, information spreading, and welfare. To compare an economy with intellectual property
rights to an economy without them, we need welfare measures. This is achieved by assuming
that there are many innovators and ideas and that to each idea corresponds a demand curve. The
innovators produce as in the standard Bertrand competition and, accordingly, as soon as at least two
innovators come up with the same innovation the consumers reap the maximum surplus, while the
innovators make zero revenue. If just one innovator comes up with an innovation, she becomes a
monopolist. This means that there are both revenue and consumer surplus in the economy, and also
that duplicative research is not necessarily harmful because it increases production and consumer
surplus.

We formalize the widespread idea that patents are perhaps more important in disseminating
information than in providing incentives. Innovators have an option to keep their innovations
secret, and this constrains the feasible patent policies. Because the innovators can opt for secrecy,
the patent policy must provide them with some minimum level of protection. But this protection
can be less than the protection provided by secrecy because, in the equilibrium, it is always better
to patent than to keep the innovation secret; each innovator fears that other innovators have made
the same innovation, and then opting for secrecy would be profitable only if an innovator knew
that she were the sole innovator. Even the optimal patent policy does not necessarily provide more
protection than secrecy, contradicting the traditional view about optimal patents providing strong
protection and incentives to innovate. This observation may provide a rationale for a weak patent
institution: an effective patent system, in the sense that innovators patent their innovations, both
encourages innovation and spreads information and, accordingly, improves welfare.

Our model is overly simplistic in many respects. Given our strong result and its implications
on the heated debate on the pros and cons of the patent system and the expansion of patent
subject matter, it would be desirable to enrich the model in future research. For example, we
implicitly assume that, in the case of multiple innovators of the same innovation, the first to file
© RAND 2007.
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an application gets the patent and can exclude the other innovators. As pointed out by Scotchmer
and Green (1990), such first-to-file rules may induce innovators to patent rather than choose
secrecy. The other rule of priority dispute resolution, which is used only in the United States, is
based on the first-to-invent principle, which tends to make secrecy more attractive. However, the
testable prediction concerning the difference in the propensity to patent caused by the first-to-file
and first-to-invent rules is moot because the first-to-invent rule sometimes allows patenting by a
later innovator if the first innovator has relied on secrecy and the effect of the first-to-file is often
counterbalanced by the prior-user rights. If prior-user rights allow all independent innovators to
use the innovation, it is clear that incorporating the prior-user rights into our model would weaken
the incentive to patent. Therefore, as in Denicolò and Franzoni (2004), our analysis suggests that
removing prior-user rights could improve welfare.

Appendix

� Proofs of Lemmas 2 and 4 and Propositions 1, 4, and 5 follow.

Proof of Lemma 2. Totally differentiating (11) yields the derivatives

d j
dα

=
1

α(1 + θe− j )
> 0,

d j
dλ

=
δ

(1 − δλ)(1 + θe− j )
> 0 ⇒ d j

d(1 − λ)
< 0

and
d j
dθ

= − 1 − e− j

1 + θe− j < 0.

Q.E.D.

Proof of Proposition 1. Denote the second best investment by j∗ and the market-equilibrium investment by ĵ . We will
show that ĵ < j∗. Differentiating the righthand side of (12) with respect to j gives, after simplifying, the first-order
condition

−1 +
e− j e−θ̃

4(1 − λ)
(4 − α + αθ̃ ) = 0.

It is straightforward to check that the second-order condition holds globally so that the above equation determines a global
maximum. Now define a function F by setting

F( j) = −1 +
e− j e−θ̃

4(1 − λ)
(4 − α + αθ̃ ).

Thus, F( j∗) = 0. Notice that, because δ, λ ∈ [0, 1] and d
dδ

( 1
1−δλ

) > 0, we have, for all j > 0,

F( j) > −1 +
e− j e−θ̃

4(1 − δλ)
(4 − α + αθ̃ ).

In particular for j = ĵ , we have

F (̂ j) > −1 +
e− ĵ e−θ̃

4(1 − δλ)
(4 − α + αθ̃ ).

Using the equilibrium condition (11) to substitute in for the term (e− ĵ e−θ̃ )/[2(1 − δλ)] on the right-hand side, we have

F (̂ j) > −1 +
1

2α
(4 − α + αθ̃ ) =

1
2α

(4 − 3α + αθ̃ ) > 0,

where the second inequality follows from the facts that α ∈ [0, 1] and θ̃ = θ (1 − e− ĵ ) > 0. Thus. it must be that ĵ < j∗.
Q.E.D.
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Proof of Lemma 4. In the patenting equilibria, the equilibrium investment jp is determined by the equilibrium condition
(20). Totally differentiating this gives the derivatives

d jp

dαp
=

(1 − e− jp )(1 − e−θ̃ )
αp(1 − e−θ̃ − θ̃e−θ̃ e− jp )

> 0,

d jp

dλ
=

δ(1 − e− jp )(1 − e−θ̃ )
(1 − δλ)(1 − e−θ̃ − θ̃e−θ̃ e− jp )

> 0,

which implies that d jp/d(1 − λ) < 0, and

d jp

dθ
= − (1 − e− jp )(1 − e−θ̃ − θ̃e−θ̃ )

θ (1 − e−θ̃ − θ̃e−θ̃ e− jp )
< 0.

The equilibrium investment is obviously constant in αp in the secrecy equilibria. Other properties of the investment
in the secrecy equilibria follow readily from Lemma 2.

To see that the equilibrium investment is also constant in the mixed equilibria, recall from the proof of Proposition
2 that, in a mixed equilibrium, the equilibrium investment must simultaneously satisfy the first-order conditions (10) and
(18) for a given σ . Using (18), the investment j is determined by

−1 + e− j 1 − e−(1−σ̂ )̃θ

(1 − σ̂ )̃θ
αp

2(1 − δλ)
= 0.

This equation can be rewritten, by using the indifference requirement (24), as

e− j e−θ (1−e− j ) =
2(1 − δλ)

α
,

which is independent of αp . Thus, the equilibrium investment remains constant for all values of αp over the range [α, α].
For the other properties, we can use the fact that the equilibrium investment in a mixed equilibrium must satisfy the
equilibrium condition with secrecy (11), so that the results follow from Lemma 2. Q.E.D.

Proof of Proposition 4. By Proposition 2, we know that all innovators patent iff αp ≥ α. We claim that

Wp(α) = W,

or, using (12) and (25), that

− jp +
(4 − α)(1 − e−θ̃p )

4θ (1 − λ)
= − j +

4(1 − e−θ̃ ) − αθ̃e−θ̃

4θ (1 − λ)
,

where, on the righthand side we have the welfare in the market equilibrium without patents so that the investment j is
determined by the equilibrium condition (11). Proposition 3 implies that jp = j and hence θ̃p = θ̃ . Thus, the above
equality holds iff

α =
θ̃e−θ̃

1 − e−θ̃
α.

Recalling (22), we see that this is exactly the definition of α. Q.E.D.

Proof of Proposition 5. Let us first study the unconstrained maximization problem,

max
αp

Wp(αp),

where Wp(αp) is given by (25). The first-order condition is

− 1 − e−θ̃p

4θ (1 − λ)
+

[
−1 +

(4 − αp)e−θ̃p e− jp

4(1 − λ)

]
d jp

dαp
= 0.

Inserting d jp/dαp from the proof of Lemma 4 and regrouping terms, we have

1 − e−θ̃p

4θ (1 − λ)

{
−1 +

[
−4(1 − λ) + (4 − αp)e−θ̃p e− jp

] θ (1 − e− jp )
αp(1 − e−θ̃p − θ̃pe−θ̃p e− jp )

}
= 0.
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Using the fact that θ̃p = θ (1 − e− jp ) and rearranging, this can be further simplified to

1 − e−θ̃p

4θαp(1 − λ)
(

1 − e−θ̃p − θ̃pe−θ̃p e− jp
) [

4̃θp(e−θ̃p e− jp − 1 + λ) − αp(1 − e−θ̃p )
]

= 0. (A1)

Because the first term is positive, the first-order condition is satisfied if the term in the square brackets is zero, i.e., if

αp = α∗ ≡ 4̃θp(e−θ̃p e− jp − 1 + λ)
1 − e−θ̃p

. (A2)

The solution to (A2) may be smaller than α or larger than unity. If it is smaller than α, the patenting condition αp ≥ α

binds at the optimum. If it is larger than unity, condition αp ≤ 1 binds. For this reason, the optimal strength of the patent
is given by

α∗
p = max{α, min{α∗, 1}}.

This establishes necessity. It can be shown that a second-order condition holds so that the above condition gives a
maximum. We omit the details. See the supplementary Appendix for a proof. Q.E.D.
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