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This document contains omitted proofs and additional results for the manuscript
“Ironing without Control.” Appendix A contains the proofs for the separable case.
Appendix B makes precise the sense in which the construction in the concave case
generalizes the separable case. Appendix C adapts the concave case to problems
where the set of feasible allocations is discrete. Appendix D uses this setting to
construct an example that shows that weak concavity (or more precisely, nonin-
creasing marginal returns) can not be dispensed with. For notation, please refer to
the main text.

Appendix A. Proofs for the separable case

The following sufficient conditions are useful in verifying that an allocation rule
has the pooling property.

Lemma A.1. A function φ : Θ→ X has the pooling property if for all (θ, θ′) ∈ Θ2

at least one of the following holds:

(1) If Φ(θ) = Φ(θ′), then φ(θ) = φ(θ′).
(2) If k̄(θ) = k̄(θ′), then φ(θ) = φ(θ′).

If Φ is single-valued except at countably many points, then all selections from Φ
satisfy the above conditions and hence have the pooling property.

Proof. By definitions of J̄ and Φ, (1) =⇒ (2). To show sufficiency of (2), note
that if I is an open interval in Θ such that G(F (θ)) < H(F (θ)) for all θ ∈ I, then
G(q) < H(q) for all q ∈ F (I). Since G is the convex hull of H, it is affine on F (I).
Thus g = G′ is constant on F (I), and hence k̄ = g ◦ F is constant on I. Then (2)
implies that φ is constant on I.

Assume then that Φ is single-valued except at countably many points. It is
enough to show (1). Suppose that θ < θ′ and Φ(θ) = Φ(θ′). Since J̄ has increasing
differences in (x, θ) by construction, Topkis’s theorem implies that Φ is constant
on [θ, θ′]. But [θ, θ′] is uncountable so that Φ(θ) and Φ(θ′) must be single-valued.
Now (1) is trivial. �

Proof of Corollary 3.8. Since Φ(θ) is assumed nonempty and compact for all θ, the
selections φ∗ and φ∗ are well-defined. Since J̄ has increasing differences in (x, θ)
we have φ∗ ∈ M and φ∗ ∈ M by Topkis’s theorem. By Lemma A.1(1), φ∗ and φ∗
have the pooling property. The claim now follows from Theorem 3.7. �

Proof of Corollary 3.9. Let φ be a selection from Φ, where Φ is single-valued except
at countably many points. By Theorem 3.7 it suffices to show that φ is nondecreas-
ing and has the pooling property. The second claim follows from Lemma A.1. As
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for the first one, assume towards a contradiction that θ < θ′ and φ(θ) > φ(θ′). By
Topkis’s theorem, {φ(θ), φ(θ′} ⊂ Φ(τ) for all τ ∈ [θ, θ′]. But then Φ is multi-valued
at uncountably many points, a contradiction. �

Proof of Theorem 3.7. Integrating by parts we have∫ 1

0

(
J(φ(θ), θ)− J̄(φ(θ), θ)

)
dF (θ) =

∫ 1

0

a(φ(θ))(k(θ)− k̄(θ))dF (θ)

=

∫ 1

0

a(φ(θ)) (h(F (θ))− g(F (θ))) dF (θ)

= [a(φ(θ)) (H(F (θ))−G(F (θ)))]
1
θ=0

−
∫ 1

0

(H(F (θ))−G(F (θ)))da(φ(θ))

=

∫ 1

0

(G(F (θ))−H(F (θ)))da(φ(θ)) ≤ 0,

where the last equality follows since G is the convex hull of H on [0, 1] and H is
continuous, implying that G(0) = H(0) and G(1) = H(1). The inequality follows
from the facts that the measure induced by a ◦ φ is nonnegative since a and φ are
nondecreasing, and G ≤ H by construction.

If problem (P) is separable, then given any allocation rule φ we can add and sub-

tract the expected generalized virtual surplus
∫ 1

0
J̄(φ(θ), θ)dF (θ) from the objective

and use the above equalities to write the problem equivalently as

(A.1) sup
φ∈M

{∫ 1

0

J̄(φ(θ), θ)dF (θ) +

∫ 1

0

(G(F (θ))−H(F (θ)))da(φ(θ))

}
.

“If”: Assume that φ ∈M has the pooling property and φ(θ) ∈ Φ(θ) a.e. Then φ
maximizes the integrand of the first integral in (A.1) a.e. by definition of Φ. Hence
φ attains the supremum of the first term in (A.1). Consider then the second term.
Assume that G(F (θ)) < H(F (θ)) for some θ. Then by continuity, G◦F < H ◦F in
some open neighborhood I of θ. By the pooling property φ is constant on I. But
then I has zero measure under da(φ(θ)). Thus the second term evaluated at φ is
zero, which is the highest value it can take. Therefore, φ attains the supremum in
(A.1), and hence also in (P).

“Only if”: Assume that φ attains the supremum in (P), and hence also in (A.1).
I show first that φ(θ) ∈ Φ(θ) a.e. Consider maximizing the first term in (A.1) over
all functions γ : Θ→ X. Since J̄ has increasing differences in (x, θ) by construction,
it is without loss to assume that γ ∈ M. Furthermore, recalling the definition of
J̄ , it is seen that it entails no loss to assume that γ is constant whenever k̄ is
constant so that it has the pooling condition by Lemma A.1(2). But in the proof
of sufficiency above it was shown that any function that has the pooling property
maximizes the second term. Thus the first term in (A.1) can be maximized by a
monotone function that also achieves the maximum of the second term. So if φ
achieves the supremum in (P), and hence in (A.1), it must maximize the integrand
of the first term almost everywhere. That is, φ(θ) ∈ Φ(θ) a.e.

Suppose then by the way of contradiction that φ does not have the pooling
property. Then on some open interval I ⊂ Θ where G ◦ F < H ◦ F , there exists
θ′ < θ′′ such that φ(θ′) < φ(θ′′). Since a is strictly increasing this implies a(φ(θ′)) <
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a(φ(θ′′)). Then [θ′, θ′′] ⊂ I is assigned strictly positive measure by da(φ(θ)) so that∫ 1

0

(G(F (θ))−H(F (θ)))da(φ(θ)) ≤
∫ θ′′

θ′
(G(F (θ))−H(F (θ)))da(φ(θ)) < 0.

Fix x ∈ [φ(θ′), φ(θ′′)] and define δ ∈M by

δ(θ) :=

{
φ(θ) if θ ∈ Θ \ [θ′, θ′′],

x if θ ∈ [θ′, θ′′].

I show that x can be chosen such that δ is a strict improvement over φ. Since δ is
constant on [θ′, θ′′], the value of the second term in (A.1) increases strictly going
from φ to δ for any x. As for the first term, note that G ◦ F < H ◦ F on I implies
G < H on F (I). Since G is the convex hull of H, it is affine on F (I). Thus g = G′

is constant on F (I), and hence k̄ = g ◦ F is constant on I. By definitions of J̄
and Φ, this implies that Φ(θ) = Φ(θ′) for all θ ∈ [θ′, θ′′] ⊂ I. Since θ′ < θ′′ and
φ(θ) ∈ Φ(θ) a.e., there exists τ ∈ [θ′, θ′′] such that

φ(τ) ∈ Φ(τ) = Φ(θ′) = arg max
y∈X

{
a(y)k̄(θ′) + b(y)

}
.

So setting x = φ(τ) we have∫ 1

0

J̄(δ(θ), θ)dF (θ)−
∫ 1

0

J̄(φ(θ), θ)dF (θ)

=

∫ θ′′

θ′

[
a(φ(τ))k̄(θ′) + b(φ(τ))−

(
a(φ(θ))k̄(θ′) + b(φ(θ))

)]
dF (θ) ≥ 0.

Thus the value of the first term in (A.1) evaluated at δ is no less than at φ. But then
δ improves strictly on φ, which contradicts the fact that φ attains the supremum
in (P). So φ must have the pooling property. �

Appendix B. Separable case as a special case

I now state and prove the claim in Remark 4.3. It implies that Theorem 3.7
remains true if Φ is replaced with Ψ in the statement. Hence, the construction of
Section 4 is a proper generalization of the separable case.

Lemma B.1. Let J be continuously differentiable. If J is separable (but not nec-
essarily weakly concave in x), then Ψ = Φ.

Proof. Normalize F to be uniform. Suppose J is separable and let (x, θ) ∈ X ×Θ.
Following the construction of Section 4 we have

h(x, θ) = J1(x, θ) = a′(x)k(θ) + b′(x) = a′(x)h(θ) + b′(x).

Thus we get

H(x, θ) =

∫ θ

0

h(x, r)dr =

∫ θ

0

(a′(x)h(r) + b′(x)) dr = a′(x)H(θ) + b′(x)θ,

which implies

G(x, θ) = convθH(x, θ)

= convθ (a′(x)H(θ) + b′(x)θ)

= a′(x)convθH(θ) + b′(x)θ

= a′(x)G(θ) + b′(x)θ.
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This gives

g(x, θ) = G2(x, θ) = a′(x)G′(θ) + b′(x) = a′(x)g(θ) + b′(x) = a′(x)k̄(θ) + b′(x),

where the last equality uses the normalization of F . Therefore, the generalized
virtual surplus becomes

J̄(x, θ) = J(0, θ) +

∫ x

0

(
a′(s)k̄(θ) + b′(s)

)
ds

= a(x)k̄(θ) + b(x) + l(θ) + a(0)
(
k(θ)− k̄(θ)

)
,

where the second line coincides with the definition of the generalized virtual surplus
in the separable case up to the term a(0)

(
k(θ)− k̄(θ)

)
which is constant in x. The

claim now follows by definitions of Φ and Ψ. �

Appendix C. Discrete allocations and continuous types

This appendix adapts the approach from the concave case to problems where
the set of feasible allocations, X, is discrete. To this end, let X = {0, 1, . . . , x̄} for
some x̄ <∞ and assume that J is continuous. It is convenient to set J(−1, θ) ≡ 0
for all θ.

The definitions are as follows. For all (x, θ) ∈ X ×Θ, let

(C.1) h(x, θ) := J(x, θ)− J(x− 1, θ),

and let

(C.2) H(x, θ) :=

∫ θ

0

h(x, r)dr.

For all x ∈ X, let

(C.3) G(x, ·) := convH(x, ·).

Then G(x, ·) is continuously differentiable on (0, 1). For all θ ∈ (0, 1), let

(C.4) g(x, θ) := G2(x, θ),

and extend g(x, ·) to [0, 1] by continuity.
Define the generalized virtual surplus J̄ : X ×Θ→ R by

(C.5) J̄(x, θ) :=

x∑
s=0

g(s, θ),

and define the correspondence Ξ : Θ→ P(X) by

Ξ(θ) :=

{
x ∈ X | J̄(x, θ) = sup

y∈X
J̄(y, θ)

}
.

Definition C.1. A function J : X ×Θ→ R has nonincreasing marginal returns if
for all x ∈ X \ {0, x̄} and all θ ∈ Θ,

J(x, θ)− J(x− 1, θ) ≥ J(x+ 1, θ)− J(x, θ).

Theorem C.2. If J has nonincreasing marginal returns, then

sup
φ∈M

{∫ 1

0

J(φ(θ), θ)dθ)

}
= sup
φ∈Γ

{∫ 1

0

J̄(φ(θ), θ)dθ

}
.
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Theorem C.3. Let J have nonincreasing marginal returns. Then φ∗ and φ∗ attain
the supremum in (P). Furthermore, if φ ∈ M attains the supremum in (P), then
φ∗(θ) ≤ φ(θ) ≤ φ∗(θ) and φ(θ) ∈ Ξ(θ) a.e.

As in the proof of the concave case, I start by noting the key properties of
the newly defined functions. The function g is trivially continuous in x as X is
discrete, and it is nondecreasing and continuous in θ by construction. As a result,
the generalized virtual surplus J̄ is continuous and has increasing differences in
(x, θ). Thus, the correspondence Ξ is nonempty- and compact-valued, and upper
hemi-continuous. So the extremal selections are well-defined and nondecreasing.
Finally, by nonincreasing marginal returns h(·, θ) is nonincreasing for all θ ∈ Θ and
the argument from the proof of Lemma 4.11 then implies that g(·, θ) is nonincreasing
for all θ ∈ Θ. Thus J̄ has nonincreasing marginal returns.

Given the definition of J̄ in (C.5), the difference between the expected virtual
surplus and the expected generalized virtual surplus becomes

∆(φ) =

∫ 1

0

(
J(φ(θ), θ)− J̄(φ(θ), θ)

)
dθ

=

∫ 1

0

φ(θ)∑
s=0

(h(s, θ)− g(s, θ)) dθ

=

x̄∑
x=0

∫ 1

φ−1(x)

(h(x, θ)− g(x, θ)) dθ

=

x̄∑
x=0

(
G(x, φ−1(x))−H(x, φ−1(x))

)
≤ 0.

(C.6)

Obviously ∆(0) = 0 so Lemma 4.12 applies. Analogous to Lemma 4.13 we have

Lemma C.4. If J has nonincreasing marginal returns, then ∆(φ∗) = ∆(φ∗) = 0.

Proof. Consider first φ∗. Assume towards a contradiction that there exists x ∈ X
such that

G(x, φ∗−1(x))−H(x, φ∗−1(x)) < 0.

Denote θx := φ∗−1(x). As G(·, 0) = H(·, 0) and G(·, 1) = H(·, 1), we have θx ∈
(0, 1). This implies x > 0, since φ−1(0) = 0 for any φ ∈ M. Note then that
nonincreasing marginal returns of J̄ imply that Ξ is “convex-valued”: That is, if
y ∈ Ξ(θx), y′ ∈ Ξ(θx) and y < z < y′, then z ∈ Ξ(θx). As in the proof of the claim
after Lemma 4.13, Ξ being upper hemi-continuous and “convex-valued” implies
x ∈ Ξ(θx). Thus J̄(·, θx) has a maximum at x > 0 and hence the marginal return
from the last unit is nonnegative. That is, g(x, θx) ≥ 0. By continuity of G(x, ·) and
H(x, ·), there exists an open neighborhood U of θx such that G(x, θ)−H(x, θ) < 0
for all θ ∈ U . Hence g(x, ·) is constant on U so that g(x, θ) = g(x, θx) ≥ 0 for all
θ ∈ U . Nonincreasing marginal returns then imply φ∗(θ) = max Ξ(θ) ≥ x for all
θ ∈ U . But this is the desired contradiction since by definition of φ∗−1 we have
φ∗(θ) < x for all θ < θx.

Consider then φ∗. (Much of the argument is the same as for φ∗.) Assume towards
a contradiction that there exists y ∈ X such that

G(y, φ−1
∗ (y))−H(y, φ−1

∗ (y)) < 0.



6 TOIKKA

Denote θy := φ−1
∗ (y). As above, we have y > 0 and y ∈ Ξ(θy). Thus g(y, θy) ≥

0. Furthermore, as above, there exists an open neighborhood V of θy such that
g(y, θ) = g(y, θy) ≥ 0 for all θ ∈ V . But by the definition of the generalized
inverse we have φ∗(θ) < y for all θ < θy so that by nonincreasing marginal returns
g(y, θ) ≤ 0 for all θ < θy. Combining the two inequalities gives g(y, θ) = g(y, θy) = 0
for all θ ∈ V . But then the marginal return from going from y − 1 to y is zero for
all types in V . Thus, by nonincreasing marginal returns, y−1 ∈ Ξ(θ) for all θ ∈ V .
In particular, φ∗(θ) = min Ξ(θ) ≤ y − 1 for all θ ∈ V . But θy = φ−1

∗ (y) implies
φ∗(θ) ≥ y for all θ > θy, a contradiction. �

With the above lemma in place, the proofs of the theorems are completed exactly
as the ones for Theorems 4.4 and 4.5.

Appendix D. The role of concavity

This appendix presents a counterexample intended to convince the reader that
Theorems 4.4 and 4.5 do not apply to problems where the virtual surplus is not
weakly concave in the allocation. For simplicity, I do this in the context of the model
of Appendix C where the set of feasible allocations is discrete. The example shows
that if the virtual surplus function does not have nonincreasing marginal returns
(as defined in Definition C.1), then Theorems C.2 and C.3—the discrete analogs
of Theorems 4.4 and 4.5—do not apply. It should be conceptually straightforward,
albeit notationally more cumbersome, to construct a similar example for the case
where X is an interval.

Let X := {0, 1, 2} and let F be the cdf of the uniform distribution on Θ = [0, 1].
Define the virtual surplus function by

J(x, θ) :=


0 if x = 0,

1− 15θ2 if x = 1,

2θ − 1 if x = 2.

The function J does not have nonincreasing marginal returns. (For example, we
have J(2, 1) − J(1, 1) = 15 > −14 = J(1, 1) − J(0, 1).) Furthermore, maximizing
virtual surplus J(x, θ) pointwise gives the candidate solution

φ(θ) =


1 if θ <

√
15

15 ,

0 if
√

15
15 < θ < 1

2 ,

2 if θ > 1
2 ,

which is nonmonotonic. Thus ironing is needed.
In order to (unwarrantably) apply the results for discrete choice sets (Theorems

C.2 and C.3), the generalized virtual surplus J̄ needs to be constructed. To this end,
using equations (C.1)–(C.4) the following functions are constructed. The marginal
returns are given by

h(x, θ) =


0 if x = 0,

1− 15θ2 if x = 1,

15θ2 + 2θ − 2 if x = 2,
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so that

H(x, θ) =


0 if x = 0,

θ − 5θ3 if x = 1,

5θ3 + θ2 − 2θ if x = 2.

Since H(0, ·) and H(2, ·) are convex, we have G(0, ·) = H(0, ·) and G(2, ·) = H(2, ·).
As H(1, ·) is strictly concave, its convex hull is simply the line segment given by
G(1, θ) = −4θ for θ ∈ [0, 1]. Taking derivatives gives

g(x, θ) =


0 if x = 0,

−4 if x = 1,

15θ2 + 2θ − 2 if x = 2.

So now the generalized virtual surplus of type θ defined in (C.5) is

J̄(x, θ) :=


0 if x = 0,

−4 if x = 1,

15θ2 + 2θ − 6 if x = 2.

It is then straightforward to see that

φ∗(θ) =

{
0 if θ <

√
91−1
15 ,

2 if θ ≥
√

91−1
15 .

The value of the objective in (P) evaluated at φ∗ defined above is∫ 1

√
91−1
15

(2θ − 1)dθ =
17
√

91− 107

225
≈ 0.245.

Consider the monotone (and hence feasible) allocation rule

δ(θ) :=

{
1 if θ <

√
31−1
15 ,

2 if θ ≥
√

31−1
15 .

Evaluating the objective at δ gives∫ √
31−1
15

0

(1− 15θ2)dθ +

∫ 1

√
31−1
15

(2θ − 1)dθ =
62
√

31− 92

675
≈ 0.375,

contradicting the optimality of φ∗. Thus the assumption about nonincreasing mar-
ginal returns cannot be dropped in Theorems C.2 and C.3.

Heuristically, what goes wrong in this example is that the averaging done by
convexification effectively assumes that if the monotonicity constrained causes the
allocation of some type θ to be distorted upwards compared to the solution to
pointwise maximization of virtual surplus (i.e., the candidate solution φ above),
then the allocation assigned to type θ is the smallest allocation consistent with
monotonicity. While this is certainly true for problems where the virtual surplus
has nonincreasing marginal returns (which are implied by J being weakly concave

in x), it is not true in general. Indeed, here J(1, θ) < J(2, θ) for all θ ∈ (
√

31−1
15 , 1].

So if any types in (
√

31−1
15 , 1

2 ) for whom x = 0 is myopically optimal are distorted
upwards, it is best to distort them all the way up to x = 2. The allocation rule
δ—which is in fact fully optimal—does exactly this. In contrast, the construction
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leading to φ∗ implicitly assumes that if a type θ in [0, 1
2 ) is given one unit, then so

are all types in [θ, 1].
To see this in greater detail, note that the contribution of the first unit to the

generalized virtual surplus of type θ, g(1, θ), is the derivative of the convex hull
of H(1, ·) at θ. By definition, H(1, θ) is the sum of marginal contributions (of the
first unit) from all types [0, θ]. However, the value of the convex hull at θ, G(1, θ),
depends here on all types in [0, 1] since H(1, ·) is concave on [0, 1]. Effectively
the convex hull picks up the fact that allocating one unit for the high types is a
really bad idea given the form of J(1, ·). If J were concave in x, it would be an
even worse idea to give them two units, so that the convex hull would lead us to
the right conclusion. Here, however, going up to two units is not so bad for the
intermediate types and is great for the high types, so that the negative marginal
contribution of the first unit can be more than compensated.

MIT Department of Economics

E-mail address: toikka@mit.edu


