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We consider learning and signalling in a dynamic Cournot oligopoly where firms have private
information about their production costs and only observe the market price, which is subject to unobservable
demand shocks. An equilibrium is Markov if play depends on the history only through the firms’ beliefs
about costs and calendar time. We characterize symmetric linear Markov equilibria as solutions to a
boundary value problem. In every such equilibrium, given a long enough horizon, play converges to the
static complete information outcome for the realized costs, but each firm only learns its competitors’
average cost. The weights assigned to costs and beliefs under the equilibrium strategies are non-monotone
over time. We explain this by decomposing incentives into signalling and learning, and discuss implications
for prices, quantities, and welfare.
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1. INTRODUCTION

In the theory of oligopoly, asymmetric information plays a central role in explaining anti-
competitive practices such as limit pricing and predation (Milgrom and Roberts, 1982a, 1982b),
or price rigidity in cartels (Athey and Bagwell, 2008). However, the fundamental question of how
competition unfolds in a new market where firms start out with incomplete information about
each other has received comparatively little attention. In such a market, a firm may be trying to
simultaneously learn its competitors’types from the observation of market variables and influence
their beliefs about its own type. This possibility of multi-sided learning and signalling makes the
setting fascinating but creates a technical challenge responsible for the scarcity of results: the
analyst must track the evolution of the firms’ beliefs over time.

In this article, we make progress on the problem by using continuous-time methods to provide
the first tractable analysis of Markov (perfect) equilibria in a dynamic oligopoly with incomplete
information. More specifically, we study a stylized Cournot game where each firm privately
knows its own cost and only observes the market price, which is subject to unobservable demand
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shocks. The resulting equilibrium dynamics capture the jockeying for position among oligopolists
before the market reaches its long-run equilibrium. We study how the firms’ strategic behaviour
is shaped by learning and signalling, and derive implications for the time paths of prices, profits,
and consumer surplus.

To address the tractability of beliefs, we consider a linear-quadratic Gaussian environment:
the market demand function and the firms’ cost functions are linear in quantities, the constant
marginal costs are drawn once and for all from a symmetric normal prior distribution, and the
noise in the market price is given by the increments of a Brownian motion. Restricting attention
to equilibria in strategies that are linear in the history along the equilibrium path, we can then
derive the firms’ beliefs using the Kalman filter.

When costs are private information, a natural way to impose a Markov restriction on behaviour
is to allow current outputs to depend on the history only through the firms’ beliefs about the costs.
But when individual outputs are unobservable, these beliefs are also private information: not
observing its output, a firm’s rivals cannot tell what inference the firm made from the price. Thus,
if the firm plays as a function of its belief—that is, if the belief is part of its “state”—then its rivals
have to entertain (private) beliefs about this belief, and so on, making the problem seemingly
intractable.1 However, building on Foster and Viswanathan’s (1996) analysis of a multi-agent
version of Kyle’s (1985) insider trading model, we show that under symmetric linear strategies,
each firm’s belief can be written as a weighted sum of its own cost and the public posterior
expectation about the average industry cost conditional on past prices. In other words, its own
cost and the public belief are sufficient statistics for a firm’s private belief. The same is true even
if the firm unilaterally deviates from the symmetric linear strategy profile, once we appropriately
augment these statistics to account for the resulting bias in the public belief.

The representation of beliefs yields a characterization of all symmetric linear Markov strategies
as affine, time-dependent functions of the firm’s own cost and the public belief. We consider
equilibria in such strategies, and show that they are in turn characterized by solutions to a boundary
value problem, which is the key to our analysis.

The boundary value problem characterizing Markov equilibria consists of a system of non-
linear differential equations for the coefficients of the equilibrium strategy and the posterior
variance of the public belief. As is well known, there is no general existence theory for such
problems. Indeed, the biggest technical challenge in our analysis is establishing the existence of
a solution to the boundary value problem, or, equivalently, the existence of a symmetric linear
Markov equilibrium. We provide a sufficient condition for existence in terms of the model’s
parameters, which amounts to requiring that the incentive to signal not be too strong. The condition
is not tight but not redundant either: linear Markov equilibria fail to exist if the signalling incentive
is sufficiently strong. On the other hand, we can say surprisingly much about the properties of
such equilibria.

As quantities are strategic substitutes, each firm has an incentive to deviate up from the myopic
output to manipulate its competitors’beliefs. This additional output has a deterministic component
common to all cost types, which in equilibrium has no learning consequences.2 However, the
incentive to expand output is stronger the lower the firm’s own cost: not only is it cheaper to
do so, a low-cost firm also benefits more from the other firms scaling back their production. As
a result, the equilibrium has the firms actively signalling their costs through the market price.
We show that, in any symmetric linear Markov equilibrium, the equilibrium price carries enough
statistical information about industry costs for the firms to asymptotically learn the average cost

1. This is the “forecasting the forecasts of others problem” of Townsend (1983).
2. This component is analogous to signal-jamming in environments with symmetric uncertainty. See, e.g.,

Holmström (1999), Riordan (1985), Fudenberg and Tirole (1986), or Mirman et al. (1993).
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of their rivals. The identification problem caused by the ex ante symmetry of firms and the one-
dimensional price prevents learning the costs of individual firms. But knowing the average is
enough for the firms to play their complete information best response. Thus, equilibrium play
converges asymptotically to the static complete information outcome for the realized costs.

We then show that the interplay of learning and signalling leads to a rich and interesting
set of predictions. The key observation is that the equilibrium strategy assigns non-monotone
weights to private and public information over time. In particular, the weight each firm assigns
to its own cost is the largest (in absolute value) in the intermediate term. By decomposing the
equilibrium strategy into a myopic and a forward-looking component, this can be understood as
arising from two monotone effects. The myopic component, which only reflects learning, grows
over time. Roughly, high-cost firms scale back their production further over time because they
expect their rivals to be more aggressive as they become better informed. The forward-looking
component, which captures signalling, decreases over time. This is because the firms’ estimates
of their competitors’ costs become more precise, beliefs become less sensitive to price changes,
and the incentive to signal diminishes.

Because the firms assign non-monotone weights to their own costs, the difference between
any two firms’outputs is non-monotone over time conditional on their realized costs. In particular,
efficient firms benefit the most from their cost advantage at intermediate times. From an industry
standpoint, the higher sensitivity of individual outputs to costs improves the allocation of
production, leading to higher profits. In fact, this allows us to even derive conditions under which
the ex ante expectation of industry profits (as well as total surplus) is higher in the intermediate
term than under complete information.

Finally, we observe that signalling drives the expected total quantity above the corresponding
(static) complete information level. In turn, this implies that the expected market price is depressed
below its complete information level. Moreover, we show that at any point in time, consumers
only observing historical prices expect prices to increase in the future as the signalling incentive
diminishes.

The above prediction about prices concerns an aggregate variable found in market-level data.
In this vein, we also show that the volatility of total market output conditional on costs eventually
decreases, but not necessarily monotonically so. Because of linear demand, this implies that the
volatility of the average price eventually vanishes as well. As the drift also disappears, the price
only exhibits variation due to demand shocks in the long run.

Some of our other predictions concern firm-level data as they involve individual costs and
outputs. The result about the non-monotonicity of the equilibrium strategy is one such example.
Namely, the coefficient on the firm’s own cost in the equilibrium strategy determines the sensitivity
of the firm’s output to its cost. Thus, the shape of this coefficient is simply a prediction about the
time pattern of the cost-sensitivity of individual firm output in a new market, which could readily
be measured in firm-level data.

Our results are in line with some recent empirical evidence. In particular, a study of a newly
deregulated British electricity market by Doraszelski et al. (2016) finds that (i) prices were low
and increasing during an initial phase, but in the long run (ii) the price process settled down, and
(iii) the market converged to a stable state akin to a static equilibrium. They interpret the findings
to be the result of firms learning to play an equilibrium of a complete information game using
some adaptive learning rule. Our analysis provides a complementary perspective, showing that the
patterns can be qualitatively matched also by the equilibrium of a dynamic game of incomplete
information where forward-looking firms learn about their competitors’ types.3 However, our

3. The microstructure of the British market differs from that in our model. However, Cournot competition
is often adopted in studies of electricity markets even when it is not descriptively accurate, see, for example,
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model is unlikely to generate the later period of decreasing prices in the British market, but
as the data pertain to a single realization of a time series, this could be random variation before
convergence to static equilibrium.Alternatively, our model could be extended with a deterministic
trend (in the demand or the costs), trumped by the initial signalling activity to still yield increasing
prices early on.

Related Literature. Our work contributes to the literature on continuous-time games with
Brownian information. In particular, our model adds incomplete information to the imperfect-
monitoring games studied by Sannikov (2007). We share his focus on a fixed discount
factor. However, Sannikov studies the entire set of public perfect equilibria, whereas we
characterize a class of Markov equilibria.4 Prior work considering incomplete information
includes Faingold and Sannikov (2011), who study reputation dynamics in the context of a
population of small players facing a long-run player who may be a behavioural type, as well
as Daley and Green (2012) and Dilmé (2014), who study one-sided signalling with a binary type
and Brownian noise. Cisternas (2015) develops methods for games where uncertainty about the
state of the world is symmetric in equilibrium but private beliefs arise after deviations. In contrast,
in our game beliefs are private even on the equilibrium path.

The early literature on incomplete information in dynamic oligopoly considers issues such
as limit pricing, predation, and reputation using models with one-sided information. See
Milgrom and Roberts (1982a,b) and Fudenberg and Tirole (1986) among others. Mailath (1989)
and Mester (1992) construct separating equilibria in two and three-period oligopoly games where
all firms have private costs and actions are observable. More recently, Athey and Bagwell (2008)
study collusion in a Bertrand oligopoly with persistent private costs. They identify conditions
under which the best equilibrium for patient firms has all types pooling at the same price and
no learning takes place. In contrast, we fix the discount rate, and learning and signalling are
central to our analysis. There is also recent work on the role of information in static oligopoly;
see Myatt and Wallace (2015) for Cournot competition, or Vives (2011) and Bernhardt and Taub
(2015) for supply-function equilibria.

Finally, a large literature studies strategic use of information and its aggregation through
prices in financial markets following the seminal analysis by Kyle (1985). Most closely related to
our work is the multi-agent model by Foster and Viswanathan (1996) mentioned above, and
its continuous-time version by Back et al. (2000). We share their focus on linear equilibria
in a Gaussian environment. (Our results can be used to show that the ad hoc restriction on
strategies in these works is equivalent to requiring them to be symmetric, linear, and Markov
in our sense.) However, trading in a financial market with common values differs starkly from
product market competition under strategic substitutes and private values. In the former, players
limit trades in order to retain their informational advantage, whereas in the latter, they engage in
excess production to signal low costs to discourage their rivals, leading to qualitatively different

Borenstein and Bushnell (1999) or Bushnell et al. (2008). Furthermore, Hortacsu and Puller (2008) show in an additively-
separable supply-function model with private information that, in equilibrium, firms price optimally against residual
demand as in Cournot competition.

4. The use of continuous-time methods and the focus on Markov equilibria also distinguishes our work
from the literature on repeated Bayesian games with fully or partially persistent types. This literature has almost
exclusively restricted attention to patient players, typically focusing on cooperative equilibria. See, for example,
Aumann and Maschler (1995), Hörner and Lovo (2009), Escobar and Toikka (2013), Pęski (2014), or Hörner et al.
(2015). There is also a literature on learning in repeated games of incomplete information under myopic play, see
Nyarko (1997).
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equilibrium behaviour. The differences between the games also result in the analysis being
substantially different.5

Outline. We introduce the model in the next section and consider beliefs under linear strategies
in Section 3. We then turn to Markov strategies and equilibria in Section 4, and discuss their
properties in Section 5. We consider the infinite horizon case and discuss other possible extensions
in Section 6. Section 7 concludes. All proofs are in the Appendix.

2. MODEL

We consider a Cournot game with privately known costs and imperfect monitoring, played in
continuous time over the compact interval [0,T ]. There are n≥2 firms, each with a privately
known (marginal) cost Ci (i=1,...,n). The firms’ common prior is that the costs are independent
draws from a normal distribution with mean π0 and variance g0.6

At each time t ∈[0,T ], each firm i supplies a (possibly negative) quantity Qi
t ∈R. The firms

do not observe each others’ quantities, but observe the revenue process

dYt = (p̄−
∑

i

Qi
t)dt+σdZt, Y0 =0, (1)

where p̄>0 is the demand intercept, σ 2>0 is the variance, and Z is a standard Brownian motion
that is independent of the firms’costs (cf. Keller and Rady, 1999; Sannikov and Skrzypacz, 2007).
Heuristically, the current market price dYt/dt is given by a linear demand curve perturbed by
additive i.i.d. noise. Thus, with slight abuse of terminology, we refer to the firms’ observation of
Y as the firms observing the market price.

A pure strategy for a firm determines current output as a function of the firm’s cost, past
revenues, and own past outputs. However, because of the noise in the revenue process, no firm can
ever observe that another firm has deviated from a given strategy.7 For the analysis of equilibrium
outcomes it therefore suffices to know the quantities each firm’s strategy specifies at histories that
are consistent with the strategy being followed, i.e. on the path play. We thus define a strategy
to be only a function of the firm’s cost and revenues, leaving off-path behaviour unspecified.
This notion of strategy extends public strategies studied in repeated games with imperfect public
monitoring to a setting with private costs.

Formally, a (pure) strategy for firm i is a process Qi that is progressively measurable with
respect to the filtration generated by (Ci,Y ). A strategy profile (Q1,...,Qn) is admissible if (i)
for each i, E[∫ T

0 (Qi
t)

2dt]<∞, in which case we write Qi ∈L2[0,T ], and (ii) equation (1) has a
unique (weak) solution Y ∈L2[0,T ].8 We define the expected payoff of firm i under an admissible

5. In the finance models, the price is set by a market maker and the players’ linear flow payoffs are determined by
differences in beliefs. In contrast, we have an exogenous demand curve, quadratic payoffs, and cost levels matter. As a
result, the equilibrium in the former is essentially characterized by a single ordinary differential equation for the market
depth (see Back et al., 2000) whereas it is not possible to further reduce our boundary value problem.

6. See Section 6 for the infinite horizon case and for a discussion of the symmetry, independence, and private
value assumptions.

7. As the firms’ quantities only affect the drift of Y , the monitoring structure has full support in the sense that any
two (admissible) strategy profiles induce equivalent measures over the space of sample paths of Y .

8. More precisely, the game takes place on a filtered probability space (�,F ,{Ft},P). The state space �=
R

n ×C[0,T ] is the space of all possible cost realizations and (continuous) paths of Y . The filtration {Ft} is defined as
follows. Let B=B1 ⊗···⊗Bn be the product sigma-algebra on R

n generated by (C1,...,Cn), and let Bi ={∅,R}⊗···⊗
{∅,R}⊗Bi ⊗{∅,R}⊗···⊗{∅,R}. Let {F̄t} be the canonical filtration on C[0,T ], where each F̄t is generated by sets
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strategy profile to be

E

[∫ T

0
e−rt(p̄−

∑
j

Qj
t −Ci)Qi

tdt

]
=E

[∫ T

0
e−rtQi

tdYt −Ci
∫ T

0
e−rtQi

tdt

]
, (2)

where r ≥0 is the common discount rate. The equality is by (1). It shows that the payoff can be
thought of as the expected present value of the observable flow payoff Qi

t(dYt −Cidt). Payoff from
all other strategy profiles is set to −∞. In what follows, a strategy profile is always understood
to mean an admissible one unless noted otherwise.

A Nash equilibrium is a strategy profile (Q1,...,Qn) from which no firm has a profitable
deviation. We focus on equilibria in strategies that are linear in histories to facilitate tractable
updating of beliefs, but we allow firms to contemplate deviations to arbitrary strategies. Formally,
firm i’s strategy Qi is linear if there exist (Borel measurable) functions α,δ : [0,T ]→R and
f : [0,T ]2 →R such that

Qi
t =αtC

i +
∫ t

0
f t
s dYs +δt, t ∈[0,T ]. (3)

A profile of linear strategies is symmetric if the functions (α,f ,δ) are the same for all firms.9

Our interest is in Nash equilibria in symmetric linear strategies that condition on the history only
through its effect on beliefs about costs and calendar time. Such equilibria, defined formally
below, are a natural extension of Markov perfect equilibrium to our setting.

As will be clear in what follows, the Gaussian information structure obtained under linear
strategies is essential for the analysis. The key aspects of the model enabling this are the quadratic
payoff function defined by the left-hand side of (2) and the monitoring technology defined by (1),
under which the players observe a noisy public signal of the sum of everyone’s actions. A similar
analysis can be carried out for other quadratic stage games under this monitoring structure. Note
that linear strategies require abstracting from corner solutions by allowing negative outputs, and
the normal prior requires negative costs, explaining these two simplifying assumptions. However,
with an appropriate choice of parameters, the probability of negative outputs and costs can be
taken to be arbitrarily small because of the convergence of equilibrium play (see Corollary 2
below).10

3. BELIEFS UNDER LINEAR STRATEGIES

As a step towards Markov equilibria, we derive sufficient statistics for the firms’ beliefs about
costs under symmetric linear strategies and unilateral deviations from them.

Fix firm i, and suppose the other firms are playing symmetric linear strategies so that
Qj

t =αtCj +Bt(Y t) for j �= i, where Bt(Y t) :=∫ t
0 f t

s dYs +δt depends only on public information.

{f ∈C[0,T ] : fs ∈�} with s≤ t and � a Borel set in R. (Heuristically, {F̄t} amounts to observing the past of the process
Y .) Now, define {Ft} by Ft =B⊗F̄t . A strategy for player i is a process Qi progressively measurable with respect to
{F i

t }, where F i
t =Bi ⊗F̄t . (Note that Qi is also measurable with respect to {Ft}.) Under an admissible strategy profile,

the probability P is the unique product measure on �=R
n ×C[0,T ] consistent with (1) and the normal prior on costs.

9. A necessary and sufficient condition for a linear strategy profile to be admissible is that all the functions α, δ,
and f be square-integrable over their respective domains (Kallianpur, 1980, Theorem 9.4.2). Note that in discrete time,
any affine function of own cost and past prices takes the form qi

t =αt ci +∑s<t f t
s (ys −ys−1)+δt . Equation (3) can be

viewed as a limit of such strategies.
10. Requiring the updating to be Gaussian and the firms’ best responses to be linear prevents us from using a

non-linear transformation to keep quantities or costs non-negative.
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Regardless of its own strategy, firm i can always subtract the effect of its own quantity and that of
the public component Bt(Y t) of the other firms’ quantities on the revenue, and hence the relevant
signal for firm i about the other firms’ costs is

dY i
t :=−αt

∑
j �=i

Cjdt+σdZt =dYt −
(
p̄−Qi

t −(n−1)Bt(Y
t)
)
dt. (4)

Therefore, firm i’s belief can be derived by applying the Kalman filter with Y i as the signal and
C−i := (C1,...,Ci−1,Ci+1,...,Cn) as the unknown vector. Moreover, since the other firms are
ex ante symmetric and play symmetric strategies, firm i can only ever hope to filter the sum of
their costs. The following lemma formalizes these observations.

Lemma 1. Under any symmetric linear strategy profile and any strategy of firm i, the posterior
belief of firm i at time t ∈[0,T ] is that Cj, j �= i, are jointly normal, each with mean M i

t :=
1

n−1E
[∑

j �=i C
j
∣∣FY i

t
]
, and with a symmetric covariance matrix �t =�(γM

t ), where the function

� :R→R
2(n−1) is independent of t, and

γM
t :=E

[(∑
j �=i

Cj −(n−1)M i
t
)2∣∣∣FY i

t

]
= (n−1)g0

1+(n−1)g0
∫ t

0(αs
σ )2ds

is a deterministic non-increasing function of t.

The upshot of Lemma 1 is that firm i’s belief is summarized by the pair (M i
t ,γ

M
t ). The

expectation about the other firms’ average cost, M i
t , is firm i’s private information as the other

firms do not observe i’s quantity and hence do not know what inference it made. (Formally, Qi

enters Y i.) The posterior variance γM
t is a deterministic function of time because the function α

in the other firms’ strategy is taken as given.
By Lemma 1, asking symmetric linear strategies to condition on history only through beliefs

amounts to requiring each firm i’s output at time t to only depend on Ci, M i
t , and t. From the

perspective of the normal form of the game, this is simply a measurability requirement on the
firms’ strategies, and causes no immediate problems. However, showing the existence of a Nash
equilibrium in strategies of this form requires verifying the optimality of the strategies to each
firm, and for this it is essentially necessary to use dynamic optimization. But formulating firm
i’s best-response problem as a dynamic optimization problem, we then have M j, j �= i, appearing
as unobservable states in firm i’s problem, and we thus need to consider i’s second-order beliefs
about them. Indeed, it could even be the case that firm i’s best response then has to explicitly
condition on these second-order beliefs, requiring them to be added to the state, and so on, leading
to an infinite regress problem.

It turns out, however, that for linear Gaussian models there is an elegant solution, first applied
to a strategic setting by Foster and Viswanathan (1996). The key observation is that each firm’s
private belief can be expressed as a weighted sum of its own cost and the public belief about the
average cost conditional on past prices. Thus, even when the other firms’ behaviour conditions
on their beliefs, firm i only needs to have a belief about their costs as the public belief is public
information. Firm i’s belief in turn is just a function of its cost and the public belief.

More specifically, consider the posterior expectation about the average firm cost conditional
on the revenue process Y under a symmetric linear strategy profile (α,f ,δ). This public belief is
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defined as Πt := 1
nE
[∑

j C
j
∣∣FY

t ], with posterior variance γt :=E
[(∑

j C
j −nΠt

)2∣∣FY
t
]
.11 It can

be computed using the Kalman filter with Y as the signal and the sum
∑

j C
j as the unknown

parameter (see Lemma A.1 in the Appendix), and it corresponds to the belief of an outsider who
knows the strategy, but only observes the prices (cf. market makers in Foster and Viswanathan,
1996). We note for future reference that, given α, the posterior variance is a decreasing function
of time given by

γt = ng0

1+ng0

∫ t

0

(αs

σ

)2
ds

, t ∈[0,T ]. (5)

The public belief can be used to express private beliefs as follows.

Lemma 2. Under any symmetric linear strategy profile, for each firm i,

M i
t =ztΠt +(1−zt)C

i, t ∈[0,T ],

where

zt := n

n−1

γM
t

γt
= n2g0

n(n−1)g0 +γt
∈
[
1,

n

n−1

]
(6)

is a deterministic non-decreasing function of t.

That is, on the path of play, each firm’s private belief M i
t is a weighted average of the public

belief Πt and its cost Ci, with the weight zt a deterministic function of time. Heuristically, Ci

captures the firm’s private information about both its cost and its past outputs (whose private part
equals αsCi at time s), and hence it is the only additional information the firm has compared to an
outsider observing prices. The functional form comes from the properties of normal distributions,
since under linear strategies the system is Gaussian. Moreover, since the variance γM

t is also only
a function of time by Lemma 1, the tuple (Ci,Πt,t) is a sufficient statistic for firm i’s posterior
belief at time t.12

If firm i unilaterally deviates, then the formula in Lemma 2 does not apply to its belief because
the public beliefΠt assumes that all firms play the linear strategy. (The formula still holds for the
other firms, because they do not observe the deviation.) At such off path histories, it is convenient
to represent firm i’s belief in terms of a counterfactual public belief, which corrects for the
difference in firm i’s quantities, and which coincides with Πt if i has not deviated.

Lemma 3. Under any symmetric linear strategy profile and any strategy of firm i,

M i
t =ztΠ̂

i
t +(1−zt)C

i, t ∈[0,T ],

where zt is as in Lemma 2, and the process Π̂ i is defined by

dΠ̂ i
t =λtαt

(
1+(n−1)(1−zt)

)
(Π̂ i

t −Ci)dt+λtσdZi
t , Π̂ i

0 =π0,

11. We use the posterior variance of nΠt for notational convenience.
12. In fact, each firm i’s entire time-t hierarchy of beliefs is captured by (Ci,Πt ,t). For example, firm i’s first-order

belief about firm j’s cost Cj is normal with mean ztΠt +(1−zt )Ci and variance a function of γM
t , where zt and γM

t are
only functions of t. Thus to find, say, firm k’s second-order belief about firm i’s first-order belief about Cj , we only need k’s
first-order belief about Ci because (Πt ,t) are public. But k simply believes that Ci is normal with mean ztΠt +(1−zt )Ck

and variance a function of γM
t . And so on.
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where

λt :=−αtγt

nσ 2
, and dZi

t := dY i
t +(n−1)αt

(
ztΠ̂

i
t +(1−zt)Ci

)
dt

σ

is a standard Brownian motion (with respect to FY i
) called firm i’s innovation process. Moreover,

if firm i plays on [0,t) the same strategy as the other firms, then Π̂ i
t =Πt .

The counterfactual public belief Π̂ i evolves independently of firm i’s strategy by construction.
(We give an interpretation for its law of motion in the context of the best-response analysis
in Section 4.1.) However, it is defined in terms of the process Y i defined in (4), and hence
its computation requires knowledge of firm i’s past quantities. Thus Π̂ i

t is in general firm i’s
private information. Nevertheless, if firm i plays the same strategy as the other firms, then the
counterfactual and actual public beliefs coincide (i.e. Π̂ i

t =Πt) and we obtain Lemma 2 as a
special case. In general, however, firm i’s posterior at time t is captured by (Ci,Π̂ i,t).13

Special cases of Lemmas 2 and 3 were first derived in discrete time by Foster and Viswanathan
(1996), who considered a restricted class of strategies; our results extend the argument to all
symmetric linear strategy profiles.

4. MARKOV EQUILIBRIA

In games of complete information, a Markov (perfect) equilibrium allows behaviour to depend
only on the payoff-relevant part of history. In our model, only costs and calendar time are directly
payoff relevant, but because the firms do not know each others’ costs, it is in general necessary
to let behaviour depend on the history through its effect on the firms’ beliefs about costs. Our
Markov restriction is to not allow any more history dependence than that.

With this motivation, we say that a strategy profile is Markov if each firm’s strategy depends
on the history only through calendar time and the firm’s belief about the cost vector (C1,...,Cn).
Based on our analysis in Section 3, we have the following novel characterization of symmetric
linear Markov strategies.14

Lemma 4. A symmetric linear strategy profile is Markov if and only if there exist functions
α,β,δ : [0,T ]→R, called the coefficients, such that for each firm i,

Qi
t =αtC

i +βtΠt +δt, t ∈[0,T ].
That a strategy of this form only conditions on calendar time and firm i’s belief about costs
(including its own) is immediate from the fact that i’s belief is summarized by (Ci,Πt,t). The
other direction combines this representation of beliefs with the observation that Πt is itself a
linear function of history, and hence for a strategy conditioning on it to be linear in the sense of
(3), it has to take the above form.15

13. If firm i has deviated from the symmetric linear strategy profile, then its time-t hierarchy of beliefs is captured
by (Ci,Πt ,Π̂

i
t ,t): its first-order belief uses Π̂ i

t instead of Πt , but since each firm j �= i still forms its (now biased) beliefs
using (Cj,Πt ,t), Πt is needed for the computation of higher order beliefs.

14. The finance literature on insider trading simply assumes that strategies condition only on the initial private
signal and the market makers’ belief (which equals the market price). Lemma 4 can be applied to that setting to show that
this assumption is equivalent to strategies being linear and Markov (in our sense).

15. Our strategies only prescribe behaviour on the path of play, so the observation in footnote 12 implies that if we
replace “firm’s belief” with “firm’s hierarchy of beliefs” in the definition of a Markov strategy profile, then Lemma 4
continues to hold verbatim, as do all our other results. We have chosen to impose the Markov restriction in terms of the
firms’ (private) first-order beliefs to avoid having to introduce higher-order beliefs.
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We then define our notion of Markov equilibrium as follows.

Definition 1. A symmetric linear Markov equilibrium is a Nash equilibrium in symmetric linear
strategies such that (i) the strategy profile is Markov, and (ii) the coefficients (α,β,δ) of the
equilibrium strategy are continuously differentiable.

We identify a symmetric linear Markov equilibrium with the coefficients (α,β,δ) of the
equilibrium strategy. Their differentiability is included in the above definition to avoid having to
keep repeating it as a qualifier in what follows.

We do not require sequential rationality in the definition of Markov equilibria, since given
the full support of the revenue process Y , the only off-path histories at which a firm can find
itself are those that follow its own deviations. Thus, such a requirement would not restrict the
set of equilibrium outcomes. Nevertheless, we obtain a partial description of optimal off-path
behaviour in our best-response analysis, which we turn to next.

4.1. Best-response problem

In order to characterize existence and properties of Markov equilibria, we now explicitly formulate
firm i’s best-response problem to a symmetric linear Markov strategy profile as a dynamic
stochastic optimization problem.

To this end, fix firm i, and suppose the other firms play a symmetric linear Markov strategy
profile (α,β,δ) with differentiable coefficients. We observe first that the tuple (Ci,Πt,Π̂

i
t ,t) is the

relevant state for firm i’s problem. To see this, note that the integrand in the expected payoff (2)
is linear in the other firms’ outputs, and hence firm i’s flow payoff at time t depends only on the
other firms’ expected output conditional on i’s information. By Lemmas 1 and 4, this is given by
(n−1)(αtM i

t +βtΠt +δt), where the private belief satisfies M i
t =ztΠ̂

i
t +(1−zt)Ci by Lemma 3.

Furthermore, the coefficients (α,β,δ) and the weight z are deterministic functions of time (as are
γ and λ that appear in the laws of motion for Π and Π̂ i). Thus (Ci,Πt,Π̂

i
t ,t) fully summarizes

the state of the system.
Using the state (Ci,Πt,Π̂

i
t ,t), the normal form of firm i’s best-response problem can be

written as

sup
Qi∈L2[0,T ]

E

[∫ T

0
e−rt[p̄−Qi

t −(n−1)(αtM
i
t +βtΠt +δt)−Ci]Qi

tdt

]

subject to

dΠt =λt[(αt +βt)Πt +δt −Qi
t +(n−1)αt(Πt −M i

t )]dt+λtσdZi
t , Π0 =π0,

dΠ̂ i
t =λt[αt(Π̂

i
t −Ci)+(n−1)αt(Π̂

i
t −M i

t )]dt+λtσdZi
t , Π̂ i

0 =π0,

M i
t =ztΠ̂

i
t +(1−zt)C

i.

The only sources of randomness in the problem are the initial draw of Ci and firm i’s innovation
process Zi defined in Lemma 3, which is a standard Brownian motion.
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The law of motion of the public beliefΠ is simply the dynamic from Lemma A.1 written from
firm i’s perspective.16 Conditional on prices, Π is a martingale, but from i’s perspective it has a
drift, which consist of two components. The first component, (αt +βt)Πt +δt −Qi

t , captures the
difference between the public expectation of firm i’s output and firm i’s actual output. The second,
(n−1)αt(Πt −M i

t ), captures the difference between the public’s and firm i’s expectations about
the other firms’ outputs due to firm i’s superior information about their costs. Since Qi enters the
drift, firm i controls the public beliefΠ . This allows the firm to (noisily) signal its cost and makes
the problem dynamic.

The other stochastically evolving state variable, the counterfactual public belief Π̂ i, evolves
exogenously. (Its law of motion follows by Lemma 3.) The interpretation of its drift is the same as
that of Π , except that Π̂ i is calculated assuming that firm i plays the strategy (α,β,δ) and hence
the difference in its expected and realized quantity is just αt(Π̂ i

t −Ci). Note that d (Πt −Π̂ i
t )=

λt[αtn(Πt −Π̂ i
t )+αtCi +βtΠt +δt −Qi

t]dt, from which it is immediate thatΠt =Π̂ i
t if firm i has

indeed played according to (α,β,δ) in the past.
Firm i’s best-response problem can be formulated recursively as follows. Let V (c,π,π̂ i,t)

denote the optimal time-t continuation value of firm i with cost Ci =c, public belief Πt =π ,
and counterfactual public belief Π̂ i

t = π̂ .17 The Hamilton–Jacobi–Bellman (HJB) equation for
the firm’s problem is then

rV (c,π,π̂,t)= sup
q∈R

{[
p̄−q−(n−1)

(
αt(zt π̂+(1−zt)c)+βtπ+δt

)−c
]
q

+μt(q)
∂V

∂π
+μ̂t

∂V

∂π̂
+ ∂V

∂t
+ λ2

t σ
2

2

(
∂2V

∂π2
+2

∂2V

∂π∂π̂
+ ∂2V

∂π̂2

)}
, (7)

where the drifts of Π and Π̂ i are, as above,

μt(q) :=λt
[
(αt +βt)π+δt −q+(n−1)αt

(
π−(zt π̂+(1−zt)c)

)]
,

μ̂t :=λtαt
[
1+(n−1)(1−zt)

]
(π̂−c),

written here using Lemma 3 to express firm i’s belief as zt π̂+(1−zt)c. Note that of all the terms
on the second line in (7), only the first one depends on q.

The objective function in the maximization problem on the right-hand side of (7) is linear-
quadratic in q with −q2 the only quadratic term, and thus it is strictly concave. Therefore, there
is a unique maximizer q∗(c,π,π̂,t) given by the first-order condition

q∗(c,π,π̂,t)= p̄−(n−1)
[
αt(ztπ̂+(1−zt)c)+βtπ+δt

]−c

2
− λt

2

∂V

∂π
, (8)

where the first term is the myopic best response and the second term captures the dynamic
incentive to affect the drift of the public belief Π .

16. Noting that under Markov strategies, Bt (Y t )=βtΠt +δt , we have by Lemma A.1 and equation (4),

dΠt =λt
[
dYt −

(
p̄−αtnΠt −nBt (Y

t )
)
dt
]

=λt
[
dY i

t +(αtnΠt +βtΠt +δt −Qi
t )dt

]
=λt

[
σdZi

t +
(
αtnΠt +βtΠt +δt −Qi

t −αt (n−1)M i
t

)
dt
]
,

where the last step is by definition of the innovation process dZi :=σ−1[dY i +(n−1)αtM i
t dt] in Lemma 3.

17. We use upper case to denote random variables and lower case to denote their realizations (i.e. scalars).
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It is worth noting that here continuous time greatly simplifies the analysis. Similar arguments
can be used in discrete time to derive a Bellman equation analogous to (7). The public belief
still enters the flow payoff linearly, so the value function is convex in π . However, the quantity
q then affects the level of π linearly, which means that the optimization problem in the Bellman
equation has a term convex in q. Moreover, this term involves the value function—an endogenous
object—making it hard to establish the existence and uniqueness of an optimum. In contrast, in
continuous time q affects the drift of π , which in turn affects the value linearly. This renders the
HJB equation strictly concave in q by inspection.

4.2. Characterization

We can view any symmetric linear Markov equilibrium as a solution to the HJB equation (7)
satisfying the fixed point requirement that the optimal policy coincide with the strategy to which
the firm is best responding. This leads to a boundary value problem characterization of such
equilibria, which is the key to our analysis.

More specifically, we proceed as follows. We show first that if (α,β,δ) is a symmetric linear
Markov equilibrium, then the solution to the HJB equation (7) is a (continuation) value function
of the form

V (c,π,π̂,t)=v0(t)+v1(t)π+v2(t)π̂+v3(t)c+v4(t)ππ̂

+v5(t)πc+v6(t)π̂c+v7(t)c2 +v8(t)π2 +v9(t)π̂2 (9)

for some differentiable vk :R→R, k =0,...,9. Moreover, a linear optimal policy exists on and
off the path of play.18 Substituting for ∂V /∂π in the first-order condition (8) using (9), we see
that the best response to the equilibrium strategy can be written in the form

q∗(c,π,π̂,t)=α∗
t c+β∗

t π+δ∗t +ξ∗
t (π̂−π ).

The fixed point requirement is thus simply that (α∗,β∗,δ∗)= (α,β,δ).
The off-path coefficient ξ∗ is a free variable given our focus on Nash equilibria. Nevertheless,

this argument shows that optimal off-path behaviour can be taken to be linear, and that a best
response exists on and off the path of play.

After imposing the fixed point, the HJB equation (7) reduces to a system of ordinary differential
equations (ODEs) for the coefficients vk of the value function V and the posterior variance γ .
However, it turns out to be more convenient to consider an equivalent system of ODEs for γ
and the coefficients (α,β,δ,ξ ) of the optimal policy along with the relevant boundary conditions.
This identifies symmetric linear Markov equilibria with solutions to a boundary value problem.
A verification argument establishes the converse.

For the formal statement, define the myopic coefficients αm,βm,δm,ξm :R→R by

αm(x) :=− (n−1)ng0 +x

(n−1)ng0 +(n+1)x
, δm(x) := p̄

n+1
,

βm(x) := (n−1)n2g0

(n+1)[(n−1)ng0 +(n+1)x] , ξm(x) := (n−1)n2g0

2[(n−1)ng0 +(n+1)x] .
(10)

18. The proof uses the fact that the best-response problem is a stochastic linear-quadratic regulator (see, e.g.
Yong and Zhou, 1999, Chapter 6). Note that the posterior variance γt depends non-linearly on the coefficient α, and so do
the weight zt and the sensitivity of the public belief to the price, λt =−αtγt/(nσ 2). Hence, even though the best-response
problem is linear-quadratic because it takes α as given, our game is not a linear-quadratic game in the sense of the literature
on differential games (see, e.g. Friedman, 1971).
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In the proof of the following result, we show that these are the equilibrium coefficients for myopic
players as a function of current posterior variance x. In particular, firm i’s time-T equilibrium
best-response is Qi

T =αm(γT )Ci +βm(γT )ΠT +δm(γT )+ξm(γT )(Π̂ i
T −ΠT ).

Recalling from (6) that zt is only a function of the current γt , we have the following
characterization of equilibria.

Theorem 1. (α,β,δ) is a symmetric linear Markov equilibrium with posterior variance γ if and
only if δ=−p̄(α+β) and there exists ξ such that (α,β,ξ,γ ) is a solution to

α̇t =r(αt −αm(γt))
αt

αm(γt)
− α2

t βtγt[(n−1)nαt (zt −1)+1]
nσ 2

, (11)

β̇t =r(βt −βm(γt))
αt

αm(γt)

+ αtβtγt
[
nαt(n+1−(n−1)zt −(n2 −1)βt(zt −1))+(n−1)βt

]
n(n+1)σ 2

, (12)

ξ̇t =r(ξt −ξm(γt))
αt

αm(γt)

+ αtγtξt

nσ 2

[
ξt −(nαt((n−1)βt(zt −1)−1)+βt)

]− (n−1)α2
t βtγtzt

2σ 2
, (13)

γ̇t =−α
2
t γ

2
t

σ 2
, (14)

with boundary conditions αT =αm(γT ), βT =βm(γT ), ξT =ξm(γT ), and γ0 =ng0.
In particular, such an equilibrium exists if and only if the above boundary value problem has

a solution. A sufficient condition for existence is

g0

σ 2
<max

{
r

κ(n)
,

1

3nT

}
, (15)

where the function κ :N→R++ defined in (A.10) satisfies κ(n)≤n−2+ 1
n for all n.

The derivation of the boundary value problem for (α,β,ξ,γ ) proceeds along the lines sketched
above. This is the standard argument for characterizing solutions to HJB equations, save for the
facts that (i) here we are simultaneously looking for a fixed point, and hence also the flow payoff
is determined endogenously as it depends on the strategy played by the other firms, and (ii) we
derive a system of differential equations for the optimal policy rather than for the value function.

The identity δ=−p̄(α+β) provides a surprising, but very welcome, simplification for
equilibrium analysis, and allows us to eliminate δ from the boundary value problem. A similar
relationship holds in a static Cournot oligopoly with complete information and asymmetric
costs.19 We establish the result by direct substitution into the ODE for δ. Since this is an equilibrium
relationship, it does not seem possible to establish it by only considering the best-response problem
even in a static model.

The hard part in the proof of Theorem 1 is establishing existence. This requires showing the
existence of a solution to the non-linear boundary value problem defined by equations (11)–(14)

19. For example, given n=2 and demand p= p̄−q1 −q2, if we defineπ= (c1 +c2)/2, then the equilibrium quantities
are qi =aci +bπ+d (i=1,2), where a=−1, b=2/3, and d = p̄/3, and hence d =−p̄(a+b).
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and the relevant boundary conditions. As is well known, there is no general existence theory
for such problems. We thus have to use ad hoc arguments, which require detailed study of the
system’s behaviour. On the upside, we obtain as a by-product a relatively complete description
of equilibrium behaviour, which we discuss in the next section. However, due to the complexity
of the system, we have not been able to prove or disprove uniqueness, even though numerical
analysis strongly suggests that a symmetric linear Markov equilibrium is unique whenever it
exists. (All the results to follow apply to every such equilibrium.)

Our existence proof can be sketched as follows.As ξ only enters equation (13), it is convenient
to first omit it from the system and establish existence for the other three equations. For this we use
the so-called shooting method. That is, we choose a time-T value for γ , denoted γF (mnemonic
for final). This determines the time-T values of α and β by αT =αm(γF ) and βT =βm(γF ). We
then follow equations (11), (12), and (14) backwards in time from T to 0. This gives some γ0,
provided that none of the three equations diverges before time 0. Thus we need to show that γF
can be chosen such that there exists a global solution to (11), (12), and (14) on [0,T ], and the
resulting γ0 satisfies γ0 =ng0. For the latter, note that we have γ0 ≥γF since γ̇ ≤0. Furthermore,
setting γF =0 yields γ0 =0. As the system is continuous in the terminal value γF , this implies
that the boundary condition for γ0 is met for some γF ∈ (0,ng0]. The sufficient condition given
in the theorem ensures that α and β remain bounded as we vary γF in this range.

The proof is completed by showing that there exists a solution on [0,T ] to equation (13),
viewed as a quadratic first-order ODE in ξ with time-varying coefficients given by the solution
(α,β,γ ) to the other three equations. We use a novel approach where we first establish the
existence of ξ , and hence of equilibria, for g0 small, in which case the system resembles the
complete information case. We then observe that if ξ is the first to diverge as g0 approaches some
ḡ0 from below, then some of the coefficients of the equilibrium value function V in (9) diverge.
This allows us to construct a non-local deviation that is profitable for g0 close enough to ḡ0 and
hence contradicts the existence of an equilibrium for all g0< ḡ0.

The sufficient condition (15) for existence in Theorem 1 is satisfied if players are sufficiently
impatient or if the horizon is sufficiently short. The condition is not tight; numerical analysis
suggests that equilibria exist for parameters in a somewhat larger range. However, it is not
redundant either. For example, it is possible to prove that, given any values for the other
parameters, if r =0, then there exists a sufficiently large but finite T̄ such that a symmetric
linear Markov equilibrium fails to exist for T> T̄ . In terms of the decomposition of the firms’
equilibrium incentives provided in the next section, lack of existence appears to be due to the
signalling incentive becoming too strong. Consistent with this interpretation, (15) becomes harder
to satisfy if r decreases or T increases, either of which makes signalling more valuable, or if g0/σ

2

increases, which increases the scope for signalling. To see why increasing the number of firms n
is also problematic, note that under linear strategies, it is the sum of the firms’ costs that enters
into (1) and into the firms’ payoffs through Q. Thus, the relevant initial variance is that of the
sum of costs, or ng0, which is increasing in n.

5. EQUILIBRIUM PROPERTIES

We then turn to the properties of linear Markov equilibria and derive implications for the firms’
strategic behaviour, prices, quantities, and welfare.

We first summarize properties of the equilibrium coefficients.

Proposition 1. Any symmetric linear Markov equilibrium satisfies the following properties:

1. (−αt,βt,δt)≥ (−αm(γt),βm(γt),δm(γt))>0 for all t.
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Figure 1

Equilibrium coefficients, (r,σ,n,p̄,T ,g0)= (0.1,1,2,5,5,2)

2. α is initially decreasing and if T is sufficiently large, it is eventually increasing.20

3. β is initially increasing and if T is sufficiently large, it is eventually decreasing.
4. δ is eventually decreasing.
5. If r =0, then α is quasiconvex, β is quasiconcave, and δ is decreasing.

The first part of Proposition 1 shows that the equilibrium coefficients are everywhere larger in
absolute value than the myopic coefficients (for the current beliefs) defined in (10). As the latter
are signed and bounded away from zero, so are the former. In particular, each firm’s output is
decreasing in its cost and increasing in the public belief.

The second and third part of Proposition 1 imply that the equilibrium coefficients on the cost,
α, and on the public belief,β, are necessarily non-monotone for T sufficiently large.As we discuss
below, this seemingly surprising pattern is a natural consequence of learning and signalling. In
contrast, the myopic coefficients, which only reflect learning, are monotone: αm(γt) is decreasing,
βm(γt) is increasing, and δm(γt) is constant in t by inspection of (10).21

The last part of Proposition 1 completes the qualitative description of equilibrium coefficients
for r =0, in which case −α and β are single peaked and δ is decreasing. In fact, numerical analysis
suggests that these properties always hold even for r>0, but we are not aware of a proof. Figure 1
illustrates a typical equilibrium.

As an immediate corollary to Proposition 1, we obtain a characterization of long-run behaviour.
To see this, note that α is bounded away from zero, since αt ≤αm(γt)≤−1/2 for all t, where the
second inequality is by definition of αm in (10). By inspection of (14), this implies that learning

20. A function [0,T ]→R satisfies a property initially if it satisfies it in an open neighbourhood of 0. Similarly, the
function satisfies a property eventually if it satisfies it in an open neighbourhood of T .

21. These coefficients correspond to an equilibrium of a dynamic game where players are myopic, but where γ
evolves according to the actual equilibrium coefficient α. In contrast, the true equilibrium for myopic players (i.e. for
r =∞) is given by the system defined by (10) and (14). The coefficients are pointwise smaller in absolute value in the
latter than in the former, because in the true myopic equilibrium γ decreases more slowly due to the smaller α and the
myopic coefficients are monotone functions of variance by (10).

Downloaded from https://academic.oup.com/restud/article-abstract/84/2/503/2420613
by MIT Libraries user
on 26 November 2017



[15:01 11/3/2017 rdw049.tex] RESTUD: The Review of Economic Studies Page: 518 503–546

518 REVIEW OF ECONOMIC STUDIES

will never stop. Moreover, since the bound on α is independent of the length of the horizon, the
rate of convergence is uniform across T , in the following sense.

Corollary 1. For all ε>0, there exists tε <∞ such that for all T ≥ t ≥ tε, every symmetric linear
Markov equilibrium of the T-horizon game satisfies γt<ε.

This implies that the public belief converges to the true average cost, and hence each firm learns
its rivals’ average cost, asymptotically as we send the horizon T to infinity. Because of the
identification problem arising from a one-dimensional signal and symmetric strategies, the firms
cannot learn the cost of any given rival when there are more than two firms. However, with
linear demand and constant marginal costs, knowing the average is sufficient for the firms to play
their complete information best responses even in this case. Thus, under Markov strategies, play
converges asymptotically to the static complete information Nash equilibrium for the realized
costs.

Formally, let Qt := (Q1
t ,...,Q

n
t ), and let qN :Rn →R

n be the Nash equilibrium map of costs
to quantities in the static, complete information version of our model.

Corollary 2. Suppose rσ 2>g0κ(n). Then for all ε>0, there exists tε <∞ such that for
all T ≥ t ≥ tε, every symmetric linear Markov equilibrium of the T-horizon game satisfies
P[‖Qt −qN (C)‖<ε]>1−ε.22

The key to the proof is the fact that under the sufficient condition for existence invoked in the
statement, the equilibrium coefficients can be shown to converge over time to the static complete
information values at a rate bounded from below uniformly in T . Corollary 2 then follows by
noting that the public belief converges to the true average cost in distribution at a similarly uniform
rate by Corollary 1. The independence of tε from the horizon T suggests that it is the Markov
restriction rather than the finite horizon that is driving the convergence to the static complete
information Nash outcome, and, indeed, our other results. (In Section 6 we show that as T →∞,
our equilibria converge to a symmetric linear Markov equilibrium of the infinite horizon version
of the model.)

5.1. Signalling and learning

In order to explain the qualitative properties of equilibrium strategies, we consider here how
signalling and learning affect the firms’ incentives. For the deterministic part of the equilibrium
strategy, δ, the intuition is well understood in terms of signal-jamming in a game with strategic
substitutes: each firm has an incentive to increase its output above the myopic level to lower
the price in an attempt to lead its competitors to underestimate its cost.23 Indeed, compared to
the myopic coefficient δm, which is constant, the equilibrium δ is greater with the difference
(eventually) decreasing over time.

For the weights on the own cost and the public belief, i.e. α and β, the intuition seems less
clear at first. From firm i’s perspective, the public belief is not just the average cost of its rivals,
but also includes its own cost. Furthermore, conditioning on Ci serves two purposes: it accounts

22. Here, P denotes the joint law of (C,Qt ) under the equilibrium strategies in the game with horizon T . Without
the condition on the parameters, play still converges to the static complete information Nash equilibrium, but our proof
for that case allows the critical time tε to depend on the horizon T .

23. See, e.g., Riordan (1985), Fudenberg and Tirole (1986), or Mirman et al. (1993).
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both for firm i’s cost of production as well as its belief about the other firms’ average cost as
M i

t =ztΠt +(1−zt)Ci.
To separate these effects, we proceed as follows. Rewrite firm i’s strategy as conditioning

explicitly on its cost Ci and its belief M i
t . That is, fix a symmetric linear Markov equilibrium

(α,β,δ), and define α̂t :=αt −βt(1−zt)/zt and β̂t :=βt/zt . Then, by Lemma 2, firm i’s equilibrium
quantity on the path of play is given by

Qi
t =αtC

i +βtΠt +δt = α̂tC
i +β̂tM

i
t +δt, t ∈[0,T ].

By inspection of the first-order condition (8), there are two drivers of firm i’s output: myopic
flow profits and the value of signalling. The myopic time-t best response to the equilibrium
strategy is found by setting ∂V /∂π≡0 in the second term in (8). Expressed in terms of Ci and
M i

t as above, this gives Qbr
t = α̂br

t Ci +β̂br
t M i

t +δbr
t , where

α̂br
t =− (n−1)βt(zt −1)

2zt
− 1

2
, β̂br

t =− (n−1)(βt +αtzt)

2zt
, δbr

t = p̄−(n−1)δt

2
.

The difference between the equilibrium strategy and the myopic best response, or

Qi
t −Qbr

t = (α̂t −α̂br
t )Ci +(β̂t −β̂br

t )M i
t +(δt −δbr

t ), (16)

which equals the second term in (8), is then by construction only due to signalling. Accordingly,
we refer to the coefficients on the right-hand side of (16) as signalling components.

Proposition 2. In any symmetric linear Markov equilibrium, the signalling components satisfy
the following properties:

1. α̂t −α̂br
t <0, β̂t −β̂br

t >0, and δt −δbr
t >0 for all 0≤ t<T , and we have α̂T −α̂br

T = β̂T −
β̂br

T =δT −δbr
T =0.

2. If r =0, then |α̂t −α̂br
t |, |β̂t −β̂br

t |, and |δt −δbr
t | are decreasing in t.24

Armed with Proposition 2, we are now in a position to explain equilibrium signalling and the
non-monotonicity of the equilibrium coefficients. Note first that the ex ante expected signalling
quantity is given by

E[Qi
t −Qbr

t ]= (α̂t −α̂br
t )π0 +(β̂t −β̂br

t )π0 +(δt −δbr
t )= (δt −δbr

t )
(

1− π0

p̄

)
,

where we have used δt =−p̄(α̂t +β̂t) and δbr
t =−p̄(α̂br

t +β̂br
t ). Thus, in the relevant range where

π0< p̄, the expected signalling quantity is positive as the firms are engaging in excess production
in an effort to convince their rivals to scale back production. Moreover, if r =0, the expected
excess output is monotonically decreasing over time, reflecting the shorter time to benefit from
an induced reduction in the rivals’output and the fact that beliefs are less sensitive to output when
the firms’ estimates of their rivals’ costs are more precise.

The costs and benefits of signalling depend on the firm’s own cost and its belief about its rivals’
costs. A lower cost first makes it cheaper to produce additional output, and then leads to higher

24. As with some of our other results for r =0, numerical analysis strongly suggests that this result holds for all
r>0, but proving it appears difficult without the tractability gained by assuming r =0.
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Figure 2

Learning and signalling incentives, (r,σ,n,p̄,T ,g0)= (0,1,2,1,4.1,2)

profits from the expansion of market share when the other firms scale back their outputs. This is
captured by the signalling component α̂t −α̂br

t in (16) being negative. If r =0, it is decreasing
in absolute value over time for the same reasons why the expected signalling quantity discussed
above is decreasing and vanishing at the end.

The existence of the strictly positive signalling component β̂t −β̂br
t multiplying firm i’s belief

M i
t in (16) is due to the belief being private. That is, firm i produces more when it believes that

its rivals’ costs are high both because it expects them to not produce much today (captured by
β̂br

t >0) and because by producing more, it signals to its rivals that it thinks their costs are high
and that it will hence be producing aggressively in the future. Producing more is cheaper when
the belief is higher as the other firms are then expected to produce less. Moreover, as a firm with a
higher belief also expects to produce more in the future, it expects a larger benefit from its rivals
scaling back their output. Again, this signalling component is monotone decreasing over time
when r =0.

Turning to the non-monotonicity of the equilibrium coefficients, consider Figure 2, which
illustrates the equilibrium coefficients α̂ and β̂, the coefficients α̂br and β̂br of the myopic best
response to the equilibrium strategy, and the signalling components α̂−α̂br and β̂−β̂br . The
dashed curves depict the implied coefficients on Ci and M i

t under the myopic coefficients from
(10), assuming that the evolution of the posterior variance γ is driven by the corresponding
myopic αm. That is, the dashed curves correspond to the equilibrium of the dynamic game when
players are myopic (i.e. with r =∞).

In the myopic equilibrium (dashed), the weights on Ci and M i
t are increasing in absolute value

as the firms’ information becomes more precise (i.e. as γ decreases over time). As the myopic
equilibrium reflects only the effect of learning, its properties are best understood by analogy with
a static Cournot game of incomplete information, where each of two firms privately observes an
unbiased signal about its opponent’s cost. In this setting, a higher-cost firm knows that its rival
will observe, on average, a higher signal. As the private signals become more precise, the firms
increasingly rely on them to form their beliefs about their rival’s cost. In a setting with strategic
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substitutes, each firm then consequently also assigns greater weight to its own cost in response,
i.e. a high-cost firm scales back production further when signals are more precise as it expects its
rival to be more aggressive.

The myopic best reply to the equilibrium strategy reflects these forces, but it is also affected
by the shape of the equilibrium coefficients. The fact that the equilibrium β̂ is larger than the
corresponding weight in the myopic equilibrium means in the context of our auxiliary static game
that firm i’s opponent is responding more aggressively to its private signal. In response, firm i’s
myopic best reply places a higher weight α̂br on its own cost. This explains why α̂br lies below the
lower of the dashed curves, except at t =0 when there is no private history. Proposition 1 shows
that β (and thus βbr) is eventually decreasing, which explains why α̂br is eventually slightly
increasing in Figure 2. Similarly, as the equilibrium α̂ is larger than the weight on the cost in
the myopic equilibrium, the price is a more informative signal, and hence β̂br lies above the
corresponding dashed curve. As the equilibrium α is eventually increasing by Proposition 1, the
opponents’ output becomes eventually less sensitive to their cost, and the myopic best response
then places a smaller weight on the belief about their cost. This is why β̂br is eventually slightly
decreasing in Figure 2.

Finally, the difference between the equilibrium coefficients and those of the myopic best reply
is given by the signalling components α̂−α̂br and β̂−β̂br , which are decreasing in absolute value
by Proposition 2.

To summarize, both α̂ and β̂ are the sum of a monotone signalling component, and of an
almost monotone myopic component reflecting learning. Since α̂ and β̂ are simply a regrouping
of α and β, these two effects explain also the non-monotonicity of the latter.

5.2. Prices and quantities

The properties of the equilibrium coefficients have implications for the levels and time paths of
prices and outputs. The relationship δ=−p̄(α+β) between the coefficients in Theorem 1 yields
a simple expression for the expected total output conditional on past prices: for any t and s≥ t,
we have

E
[∑

i

Qi
s |FY

t
]=n(αsΠt +βsΠt +δs)=nδs

(
1−Πt

p̄

)
.

Thus, the total expected output inherits the properties of the coefficient δ when Πt ≤ p̄. (For
t =0 the condition can be satisfied simply by assuming that π0 ≤ p̄; for t>0 it can be made to
hold with arbitrarily high probability by a judicious choice of parameters.) Proposition 1 then
implies that the total expected output is eventually decreasing in s, and lies everywhere above
its terminal value (p̄−Πt)n/(n+1), which is the complete information Nash total output for an
industry with average costΠt . That is, ifΠt ≤ p̄ (respectively,Πt> p̄), then the expected current
market supply conditional on public information is higher (lower) than the market supply in a
complete information Cournot market with average cost Πt .

In order to describe the behaviour of prices, we average out the demand shocks by defining
for any t and s≥ t the expected price

Et[Ps] := p̄−E
[∑

i

Qi
s |FY

t
]= p̄−nδs

(
1−Πt

p̄

)
,

which is just the expected time-s drift of the process Y conditional on its past up to time t. The
above properties of the expected total market output then carry over to the expected price with
obvious sign reversals. We record these in the following proposition, which summarizes some
properties of equilibrium prices and outputs.
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Figure 3

Price and output paths, (r,σ,n,p̄,T ,g0,π0,c1,c2)= (0.4,0.75,2,100,3.46,2,30,20,40)

Proposition 3. In any symmetric linear Markov equilibrium, prices and quantities satisfy the
following properties:

1. If Πt ≤ p̄ (respectively, Πt> p̄), then for all s≥ t, the expected price Et[Ps] is lower
(respectively, higher) than the complete information equilibrium price in a static Cournot
market with average cost Πt . As s→T , the expected price converges to the complete
information equilibrium price given average cost Πt . If r =0, then convergence is
monotone. If in addition Πt< p̄, then Et[Ps] is increasing in s.

2. The volatility of total output conditional on costs, −(αtβtγt)/σ , is eventually decreasing
in t. If r =0, then the volatility decreases monotonically in t.

3. The difference between any two firms’ output levels conditional on their costs, Qi
t −Qj

t =
αt(Ci −Cj), is deterministic and, for T sufficiently large, non-monotone.

The first part of Proposition 3 implies that as long as the public belief about the average cost
lies below the demand intercept, then conditional on past prices, future prices are expected to
increase, monotonically so if r =0. In particular, this is true of the time-0 expectation as long as
π0 ≤ p̄. The finding is illustrated in Figure 3, which shows realized price and output paths for two
firms with costs (c1,c2)= (20,40).

The second part of the proposition concerns the volatility of total output. Noting that
∑

i Q
i
t =

αt
∑

i C
i +nβtΠt +nδt , we see that this volatility is given by nβtλtσ , where λtσ is the volatility of

the public beliefΠt . Recalling that λt =−(αtγt)/(nσ 2) then gives the expression in Proposition 3.
Since the volatility of output is driven by the volatility of the public belief Πt , it eventually
decreases as Πt converges to the true average cost. Indeed, as t →∞, the total output converges
to a constant by Corollary 2. If r =0, this convergence is monotone, despite the non-monotonicity
of α and β. Interestingly, however, the volatility of total output may be non-monotone, peaking
at some intermediate time, when r>0.
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By inspection of (1), the drift of the revenue process is p̄−∑i Q
i
t , and hence it simply mirrors

the movements in total output. But the drift is just the expected price (where the expectation
is over the time-t demand shock σdZt), and so the above discussion of output volatility also
describes the volatility of the expected price. We thus see that the expected price may be the most
volatile after the market has already operated for some time, but it will eventually settle down. Of
course, realized prices continue to vary due to demand shocks even after outputs have converged
(close) to complete information levels.

The non-monotonicity of the output difference Qi
t −Qj

t in t in the third part of Proposition 3
can be clearly seen in Figure 3. The result follows simply by definition of Markov strategies and
the non-monotonicity of α for T large. As we discuss below, it has implications for productive
efficiency and hence for market profitability and market concentration.

5.3. Profits, consumer surplus, and market concentration

We now consider equilibrium profits and consumer surplus. In particular, we are interested in
comparing them to the corresponding complete information benchmarks over time.

Of course, conditional on any history, the firms’profits as well as consumer surplus depend on
the realized costs and prices as well as on the prior beliefs. Thus, in order to obtain a meaningful
comparison, we consider the ex ante expected flow profits and flow consumer surplus. That is, we
take expectations of these flows with respect to the vector of costs in our dynamic game. Similarly,
we construct the complete information benchmark by taking an expectation of the static complete
information Nash equilibrium profits and consumer surplus with costs drawn from the same prior
distribution as in the dynamic game.25

By the symmetry, the ex ante expectation of any firm i’s time-t flow profit is given by

Wt :=E
[(

p̄−
∑

j

Qj
t −C1)Q1

t
]
.

Routine calculations show that the expected static complete information Nash profit is

W co := (p̄−π0)2 +g0(n2 +n−1)

(n+1)2
.

The ex ante expected time-t flow consumer surplus, CSt , and the expected static complete
information Nash consumer surplus, CSco, are defined analogously.

Proposition 4. The expected profits and consumer surpluses satisfy the following properties:

1. CSt>CSco for all t ∈[0,T ] in every symmetric linear Markov equilibrium.
2. Wt<W co for t =0 and t =T in every symmetric linear Markov equilibrium.
3. Suppose

κ(n)<
rσ 2

g0
<

n(2−3n+n3)

(n+1)3
. (17)

25. Note that repetition of the static Nash equilibrium is the natural complete information analogue of our linear
Markov equilibria. Indeed, it obtains as a limiting case as g0 →0.
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Then for all π0 sufficiently close to p̄ and for all T̄>0, there exists t>0 and T> T̄ such
that the T-horizon game has a symmetric linear Markov equilibrium where

∫ T

t
e−rs(Ws −W co)ds>0 and

∫ T

t
e−rs(TSs −TSco)ds>0,

where TSs :=Ws +CSs and TSco :=W co +CSco are, respectively, the ex ante expected
time-s total surplus and the expected static complete information Nash total surplus.

The first part of Proposition 4 shows that the ex ante expected flow consumer surplus always
lies above the expected complete information consumer surplus. Heuristically, this follows since
expected price is at all times below the complete information level if π0 ≤ p̄ by Proposition 3 and
any variation in the price conditional on the costs is only beneficial to consumers who can adjust
their demands. (The actual proof allows for π0> p̄.)

Turning to the profits, Figure 4 compares the expected flow profits under complete and
incomplete information. The left and right panels contrast markets with a low and high mean
of the cost distribution. There are two main forces at play. On the one hand, signal-jamming adds
to the expected total output, relative to the complete information Nash equilibrium level. This
wasteful spending drives down profits but (eventually) declines over time by Proposition 2. On
the other hand, the firms’ active signalling (i.e. α being more negative than its myopic value)
increases the sensitivity of each firm’s output to its own cost. This improves the allocation of
production, holding fixed the total output level. The resulting higher productive efficiency leads
to higher expected profits since, from the ex ante perspective, each firm receives an equal share
of the industry profit.

Based on the first force alone, one would conjecture that expected flow profits always increase
over time, as in the left panel of Figure 4. But recall from Proposition 1 that the sensitivity of output
to cost,α, is non-monotone. In other words, signalling can result in the productive efficiency being
highest in the medium run. As in the right panel of Figure 4, this can lead the expected flow profit
Wt to surpass the expected complete information profit W co at some intermediate time. The
third part of Proposition 4 shows that the effect may be strong enough to cause even the ex ante
expectation of the time-t continuation profits (i.e.

∫ T
t e−rsWsds) to be higher than under complete

information. Moreover, since the consumer surplus is always above the complete information
level, also the expected time-t continuation total surplus is then above the complete information
level.

The conditions in the third part of Proposition 4 ensure (i) that the “average profitability of the
market” (as captured by p̄−π0) is not too high relative to the variance of output, so that the gain
in allocative efficiency of production is important enough to outweigh the effect of higher total
output, and (ii) that each firm is sufficiently patient, so that the value of signalling is sufficiently
large. The latter is guaranteed by the second inequality in (17). The first inequality in (17) is
a technical condition. It guarantees the existence of our equilibrium for any T by Theorem 1,
and implies that (α,β,δ,γ ) converge uniformly to well-defined limit functions as T →∞ (along
some subsequence), which we use in the proof.26

To summarize, after an initial unprofitable phase of high output levels, the combined effect
of learning and signalling can improve the expected industry flow profits. This result suggests
that some intermediate information structure would yield higher payoffs than both complete

26. For concreteness, we show at the end of the proof of Proposition 4 that the two inequalities in (17) define a
non-empty interval of possible values for rσ 2/g0 if 3≤n≤10.
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Figure 4

π0 =0 (left), π0 = p̄ (right), and (r,σ,n,p̄,T ,g0)= (0.2,1,2,5,15.44,2)

information and incomplete information with firms only sharing the common prior. In particular,
the initial phase of wasteful spending could be avoided by releasing an exogenous public signal
about the industry average cost. For a given precision level, such a signal induces the information
structure (obtained by repeatedly observing the market price) that arises in equilibrium at some
intermediate time.27

The above discussion of equilibrium profits focused on ex ante expected profits, which by
symmetry are the same across firms. For any cost realizations, however, the firms with the lowest
costs earn the highest profits and have the largest market shares. A possible way to capture this is
to use some standard measure of concentration such as the Herfindahl-Hirshman index, or HHI,
which is defined as the sum of the squared market shares.

In a symmetric linear Markov equilibrium, the time-t HHI is given by

HHIt :=
∑

i

(
Qi∑
k Qk

)2

=
∑

i(αtCi +βtΠt +δt)2

(αt
∑

k Ck +nβtΠt +nδt)2
.

The presence ofΠt in the denominator makes it hard to study the behaviour of the HHI analytically,
so we resort here to simulations in order to explore the evolution of market concentration over
time. Figure 5 shows the simulated HHI, averaged over 500 runs of the market, for a two-firm
industry with cost vector (c1,c2)= (1,4). As the figure illustrates, industry concentration can be
non-monotone over time. This is driven by the non-monotonicity of the difference between the
firms’ outputs over time (Proposition 3). The result is “overshooting”: the firm with the lowest
cost captures relatively quickly a large market share that is larger than its share in the complete
information outcome, to which the market eventually converges. We also see that for long horizons
or low discount rates, the HHI can be decreasing for a long time.

27. In the static literature on ex ante information sharing in oligopoly (Vives, 1984; Gal-Or, 1985; Raith, 1996),
output is most sensitive to costs under complete information, and the expected total quantity is constant in the precision
of the information revealed. As a result, sharing full information about costs is optimal in Cournot models. Instead, in
our dynamic model, total expected quantity is decreasing, but output is most sensitive to cost for some intermediate time,
leading to the richer picture outlined above.
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Figure 5

Simulated HHI, (n,r,σ,p̄,T ,g0,c1,c2,π0)= (2,.65,.75,10,7.77,2,1,4,3)

6. EXTENSIONS

6.1. Infinite horizon

We have assumed a finite horizon throughout. The main reason for this is a technical one: it allows
us to derive and impose the relevant boundary conditions for the equilibrium system (11)–(14).
However, we now show that our analysis carries over to an infinite horizon. More precisely, we
show that our finite-horizon equilibria converge to an equilibrium of the infinite-horizon version
of the model as T →∞ under a slight strengthening of the sufficient condition for existence (15).
This result allows us to extend our findings about the equilibrium properties to the infinite-horizon
case. It also provides a method for approximating an equilibrium of the infinite-horizon game
using our boundary value problem.

For the formal statement, we use Theorem 1 to identify a Markov equilibrium of the T -
horizon game with the tuple (αT ,βT ,δT ,ξT ,γ T ). It is convenient to extend these functions to
all of [0,∞) by setting (αT

t ,β
T
t ,δ

T
t ,ξ

T
t ,γ

T
t )= (αT

T ,β
T
T ,δ

T
T ,ξ

T
T ,γ

T
T ) for t>T . We then define a

sequence of symmetric linear Markov equilibria to be any sequence of such tuples indexed by a
strictly increasing, unbounded sequence of horizons. By the infinite-horizon game we mean the
game obtained by setting T =∞ in Section 2. (Note that the first time we use T<∞ in the above
analysis is when we impose boundary values on the equilibrium coefficients in Section 4.2.)

Proposition 5. Suppose g0/σ
2<4r/(27n). Then any sequence of symmetric linear Markov

equilibria contains a subsequence that converges uniformly to a symmetric linear Markov
equilibrium (α∗,β∗,δ∗,ξ∗,γ ∗) of the infinite-horizon game.28 Moreover, δ∗ =−p̄(α∗+β∗) and
(α∗,β∗,ξ∗,γ ∗) is a solution to the system (11)–(14) on [0,∞) with limt→∞α∗

t =αm(0),
limt→∞β∗

t =βm(0), limt→∞ξ∗
t =ξm(0), and γ ∗

0 =ng0.

The condition g0/σ
2<4r/(27n) strengthens the first case in (15) to ensure that all the functions are

bounded uniformly in T , facilitating the convergence argument. In particular, if g0/σ
2<r/κ(n),

28. There is no reason to allow Markov strategies to condition on calendar time in the infinite-horizon game.
However, allowing for it is innocuous because α∗ is bounded away from zero, and hence the limit posterior variance γ ∗

t
is strictly decreasing in t, implying that conditioning on t is equivalent to conditioning on γ ∗

t .
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then (αT ,βT ,δT ,γ T ) are uniformly bounded and converge uniformly (along a subsequence) as
T →∞. The stronger condition allows us to also bound and show the convergence of ξT , and
ultimately establish that the limit is an equilibrium of the infinite-horizon game by verifying a
transversality condition.

Since beliefs and play converge in the limit of finite-horizon equilibria, this is immediately
true of the infinite-horizon equilibrium we identify. Moreover, as each δT lies everywhere above
the complete information level, so does δ∗. This implies that our predictions for expected outputs
and prices carry over as well. Finally, depending on the parameters, the coefficient α∗ is either
non-monotone or everywhere decreasing, implying that the possibility of non-monotone market
shares and expected profits carries over as well.

6.2. Asymmetric, correlated, and interdependent costs

Symmetry of the prior distribution and of the equilibrium strategies is important for tractability.
The asymmetric case presents no new conceptual issues, but the public beliefΠ becomes vector-
valued with an associated posterior covariance matrix, and the analysis of the resulting boundary
value problem seems a daunting task. (See Lambert et al. (2014) for an extension of the static
Kyle (1989) model to the asymmetric case.)

In contrast, the assumption about independent costs can be easily relaxed. Correlated costs
bring qualitatively no new insights, and the analysis under independence extends to symmetric
settings with positively or negatively correlated costs. To see this, note that the public belief
simply tracks the average cost, so the laws of motion of Π and γ are unaffected by (symmetric)
correlation in the prior; correlation only affects the initial condition for γ . Similarly, firm i’s
private belief is still captured by M i and γM ; only the initial condition for the matrix � in
Lemma 1 is affected. Lemmas 2 and 3 then carry over as stated, except that the initial value of
z will now be greater than 1 if costs are negatively correlated, and less than 1 if correlation is
positive.

The above observation can be used to establish the following relationships among symmetric
linear Markov equilibria across the different cases. For simplicity, suppose there are only two
firms. Fix an equilibrium with independent cost draws. Then at any time t, the continuation
equilibrium over the remaining horizon [t,T ] is an equilibrium of a game where the horizon is
[0,T −t] and the prior has negative correlation. (The latter equilibrium is characterized by the
same differential equations as in the independent case, only the initial conditions are different.)
The intuition for this result is as follows. Along the path of play, the outsider is learning the firms’
average cost. Hence, from his perspective, individual costs are increasingly negatively correlated
over time even though they were independent under the prior. Indeed, in the limit the average
is known and costs are perfectly negatively correlated. On the other hand, if costs are ex ante
symmetrically negatively correlated, then the outsider believes them to be negatively correlated
already at t =0. Moreover, each firm’s own cost now provides a private signal about the others’
cost. Thus, the resulting information structure is as if we had directly jumped to some time t>0
in the independent case.

Similarly, when the prior distribution has symmetric positive correlation, the outsider is still
just learning the average. As a result, from the outsider’s perspective, the correlation of the
costs is decreasing and eventually becomes zero at some time t, at which point the continuation
equilibrium over [t,T ] is simply an equilibrium of a game where the horizon is [0,T −t] and
where the costs are independent according to the prior.

We can also introduce interdependent values, modelled as firm i’s cost being the sum
Ci +k

∑
j �=i C

j for some 0<k ≤1. The addition of an extra term in the payoff function changes
the equations in our boundary value problem somewhat, but the derivation is analogous. Cost

Downloaded from https://academic.oup.com/restud/article-abstract/84/2/503/2420613
by MIT Libraries user
on 26 November 2017



[15:01 11/3/2017 rdw049.tex] RESTUD: The Review of Economic Studies Page: 528 503–546

528 REVIEW OF ECONOMIC STUDIES

interdependence reduces the incentive to signal, since any given firm having a lower cost implies
that the other firms’ costs are lower as well, and hence induces them to produce more. In the
extreme case of pure common values (k =1), the firms initially scale back production, with the
burst of production towards the end resembling the aggressive behaviour at the end of the horizon
in models of insider trading in financial markets.

We have focused on the firms’uncertainty about their competitors’costs.Amore general model
of a new market would have both cost and demand uncertainty. A one-agent model with such two-
dimensional uncertainty is studied by Sadzik and Woolnough (2014) who generalize the model
of Kyle (1985) by endowing the insider with private information about both the fundamental
value and the amount of noise traders.

7. CONCLUDING REMARKS

We have analysed a stylized game of dynamic oligopolistic competition under incomplete
information. In our game, firms must balance the intertemporal trade-off between flow-profit
maximization and investment in manipulating their rivals’ beliefs. The key to the tractability of
our framework is the representation of symmetric linear Markov strategies in terms of the private
costs and a public belief—a sufficient statistic based on public information only.

We have derived conditions for existence of a symmetric linear Markov equilibrium and
characterized the time-varying equilibrium weights the firms assign to private and public
information. In any such equilibrium, learning is partial—firms only learn the average of their
rivals’ costs—yet behaviour converges uniformly to the complete information Nash outcome.
Finally, we have traced the rich implications of equilibrium behaviour for the patterns of relevant
variables, such as prices, quantities, and industry profits.

Our model with fixed costs captures in a stylized way a new market where firms eventually
converge to a static equilibrium. It is also of interest to consider settings where costs vary over
time. We pursue this in ongoing work.

APPENDIX

A.1. Preliminary Lemma

Under symmetric linear strategies, dYt =
(
p̄−αt

∑
i C

i −nBt (Y t )
)
dt+σdZt , with Bt (Y t ) :=∫ t

0 f t
s dYs +δt . The following

result is standard (Liptser and Shiryaev, 1977).

Lemma A.1. Under any symmetric linear strategy profile,Πt := 1
n E
[∑

j C
j
∣∣FY

t ] and γt :=E
[(∑

j C
j −nΠt

)2∣∣FY
t

]
are

given by the unique solution to the system

dΠt =−αtγt

nσ 2

[
dYt −

(
p̄−αtnΠt −nBt (Y

t )
)
dt
]
, Π0 =π0,

γ̇t =−
(αtγt

σ

)2
, γ0 =ng0.

In particular, the solution to the second equation is given by (5).

A.2. Proofs of Lemmas 1 to 4

Proof of Lemma 1. Let e := (1,...,1)′ ∈R
n−1 be a column vector of ones, and let I denote the (n−1)×(n−1) identity

matrix. The argument in the text before the Lemma shows that firm i’s belief can be found by filtering the (column) vector
C−i := (C1,...,Ci−1,Ci+1,...,Cn)′ ∼N (π0e,g0I ) from the one-dimensional process

dY i =−αt e
′C−idt+σdZt .

By standard formulas for the Kalman filter (see, e.g. Liptser and Shiryaev, 1977, Theorem 10.2) the posterior mean
M −i

t :=E[C−i|FY i

t ] and the posterior covariance matrix�t :=E[(C−i −M −i
t )(C−i −M −i

t )′|FY i

t ] are the unique solutions
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to the system

dM −i
t =−αt

σ
�t e

dY −i −αt e′M −i
t dt

σ
, M −i

0 =π0e, (A.1)

�̇t =− α
2
t

σ 2
�t ee′�t , �0 =g0I , (A.2)

where for �t uniqueness is in the class of symmetric non-negative definite matrices.
We first guess and verify the form of the solution for �t . Let At :=�t ee′�t . It is easy to see that its (i,j)-th component

satisfies

Aij
t =

n−1∑
k=1

�ik
t

n−1∑
�=1

�
�j
t .

Thus we guess that the solution takes the form �ii =γ 1
t , �ij

t =γ 2
t , i �= j, for some functions γ 1 and γ 2. The matrix equation

(A.2) then reduces to the system

γ̇ 1
t =− α

2
t

σ 2
(γ 1

t +(n−2)γ 2
t )2, γ 1

0 =g0,

γ̇ 2
t =− α

2
t

σ 2
(γ 1

t +(n−2)γ 2
t )2, γ 2

0 =0.

Consequently, γM
t := (n−1)[γ 1

t +(n−2)γ 2
t ] satisfies

γ̇M
t =−

(αtγ
M
t

σ

)2
, γM

0 = (n−1)g0,

whose solution is

γM
t = (n−1)g0

1+(n−1)g0
∫ t

0
α2

s
σ 2 ds

.

We can then solve for γ 1 and γ 2 by noting that γ̇ i
t = γ̇M

t /(n−1)2 for i=1,2, and hence integration yields

�ii
t =γ 1

t = γM
t

(n−1)2
+ (n−2)g0

n−1
and �

ij
t =γ 2

t = γM
t

(n−1)2
− g0

n−1
, i �= j.

It remains to verify that �t so obtained is non-negative definite. To this end, note that γ 1
t =γ 2

t +g0, and hence �t =
g0I +γ 2

t E, where E is a (n−1)×(n−1) matrix of ones. Therefore, for any nonzero (column) vector x∈R
(n−1) we have

x′�t x=g0‖x‖2
2 +γ 2

t

(∑
i

xi

)2
.

If γ 2
t ≥0, we are done. If γ 2

t <0, then, using the fact that (
∑

i
xi)2 ≤‖x‖2

1, we have

x′�t x≥g0‖x‖2
2 +γ 2

t ‖x‖2
1 ≥‖x‖2

1

( g0

n−1
+γ 2

t

)
=‖x‖2

1
γM

t

(n−1)2
>0,

where the first inequality follows from
√

n−1‖x‖2 ≥‖x‖1 and the second inequality from γM
t >0. We conclude that �t

is non-negative definite, and hence it is indeed our covariance matrix. By inspection, it is of the form �t =�(γM
t ) as

desired.
In order to establish the form of the posterior mean, note that (�t e)i =γM

t /(n−1). Thus (A.1) implies that M −i
t =M i

t e,
where M i

t evolves according to

dM i
t =−αt

σ

γM
t

n−1

dY i +αt (n−1)M i
t dt

σ
, (A.3)

and where

dZi
t := dY i +(n−1)αtM i

t dt

σ

is a standard Brownian motion (with respect to FY i
) known as firm i’s innovation process. It is readily verified that

((n−1)M i
t ,γ

M
t ) are the posterior mean and variance for the problem

dY i
t =−αtνdt+σdZt , ν∼N ((n−1)π0,(n−1)g0),

which amounts to filtering the other firms’ total cost. Thus M i
t is the posterior expectation about the other firms’ average

cost as desired. ‖
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Proof of Lemma 2. The result is a special case of Lemma 3. (The formula for zt follows by direct calculation from the
formulas for γM

t and γt given in Lemma 1 and equation (5), respectively.) ‖
Proof of Lemma 3. Fix a symmetric linear strategy profile, and let

λt :=−αtγt

nσ 2
and λM

t :=− αtγ
M
t

(n−1)σ 2
, t ∈[0,T ].

Note that zt :=nγM
t /[(n−1)γt ]=λM

t /λt . Recall the law of motion of the private belief M i in (A.3), and define the process
Π̂ i by

Π̂ i
t :=exp

(
n
∫ t

0
λuαudu

)
π0 +

∫ t

0
exp

(
n
∫ t

s
λuαudu

)
λs

[
−αs

(
Ci +(n−1)M i

s

)
ds+ dM i

s

λM
t

]
.

The process Π̂ i is in firm i’s information set because it is a function of its belief M i and cost Ci . We prove the first part
of the Lemma by showing that

M i
t −Ci =zt (Π̂

i
t −Ci), t ∈[0,T ]. (A.4)

To this end, note that the law of motion of Π̂ i is given by

dΠ̂ i
t =λtαt [Π̂ i

t −Ci +(n−1)(Π̂ i
t −M i

t )]dt+ λt

λM
t

dM i
t , Π̂ i

0 =π0. (A.5)

Let Wt :=zt (Π̂ i
t −Ci). Applying Ito’s rule and using that ztλt =λM

t gives29

dWt =λM
t αt [(n−1)zt −n](Π̂t −Ci)dt+λM

t αt [Π̂t −Ci +(n−1)(Π̂t −M i
t )]dt+dM i

t

= (n−1)λM
t αt

[
zt (Π̂t −Ci)−(M i

t −Ci)
]
dt+dM i

t

= (n−1)λM
t αt

[
Wt −(M i

t −Ci)
]
dt+dM i

t .

Therefore, we have
d [Wt −(M i

t −Ci)]= (n−1)λM
t αt [Wt −(M i

t −Ci)]dt,

which admits as its unique solution

Wt −(M i
t −Ci)=[W0 −(M i

0 −Ci)]exp

(
(n−1)

∫ t

0
λM

s αsds

)
.

But W0 −(M i
0 −Ci)=z0(Π̂ i

0 −Ci)−(M i
0 −Ci)=0, since z0 =1 and Π̂ i

0 =M i
0 =π0. Consequently, Wt −(M i

t −Ci)≡0,
which establishes (A.4).

The law of motion for Π̂ i given in the Lemma now follows from (A.5) by using (A.4) to substitute for M i
t , and by

using (A.3) to substitute for dM i
t .

It remains to show that Π̂ i
s =Πs if firm i plays the same strategy on [0,s) as the other firms. Note that then by (4),

we have from the perspective of firm i

dYt −(p̄−nBt (Y ))dt =dY i
t −αtC

idt =−αt [Ci +(n−1)M i
t ]dt+ dM i

t

λM
t
, t ∈[0,s),

where the second equality follows by (A.3). Therefore, the law of motion ofΠ in Lemma A.1 is from firm i’s perspective
given on [0,s) by

dΠt =−αtγt

nσ 2

[
dYt −

(
p̄−αtnΠt −nBt (Y )

)
dt
]

=λtαt [nΠt −Ci −(n−1)M i
t ]dt+ λt

λM
t

dMt

=λtαt [Πt −Ci +(n−1)(Πt −Mt )]dt+ λt

λM
t

dMt ,

29. Observe that

żt = n

n−1

γ̇M
t γt −γM

t γ̇t

γ 2
t

=− n

n−1

α2
t (γM

t )2

σ 2γt
+zt

α2
t γt

σ 2
= (n−1)λM

t αt zt −nλM
t αt ,

where we have used that γ̇t =−(αtγt/σ )2 and γ̇M
t =−(αtγ

M
t /σ )2.
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with initial condition Π0 =π0. By inspection of (A.5) we thus have Πt =Π̂ i
t for all t ≤s. (This also shows that if firm

i has ever unilaterally deviated from the symmetric linear strategy profile in the past, then Π̂ i
t equals the counterfactual

value of the public belief that would have obtained had firm i not deviated.) ‖
Proof of Lemma 4. Lemmas 1 and 2 imply that if all firms play a symmetric linear strategy profile, then there is a
one-to-one correspondence between (Ci,Πt ,t) and firm i’s time-t belief about (C1,...,Cn) and calendar time. Thus, if
Qi

t =αtCi +βtΠt +δt , t ∈[0,T ], then firm i’s quantity is only a function of its belief and calendar time. Using the law of
motion from Lemma A.1, it is straightforward to verify that the public belief is of the form Πt =

∫ t
0 kt

sdYs +constantt .
Thus conditioning on it agrees with our definition of a linear strategy in (3).

Conversely, suppose that a symmetric linear strategy profile (α,f ,δ) is only a function of beliefs and calendar time.
Given the one-to-one correspondence noted above, we then have for each firm i and all t,

Qi
t =ψt (C

i,Πt )

for some function ψt :R2 →R. Let supp(α) denote the essential support of α on [0,T ], and let τ :=minsupp(α). Then
private and public beliefs about firms j �= i are simply given by the prior at all 0≤ t ≤τ (i.e. Πt =π0, zt =1, and thus
M i

t =π0), and hence the strategy can only condition on firm i’s (belief about its) own cost and on calendar time on [0,τ ].
Thus, by linearity of the strategy, we haveψt (Ci,Πt )=αtCi +δt for t ≤τ , which shows that the strategy takes the desired
form on this (possibly empty) subinterval. Note then that for any t>τ , we have

Qi
t =αtC

i +
∫ t

0
f t
s dYs +δt =ψt (C

i,Πt )=ψt

(
Ci,

∫ t

0
kt

sdYs +constantt
)
,

where the argument of ψt can take on any value in R
2 given the distribution of Ci and the noise in the revenue process

Y . Thus, for the equality to hold, ψt must be an affine function, i.e. ψt (Ci,Πt )=atCi +btΠt +dt for some constants
(at ,bt ,dt ), establishing the result.

A.3. Proof of Theorem 1

The proof proceeds as a series of lemmas.

Lemma A.2. If (α,β,δ) is a symmetric linear Markov equilibrium with posterior variance γ , then (i) (α,β,ξ,γ ) with ξ
defined by (13) is a solution to the boundary value problem, and (ii) δ=−p̄(α+β).

Proof. Fix such an equilibrium (α,β,δ) with variance γ , and fix some firm i. By inspection, the best-response problem
in Section 4.1 is a stochastic linear-quadratic regulator (see, e.g. Yong and Zhou, 1999, Chapter 6). Moreover, (α,β,δ) is
an optimal policy (a.s.) on the path of play, i.e. at states where Πt =Π̂ i

t .
We argue first that the value function takes the form given in (9). Along the way, we also establish the existence of an

optimal policy at off-path states (Ci,Πt ,Π̂
i
t ,t) where Πt �=Π̂ i

t . Introducing the shorthand St for the state, we can follow
Yong and Zhou (1999, Chapter 6.4) and write the best-response problem at any state St as an optimization problem in a
Hilbert space where the choice variable is a square-integrable output process Qi on [t,T ] and the objective function takes
the form

1

2

[〈L1
t Qi,Qi〉+2〈L2

t (St ),Q
i〉+L3

t (St )
]

for certain linear functionals Li
t , i=1,2,3.30 Since an equilibrium exists, the value of the problem at St is finite, and hence

L1
t ≤0 by Theorem 4.2 of Yong and Zhou (1999, p. 308). Furthermore, because the coefficient on (Qi

t )
2 in the firm’s

flow payoff is invertible (as it simply equals −1), Yong and Zhou’s Corollary 5.6 (p. 312) implies that the existence of a
linear optimal policy is equivalent to the existence of a solution to the stochastic Hamiltonian system associated with the
best-response problem. This Hamiltonian system is a linear forward-backward stochastic differential equation for which
existence in our case follows by the result of Yong (2006). The form of the value function given in (9) then follows by
the existence of a linear optimal policy.

We note then that the value function V is continuously differentiable in t and twice continuously differentiable in
(c,π,π̂ ).31 Thus it satisfies the HJB equation (7). This implies that the linear optimal policy q=αt c+βtπ+δt +ξt (π̂−π ),

30. Cf. display (4.17) on page 307 in Yong and Zhou (1999).
31. Differentiability of each vi in (9) can be verified using the fact that V is the value under the optimal policy

(α,β,δ,ξ ), where (α,β,δ) are differentiable by assumption and ξ , which only enters V through an intergral, can be taken
to be continuous by Corollary 5.6 of Yong and Zhou (1999, p. 312).
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where (αt ,βt ,δt ) are the equilibrium coefficients, satisfies the first-order condition (8). This gives

αt c+βtπ+δt +ξt (π̂−π )= p̄−(n−1)
[
αt (zt π̂+(1−zt )c)+βtπ+δt

]−c

2
−λt

v1(t)+v4(t)π̂+v5(t)c+2v8(t)π

2
,

where we have written out ∂V /∂π using (9). As this equality holds for all (c,π,π̂ )∈R
3, we can match the coefficients

of c, π , π̂ , and constants on both sides to obtain the system

αt =− (n−1)αt (1−zt )+1

2
+ αtγt

2nσ 2
v5(t),

βt −ξt =− (n−1)βt

2
+ αtγt

nσ 2
v8(t),

δt = p̄−(n−1)δt

2
+ αtγt

2nσ 2
v1(t),

ξt =− (n−1)αt zt

2
+ αtγt

2nσ 2
v4(t),

(A.6)

where we have used λt =−αtγt/(nσ 2).
We can now show that (α,β,ξ,γ ) satisfy the boundary conditions given in the theorem. Note that vk (T )=0, k =1,...,9.

Thus we obtain (αT ,βT ,δT ,ξT ) from (A.6) by solving the system with (v1(T ),v4(T ),v5(T ),v8(T ))= (0,...,0). Recalling
the expression for zT in terms of γT from (6), a straightforward calculation yields αT =αm(γT ), βT =βm(γT ), δT =δm(γT ),
and ξT =ξm(γT ), where the functions (αm,βm,δm,ξm) are defined in (10). The condition γ0 =ng0 is immediate from (5).

As γ satisfies (14) by construction, it remains to show that (α,β,ξ,γ ) satisfy equations (11)–(13) and that δ=
−p̄(α+β). Applying the envelope theorem to the HJB equation (7) we have

r
∂V

∂π
=−(n−1)βtq

∗(c,π,π̂,t)+μt
∂2V

∂π2
+ ∂μt

∂π

∂V

∂π
+μ̂t

∂2V

∂π∂π̂
+ ∂2V

∂π∂t
, (A.7)

where we omit third-derivative terms as V is quadratic. By inspection of (9), the only coefficients of V that enter this
equation are v1(t), v4(t), v5(t), and v8(t) as well as their derivatives v̇1(t), v̇4(t), v̇5(t), and v̇8(t). Therefore, we first solve
(A.6) for (v1(t),v4(t),v5(t),v8(t)) in terms of (αt ,βt ,δt ,ξt ,γt ), and then differentiate the resulting expressions to obtain
the derivatives (v̇1(t),v̇4(t),v̇5(t),v̇8(t)) in terms of (αt ,βt ,δt ,ξt ,γt ) and (α̇t ,β̇t ,δ̇t ,ξ̇t ,γ̇t ). (Note that (A.6) holds for all t
and (α,β,δ) are differentiable by assumption; differentiability of ξ follows by (A.6).) Substituting into (A.7) then yields
an equation for (αt ,βt ,δt ,ξt ,γt ) and (α̇t ,β̇t ,δ̇t ,ξ̇t ,γ̇t ) in terms of (c,π,π̂ ) and the parameters of the model. Moreover, as
this equation holds for all (c,π,π̂ )∈R

3, we can again match coefficients to obtain a system of four equations that are
linear in (α̇t ,β̇t ,δ̇t ,ξ̇t ). A very tedious but straightforward calculation shows that these equations, solved for (α̇t ,β̇t ,δ̇t ,ξ̇t ),
are equations (11)–(13) and

δ̇t =rαt
δt −δm(γt )

αm(γt )
+ (n−1)αtβtγt

n(n+1)σ 2

[
δt −nαt (zt −1)((n+1)δt − p̄)

]
. (A.8)

The identity δ=−p̄(α+β) can be verified by substituting into (A.8) and using (11) and (12), and noting that the boundary
conditions satisfy it by inspection of (10). ‖

Lemma A.3. If (α,β,ξ,γ ) is a solution to the boundary value problem, then (α,β,δ) with δ=−p̄(α+β) is a symmetric
linear Markov equilibrium with posterior variance γ .

Proof. Let (α,β,ξ,γ ) be a solution to the boundary value problem and let δ=−p̄(α+β). Then (α,β,δ) are bounded
functions on [0,T ], and hence they define an admissible symmetric linear Markov strategy (see footnote 9 on page 508).
Moreover, (5) is the unique solution to (14) with γ0 =ng0, and hence γ is the corresponding posterior variance of the
public belief.

To prove the claim, we assume that the other firms play according to (α,β,δ), and we construct a solution V to firm
i’s HJB equation (7) such that V takes the form (9) and the optimal policy is q∗(c,π,π̂,t)=αt c+βtπ+δt +ξt (π̂−π ).
We then use a verification theorem to conclude that this indeed constitutes a solution to firm i’s best response problem.
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We construct V as follows. By Proposition 1, (α,β,δ,ξ ) are bounded away from 0, and so is γ because T is finite.32

We can thus define (v1,v4,v5,v8) by (A.6). Then, by construction, q∗(c,π,π̂,t)=αt c+βtπ+δt +ξt (π̂−π ) satisfies the
first-order condition (8), which is sufficient for optimality by concavity of the objective function in (7). The remaining
functions (v0,v2,v3,v6,v7,v9) can be obtained from (7) by substituting the optimal policy q∗(c,π,π̂,t) for q on the right-
hand side and matching the coefficients of (c,π̂ ,cπ̂ ,c2,π̂2) and the constants on both sides of the equation so obtained.
This defines a system of six linear first-order ODEs (with time-varying coefficients) for (v0,v2,v3,v6,v7,v9).

This system is stated here for future reference:

v̇0(t)=rv0(t)−δt (p̄−nδt )− α2
t γ

2
t

n2σ 2
v9(t)− αtγt (nβt +βt +2ξt )+2(n−1)α2

t γt zt

2n
,

v̇2(t)= (n−1)αt zt (p̄−nδt)+ nrσ 2 +α2
t γt (n(1−zt )+zt)

nσ 2
v2(t),

v̇3(t)= (n−1)αt (zt −1)(nδt − p̄)+rv3(t)+δt + α2
t γt ((n−1)zt −n)

nσ 2
v2(t),

v̇6(t)= nrσ 2 +α2
t γt (n(1−zt )+zt )

nσ 2
v6(t)+ 2α2

t γt ((n−1)zt −n)

nσ 2
v9(t) (A.9)

+αt

(
−2nξt −(n−1)zt (2nαt −2ξt +1)+2(n−1)2αt z

2
t

)
,

v̇7(t)=rv7(t)+αt (n−1)(zt −1)−α2
t (n(1−zt )+zt )

2 + α2
t γt ((n−1)zt −n)

nσ 2
v6(t),

v̇9(t)= nrσ 2 +2α2
t γt (n(1−zt )+zt )

nσ 2
v9(t)−((n−1)αt zt +ξt )

2.

By linearity, the system has a unique solution on [0,T ] that satisfies the boundary condition
(v0(T ),v2(T ),v3(T ),v6(T ),v7(T ),v9(T ))= (0,...,0). Defining V by (9) with the functions vk , k =1,...,9, defined
above then solves the HJB equation (7) by construction.

Finally, because V is linear-quadratic in (c,π,π̂ ) and the functions vk are uniformly bounded, V satisfies the quadratic
growth condition in Theorem 3.5.2 of Pham (2009). Therefore, V is indeed firm i’s value function and (α,β,δ,ξ ) is an
optimal policy. Moreover, on-path behaviour is given by (α,β,δ) as desired. ‖

We then turn to existence. As discussed in the text following the theorem, we use the shooting method, omitting first
equation (13) from the system.

Define the backward system as the initial value problem defined by (11), (12), and (14) with γT =γF , αT =αm(γF ),
and βT =βm(γF ) for some γF ∈R+. By inspection, the backward system is locally Lipschitz continuous (note that g0>0
by definition). For γF =0, its unique solution on [0,T ] is given byαt =αm(0),βt =βm(0), and γt =0 for all t. By continuity,
it thus has a solution on [0,T ] for all γF in some interval [0,γ̃F ) with γ̃F >0. Let G :=[0,γ̄F ) be the maximal such interval
with respect to set inclusion. (I.e. γ̄F =sup{γ̃F ∈R+ :backward system has a solution for all γF ∈[0,γ̃F )}.) Finally, define
the function κ :N→R++ by

κ(n) := inf
a∈(−∞,−1]

{
− (n−1)2

√
a5(a+1)n(2an+n+1)(a(n−1)n−1)

(a+an+1)2
+ a2(a(n(a−(3a+2)n)+1)+1)

(a+an+1)2

}
. (A.10)

Lemma A.4. Suppose (15) holds, i.e. g0/σ
2<max{r/κ(n),1/(3nT )}. Then there exists γF ∈G such that the solution to

the backward system satisfies γ0 =ng0.

32. For ξ , this follows from ξt ≥ξm
t :=ξm(γt )>0. The second inequality is by (10). To see the first, notice that ξ̇t

is decreasing in βt . Therefore, bounding βt with βm
t by Proposition 1, we obtain

(βt ,ξt )= (βm
t ,ξ

m
t )⇒ ξ̇t − ξ̇m

t =− g2
0 (n−1)3n3αt (2αt −1)γt

4(n+1)σ 2(g0(n−1)n+(n+1)γt )2
≤0,

because αt<α
m
t ≤−1/2 for all t by Proposition 1. This implies that ξ can only cross its myopic value from above, which

occurs at time t =T .
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Proof. Suppose g0/σ
2<max{r/κ(n),1/(3nT )}. The backward system is continuous in γF , and γF =0 results in γ0 =0.

Thus it suffices to show that γ0 ≥ng0 for some γF ∈G. Suppose, in negation, that the solution to the backward system has
γ0<ng0 for all γF ∈G. Since γ is monotone by inspection of (14), we then have γF =γT ≤γ0<ng0 for all γF ∈G, and
thus γ̄F ≤ng0<∞. We will show that this implies that the solutions (α,β,γ ) are bounded uniformly in γF on G, which
contradicts the fact that, by definition of G, one of them diverges at some t ∈[0,T ) when γF = γ̄F .

To this end, let γF ∈G, and let (α,β,γ ) be the solution to the backward system.
By monotonicity of γ , we have 0≤γt ≤γ0<ng0 for all t, and hence γ is bounded uniformly across γF in G as

desired.
Note then that, by the arguments in the proof of the first part of Proposition 1 below, we have (−α,β,δ)≥0. The

identity −p̄(α+β)=δ then implies α≤−β≤0. Therefore, to bound α and β, it suffices to bound α from below.
We first derive a lower bound for α when ρ :=ng0/σ

2<1/(3T ). Consider

ẋt =ρx4
t , xT =−1. (A.11)

By (10), we have xT ≤αm(γF )=αT for all γF ≥0. Furthermore, recalling that γt ≤ng0, zt ∈[1,n/(n−1)], and −αt ≥βt ≥0
for all t, we can verify using equation (11) that ρα4

t ≥ α̇t for all αt ≤−1. Working backwards from T , this implies xt ≤αt

for all t at which xt exists. Furthermore, the function x is by definition independent of γF , so to bound α it suffices to
show that (A.11) has a solution on [0,T ]. This follows, since the unique solution to (A.11) is

xt = 1
3
√

3ρ(T −t)−1
, (A.12)

which exists on all of [0,T ], because 3ρ(T −t)−1≤3ρT −1<0 by assumption.
We then consider the case g0/σ

2<r/κ(n). We show that there exists a constant ā<−1 such that α≥ ā. In particular,
denoting the right-hand side of α̇ in (11) by f (αt ,βt ,γt ), we show that there exists ā<−1 such that f (ā,b,g)≤0 for
all b∈[0,−ā] and g ∈[0,ng0]. Since 0≤β≤−α and 0≤γ ≤ng0, this implies that following (11) backwards from any
αT >−1 yields a function bounded from below by ā on [0,T ].

For a≤−1 and r>0, let

D(a,r) :=
(

ā2g0(n−1)(an+1)−rσ 2(a(1+n)+1)
)2 −4a2(a+1)g0(n−1)rσ 2(a(n−1)n−1).

We claim that there exists ā≤−1 such that D(ā,r)<0. Indeed, D(a,r) is quadratic and convex in r. It is therefore negative
if r ∈[r1,r2], where r1 =r1(a) and r2 =r2(a) are the two roots of D(a,r)=0. One can verify that for any a≤−1, D(a,r)=0
admits two real roots r1 =r1(a)≤r2 =r2(a), with strict inequality if a<−1, which are both continuous functions of a that
grow without bound as a→−∞. Thus, there exists ā such that D(ā,r)<0 if r> inf a∈(−∞,−1) r1(a). But, by definition,
the objective function in the extremum problem in (A.10) is (σ 2/g0)r1(a), and hence the existence of ā follows from
r>κ(n)g0/σ

2. We fix some such ā for the rest of the proof.
Consider any g ∈[0,ng0]. Let z :=n2g0/[n(n−1)g0 +g]. By inspection of (11), if (n−1)nā(z−1)+1≥0, then

f (ā,b,g)≤0 for all b∈[0,−ā], since ā≤−1≤αm(g), which implies that the r-term is negative. On the other hand,
if (n−1)nā(z−1)+1<0, then f (ā,b,g)≤ f (ā,−ā,g) for all b∈[0,−ā]. Thus it suffices to show f (ā,−ā,g)≤0.

Note that

f (ā,−ā,g)= ā
(
g(n−1)ng0ā2 (nā+1)−g2ā2 ((n−1)nā−1)

)
nσ 2 (g0(n−1)n+g)

+ rσ 2ā
(
g0(−(n−1))n2 (ā+1)−gn((n+1)ā+1)

)
nσ 2 (g0(n−1)n+g)

.

The numerator on the right-hand side is quadratic and concave in g, while the denominator is strictly positive. Thus, if
there exists no real root g to the numerator, f (ā,−ā,g) is negative. In particular, the equation f (ā,−ā,g)=0 admits no
real root g if the discriminant is negative. This discriminant is exactly D(ā,r), which is negative by definition of ā. ‖

LemmaA.4 shows that there exists a solution (α,β,γ ) to equations (11), (12), and (14) satisfying boundary conditions
αT =αm(γT ), βT =βm(γT ), and γ0 =ng0 when (15) holds. Therefore, it only remains to establish the following:

Lemma A.5. Suppose (15) holds, and let (α,β,γ ) be a solution to equations (11), (12), and (14) with αT =αm(γT ),
βT =βm(γT ), and γ0 =ng0. Then there exists a solution ξ to equation (13) on [0,T ] with ξT =ξm(γT ).

Proof. Let g0<max{rσ 2/κ(n),σ 2/(3nT )} and let (α,β,γ ) be as given in the lemma. We first establish the result for all
g0>0 sufficiently small.
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Recall that for any g0<σ
2/(3nT ) we can boundα from below by x given in (A.12). In particular, for g0 ≤7σ 2/(24nT ),

we have

0≥αt ≥xt = 1

3
√

3 ng0
σ 2 (T −t)−1

≥ 1

3
√

3ng0T
σ 2 −1

≥−2.

Combining this with 0≤γt ≤γ0 =ng0, we see that the coefficient on ξ2
t in (13), αtγt/(nσ 2), is bounded in absolute value

by 2g0/σ
2. Thus for any g0 small enough, (13) is approximately linear in ξt and hence it has a solution on [0,T ].

Define now ḡ0 as the supremum over g̃0 such that a solution to the boundary value problem exists for all g0 ∈ (0,g̃0).
By the previous argument, ḡ0>0. We complete the proof of the lemma by showing that ḡ0 ≥max{rσ 2/κ(n),σ 2/(3nT )}.

Suppose towards contradiction that ḡ0<max{rσ 2/κ(n),σ 2/(3nT )}. Then for g0 = ḡ0 there exists a solution (α,β,γ )
to (11), (12), and (14) satisfying the boundary conditions by Lemma A.4, but following equation (13) backwards from
ξT =ξm(γT ) yields a function ξ that diverges to ∞ at some τ ∈[0,T ). We assume τ >0 without loss of generality, since
if limt↓0ξt =∞, then ξt can be taken to be arbitrarily large for t>0 small enough, which is all that is needed in what
follows.

Since the boundary value problem has a solution for all g0< ḡ0, a symmetric linear Markov equilibrium exists for all
g0< ḡ0. Fix any such g0 and any firm i. The firm’s equilibrium continuation payoff at time s<τ given state (Ci,Πs,Π̂

i
s,s)=

(0,0,0,s) is V (0,0,0,s)=v0(s). The payoff V (0,0,0,s) is the expected profit over [s,T ] under the equilibrium strategies
conditional on Πs =Π̂s =Ci =0. Because Πs =Π̂s, it is independent of ξ . Moreover, (α,β,δ,γ ) are bounded on [s,T ]
uniformly over g0 ∈[0,ḡ0] by assumption. Hence, the equilibrium payoff V (0,0,0,s) is bounded by some B<∞ uniformly
in g0.

Let �>0, and suppose firm i deviates and produces Qi
t =βtΠt +δt −� for all t ∈[s,τ ), and then reverts back to the

equilibrium strategy at τ . Then d (Πt −Π̂ i
t )=λt [αtn(Πt −Π̂ i

t )+�]dt (see Section 4.1), and hence

Πτ −Π̂ i
τ =�

∫ τ

s
exp

(
−
∫ t

τ

λuαundu

)
dt>0. (A.13)

Since Π and Qi still have linear dynamics on [s,τ ), their expectation and variance are bounded, and hence so is firm i’s
expected payoff from this interval. Moreover, since (α,β,γ ) (and hence also δ=−p̄(α+β)) exist and are continuous in
g0 at ḡ0, the supremum of this expected payoff over g0 ≤ ḡ0 is then also finite.

Firm i’s continuation payoff from reverting back to the equilibrium best-response policy (α,β,δ,ξ ) at time τ is given
by

V (0,π,π̂,τ )=v0(τ )+v1(τ )π+v2(τ )π̂+v4(τ )ππ̂+v8(τ )π2 +v9(τ )π̂2 ≥0,

where the inequality follows, since the firm can always guarantee zero profits by producing nothing. By inspection of
(A.6) and (A.9), we observe that

1. v4(τ )∝−ξτ and v8(τ )∝ξτ ;

2. v1(τ ) and v2(τ ) are independent of ξ ;

3. v9(τ ) depends on ξ , but is either finite or tends to ∞ as ξ grows without bound;

4. v0(τ )=V (0,0,0,τ )≥0.

Therefore, letting g0 → ḡ0 and hence ξτ →∞, we have for all π >0≥ π̂ ,

V (0,π,π̂,τ )→∞.

Moreover, such pairs (π,π̂ ) have strictly positive probability under the deviation by (A.13), because Π̂ i is an exogenous
Gaussian process. But because V (0,π,π̂,τ )≥0 for all (π,π̂ ), this implies that the time-s expectation of the deviation
payoff tends to infinity as g0 → ḡ0. Hence it dominates B (and thus V (0,0,0,s)) for g0 close enough to ḡ0. But this
contradicts the fact that a symmetric linear Markov equilibrium exist for all g0< ḡ0. ‖

A.4. Proofs for Section 5

We start with a lemma that is used in the proof of Corollary 2, and later in the proof of Proposition 5. Let g0/σ
2<r/κ(n)

so that a symmetric linear equilibrium exists for all T , and select for each T some such equilibrium f T := (αT ,βT ,δT ,γ T ),
where γ T is the corresponding posterior variance. Extend each f T to all of [0,∞) by setting f T (t)= f T (T ) for t>T .
We continue to use f T to denote the function so extended. Denote the sup-norm by ‖f T ‖∞ :=supt ‖f T (t)‖, where
‖f T (t)‖:=maxi |f T

i (t)|.
Since g0/σ

2<r/κ(n), each αT is bounded in absolute value uniformly in T by some ā<∞ (see the proof of
Lemma A.4). Thus, 0<βT ≤−αT < ā and 0<δT =−p̄(αT +βT )< p̄ā for all T>0. This implies, in particular, that the
“non-r term” on the right-hand side of ḟ T

i is bounded in absolute value by γ T
t K for some K<∞ independent of i and T .

Lemma A.6. Let g0/σ
2<r/κ(n). Then for all ε>0, there exists tε <∞ such that for all T ≥ t ≥ tε , ‖f T (t)−

(αm(0),βm(0),δm(0),0)‖<ε.
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Proof. For γ , the claim follows by Corollary 1. We prove the claim for α; the same argument can be applied to β
and δ. By Corollary 1, for any η>0, there exists tη such that 0≤γ T

t <η for all T ≥ t ≥ tη . Furthermore, by taking tη to
be large enough, we also have |αm(γ T

t )+1|<η for all T ≥ t ≥ tη by continuity of αm. This implies, in particular, that
αT

t ≤αm(γ T
t )<−1+η for all T ≥ t ≥ tη , giving an upper bound on αT uniformly in T .

To find a lower bound, fix T> tη . Define b : [tη,T ]→R as the unique solution to ḃt =r(bt +1)+ηK with bT =−1,
where K is the constant from the remark just before Lemma A.6. Then, by construction, −1−ηK/r ≤bt ≤−1 for all t in
[tη,T ]. Furthermore, we have αT >b on [tη,T ]. To see this, note that αT

T =αm(γ T
T )>−1=bT , and if for some t in [tη,T )

we have αT
t =bt , then

α̇T
t ≤r

αT
t

αm(γ T
t )

(αT
t −αm(γ T

t ))+γ T
t K

=r
αT

t

αm(γ T
t )

(αT
t +1)−r

αT
t

αm(γ T
t )

(αm(γ T
t )+1)+γ T

t K

<r
αT

t

αm(γ T
t )

(αT
t +1)+ηK

≤r(αT
t +1)+ηK = ḃt ,

where the first inequality is by definition of K , the second uses αm(γ T
t )≥−1 and t ≥ tη , and the third follows from

αT
t =bt ≤−1≤αm(γ T

t ). Thus, at any point of intersection, αT crosses b from above, and hence the existence of an
intersection contradictsαT

T >bT . We conclude thatαT
t >bt ≥−1−ηK/r for all T ≥ t ≥ tη . Note that even though b depends

on T , the lower bound is uniform in T .
To conclude the proof, fix ε>0, and put η=min{ε,rε/K}. Then, by the above arguments, there exists tε= tη such

that αT
t ∈ (−1−ε,−1+ε) for all T ≥ t ≥ tε . ‖

Proof of Corollary 2. Corollary 1 and Lemma A.1 imply that for every η>0, there exists tη <∞ such that for all T> tη ,
every symmetric linear Markov equilibrium satisfies P[|Πt −n−1∑

i C
i|<η]>1−η for all t> tη . Furthermore, we have

∣∣Qi
t −qN

i (C)
∣∣≤ ∣∣αt −αm(0)

∣∣∣∣Ci
∣∣+∣∣βt −βm(0)

∣∣|Πt |+βm(0)
∣∣∣Πt −

∑
i C

i

n

∣∣∣+∣∣δt −δm(0)
∣∣.

By the above observation about Π and Lemma A.6, each term on the right converges in distribution to zero as t →∞
(uniformly in T ). Since zero is a constant, this implies that the entire right-hand side converges to zero in distribution. In
particular, if we denote the right-hand side by Xt , then for any ε>0, there exists tε such that for every T ≥ t ≥ tε , we have
P[|Xt |<ε]≥1−ε. But {|Xt |<ε}⊂

{∣∣Qi
t −qN

i (C)
∣∣<ε}, and hence it follows that P[|Qi

t −qN
i (C)|<ε]>1−ε. ‖

Proof of Proposition 1. (1.) Consider a symmetric linear Markov equilibrium (α,β,δ) with posterior variance γ . Denote
the induced values of the myopic coefficients under γ by

(αm
t ,β

m
t ,δ

m
t ) :=(αm(γt ),β

m(γt ),δ
m(γt )

)
.

By Theorem 1, (α,β) are a part of a solution to the boundary value problem, and hence δ satisfies (A.8). The boundary
conditions require that αT =αm

T <0 and βT =βm
T >0. We first show that α≤0 for all t. This is immediate, since αT <0

and α̇t =0 if αt =0. Next, we show that δt lies everywhere above its (constant) myopic value δm
t . To establish this, notice

that δT =δm
T , and δ̇T <0 by (A.8). Furthermore

δt =δm
t ⇒ δ̇t − δ̇m

t = (n−1)pαtβtγt

n(n+1)2σ 2
≤0.

Now suppose towards a contradiction that βt crosses βm
t from below at some t<T . Then evaluate β̇t at the crossing point

and obtain

βt =βm
t ⇒ β̇t −β̇m

t =− g2
0 (n−1)3n3αtγt ((n+1)αt −1)

(n+1)3σ 2(g0(n−1)n+(n+1)γt )2
<0,

a contradiction. Therefore βt ≥βm
t .

The results shown above (αt ≤0, δt/p̄=−αt −βt ≥1/(n+1), and βt ≥βm
t ) imply that, if for some t, αt =αm

t , then
also βt =βm

t , since −αm
t −βm

t =1/(n+1). Using this we evaluate α̇t at αt =αm
t to obtain

(αt ,βt )= (αm
t ,β

m
t )⇒ α̇t −α̇m

t = g0(n−1)2nγt (g0(n−1)n+γt )3

(n+1)σ 2(g0(n−1)n+(n+1)γt )4
>0,

which establishes αt ≤αm
t for all t.
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(2.–3.) The boundary conditions imply γ0 =ng0. Substituting into α̇t gives

α̇0 =−r(2α0 +1)α0 − g0α
2
0β0

σ 2
<0,

since both terms are negative as by part (1.), −α0 ≤−αm
0 =1/2. Similarly, we have

β̇0 = rα0 (n−1−2(n+1)β0)

n+1
+ g0α0β0 (2nα0 +(n−1)β0)

(n+1)σ 2
>0,

since n≥2, αt +βt<0, and βt>β
m
t . Boundary conditions (αT ,βT )= (αm

T ,β
m
T ) imply

α̇T = (n−1)γT zT
(
(n2 −1)zT −n2 −1

)
n(n+1)σ 2 (n+1−zT (n−1))4

,

β̇T = (n−1)γT zT
(
(n−1)3z2

T −(n+1)(n(n+4)−1)(n−1)zT +n(n+1)3
)

n(n+1)3σ 2 (n+1−zT (n−1))4
.

Note that as γT →0 and hence zT → n
n−1 , we have α̇T → (n−1)γT

(n+1)σ 2 >0 and β̇T →− n
(

n2+n−2
)
γT

(n+1)3σ 2 <0. Finally, because |αt |
is bounded away from zero at all t, we have γT →0 as T →∞, and hence the derivatives have the desired signs for T
large enough.
(4.) That δ is eventually decreasing follows by evaluating (A.8) at t =T using the boundary condition δT =δm

T and signing
the terms using part (1.).
(5.) If r =0, (A.8) simplifies to

δ̇t = (n−1)αtβtγt (δt −nαt (zt −1)((n+1)δt − p̄))

n(n+1)σ 2
<0,

since αt<0 and (n+1)δt ≥ p̄= (n+1)δm
t by part (1.).

Now consider the second time derivative α̈t , and evaluate it at a critical point of αt . Solving α̇t =0 for g0 and
substituting into the second derivative, we obtain

α̈t =−α
3
t βtγ

2
t (nαt +1)((n−1)nαt −1)

n3σ 4
>0,

since n≥2 and αt ≤−1/2.
Finally, we evaluate β̈ at a critical point of β. To this end, note that for r =0,

β̇t = αtβtγt

n(n+1)σ 2

[
nαt
(
1+n−zt (n−1)−(n2 −1)βt (zt −1)

)+(n−1)βt
]
.

At a critical point, the term in parentheses is nil. Since αt<0, the second derivative β̈t is then proportional to

−α̇t
(
1+n−zt (n−1)−(n2 −1)βt (zt −1)

)+αt żt
(
n−1+(n2 −1)βt

)
.

We know zt is strictly increasing, αt<0, and the last term in parentheses is positive. Furthermore, β̇t =0 implies(
1+n−zt (n−1)−(n2 −1)βt (zt −1)

)
>0. Finally, δt =−p̄(αt +βt ) from Theorem 1 implies that αt is strictly increasing

at a critical point of βt . Therefore, both terms in β̈t are negative establishing quasiconcavity. ‖

Proof of Proposition 2. (1.) The signalling components obviously vanish at T as then also the equilibrium play is myopic.
Evaluate the slope of α̂ and α̂br at t =T . We obtain

˙̂αT − ˙̂αbr
T =− γT (n−1)2zT ((n−1)zT −2n)

2n(n+1)2σ 2 (−(n−1)zT +n+1)3
>0,

since zT ≤n/(n−1) implies both that the numerator is negative and that the denominator is positive. Because α̂T = α̂br
T ,

the signalling component α̂t −α̂br
t is thus negative in a neighbourhood of T . Now solve α̂t = α̂br

t for zt and substitute the
resulting expression into ˙̂αt − ˙̂αbr

t . We obtain,

α̂t = α̂br
t ⇒ ˙̂αt − ˙̂αbr

t = (n−1)αtβtγt ((n−1)αt −1)

2n(n+1)σ 2
>0.

Thus, if α̂t −α̂br
t =0 for some t<T , then the signalling component crosses zero from below at t, contradicting the fact

that it is negative for all t close enough to T . We conclude that α̂t −α̂br
t >0 for all t<T .
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Now evaluate the slope of β̂ and β̂br at t =T . We obtain

˙̂
βT − ˙̂

βbr
T =− γT (n−1)3zT

2n(n+1)2σ 2 (n(−zT )+n+zT +1)3
<0.

Because β̂T = β̂br
T , the signalling component β̂t −β̂br

t is positive in a neighbourhood of T . Solve β̂t = β̂br
t for zt and

substitute the resulting expression into ˙̂
βt − ˙̂

βbr
t . We obtain,

β̂t = β̂br
t ⇒ ˙̂

βt − ˙̂
βbr

t =− (n−1)2α2
t βtγt

2n(n+1)σ 2
<0.

Thus, if the signalling component β̂t −β̂br
t ever crosses zero it does so from above, contradicting the fact that it is positive

at t =T .
Direct calculation yields δt −δbr

t = 1
2 ((n+1)δt − p̄)≥0, where the inequality follows since δt ≥δm(γt )= p̄/(n+1) by

Proposition 1.1 and (10). Furthermore, by inspection of (A.8), δ̇t<0 if δt =δm(γt ), and thus δt> p̄/(n+1) for all t<T .
(2.) Consider α̂t −α̂br

t , and suppose there exists a time t for which the signalling component has a slope of zero. Impose
r =0, solve ˙̂αt − ˙̂αbr

t =0 for βt , and substitute into α̂t −α̂br
t . We obtain

α̂t −α̂br
t = (n−1)αt −1

2n(n+1)αt (zt −1)−2
>0,

contradicting our finding that α̂t ≤ α̂br
t for all t.

Likewise, we know the signalling component β̂t −β̂br
t is decreasing at t =T . Now impose r =0, and consider the

slope ˙̂
βt − ˙̂

βbr
t at an arbitrary t. We obtain

˙̂
βt − ˙̂

βbr
t =− (n−1)αtβtγt (nαt (zt −1)((n+1)βt +(n−1)αt zt)−βt)

2nσ 2zt
.

If the slope of the signalling component satisfies ˙̂
βt ≥ ˙̂

βbr
t , then it must be that (n+1)βt +(n−1)αt zt ≤0. However, the

level of the signalling component is given by

β̂t −β̂br
t = (n+1)βt +(n−1)αt zt

2zt
.

Consider the largest t for which the signalling component has a slope of zero. Then the signalling component must be
negative at that point. This contradicts our earlier finding that the signalling component is positive and decreasing in a

neighbourhood of T . Therefore, ˙̂
βt<

˙̂
βbr

t for all t.
Since δt −δbr

t = 1
2 ((n+1)δt − p̄), the claim follows by Proposition 1.4. ‖

Proof of Proposition 3. (1.) The result follows from the properties of the expected total output established in the text
before the proposition.
(2.) By Lemma A.1, the volatility of the public belief Πt is −((αtγt )/(nσ 2))σ =λtσ . Thus the total output

∑
i Q

i
t =

αt
∑

i C
i +nβtΠt +nδt has volatility nβtλtσ =−(αtβtγt )/σ . Differentiating αtβtγt with respect to t, setting t =T , and

using (11), (12), and (14) gives

d

dt
(αtβtγt )

∣∣∣
t=T

= g2
0 (n−1)3n3γ 2

T (g0(n−1)n+γT )2
(
g0n(3n(n+1)−2)+(−n2 +n+2

)
γT
)

(n+1)3σ 2 (n(g0(n−1)+γT )+γT )
5 .

The last term in the numerator is positive for all n, because γT ≤ng0 implies

g0n(3n(n+1)−2)+(−n2 +n+2)γT >2g0n2(2+n)>0.

Thus −αtβtγt is eventually decreasing.
In the undiscounted case, we obtain

d

dt
(αtβtγt )= α2

t βtγ
2
t ((n−1)nαt (−2(n+1)βt (zt −1)−zt)−2βt)

n(n+1)σ 2
.

Because zt ≥1 and −αt>βt>0 we rewrite the terms in parentheses in the numerator as

(1−n)nαt zt −2βt

(
n
(

n2 −1
)
αt (zt −1)+1

)
> (1−n)nαt zt −2βt> (n−1)nβt −2βt .

Therefore, we obtain the following bound:

d

dt
(αtβtγt )>

(n−2)α2
t β

2
t γ

2
t

nσ 2
>0.

This shows that −αtβtγt is strictly decreasing in t.
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(3.) Firm i’s output on the equilibrium path is given by Qi
t =αtCi +βtΠt +δt . Therefore, for any i and j �= i, we have

Qi
t −Qj

t =αt (Ci −Cj). Proposition 1 shows that α is non-monotone for T sufficiently large. ‖

Proof of Proposition 4. We begin by constructing the distribution ofΠt under the true data-generating process. Substituting
the equilibrium strategies into the law of motion for Πt in Lemma A.1, we obtain dΠt =λtαt (nΠt −∑i C

i)dt+λtσdZt ,
or

Πt =π0 exp

(∫ t

0
nλtαsds

)
−
∑

i

Ci
∫ t

0
λsαs exp

(∫ t

s
nλuαudu

)
ds+σ

∫ t

0
λs exp

(∫ t

s
nλuαudu

)
dZs.

We conclude that conditional on C, Πt is normally distributed with mean

E[Πt |C]=π0 exp

(∫ t

0
nλtαsds

)
−
∑

i

Ci
∫ t

0
λsαs exp

(∫ t

s
nλuαudu

)
ds,

and variance

Var[Πt |C]=σ 2
∫ t

0
λ2

s exp
(

2
∫ t

s
nλuαudu

)
ds.

Recall also that nαtλt = γ̇t/γt , and hence exp(
∫ t

s nλuαudu)=γt/γs. We thus have

E[Πt |C]=π0
γt

γ0
−
∑

i

Ci 1

n

∫ t

0

γ̇s

γs

γt

γs
ds=π0

γt

γ0
− 1

n

∑
i

Ciγt

(
1

γ0
− 1

γt

)
,

and

Var[Πt |C]=− 1

n2

∫ t

0
γ̇s
γ 2

t

γ 2
s

ds= 1

n2
γ 2

t

(
1

γt
− 1

γ0

)
.

Thus, conditional on the realized costs, firm i’s expected time-t flow profit is given by

(
p̄−Ci −αt

n∑
j=1

Cj −βtnE[Πt |C]−δtn
)(
αtC

i +βtE[Πt |C]+δt
)−β2

t nVar[Πt |C].

Taking an expectation with respect to C, we obtain its ex ante expected time-t profit

Wt := βtγt ((2αt +βt )n+1)−g0n
(
n(αt +(αt +βt )2)+βt

)
n2

−(p̄−π0)2(αt +βt )(n(αt +βt )+1).

A similar derivation yields the ex ante expected time-t consumer surplus

CSt := 1

2

(
g0n(αt +βt )

2 −βtγt (2αt +βt )
)
+ 1

2
n2(p̄−π0)2(αt +βt )

2.

(1.) Subtracting the expected complete information static Nash consumer surplus CSco from the ex ante expected time-t
consumer surplus CSt gives

1

2

[
g0n(αt +βt )

2 − g0n

(n+1)2
−βtγt (2αt +βt )

]
+ 1

2
(p−π0)2

[
n2(αt +βt )

2 − n2

(n+1)2

]
.

We claim that this expression is positive. Since δt ≥δm, we know that αt +βt<−1/(n+1), and hence the second term is
positive. Consider the first term. The sum of the first two terms inside the brackets is again positive, and the last term is
positive as −αt>βt for all t.
(2.) Recalling that γ0 =ng0, we have

W0 −W co =−g0

[
n2 +n−1

(n+1)2
+αt (αt +1)

]
+(p−π0)2

[
−(αt +βt )(n(αt +βt )+1)− 1

(n+1)2

]
.
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Because n≥2 and αt ≤1/2, the coefficient on g0 is negative. The coefficient on p̄−π0 is negative as well because
αt +βt ≤1/(n+1). Similarly, using the terminal values of the equilibrium coefficients, we have

WT −W co =− g0(n−1)nγT
[
g0n(2n2 +n−3)+(n+1)(n+3)γT

]
[g0n(n2 −1)+(n+1)2γT ]2

,

which is negative because the coefficient on g0 inside the brackets is positive for n≥2.
(3.) By part (1.), it suffices to establish the result for flow profits. We assume π0 − p̄=0; the result for π0 − p̄ small enough
follows by continuity of the profits in π0.

For any T , fix a symmetric linear Markov equilibrium with coefficients (αT ,βT ) and posterior variance γ T .
Throughout the proof we restrict attention to a strictly increasing sequence of horizons T such that (i) (αT ,βT ,γ T ),
viewed as functions on [0,∞) by setting (αT

t ,β
T
t ,γ

T
t )= (αT

T ,β
T
T ,γ

T
T ) for all t>T , converge uniformly to well-defined

limits (α∗,β∗,γ ∗) as T →∞, and (ii) γ T
T →0 monotonically as T →∞. The existence of a sequence satisfying (i) can

be established as in Lemma A.9 below because (αT ,βT ,γ T ) are bounded uniformly in T when κ(n)<rσ 2/g0 (see the
proof of Lemma A.4). Moreover, the argument shows that the limits (α∗,β∗,γ ∗) satisfy (11), (12), and (14) on [0,∞)
with (α∗

t ,β
∗
t ,γ

∗
t )→ (αm(0),βm(0),0) as t →∞. Since γ T

T →0 by Corollary 1, we can then take a further subsequence
of horizons in order to satisfy (ii).

For T ≥ t ≥0, let �W T
t :=W T

t −W co, where W T
t is the ex ante expectation of the time-t equilibrium flow profit

in the game with horizon T . Given the convergence of (αT ,βT ,γ T ), �W T (viewed as a function on [0,∞) by setting
�W T

t =�W T
T for all t>T ) converges uniformly to some �W ∗ as T →∞ (along our sequence). It suffices to show

that �W ∗
t >0 for all t large enough. Indeed, then

∫∞
t e−rs�W ∗

s ds>0 for any t large enough, and hence by uniform

convergence of �W T to �W ∗, we have
∫ T

t e−rs�W T
s ds>

∫∞
t e−rs�W T

s ds>0 for any sufficiently large T (along our
sequence; hence the need for T̄ in the statement of the result), where the first inequality follows because W T

s =W T
T <0

for s>T by the first part of Proposition 4.
It turns out to be convenient to change variables. Note that each αT is bounded away from zero, and so each γ T

is a strictly decreasing function. We can thus invert γ T and write the equilibrium coefficients and expected profits as a
function of the posterior variance instead of time. We denote these functionsαγT andβγT , indexed by the terminal posterior
variance γT :=γ T

T instead of the horizon (e.g., αγT (γ )=αT ((γ T )−1(γ )) for γ ∈[γT ,ng0]). By the uniform convergence of
(αT ,βT ,γ T ), the functions αγT and βγT have well-defined pointwise limits as γT →0 (along our subsequence). Abusing
notation, we denote these limits α and β. The corresponding limit flow-profit difference written in terms of γ is then

�W (γ )=−g0n2
[
α(γ )(α(γ )+1)+ n2 +n−1

(n+1)2

]
−(g0n−γ )β(γ )(2nα(γ )+1+nβ(γ )).

Noting that �W (γ )=�W ∗((g∗)−1(γ )) and limt→∞γ ∗
t →0, it then suffices to show that �W (γ )>0 for all γ >0 small

enough.
The rest of the argument proceeds as follows: We show first that α is strictly decreasing (and hence strictly less than

α(0)=−1) in a neighbourhood of 0 by constructing a sequence of linear upper bounds for the family of functions αγT

for γT small. We use this to bound β from below by its complete information level in a neighbourhood of 0. This in turn
allows deriving a better upper bound for α and a lower bound for �W . The latter satisfies an ODE, which we use to
establish the result (after another change of variables).

Lemma A.7. The limit function α is strictly decreasing in a neighbourhood of γ =0 if

rσ 2

g0
<

(n−1)2

n+1
. (A.14)

Proof. Given the change of variable, each αγT satisfies the differential equation

αγT ′(γ )= β(γ )(γ +(n−1)nαγT (γ )(g0n−γ )+g0(n−1)n)

γ n(γ +g0(n−1)n)

+ nrσ 2(γ +αγT (γ )(γ +n(γ +g0(n−1)))+g0(n−1)n)

γ 2nαγT (γ )(γ +g0(n−1)n)

(A.15)

with boundary condition αγT (γT )=αm(γT ). Replacing αγT (γ ) with αm(γ ) in the first term of (A.15), we obtain an upper
bound on its numerator. In particular, the coefficient on βγT (γ ) is negative for all γ ≤ γ̄ :=nγ0(n−1)2/(n2 +1). Hence,
we obtain an upper bound on αγT by replacing βγT (γ ) with its myopic value βm(γ ), which was defined in (10). This
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bound applies over the interval [γT ,γ̄ ] for all γT sufficiently small. It is given by the ODE

α̂γT ′(γ )= βm(γ )(γ +(n−1)nα̂γT (γ )(g0n−γ )+g0(n−1)n)

γ n(γ +g0(n−1)n)

+ nrσ 2(γ +α̂γT (γ )(γ +n(γ +g0(n−1)))+g0(n−1)n)

γ 2nα̂γT (γ )(γ +g0(n−1)n)

(A.16)

with α̂γT (γT )=αm(γT ). Sinceβm(γ )≤β(γ ) for all γ ≥0, we then have α̂γT (γ )>αγT (γ ) for all γ small enough. Moreover,
as these bounds are ODEs, their paths for different initial values γT cannot cross.

We now study the right-hand side of (A.16) to construct a linear upper bound on α̂γT . The right-hand side of (A.16)
is strictly concave in α̂γT , and for γ small enough, it is strictly decreasing in α̂γT when α̂γT =−1 and strictly increasing
in γ . Furthermore, under condition (A.14), there exists γ̂ >0 such that the right-hand side of (A.16) is strictly negative
when α̂γT =−1 and γ <γ̂ .

These properties imply that there exist γ̃ ∈ (0,γ̂ ) and γ̃T <γ̃ such that α̂γ̃T (γ̃ )=−1. Furthermore, for all γT ≤ γ̃T and
(γ,α̂γT )∈[0,γ̃ ]×[−1,αm(γ̃T )], the right-hand side of (A.16) is bounded from above by α̂γ̃T ′(γ̃ ). (This slope is obtained
by substituting the values α̂=−1 and γ = γ̃ .) Therefore, for all γT ≤ γ̃T , α̂γT is bounded from above on (0,γ̃ ] by a
linear function with slope α̂γ̃T ′(γ̃ ) that takes value αm(γT ) at γT . Because this holds for all γT ∈ (0,γ̃T ), the function α̂
obtained by letting γT →0 is also strictly decreasing for γ small enough. The lemma now follows as, by construction,
α̂(0)=α(0)=αm(0) and α̂≥α. ‖

Lemma A.8. Under condition (17), the limit function β lies above βm(0) in a neighbourhood of γ =0.

Proof. Consider the ODE for β, which is given by

β ′(γ )= n(n+1)rσ 2β(γ )(γ (n+1)+γ0(n−1)n)−γ (n−1)β(γ )2(γ +γ0(n−1)n)

γ 2n(n+1)α(γ )(γ +γ0(n−1)n)

− β(γ )(γ ((n2 −1)β(γ )+n+1)+γ0n(β(γ )+n2(−β(γ ))+n−1))

γ (n+1)(γ +γ0(n−1)n)

− γ0(n−1)n3rσ 2

γ 2n(n+1)α(γ )(γ +γ0(n−1)n)
,

(A.17)

with β(0)=βm(0). Now assume rσ 2(n+1)3>ng0(n−1)2, which is implied by the first inequality in (17). The right-hand
side of (A.17) is then strictly decreasing in α for γ sufficiently small. Because, as γ →0, the coefficient α approaches
−1 from below, we use α=−1 to bound β ′(γ ) in a neighbourhood of γ =0. This gives a lower bound β̂ on β. Let
βco :=βm(0). One can verify that if the second inequality in (17) holds, there exists γ̃ >0 small enough such that β̂ is
strictly increasing in γ whenever β̂(γ )=βco and γ ≤ γ̃ . Therefore, β(γ )≥ β̂(γ )≥βco for all γ close enough to 0. ‖

We now turn to �W . Notice first that

∂�W (γ )

∂β
= (−ng0 −γ )(1+2n(α(γ )+β(γ )).

Proposition 1 implies that α+β≤−1/(n+1). Thus, �W (γ ) is locally increasing in β around the equilibrium values
of our coefficients. Furthermore, �W (γ ) is strictly concave in β. We can therefore use βco ≤β to construct a lower
bound on �W (γ ) for γ sufficiently small. Furthermore, there exists ᾱ<−1 such that the resulting bound on �W (γ )
is strictly decreasing in α for all α>ᾱ. Because α(0)=−1 and all coefficients are continuous functions, there exists a
neighbourhood of γ =0 in which �W (γ ) is decreasing in α.

We now define the family of functions α̃γT as solutions to the differential equation in (A.16), where βm(γ ) is
replaced by the constant βco. (Identical steps to those in Lemma A.7 establish that the limiting bound α̃ (as γT →0) is
strictly decreasing for γ small enough.) We then define a lower bound on the profit difference by setting β(γ )=βco and
α(γ )= α̃(γ ) in �W (γ ). This gives

w(γ ) := n
(
γ
(
2(n+1)nα̃(γ )+n2 +n+1

)−γ0n(n+1)(α̃(γ )+1)((n+1)α̃(γ )+2n)
)

(n+1)2
.

To finish the proof, we solve w(γ )=w for γ and substitute the resulting expression into the derivative w′(γ ). This
gives w′(γ ) in terms of w and α̃ only. Since α̃ is strictly decreasing for γ small enough, we can make the change of
variables γ �→ α̃ (i.e. we divide by α̃′(γ )) to obtain a differential equation for w(α̃). Finally, evaluating the expression for
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w′(α̃) at w=0 and α̃=−1, we have w′(0)=−n2(n−1)γ0/(n+1)<0. Therefore, w is strictly decreasing in α̃ at γ =0.
Since α̃ is strictly decreasing in γ , this implies that �W (γ )≥w(γ )>0 for γ >0 small enough as desired.

Finally, in the table below, we report the values of the left-hand side and the right-hand side of condition (17) for
different values of n:

n 2 3 4 5 6 7 8 9 10

LHS of (17) 0.32 0.87 1.48 2.10 2.74 3.38 4.02 4.66 5.31
RHS of (17) 0.30 0.94 1.73 2.59 3.50 4.43 5.38 6.37 7.30

By inspection, LHS of (17) is strictly smaller than RHS of (17) for 3≤n≤10, confirming that for such n, there exists a
non-empty open interval of possible values of rσ 2/g0 for which the assumptions of the second part of Proposition 4 are
satisfied. ‖

A.5. Proofs for Section 6

We prove Proposition 5 in two main steps. First, we show that finite-horizon equilibria converge along a subsequence
to a strategy profile of the infinite horizon game that is a solution to the corresponding HJB equation. Second, we show
that the value under this limit strategy profile satisfies a transversality condition and hence constitutes a solution to each
player’s best response problem.

As a preliminary observation, we note that g0/σ
2<4r/(27n) strengthens the first case in (15) and hence αT , βT ,

δT , and γ T are bounded uniformly in T (see beginning of Section A.4). Moreover, then −nα≥ξ≥0, and hence ξT is
uniformly bounded as well. To see the last claim, note that nαm +ξm =0. Therefore, for all T , we have −nαT =ξT . Now
consider the sum nα̇t + ξ̇t and evaluate it at nαt +ξt =0. We obtain

nα̇t + ξ̇t =− nαt

2σ 2 (g0(n−1)n+γt)

(
g0(n−1)n

(
rσ 2 +αtβtγt

)
+2rσ 2γt

)
.

Because the fraction is positive, we can bound γt in the term in parentheses with ng0 and 0 respectively to bound the
right-hand side from below. Thus, if ng0αtβt +rσ 2>0 for all t, then the function −nα crosses ξ from above only, and
then −nαT =ξT implies ξt<−nαt for t<T . Because β<−α, this clearly holds if α>a for some a>−3/2. The existence
of such a constant a can be shown by first verifying that α is bounded from below by the solution to

ẏt =−ryt (yt +1)+ ng0

σ 2
y4

t , yT =−1,

and then verifying that yt>−3/2 when g0/σ
2<4r/(27n). We omit the details.

We adopt the notation introduced in the beginning of Section A.4, but redefine f T := (αT ,βT ,δT ,ξT ,γ T ) to include
ξT . Note that Lemma A.6 continues to hold for f T so redefined. Finally, note that each f T satisfies ḟ T (t)=F(f T (t)) at
every t<T , where F : [−B,B]5 →R

5 is the continuous function on the right-hand side of our boundary value problem
(written here including δ). By continuity, F is bounded on its compact domain implying that the functions {f T } are
equi-Lipschitz.

Lemma A.9. Any sequence {f T } of symmetric linear Markov equilibria contains a subsequence {f Tn } that
converges uniformly to a continuously differentiable f : [0,∞)→R

5 that satisfies ḟ =F(f ) and limt→∞ f (t)=
(αm(0),βm(0),δm(0),ξm(0),0).

Proof. The family {f T } is uniformly bounded and equi-Lipschitz and hence of locally bounded variation uniformly in
T . Thus, Helly’s selection theorem implies that there exists a subsequence of horizons {Tn}n∈N with Tn →∞ such that
f T converges pointwise to some function f as T →∞ along the subsequence. We show that this convergence is in fact
uniform.

Suppose to the contrary that there exists ε>0 and a collection of times {Tk ,tk }k∈N such that {Tk } is a subsequence
of {Tn} and ‖f Tk (tk )−f (tk )‖>ε for every k. By Lemma 2, there exists tε <∞ such that for all Tn ≥ t ≥ tε , we have
‖f Tn (t)−(x∗,0)‖<ε/2. Since f Tn (t)→ f (t) as n→∞, we then have ‖f Tn (t)−f (t)‖<ε for all Tn ≥ t ≥ tε . This implies
that tk belongs to the compact interval [0,tε] for all sufficiently large k, which in turn implies that no subsequence of {f Tk }
converges uniformly on [0,tε]. But {f Tk } are uniformly bounded and equi-Lipschitz (and thus equicontinuous) and [0,tε]
is compact, so this contradicts the Arzela-Ascoli theorem. We therefore conclude that {f Tn } converges uniformly to f .

For differentiability of f , note first that uniform convergence of f Tn to f implies that ḟ Tn =F(f Tn )→F(f ) uniformly
on every interval [0,t], since F is continuous on a compact domain and hence uniformly continuous. Define h :R+ →R

5 by

hi(t) := fi(0)+
∫ t

0
Fi(f (s))ds, i=1,...,5.
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We conclude the proof by showing that h= f . As f Tn → f , it suffices to show that f Tn →h pointwise. For t =0 this
follows by definition of h, so fix t>0 and ε>0. Choose N such that for all n>N , we have ‖f Tn (0)−h(0)‖<ε/2 and
sups∈[0,t] ‖ḟ Tn (s)−F(f (s))‖<ε/(2t). Then for all n>N ,

‖f Tn (t)−h(t)‖≤‖f Tn (0)−h(0)‖+‖
∫ t

0
ḟ Tn (s)ds−

∫ t

0
F(f (s))ds‖< ε

2
+ ε

2
=ε.

Thus f =h and ḟ = ḣ=F(f ). The limit of f as t →∞ follows by Lemma A.6. ‖
Since the limit function f = (α,β,δ,ξ,γ ) satisfies the boundary value problem, we may construct a value function V of

the form (9) as in the proof of Lemma A.3. Then the policy (α,β,δ,ξ ) satisfies the first-order condition (8) by construction
and thus achieves the maximum on the right-hand side of (7). Hence, it remains to show that the transversality condition
holds. In what follows, we use the fact that in the infinite-horizon game, a strategy Q is admissible if (i) E

[∫ t
0 Q2

s ds
]
<∞

for all t ≥0, (ii) revenue process (1) has a unique solution, and (iii) firms’ expected payoffs are finite. We need the
following two lemmas.

Lemma A.10. For any admissible strategy Q,

lim
t→∞e−rtv(t)E[ΠQ

t ]= lim
t→∞e−rtv(t)E[Π̂t ]= lim

t→∞e−rtv(t)E[Π̂2
t ]=0

for any function v of polynomial growth. Also, lim sup
t→∞

e−rt
E[(ΠQ

t )2]<∞.

Proof. Regarding Π̂ , suppose that (Π0,Π̂0)= (π,π̂ ). Then, it is easy to see that

Π̂t = π̂ R̂t,0 +c(1−R̂t,0)+
∫ t

0
R̂t,sσλsdZs.

where R̂t,s :=exp(
∫ t

s λuαu[1+(n−1)(1−zu)]du), s< t, is a discount factor (i.e. λuαu[1+(n−1)(1−zu)]<0). In particular,

E[Π̂t ]= π̂ R̂t,0 +c(1−R̂t,0)<max{c,π̂}.
Also, by uniform boundedness,

E

[(∫ t

0
R̂t,sσλsdZs

)2]=E

[∫ t

0
R̂2

t,sσ
2λ2

s ds
]
≤K1t

for some K1>0. Hence, E[Π̂2
t ]≤K0 +K1t. The limits for Π̂ follow directly.

Regarding (ΠQ
t )t≥0, letting R̃t,s :=exp(

∫ t
s λu[nαu +βu]du), we have that

Π
Q
t =π R̃t,0 +

∫ t

0
R̃t,sλs[δs −(n−1)αs(zΠ̂s +(1−zs)c)]ds+

∫ t

0
R̃t,sλsQsds+

∫ t

0
R̃t,sλsσdZs.

Defining E[I1
t ] :=∫ t

0 R̃t,sλsE[Qs]ds, Cauchy–Schwarz inequality implies

E[I1
t ]≤

(∫ t

0
R̃2

t,sλ
2
s ds
)1/2(∫ t

0
E[Qs]2ds

)1/2
<Kt1/2

(
E

[∫ t

0
Q2

s ds

])1/2
.

Hence,

e−rt
E[I1

t ]<e−rt/2Kt1/2
(

e−rt
E

[∫ t

0
Q2

s ds
])1/2

<e−rt/2Kt1/2
(
E

[∫ ∞

0
e−rsQ2

s ds
])1/2

,

where the last term is finite by admissibility of Q. Hence, e−rt
E[I1

t ]→0. It is easy to verify that all other terms also
converge to zero once discounted, and this also occurs when they are accompanied by v of polynomial growth. Thus,
e−rtv(t)E[ΠQ

t ]→0.

To conclude, in studying e−rt
E[(ΠQ

t )2] the only non-trivial terms are

At :=
(∫ t

0
R̃t,sλsQsds

)2
and Bt :=

∫ t

0
R̃t,sλsQsds

∫ t

0
R̃t,sλsσdZs.

(For the others the limit exists and takes value zero.) Observe first that there is ε>0 such that R̃t,s<e−ε∫ t
s λudu for all

0≤ t<∞; this follows from nα+β<0 and lim
t→∞nα+β<0. Thus, from Cauchy–Schwarz and the fact that λ<C, some

C>0,

At ≤
(∫ t

0
R̃2

t,sλsds
)(∫ t

0
λsQ

2
s ds
)
≤C2

(∫ t

0
e−2ε

∫ t
s λuduλsds

)(∫ t

0
Q2

s ds
)

=C
1−e−2ε

∫ t
0 λudu

2ε

(∫ t

0
Q2

s ds
)
< C̃

(∫ t

0
Q2

s ds
)
.
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Consequently, e−rt
E[At ]≤ C̃E

[
e−rt

∫ t
0 Q2

s ds
]
≤ C̃E

[∫∞
0 e−rsQ2

s ds
]
<∞, by admissibility. We conclude that

limsupe−rt
E[At ]<∞.

Regarding Bt , by applying Cauchy–Schwarz again, we have

E[Bt ]≤E

[(∫ t

0
R̃t,sλsQsds

)2]1/2
E

[(∫ t

0
R̃t,sλsσdZs

)2]1/2
,

where the second term is bounded by some (L0 +L1t)1/2. Using the previous argument for At gives

e−rt
E[At ]1/2 ≤e−rt/2v(t)C̃1/2

E

[
e−rt

∫ t

0
Q2

s ds
]1/2 ≤e−rt/2C̃1/2

E

[∫ ∞

0
e−rsQ2

s ds
]1/2

,

where the last term is finite by admissibility. Thus, e−rt
E[Bt ]≤e−rt

E[At ]1/2(L0 +L1t)1/2 →0. It is easy to
show that the rest of the terms in E[(ΠQ

t )2] converge to zero using similar (and simpler) arguments. Hence,

limsupe−rt
E[(ΠQ

t )2]<∞. ‖

Lemma A.11. Under the limit strategy (α,β,δ,ξ ), the system (A.9) admits on [0,+∞) a bounded solution for which
lim

t→∞vi(t) exists for each i, and the system (A.6) defines vk (k =1,4,5,8) that have at most linear growth.

Proof. Let θ :=r+[2α2γ (n(1−z)+z)]/nσ 2. Notice that because z ≤n/(n−1), θt>r>0. It is easy to see that for s> t,

v9(s)e−∫ s
0 θudu −v9(t)e−∫ t

0 θudu =−
∫ s

t
e−∫ u

0 θvdv[(n−1)αuzu +ξu]2du.

We look for a solution such that v9(s)exp(−∫ s
0 θudu)→0 as s→∞. If it exists, then

v9(t)=
∫ ∞

t
e−∫ s

t θvdv[(n−1)αszs +ξs]2ds.

Because (n−1)αszs +ξs is uniformly bounded and θ >r>0, the right-hand side exists, and it is uniformly bounded.
Hence, it corresponds to our desired solution. Moreover, the limit value of v9 is, by L’Hopital’s rule

limv9(t)= lim
[(n−1)αszs +ξs]2

θt
= [−n+n/2]2

r
= n2

4r
.

The other equations in (A.9) have similar solutions (i.e. taking the form of a net present value, with a finite limit value),
and they can be found in an iterative fashion.

Solving vk (t)αtλt (k =1,4,5,8) as a function of the limit coefficients from (A.6) and using limt→∞ f (t) from
Lemma A.9, we see that vk (t)αtλt →0. Because αt →−1, γt ∈O(1/(a+bt)), and λt ∝αtγt , this implies that vk (t) grows
at most linearly. ‖

We are now ready to show that the transversality condition holds (see, e.g. Pham, 2009, Theorem 3.5.3).

Lemma A.12. Under any admissible strategy Q, limsupt→∞e−rt
E[V (C,ΠQ

t ,Π̂t ,t)]≥0. Moreover, under the limit
strategy (α,β,δ,ξ ), the limit exists and it takes value zero.

Proof. It obviously suffices to show the result conditional on any realized c. We first check the limsup. Terms involving
vi , i=0,1,2,3,5,6,7,9 in V converge to zero by the last two lemmas. For the v4 term, Cauchy–Schwarz implies

e−rtv4(t)E[ΠQ
t Π̂t ]≤e−rt/2v4(t)E[Π̂2

t ]1/2e−rt/2
E[(ΠQ

t )2]1/2,

where e−rt/2v4(t)E[Π̂2
t ]1/2 →0 as v4 is at most O(t) and E[Π̂2

t ] is linear. By Lemma A.10, limsupe−rt
E[(ΠQ

t )2]<∞.

Thus e−rtv4(t)E[ΠQ
t Π̂t ]→0 as t ≥0. We deduce that the limsup is non-negative by noticing that e−rtv8(t)E[(ΠQ

t )2]≥0
as v8 ≥0.

Since all terms except for e−rtv8(t)E[(ΠQ
t )2] converge to zero under any admissible strategy, it remains to show that,

under the limit strategy Q∗, e−rtv8(t)E[(ΠQ∗
t )2]→0. However, this is straightforward once we observe that

Π
Q∗
t =πRt −cRt

∫ t

0
Rt,sλsαs[1+(n−1)(1−zs)]ds+

∫ t

0
Rt,sλsσdZs +

∫ t

0
Rt,sλs[ξs +(n−1)αszs]Π̂sds.

Indeed, because (i) E
[(∫ t

0 Rt,sλsσdZs
)2]

and E[Π̂2
t ] grow at most linearly, (ii) the functions (α,β,ξ,z,λ) are all uniformly

bounded, and (iii) Rt,s is a discount rate, it is easy to verify that all terms in E[(ΠQ∗
t )2] decay to zero once discounted by

e−rt . ‖

Downloaded from https://academic.oup.com/restud/article-abstract/84/2/503/2420613
by MIT Libraries user
on 26 November 2017



[15:01 11/3/2017 rdw049.tex] RESTUD: The Review of Economic Studies Page: 545 503–546

BONATTI ET AL. DYNAMIC OLIGOPOLY 545

Acknowledgments. We thank Johannes Hörner, Chris Knittel, Greg Pavlov, Ariel Pakes, Larry Samuelson, Andy
Skrzypacz, Philipp Strack, Mike Whinston, andAlexander Wolitzky for useful discussions, and the editor Botond Kőszegi,
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