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Abstract
Blockchain-based platforms often rely on token-weighted voting (“τ -weighting”) to efficiently

crowdsource information from their users for a wide range of applications, including content
curation and on-chain governance. We examine the effectiveness of such decentralized platforms
at harnessing the “wisdom” and “effort” of the crowd. We find that τ -weighting generally dis-
courages truthful voting, and erodes the platform’s predictive power unless users are “strategic
enough” to unravel the underlying aggregation mechanism. Platform accuracy decreases with
the number of truthful users and the dispersion in their token holdings, and in many cases, plat-
forms would be better off with a flat “1/n” mechanism. When, prior to voting, strategic users
can exert effort to endogenously improve their signals, users with more tokens generally exert
more effort—a feature often touted in marketing materials as a core advantage of τ -weighting—
however, this feature is not attributable to the mechanism itself, and more importantly, the
ensuing equilibrium fails to achieve the first-best accuracy of a centralized platform. The opti-
mality gap decreases as the distribution of tokens across users approaches a theoretical optimum,
that we derive, but, tends to increase with the dispersion in users’ token holdings.

Keywords: blockchain, crowdsourcing, cryptocurrency, information aggregation, on-chain gov-
ernance, strategic voting, tokenomics, token-curated registries (TCR).

1 Introduction

Many blockchain-based platforms have implemented token-weighted voting (τ -weighting) to incen-

tivize efficient information crowdsourcing from their users in a decentralized way. These systems

aggregate information through user votes, where the final action of the system is determined based

on the weighted average of the users’ votes, and each user’s vote is weighted by his token holdings

within the system. At their core, these systems work under the principle that users with more

tokens have more “skin in the game” and are thus incentivized to provide “higher-quality” votes.
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Though τ -weighting has already been deployed on many live blockchain platforms, there is

surprisingly little research attesting to its theoretical soundness. This paper examines some of its

basic economics (“tokenomics”) to gauge its effectiveness. In particular, we focus on the following

questions: Does τ -weighting encourage or discourage truthful voting? How “accurate” is the resulting

crowdsourced information? Does having “skin in the game” in the form of token holdings adequately

incentivize user effort to improve the platform’s predictive power?

The surge of blockchain-based platforms over the past several years has brought with it many

new challenges. One of the most critical issues faced by these platforms is the need to crowdsource

information from their users. This issue is at the core of many decentralized systems, regardless of

how different they may otherwise be. Fittingly, there is a wide range of applications ranging from

governance issues such as how funds raised from an ICO (Initial Coin Offering) should be spent, to

evaluating the quality of code-upgrade proposals, to soliciting user feedback on service experience,

aggregating product quality ratings, combating fake news, and many others.

One of the first applications of τ -weighted voting was in the “Slock.it” Decentralized Autonomous

Organization (DAO) (Jentzsch 2016). The DAO was envisioned as a new type of user-managed

investment fund, where users could deposit tokens into a joint fund, and the fund’s investment

decisions would be made by the weighted votes of the users. Although the Ethereum smart contract

running the DAO was hacked, leading to its collapse, the DAO model inspired countless blockchain

startups to adopt similar forms of on-chain governance, where token holders are allowed to direct the

overall system either through informal (non-binding) votes like CarbonVote (Ashu and Lv 2018) or

binding resolutions (Warren and Bandeali 2018, Eufemio et al. 2018, Goodman 2014). CarbonVote

has tallied more than five million Ether towards votes (Ashu and Lv 2019), and Tezos had more

than 28,000 votes in for its first, binding hard-fork proposal (Kim 2019).

Token-weighted voting has also been used for content curation where users can promote (upvote)

content with their votes weighted proportionally to their token holdings—Steem (Steem 2018) and

Sapien (Bhatia et al. 2018) are two notable examples. Steem identifies itself as a “blockchain-based

rewards platform for publishers to monetize content,” and has more than 40,000 daily active users

(Arcange 2019). Sapien is a “social news platform that gives users control of their data, rewards

content creators, and fights fake news.” In a different application, a prototype implementing a

variant of τ -weighted voting has been developed to allow users to vote on the trustworthiness

of TLS and SSL certificates (Hentschker 2018). A general model of “Token-Curated Registries”

(TCRs) (Goldin 2017) has applied this principle to allow users to collectively curate a list of “high-

quality” content. Civil (Iles 2018) has adopted the TCR model to combat fake news by identifying
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high-quality news sources, and AdChain (Goldin et al. 2017) uses a TCR to fight fraud in digital

advertising.

Despite differences in their specific implementations, these systems all share a common underly-

ing design and incentive mechanism: individual users are allowed to vote on the “quality” of content

(e.g., a news source, social media post, an investment plan, the quality of a product or a service),

and the system aggregates these votes, weighting them according to each user’s token holdings.

The system then takes action based on this weighted average. Importantly, the system’s “reward”

is proportional to the quality of the decision. This reward is realized in the form of increased token

value, and is thus distributed among the users proportionally to their token holdings. The key

design principle here is that users with large token holdings will be the most incentivized to increase

the overall value of the platform.

These aforementioned features are at the core of our model of τ -weighted crowdsourcing. We

consider a product or a service of unknown quality subjected to a vote on a platform. The platform

commits (e.g., through a smart contract) to aggregate user votes according to a standard τ -weighted

mechanism. Platform value is driven by accuracy, which depends on the nature of the incoming

votes it receives from stakeholders. The more accurate the platform is, the more valuable its tokens,

and the more value it generates for its stakeholders. The voters are simply the token holders of the

platform and are heterogeneous along two dimensions: their token holdings and the precision of their

private signals. We first examine a simple voting game with exogenous signal precisions, and consider

two types of players: strategic and truthful. Truthful players simply vote their posterior beliefs after

observing their own signal, while ignoring the presence of other voters on the platform. Strategic

players, on the other hand, are fully rational—they report a vote that maximizes the expected

value of their tokens, taking into account not only their own signal, but other voters’ strategies as

well. Next, recognizing that strategic players may want to try and improve their information prior

to voting, we extend the base model to account for endogenous information acquisition, adding

an additional stage of effort provisioning; that is, prior to choosing a voting strategy, each player

has the option to exert (costly) effort to improve the precision of his own signal. We characterize

the equilibria (in linear strategies) of the crowdsourcing games with exogenous and endogenous

information acquisition.

In brief, our results suggest that when it comes to crowdsourcing information, τ -weighted ag-

gregation generally i) discourages truthful voting, and ii) reduces platform accuracy, unless players

are sophisticated enough to endogenously unravel the underlying weighting mechanism. When we

incorporate effort into our model to account for endogeneity in information acquisition, we show
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that τ -weighting iii) provides some desirable “skin-in-the-game” type effort incentives for strategic

players, but iv) nonetheless fails to achieve the first-best predictive power of a centralized platform.

Beyond these high-level insights, which provide answers to the questions raised earlier in the

discussion, our analysis affords a series of more in-depth results on the nature and impact of strategic

vs. truthful voting, the effectiveness of centralized vs. decentralized aggregation, and sensitivities

to token dispersion (i.e., how tokens are distributed across users).

Intuitively, one might expect τ -weighting to lead to suboptimal outcomes because it has the

potential to exacerbate an inherent mismatch that may exist between the distribution of tokens

and the distribution of information. For instance, a voter might have excellent information but low

stake, in which case, his vote will be underweighted in the aggregate, and vice versa. We find that

strategic voters are able to fully overcome this mismatch by purposely misreporting their beliefs to

the platform, effectively unraveling the platform’s “sub-optimal” weighting mechanism. However,

this only holds when all voters are strategic. First-best accuracy is elusive when even a single truthful

voter is present, and the optimality gap increases in the number of truthful voters. In such cases,

we show the platform is generally better off with an un-weighted “1/n” aggregation mechanism.

Taken together, these results suggest that if these decentralized platforms can effectively harness

the wisdom of the crowd, it is despite of, not because of, their τ -weighting mechanism.

To account for the fact that strategic voters may want to try and correct the aforementioned

mismatch between the distribution of tokens and information, we then endogenize their information

acquisition decisions in Section 4, where, prior to voting (stage 2), we give them the ability to

improve the precision of their own private signal by exerting costly effort (stage 1). The extended

two-stage model requires introducing two generic functions whose properties will be critical for the

analysis: the information improvement function, which maps effort to signal accuracy, and the effort

cost function, which maps effort to costs incurred.

We show that under certain technical/structural conditions on these functions, there is a unique

effort-exerting equilibrium in which individual effort levels can be derived in closed form. Leveraging

the expressions obtained, we show that effort increases with token holdings—a feature that platforms

often tout in their marketing materials as a key advantage of τ -weighted voting. We find the effect,

however, not to be attributable to the token-weighting mechanism itself, which remains irrelevant

when all users are strategic, even under endogenous information acquisition. Rather, it is simply

due to the fact that players with more tokens stand to benefit more from an increase in platform

accuracy, because accuracy directly drives token value. In other words, the same effect would

be observed if the platform adopted a flat “1/n” aggregation mechanism, as long as agents with
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more tokens stand to benefit more from an increase in platform accuracy. We also show that ceteris

paribus, an agent with higher precision will exert more effort than one with lower precision, implying

some “free-riding” from less-informed voters.

Comparing the resulting equilibrium to that of a centralized platform that can coordinate user

behavior, we find that decentralized equilibrium effort levels are strictly lower. As a result, the

platform cannot achieve first-best effort provisioning in the decentralized setting, even in the best

case scenario where all agents are strategic. We characterize the ensuing optimality gap and show

that “on average” it grows with the dispersion in players’ token holdings, implying platforms may

generally prefer that tokens are not too disproportionately held by platform users. The effect is

stronger when all players have homogeneous precisions, and weaker, but still positive, otherwise.

Finally, we derive the platform’s optimal allocation of tokens, as a function of the distribution of

precisions across its users and show, through an appropriately chosen distance measure, that the

platform would prefer dispersed distributions if these are “close enough” to the theoretical optimum,

and a homogeneous distribution otherwise.

To summarize, our results bring to light some of the more subtle pros and cons of τ -weighted

aggregation systems, and, in contrast to what their wide-spread use implies, raise some questions

about their effectiveness at harnessing information and user effort. Despite the ever-increasing

popularity of τ -weighted aggregation systems in practice, the academic literature has remained

relatively silent on their theoretical soundness. This paper, which can be seen as a step to help

bridge this gap, strives to put the emerging topic of τ -weighted aggregation on a firmer foundation,

and to provide some guidance on the design of blockchain-based voting systems.

Related Literature

Though we are not aware of any other theoretical papers focusing specifically on the effectiveness

of τ -weighted crowdsourcing, our work is related to several literature streams.

Blockchain systems & Token-Curated Registries (TCRs). Blockchain-based systems provide

a natural platform for τ -weighted voting, since each player’s token holdings are usually publicly

known (on the blockchain) and ballots can be cast, aggregated and verified in a completely auto-

mated manner. In fact, numerous τ -weighted voting mechanisms have already been deployed on

different blockchain platforms as mentioned in the introduction. There is a growing practitioner

literature on the topic of token-curated registries (Goldin 2017), however, the studies focus on

practical implementation (e.g., coding details) and do not seek to formally model strategic agent

behavior, like we do here. On the academic side, some studies have recently started to appear, for
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instance, Asgaonkar and Krishnamachari (2018) dive into some of the technical details of TCRs in a

deterministic setting with known information. Many variants of TCRs have been proposed (Simon

2017, Lockyer 2018), and we expect these platforms to continue to grow going forward. Abstracting

away from the technicalities of these systems, our study sheds light on the effectiveness of the token

weighting mechanism that often sits at their core.

More broadly, the paper contributes to a rapidly growing literature discussing economic incen-

tives in blockchain systems (Biais et al. 2017, Cong et al. 2018, Saleh 2018, Hinzen et al. 2019, Rosu

and Saleh 2019), and studying the implications of the technology for a variety of areas such as au-

diting (Cao et al. 2018), corporate governance (Yermack 2017), crowdfunding (Chod and Lyandres

2018, Gan et al. 2019), finance (Biais et al. 2018), innovation (Catalini and Gans 2017), operations

management and supply chains (Babich and Hilary 2018, Chod et al. 2018), etc.

Crowdsourcing & Information Sharing in Networks. Our work is closely related to the literature

on crowdsourcing, which studies the ability of firms to source information (Araman and Caldentey

2016, Papanastasiou et al. 2017), funds (Alaei et al. 2016, Strausz 2017, Babich et al. 2019, Belavina

et al. 2019), or innovation (Terwiesch and Xu 2008, Bimpikis et al. 2015, Stouras et al. 2017) from

users. We are not aware of any work in this literature that like us, examines the feasibility and

effectiveness of crowdsourcing information and effort using a τ -weighted mechanism.

More broadly, our work is related to the literature on information sharing in networks which

studies information exchange and aggregation, either through direct communication (Acemoglu

et al. 2014) or through observational learning (Acemoglu et al. 2011). In a related but different

setting, Saghafian et al. (2018) examine information aggregation through (imperfect) sensors that

can solicit information from other sensors. Unlike us, these papers do not focus on the strategic

incentives that agents have to (mis)report their information and exert effort when subjected to a

τ -weighted voting mechanism.

Weighted Voting & Shareholder Voting. Our work is broadly related to the literature on weighted

voting mechanisms which have been studied in a variety of different settings. For example, Banzhaf III

(1964) and a series of papers that build on this work (see e.g., Snyder Jr et al. (2005) and references

therein) examine electoral weighted voting, focusing on the distinction between voting rights and

voting power. Taylor and Zwicker (1993), Nordmann and Pham (1999), and Elkind et al. (2008)

focus on coalition structures and the division of power in weighted voting games. Gifford (1979)

and Tong and Kain (1991) study weighted voting in distributed computing systems focusing on

characterizing computational complexity.

Weighted voting is also relevant for the literature on shareholder voting, given that one share
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often entitles one vote, and shareholders hold different share amounts. Papers in this area tend

to focus on issues specific to the context, e.g., the mismatch of incentives between managers and

shareholders (Shleifer and Vishny 1986), issues of vote trading (Christoffersen et al. 2007), and the

differences between binding vs. non-binding votes (Levit and Malenko 2011).

Our work departs from these settings in a number of ways. First, the input and/or output space

studied in these papers is generally constrained to be discrete, and in most cases, binary (yes/no).

With these constraints, the complexity comes from the combinatorial nature of the problem. In

contrast, the choice of continuous input and output spaces in our model deliberatly draws from the

established economics and finance literatures on information aggregation/acquisition (Myatt and

Wallace 2012, Colombo et al. 2014), and price informativeness (Vives 1988, 2011, Ostrovsky 2012,

Even et al. 2019), and is meant to capture situations that are best approximated by continuous

states. For instance, our model is more suitable for situations in which agents are asked to estimate

quality of content or products, as in the TCR examples mentioned previously, and/or investment

amounts, as in the DAO example, and less suitable to inform on yes/no issues of governance, such as

electing board members, stock splits, M&A decisions, etc. Second, papers in these areas generally

do not focus on user effort incentives, which is one of the main contributions of our work, and one

of the main areas of focus of τ -weighted platforms in their marketing materials. Third, these papers

do not specifically focus on the tokenomics of τ -weighted crowdsourcing systems. As such, they

do not seek to address the specific questions we examine, including truthful vs. strategic voting,

centralized vs. decentralized aggregation, τ -weighting vs. 1/n-weighting, token dispersion, and the

implications these have for token value and platform effectiveness.

2 Model

Consider a product (or a service) of unknown quality, q, subject to a vote on a platform with n

token holders (“players”), indexed by i ∈ {1, . . . , n}. Players cannot directly observe q, but have a

common Gaussian prior belief

q ∼ N (µ, σ2q ),

where E[q] = µ is the mean quality and Var[q] = σ2q captures quality dispersion, which can be a

proxy for the novelty of the product.1

Players are tasked to vote on quality and are heterogeneous along two dimensions: Their relative
1For instance, when σq → 0, there is no uncertainty about product quality. Conversely, when σq →∞, any value

of q on the real line is equally likely, e.g., this could represent an innovative product that has just hit the market.
Formally, σq →∞ represents the case of a uniform improper prior.
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token holdings τi ∈ (0, 1), normalized so that
∑n

i=1 τi = 1, and the signal they obtain about the

product quality. More specifically, player i receives a private noisy signal

si = q + εi, (1)

where εi is a normally distributed noise term with E[εi] = 0 and Var[εi] = σ2i , i.e., εi ∼ N (0, σ2i ),∀i ∈

{1, . . . , n}. It follows that signals are independent and normally distributed with si ∼ N (µ, σ2q+σ2i ).

In line with extant literature, σi, i ∈ {1, . . . , n}, are publicly visible, but players cannot observe

others’ private signals. Similarly to how these platforms operate in practice, token holdings τi, i ∈

{1, . . . , n}, are also publicly visible.2

After observing their private signal, players simultaneously submit their “votes” vi = vi(si); in

line with extant literature (e.g., Vives 1988, Myatt and Wallace 2012), we restrict our attention to

the class of linear strategies, represented by letter L, i.e.,

vi = αisi + (1− αi)µ, (2)

where αi ∈ R is the “weight” player i chooses to place on his signal.3 We note that we purposely

do not restrict αi to the interval [0, 1], so assuming vi to be a linear combination of si and µ does

not restrict the range of vi. The linear model also facilitates comparisons with Bayesian posteriors

which are also linear in the signal. In particular, conditional on si, q is normally distributed with

mean E [q | si] = βisi + (1− βi)µ, where βi = σ2q
(
σ2q + σ2i

)−1 is the “weight” player i places on his

signal, and Var [q | si] =
(
σ−2q + σ−2i

)−1.
Later, in Section 4, we will endow users with the ability to exert effort to improve their signals,

but we defer the modeling extension required to that section.

The platform aggregates incoming votes weighted by token holdings, which forms the platform’s

quality estimate q̂, that is,

q̂(v1, . . . , vn) =

n∑
i=1

τivi. (3)

Consistent with how these platforms operate in practice, the platform commits to aggregation

mechanism (3), e.g., through an auditable “smart contract.” Throughout the paper we will compare

this mechanism, which we refer to as τ -weighted aggregation, or simply τ -weighting, to a benchmark
2Relaxing these basic assumptions generally has non-trivial consequences, and could thus be an interesting direction

for future research.
3It is known that when all other players are playing linear strategies, the focal agent’s best response is linear (see

e.g., Myatt and Wallace (2012) pp. 347). This assumption is often adopted in the literature to ensure tractability.
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of an equally weighted (flat) mechanism, which we refer to as 1/n-weighted aggregation, or simply

1/n-weighting, that assumes all players are attributed a weight 1/n, irrespective of their token

holdings; formally q̂1/n(v1, . . . , vn) = 1
n

∑n
i=1 vi. For the sake of completeness, we will also consider

the case of a platform optimizing the aggregation mechanism in the Appendix, Section A.3.

Players are rewarded through the value of their tokens, which in turn, depends on the accuracy

of the platform.4 In particular, the closer the aggregate quality, q̂, is to q, the more valuable the

platform becomes, and hence, the more valuable the tokens become.

To model the platform’s value, we will work with a general class of differentiable and concave

payoff functions taken over the error (q − q̂), and will assume these to be “well-behaved” if they

satisfy the following properties.

Assumption 1 (Well-Behaved Payoffs). A payoff function π : R → R is said to be well-behaved

if: (1) π is symmetric about the origin, i.e., π(x) = π(−x), and (2) π is decreasing away from the

origin, i.e., π(x) ≤ π(y) whenever |x| ≥ |y|.

The “well-behaved” assumption means that over-estimating and under-estimating the quality are

equally bad, and that the more accurate the estimate, that is, the lower the error (q− q̂), the higher

the payoff. As we shall see, these basic assumptions suffice to obtain meaningful results in Section 3,

without having to restrict the payoff to a specific functional form. Many standard functional forms

would satisfy these conditions, for instance, π(x) ∝ −x2, which would correspond to a quadratic

utility, or π(x) ∝ e−x2 , etc.

Defining the platform’s payoff as π(q − q̂), we can also define each player’s individual share of

this payoff by πi = τi · π, i.e., consistent with how these platforms operate in practice, each player

obtains a share of the payoff proportional to his relative share of the tokens. This feature drives

several of our results, as we shall see in Section 4.

Our core model assumes all players are strategic (fully rational), represented by letter S, and we

seek to characterize the linear pure-strategy Bayesian Nash equilibria of the game. More specifically,

each player i maximizes his expected payoff over his linear voting strategy vi ∈ L, conditional on

the private signal he receives, si, given the platform aggregation mechanism (3), and the linear
4While token value may be driven by additional factors, such as the secondary market liquidity of the tokens,

the quality of the underlying blockchain sustaining the tokens, the presence of speculators in the market, etc., our
primary interest in this paper is to assess whether these platforms can effectively crowdsource information solely based
on accuracy incentives. We therefore consider accuracy as the primary driver of token value, and by implication,
platform value.
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strategies played by others, v−i ∈ L,

max
vi∈L

E [πi (q − q̂(v1, . . . , vn)) | si] . (4)

In Section 3, the platform composed of strategic players will be compared to a benchmark platform

consisting of non-strategic players following simple “truthful” voting strategies. Truthful voters,

represented by letter “T,” vote their true, albeit individual, Bayesian posteriors. That is, they

update their beliefs based on their own private signal, setting weight αi = βi = σ2q
(
σ2q + σ2i

)−1 and

vote vi = βisi+(1−βi)µ, without considering other players. Practically speaking, platforms may be

composed of players exhibiting different degrees of strategic behavior (another interpretation is that

players may have different behavioral biases), hence, it is meaningful to examine the implications

that player heterogeneity along this dimension can have on platform accuracy. The above two player

types we consider can be thought of as coarse representation of the spectrum.5 In Section 3.3, we

extend the model to the more realistic case where both player types are simultaneously present on

the platform.

3 Crowdsourcing Information

In this section, we examine equilibrium voting strategies and their implications for the platform’s

predictive accuracy. We begin with the first-best variance obtainable in the centralized setting.

3.1 First-Best Platform Variance

Before presenting the result, we introduce one intermediate technical lemma that will be useful

throughout the analysis.

Lemma 1 (Payoff-Variance Equivalence). Suppose π : R → R satisfies Assumption 1 and let

N(0, σ2) denote a normally distributed random variable with mean 0 and variance σ2, then

(i) E
[
π(N(0, σ2))

]
is monotonically decreasing in σ2;

(ii) E
[
π(N(0, σ2))

]
≥ E

[
π(N(x0, σ

2))
]
for all x0;

(iii) if V (x1, . . . , xn) : Rn → R+, S ⊂ Rn is a set of constraints, and x∗ def
= argmin

x∈S
V (x), then

E [π (N(0, V (x∗)))] = max
x∈S

E [π (N(0, V (x))] .

5Note, an additional, even less sophisticated truthful player type that simply votes his “raw” signal, vi = si, instead
of his Bayesian posterior, is subsumed in the current model by taking the limiting case of a diffuse prior, σq → ∞,
which implies βi → 1, and hence vi → si.
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Proofs are provided in the Appendix. One useful implication of Lemma 1 is that since the payoff

function is well-behaved and the aggregate error (q − q̂) is normally distributed with mean 0, we

can interchangeably talk about the platform/players maximizing expected payoff, or minimizing the

variance of the aggregate error.

Consider an omniscient central planner that can directly observe all signals and set q̂ to maximize

E [π(q − q̂) | s1, . . . , sn].6 In light of Lemma 1, this can equivalently be written as a minimization

problem over the variance, V fb def
= min Var [q − q̂ | s1, . . . , sn] = Var [q | s1, . . . , sn]. The latter is

simply the Bayesian posterior variance in the standard multivariate Gaussian setting,7 thus

V fb =

(
σ−2q +

n∑
i

σ−2i

)−1
. (5)

As expected, V fb increases in σq and σi, i.e, the more imprecise the prior and signals are, the worse is

the platform’s predictive power over q. Furthermore, the platform becomes perfectly accurate as the

number of players n→∞. In other words, the centralized platform can fully harness the wisdom of

the crowd at the limit. This, however, hinges on “reasonable” σi, ∀i, e.g., independence of individual

signals and of their variance from n. For an alternative setting in which aggregate information does

not necessarily grow with the number of users, see Bergemann and Välimäki (1997).

Finally, as is standard in the literature, it will be convenient to formally define the platform’s

“first-best precision” as the inverse of its first-best variance, ρfb =
(
V fb

)−1. Combining this def-

inition with the fact that the platform’s estimate is unbiased (given all signals are unbiased and

the aggregation mechanism is linear), we can say that the centralized setting yields the first-best

(highest possible) accuracy the platform can achieve, and use the terms “precision” and “accuracy”

interchangeably.

3.2 Equilibrium with Strategic Players

Next, we examine player voting strategies and the resulting platform accuracies they can achieve,

and then compare these to the first-best benchmark.

To build intuition, consider first the simple case of a platform consisting of a single strategic

player, holding all tokens (i.e., τ1 = 1). In this case, q̂ = τ1 · v1 = v1 and the player’s optimal
6Alternatively, we can consider a central planer that observes all signals and sets player votes vi instead of directly

setting q̂, and the same results will hold.
7To see this, first note that the optimal q̂∗ solves E [q − q̂∗ | s1, . . . , sn] = 0, which gives q̂∗ = E [q | s1, . . . , sn]. As

a result, Var [q − q̂∗ | s1, . . . , sn] = Var [q − E [q | s1, . . . , sn] | s1, . . . , sn] = Var [q | s1, . . . , sn]. Since q and {si}ni=1

are normally distributed one can use the standard result concerning multivariate normals Var [q | s1, . . . , sn] = σ2
q −

Σq~sΣ
−1
~s~s Σ~sq, where Σq~s,Σ~s~s and Σ~sq are the covariance matrices. A straightforward calculation gives (5).
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strategy, conditional on observing signal s1, is simply to truthfully report his Bayesian posterior,

v∗1 = E [q | s1] = β1s1 + (1 − β1)µ, where β1 = σ2q (σ
2
q + σ21)−1 (see Appendix A.2 for details). We

emphasize two points: first, the importance of Assumption 1. In Appendix A.1 we give some natural

payoff functions (that are not well-behaved, i.e., violate Assumption 1), where the player’s optimal

strategy is not to vote his Bayesian posterior. One particularly illustrative case that we discuss is

that of a “price-is-right” type of payoff function.8 Second, though truthfully voting one’s posterior

is intuitive, it does not carry over to the general n-player game, which we describe next.

Proposition 1 (Voting Equilibrium). If the payoff function satisfies Assumption 1, and all players

are strategic, then in equilibrium i) player i votes v∗i = α∗i si + (1 − α∗i )µ, where α∗i is given in (6)

and ii) the platform achieves the first-best variance given by (5).

α∗i =
σ2q

τiσ2i

(
1 +

∑n
j=1

σ2
q

σ2
j

) , i ∈ {1, . . . , n}. (6)

We outline three main takeways from Proposition 1. First, strategic players are able to recover

first-best optimality in token-weighted platforms, but to do so, they must be willing to adjust votes

based on the presence of their peers on the platform and their own token holdings. The former

is observable from the dependence of the optimal weight on σi, ∀i, and the latter from its inverse

relationship to τi (and its independence from τj , j 6= i).

Second, the aggregation mechanism is irrelevant when the platform is composed of strategic

players, that is, first best can also be restored under 1/n-weighted aggregation (this is best seen by

going through the proof of Proposition 1, replacing τi by 1/n,∀i).

Third, the Bayesian weight βi 6= α∗i . This implies that truthful voting is generally suboptimal

under τ -weighted aggregation. Put differently, strategic players’ votes will not reflect their true

individual posterior beliefs. The votes cast can be either higher (vote inflation) or lower (vote

shading) compared to truthful votes. To illustrate, Figure 1 compares player 1’s equilibrium vote

upon receipt of a positive (s1 = 4 > µ = 1 in Figure 1(a)), or negative (s1 = 1 < µ = 4 in

Figure 1(b)) signal, in a n = 2-player platform.

This type of strategic behavior may not be harmless in practice. Consider for instance the

implications for rating and review platforms. If individual ratings are visible (as opposed to just

aggregate scores), customers who rely on such platforms for information may be exposed to a dis-
8In the popular U.S. game show “The Price is Right,” which has been running since 1972, contestants (voters in

our framework) compete to guess the price of an item, but face the prospect of elimination if their guess ends up
being above the true price. We show that simple Bayesian posterior voting is generally suboptimal when it comes to
dealing with this type of asymmetry in player payoffs.
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Figure 1: Player 1’s vote v1 upon receiving a signal s1, vs. his relative token holdings τ1, in a 2-player
platform. Parameters σ1 = σ2 = σq = 1/2.

proportionate amount of extreme ratings, either very good, or very bad scores. For example, in

Figure 1, strategic players with few tokens (∼0.2) who receive a positive (negative) signal, inflate

(deflate) their ratings well beyond their true beliefs. Without diving into a discussion on behavioral

foundations, this type of outcome could possibly undermine the credibility of the platform as cus-

tomers may fail to realize that this “gaming” of ratings is actually in their best interest, in terms of

achieving maximal aggregate accuracy.

How realistic it is to assume all voters are strategic in practice, and are thus capable of restoring

first best, is debatable. If some voters are in fact less sophisticated, for instance, if they have an

inherent preference to report their true beliefs, two sets of questions arise. First: Q1) can strategic

players restore first best in the presence of truthful voters, and if not, Q2) how does the resulting

optimality gap vary with the relative number of truthful voters? Second: Q3) In the presence

of truthful voters, should the platform prefer a τ -weighted or equally weighted mechanism? Q4)

Relatedly, how is this preference affected by the distribution of tokens across voters?

We address the first set of questions in Section 3.3, and the second set in Section 3.4.

3.3 Equilibrium with Mixed Player Types

We extend the model from Section 2 to consider a platform containing a mixture of |T| truthful and

|S| strategic players, such that |T| + |S| = n (notation | · | represents set cardinality). As before,

strategic players cannot observe others players’ signals or votes, but they can observe truthful voters’

identities.9 Truthful players, by definition, only consider their own signals. Before stating the result,
9This assumption, made for tractability, eliminates the need to define additional belief sets but begs the question of

how player types could be revealed in practice; a potentially interesting direction for future work. See Chandrasekhar
et al. (2015) for a related experimental study.
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let weights αS
i

def
= α∗i , i ∈ S, from (6), where the summation 1 to n in the denominator is now over

the set of strategic players S.

Proposition 2 (Voting Equilibrium with Mixed Types). In the presence of truthful voters on the

platform, if the payoff function satisfies Assumption 1, then in equilibrium i) strategic player i votes

vT,Si = αT,S
i si + (1 − αT,S

i )µ, where αT,S
i = αS

i

(
1−

∑
j∈T τjβj

)
, i ∈ S, and ii) the corresponding

platform variance V T,S =
(

1−
∑

j∈T τjβj

)2
V fb +

∑
j∈T (τjβjσj)

2 > V fb.

Proposition 2 shows that in this more realistic setting, there is still a unique equilibrium in which

strategic players adjust their optimal signal weights from (6) to try and correct for the presence

of truthful voters. However, in contrast to the result in Proposition 1, the platform no longer

achieves first-best predictive accuracy. Interestingly, even the presence of a single truthful voter

(|T| = 1) prevents strategic players from restoring first best under τ -weighted aggregation, and the

more truthful players are present, the worse the platform accuracy becomes. Proposition 3, below,

formalizes the latter statement.

Proposition 3 (Platform Accuracy with Mixed Types). Consider a platform with a partition |S|, |T|

of a set of n total players. For fixed n, if any number k ∈ {1, . . . , |T|} of truthful players become

strategic, then the platform’s accuracy increases.

As a reminder, the results hold assuming the platform has pre-committed to a token-weighted (or

equally weighted) aggregation mechanism, e.g., via a smart contract. For the sake of completeness,

we relax this assumption in Appendix A.3, where we assume the platform can optimally set the

weights it attributes to each player’s incoming vote. With this type of precise control, we show that

the platform would indeed be able to recover first-best variance as long as it knows the identity of

truthful voters. Note, however, that centralizing the aggregation mechanism in this way would go

against the core philosophy these platforms were built on—that of decentralizing decisions — so

may be of limited applicability.

3.4 Properties of the Optimality Gap

Having shown that the presence of truthful players generates an indelible optimality gap in Sec-

tion 3.3 (answering questions Q1 and Q2), we now examine platform preference between τ - and

1/n-weighting (question Q3), and the effects of token dispersion (question Q4). To ease exposition,

for the rest of this subsection we will assume the “worst case” scenario of a platform consisting

entirely of truthful players, |T| = n. Our qualitative insights remain valid for 1 < |T| < n (for
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|T| = 0, there is no optimality gap as per Proposition 1). Before proceeding with the analysis, we

introduce some necessary notation and intermediate results.

Platform Variance. Let V i
j , i ∈ {T, S}, j ∈ {τ, 1/n}, represent the variance achieved by the platform

under truthful (i = T) or strategic (i = S) voting, and under τ -weighting (j = τ) or 1/n-weighting

(j = 1/n). Note that, from Proposition 1, V S
τ = V S

1/n = V S = V fb, that is, strategic players achieve

first best under both mechanisms. The corresponding values are in Table 1.

Table 1: Player voting strategies and platform variance.

Vote Platform Variance

Truthful τ -weight. vi = βisi + (1− βi)µ V T
τ =

∑n
i=1 (τiβiσi)

2 + σ2q (1−
∑n

i=1 τiβi)
2

Truthful 1/n-weight. vi = βisi + (1− βi)µ V T
1/n =

∑n
i=1

(
1
nβiσi

)2
+ σ2q

(
1−

∑n
i=1

1
nβi
)2

Strategic vi = α∗i si + (1− α∗i )µ V S = V fb =
(
σ−2q +

∑n
i=1 σ

−2
i

)−1

Finally, define the optimality gap between truthful and strategic (first best) voting as follows.

Gj = V T
j − V fb = V T

j − V S, j ∈ {τ, 1/n}.

Token Dispersion. Define d(x,y) as the Euclidean distance (L2 norm) between vectors x and y,

i.e., d(x,y) = ||x − y||2 =
(∑n

i=1 (xi − yi)2
)1/2

. Let the n-dimensional vectors τ def
= {τ1, . . . , τn},

n−1
def
=
{

1
n , . . . ,

1
n

}
and 1

def
= {1, . . . , 1}. Lastly, define the dispersion of vector τ as the Euclidean

(L2) norm from its average value, i.e.,

disp(τ ) = d(τ , τ̄1) = ||τ − τ̄1||2, where τ̄ =
1

n

n∑
i=1

τi =
1

n
.

With notation and definitions in place, we proceed with the analysis focusing first on the simple

case in which all players have homogeneous signal precisions, before turning to the more general

case with precision heterogneneity.

Homogeneous precisions (σi = σ, ∀i)

Within this case of homogeneous precisions, we also distinguish between homogeneous and dis-

persed token holdings. The fully homogeneous case is relatively straightforward. Given there is no

token dispersion in this case, there is no difference between τ - and 1/n-weighting. Simplifying the
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expressions in Table 1 we obtain

Gτ = G1/n =
(n− 1)2σ4σ4q

n(σ2 + σ2q )
2(σ2 + nσ2q )

≥ 0,

which is decreasing in n. As a side remark, as n → ∞, Gτ →
σ4σ2

q

(σ2+σ2
q )

2 ≥ 0, that is, though the

optimality gap is decreasing in the number of players, it can persist at the limit as n tends to infinity,

meaning, neither aggregation scheme can fully harness the wisdom of a truthful voting crowd, no

matter how large.10

Next, we consider heterogeneity in token holdings while keeping all players’ signals equally

precise.

Proposition 4 (Dispersed Tokens). When players have heterogeneous token holdings and homoge-

neous signal variances,

(i) Gτ − G1/n ≥ 0, i.e., 1/n-weighting dominates token-weighting;

(ii) Gτ −G1/n increases in disp(τ ), i.e., 1/n-weighting dominance increases with token dispersion.

In line with intuition, when all players have the same information precision, there is nothing to

be gained by weighing one player’s vote more or less than any other’s. Thus, when the platform

is composed of truthful, equally informed players, it is better off adopting an equally weighted

mechanism and/or reducing token dispersion, if possible.

Heterogeneous precisions

Here, we consider heterogeneity in both token holdings and signal variances, and examine the impact

of token dispersion on the optimality gap. In this most general case, the comparison between

τ -weighting and 1/n−weighting is non-trivial and either aggregation mechanism could a priori

outperform. Intuitively, which mechanism “wins” depends on the mismatch that may exist between

the distribution of tokens and the distribution of information. For instance, a voter might have

excellent information but low stake, in which case, his vote will be underweighted in the aggregate,

and vice versa. As we shall see, this intuition is only partially true.

The set of τ ’s for which τ -weighting dominates is given by the sublevel set of V T
τ , L def

=

{τ |V T
τ (τ ) ≤ V T

1/n ∩ 1′τ = 1}. This set generally needs to be computed numerically, with the

exception of low values of n. We focus here on the simplest case n = 2 which suffices to extract

10To see why, consider that as n → ∞, the optimal weight to place on the prior 1 − α∗ = 1 − n/
(
n+ σ2

σ2
q

)
→ 0,

whereas truthful voters maintain a fixed weight of 1− β > 0, which by definition, is independent of n.
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the main qualitative insights. The general case n > 2 is analyzed in Appendix §A.4, and confirms

result robustness.

Consider a platform with two players, and assume player one is “better informed” than player

two, i.e., σ1 = 1 < σ2 = σq = 1.5.
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Figure 2: When does τ -weighting dominate?

Figure 2(a) shows the optimality gaps under each mechanism as a function of player 1’s token

holdings τ1, and illustrates the dominance set L, which is represented by a simple interval τ1 ∈

[1/2, τ c], with τ c = 3
2 −

2σ2
1

σ2
1+σ

2
2
and τ2 = 1 − τ1. We highlight two main takeaways. First, the

basic intuition that τ -weighting dominates when the better-informed player has more tokens does

not always hold. If this player has too many tokens (τ1 ≥ τ c ∼ 0.9), 1/n-weighting outperforms.

Second, Gτ has a minimum (reached at τ1 ∼ 0.7) which represents the “best possible” allocation of

tokens, and at this point τ -weighting, is understandably better. However, as the platform does not

control token allocation, it is more meaningful to consider the entire range of possible realizations of

τ1 in the interval [0, 1]. Doing so reveals that τ -weighting dominates only around 40% of the time.

More importantly, when it does dominate, it tends to do so by much lower margin than in cases

where it lags behind (e.g., compare Gτ to G1/n in Figure 2(a), as τ1 → 0.7, and then as τ1 → 0),

suggesting that 1/n-weighting might be the better mechanism “on average.”

Figure 2(b) by-and-large confirms this result, but nuances it further by examining how the

optimality gap changes with disp(τ ). To construct the values of disp(τ ), we simulate independent

realizations of vector τ = {τ1, τ2} drawn from a uniform [0, 1] (normalized so that τ1 + τ2 = 1).

The results show that the relationship between Gτ and disp(τ) is not trivial, and is represented

by two “branches” (reflecting the fact that disp(τ ) is symmetric under permutation of the players,

i.e., disp((τ1, τ2) = disp(τ2, τ1)). The average value of Gτ ∼ 0.15 > G1/n ∼ 0.10, and hence,

the optimality gap under 1/n-weighting is ∼ 1/3 lower on average. Finally, Figure 2(c) digs one

step deeper by showing how the expectation over Gτ , E[Gτ ], increases with disp(τ ) (this is roughly

17



equivalent to averaging the two branches from Figure 2(b)).11

These results, as well as the extended analysis in Appendix A.4, support the following conclusion.

Numerical Result 1. When players have heterogeneous token holdings and signal variances, then

on average, as token dispersion increases, i) Gτ increases and ii) 1/n-weighting increasingly outper-

forms τ -weighting.

To summarize, the results suggest that when all players follow truthful voting strategies, 1/n

weighting outperforms τ -weighting, on average (across a uniform spectrum of possible token holding

realizations). We postface these results with the following caveat: the entire analysis in Section 3

has so far ignored possible endogeneity in acquiring information. Presumably, strategic players may

have incentive to exert effort to improve their information, and this could plausibly affect these

insights. Section 4 is devoted to analyzing these endogenous information acquisition effects.

4 Crowdsourcing Effort

Having analyzed player voting behavior in Section 3, we now turn our attention to an important

feature these crowdsourcing platforms were designed around: the incentives that players have to

endogenously improve the platform’s accuracy. Marketing materials often claim token weighting

provides proper effort-exerting incentives. For instance, in the case of TCR’s:

“Token-curated registries are decentrally-curated lists with intrinsic economic incentives for token

holders to curate the list’s contents judiciously.” — Goldin (2017).

This section examines this claim in depth. To ease exposition, we focus on effort-exerting incentives

when all players are strategic. As a reminder, in this case we showed that first best variance is fully

restored in the exogenous setting of Section 3. As we shall see, even in this “best case” scenario, first-

best platform variance can no longer be restored in the endogenous setting. The main implications

of the analysis extend to the more complicated situations in which the platform is composed of a

mixture of player types (and would be more pronounced in these cases).

For the rest of the section, it will be more convenient to work with signal precisions as opposed

to signal variances, ρi
def
= 1

σ2
i
, i ∈ {1, . . . , n}.

11To be more precise, for Figure 2(c), we ran a simulation drawing 50,000 independent realizations of τ . To
calculate E[Gτ ], we discretized disp(τ) into 50 bins of equal length, recording the mean Gτ within each bin. To
preserve statistical significance, we discarded bins with less than 50 total values.
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4.1 Model with Endogenous Information Acquisition

We begin by expanding the model in Section 2 to account for endogenous information acquisition.

To this end, we introduce an additional stage to the game: prior to observing his signal and choosing

his vote, player i has the option to exert effort, ui, to improve the precision of his signal from ρi to

ρig(ui), at a cost of c(ui). We refer to g(·) and c(·) as the precision improvement and effort cost

functions, respectively. This new setting is a two-stage game similar in spirit to Colombo et al.

(2014), that is, in stage one, players simultaneously choose how much effort to exert, and in stage

two, players simultaneously choose their votes after observing their private signals. We seek to

characterize the PBNE in linear voting strategies, of this now two-stage game.

Formally, this extension renders the private signal in (1) a function of one’s effort,

si(ui) = q + εi(ui), (7)

where εi(ui) is normally distributed, with E[εi(ui)] = 0 and Var[εi(ui)] = 1
ρig(ui)

. To ensure that

functions c(·) and g(·) have desirable properties, e.g., effort should lead to improved information,

we make the following basic assumptions.

Assumption 2. Precision improvement g(u) and effort cost c(u) are continuous differentiable func-

tions with g(u) ≥ 0, c(u) ≥ 0, ∀u ≥ 0 (positive), g′(u) ≥ 0, c′(u) ≥ 0,∀u ≥ 0 (increasing), and

g(0) = 1, c(0) = 0 (boundary conditions).

The boundary conditions are set such that if zero effort is exerted in stage one, the outcome of the

game in stage two is identical to that of Section 3 (with strategic agents).

As before, votes are linear in the signal, which means that players’ voting strategy is determined

by the weight, αi, they place on their signal, but votes now also depend on effort levels since they

affect the signal, vi = αisi(ui) + (1 − αi)µ. Therefore, the platform’s aggregate quality estimate

q̂ =
∑n

i=1 τivi now also depends on effort. We use the notation q̂(u,v) with u = {u1, . . . , un} and

v = {v1, . . . , vn}, to make the dependence explicit when necessary.

Up until this stage, we have kept the platform payoff function as general as possible. We now

specialize it to a standard form satisfying Assumption 1. In particular, the platform’s payoff is

quadratic in the aggregate error q − q̂, that is, π = k1 − k2(q − q̂(u,v))2, where k1 ≥ 0, k2 > 0 are

constants.12 Specializing the payoff enables us to keep functions g(·) and c(·) as general as possible

and shift the focus of the analysis on understanding their effects on player effort incentives.
12The constants k1, k2 are added for additional flexibility and to keep the value positive (if k1 is large enough), but

alternatively, k1 could be set to zero, k2 set to one, and π could be interpreted as relative utility, rather than value.
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In Section 3, player i maximized his payoff over his vote vi. Here, player i maximizes over both

effort level and vote:

max
ui≥0

{
−c(ui) + τi max

vi∈L
E
[
k1 − k2(q − q̂(u,v))2

∣∣ si]} , (8)

where the inner maximization corresponds to the second stage in which players vote after observing

their signals, and the outer maximization corresponds to the first stage in which players choose their

effort levels.

Note, although the payoff function is quadratic in the error, the problem is not quadratic in all

decisions, which potentially makes the optimization non-trivial. To proceed, we first use existing

results from Section 3 to solve the second stage. This allow us to express the players’ second-stage

optimal voting strategies as a function of effort levels, which reduces the two-stage optimization

problem (8) to a simpler single-stage problem optimizing over effort levels.

Lemma 2 (Problem Reduction).

(i) At the second stage of the game, given a fixed vector u, player i’s optimal vote is v∗i (u) =

α∗i (u)si + (1− α∗i (u))µ, where α∗i (u) and the platform’s resulting variance are given by:

α∗i (u) =
ρig(ui)

τi

(
ρq +

∑n
j=1 ρjg(uj)

) , and V (u) =

(
ρq +

n∑
i=1

ρig(ui)

)−1
. (9)

(ii) At the first stage of the game, player i’s profit maximization problem (8) is equivalent to the

following cost minimization problem over effort level:

min
ui≥0
Ci(u) = τiV (u) + c(ui). (10)

For convenience, we define the platform’s precision ρ(u)
def
= V (u)−1 = ρq +

∑n
i=1 ρig(ui).

4.2 Equilibrium

Before stating the equilibrium, we discuss the conditions under which one exists. From Lemma 2,

it suffices to focus on problem (10). When Ci(u) is continuous and convex with respect to ui for

ui ≥ 0, there exists at least one equilibrium (Rosen 1965). Given Ci(·) is the sum of two functions,

it is convex if both functions are convex. While it is generally common to assume convex cost of

information acquisition c(·) (see, e.g., Vives 2011), convexity of τiV (u) depends on the properties

of the information improvement function g(ui). We have the following result.
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Lemma 3 (Convexity of V (·)). V (u) is convex in ui iff

ρi
ρ(u)

≥ 1

2

g′′(ui)

g′(ui)2
. (11)

A sufficient condition is g(·) linear or concave.

Lemma 3 has important implications. First, note that ρi ≥ 0 and ρ(u) ≥ 0 by construction, thus

the left-hand side is positive. It follows that convexity of V (·) trivially holds when g(·) is linear as

g′′(·) = 0 in this case. For instance, g(ui) = 1 + ui, which also satisfies Assumption 2 (g > 0, g′ > 0

and g(0) = 1). Convexity of V (·) also trivially holds when g(·) is concave as g′′(·) ≤ 0 in this case.

Up until now, we have been working with general functions g(·) and c(·), and our results, while

also general, have not addressed the equilibrium outcome. To make headway, we need to impose

some additional structural requirements on c(·) and g(·). To see why, consider the first-order

conditions of (10) τiV ′+ c′ = 0, ∀i. Using the expression for V ′ (see equation (33) in the appendix),

these are equivalent to the following system of non-linear equations

τ1ρ1 =

(
∂c(u1)

∂u1

/∂g(u1)

∂u1

)
ρ(u1, . . . , un)2

... (12)

τnρn =

(
∂c(un)

∂un

/∂g(un)

∂un

)
ρ(u1, . . . , un)2.

While such non-linear systems are generally intractible, the structure of these equations motivates

the following additional assumption that will facilitate the computation of the equilibrium.

Assumption 3. Let k > 0 be a constant and suppose c and g satisfy the following equation:

c′/g′ = k · g2. (13)

In the Appendix A.5, we show that a broad class of linear and concave forms of g(·) (which by

Lemma 3, suffice for equilibrium existence), and corresponding functions c, satisfy this requirement.

For instance, consider g(ui) = 1 + ui, thus g′(ui) = 1. Condition (13) (with k = 1) implies

c′(ui) = (1 + ui)
2, and thus, c(ui) = (1/3)(1 + ui)

3, which is convex, positive increasing for ui ≥ 0.

Leveraging (13) and some additional properties, we obtain that the system (12) not only can

have a unique solution, but one that is also characterizable in closed form.
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Theorem 1 (Equilibrium). Let vectors τ = {τ1, . . . , τn}, ρ = {ρ1, . . . , ρn}. Suppose c(·) and

g(·) satisfy Assumptions 2 and 3, c(·) is convex, and g(·) is either linear, or a concave bijective

(invertible) function. Then, the effort-exerting game has a unique equilibrium, characterized by

votes v∗i (u
∗) = α∗i (u

∗)si+(1−α∗i (u∗))µ where the signal weights α∗i (u
∗) are given in (9), and effort

levels u∗i are given by

u∗i (τ ,ρ) = g−1
(
f∗i (τ ,ρ)

)
, with f∗i (τ ,ρ) =

ρ2q + 4
k1/2

n∑
j=1

(
τjρ

3
j

)1/21/2

− ρq

2 1
(ρiτi)

1/2

n∑
j=1

(
τjρ

3
j

)1/2 . (14)

Having derived the equilibrium, we now examine how equilibrium effort levels depend on token

holdings and information precision.

Proposition 5 (Comparative Statics). Suppose the conditions of Theorem 1 are satisfied, then

equilibrium effort levels (i) monotonically increase in token holdings and (ii) are non-monotonic in

information precisions. Further, consider two hypothetical players i and i′ and suppose they have

the same precision, then (iii) τi > τi′ ⇒ u∗i > u∗i′ ; suppose instead the two players have the same

token holdings, then (iv) ρi > ρi′ ⇒ u∗i > u∗i′.

Proposition 5 (i) states that the more tokens a player has, the more effort he provides in equilibrium

– a desirable feature often touted in marketing materials. Relatedly, part (iii) can be interpreted as

an equivalent statement on fairness – when comparing two equally informed players, the one with

more tokens always exerts more effort in equilibrium. However, as we shall show in Section 4.3,

these desirable features are not attributable to the τ -weighted aggregation mechanism itself.

Part (ii) highlights that there is a more subtle (non-monotonic) relationship between the amount

of effort a player exerts and his information precision. Part (iv) shows that when comparing two

players with equal token holdings, the one with better information precision exerts more effort in

equilibrium. In other words, there is some amount of “free-riding” from lesser-informed players,

which is not necessarily a desirable feature.

To illustrate these results, Figure 3 shows equilibrium effort levels in a n = 2-player game

assuming a linear information improvement function g(x) = 1 + ηx, with η > 0. Figure 3(a)

(parameters η = ρ1 = ρ2 = ρq = 1) highlights the results of Proposition 5 parts (i) and (iii). That

is, player one’s effort increases with his share of the tokens τ1, and player one exerts more effort

than player two when τ1 > 1/2. Figure 3(b) (parameters η = τ1 = τ2 = 1/2, ρ2 = ρq = 1) shows the
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more subtle relationship between effort levels and information precision described in Proposition 5

parts (ii) and (iv). The first vertical line marks the point where player one’s precision and effort

exceed player two’s, and the second vertical line highlights the non-monotonicity.
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Figure 3: Equilibrium effort levels in a 2-player game with a linear information improvement function

For the rest of the analysis, we assume all results are subject to the conditions of Theorem 1

and we will work with the linear form of g(·) described above and in Appendix A.5.1.

4.3 Centralized Solution and Optimality Gap

Having derived player equilibrium effort levels, we now compare the resulting platform accuracy

they obtain to that of a centralized setting.

In the centralized case, we assume the platform is maximizing the sum of all expected player

payoffs. Noting that
∑n

i=1 τiV (u) = V (u)
∑n

i=1 τi = V (u), and using the equivalence between

maximizing payoffs and minimizing variance from Lemma 1, the centralized problem can be written

as a minimization problem over the platform variance and effort costs given by

min
u≥0

V (u) +
n∑
i=1

c(ui). (15)

Convexity of V (·) (see Lemma 3) and c(·) suffice to guarantee a unique solution. Denote by ufb

the vector representing this solution and let V fb def
= V (ufb). Let V eq def

= V (u∗), with u∗ =

{u∗1(τ ,ρ), . . . , u∗n(τ ,ρ)} given by (14), be the equilibrium platform variance of the decentralized

game, and define the optimality gap between the two as

G = V eq − V fb. (16)
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Proposition 6. Suppose the assumptions from Theorem 1 hold, and let 1 = {1, . . . , 1} be an n-

dimensional vector of ones, then

(i) the optimal effort levels of the centralized platform are given by ufbi (ρ) = u∗i (1,ρ), ∀i ∈ {1, . . . , n};

(ii) the effort levels of the centralized platform exceed those of the decentralized one, ufb > u∗;

(iii) the optimality gap is positive, G > 0.

Part (i) of Proposition 6 shows that the effort levels of the centralized platform have a simple

connection to the equilibrium effort levels of the decentralized platform in (14). Mathematically,

they can be obtained by setting τi = 1,∀i. This implies the distribution of token holdings is irrelevant

from the centralized platform’s perspective; intuitively, when it comes to assigning effort levels to

players, only the vector of information accuracy, ρ, matters. Part (ii) follows from Proposition 5(i)

which implies u∗i (1,ρ) > u∗i (τ ,ρ),∀n > 1, as long as τi 6= 1, ∀i, that is, no single player has all the

tokens. Part (iii) follows from part (ii) and the fact that V (u) is decreasing in u (see the proof of

Proposition 6).

Unlike our results in Section 3, where strategic players can fully restore first best, here, the

optimality gap is strictly positive. This is because in contrast to voting, providing effort is costly,

and each player stands to benefit differently depending on his token holdings, which implies that

player i’s individual profit incentives are no longer aligned with the platform’s.

Having shown that first-best accuracy can no longer be restored in the game with effort, even in

the “best case” scenario where all agents are strategic, we now examine how the resulting optimality

gap is affected by i) the aggregation mechanism, comparing τ - and 1/n-weighted schemes, and ii)

the dispersion in token holdings.

(i) Irrelevance of Aggregation Mechanism. Recall that in Section 3, we showed the aggre-

gation mechanism to be irrelevant if all players are strategic. This result continues to hold in

the broader game with effort. To see why, consider the voting game (8) and note that for a

fixed vector u, player i’s optimization problem in the second stage parallels the original voting

game in (4) analyzed in Section 3 (the two are in fact identical when u = 0). When all players

are strategic, they adjust their votes in the second stage to “undo” the platform’s aggregation

mechanism and recover the first best accuracy achievable for a given vector u. In other words,

although the platform’s choice of aggregation mechanism influences how individual players

vote, it does not influence the final voting outcome, once all votes are aggregated. This also

means that the optimality gap is not impacted by the choice of the aggregation mechanism

(formal statements are provided in the proof of Lemma 2).
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(ii) Relevance of Token Dispersion. It is important to emphasize that the previous result

does not imply that the distribution of tokens is irrelevant. In fact, Theorem 1 shows the

opposite: each player’s equilibrium effort level depends on the entire vector of token holdings

τ . This is because the distribution of tokens directly affects each player’s expected payoff in

the first stage of the game, due to the proportionality of returns. Recall individual payoffs

are defined as τiπ, that is, players with more tokens stand to benefit more from an increase in

platform value, and in turn, are incentivized to exert more effort. Ironically, this runs contrary

to some of the claims made by τ -weighted platform operators, regarding the role played by the

aggregation mechanism in providing adequate effort-exerting incentives. The fact that this

effect is tied to the proportionality of returns means that it would persist even if platforms

were to adopt an equally weighted 1/n mechanism. This suggests it is particularly meaningful

to explore question ii) regarding the impact of token dispersion, in some depth. We do so

next.

4.4 The Impact of Token Dispersion

In this section, we examine the impact of token dispersion on the optimality gap. Before proceeding,

we summarize the equilibrium player actions and derive the platform variances in the decentralized

and centralized (first-best) settings in Table 2. Within the decentralized setting, it will be useful

to distinguish between a special homogeneous case in which all players hold 1/n tokens, and the

general heterogeneous case in which token holdings are dispersed. Abusing notation for simplicity,

let n−1 def
= {1/n, . . . , 1/n} and denote by V eq

1/n

def
= V eq(τ → n−1), the platform variance in the

purely homogeneous case. This type of distinction is not necessary in the centralized case given

token holdings are irrelevant in that setting. We emphasize this notation is fundamentally different

than the one adopted in Section 3, where the subscript 1/n represented the platform choosing

an equally weighted aggregation mechanism. Here, subscript 1/n represents the special case of

homogeneous holdings under τ -weighted aggregation. Without loss of generality, we display all

expressions taking the limit σq →∞ to ease exposition.

We proceed by first examining the simple case in which all players have the same precision, and

then analyze the more complicated heterogeneous case.

Optimality gap with homogeneous precisions

Similarly to (16), let G1/n
def
= V eq

1/n−V
fb denote the optimality gap between the equilibrium platform

variance when all players hold 1/n tokens, and first best.
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Table 2: Equilibrium player actions and platform variance (as σq →∞).

Setting Equilibrium Votes and Effort Platform Variance

Decentralized, dispersed holdings vi(α
∗
i (u
∗
i (τ ,ρ)));u∗i (τ ,ρ) V eq = k1/4

(∑n
i=1 ρ

3/2
i

√
τi

)−1/2
Decentralized, 1/n holdings vi(α

∗
i (n
−1, u∗i (n

−1,ρ)));u∗i (n
−1,ρ) V eq

1/n = k1/4
(

(1/
√
n)
∑n

i=1 ρ
3/2
i

)−1/2
Centralized (first best) vi(α

∗
i (1, u

∗
i (1,ρ)));u∗i (1,ρ) V fb = k1/4

(∑n
i=1 ρ

3/2
i

)−1/2

Proposition 7. Under the conditions of Theorem 1, when all players strategically choose effort levels

and votes, and have homogeneous precisions, i.e., ρi = ρ, ∀i ∈ {0, . . . , n}, we have G ≥ G1/n > 0,

that is, the platform would prefer an even allocation of tokens.

It is interesting to note that a homogeneous allocation is preferred despite the fact that players

with more tokens exert more effort in equilibrium (see Proposition 5). This is (in part) due to the

convexity of V eq with respect to τ (see the proof of Proposition 7 for a step-by-step derivation).

We now examine the more general case with heterogeneous precisions.

Optimality gap with heterogeneous precisions

The set of τ ’s for which a dispersed allocation dominates is given by {τ |V eq(τ ) ≤ V eq
1/n ∩1

′τ = 1}.

We examine dominance numerically, considering a platform with n = 20 players, described by a

fixed vector σ (split evenly across the interval [0, 1], meaning the average signal precision is 0.5). As

before, we draw realizations of vector τ from a uniform in [0, 1] (normalized so that the components

sum to 1). For each one of those draws, we record the corresponding value of G and disp(τ ).
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Figure 4: Optimality gap G with heterogeneous precisions

Figure 4(a) shows the optimality gap G as a function of disp(τ ). The single point represented

by an empty rectangle at the x-axis origin is the optimality gap resulting from an even allocation
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of tokens, G1/n. By definition, disp(n−1) = 0 (there is no dispersion when all players have the same

number of tokens). From this point, we trace the horizontal dashed line. Points below this horizontal

line, in black, represent dominance of dispersed token allocations, over the 1/n allocation. Points

above this line, in gray, represent the reverse. There is a positive, albeit low correlation (∼10%)

between G and disp(τ ), suggesting that, on average, the optimality gap slightly increases with

disp(τ ), though the effect is weak.

To bring to light the intricacies of their relationship, we run a more extensive simulation: Fig-

ure 4(b) shows that the probability that dispersed tokens are preferred, Pr(G < G1/n), tends to

decrease with disp(τ ) (going from ∼ 50% to ∼ 20%). Figure 4(c) expands the analysis beyond

probabilities to take into account magnitudes, and shows that the average E[G] tends to increase

with disp(τ ).13 These results support the following conclusion.

Numerical Result 2. When all players strategically choose effort levels and votes, and have het-

erogeneous precisions, equilibrium effort levels decrease and the optimality gap increases, on average,

with token dispersion.

4.5 Optimal Token Allocation

Though the previous analysis suggests it is “on average” preferable to limit token dispersion across

players, it does not account for the distribution of precisions which can be used to better inform the

platform on the preferred allocation of tokens. Figure 4(b) shows that between 20% to 50% of the

time, the platform would be better off with dispersed tokens. It is therefore of interest to examine

these instances further.

Consider the equilibrium platform variance V eq(τ ), where we are now being explicit about the

dependence on the vector of tokens (τ ). The allocation of tokens which minimizes the platform’s

variance with strategic players, is given by τ ∗ def
= {argminτ V

eq(τ ), subject to 1′τ = 1}. For the

linear effort model and taking the limσq→∞ V
eq(τ ) to simplify expressions, the optimal allocation

is obtainable in closed form:

τ∗i (ρ) =

1 +
1

ρ3i

∑
j 6=i

ρ3j

−1 . (17)

As can be intuitively expected, player i’s optimal token holdings are a function of all players’
13To be more precise, in both cases, we ran a simulation drawing 1mm independent realizations of τ from a standard

(normalized) uniform distribution. We then discretized disp(τ) into 50 bins of equal length, recording Pr(G < G1/n)
and E[G] within each bin. To preserve statistical significance, we discarded bins with less than 50 total values.
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precisions: they increase in his own precision, and decrease in others’ precisions.

Next, consider the Euclidean distance d(τ , τ ∗), which measures how “far apart” a random vector

τ is from the optimal allocation τ ∗. Using the same simulation parameters as in Section 4.4, Figure 5

shows that the optimality gap tends to increase with this distance. Furthermore, there is a positive

correlation of 85% between the two, suggesting a strong effect. This leads to our last numerical

result.
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Figure 5: G versus d(τ , τ ∗).

Numerical Result 3. When all players strategically choose effort levels and votes, and have het-

erogeneous precisions, i) the optimality gap increases, on average, with d(τ , τ ∗); ii) there exists a

critical distance above which all even allocations dominate dispersed allocations, and below which,

all dispersed allocations dominate even allocations.

Note, the numerical results are generally robust when changing: the number of players n, the fixed

vector ρ, and the metric chosen to compare vectors (e.g., similar results are obtainable if using the

geometric angle between vectors, as opposed to the Euclidean distance).

5 Conclusion & Limitations

Many blockchain-based platforms have deployed voting mechanisms that use some form of token-

weighted aggregation. These platforms rely on the argument that token weighting incentivizes

users to provide higher-quality votes, which in turn improves the overall accuracy of the platform.

Our results show that this intuition is at best only partially correct. In many cases, the platform

could achieve equal, or sometimes better accuracy (higher overall payoffs) by pursuing a different

aggregation strategy and/or by limiting token dispersion across users.

Like all stylized models, some of our assumptions place limitations on the scope of the paper.

For instance, our model assumes a continuous voting and outcome space in R. In some cases, votes

are constrained to be binary, i.e., users can vote content up or down/like or dislike, and in others,

28



votes are constrained to be in discrete ranges, e.g., Uber ratings following a completed trip allow

users to provide only discrete feedback levels, 1-5 stars. Constraining the vote space would be an

interesting direction to explore.

Second, some of our results rely on players knowing the token holdings, signal precisions, and/or

the strategy types of other players. Relaxing these types of assumptions is challenging, but could

lead to interesting insights, such as whether platforms should purposely obfuscate information or

disseminate it as much as possible.

As mentioned in the introduction, token-weighted voting has been adopted for many different

applications, and our model paints these systems with a broad enough brush to capture some of

the common economic tradeoffs they all share. As such, this paper should be viewed as a first

step in expanding our theoretical understanding of these systems. These limitations could represent

interesting directions for future work in this space.
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Token-Weighted Crowdsourcing

Online Appendix

A Auxiliary Results

A.1 Examples of “Well-Behaved” and “Ill-Behaved” Payoff Functions

If there is only a single player, who receives a signal, s, makes a vote v and receives a payoff,

π(q− v), what is the optimal vote? At first glance, it seems that the obvious strategy is to vote the

conditional mean v = E [q | s]. This is certainly the case if π(x) = −x2 (see Example 1). On the

other hand, this statement is actually not true in general.

Example 1. When π(x) = d− x2, the fact that v = E [q | s] is optimal corresponds to the fact that

the mean is the best least-squares estimator.

Example 2 (“Price is Right” payoffs). Suppose

π(x) =

 1
x2+1

if x < 0

0 if x ≥ 0.

This corresponds to a “Price is Right” rule, where underestimates are valued according to their

accuracy, whereas overestimates give a payoff of 0. Suppose that conditioned on the signal, q has a

standard normal distribution, i.e.,

q|s ∼ N(0, 1).

In this case, setting v = E [q | s] corresponds to v = 0, and the expected payoff is approximately

.175. On the other hand, setting v = −1
2 , yields a payoff of approximately .213, thus for this payoff

function, guessing the conditional mean is not optimal.

Example 3. Suppose that (conditioned on s) q takes on only two values, it has “low” quality (q =

−1) with probability one half, and “high” (q = 1) with probability one half. Suppose

π(x) =

 1 if |x| < 1

0 otherwise.

Then E [q | s] = 0, but setting v = 0, will always yield a payoff of 0, wheres voting v = 1 will yield

an expected payoff of one half.

32



Observe that in Example 2, the payoff function π(x) is not symmetric, whereas in Example 3,

the distribution of q is not decreasing away from its mean.

A.2 Single-Player Solution

In the single-player setting, the optimal strategy is to vote the conditional mean, i.e., to set v =

E [q | s]. To see this, consider first that the restriction to linear strategies implies player 1’s strategy

is entirely determined by the weight, α, he places on his signal. Then, since the true quality, q, and

the player’s signal are normally distributed, i.e., q ∼ N(µ, σ2q ) and s = q + ε where ε ∼ N(0, σ2),

Lemma 1 shows that choosing α to maximize the payoff is equivalent to choosing α to minimize the

variance Var [q − v]. Since v = αs+ (1− α)µ, we have

Var [q − v] = Var [q − αs− (1− α)µ] = Var [(1− α)q − αε− (1− α)µ]

= Var [(1− α)q] + Var [αε]

= (1− α)2σ2q + α2σ2

= (σ2 + σ2q )α
2 − 2σ2qα+ σ2q ,

which is minimized when α =
σ2
q

σ2
q+σ

2 . Thus v =
σ2
q

σ2
q+σ

2 s + σ2

σ2
q+σ

2µ = E [q | s] . If q and s are not

normally distributed, the result still holds, but the proof is more involved.

A.3 Optimal Aggregation Mechanism with Truthful Voters

In this section, we consider the possibility of shifting the burden of optimal aggregation to the

platform instead of the players. This is only relevant in the presence of truthful voters (because in

their absence, strategic voters restore first best). In contrast to the centralized platform setting in

which the platform receives the signals directly, here we assume the platform receives players’ truth-

ful votes v1, . . . , vn, but cannot observe their signals. Using the equivalence between maximizing

profits and minimizing variance (Lemma 1), the strategic platform’s problem can be written as

min
wi

Var

[
q −

n∑
i=1

wivi

]
,

where vi = αisi + (1− αi)µ and wi is the aggregator’s decision variable of how much weight to put

on each incoming vote.

Proposition 8 (Optimal Aggregation Mechanism with Truthful Voters). When players are truthful
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and submit votes vi(αi), there exists a unique optimal mapping of platform aggregation weights

w∗i (vi(αi)) 6= τi that can achieve first-best accuracy, as long as αi 6= 0 for all i.

The details are provided in the proof of Proposition 8. Three important caveats are in order: (i)

players must place non-zero weight on their signals, otherwise the platform cannot make a correct

inference; (ii) the platform must have the same prior as the players; (iii) centralizing the aggregation

mechanism in this way goes against the core philosophy these platforms were built on — that of

decentralizing decisions, so may be of limited practical applicability.

Proposition 8 omits the case of strategic voters because in that case, for any nonzero set of weights

wi, the strategic players can adjust their αi to ensure that optimality holds (as in Proposition 1).

Note, if the platform contains both truthful and strategic voters, as in Section 3.3, the platform

would need to construct the aggregate vote q̂ =
∑n

i=1wivi (instead of q̂ =
∑n

i=1 τivi), and set the

optimal weight wi for truthful players. If the platform commits to any nonzero weights for the

remaining strategic players, the strategic players will always choose their αi optimally and achieve

first-best variance.

A.4 Extended Numerical Results for Section 3.4

In this section, we extend the analysis of Section 3.4, to a platform with n = 20 players, described

by a fixed vector σ (split evenly across the interval [0, 1], meaning the average signal precision is

0.5). As before, we draw realizations of vector τ from a uniform in [0, 1] (normalized so that the

components sum to 1). For each one of those draws, we record the corresponding value of Gτ and

disp(τ ).
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Figure 6: Optimality gap with heterogeneous tokens and precisions, for n = 20.

Figure 6(a) plots the optimality gaps for each mechanism. The 1/n-weighted optimality gap is

unaffected by token dispersion and is represented by the horizontal line. Points located below this

line indicate dominance of τ -weighting, and vice versa.
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In Figure 6(b), we examine how Gτ is affected by token dispersion. As before, we partition

disp(τ ) into 50 “bins” of equal width and take the average value of Gτ within each one. We also

compute the corresponding error bars representing the 95% confidence interval. The results are in

line with those of the simpler n = 2 player case analyzed in Section 3.4.

Lastly, Figure 6(c) derives additional insights by taking account of the distribution of precisions.

From the expression of V T
τ in Table 1, Gτ depends on the dot product of τ with σ2. Intuitively, the

more “misaligned” (orthogonal) vector τ is to σ2, the lower the dot product, and thus, the better

token weighting should perform. To capture misalignment between these two vectors, we use the

Euclidean distance between them, d(τ ,σ). Figure 6(c) shows there is a strong negative correlation

(-82%), confirming the intuition that the optimality gap under τ -weighting decreases in d(τ ,σ).

The figure also shows that τ -weighting dominates 1/n-weighting for large enough d(τ ,σ).

A.5 Applications of Theorem 1

A.5.1 Linear information improvement

One particularly meaningful and simple application of Theorem 1 is when players have a linear

information improvement function. For instance, let g(ui) = 1 + ηui, where η ≥ 0 captures the

effectiveness of how player i’s effort translates to improved signal precision. Note, the additive

constant equal to 1 is needed so that g(0) = 1 is satisfied, that is, when player i exerts no effort, his

signal precision is the same as in the base case model of Section 3. In this case, the optimal effort

levels are simply

u∗i (τ ,ρ) = (f∗i (τ ,ρ)− 1) · η−1. (18)

For linear g, condition (13) (with k = 1) implies ∂c(ui)
∂ui

= η(1 + ηui)
2, and hence, c(·) is a convex

positive increasing function. One can readily verify that this type of model satisfies all required

conditions. Furthermore, we have already discussed the properties of this equilibrium, in terms of

how u∗i varies with τi and ρi (see Proposition 5).

A.5.2 Concave information improvement

Another case of interest is when the effort improvement function is concave. As discussed, concavity

helps to guarantee the existence of an equilibrium, and the comparative statics introduced previously.

To this end, consider functions g(ui) = (1 + ui)
γ , where 1

3 < γ < 1, then g is concave and

g′(ui) = γ(1 + ui)
γ−1. Setting c(ui) = (1 + ui)

3γ − 1, we have that c′(ui)/g′(ui) = 3g(ui)
2, so
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equation (13) is satisfied, and since γ > 1
3 , c(ui) is convex. The optimal effort levels are given by

u∗i (τ ,ρ) = (f∗i (τ ,ρ))1/γ − 1. (19)

The implications of this model of concave information improvement are similar to those of the

linear model in Section A.5.1; we therefore abstain from repeating them here.

B Proofs

B.1 Proofs for Section 3

Proof of Lemma 1. Part (i): Our goal is to show that if π is well-behaved, (i.e., π(x) is symmetric

about the origin, and decreasing away from 0), then the function E
[
π(N(0, σ2)

]
is a decreasing

function of σ. To show this, it is sufficient to show that if 0 < σ1 < σ2, and Xi ∼ N(0, σ2i ), are

normally distributed random variables, then E [π(X1)] ≥ E [π(X2)].

Let fi(x) denote the density function of the random variable Xi. Since Xi are normally dis-

tributed, fi(x)
def
= 1√

2πσi
e
− x2

2σ2
i . To see that E [π(X1)] ≥ E [π(X2)], first, note that

f1(x) > f2(x) for |x| < t

f2(x) > f1(x) for |x| > t,

where t =

√
log

(
σ2
σ1

)
1

σ22
− 1

σ21

. Note also since both functions have equal measure,

∫ t

0
(f1(x)− f2(x))dx =

∫ ∞
t

(f2(x)− f1(x))dx.
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We have

E [π(X1)]− E [π(X2)] =

∫ ∞
−∞

π(x)f1(x)dx−
∫ ∞
−∞

π(x)f2(x)dx

=

∫ ∞
−∞

π(x) (f1(x)− f2(x)) dx

= 2

∫ ∞
0

π(x) (f1(x)− f2(x)) dx (π(x), f1(x), f2(x) are symmetric)

= 2

(∫ t

0
π(x) (f1(x)− f2(x)) dx−

∫ ∞
t

π(t) (f2(x)− f1(x)) dx

)
≥ 2

(∫ t

0
π(t) (f1(x)− f2(x)) dx−

∫ ∞
t

π(t) (f2(x)− f1(x)) dx

)
(π(x) is decreasing)

= 2π(t)

(∫ t

0
(f1(x)− f2(x)) dx−

∫ ∞
t

(f2(x)− f1(x)) dx

)
= 0.

It follows that E[π(X1)] ≥ E[π(X2)]. The inequality becomes strict if π(X) is strictly decreasing.

Part (ii): If f1(x) = 1√
2πσ

e−
x

2σ2 and f2(x) = 1√
2πσ

e−
(x−x0)

2

2σ2 for some x0 > 0, then

f1(x) > f2(x) for x < t

f2(x) > f1(x) for x > t,

for t = x0
2 . Now, note that by symmetry f1(t− x)− f2(t− x) = f2(t+ x)− f1(t+ x)for all x > 0.

Now, note that since t > 0, and π(x) is decreasing away from the origin, π(t− x) ≥ π(t+ x) for all

x. Thus

∫ ∞
−∞

π(x) (f1(x)− f2(x)) dx =

∫ ∞
0

π(t− x) [f1(t− x)− f2(t− x)]− π(t+ x) [f2(t+ x)− f1(t+ x)] dx

≥ 0.

A similar result holds when x0 < 0. This shows that it E
[
π(N(0, σ2))

]
≥ E

[
π(N(x0, σ

2))
]
for all

x0.

Part (iii): Suppose x∗ ∈ S, satisfies V (x∗) = minx∈S V (x). Then for all x ∈ S, V (x) ≥ V (x∗),

and so by Lemma 1, part (i), E [π (N(0, V (x)))] ≤ E [π (N(0, V (x∗)))] . Thus E [π (N(0, V (x∗)))] =

maxx∈S E [π (N(0, V (x)))] . In other words, in order to find x that maximizes E [π (N(0, V (x)))]

subject to the constraint that x ∈ S it is sufficient to find x ∈ S that minimizes V (x).

Proof of Proposition 1. First, note that since the aggregation function is linear, q̂ is a linear

37



combination of the vj , and therefore q − q̂ is normally distributed with

E [q − q̂] = µ−
n∑
j=1

τj (αj E(sj) + (1− αj)µ) = 0,

and

Var [q − q̂] = Var

q − n∑
j=1

τjαjsj


= Var

1−
n∑
j=1

τjαj

 q −
n∑
j=1

τjαjεj


=

1−
n∑
j=1

τjαj

2

σ2q +

n∑
j=1

τ2j α
2
jσ

2
j . (20)

Now, consider that given the restriction to linear strategies vi = αisi + (1−αi)µ, player i’s strategy

is completely determined by αi. It is well-known that in linear models with Gaussian signals, when

all players are playing linear strategies, player i’s best response is linear as well (Myatt and Wallace

2012), implying that the choice of αi does not depend on the realization of the signal si. It follows

that player i’s optimization problem in (4) can be written, unconditionally, as

max
αi

E [πi (q − q̂)] , (21)

where player i’s payoff is πi (q − q̂) = τi · π (q − q̂). Assuming τi > 0, maximizing E[πi (q − q̂)] is

equivalent to maximizing E[π (q − q̂)]. Since π is well behaved and q − q̂ is normally distributed

with mean 0, Lemma 1 applies, and therefore choosing αi to maximize E [πi(q − q̂)] is equivalent to

choosing αi to minimize Var [q − q̂]. Now, Var [q − q̂] is a convex quadratic function of αi, and thus

has a unique minimum. Taking derivatives with respect to αi, we have

∂

∂αi

1−
n∑
j=1

τjαj

2

σ2q +

n∑
j=1

τ2j α
2
jσ

2
j = −2

1−
n∑
j=1

τjαj

 τiσ
2
q + 2τ2i αiσ

2
i .

The first-order condition is thus

−2

1−
n∑
j=1

τjαj

 τiσ
2
q + 2τ2i αiσ

2
i = 0,
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which becomes 1−
n∑
j=1

τjαj

σ2q = αiτiσ
2
i . (22)

Notice that the left-hand side of equation (22) is fixed for all i, therefore, in equilibrium, it must

be that

αiτiσ
2
i = α1τ1σ

2
1,

for all i. Thus αi =
α1τ1σ2

1

τiσ2
i

. Plugging this back into equation (22), we have

1− α1τ1σ
2
1

n∑
j=1

σ−2j

σ2q = α1τ1σ
2
1. (23)

Then, solving equation (23) for α1, we have

σ2q = α1τ1σ
2
1

1 + σ2q

n∑
j=1

σ−2j

 ,

which implies that in equilibrium

α∗j =
σ2q

τjσ2j

(
1 + σ2q

∑n
j=1 σ

−2
j

) =
1

τjσ2j

(
σ−2q +

∑n
j=1 σ

−2
j

) . (24)

Recall that from (20),

Var [q − q̂] =

1−
n∑
j=1

τjαj

2

σ2q +
n∑
j=1

τ2j α
2
jσ

2
j .

Now, notice that

τjα
∗
j =

1

σ2j
·

σ−2q +

n∑
j=1

σ−2j

−1 ,
which implies

1−
n∑
j=1

τjα
∗
j =

σ−2q +
∑n

j=1 σ
−2
j

σ−2q +
∑n

j=1 σ
−2
j

−
n∑
j=1

σ−2j

σ−2q +
∑n

j=1 σ
−2
j

=
σ−2q

σ−2q +
∑n

j=1 σ
−2
j

.
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Solving for the variance in equilibrium, we have

Var [q − q̂] =

1−
n∑
j=1

τjα
∗
j

2

σ2q +

n∑
j=1

τ2j (α∗j )
2σ2j

=

(
σ−2q

σ−2q +
∑n

j=1 σ
−2
j

)2

σ2q +
n∑
j=1

τ2j (α∗j )
2σ2j

=

(
σ−2q

σ−2q +
∑n

j=1 σ
−2
j

)2

σ2q +

n∑
j=1

σ−2j

σ−2q +
∑n

j=1 σ
−2
j

=
1

σ−2q +
∑n

j=1 σ
−2
j

. (25)

Note, these results are generalizable to symmetric distributions beyond normal, but require a dif-

ferent proof methodology.

Proof of Proposition 2. Recall T, S represent the sets of truthful and strategic players, respec-

tively, such that |T ∪ S| = n. Player votes are given by

vi =


σ2
q

σ2
q+σ

2
i
si +

(
1− σ2

q

σ2
q+σ

2
i

)
µ for i ∈ T

αisi + (1− αi)µ for i ∈ S .

By definition, the strategies of truthful players are fixed, i.e., independent of the actions of all other

players. In this setting, with mixed players,

E [q − q̂] = µ−
∑
j∈T

τj

(
σ2q

σ2q + σ2j
E(sj) + (1−

σ2q
σ2q + σ2j

)µ

)
−
∑
j∈S

τj (αj E(sj) + (1− αj)µ)

= µ−
∑
j∈T

τjµ−
∑
j∈S

τjµ

= 0,
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and Var [q − q̂] is given by

Var

q −∑
j∈T

τj

(
σ2q

σ2q + σ2j
sj + (1−

σ2q
σ2q + σ2j

)µ

)
−
∑
j∈S

τj (αjsj + (1− αj)µ)


= Var

q −∑
j∈T

τj

(
σ2q

σ2q + σ2j
sj

)
−
∑
j∈S

τj (αjsj)


= Var

1−
∑
j∈T

τj
σ2q

σ2q + σ2j
−
∑
j∈S

τjαj

 q −
∑
j∈T

τj
σ2q

σ2q + σ2j
εj −

∑
j∈S

τjαjεj


=

1−
∑
j∈T

τj
σ2q

σ2q + σ2j
−
∑
j∈S

τjαj

2

σ2q +
∑
j∈T

(
τj

σ2q
σ2q + σ2j

)2

σ2j +
∑
j∈S

(τjαj)
2 σ2j .

Player i’s payoff is πi(q− q̂) = τi ·π(q− q̂) and from Lemma 1, choosing αi to maximize E [πi(q − q̂)]

is equivalent to choosing αi to minimize Var [q − q̂]. Now, Var[q− q̂] is a convex quadratic function

of αi, and thus has a unique minimum. Taking derivatives with respect to αi, we have

∂

∂αi

1−
∑
j∈T

τj
σ2q

σ2q + σ2j
+
∑
j∈S

τjαj

2

σ2q +
∑
j∈T

(
τj

σ2q
σ2q + σ2j

)2

σ2j +
∑
j∈S

(τjαj)
2 σ2j

= −2

1−
∑
j∈T

τj
σ2q

σ2q + σ2j
−
∑
j∈S

τjαj

 τiσ
2
q + 2τ2i σ

2
i αi.

The first-order condition is thus

−2

1−
∑
j∈T

τj
σ2q

σ2q + σ2j
−
∑
j∈S

τjαj

 τiσ
2
q + 2τ2i σ

2
i αi = 0,

which becomes 1−
∑
j∈T

τj
σ2q

σ2q + σ2j
−
∑
j∈S

τjαj

σ2q = τiαiσ
2
i (26)

Since the left-hand side of equation (26) is the same for all i, in equilibrium, it must be that

αiτiσ
2
i = α1τ1σ

2
1,
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for all i. Thus αi =
α1τ1σ2

1

τiσ2
i

. Plugging this back into equation (26), we have

1−
∑
j∈T

τj
σ2q

σ2q + σ2j
−
∑
j∈S

τj
α1τ1σ

2
1

τjσ2j

σ2q = τ1α1σ
2
1 (27)

Solving equation (27) for α1, we have1−
∑
j∈T

τj
σ2q

σ2q + σ2j

σ2q = α1

τ1σ21 +
∑
j∈S

τj
τ1σ

2
1

τjσ2j
σ2q

 = α1σ
2
1τ1

1 +
∑
j∈S

σ2q
σ2j


which implies that in equilibrium

α∗i =

(
1−

∑
j∈T τj

σ2
q

σ2
q+σ

2
j

)
σ2q

σ2i τi

(
1 +

∑
j∈S

σ2
q

σ2
j

) . (28)

Next, we derive the corresponding platform variance. Define

A
def
= 1−

∑
j∈T

τj
σ2q

σ2q + σ2j
(29)

B
def
= 1 +

∑
j∈S

σ2q
σ2j
. (30)

Thus

τiα
∗
i =

Aσ2q
Bσ2i∑

j∈S
τjα
∗
j =

∑
j∈S

Aσ2q
Bσ2j

=
A

B
(B − 1)

∑
j∈S

(τjα
∗
j )

2σ2j =
∑
j∈S

A2σ4q
B2σ2j

=
A2σ2q
B2

(B − 1) .

Starting from Var [q − q̂] as

1−
∑
j∈T

τj
σ2q

σ2q + σ2j
−
∑
j∈S

τjαj

2

σ2q +
∑
j∈T

(
τj

σ2q
σ2q + σ2j

)2

σ2j +
∑
j∈S

(τjαj)
2 σ2j ,
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we can rewrite this expression as follows:

1−
∑
j∈T

τj
σ2q

σ2q + σ2j
−
∑
j∈S

τjα
∗
j

2

σ2q +
∑
j∈T

(
τj

σ2q
σ2q + σ2j

)2

σ2j +
∑
j∈S

(
τjα
∗
j

)2
σ2j

=

A−∑
j∈S

τjα
∗
j

2

σ2q +
∑
j∈T

(
τj

σ2q
σ2q + σ2j

)2

σ2j +
∑
j∈S

(
τjα
∗
j

)2
σ2j

=

(
A−

(
A

B
(B − 1)

))2

σ2q +
∑
j∈T

(
τj

σ2q
σ2q + σ2j

)2

σ2j +
∑
j∈S

(
τjα
∗
j

)2
σ2j

=

(
A−

(
A

B
(B − 1)

))2

σ2q +
∑
j∈T

(
τj

σ2q
σ2q + σ2j

)2

σ2j +
A2σ2q
B2

(B − 1)

=

(
A

B

)2

σ2q +
∑
j∈T

(
τj

σ2q
σ2q + σ2j

)2

σ2j +
A2σ2q
B2

(B − 1)

=
A2

B
σ2q +

∑
j∈T

(
τj

σ2q
σ2q + σ2j

)2

σ2j ,

which, after replacing the expressions for A and B, gives

V T,S =

(
1−

∑
j∈T τj

σ2
q

σ2
q+σ

2
j

)2

1 +
∑

j∈S
σ2
q

σ2
j

σ2q +
∑
j∈T

(
τj

σ2q
σ2q + σ2j

)2

σ2j

=

1−
∑
j∈T

τjβj

2

V fb +
∑
j∈T

(τjβjσj)
2

≥ V fb, if |T| ≥ 1.

Proof of Proposition 3. Consider a platform with n players, such that |T| > 0. To show that the

platform’s payoff increases in the number of strategic players, it suffices to show that if any truthful

player is randomly chosen and turned into a strategic player, the platform’s payoff increases.

By Lemma 1, to show that the equilibrium payoff increases, it is sufficient to show that the

variance in equilibrium decreases. Suppose player j moves from truthful to strategic. Let V0 denote

the equilibrium variance when player j was truthful, and V1 denote the equilibrium variance once

player j becomes strategic. Similarly, let A0, B0 be the quantities (defined in Equations 29, 30)

when player j is truthful, and A1, B1 be the same equations once player j is strategic. With this
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notation, our goal is to show that V0 − V1 ≥ 0.

Recall

V =
A2

B
σ2q +

∑
j∈T

(
τj

σ2q
σ2q + σ2j

)2

σ2j . (31)

Now, note that A1 = A0 − pj
σ2
q

σ2
q+σ

2
j
B1 = B0 +

σ2
q

σ2
j
.

Then

V0 − V1 = σ2q

(
A2

0

B0
− A2

1

B1

)
+

(
τj

σ2q
σ2q + σ2j

)2

σ2j

= σ2q

(
B1A

2
0 −B0A

2
1

B0B1

)
+

(
τj

σ2q
σ2q + σ2j

)2

σ2j

= σ2q


(
B0 +

σ2
q

σ2
j

)
A2

0 −B0

(
A0 − τj

σ2
q

σ2
q+σ

2
j

)2

B0

(
B0 +

σ2
q

σ2
j

)
+

(
τj

σ2q
σ2q + σ2j

)2

σ2j

= σ2q


B0A

2
0 + 2B0A0τj

σ2
q

σ2
q+σ

2
j

+A2
0
σ2
q

σ2
j
−B0A

2
0 −B0τ

2
j

(
σ2
q

σ2
q+σ

2
j

)2

B0

(
B0 +

σ2
q

σ2
j

)
+

(
τj

σ2q
σ2q + σ2j

)2

σ2j

= σ2q


2B0A0τj

σ2
q

σ2
q+σ

2
j

+A2
0
σ2
q

σ2
j
−B0τ

2
j

(
σ2
q

σ2
q+σ

2
j

)2

B0

(
B0 +

σ2
q

σ2
j

)
+

(
τj

σ2q
σ2q + σ2j

)2

σ2j .
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Next, notice the last line is

≥ σ2q


2B0A0τj

σ2
q

σ2
q+σ

2
j
−B0τ

2
j

(
σ2
q

σ2
q+σ

2
j

)2

B0

(
B0 +

σ2
q

σ2
j

)
+

(
τj

σ2q
σ2q + σ2j

)2

σ2j

= σ2q


2A0τj

σ2
q

σ2
q+σ

2
j
− τ2j

(
σ2
q

σ2
q+σ

2
j

)2

B0 +
σ2
q

σ2
j

+

(
τj

σ2q
σ2q + σ2j

)2

σ2j

≥ σ2q


−τ2j

(
σ2
q

σ2
q+σ

2
j

)2

B0 +
σ2
q

σ2
j

+

(
τj

σ2q
σ2q + σ2j

)2

σ2j

=

−τ2j σ2j
(

σ2
q

σ2
q+σ

2
j

)2

B0
σ2
j

σ2
q

+ 1
+

(
τj

σ2q
σ2q + σ2j

)2

σ2j

≥ −τ2j σ2j

(
σ2q

σ2q + σ2j

)2

+

(
τj

σ2q
σ2q + σ2j

)2

σ2j = 0,

which completes the proof.

Proof of Proposition 4. Recall, the optimality gap is defined as

Gj = V T
j − V S, j ∈ {τ, 1/n}.

It follows that GTτ − GT1/n = V T
τ − V T

1/n. It thus suffices to show the results for V T
τ − V T

1/n.

Part (i): In the symmetric information case, the expressions from Table 1 simplify to V T
τ =

(βσ)2
∑n

i=1 τ
2
i +σ2q (1−β)2 and V T

1/n = (βσ)2
∑n

i=1
1
n2 +σ2q (1−β)2. Taking the difference, we obtain

(
V T − V T

1/n

)
∝

n∑
i=1

(
τ2i −

1

n2

)
, (32)

and hence the difference has the same sign as this latter term. Considering
∑n

i=1 τi = 1, we

must have
∑n

i=1

(
τ2i − 1

n2

)
≥ 0 irrespective of how the τi’s are distributed. This is because

minτ1,...,τn
∑n

i=1 τ
2
i subject to

∑n
i=1 τi = 1, is convex and attains its minimum at τ∗i = 1

n ,∀i. To

see this, e.g., take the FOC of the Lagrangian
∑n

i=1 τ
2
i + λ (

∑n
i=1 τi − 1). The difference being ≥ 0

implies V T
τ ≥ V T

1/n.
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Part (ii): We have

τ2i −
1

n2
= τ2i − 2

1

n2
+

1

n2
− 2

τi
n

+ 2
τi
n

=

(
τi −

1

n

)2

− 2
1

n2
+ 2

τi
n
.

Hence,

n∑
i=1

(
τ2i −

1

n2

)
=

n∑
i=1

{(
τi −

1

n

)2

− 2
1

n2
+ 2

τi
n

}
=

n∑
i=1

(
τi −

1

n

)2

− 2
1

n
+ 2

1

n

n∑
i=1

τi

=
n∑
i=1

(
τi −

1

n

)2

=
n∑
i=1

(τi − τ̄)2

= ||τ − τ̄ ||2

where the second-to-last line follows from τ̄ = 1
n

∑n
i=1 τi = 1

n . Given (32) and n > 0,
(
V T
τ − V T

1/n

)
is increasing in ||τ − τ̄ || def= disp(τ ).

B.2 Proofs for Section 4

Proof of Lemma 2. Using the same arguments as those provided in the proof of Proposition 1, the

restriction to linear voting strategies implies the second-stage maximization problem is equivalent

to the following optimization problem over signal weights αi:

max
αi

{
E
[
k1 − k2

(
q − q̂(u,v(α))

)2]}
= k1 − k2 min

αi
Var [q − q̂(u,v(α))] ,

where the equality follows from Lemma 1 and the fact that E[(q − q̂)2] = Var[q − q̂] given that the

signals are unbiased (and thus E[q − q̂] = 0).

Because u is fixed in this second stage, the objective minαi Var[q − q̂] is equivalent to the one

solved in Proposition 1, after a simple change of variables. Specifically, let ρ′ = ρg(ui) = g(ui)
σ2
i

= 1

σ
′2
i

.

By identification using (24) and (25) in the proof of Proposition 1, we have

α∗i (u)
def
= argminαi Var [q − q̂(u,v(α))] =

1

(ρ′i)
−1τi

(
ρq +

∑n
j=1 ρ

′
j

) =
ρig(ui)

τi

(
ρq +

∑n
j=1 ρjg(uj)

) .
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Letting α∗(u) be the vector with components α∗i (u), i ∈ {1, . . . , n}, we also have

V (u)
def
= Var [q − q̂(u,v (α∗(u)))] =

ρq +
n∑
j=1

ρ′j

−1 =

ρq +
n∑
j=1

ρjg(uj)

−1 .
As a side remark, given the above results follow from those of Proposition 1, we also have that

players would be able to achieve V (u) even under alternative aggregation mechanisms, e.g., if the

platform had chosen 1/n-weighted aggregation. To see this, replace τi → 1/n in the expression for

α∗i (u), and recompute V (u) to obtain the same form.

Using these results, for a fixed u, the second stage problem is equivalent to

max
αi

{
E
[
k1 − k2

(
q − q̂(u,v(α))

)2]}
= k1 − k2 Var [q − q̂(u,v(α∗(u)))] = k1 − k2V (u).

In turn, the first stage objective simplifies to

max
ui≥0
−c(ui) + τi(k1 − k2V (u)) = τik1 + max

ui≥0
−c(ui)− τik2V (u) = τik1 − min

ui≥0
c(ui) + τik2V (u).

Setting arbitrary constants k1 = 0 and k2 = 1 gives the desired result.

Proof of Lemma 3. A direct calculation gives

V ′ =
∂V (u)

∂ui
= −ρig

′(ui)

ρ2(u)
, and we have V ′ ≤ 0 given g′(ui) > 0, (33)

V ′′ =
∂2V (u)

∂u2i
=
ρi
(
2ρig

′(ui)
2 − g′′(ui)ρ(u)

)
ρ(u)3

= ρiV
2(u)

(
2ρig

′(ui)
2V (u)− g′′(ui)

)
, (34)

where in the last equation, we use the identity ρ(u)−1 = V (u). By construction, ρi, ρ(u), V (u) ≥ 0,

hence V is convex iff 2ρig
′(ui)

2−g′′(ui)ρ(u) ≥ 0, which simplifies to ρi
ρ(u) ≥

1
2
g′′(ui)
g′(ui)2

, or alternatively,

ρiV (u) ≥ 1
2
g′′(ui)
g′(ui)2

.

Proof of Theorem 1. Suppose the payoff is quadratic, i.e., the payoff is k1 − (q − q̂)2. Then the

expected payoff for player i is

τi(k1 − V (u))− c(ui).
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Thus,

∂

∂ui
(τi(k1 − V (u))− c(ui)) = −τi

∂

∂ui
V (u)− c′(ui)

= τiV (u)2 · g′(ui)ρi − c′(ui),

and

∂2

∂u2i
(τi(k1 − V (u))− c(ui)) =

∂

∂ui

(
τiρiV (u)2 · g′(ui)− c′(ui)

)
= −2τiρ

2
iV (u)3

(
g′(ui)

)2
+ τiρiV (u)2g′′(ui)− c′′(ui).

In equilibrium, the first derivative of the payoff is zero, which means

τiρiV (u)2 · g′(ui) = c′(ui)⇒ τiρiV (u)2 =
c′(ui)

g′(ui)
. (35)

Since this holds for all i, if we multiply two such equations, and cancel out the V s, we have

τiρi
c′(uj)

g′(uj)
= τjρj

c′(ui)

g′(ui)
⇒ τiρi

τ1ρ1

(
c′(u1)

g′(u1)

)
=

(
c′(ui)

g′(ui)

)
. (36)

Suppose c, g satisfy Assumption 3, i.e., c
′(ui)
g′(ui)

= k · g(ui)
2, for some constant k. Then, equation (36)

becomes

g(ui) =

√
τiρi
τ1ρ1

g(u1). (37)

Further, equation (35) becomes

τ1ρ1V (u)2 = kg(u1)
2,

which means √
τ1ρ1
k

= g(u1)V (u)−1. (38)

Now,

V −1(u)
def
= ρ(u) = ρq +

n∑
j=1

g(uj)ρj .

Plugging in g(·) from (37) we have

ρ(u) = ρq + g(u1)

n∑
i=j

√
τjρ3j
τ1ρ1

.
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Next, replacing this in equation (38) obtains

√
τ1ρ1
k

= g(u1)

ρq + g(u1)
n∑
j=1

√
τjρ3j
τ1ρ1

 .

Rearranging, we have the quadratic:

g(u1)
2

n∑
j=1

√
τjρ3j
τ1ρ1

+ g(u1)ρq −
√
τ1ρ1
k
.

By the quadratic equation, this has solutions

g(u1) =

−ρq ±
√
ρ2q + 4

k

∑n
j=1

√
τjρ3j

2√
τ1ρ1

∑n
j=1

√
τjρ3j

.

Only the first solution can be positive, thus we have that in equilibrium

g(u1) =

−ρq +

√
ρ2q + 4

k

∑n
j=1

√
τjρ3j

2√
τ1ρ1

∑n
j=1

√
τjρ3j

.

Finally, by equation (37), we obtain the solution for arbitrary i

g(ui) =

√
τiρi
τ1ρ1

g(u1) =

−ρq +

√
ρ2q + 4

k

∑n
j=1

√
τjρ3j

2√
τiρi

∑n
j=1

√
τjρ3j

.

Assuming g is invertible gives the desired result.

Proof of Proposition 5. We first prove parts (i), (iii), (iv), and then part (ii).

In all cases, g(·) increasing (Assumption 2) ⇒ g−1(·) increasing, and thus the sign of differences

in effort levels ui, is given by that of differences in fi, defined in (14). It thus suffices to consider

the comparative statics of fi. (We suppress superscripts and some dependent variables to ease

exposition).

Part (i): Here, we consider how a change in τi affects fi. One subtlety is that τi is constrained

via the equation τ1 + · · · + τn = 1, and thus increasing τi implies (weakly) decreasing τj , j 6= i.14

14To see this, consider the definition of relative token holdings as a function of absolute token holdings, i.e.,
τi = ni∑n

j=1 nj
, i ∈ {1, . . . , n}, where ni represents the absolute number of tokens held by player i. Within this context,
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Suppose then that τ def
= {τ1, . . . , τn} and τ ′ def= {τ ′1, . . . , τ ′n} are two vectors such that τi ≥ τ ′i and

τj ≤ τ ′j ,∀j 6= i. We want to show this implies fi(τ , ρ) ≥ fi(τ ′,ρ).

Let

x
def
=

n∑
j=1

(
τjρ

3
j

)1/2
, x′

def
=

n∑
j=1

(
τ ′jρ

3
j

)1/2
, (39)

and note that with this notation, the expression in (14) is written as fi(τ ,ρ) =

(
ρ2q+

4

k1/2
x
)1/2
−ρq

2 1

(ρiτi)
1/2
x

.

Because a change from τi to τ ′i might result in the sums x ≥ x′ or x ≤ x′ (depending on the

distribution of precisions), we need to consider both cases.

Case 1: x ≥ x′. In this case

fi(τ ,ρ) =

(
ρ2q + 4

k1/2x
)1/2
− ρq

2 1
(ρiτi)

1/2

n∑
j=1

(
τjρ

3
j

)1/2 ≥
(
ρ2q + 4

k1/2x
′
)1/2
− ρq

2 1
(ρiτi)

1/2

n∑
j=1

(
τjρ

3
j

)1/2 =

(
ρ2q + 4

k1/2x
′
)1/2
− ρq

2 1

ρ
1/2
i

n∑
j=1

(
τj
τi
ρ3j

)1/2

def
= y

Here, notice that τi ≥ τ ′i and τj ≤ τ ′j ,∀j 6= i⇒ τj
τi
≤ τ ′j

τ ′i
,∀j ∈ {1, . . . , n}, and thus, the denominator

can be bounded
∑n

j=1

(
τj
τi
ρ3j

)1/2
≤
∑n

j=1

(
τ ′j
τ ′i
ρ3j

)1/2

. We thus have

y ≥

(
ρ2q + 4

k1/2x
′
)1/2
− ρq

2 1

ρ
1/2
i

n∑
j=1

(
τ ′j
τ ′i
ρ3j

)1/2
=

(
ρ2q + 4

k1/2x
′
)1/2
− ρq

2 1
(τ ′iρi)

1/2x
′ = fi(τ

′,ρ).

Case 2: x′ ≥ x. In this case

fi(τ ,ρ) =

(
ρ2q + 4

k1/2x
)1/2
− ρq

2 1
(ρiτi)

1/2x
≥

(
ρ2q + 4

k1/2x
)1/2
− ρq

2 1
(ρiτ ′i)

1/2x
.

Thus to show that fi(τ ,ρ) ≥ fi(τ ′,ρ) it suffices to show that

(
ρ2q+

4

k1/2
x
)1/2
−ρq

2 1

(ρiτ
′
i
)1/2

x
≥

(
ρ2q+

4

k1/2
x′
)1/2
−ρq

2 1

(ρiτ
′
i
)1/2

x′
=

fi(τ
′,ρ), for x′ ≥ x. This holds if the function F (x)

def
=

(a2+bx)
1/2−a

x , with a def
= ρq ≥ 0, b

def
= 4

k1/2 ≥ 0,

increasing τi can be interpreted as increasing ni, i.e., player i′s absolute token holdings. But, an increase in ni also
implies an increase in the denominator

∑n
j=1 nj and thus, a strict decrease in all non-zero τj =

nj∑n
j=1 nj

, j 6= i.
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is decreasing, i.e., if F ′(x) ≤ 0, x ≥ 0. We have

F ′(x) =
1

2x2

(
2a− 2a2 + bx√

a2 + bx

)
.

Let G(b) = 2a − 2a2+bx√
a2+bx

. We have G′(b) = − b
4(a2+bx)3/2

≤ 0, implying G is decreasing in b ≥ 0.

Thus, to show that F ′(x) ≤ 0, it suffices to show limb→0 F
′(x) ≤ 0, which trivially holds given

limb→0 F
′(x) = 1

2x2
(2a − 2a2

a ) = 1
2x2

(2a − 2a) = 0. We can also verify limb→∞ F
′(x) = −∞, and

thus F ′(x) ∈ (−∞, 0] for a, b, x ≥ 0. We thus have

fi(τ ,ρ) =

(
ρ2q + 4

k1/2x
)1/2
− ρq

2√
ρiτi

x
≥

(
ρ2q + 4

k1/2x
′
)1/2
− ρq

2√
ρiτ ′i

x′
= fi(τ

′,ρ),

which completes the proof of part (i).

Part (iii): Suppose two players i and i′ have the same precisions, ρi = ρi′ , with τi > τi′ . Then,

fi(τ ,ρ) =

(
ρ2q + 4

k1/2x
)1/2
− ρq

2 1
(ρiτi)

1/2x
>

(
ρ2q + 4

k1/2x
)1/2
− ρq

2 1
(ρiτi′ )

1/2x
=

(
ρ2q + 4

k1/2x
)1/2
− ρq

2 1
(ρi′τi′ )

1/2x
= fi′(τ ,ρ).

Part (iv): Suppose two players i and i′ have the same token holdings, τi = τi′ , with ρi > ρi′ . Then,

fi(τ ,ρ) =

(
ρ2q + 4

k1/2x
)1/2
− ρq

2 1
(ρiτi)

1/2x
>

(
ρ2q + 4

k1/2x
)1/2
− ρq

2 1
(ρ′iτi)

1/2x
=

(
ρ2q + 4

k1/2x
)1/2
− ρq

2 1
(ρi′τi′ )

1/2x
= fi′(τ ,ρ).

Part (ii): To illustrate that effort is non-monotonic in precision, it suffices to consider the simplified

case when ρq → 0. In this case,

∂fi
∂ρi

=
τi
√

x√
k

(
x− ρi ∂x∂ρi

)
2
√
ρiτix2

,

where we now highlight that the sum x depends on the information precisions x(ρ1, . . . , ρn). The

sign of ∂fi
∂ρi

is given by that of x − ρi ∂x∂ρi
def
= H(ρi). We have that ∂H(ρi)

∂ρi
= −ρi ∂

2x
∂ρ2i

. Given ∂2x
∂ρ2i

=

3
4

ρiτi√
ρ3i τi
≥ 0, ∂H(ρi)

∂ρi
≤ 0 ⇒ H(ρi) is decreasing, with H(0) ≥ 0 (the inequality is strict whenever

at least one other player has non-zero tokens and non-zero precision) and limρi→∞H(ρi) = −∞.

Solving H(ρi) = 0 gives the unique cutoff point where the derivative changes signs.
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Proof of Proposition 6. Part (i): The centralized platform’s optimization problem is

min
u≥0

V (u) +
n∑
i=1

c(ui).

The objective function is convex as long as V ′′ > 0 and c′′ > 0, hence we search for a minimum

through the FOC which are V ′(u) + c′(ui) = 0, ∀i. By identification, comparing to the FOC of (10)

after setting τi = 1,∀i, we obtain that under the assumptions of Theorem 1, the optimal solution

of the centralized platform is ufbi (ρ) = u∗i (1,ρ), where u∗i (τ ,ρ) is given by (14).

Part (ii) follows from Proposition 5(i) that u∗i is increasing in τi. By definition, τi ≤ 1,∀i, hence

u∗i (τ ,ρ) ≤ u∗i (1,ρ) = ufbi , ∀i. If in addition τi 6= 1,∀i, the inequality is strict.

Part (iii) follows from (ii), and from (33), that V ′ < 0.

Proof of Proposition 7. When all players have the same precision ρ = 1/σ2, the equilibrium

effort expression in (14), and (18) simplifies to

u∗i =
2σ2q

σ
√

k
τi

(
σ2q

√
4(
√
τ1+···+

√
τn)√

kσ3
+ 1

σ4
q

+ 1

) − 1.

We suppress the ∗ superscript to ease notation. Taking the limit σq →∞, and grouping terms, we

obtain

lim
σq→∞

ui = σ1/2k−1/4τ
1/2
i S−1/2 − 1,

with S = (
√
τ1 + · · · + √τn). It is useful to define the total effort exerted by all agents on the

platform given by

utot =
n∑
i=1

ui = σ1/2k−1/4S−1/2
n∑
i=1

τ
1/2
i − n = σ1/2k−1/4S−1/2S − n = σ1/2k−1/4S1/2 − n.

The platform variance simplifies to

V (u) =
1

1
σ2

∑n
i=1 g(ui)

,
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with g(u) = 1 + u in the linear model (letting arbitrary constants ηi = 1). We have

1

σ2

n∑
i=1

g(ui) =
1

σ2

n∑
i=1

(1 + ui) =
1

σ2
(n+ utot) = σ−3/2k−1/4S1/2.

Therefore, the platform variance can be written as

V = σ3/2k1/4S−1/2,

with S = (
√
τ1 + · · · + √τn). Now, consider the problem of minimizing V = V (τ ) over τ with

linear constraint
∑
τi = 1. Given the inverse relationship between V and S, and the monotone

transformation
√

(·), the problem is equivalent to maximizing S(τ ) over τ with a linear constraint.

We have ∂2τiS = −1
4τ
−3/2
i implying the Hessian of S is negative definite, and therefore the problem

is strictly concave. It is relatively straightforward to verify that the optimal solution is τ∗i = 1/n.

By definition of concavity, any vector τ that deviates from this optimal solution leads to lower S,

that is, higher platform variance.

B.3 Proofs for Auxiliary Results in Appendix A

Proof of Proposition 8. A direct calculation shows that in this setting, q − q̂ is normally dis-

tributed with mean 0, and variance

Var (q − q̂) =

(
1−

n∑
i=1

wiαi

)2

σ2q +
n∑
i=1

τ2i α
2
i σ

2
i .

If the aggregator sets

wi =
σ2q

αiσ2i

(
1 +

∑n
j=1

σ2
q

σ2
j

) ,
where αi = βi for truthful voters, we have

Var(q − q̂) =
1

σ−2q +
∑n

i=1 σ
−2
i

.

On the other hand, by identification with (5), this is in fact the minimal possible variance given

s1, . . . , sn. Finally, Lemma 1 shows that if the payoff function is well-behaved, then choosing wi to

maximize the payoff is equivalent to choosing wi to minimizing the variance Var(q − q̂). Since this

strategy gives the minimum variance, it must also give the maximum possible payoff.

53


	Introduction
	Model
	Crowdsourcing Information
	First-Best Platform Variance
	Equilibrium with Strategic Players
	Equilibrium with Mixed Player Types
	Properties of the Optimality Gap

	Crowdsourcing Effort
	Model with Endogenous Information Acquisition
	Equilibrium
	Centralized Solution and Optimality Gap
	The Impact of Token Dispersion
	Optimal Token Allocation

	Conclusion & Limitations
	Auxiliary Results
	Examples of ``Well-Behaved'' and ``Ill-Behaved'' Payoff Functions
	Single-Player Solution
	Optimal Aggregation Mechanism with Truthful Voters
	Extended Numerical Results for Section 3.4
	Applications of Theorem 1
	Linear information improvement
	Concave information improvement


	Proofs
	Proofs for Section 3
	Proofs for Section 4
	Proofs for Auxiliary Results in Appendix A


