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Abstract

Inefficiencies from uncoordinated regulation of a negative environmental externality

are significantly mitigated when firms participate in an integrated product market.

Firms take into account the distribution of externality prices and reallocate output from

high to low externality-priced areas, triggering price readjustment, and potentially price

convergence. When capacity constraints prevent reallocation, the marginal benefit of

investing in new—often more efficient and cleaner capacity—increases, which can be

welfare-enhancing. To quantify these effects, we estimate a dynamic structural model

of supply and investment using data from a large U.S. wholesale electricity market,

and simulate the model under counterfactual CO2 emissions regulations.
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1 Introduction

Economists have long advocated for market-based solutions to correct environmental ex-

ternalities such as harmful emissions from combustion of fossil fuels. Although a single,

unified market for the externality is ideal to maximize gains from trade among heteroge-

neous polluting sources, only separate externality markets, at best, may be feasible due to

the difficulty of coordinating regulations across jurisdictions. For example, countries volun-

tarily pledge to take actions to mitigate the risks and effects of climate change as part of the

Paris Agreement, and each country determines and implements mitigation strategies absent

any strict supranational enforcement mechanism. According to The International Carbon

Action Partnership, there are 27 jurisdictions currently implementing or are scheduled to im-

plement a form of carbon emissions trading system (ETS). Among these jurisdictions, one is

supranational (European Union ETS), four are at the country-level (China, Colombia, New

Zealand, Switzerland), fifteen are provinces and states, and seven are cities.1 Difficulties

in coordinating regulation across jurisdictions within the same country are in fact usually

the first hurdle in any country-level effort to create a single carbon market. In the U.S.

for example, attempts to federally address greenhouse gas emissions have largely failed and

further attempts on regulations are likely to be at the state level.2

Difficulties in organizing a single market to correct an externality raise the question to what

extent having uncoordinated regulations is an adequate substitute. The main objective of

this paper is to empirically investigate this question and understand the mechanisms that

drive their relative efficiencies.

Our paper focuses on regulation of carbon dioxide (CO2) emissions from power plants that

participate in the Pennsylvania-New-Jersey-Maryland (PJM) wholesale electricity market.

PJM operates the world’s largest wholesale electricity market covering all or parts of 13

states. Between 2005 and 2012, fossil fuels (coal, gas, oil) accounted for about 60% of

1See https://icapcarbonaction.com/ets-map for an updated interactive map of emissions trading
systems in force, scheduled or under consideration at the national and subnational levels. Not surprisingly,
discussions regarding the type of policies that the UK may implement following Brexit departure have already
started. This is particularly important in light of the fact that, while the UK pledged a 57% reduction in
CO2 emissions in the Paris Agreement, the EU as a whole was less ambitious, proposing only a 40% reduction
(Hepburn and Teytelboym (2017)).

2There are two reasons why CO2 regulations are likely to be at the state level. First, on October 10,
2017, the Trump administration submitted a proposal to repeal the U.S. Clean Power Plan (CPP), setting
back federal-level efforts to limit CO2 emissions from electric power plants set forth during the Obama
Administration. Second, unless new legislation is passed in congress, regulations will fall under the Clean
Air Act (CAA), as in the CPP. Although the CAA is at the federal level, it only authorizes the U.S.
Environmental Protection Agency (EPA) to set state-level targets and solicit state implementation plans to
achieve these targets.
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electricity generation each year, on average. During the same period, close to an average of

322 million metric tons of CO2 were emitted each year by electric utility plants located in

PJM. To put these emissions in a perspective, the whole U.S. electricity generation sector

emitted about 2,262 million metric tons.

We estimate a dynamic structural model of production and investment, and use the es-

timated model to simulate the introductions of a PJM-wide cap or a state-by-state limit

on CO2 emissions to compare welfare in the two regulatory regimes. With state-by-state

implementation, emissions in each state cannot exceed their respective state-level targets,

hence essentially acting as if there were separate CO2 markets for each state and inter-state

trading is not allowed. In contrast, when states in PJM can pool their targets and comply

as a region, only a single constraint needs to be satisfied. Thus, with state-by-state imple-

mentation, firms operating power plants across the PJM region face different CO2 prices

depending on which state their plants are located in, while with regional implementation,

firms face a single CO2 price regardless of their plants’ location.

The paper has two key insights. First, the organization of the product (electricity) market can

effectively coordinate uncoordinated regulation of the negative externality (CO2 emissions)

as long as there is sufficient capacity across different markets. Existing work on externality

markets has mainly focused on quantifying the gains from emissions permit trading (e.g.,

Bui (1998) and Carlson et al. (2000)) and, to our knowledge, has never discussed the role

that the product market can play in coordinating regulations across different jurisdictions.

Facing an integrated product market, multi-plant firms make output decisions taking into

account the distribution of externality (shadow) prices across markets. All else equal, profit-

maximizing firms move production from markets with higher externality prices to markets

with lower externality prices. As long as there is sufficient capacity across markets, output

reallocation and externality price readjustment will lead to convergence of externality prices,

as if there were a single externality market. This idea is reminiscent of Samuelson’s factor

price equalization theorem in that integration of product markets will equalize prices of

factors of production despite restrictions on the movement of these factors across countries.3

Finally, the implicit coordination of environmental regulations via the product market can be

seen as a form of private regulation in response to the difficulty of coordinating environmental

3The coordinating benefits from an integrated electricity market is also relevant for the international trade
literature, and, particularly, for recent work regarding the gains from cross-border trade in electricity. For
example, Antweiler (2016) discusses the potential gains from electricity trade between Canadian provinces
and U.S. states. Because electricity demand is stochastic and correlated across jurisdictions, electric utilities
can reduce their cost during peak periods by importing cheaper off-peak electricity from neighboring juris-
dictions. We point to an additional benefit of electricity market integration due to the implicit coordination
of environmental policies across jurisdictions.
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regulations across jurisdictions (Abito et al. (2016)). Unlike markets for externalities—

which, by nature, often have to be created and organized by multiple public institutions—

product markets arise more naturally as a result of demand and supply. Moreover, product

markets often extend to multiple jurisdictions because private entities are not tied to a

specific jurisdiction unlike public agencies.

Second, we show that investment incentives are different with single and separate externality

markets and therefore a dynamic analysis (where capacity is endogenous) is needed to have

an accurate comparison of welfare. Holding fixed the level of investment with single and

separate externality markets, welfare is lower in the latter unless there is sufficient capacity to

facilitate reallocation of output and readjustment of externality prices. However, this “static

analysis” is misleading since, all else equal, the marginal benefit of investment is higher

with separate externality markets compared to a single externality market. Under separate

externality markets, new capacity has the added value of allowing firms to reallocate output

from high externality priced-markets to low externality-priced markets. This added benefit

of investment is not present with a single externality market. Thus, separate externality

markets essentially foment firms to invest more and reach a higher steady state level of new

capacity (Abito et al. (2016)). To the extent that there are existing distortions that lead to

under-investment (e.g. strategic capacity withholding and lax environmental regulations),

total welfare may actually be higher with separate externality markets than in a single

market.

To quantify welfare with single and separate externality markets, we first estimate plant-level

marginal costs and investment costs. We rely on data on plant-level efficiency (heat rate),

emission rates for various pollutants and associated compliance costs, and other operations-

and-maintenance (O&M) costs to estimate marginal cost functions for each plant following

Mansur (2007) and Bushnell et al. (2008). To estimate investment costs, we use the two-

step approach in Bajari et al. (2007) closely following Ryan (2012) and Fowlie et al. (2016).

The two-step method allows us to estimate investment costs without explicitly solving the

equilibrium of the model. Our estimates on costs combined with predictions on future fuel

prices capture the supply side of our model while predictions on electricity demand in PJM

capture the demand side.

We then make the following assumptions in terms of supply and investment behavior. Based

on the results regarding PJM in Bushnell et al. (2008), we assume that, conditional on exist-

ing capacity at the beginning of each period, the wholesale electricity market is competitive.

In contrast, we assume that the ten largest firms in PJM invest in new plants strategically.4

4Dixon (1985) analyzes a model where the market is competitive but firms can strategically invest. He

4



That is, these firms take into account their rivals’ reactions to their investment decisions, as

well as the effect of investment on future market outcomes. On the one hand, investment

in new coal- and gas-fired capacity allows firms to produce at lower cost and, potentially,

increase profits from electricity sales in subsequent periods. On the other hand, an increase

in investment in new capacity may depress electricity prices, leading to lower profits.

Since plants in PJM are not subject to CO2 regulations,5 we take the CO2 emissions targets

from the Clean Power Plan (CPP) formulated during the Obama Administration but then

essentially repealed under the Trump Administration. The targets are limits to the annual

tonnage of CO2 that power plants in each state can emit acting as a cap on CO2 emissions.

To implement a single externality market, we assume that states can comply by satisfying

a PJM-wide CO2 limit, which is computed by summing up the individual states’ targets.

We assume that the CPP is in place during 2022–2030 and we simulate production and

investment beginning in 2014.

When we set investment to be the same with single and separate externality markets, i.e.

“static analysis,” we find no difference in welfare if new capacity by 2030 is in excess of 50,000

megawatt (MW) or 50% of output. In this case, there is sufficient capacity to facilitate

reallocation of output and readjustment of CO2 prices across states. As expected, for lower

levels of new capacity, welfare is higher under a single externality market. The largest

difference in welfare is $0.5 billion, which is about a 0.4% decrease in welfare.

Since investment is treated as exogenous in the static analysis, it ignores a potentially im-

portant channel that affects the relative efficiencies between single and separate externality

markets. Therefore as a next step, we solve our dynamic model to account for optimal in-

vestment. Because investment relaxes capacity constraints that prevent firms to reallocate

output, the marginal benefit of investment is higher under separate externality markets.

Thus we find that, in general, investment with separate externality markets are higher and

occurs earlier than with a single externality market. Finally, when firms invest strategically,

welfare with separate externality markets is actually $3.8 to $8.6 billion higher than with a

single externality market since overall investment is lower than the socially optimal level.

Our paper contributes to several streams of the literature. First, it is related to the liter-

ature that investigates the interaction between environmental regulation and other forms

of regulation and market structure. Recent papers in this literature include Fowlie (2010)

finds that, in equilibrium, firms under-invest to drive prices above “potential” marginal cost, i.e. what
marginal cost would have been if the firm invested the socially optimal level.

5There are a couple of exceptions. First Maryland is part of the Regional Greenhouse Gas Initiative
which is a cap-and-trade program. New Jersey was initially a member as well but left in 2012. However,
New Jersey is scheduled to return in the program in 2020.
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on the interaction of the NOx Budget Program with rate-of-return (RoR) regulation, Abito

(2017) on the interaction between the Acid Rain Program and RoR-related agency problems,

Davis and Muehlegger (2010) on U.S. natural gas distribution, Hausman and Muehlenbachs

(2016) on methane leaks, Ryan (2012) on industry concentration and the Clean Air Act

Ammendments, and finally Fowlie et al. (2016) on the interaction of market power, industry

dynamics and market-based mechanisms to limit CO2 emissions. Of these papers, the closest

are Ryan (2012) and Fowlie et al. (2016) (henceforth, FRR) in terms of methodology. We

follow their Markov Perfect Nash equilibrium framework and two-step estimation method,

although we depart from their approach in that we do not need to estimate production costs

but instead compute these costs directly from the data.

Second, our paper is related to the literature on incomplete regulation, lack of policy co-

ordination, and strategic policy choice. Recent work on incomplete regulation, such as by

Fowlie (2009) and FRR, where only a subset of polluting sources are subject to regulation,

has emphasized the problem of emissions leakage whereby firms divert production towards

unregulated sources. A similar form of leakage occurs when firms face overlapping state and

federal regulations in only a subset of states and state regulations are stricter than federal

ones (Goulder et al. (2012)). Although reallocation of output from high CO2 -priced ar-

eas to low CO2 -priced areas is technically a form of emissions leakage, our analysis allows

for CO2 prices to adjust hence dampening the negative effects of leakage. More recently,

Bushnell et al. (2017b) (henceforth, BHHK) study differences in regulatory environment

across states resulting from lack of coordination and strategic policy choice. In terms of the

institutional setting (Clean Power Plan), the paper by BHHK is closest to ours.6

Finally, our paper is related to the empirical literature on electricity markets. Most of

the literature has focused on firms exercising market power through strategic bidding and

withholding of existing capacity—see Green and Newbery (1992) and Wolfram (1998) for

early contributions, and more recently, Borenstein et al. (2002), Hortacsu and Puller (2008),

Mansur (2007), and Bushnell et al. (2008). In contrast to these papers, we model strategic

investment in new capacity, which has only received limited attention (e.g. Bushnell and

Ishii (2007)).

The remainder of the paper is organized as follows. Section 2 provides the underlying

6BHHK study a state-level policy choice in the context of the CPP: whether to implement a mass- or
a rate-based target. They show that states can strategically choose between these two policies in a way
that leads to lower welfare and increased emissions (due to leakage), hence highlighting the importance of
coordinating regulations. In contrast, we take a step back from the specific design of the policy, and focus
on the question of single (coordinated) versus separate (uncoordinated) markets, how an integrated product
market allows implicit coordination of uncoordinated policies and quantifying the role of investment.
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economic intuition of the paper while Section 3 gives some background on our empirical

setting. We present our empirical model in Section 4, followed by a discussion of estimation

and empirical results in Section 5. Section 6 is devoted to the simulations of alternative

investment scenarios for our welfare analysis. We finally conclude. In the online Appendix,

we present a simple model of CO2 regulation highlighting the role of optimal reallocation of

production and investment as mechanisms that allow coordination in the presence of multiple

markets for an externality. Additional details regarding the data, our empirical analysis, the

heterogeneity of investment costs in our model, and the emissions’ market clearing algorithm

are also delegated to the Appendix.

2 Intuition

In this section, we discuss the key economic forces that affect the gap in welfare between

a single and separate externality markets. Our analysis starts with assuming capacities are

fixed, and focuses on the ability of an integrated product market to coordinate separate

externality markets through reallocation of production across locations. We then move to

the case where firms choose investment optimally. We argue that since capacity constraints

that restrict reallocation creates an additional incentive to invest, investment tend to be

higher with separate externality markets.

Static analysis. The stylized model in the online Appendix shows that as long as there is

sufficient capacity across locations, an efficient solution (i.e. where marginal production and

abatement costs across locations are equal) can be achieved even with separate externality

markets. Intuitively, a firm will reallocate production from locations with high externality

(shadow) prices to locations with low externality prices, all else equal. As more (less) output

is produced in the location with a low (high) externality price, the amount of the externality

in this location goes up (down) hence driving the externality price up (down) as well. Real-

location of output and readjustment of the externality price continue until either prices are

equal across locations (hence as if there was a single externality market) or the firm faces a

capacity constraint.

When capacity constraints are binding, the marginal abatement costs across locations will

not be equal. In this case, total welfare will be higher with a single externality market. Since

we are holding capacity fixed in the static analysis, the difference in welfare with a single

and separate externality markets is basically the vertical distance between the two curves in

panel (a) of Figure 1.
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Dynamic analysis. The static model works as a useful benchmark to gauge the efficacy of

the reallocation mechanism when capacities are fixed. However, ignoring dynamic consider-

ations can substantially affect our conclusions. The key economic force at play is the firm’s

greater incentive to invest with separate externality markets.

As we saw in the static analysis, with separate externality markets, differences in externality

prices across locations provide an incentive for a firm to reallocate output. Moreover, a firm’s

ability to reallocate output is determined by its existing capacity. When capacity constraints

are binding, the desire to reallocate output creates an additional incentive to invest in new

capacity.

The stronger incentive to invest with separate externality markets can have ambiguous effects

on welfare as shown in panel (b) of Figure 1. First, on the environmental side, higher

investment allows firms to shift production to jurisdictions that are less constrained by

the regulation of the externality, hence leading to “too much emissions,” i.e. emissions

leakage (Fowlie, 2010). On the other hand, since investment is in new capacity, it displaces

existing inefficient and dirtier units from locations where the externality price is high. Second,

in terms of competitive effects, an increase in capacity counterbalances the incentive to

reduce investment for strategic reasons, such as to increase the equilibrium price in the

product market (Dixon, 1985). However, there can also be strategic reasons why firms over-

invest relative to what is socially optimal.7 Therefore, whether the private optimal level

of investment is higher or lower than the socially optimal level is ultimately an empirical

question.

3 Background

3.1 PJM Electricity Market

The Pennsylvania-New Jersey-Maryland (PJM) Interconnection operates the world’s largest

wholesale electricity market as the regional transmission organization (RTO) for the area

that encompasses all or parts of Delaware, Illinois, Indiana, Kentucky, Maryland, Michigan,

New Jersey, North Carolina, Ohio, Pennsylvania, Tennessee, Virginia, West Virginia and

the District of Columbia (Figure 2). PJM coordinates the buying, selling and delivery

of wholesale electricity through its Energy Market which began operations in 1997. As the

7Over-investment may also arise when firms do not internalize the cost that their capacity additions
impose on their rivals, i.e., the Mankiw and Whinston (1986) business stealing effect. Fudenberg and Tirole
(1984) provide a taxonomy of various entry deterrence strategies involving both over- and under-investment.
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market operator, PJM balances the needs of buyers, sellers and other market participants and

monitors market activities to ensure “open, fair and equitable access.”8 To give the reader an

idea of the transactions in PJM, between 2003 and 2012, the value of transactions in PJM’s

real-time energy market grew from approximately $13 billion to $26 billion (Table A5). Total

billings in 2012 were close to $29 billion.

Table 1 shows installed capacity by source using data from the PJM State-of-the-Market

(SOM) reports for 2005-2012.9 Total capacity increased from 163,500 MW in 2005 to 182,000

in 2012, with a compound annual growth rate (CAGR) of 1.8%. During the same time, coal-

fired capacity increased from 67,000 MW to 76,000 MW, while gas-fired capacity increased

from 44,000 to 52,000 with implied CAGRs of 1.93% and 2.47%, respectively. Averaged

across years, the two fuels combined account for 70% of the total capacity, with coal account-

ing for 40% and gas accounting for the remaining 30%. Nuclear’s share of total capacity is

18.5% while that for oil is 6.5%. The remaining sources—hydro, wind, and solid waste—

account for the remaining 5% of total capacity.

Ownership of coal and natural gas capacity in each participating state are highly concen-

trated. For example in 2012, all coal capacity in Kentucky is owned by a single company

(AEP), while all natural gas capacity in North Carolina is owned by Dominion. HHI for

capacity in states that have at least two companies ranges from 2209 (Pennsylvania) to 9876

(IN) for coal, and 1786 (Pennsylvania) to 9910 (Kentucky) for natural gas.

Finally, Figure 3 shows that monthly average electricity prices track closely the gas price paid

by the power plants in PJM for 2003–2012, which is expected because gas-fired generators

usually set the price at which the market clears. During this 10-year window, the gas share

of (coal plus gas) generation increased from 6% to 40% in April of 2012 before falling to

29% in December of the same year. Setting aside the seasonality in the share of gas, there

is a clear upward trend that is more pronounced beginning in late 2008, which is consistent

with the lower natural gas prices the electric power industry experienced nationwide due to

the exogenous shift in the supply of gas following the shale boom. PJM sits on the top of

prolific shale gas formations (e.g., the Marcellus shale in Pennsylvania) and a very dense

network of natural gas pipelines enjoying access to abundant cheap natural gas. Coal prices

paid by power plants in PJM, on the other hand, exhibited an upward trend, which is largely

consistent with the trend in coal prices for the entire country.

8See http://www.pjm.com/~/media/about-pjm/newsroom/fact-sheets/pjms-markets-fact-sheet.

ashx. As of December 31, 2012, PJM had installed generating capacity of about 182,000 megawatts (MW)
and a peak load close to 154,000 MW. See Table 1-1 in Volume 1 of the State-of-the-Market report for 2013.

9See http://www.monitoringanalytics.com/reports/PJM_State_of_the_Market/2016.shtml.
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3.2 CO2 Emissions Regulation

The closest that the U.S. has come to regulating CO2 emissions was through the Clean

Power Plan (CPP) formulated during the Obama Administration to limit CO2 emissions

from fossil-fired power plants. Fossil fuel-fired plants, which are mostly coal- and gas-fired,

are one of the largest single source of CO2 emissions, accounting for about a third of U.S.

total greenhouse gas emissions. The CPP called for a 32% reduction in CO2 emissions from

the power sector by 2030 relative to its 2005 levels. Although the Trump Administration has

proposed to repeal (October 7, 2018) and replace (August 21, 2018) the Obama-era rules,

the CPP still provides a useful example of what CO2 emissions regulation can look like since

future regulations will still be based on the same legal framework which is the Clean Air Act

(CAA).

Under the authority given by the CAA, the U.S. Environmental Protection Agency (EPA)

finalized two sets of rules aimed to address CO2 emissions from fossil-fired power plants

(EPA (2015)). In this paper, we collectively refer to the two sets of rules as the CPP, though

technically the CPP refers to the set of emission targets applied to existing plants (Section

111(d) of the Clean Air Act) while the rules that are applicable to new sources are part of

the “Carbon Pollution Standard for New Plants” (Section 111(b)).

Section 111(b) gives the EPA authority to set standards or emissions limitations on new,

modified, or reconstructed plants.10 Even though the EPA cannot require a specific technol-

ogy that firms should adopt under Section 111(b), the emission limits set by the EPA in the

case of the CPP essentially precluded technologies that would not meet the limit. For ex-

ample, the final CPP rule specified a limit of 1,000 lbs of CO2 per MWh for gas-fired plants,

which was feasible only for the latest combined-cycle technology. For coal-fired plants, the

limit was 1,400 lbs of CO2 per MWh, which was achievable only with carbon capture and

storage technology, a technology that is costly and not widely available.

Under Section 111(d), the CPP established interim and final rate-based (lbs./MWh) and

mass-based (short tons) state goals regarding CO2 emissions. The interim goals were for the

period 2022–2029, while the final goals were for 2030. The CPP also established mass-based

state goals with a new source complement representing EPA’s estimated new source emissions

associated with growth in the demand for electricity relative to its 2012 levels. The EPA

gave the states the flexibility to develop and implement plans to ensure that power plants

10Units that are built, modified or reconstructed after the prevailing Section 111(d) targets were set are,
by statute, classified as “new” as long as the same targets are in place. For example, in the original CPP,
the targets were expected to remain at least until 2030. Only when targets are revised will these sources be
reclassified as existing, i.e. presumably after 2030.
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in their state—either individually, together, or in combination with other measures—were

capable to achieve the interim and final goals.

To set these targets, the EPA determined the best system of emission reductions (BSER)

that had been demonstrated for a particular pollutant and particular group of sources by

examining technologies and measures previously used. The BSER consisted of three building

blocks: (i) reducing the carbon intensity of electricity generation by improving the heat rate

of existing coal-fired power plants, (ii) substituting existing gas-fired generation for coal-

fired generation, and (iii) substituting generation from new renewable sources for existing

coal-fired generation.11

Table 2 shows the CPP mass-based targets for the 11 PJM states used in our empirical anal-

ysis noting that the targets have been adjusted to account for the fact that only a part of the

plants located in Illinois, Indiana, Kentucky, and North Carolina fall in the PJM footprint.

The first observation regarding the information in this table is the gradual reduction in total

emissions (short tons) for all states between the first and final years of CPP. The second

observation is the notable heterogeneity in targets across states, which has implications for

the policy experiments we consider later in the paper, where we compare market outcomes

for the regional and state-by-state implementation of the CPP. For example, in the first

year of CPP, the target for Maryland is 18.2 million short tons, while its counterparts for

Ohio and Pennsylvania are 92.1 and 110.2, respectively. This difference in CO2 emissions

reflects the difference in generation from coal, gas, and oil, for the three states in 2012. This

“baseline” generation is a key component in the calculation of the targets (Table 3).

The stringency of the target varies across states. Taking 2012 CO2 emissions as a base,

targets require a 50% or more decrease in CO2 emission in Kentucky (52%), Illinois (52%),

Indiana (50%), West Virginia (50%) and Maryland (50%). On the other hand, targets

require a less than 50% decrease in CO2 emissions in Ohio (49%), Pennsylvania (46%),

North Carolina (39%), Virginia (30%) and New Jersey (24%).

Given the variation in stringency, we can look at how coal and natural gas capacity of some

of the dominant firms are distributed across the region. For example, we can look at what

fraction of a firm’s combined coal and natural gas capacity is in a state that requires a less

11EPA applied the building blocks to all coal and natural gas units in the three major electricity intercon-
nections in the country (Eastern, Western, and ERCOT (Texas)) to produce regional emission rates. From
the resulting regional rates for coal and natural gas units, EPA chose the most readily achievable rate for
each category to arrive at the CO2 emission performance rates for the country that represent the BSER.
The same CO2 emission performance rates were then applied to all affected sources in each state to arrive
at individual statewide rate-based and mass-based goals. Each state had a different goal based upon its own
particular mix of different sources.
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than 50% CO2 emissions reduction: First Energy with 52%, AEP with 39%, Dominion with

75%, and Duke with 89%. We can also look at two specific states such as Pennsylvania with

a 46% reduction and New Jersey with a 24% reduction. For example, in terms of NRG’s

combined coal and natural gas capacity, 59% is in Pennsylvania while 41% is in New Jersey.

We end this section with a remark. The separate rules for existing and new plants provide

two useful assumptions. First, since only emissions from existing plants are counted against

the state-level CO2 targets, the location of a new plant is irrelevant with respect to the

CO2 price. Location choice for new capacity is an interesting but extremely complicated

problem, especially in our case where in each period, multiple CO2 markets and the electricity

market all have to clear simultaneously. Second, since firms must invest in plants that

have the best available technology (BAT), new plants will have the property of being infra-

marginal which, as we show in the section, helps us reduce the size of the state space.

4 Model

We now present our model of the PJM wholesale electricity market. Figure 4 provides

an overview of the timing of the model. We model the market interaction as a dynamic

stochastic game where, in the beginning of each period, firms invest in new plants after

which they compete to supply electricity given their current portfolio of plants. Each firm

owns a portfolio of plants that can differ in various dimensions such as fuel-type, capacity,

efficiency, emissions rate and the state where the plant is located. Investment and supply

decisions determine the portfolio of plants and the share of electricity output for each fuel-

type which in turn, determine the level and location of CO2 emissions.

We distinguish between two groups of firms in our model. There is a group of N strategic

firms where N is much smaller than the total number of firms. We assume that only strategic

firms can invest in new plants. The rest of the firms belong to the fringe. The fringe is

exogenously endowed with a portfolio of plants that remain fixed throughout the analysis.

We first describe how we model electricity demand followed by a discussion of firms’ supply

decisions conditional on the portfolio of plants. We then discuss how plant portfolios endoge-

nously evolve through firm’s choice of investment. We close the section with a discussion of

the equilibrium concept we adopt in the model.
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4.1 Electricity Demand

To model demand, we adapt the approach in Bushnell et al. (2008) (henceforth, BMS) using

monthly data but with a more parsimonious specification. The need for parsimony stems

from the fact that we only have 120 monthly observations for 2003–2012, whereas BMS uses

roughly 3,000 hourly observations. We use fringe supply to refer to the supply subtracted

from the vertical inelastic market demand to obtain the residual demand for the strategic

firms listed in Table 4, noting that we aggregate subsidiaries to holding companies. This

fringe supply consists of the following: (i) net imports, (ii) supply of fringe firms, (iii) supply

of strategic firms from sources other than coal and gas. We then estimate the following fringe

supply function:

qfringeτ =
12∑
m=1

αmdmτ +
10∑
y=2

αydyτ + βln(pwτ ) + µ1CDDτ + µ2CDD
2
τ

+ µ3HDDτ + µ4HDD
2
τ + ετ , (1)

where dmτ and dyτ are the fixed effects for month m and year y, respectively. Additionally, pwτ

is the average monthly real-time system-wide locational marginal price in the PJM wholesale

electricity market. We proxy for electricity prices in the states surrounding PJM using

average cooling (CDDτ ) and heating (HDDτ ) degree days and their squares accounting for

the fact that the PJM footprint expanded during the period in our sample. Finally, ετ is the

idiosyncratic shock. We introduce some compact notation writing (1) as follows:

q̂fringeτ = λ̂τ + β̂ln(pwτ ) (2)

λ̂τ ≡
12∑
m=1

α̂mdmτ +
10∑
y=2

α̂ydyτ + µ̂1CDDτ + µ̂2CDD
2
τ + µ̂3HDDτ + µ̂4HDD

2
τ . (3)

The residual demand QS
τ for the strategic players is then given by:

QS
τ = Qτ − q̂fringeτ = Qτ − λ̂τ − β̂ln(pwτ ) (4)

Finally, we write:

QS
τ = âτ − βln(pwτ ), âτ ≡ Qτ − λ̂τ . (5)
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Seasonality and Peak Periods. Our framework allows for shifts in demand to accommo-

date both seasonality (cross-month variation) and peak periods (within-day variation). Both

sources of fluctuations in demand are important for a realistic representation of electricity

wholesale markets and are introduced in the model through shifts in the intercept of the

residual demand curve. Using τ to denote the demand curve in year y and month m, and

letting peak period be p ∈ {off, peak}, the following holds:

aoffτ = ay + am (6)

apeakτ = (ay + am)apeak (7)

where ay is the baseline yearly intercept in the demand curve, and am and apeak > 1 are,

respectively, the seasonality and peak period shifters.

We estimate and solve the model separately for each pair of m and p. Whenever we report

monthly figures they are averages over all the different prices obtained through that month,

weighted by the fraction of hours that demand is either peak or off-peak.

4.2 Firms

4.2.1 Generation Cost

Following BMS and Mansur (2007), the marginal cost of generating electricity ($/MWh) for

plant i at time t is given by:

cit = V OMit +HRit ×
(
P f
t + P s

t r
s
it + P n

t r
n
it

)
, (8)

where V OM is the variable non-fuel operations-and-maintenance cost ($/MWh), and HR

is the heat rate (MMBtu/MWh) that captures efficiency in turning heat input from fuel

to electricity. Additionally, rs and rn are the fuel-specific SO2 and NOx emission rates

(lbs./MMBtu), when applicable. Finally, P f is the fuel price ($/MMBtu) while P s and

P n are the SO2 and seasonal NOx permit prices ($/lb.). Note also that we have simplified

the notation in (8) to highlight the cross-sectional and time variation of the various cost

components. In our empirical analysis, the VOM costs, the heat rates, and the emission

rates, exhibit variation by plant and year. The fuel prices exhibit variation by firm, year,

and month. The permit prices exhibit variation by year and month.

A firm’s marginal cost function is a step function where each step represents a plant with

capacity K and marginal cost c. The marginal cost function for each firm is then constructed
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by ordering the plants from lowest to highest marginal cost. Because we observe all of the

components in (8), we can compute each firm’s marginal cost directly from the data.

4.2.2 Evolution of Plant Portfolios

A firm’s investment affects the shape of the marginal cost function by changing the portfolio

of plants that the firm owns and operates. In the beginning of each year, a firm can choose

to invest in coal- or gas-fired capacity. Although we do not assume a minimize size of a plant

the firm can invest in, we assume that firms can choose capacity of the new plant in 1 MW

increments. Aside from the choice of fuel-type and capacity, we also need to determine the

heat rate of the plant the firms can invest in. For this we rely on Section 111(b) of the Clean

Air Act discussed in Section 3.2 which essentially requires that new capacity have the best

available technology (BAT). To implement this assumption in our model, we assume that

firms can only invest in plants that have the best heat rate during the investment year.12

Aside from simplifying the choice of plant-type a firm can invest in in a given year, the BAT

assumption also helps in making our model tractable. In general, we need to take stock of

the type of plant a firm invests in each year. Moreover, when a firm is evaluating different

investment strategies it can take today, it has to be able to compute future profit flows under

different investment scenarios involving different paths its plant portfolio can take.

Figure 5 illustrates how the BAT assumption helps us to address the dimensionality problem.

The key idea is that since the firm is investing in a plant that has the best heat rate, this

plant is likely to be infra-marginal with respect to the PJM wholesale electricity market,

at least in the medium run.13 The two lower steps of the supply curve in panels (a) and

(b) of Figure 5 represent investment in new capacity, while the remaining portion of the

supply curve corresponds to existing capacity. Panel (a) shows the wholesale electricity

market equilibrium when we keep track of all the information about new capacity that the

firm invests in. Panel (b) shows that rearranging infra-marginal units actually does not

alter equilibrium quantities, prices, and profits, as long as these units remain infra-marginal.

Finally, panel (c) shows that we only need to keep track of an average of all the new capacity

that the firm invests in since averaging of these individual units does not affect equilibrium

quantities, prices, and profits. Thus, as long as new capacity is infra-marginal, tracking the

firm-level cumulative BAT capacity and the associated average heat rate is sufficient for our

empirical analysis.

12We discuss the evolution of heat rates in Section 5.3.
13We loosely define the medium run as a time horizon where plants that existed in 2012 are still supplying

positive quantities in equilibrium.
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Using f ∈ F = {coal, gas} to denote the fuel, let ifjt be the investment by firm j in coal- or

gas-fired capacity at time t. In addition, let Kjt be the cumulative BAT capacity given by:

Kjt+1 = Kjt + icoaljt + igasjt . (9)

Because the heat and emission rates for coal- and gas-fired capacity are different, we keep

track of the share of gas-fired BAT capacity:

Sjt+1 =
SjtKjt + igasjt

Kjt+1

. (10)

For heat rates, as well as the remaining components of the fuel-specific marginal costs, we

track a weighted average at time t. For example, in the case of the heat rate for gas-fired

BAT capacity, we track the following weighted average:

HRgas
jt+1 =

SjtKjt

SjtKjt + igasjt

HRgas
jt +

igasjt

SjtKjt + igasjt

hrgasjt , (11)

where hrgasjt is the heat rate associated with new investment in gas-fired capacity. The BAT

capacity for firm j at time t is Kjt with an associated marginal cost given by:

cjt = (1− Sjt)ccoaljt + Sjtc
ng
jt (12)

where cjt is computed using (8) noting that there are fuel-specific components entering the

equation.

Holding the vector of prices constant, the new supply curve, which is a collection of (Kjt+1, cjt+1)

points, is obtained through a shift of the supply curve at time t. For example, suppose there

is only one firm investing in gas, which gives rise to Kjt with associated cost cjt, which

we assume for illustrative purposes to be less than the marginal cost of all existing capac-

ity.14 Then the first step of the new supply curve becomes (Kjt, cjt). The rest of the supply

curve is characterized by (K−jt + igasjt , c−jt), that is a horizontal shift equal to the amount of

investment. This example is illustrated in panel (b) of Figure 6.

Renewable Sources. When making investment decisions, firms take into account the

expected evolution of generation capacity from renewable sources. Our model accommodates

changes in capacity associated with renewable sources in a flexible way through exogenous

14Since infra-marginal units can be rearranged, what suffices for the horizontal shifting to maintain the
same equilibrium is that new capacity is infra-marginal.
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shifts in the BAT capacity over time.

We do not, however, allow investment in renewable sources to respond strategically to

changes in the coal- and gas-fired capacity. This assumption is supported by binding Renew-

able Portfolio Standards (RPS) which we observe in the data and assume to bind at least

in the medium run. The RPS mandates that a specific fraction of all electricity generated

has to come from renewable sources. With a binding RPS, investment in renewable sources

are driven by regulation rather than profit maximization. In our empirical application, we

collect information on the RPS future mandates for the different states that comprise the

PJM market, which we use in our simulations.

4.3 Equilibrium

4.3.1 Electricity Market Equilibrium

To model firms’ supply decision in the wholesale electricity market, we build on the results

in Wolak (2000) and Bushnell et al. (2008). Wolak and BMS show that electricity markets in

the presence of forward contracts, as is the case for PJM, generate outcomes that are much

closer to those from a perfectly competitive setting than to those from a Cournot game.15

Therefore, we implement our model as if firms were price-takers producing electricity subject

to capacity constraints.16 The equilibrium wholesale electricity price is then determined by

the intersection of supply and demand, where supply is just a “merit” order of all sources in

terms of their marginal costs.

Market supply is determined by ordering all available capacity in terms of its marginal costs

similar to Figure 6. This merit order along the supply curve dictates the sequence in which

the various plants are dispatched as the demand for electricity increases. The equilibrium

wholesale price is the marginal cost of the most expensive plant called to serve demand. Given

15We confirmed the results from BMS in our own setting by modeling the wholesale electricity market
assuming perfect competition and Cournot. We found that perfect competition generates equilibrium prices
that are reasonable and consistent with predictions from futures markets, while Cournot produces equilibrium
prices that are much higher. In our case, forward commitments are not as straightforward to deal with as
in BMS since our model is dynamic. Either we assume forward commitments are exogenous and determine
its evolution outside of the model (or simply take them as fixed), or treat these as endogenous and model
how firms’ choose these commitments in equilibrium. Basically the first approach of assuming exogenous
forward contracts is isomorphic to assuming perfectly competitive markets. While interesting, modeling the
endogenous evolution of forward commitments is beyond the scope of the paper.

16Our assumption for a competitive setting in the PJM energy market is also consistent with the conclusions
in the State-of-the-Market (SOM) reports prepared by the PJM Market Monitoring Unit for 2003–2012. The
SOM reports analyze competition within, and efficiency of the PJM markets using various metrics, such as
market concentration, the residual supply index, and price-cost markups.
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fuel and emissions permit prices, the market supply function is a step function described by

the pair (K, c), where K is the capacity with marginal cost less than or equal to c. Because

we observe all of the components in (8), we can construct this step function directly from

the data.

Remark. Investment decisions are strategic; firms decide on investment considering its

impact on other firms, and vice-versa. The assumption of a perfectly competitive wholesale

market combined with strategic investment, under the existence of forward commitments, is

consistent with theory.17 For example, Adilov (2012) models firms’ investment in capacity

in order to study the effects of forward markets on competition and efficiency extending

the standard Allaz and Villa (1993) framework. The forward market takes place after the

investment decisions are committed but before the spot market. Importantly, endogenous

capacity choices affect strategic behavior in the forward and spot markets.

4.3.2 Markov Perfect Nash Equilibrium

The actions chosen by each firm j are represented by ajt = {qjt, icoaljt , igasjt }. The variable qjt

denotes the output (electricity generation) by firm j while ifjt is the investment in capacity

fired by fuel f . Although we use a single time subscript to maintain notational simplicity,

the output decisions in the electricity market are monthly, while the investment decisions

are annual.

We assume a state vector

st =
(
αt,p

F
t ,
{
Kjt, Sjt, HR

coal
jt , HRng

jt

}N
j=1

)
. (13)

The endogenous part of the state vector,
{
Kjt, Sjt, HR

coal
jt , HRng

jt

}
, relates to BAT capacity

investment and its evolution is discussed in the previous subsection. In terms of the exoge-

nous state variables, αt is the intercept of the inverse residual monthly demand for electricity

and pft is a vector of monthly coal and gas prices.18 The future path of the exogenous state

vector is allowed to exhibit some uncertainty, which can affect the investment decisions.

We write the static profit function as

17See also Dixon (1985) for an equilibrium analysis.
18The vector of monthly SO2 and seasonal NOx permit prices is set at zero, consistent with the current

situation in the electric power industry. Therefore, they are not included in the state vector. Likewise, the
remaining components of the BAT cost level such as VOM are held constant at the current values and,
hence, need not be considered in the state vector.
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πjt(at, st, νjt) = πjt(at, st)− Γjt(at, νjt) (14)

where

πjt(at, st) = prjt × qrjt + pwt × (qjt − qrjt)− C(qjt, st) (15)

represents the profit from the wholesale electricity market before investment cost Γjt(at, νjt).

Here, prjt represents the price the firm receives from retail sales commitments qrjt, which are

assumed to be sunk at the time production decisions are made for the wholesale market, and

pwt is the equilibrium wholesale electricity price. Finally, the function C(qjt, st) denotes the

total cost of producing qjt given state st.

We assume investment cost is given by

Γjt(at, νjt) =
∑
f∈F

(γf + νfjt)i
f
jt (16)

where the superscript f denotes the fuel-type (coal or natural gas) of the plant the firm

invests in, νjt a private shock that is independently distributed across firms and time, and

drawn from a common distribution Gν = (0, σ2
ν), and γf is an investment parameter that we

need to estimate.19

We assume firms’ strategies depend only on the current state (including the private invest-

ment shock) as in Ericson and Pakes (1995). That is, for firm j, strategy σj, maps the state

and private shock into actions. The strategy profile σσσ is a Markov Perfect Nash Equilibrium

(MPNE) if each firm j’s strategy σj generates the highest value among all alternative Markov

strategies σlj given the rivals’ profile σσσ−j:

Vj(s;σσσ) ≥ Vj(s;σlj,σσσ−j), (17)

where Vj(s;σσσ) is the ex ante—before observing the realization of the private shocks—value

19The specification for investment cost given in (16) only allows for positive adjustments to capacity. A

version of (16) with scrap value would be Γjt =
∑

f 1[ifjt>0](γ
f
1 + νf1jt)i

f
jt + 1[ifjt<0](γ

f
2 + νf2jt)i

f
jt as in Ryan

(2012). Thus, unlike Ryan (2012) or Fowlie et al. (2016), there is no scrap value from closing down a plant.
Given that we do not have fixed costs in our model, the firm will just keep unused plants idle.
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function for firm j given by:

Vj(s;σσσ) =
∞∑
t=0

E [πjt(at, st, νjt)|s0] . (18)

Remark. In our model, we assume that all the benefits from investment come from the

profits firms earn in the wholesale electricity market. However, a mechanism referred to

as capacity auctions exist in PJM, the goal of which is to encourage investment in new

capacity. The motivation for capacity auctions is to have adequate resources on the grid

to ensure that the demand for electricity can be met at all times in the near future. In

PJM’s case, a utility or other electricity supplier is required to have the resources to meet

its customers’ demand plus a reserve. These load serving entities (LSEs) can meet the

resource requirement with generating capacity they own, with capacity they purchase from

others under contract, through demand response—in which end-use customers reduce their

usage in exchange for payment—or with capacity obtained through the capacity auctions

themselves.

Since we do not model capacity auctions, one may worry that we are missing capacity

payments that incentivize firms to invest. Although we do not explicitly model capacity

payments, our approach is robust to their presence. In the presence of capacity payments,

Γjt becomes the investment cost net of the expected future value of capacity payments. Of

course, this interpretation of capacity payments is valid only when all new investment receives

capacity payments. Furthermore, our setup can accommodate heterogeneity in capacity

payments because of zonal pricing through the private shock νjt. It is also important to

note that during 2003–2012, capacity payments have accounted for 6% of the total wholesale

price per MWh when energy payments accounted for 82%.20

20See Table 9 of the 2012 PJM State of the Market Report Volume I. Modeling firm behavior in the
capacity market is beyond the scope of the paper. As a background, effective June 2007, the PJM Capacity
Credit Market (CCM), which had been the market design since 1999, was replaced with the Reliability
Pricing Model (RPM) capacity Market. Under the CCM, LSEs could acquire capacity resources by relying
on the PJM capacity market, by constructing generation, or by entering into bilateral agreements. Under
RPM, there is a must-offer requirement for existing generation that qualifies as a capacity resource and a
mandatory participation for LSEs with some exceptions. LSEs must pay the locational capacity price for
their zone and zonal prices may differ depending on transmission constraints. LSEs can own capacity or
purchase capacity bilaterally and can offer capacity into the RPM auctions when no longer needed to serve
load. Capacity obligations are annual and Base Residual Auctions (BRAs) are held for delivery years that
are three years in the future. There are also incremental auctions that may be held for each delivery year if
there is a need to procure additional capacity resulting from a delay in a planned large transmission upgrade
that was modeled in the BRA for the relevant delivery year. Bushnell et al. (2017a) provide an in-depth
discussion of the capacity markets.
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5 Estimation

We estimate our model using the two-stage methodology in Bajari et al. (2007). In the

first stage, we estimate policy functions from the data using observable state variables. The

policy functions are reduced-form because they provide estimated parameters that are not

primitives of the underlying economic model of investment. In the second stage, we search

for the structural parameters that best rationalize firms’ observed behavior and transitions

of the state variables. The advantage of this approach is that the primitives can be estimated

without the need to solve for an equilibrium. As it is the case with all two-stage methods,

the first-stage estimates do not fully exploit the structure of the dynamic game.

5.1 First Stage

For the first-stage investment policy functions, we use the (S,s) model, which was originally

introduced in the study of inventories and has received attention in the durable-consumption

(e.g., Attanasio (2000), Eberly (1994)) and investment literature (e.g., Caballero and Engel

(1999) and Ryan (2012)). Fixed costs and empirical evidence suggest lumpy investment

behavior in electricity markets; periods of inactivity are followed by notable changes in

capacity.

The (S,s) model can accommodate such firm behavior via a target equation, T (·), and a band

equation, B(·). The former dictates the level of capacity the firm adjusts to conditional on

making a change. The latter dictates when the firm will make a change to its current level

of capacity. Using Kjt to denote the capacity level for firm j at time t, the policy function

for the incumbents is given by:

Kjt+1 =

Kjt, T (Kjt)−B(Kjt) < Kjt < T (Kjt) +B(Kjt)

T (Kjt), otherwise.
(19)

Entrants are assumed to adjust to T (Kjt). The specifications of the target and band equa-

tions resemble those in Fowlie et al. (2016)

T (Kjt) = λT1 1[entrant],jt + λT2Kjt + λT3 K−jt + λT4 Pt + εTjt (20)

B(Kjt) = λB1 + λB2 Kjt + εBjt. (21)

In terms of notation, K−jt is the rivals’ capacity and 1[entrant],jt is a dummy variable that

equals one if firm j enters the market at time t, and zero otherwise. The vector Pt includes
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fuel costs and emissions permit prices.21 Finally, the idiosyncratic errors are εTjt and εBjt.

5.2 Second Stage

Firms have perfect foresight over the future path of the exogenous state variables. This

can be seen as a particular form of a Markov process if the state vector does not have

the same values at two different points in the future. With the estimates of the policy

equations in hand and evolution paths for the exogenous state variables, we estimate the set

of structural cost parameters θ for which the observed policy for firm i is the best response to

its rivals’ observed policies. We begin by estimating Wj(s;σlj,σσσ−j) using forward simulation

and considering the following two cases. In the first case, all firms follow the observed policy,

from which the “true” value function will emerge. In the second case, all firms except for firm

j follow the observed policies and firm j follows a slightly modified version of its observed

policy.

With L alternative policies {σlj}Ll=1 and using σ0
j to denote the observed policy, we want to

estimate Wj(s;σlj,σσσ
0
−j) for l = 1, ...L. For the lth alternative policy, we simulate each firm’s

decisions over NT periods using the policy and transition functions from Stage I, such that

the resulting estimator is:

Ŵj(s;σlj,σσσ
0
−j) =

NT∑
t=1

βt
(
πljt(at, st)− Γljt((at, νjt))

)
. (22)

We rewrite the MPNE condition (17) for the lth alternative policy as follows:

gj,l(θ) =
[
Ŵj(s;σlj,σσσ

0
−j)− Ŵj(s;σ0

j ,σσσ
0
−j)
]
· θ (23)

We draw L = 20 alternative policies by adding noise to the optimal policy function. For each

of the 10 strategic firms, we perturb the policy function by adding or subtracting 5 MW of

generating capacity to the amount resulting from the real policy. In Section A.5, we show

that the additive nature of the perturbation is consistent with the heterogeneity assumed

for the investment cost function. We also assume β = 0.90 and NT = 50 years. We then

search for the parameter vector such that profitable deviations from the optimal policies are

21Permit prices for SO2 and NOx were non-zero during the period 2003–2012 used for estimation.
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minimized:

min
θ

Q(θ) =
1

NL

N∑
j=1

L∑
l=1

1 {gj,l(θ) > 0} gj,l(θ)2. (24)

We calculate standard errors using 1,000 bootstrap replications by resampling from the

moment inequalities and ignoring the 1st stage estimation error as in Bajari et al. (2013).

5.3 Results

Static Estimates. Table 5 contains the estimates for the fringe supply equation.22 Since

price is endogenous, we use two-stage least squares and instrument using the monthly quan-

tity demanded given that the demand for wholesale electricity is completely inelastic. The

dependent variable, as discussed in Section 4.2, is in levels in all 4 specifications considered.

The price coefficient, which is of main interest for the subsequent analysis, is generally highly

significant. According to our preferred specification, in which the price enters in logs, the

implied elasticity at the sample averages of fringe supply and price of 6,043 MWh and $50

per MWh is 0.74.

Exogenous State Variables. Figure 7 shows the paths for various of the exogenous state

variables in the model for 2013–2062. We start by showing the path for the annual average of

the residual demand intercept ât (panel (a)). We take the value of the intercept from 2012,

estimated in the residual demand curve, and have that increase at a rate of 1% per year

from that point onwards. Within each year, we allow the monthly demand curve to exhibit

seasonality patterns consistent with the data. We do this by regressing demand (load) on

month dummies and saving the corresponding estimated coefficients, which are then used to

adjust the corresponding monthly demand intercept around the annual average. Moreover,

within each month, there will be two different demand curves: one for peak and another for

off-peak periods. When we simulate our model forward, we assume that the relation between

these two demand curves (given by parameter apeak in (7)) stays constant over time, and

equivalent to historical averages.

The coal heat rates associated with new investment are assumed to be fixed at their 2012

levels (10 MMBtu/MW), while their gas counterparts are assumed to be falling over time

from 7.6 MMBtu/MWh to 7.2 MMBtu/MWh; see panel (b). The trend for the gas heat

rates associated with new investment is obtained by projecting the linear trend of the log gas

22We refer the reader to Section A.3 for some additional descriptive statistics.
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BAT heat rates for 2003–2012 to 2013–2062. The remaining cost components, VOM costs

and CO2 rates, are held constant from 2013 onwards.23

In the case of coal prices, we extrapolate the EIA annual projections for 2013–2035 from

the 2012 Annual Energy Outlook reference case to 2062 using the implied CAGR (panel

(c)). For gas prices, we use monthly NYMEX Henry Hub futures prices for 2013–2028. We

expand the series until 2062 using flat extrapolation of the 2008 levels. Given the collapse

in SO2 and seasonal NOx permit prices in recent years, we assume that they will remain at

zero for 2013–2062.24

Policy Equations. Table 6 provides the estimates of the target policy equations. In order to

increase the sample and have enough variation in the data, we estimate the target equations

for both coal and gas using annual operator-level data for 2003–2012 including all operators

and not just those associated with the 10 strategic holding companies in Table 4. Based on

the R-squared values reported at the bottom of the table, the fit is better for gas (0.67) than

for coal (0.46).

Moving to the regression estimates, the coefficient for the entry dummy is positive and

significant at the 1% level in both equations. The target capacity is strongly affected by the

current capacity—the associated coefficient is significant at 1% for both fuels. Although the

capacity of the rivals has the expected negative sign, it is not significant for both coal and

gas. The price of coal has a negative effect on the coal target capacity that is significant at

the 5% level, while the price of gas has a positive effect that is significant at the 10% level.

The prices of the two fuels have no significant effect on the gas target capacity. The SO2 and

seasonal NOx permit prices have negative effects on coal target capacity that are significant

at the 5% and 10% levels, respectively. The SO2 permit price has a negative effect on the

gas target capacity that is significant at the 10% level. The seasonal NOx permit price has

no effect on the gas target capacity. In the case of the band equations, we set λB1 = 0 and

λB2 = 0.10 for both coal and gas in the current set of results. The implication is that there

is no adjustment to capacity in the next period if the target level is within that range.

Structural Estimates. The estimate reported in Table 7 is $/MW of gas-fired capacity.

Note that given the lack of investment in coal-fired capacity implied by our model, it is not

possible to estimate the costs for coal-fired capacity. Our estimate of around $1.4 million per

23The CO2 emission rates are relevant in the policy evaluations section of the paper. The SO2 and
NOx emission rates do not impact our calculation since the price of the corresponding permits price is set
to zero in the forward simulations.

24Our use of Henry Hub futures prices for gas and the assumption regarding zero permit prices are both
consistent with the approach taken in PJM (2016) regarding projections of gas and permit prices.
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MW for gas-fired capacity is comparable to the estimates in Spees et al. (2011), which are

up to $1 million per MW. Furthermore, as we have already discussed, the reported standard

error of approximately $32,000 per MWh does not take into account the 1st-stage estimation

error.

Endogenous Variables. We also provide the paths for a variety of endogenous variables,

such as market-wide outcomes, and firm-level generation, profits, capacity, and heat rates,

from our forward simulations for 2013–2062.25 The BAT capacity in Figure 9, which is

exclusively gas-fired, exhibits an upward trend increasing from 1,400 MW in 2014, the first

year of investment, to 10,900 MW in 2062 (panel (a)). As a result, the share of output

(electricity generation) that BAT capacity accounts for increases over time with roughly half

of the increase taking place the first 15 years (panel (b)). Electricity generation (panel (c))

and price (panel (d)) increase over time, too. Following a period with a downward trend

between 2013 and 2030, the share of gas in electricity generation increases from 18% to 30%

(panel (e)). After about 20 years of growth of the share of coal in electricity generation that

peaks at 40%, we see slight a decline in the later years. The share of sources other than

coal and gas in electricity generation decreases from 47% in 2013 to 31% in 2062 (panel (f)).

Recall that we assume no investment in these fringe sources.

Table 8 shows the investments in gas-fired capacity by firm for 2013–2062. During the

same period, there is no investment in coal-fired capacity. Overall, we see 51 instances of

investment associated with close to 11,000 MW of gas-fired capacity. Three firms account

for roughly 3/4 of the total investment. Exelon accounts for 2,400 MW, followed by NRG

with around 2,550 MW and AES with 2,400 MW. Exelon invests 15 times. AES and NRG

invest 12 times. It is important to keep in mind that this table tracks investment flow and

not net investment. Investment may imply replacement of old units that become more costly

to operate with new units. A detailed timeline of investment by firm is available in Figure 8.

Model Predictions. Finally, in Figure 10 we compare the electricity price implied by

our model with the on-peak electricity price for PJM from NYMEX futures for the period

2016/04–2019/12.26 As we can see, our model tracks reasonably well the NYMEX futures

prices.27

25All dollars are nominal.
26Off-peak is a period of time when consumers typically use less electricity: normally, weekends, holidays

or times of the day when many businesses are not operating. PJM typically considers New Year’s Day,
Memorial Day, Independence Day, Labor Day, Thanksgiving Day and Christmas Day, as well as weekend
hours and weekdays from 11 p.m. to 7 a.m. as off-peak. See http://www.pjm.com/en/Glossary.

27In Figure A3, we compare the behavior of heat rates, fuel prices, generation and capacity before and
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6 Counterfactual Simulations

We use the estimated model to compare welfare under counterfactual CO2 emissions regu-

lations implemented at the regional level (single market) and at the individual state level

(separate markets). We begin our welfare analysis by looking at the “static” case, where we

compute welfare outcomes holding BAT capacity fixed. In this case, investment is exogenous

and BAT capacity is the same with single and separate CO2 markets. We then shift our focus

to the “dynamic” case, where investment is a result of optimal behavior of firms and so BAT

capacity is endogenous. Welfare with single and separate CO2 markets is now influenced by

differences in investment incentives in the two regulatory regimes.

To evaluate and compare market outcomes, we assume that PJM states are subject to the

mass-based targets of the Clean Power Plan (CPP) given in Table 2. These targets limit the

quantity of CO2 emissions (in short tons) that states can emit annually. There are interim

targets for 2022—2029 followed by a permanent target from 2030 onwards. With separate

CO2 markets, each state’s emissions have to be less than or equal to the annual targets

shown in the table. With a single CO2 market, there is an aggregate (PJM-wide) target

for emissions, which is the sum of the targets across the PJM states shown in Figure 11.

Although we do not explicitly model a market for emissions permits, one can think of the

shadow price of the CO2 emissions constraint as the price that clears the market for permits.

In the case of a single CO2 market, there is one permit price. In the case of separate

CO2 markets, the permit prices are state-specific and correspond to each state’s constraint.

The CO2 price increases the cost of generating electricity for power plants, which in turn

affects the industry supply curve in the wholesale electricity market. This additional cost is

different for sources with different heat rate-adjusted emission rates (lbs./MMBtu). Hence,

we compute the marginal cost for source i in state s at time t as follows:

cCist = cist + PC
st × rCist × ζ, (25)

where cist is the generation cost excluding the cost of emissions ($/MWh), PC
st is the CO2 price

($/ton), rCist is the heat rate-adjusted emissions rate (lbs./MMBtu × MMBtu/MWh), and ζ

is an appropriate scaling factor to take into account units of measurement. In the case of a

single market, PC
st = PC

t , ∀s ∈ S, where S is the set of the 11 PJM states listed in Table 2.

The CO2 price affects plants’ costs and hence the supply curve. Equilibrium demand and

after 2012, the last year in our sample. In general, we see a transition that is smooth and a trend towards
more gas in both generation and capacity. We do not allow for explicit divestitures but some of the coal
capacity will start to become extra-marginal.
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supply in the wholesale electricity market determine which plants are called to serve demand

which would determine total emissions. The amount of emissions then determines how much

the emissions target binds and hence the equilibrium CO2 price. Therefore, obtaining the

equilibrium wholesale electricity and CO2 prices requires the simultaneous clearing of the

wholesale electricity and emissions markets. We discuss the algorithm to find the equilibrium

in Section A.6.

6.1 Static Analysis: Exogenous Investment

Holding capacity fixed, welfare with a single CO2 market is expected to be higher than

welfare with separate CO2 markets. A single CO2 market equates marginal CO2 abatement

costs across markets, leading to lower overall compliance costs. Nevertheless, an integrated

product (electricity) market can mitigate inefficiencies associated with separate CO2 markets

as long as output from high CO2 price markets can be reallocated to low CO2 price markets,

all else equal.

We solve for the equilibrium of the electricity and CO2 market(s), allowing the BAT capacity

to vary exogenously between 0 and 60,000 MW in 2030, noting that the qualitative nature

of our findings is similar for all years between 2022 and 2030. Figure 12 (panel (a)) shows

the cost of producing electricity with single and separate CO2 markets as a function of these

exogenous levels BAT capacity. As the figure illustrates, there is practically no difference in

the cost of producing electricity between single and separate CO2 markets for high and low

levels of BAT capacity.

We see a wedge in costs only for intermediate levels of BAT capacity. In the case of high

BAT capacity levels—in excess of 50,000 MW—the equality in cost across single and separate

CO2 markets is explained by the fact that the state-specific CO2 targets no longer bind due

to abundant capacity exempt from the targets. The slackness of the constraints associated

with the CO2 targets implies zero CO2 prices even in the case of separate markets. With

low BAT capacity levels—generally, below 10,000 MW—there is little electricity generation

associated with capacity exempt from the targets. As a result, CO2 prices that hit the ceiling

of $100 even with a single CO2 market are needed to meet the targets. The largest difference

in cost is $2.5 billion at BAT capacity of 32,000 MW. This difference is about 50% of CPP

compliance cost, which is computed by taking the difference in electricity generation and

investment cost with and without the CPP, assuming a single CO2 market.

We also compute total welfare excluding cost of investment with single and separate CO2 markets.

Depending on the exogenous level of BAT capacity, we see values between $122 and $141
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billion with the largest divergence of $0.5 billion occurring at a BAT capacity of 43,000 MW

(Figure 12, panel (b)).

6.2 Dynamic Analysis: Optimal Investment

In this section, we use the dynamic model that we have set up and estimated previously

to study the firms’ optimal response to environmental policies with alternative scenarios.

In our first benchmark scenario, we compute optimal investment assuming a social planner

maximizing total surplus. In our second benchmark scenario, we compute investment as-

suming nonstrategic firm behavior. We then explore the outcomes of different combinations

of assumptions on strategic investment behavior and integration of CO2 markets.

We make a series of assumptions throughout the analysis, all of them consistent with the

specific details of the Clean Power Plan (CPP). First, only emissions from existing capacity

built by 2012 are subject to CO2 prices; emissions from capacity built after 2012 are exempt

from the CO2 price. However, post-2012 capacity must have the best available technology

(BAT) in the sense of having the lowest heat and emissions rate during the investment year.

Second, we assume that heat rate improvements are exogenous.28 Third, generation from

renewable sources increases exogenously according to the annual growth rates in the CPP.29

Finally, we assume an upper bound of $100 for the CO2 price and set the post-2030 CPP

targets at their 2030 levels.30

6.2.1 Social Planner and Nonstrategic Investment

The social planner chooses investment to maximize the present discounted sum of social

surplus. In maximizing social surplus, the planner takes into account consumer surplus from

electricity consumption, industry profits, as well as damages from CO2 emissions, where we

assume a social cost of carbon equal to $37 per metric ton.

28See discussion on exogenous state variables in Section 5.3, as well as the additional details in Section A.7.
29See the June 2014 CPP proposed rule technical support documentation (TSD) at https://www.

epa.gov/cleanpowerplan/clean-power-plan-proposed-rule-technical-documents. The relevant TSD
spreadsheet provides state-specific growth rates for renewable energy for 2020–2029. We assume that the
average growth rate for 2020–2029 holds for the entire period of our simulations. Moreover, we assume that
nuclear capacity does not change.

30Borenstein et al. (2016) argue that extreme price outcomes are likely in most cap-and-trade markets
for greenhouse gas (GHG) emissions for two main reasons. The first is GHG emissions volatility. The
second is the low price elasticity of GHG abatement over the price range generally deemed to be acceptable.
Recognizing the problems created by uncertainty in emissions permit prices, hybrid mechanisms that combine
caps on emissions and price collars (both lower and upper bounds) have been proposed. See their Section I
and the references therein.
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It is useful to discuss the social planner scenario vis-a-vis the scenario where investment is

chosen to maximize the present discounted sum of consumer surplus and profits, without

internalizing damages from CO2 emissions. We refer to this latter scenario as the scenario

with nonstrategic investment. Bushnell et al. (2017b) refer to this kind of scenario as a

scenario with competitive investment. We simulate the nonstrategic investment scenario

with single and separate CO2 markets.

Steady state (2030) BAT capacity assuming a social planner is 34,250 MW (Table 9). In the

case of nonstrategic investment, BAT capacity is 48,150 MW with a single CO2 market while

BAT capacity is 51,300 MW with separate CO2 markets. Since BAT capacity is higher with

nonstrategic investment, electricity prices are lower—$28 per MWh (single CO2 market) and

$27 per MWh (separate CO2 markets)—compared to $34 per MWh in the case of a social

planner. However, cheaper electricity prices in the case of nonstrategic investment comes at

a cost. Average CO2 emissions in the case of the social planner are 374.2 million tons while

emissions assuming nonstrategic investment are about 10% higher. Present discounted wel-

fare for the social planner is $1,142 billion. In the case of the nonstrategic investment, welfare

is $1,134 billion with a single CO2 market and $1,133 billion with separate CO2 markets.

The difference in welfare between the social planner and nonstrategic investment scenarios

are driven by how damages from CO2 emissions enter the objective function for investment.

Unlike the social planner case, nonstrategic investment imperfectly internalizes damages

from CO2 emissions through the CO2 market. Even with a single CO2 market, since BAT

capacity is not subject to a CO2 price, there will be over-investment similar in nature to what

the literature refers to as emissions leakage (Fowlie, 2009). With separate CO2 markets, the

incentive to invest is even greater, exacerbating over-investment and the emissions leakage

problem. Note however that the welfare difference between single and separate CO2 markets

is small and is not driven by the lack of coordination of CO2 markets across states per se,

but by the regulatory treatment of investment.31 Moreover, the present discounted value of

electricity production costs is actually lower ($9.6 billion) with separate CO2 markets than

with a single CO2 market ($12.3 billion).

6.2.2 Strategic Investment

Single Firm. This is an extreme case where the strategic firms fully coordinate investment

to maximize the sum of their profits. Steady state BAT capacity in the case of a single

CO2 market is suppressed to 4,000 MW raising average electricity prices to $89 per MWh.

31See Section A.8 for a different regulatory treatment of new plants.
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Welfare goes down to $1,130 billion. In contrast, steady state BAT capacity with separate

CO2 markets is much higher at 11,300 MW raising electricity prices to $86 per MWh. Inter-

estingly, average CO2 emissions are in fact lower with separate CO2 markets (258.1 million

tons) than with a single CO2 market (270.1 million tons). This is the case because firm

invest in generating units that are more efficient (produce fewer CO2 emissions per unit of

electricity produced) than existing units.

Welfare with separate CO2 markets is $1,139 billion, which is larger than its counterpart

with a single CO2 market. It may seem surprising that settings with an inherent inefficiency–

absence of a single market for correcting the externality–yield higher total welfare. However,

this inefficiency is static in nature when we do not take into account the incentives to invest.

The scenario with separate CO2 markets yield higher welfare because there is a second

distortion that is corrected: profit-maximizing strategic firms take into account the effect

of investment on the evolution of electricity prices. Since, all else equal, an increase in

capacity today leads to a decrease in future prices, firms have a strong incentive to withhold

investment. The additional incentive to invest that separate CO2 markets create in this case

is welfare-enhancing, leading to higher welfare compared to the case of a single CO2 market.

Two-firm Game. We now relax the assumption of fully coordinated investment by intro-

ducing competition. For computational reasons, we study a two-firm leader-follower invest-

ment game.32 We create two “coalitions” of strategic firms by allocating all the existing

plants owned by the strategic firms equally (also in terms of characteristics) into two groups.

We treat one coalition as the leader (invests first) and one coalition as the follower (invests

second). Each coalition decides strategically on investment taking into account profits earned

from the plants it owns and how investment changes endogenous state variables, including

BAT capacity of all firms in both coalitions. We maintain the assumption of competitive

behavior in both the electricity and CO2 markets, and solve the stage game by finding the

market clearing prices. Under the assumption of competitive wholesale markets, equilibrium

quantity and price are not affected by our assumption on the number of investing firms,

conditional on the set of plants in the market.

32Since the state space grows exponentially with the number of firms, we only consider a two-firm invest-
ment game when we explore the strategic use of investment to alleviate some of the computational burden
that the solution of the model entails. In addition, although our empirical model allows for privately-
observed investment cost shocks, we do not identify the distribution of these shocks. Hence, we solve a game
of complete information. In this case, since the existence of a pure strategy equilibrium is not guaranteed
(Doraszelski and Satterthwaite (2010)), we assume a sequential game of investment for each period. This
assumption not only addresses the existence but also the uniqueness of the equilibria. See Bresnahan and
Reiss (1990) Berry (1992) for early examples in static entry game setting, and, more recently, Abbring and
Campbell (2010) in an infinite-horizon setting.
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Introducing competition mitigates the incentives for firms to strategically withhold invest-

ment in order to raise prices. It is still the case, however, that a two-firm game implies

under-investment. Total BAT capacity is 10,400 MW and 17,850 MW for single and sep-

arate CO2 markets, respectively, which are both lower than the socially-optimal level, but

both higher than in the case with fully coordinated investment. In this two-firm setting,

competitors are able to raise prices above efficient levels but not as much as a monopolist

would do: electricity prices are now $72 per MWh (single CO2 market) and $67 per MWh

(separate CO2 markets).

It is still the case that separate CO2 markets dominate a single CO2 market in terms of total

welfare. The difference is $3.8 billion and is explained by the fact that investment rates are

closer to efficient levels in the separate CO2 markets scenario. Moreover, competition has the

effect that most of the added new capacity is built earlier (even when compared to the case

of a social planner). This is because the leader in the investment game will try to preempt

its rival. As a result, unsurprisingly, most of the investment is undertaken by the leader.

7 Conclusion

In this paper, we show that separate markets for an environmental externality, which may

emerge due to lack of policy coordination across jurisdictions, yield almost the same outcomes

as a single market that emerges if coordination is possible. The main driving force behind

our findings is investment when firms participate in an integrated product market, which

mitigates some of the inefficiencies associated with separate markets for the externality.

We set up and estimate a dynamic structural model of production and investment for the

largest wholesale electricity market in the world, the Pennsylvania-New Jersey-Maryland

(PJM) Interconnection. There are targets for carbon dioxide (CO2) emissions associated

with electricity generation achieved via a market for emission permits with two different

implementation regimes. With regional implementation, there is a single CO2 market. With

state-by-state implementation, there are separate CO2 markets, one for each of the states

participating in PJM.

Our model preserves the rich plant-level cost heterogeneity in the data while being tractable

enough to evaluate market outcomes across the two implementation regimes. We achieve

tractability by assuming that market participants invest in the best available technology

(BAT) at the time of the investment, which is consistent with the current interpretation of

the Clean Air Act. In our setup, CO2 emissions from BAT capacity are exempt from the
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targets. As a result, the location of firms’ investment is irrelevant—only the total amount of

investment matters. An interesting direction for future research is to relax this assumption

and explore the geographic dimension of firms’ investment choices.

Given the recent developments in U.S. environmental policy, the future of federal regulations

aiming to curb CO2 emissions is unclear. Therefore, an interesting question which can be

answered using our framework is whether states have unilateral incentives to adopt emission

restrictions in the absence of any federal mandate. The potential benefit of doing so would be

to provide incentives for investment in more efficient capacity, which would bring production

into states that adopt those restrictions. It is also important to emphasize the potential

benefits for consumers in states that do not adopt any emissions regulations since more

efficient capacity may decrease electricity prices for the whole region. Any careful analysis

should take into account the interaction between the product and externality markets.
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8 Tables

Table 1: Capacity by source

year coal gas nuclear oil hydro solid waste wind total

2005 67.8 45.0 31.2 11.8 7.0 0.5 163.5

2006 66.5 47.0 30.0 10.7 7.1 0.6 162.1

2007 66.2 47.6 30.9 10.6 7.4 0.7 0.2 163.5

2008 66.9 48.1 30.4 10.7 7.4 0.7 0.3 164.3

2009 68.1 48.9 30.8 10.7 7.9 0.7 0.7 167.3

2010 67.9 48.5 30.5 10.2 8.0 0.7 0.7 166.5

2011 75.1 50.6 32.6 11.3 8.0 0.7 0.7 178.8

2012 76.1 52.0 32.9 11.5 7.8 0.7 0.7 182.0

(a) MW (thousands)

year coal gas nuclear oil hydro solid waste wind total

2005 41.5 27.5 19.1 7.2 4.3 0.3 100

2006 41.0 29.0 18.5 6.6 4.4 0.4 100

2007 40.5 29.1 18.9 6.5 4.5 0.4 0.1 100

2008 40.7 29.3 18.5 6.5 4.5 0.4 0.2 100

2009 40.7 29.2 18.4 6.4 4.7 0.4 0.4 100

2010 40.8 29.1 18.3 6.1 4.8 0.4 0.4 100

2011 42.0 28.3 18.2 6.3 4.5 0.4 0.4 100

2012 41.8 28.6 18.1 6.3 4.3 0.4 0.4 100

(b) MW (%)

Note: based on PJM state of the market reports available at http://www.monitoringanalytics.
com/reports/PJM_State_of_the_Market/2018.shtml. For additional details, see Section 3.1.
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Table 2: Clean Power Plan mass-based targets (million short tons)

state 2022 2023 2024 2025 2026 2027 2028 2029 2030

DE 5.524 5.355 5.166 5.072 4.971 4.846 4.806 4.762 4.712

IL 32.087 30.907 29.371 28.737 28.050 27.224 26.686 26.102 25.458

IN 30.510 29.389 27.931 27.328 26.676 25.892 25.382 24.829 24.218

KY 14.327 13.793 13.091 12.805 12.494 12.122 11.871 11.598 11.297

MD 18.197 17.518 16.626 16.263 15.869 15.396 15.076 14.730 14.348

NC 1.333 1.286 1.227 1.201 1.174 1.140 1.121 1.101 1.078

NJ 16.678 16.222 15.778 15.519 15.241 14.892 14.858 14.819 14.766

OH 92.147 88.825 84.565 82.775 80.838 78.501 77.061 75.499 73.770

PA 110.196 106.388 101.664 99.598 97.364 94.653 93.188 91.596 89.822

VA 32.341 31.334 30.195 29.638 29.038 28.297 28.040 27.757 27.433

WV 65.266 62.818 59.587 58.277 56.857 55.154 53.986 52.720 51.325

Note: The mass-based targets reported in this table are based on the supporting data file for
CPP compliance from PJM (2016) and are based on electric generating units in the PJM footprint
for each state noting that PJM covers only parts of IL, IN, KY, and NC. The rate-based targets
reported in panel (b) are from the Appendix 5-State Goals sheet in CPP State Goal Visualizer
spreadsheet. A detailed spreadsheet with the calculation of the mass-based targets was provided
to the authors by PJM.
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Table 3: Clean Power Plan baseline generation for 2012

MWh (thousands) MWh (percent)

state coal gas oil total coal gas oil total

DE 1,413 6,672 1,079 9,164 15.41 72.81 11.77 100

IL 84,488 10,001 0 94,489 89.42 10.58 0.00 100

IN 96,335 12,839 3 109,178 88.24 11.76 0.00 100

KY 84,364 3,092 0 87,456 96.46 3.54 0.00 100

MD 16,298 677 2,892 19,867 82.04 3.41 14.56 100

NC 54,920 25,520 0 80,440 68.27 31.73 0.00 100

NJ 2,603 33,665 173 36,440 7.14 92.38 0.47 100

OH 86,345 23,687 384 110,416 78.20 21.45 0.35 100

PA 87,055 57,420 1,662 146,137 59.57 39.29 1.14 100

VA 15,671 36,292 344 52,307 29.96 69.38 0.66 100

WV 70,078 0 0 70,078 100.00 0.00 0.00 100

Note: The numbers in this table are based on existing and under-construction electric generating
units in the PJM footprint for each state in 2012 noting that PJM covers only parts of IL, IN, KY,
and NC. For units under construction, the baseline generation is calculated as capacity factor ×
8, 760 × summer capacity with a capacity factor of 0.60 for coal- and 0.55 for gas-fired units. A
detailed spreadsheet with the unit-level baseline generation was provided to the authors by PJM.

Table 4: List of strategic firms

Abbreviation Full Name

AEP American Electric Power

AES Applied Energy Services

DOM Dominion

DUKE Duke

EXE Exelon

FE First Energy

GEN Genon

NRG NRG

PPL Pennsylvania Power and Light

PSEG Public Service Enterprise Group
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Table 5: Fringe supply

(1) (2) (3) (4)

Variable Log Level Sq. Root Cb. Root

Price 4,485.9443*** 99.5049*** 1,432.4503*** 4,035.5585***

(1,274.8795) (34.6896) (419.2847) (1,127.8839)

CDD -97.4268 -124.8973 -124.4694 -118.9736

(137.1025) (162.0668) (150.4534) (145.9993)

CDD Sq. 11.1935 9.9947 10.3957 10.6223

(6.8215) (7.7162) (7.2300) (7.0770)

HDD 14.7302 52.9018 45.2620 37.9005

(61.2242) (87.4259) (74.2798) (69.3752)

HDD Sq. -0.9712 -2.0324 -1.8877 -1.6781

(1.6612) (2.5088) (2.0611) (1.8983)

Constant -2,465.7182 2,689.1103*** 534.2531 -1,398.0739

(1,762.4441) (682.6402) (1,054.6609) (1,489.6102)

Observations 119 119 119 119

R-squared 0.7979 0.7487 0.7694 0.7783

Year FE Yes Yes Yes Yes

Month FE Yes Yes Yes Yes

Note: The table presents two-stage least squares coefficients estimates for various functional form
specifications of price using monthly data for 2003–2012. In all 4 specifications, the dependent
variable, fringe supply, is in levels, and we include year and month (seasonal) fixed effects. We
use CDD (HDD) to refer to cooling (heating) degree days. The results reported in the paper are
based on the log specification reported in column (1). Standard errors in parentheses are corrected
for heteroskedasticity. The asterisks denote statistical significance as follows: 1% (***), 5%(**),
10%(*).
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Table 6: Target policy equation

(1) (2)

Variable coal gas

Entry 1,070.1457*** 442.6195***

(335.6758) (101.1281)

Capacity own 0.9547*** 1.0184***

(0.1292) (0.0832)

Capacity rival -0.0057 -0.0090

(0.0104) (0.0100)

Price coal -361.3379** 161.7350

(157.0343) (183.6855)

Price gas 225.2231* 8.1209

(118.0989) (18.8208)

Permit price SO2 -444.6747** -118.9773*

(222.5244) (71.4921)

Permit price NOx -1,940.8544* 370.9387

(1,158.7378) (558.2496)

Observations 169 280

R-squared 0.4571 0.6714

Note: The estimates are based on annual operator-level data for 2003–2012. Standard
errors in parentheses are corrected for heteroskedasticity. The asterisks denote statistical
significance as follows: 1% (***), 5%(**), 10%(*).
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Table 7: Cost per megawatt of gas-fired capacity ($/MW)

Fuel est. s.e.

gas 1,389,957 32,345

Note: The reported standard error is calculated resampling moment inequalities and ignores
any 1st-stage estimation error.

Table 8: Investment in gas-fired capacity

Company Size Counts

AEP 0.000 0

AES 2.398 12

DOM 0.000 0

DUK 0.000 0

EXE 2.843 15

FE 1.704 7

GEN 0.573 2

NRG 2.552 12

PPL 0.852 3

PSEG 0.000 0

TOTAL 10.921 51

Note: The numbers reported are for 2013–2062. A company is assumed to invest once a
year. For example, AES invested 12 times during 2013–2062. Size is measured in thousand
megawatt (MW).

42



Table 9: Summary of outcomes for alternative investment scenarios

BAT Electricity CO2 Electricity Consumer Firm CO2 CO2 Total

Capacity Price Emissions Costs Surplus Profit Damages Revenues Welfare

Scenario MW $/MWh tons million $ billion $ billion $ billion $ billion $ billion $ billion

SOCPLAN 34,250 34 374.2 44.8 1,107.8 154.1 119.7 0.0 1,142.2

NST-SIN 48,150 28 414.3 12.3 1,146.9 118.9 131.4 0.0 1,134.4

NST-SEP 51,300 27 419.3 9.6 1,148.8 116.5 132.7 0.2 1,132.8

1F-SIN 4,000 89 270.1 211.7 780.1 348.9 91.9 92.9 1,129.9

1F-SEP 11,300 86 258.1 180.8 800.0 353.9 88.7 73.4 1,138.5

2F-SIN 10,400 72 298.5 147.4 864.4 309.1 99.9 63.8 1,137.5

2F-SEP 17,850 67 311.7 104.3 893.6 305.3 104.0 46.4 1,141.3

Note: BAT refers to best available technology. We report a quantity-weighted average price of electricity
and a quantity-weighted average of CO2 emissions. Total welfare equals consumer surplus (CS) plus firm
profit minus environmental damages calculated using social cost of carbon ($37/metric ton) plus revenues
from the CO2 market(s). The present discounted dollar values are calculated using a discount factor of
0.90 and assuming that the 2030 values correspond to the steady state values. A brief description of the
scenario abbreviations is available in Table 10.

Table 10: Description of alternative investment scenarios

Abbreviation Description

SOCPLAN Social planner

NST-SIN Non-strategic investment, single CO2 market

NST-SEP Non-strategic investment, separate CO2 market

1F-SIN Single-firm investment, a single CO2 market

1F-SEP Single-firm investment, a separate CO2 markets

2F-SIN Two-firm investment game, single CO2 market

2F-SEP Two-firm investment game, separate CO2 markets

Note: the table provides a brief description of the alternative investment scenarios discussed in detail in
Section 6.

43



44



9 Figures

Figure 1: Economic intuition
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(b) dynamic model

Note: This figure plots the total welfare obtained under a single market for the externality and
separate markets, for different capacity levels. In particular, for the social planner’s choice of
capacity, or for the private optimal (in the case of both under- or over-investment. Panel (a)
represents a static approach, where capacity does not adjust when we move from a single market
to separate markets. Panel (b) allows capacity choices to adjust to the type of the market for the
externality.
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Figure 2: Area covered by the Pennsylvania-Jersey-Maryland (PJM) Interconnection

 

 

 

Source: http://ieefa.org/pjms-reform/ 

Source: http://ieefa.org/pjms-reform/
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Figure 3: Electricity and fuel prices (2003–2012)
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Note: The electricity prices are monthly load-weighted system-wide real-time prices from PJM.
The coal and gas prices are from EIA. In panel (b), we plot the gas share of coal plus gas net
generation for power plants in PJM using data from EIA.
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Figure 4: Overview of the model timing
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Note: the bold text emphasizes the fact that investment in 2013 affects the cost functions in 2014.
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Figure 5: Merit order invariance with inframarginal unitsFigure 4: Merit order invariance with inframarginal units
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Figure 6: Merit order and best available technology
Figure 2: Merit Order
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Figure 3: Best available technology
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Note: The step function Ct (black solid line) indicates the marginal cost curve prior to
investment at time t. The step function Ct+1 (gray dashed line) indicates the marginal cost
curve following a hypothetical investment of 400 MW in best available technology with a
cost of $10/MWh. The vertical distance between the two curves at their origin shows the
improvement in marginal costs between the available technology at time t and time t + 1.
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(b) best available technology

Note: In panel (a), the step function emerges by ordering available sources to serve demand
in terms of their marginal costs. The sources with the lowest (highest) costs are ordered
first (last). In panel (b), The step function Ct (black solid line) indicates the marginal cost
curve prior to investment at time t. The step function Ct+1 (gray dashed line) indicates
the marginal cost curve following a hypothetical investment of 400 MW in best available
technology with a cost of $10/MWh. The vertical distance between the two curves at their
origin shows the improvement in marginal costs between the available technology at time t
and time t+ 1.
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Figure 7: Paths of exogenous variables, 2013–2062
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Figure 8: BAT Investment in gas-fired capacity, 2013–2062
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Note: BAT refers to best available technology. The figure shows only years for which there is
investment. We divide firms in two groups and report their investment levels in two panels so that
the figure is more legible. In the 1st group, and consistent with the entries of Table 8, only Applied
Energy Services (AES) and Exelon (EXE) invest.

52



Figure 9: Paths of endogenous variables, 2013–2062
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Figure 10: Electricity prices implied by the model compared to NYMEX futures
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Figure 11: Regional CPP mass-based targets
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Note: The mass-based target in this figure is based on the supporting data file for CPP compliance
from PJM (2016) and are based on electric generating units in the PJM footprint for each state
noting that PJM covers only parts of IL, IN, KY, and NC. We plot the sum of state mass-based
targets from panel (a) of Table 2.
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Figure 12: Electricity generation cost and total welfare for the exogenous investment scenario
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A.1 Stylized Model

We illustrate the inefficiencies that arise with uncoordinated emissions regulations and how

a single product market can mitigate these inefficiencies. We also examine the role of invest-

ment as the main mechanism for coordinating uncoordinated regulations.

We make a series of assumptions for the purpose of illustration. First, we assume that

there are only two states, say, Pennsylvania (PA) and Delaware (DE). Second, there is a

single electricity-generating firm. The firm produces quantities qPA and qDE of electricity

in plants located in states PA and DE, respectively. The firm can reduce its CO2 emissions

in state PA (DE) by an amount aPA (aDE). The firm’s total cost function is given by

C(qPA, qDE, aPA, aDE). Furthermore, there is a single wholesale electricity market covering

both states and the firm acts as a price taker. Let p be the wholesale electricity price and

consider a mass-based target for CO2 emissions while assuming that one unit of electricity

generation implies one unit of emissions. Denote the mass-based targets as XPA and XDE.

Regional compliance requires:

(qPA − aPA) + (qDE − aDE) ≤ XPA +XDE. (A1)

State compliance requires:

qPA − aPA ≤ XPA (A2)

qDE − aDE ≤ XDE. (A3)

Without loss of generality, suppose that there is a capacity constraint in state DE. For sim-

plicity, we express the capacity constraint as a constraint on output: let Q be the maximum

total output that plants in state DE can produce. The firm can relax the capacity constraint

by investing in new capacity that increases Q by i, i.e. next period’s maximum total output

is now Q′ = Q+ i. Assume total investment has cost Γ(i).

We assume that the cost function depends only on the sum of output across the two states,

i.e. C(qPA, qDE, aPA, aDE) = C(qPA + qDE, aPA, aDE). Hence, cost convexities arise only

through the output constraint. Given the cost assumption, the firm’s profit in each period t

is given by:33

π(qt, at) = p× (qPAt + qDEt)− C(qPAt + qDEt, aPAt, aDEt). (A4)

33For simplicity, we assume that pt = p for all t.
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The firm chooses electricity generation, emissions reduction, and investment in order to

maximize its present discounted sum of profits:

∞∑
t=0

βt [π(qt, at)− Γ(it)] . (A5)

The firm’s profit maximization is subject to the capacity constraint, and either the regional or

state-by-state CO2 compliance constraint. The corresponding Bellman equation (constraints

suppressed) is given by:

V (Q) = max
q,a,i

π(q, a)− Γ(i) + βV (Q′). (A6)

The following lemma is useful in characterizing the solution to the firm’s maximization

problem:

Lemma 1. Let η ≥ 0 be the Lagrange multiplier for the output constraint. For both regional

and state compliance:

V (Q) = Ṽ (Q; η) + constant, (A7)

where Ṽ ′(Q; η) = 0 when η = 0, and Ṽ ′(Q; η̃) > Ṽ ′(Q; η) for η̃ > η.34

Proof. Let η ≥ 0 be the Lagrange multiplier for the output constraint, and λ ≥ 0 for

the CO2 emissions constraint (λPA ≥ 0 and λDE ≥ 0 for state compliance). We start

by conjecturing the solution, V (Q) = Ṽ (Q; η) + constant, with Ṽ ′(Q; 0) = 0 and Ṽ ′(Q; η)

increasing in η, and then solve the problem to confirm the consistency of the conjecture.

Consider regional compliance. Suppose Q is large enough such that capacity does not bind

at the optimum, i.e. η = 0. Thus η = 0 and so V ′(Q′) = 0 under our conjecture. Since the

marginal benefit of investment is equal to βV ′(Q′), then i∗ = 0 and Q′ = Q. Therefore, we

have:

V (Q) =
1

1− β

π(q∗A, q
∗
B, a

∗
A, a

∗
B) + λ∗

 XA +XB

−(q∗A − a∗A)− (q∗B − a∗B)


 , (A8)

where (q∗A, q
∗
B, a

∗
A, a

∗
B) solve the first order conditions with respect to output and abatement.

Since none of the first order conditions are functions of Q when η = 0, optimal output and

abatement levels are also not functions of Q. Hence V (Q) is just a constant and therefore

V ′(Q) = 0. The same argument holds for state compliance.

34Formally, η is a function of (Q,XPA, XDE) so the conditions correspond to (1) a triplet (Q,XPA, XDE)

such that η(Q,XPA, XDE) = 0, and (2) a pair of triplets (Q,XPA, XDE) and (Q, X̃PA, X̃DE) such that

η(Q, X̃PA, X̃DE) > η(Q,XPA, XDE).
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Now suppose Q is such that η > 0. This implies q∗DE = Q, and so V (Q) will be some function

of Q. The envelope theorem implies V ′(Q) = η + Ṽ ′(Q′; η) which is indeed increasing in η

under our conjecture. Again, the same argument holds for state compliance.

We first solve the regional compliance case. The first order conditions for output and abate-

ment imply the following:

p =
∂C

∂qPA
+ λ =

∂C

∂qDE
+ λ+ η. (A9)

Since ∂C
∂qPA

= ∂C
∂qDE

for all qPA and qDE under our assumed cost function, we have η = 0.

Intuitively, the output constraint never binds since the firm can freely reallocate production

between the two states without impacting total cost. The lemma above implies V ′(Q) = 0

when η = 0. Hence, the marginal benefit of investment is zero and thus investment is zero

(i∗ = 0). Finally, output and abatement are the solutions to the following equations:

∂C

∂aPA
=

∂C

∂aDE
(A10)

∂C

∂qPA
=

∂C

∂qDE
. (A11)

We refer to an allocation (q∗PA, q
∗
DE, a

∗
PA, a

∗
DE) as efficient if it solves Equation A10 and

Equation A11. The optimal allocation under regional compliance is efficient. For our first

result, we show that as long as Q is sufficiently large, then the optimal solution under state

compliance is efficient as well. The key idea is that the firm will reallocate output across

states to balance CO2 price differences. When there is enough capacity to facilitate the

desired reallocation, then CO2 prices will converge to a single value.

Proposition 1. As long as the capacity constraint is non-binding, the solution under state

compliance is efficient.

Proof. The first order conditions for output and abatement imply:

p =
∂C

∂qPA
+ λPA (A12)

p =
∂C

∂qDE
+ λDE + η. (A13)

Consider a solution where the capacity constraint is non-binding. Thus, the first order
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conditions simplify to
∂C

∂qDE
− ∂C

∂qPA
= λPA − λDE.

Since ∂C
∂qPA

= ∂C
∂qDE

for all qPA and qDE under the assumed cost function, λPA = λDE and

marginal abatement costs across the two states are equal.

For low levels of capacity in DE, the capacity constraint may bind and it would be optimal

to invest under state compliance. The extent that the capacity constraint binds turns out

to be related to the difference in CO2 prices, hence, to the difference in marginal abatement

costs, across states. Thus, the friction introduced by uncoordinated CO2 regulation will

drive incentives to invest as the following proposition summarizes.

Proposition 2. The marginal benefit of investment is greater when CO2 prices are more

dispersed across states (e.g. λPA � λDE), i.e. there is greater mismatch in marginal abate-

ment costs. Therefore, the incentives to invest are higher. As a result, future mismatch in

marginal abatement costs is reduced. If investment costs a low enough, then the stead state

solution is efficient.

Proof. The output and abatement FOCs, along with the assumption on the cost function,

imply:

η = λPA − λDE =
∂C

∂aPA
− ∂C

∂aDE
≥ 0.

We show that the value function V (Q) is such that V ′(Q) is increasing in η.

The marginal benefit of investment is βV ′(Q) with corresponding FOC:

Γ(i) = βV ′(Q).

Hence, a larger η implies a greater marginal benefit from investment and greater incentives

to invest.

With i > 0, next period’s capacity constraint in DE is relaxed, which allows output to be

transferred from PA to DE, relaxing CO2 emissions constraint in PA. Thus, λPA − λDE

decreases. If investment costs are low enough, λPA − λDE ↓ 0 in the steady state.

To summarize, we have shown through a stylized model that in the presence of an integrated

product market and in the absence of frictions, single and separate CO2 markets both yield

efficient solutions. The main drivers behind this result are perfect reallocation of output and

CO2 price adjustments. We also show that with separate markets, there is an added benefit
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to investment. When CO2 price differences are significantly large, the firm would like to

reallocate output. However, capacity constraints may prevent it from doing so. Investment

facilitates reallocation of output when capacity constraints are binding. Importantly, the

marginal benefit of investment is positively related to the dispersion in CO2 prices across

states.

In terms of social welfare, actual investment may be too small for, at least, two reasons.

First, the constraints imposed on CO2 emissions may be too lenient due to political reasons,

and, hence, not enough to encourage investment in cleaner capacity. Second, firms may

exercise market power in the wholesale energy market by withholding capacity and delaying

retirements and investment. Hence, new capacity with separate CO2 markets may actually

be closer to the socially optimal level compared to the case with a single CO2 market.

A.2 Data

Our empirical analyses require us to track the expansion of the PJM footprint over time due

to zone additions. We identified the additions using publicly available data on estimated

hourly load by region in the PJM Markets & Operation website, as well as reviewing the

PJM State-of-The-Market (SOM) Reports from Monitoring Analytics; the reports are also

publicly available.35

We identified firms using the operator and owner fields in the EIA-860 data, which we

complemented with information from the Edison Electric Institute (EEI), the companies’

websites and annual reports, and the SNL merger database.36 We identified plants in the

PJM footprint using the approach in Knittel et al. (2019).

Monthly plant-level fuel prices are available from EIA-423, FERC-423, and EIA-923. We also

obtained access to confidential data for non-utility plants. Generation and fuel consumption

data are from EIA-906/920 and EIA-923 beginning in 2008.37 The annual data on plant

35See http://www.pjm.com/markets-and-operations/energy/real-time/loadhryr.aspx and http:

//www.monitoringanalytics.com/reports/PJM_State_of_the_Market/2015.shtml. Major zone addi-
tions took place in 2004 and 2005 when Comed, Dayton, American Electric Power, Duquense, and Dominion
joined PJM. The next major additions were in 2011 and 2012, when American Transmission Systems (First
Energy) and Duke Energy Ohio & Kentucky joined PJM. The latest addition was East Kentucky Power
Cooperative in 2013.

36See http://www.eei.org/about/members/uselectriccompanies/Pages/usmembercolinks.aspx for
the U.S. Member Company links of EEI. Note that we have also taken into account mergers that took
place during the period that is relevant for our analysis (e.g., the Mirant/RRI merger to form GenOn
Energy in Dec-2010, and the NRG Energy/GenOn Energy merger in Dec-2012.

37See http://www.eia.gov/electricity/data/eia423/ and http://www.eia.gov/electricity/

data/eia923/.
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operating expenses are from SNL.38

Annual plant-level capacities are from EIA-860. The capacities in EIA-860 are recorded at

the electric generating unit level and a power plant may have several units. When needed,

we sum the capacities of all units that belong to the same plant. We use the primary energy

source for each unit to calculate coal- and gas-fired capacities.39 We account for intermittency

of renewables by using the capacity factors from Table 6.7.B from the EIA Electric Power

Monthly for December 2014, averaged for the period 2008 through 2013. These factors are

highly comparable to the ones we identified in PJM reports regarding resource adequacy

planning.

System-wide real-time metered load data as consumed by the service territories and loca-

tional marginal prices are available from the PJM website. The data are available at an

hourly frequency. In the case of load, we use total load during a month. In the case of

prices, we calculate a monthly load-weighted average. We calculate net imports using data

on real-time scheduled interchange from PJM for the late part of the analysis.40

The SO2 and seasonal NOx permit prices are from Evolution Markets, a permit brokerage

firm we identified from the EPA website.41 The Weather used in the estimation of the fringe

supply equations are from the National Oceanic and Atmospheric Administration (NOAA).42

A.3 Descriptive Statistics

Tables A1 and A2 provide information regarding the number of plants, generation, and

capacity that the strategic firms account for between 2003 and 2012. The number of plants

for the strategic firms increased from 47 in 2003 to 109 in 2012. We also see an increase in

the number of both coal- and gas-fired units for strategic firms. In the former case, we see

an increase from 55 to 135 units. In the latter case, we see an increase from 107 to 262 units.

38It is the field Unit Non-Fuel O&M reported under the Whole Plant Operating Annual-Operating Ex-
penses in the Power Plants database.

39 See http://www.eia.gov/electricity/data/eia860/. The total generating capacity for PJM calcu-
lated using these data is within 5% of the generating capacity reported in PJM State-of-the-Market Reports
for 2003–2012.

40See http://www.pjm.com/markets-and-operations/ops-analysis/historical-load-data.aspx

and http://www.pjm.com/markets-and-operations/energy/real-time/lmp.aspx, for the load and
price data, respectively. See http://www.pjm.com/markets-and-operations/ops-analysis/nts.aspx

for net tie schedule (NTS) data. Erin Mansur generously provided us all NTS data for 1999–2010 with the
exception of 2007–2009, which we are missing. We impute values for each month in this 3-year period using
the average of 2006 and 2010. For example, we use the average of Jul-2006 and Jul-2010 to construct the
monthly value for Jul-2007.

41See http://www.evomarkets.com/environment/emissions_markets.
42See http://www.ncdc.noaa.gov/cdo-web/search/#t=secondTabLink
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The strategic firms’ share of coal-fired (gas-fired) capacity increased (decreased) from 77%

(60%) in 2003 to 85.5% (50%) in 2012. During this period, the strategic firms’ share of coal-

(gas-) fired generation increased from 78% (42%) to 87% (51%).

Summary statistics related to the cost functions for each of the strategic firms in our model

for 2012 are available in Table A3. We report summary statistics for 2012 given that this is

the year that is relevant for the estimation of our structural model using monthly unit-level

observations noting that a power plant may have more than one electric generating unit.43

A casual look at the table shows substantial variation both across and within firms, which

we preserve when we estimate our dynamic model.

In Table A4, we show the coal- and gas-fired capacity for each of the 10 strategic firms

for 2003–2012. Several patterns emerge that offer support for our modeling assumptions.

Investment is lumpy and, in general, we see more action in gas-fired capacity than in coal-fired

capacity. Capacity changes take place only in a subset of years for each of the strategic firms,

and they account for a notable fraction of existing capacity. For example, AEP increased

its coal-fired capacity from around 15,300 MW in 2006 to 21,000 MW in 2007, an increase

of approximately 37%. AEP also increased its gas-fired capacity from 1,700 MW in 2006 to

3,237 MW in 2012. As another example, the gas-fired capacity of Genon (GEN) increased

from 1,919 MW in 2008 to 2,839 in 2009. Moreover, the generation portfolio differs across

firms. AEP dominates coal followed by First Energy (FE) and Genon. The three companies

account, on average, for 29%, 23%, and 14% of the coal-fired capacity in each year between

2003 and 2012. PSEG, Dominion (DOM), and AES, dominate gas accounting for 26%, 23%,

and 12% of the capacity, on average, during the same 10-year window.

A.4 Endogenous State Variables

In Figure A1, we first show time-series plots of coal and gas capacity in panels (a) and (b).

Given the absence in investment, coal capacity exhibits no variation with AEP accounting for

about 1/3 of the approximately 52,000 MW of coal-fired capacity, followed by First Energy

and Genon, each accounting for around 15%. Dominion accounts for 10%, while the share

of the remaining firms is below 10%. In the case of gas, Dominion, PSEG, AEP, and Duke

(DUK) control most of the capacity despite the lack of investment. Genon invests for the

first time in 2013 and then again in 2056. PPL also invests in 2013 for the first time and

then again in 2050. AES, Exelon (EXE), First Energy, and NRG invest at various points in

43The all-inclusive cost of 1 MWh of electricity (cost) exhibit variation by unit and month. The fuel prices
exhibit variation by plant and month. The VOM costs and heat rates exhibit variation by plant only.
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time during the 50-year period and their combined share of gas capacity increases from 24%

in 2013 to 35% in 2062.

Due to lack of investment, there is no improvement in the heat rate of coal-fired capacity,

with NRG and PSEG being clear outliers with heat rates exceeding 11.5 MMBtu/MWh

(panel (c)). Both heat rates are almost 15% higher than the lowest heat rate of 10.1 that

we see for First Energy and PPL. In the case of gas, as expected, we see no improvement in

heat rates for AEP, Dominion, Duke, and PSEG due to lack of investment (panel (d)). The

firms that invest, however, enjoy a significant improvement in their heat rates.

In Figure A2, we first provide the time-series plots of coal and gas generation in panels

(a) and (b), respectively. Dominion, one of the two firms with the largest amounts of gas-

fired generation, after experiencing a decrease of 25 million MWh between 2013 and 2032,

recovered reaching 49 million MWh by 2062. For PSEG, which is the next largest player

in gas-fired generation, the recovery after the significant decrease of 14 million MWh early

in the sample, the recovery is not as strong as that for Dominion. The remaining firms

all generally experience an increase in gas-fired generation. Duke barely had any gas-fired

generation up until 2030, but it reaches 25 million MWh by 2062.

AEP is leading coal-fired generation with more than 100 million MWh of coal-fired capacity

in every year between 2014 and 2062 reaching 140 million MWh by the end of the 50-year

window. Genon, the second largest player in coal-fired generation, experiences a significant

increase in coal-fired generation from 16 million MWh in 2013 to 60 million MWh in 2062.

We also see an increase in coal-fired generation for Dominion, Duke, and PPL.

Duke enjoys the highest profits among all strategic firms during the entire 50-year period in

panel (c). Duke also enjoys the lowest costs followed by Dominion with the remaining firms

experiencing higher costs during the entire period. In the case of Duke, low costs explain

the large profits. AEP’s large profits are driven by its large volume of coal-fired generation,

while those for Dominion by its large volume of gas-fired generation.

A.5 Investment Cost Heterogeneity

We now present in more detail the estimation routine for the investment cost parameters

and, in particular, we explain how the procedure allows for heterogeneity that follows a

distribution for which we estimate the first moment and remain agnostic about the second

moment. Noting that we assume linear investment costs and we focus on investment in

gas-fired capacity only, the marginal cost of investment exhibits variation across firms and
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time:

Γjt = γjt × ingjt , (A14)

where γjt = γ + νjt with νjt being a privately known shock that is IID across firms and time

and follows the common distribution Gν(0, σ
2
ν). Given that firm i does not know the draw

of its marginal cost of investment in the beginning of period t when investment decisions are

made, the per-period payoff function is given by:

Eνjt [πjt] = πjt − Eνjt
(
γjti

ng
jt

)
= πjt − Eνjt (γjt)Eνjt

(
ingjt
)
− Cov

(
γjt, i

ng
jt

)
= πjt − γEνjt

(
ingjt
)
− Cov

(
γjt, i

ng
jt

)
(A15)

For estimation, we consider additive positive and negative perturbations of the form ĩngjt =

ingjt +χ, where χ is a constant that is positive for the former and negative for the latter, such

that the implied perturbed value function for firm j is given by:

Eνjt [π̃jt] = πjt − γEνjt
(̃
ingjt

)
− Cov

(
γjt, ĩ

ng
jt

)
= πjt − γ

(
Eνjt

(
ingjt
)

+ χ
)
− Cov

(
γjt, i

ng
jt

)
. (A16)

The last equality follows from the fact that Cov
(
γjt, i

ng
jt + χ

)
= Cov

(
γjt, i

ng
jt

)
. Importantly,

the moment condition, which will use the average difference between the value function based

on (A15) and the value function based on (A16) across perturbations, is not a function of the

covariance term as it cancels out once we calculate the difference. Therefore, the additive

perturbations allow us to infer the first moment of the heterogeneity in investment costs but

not the second.

A.6 Emissions Market Clearing Algorithm

With regional CPP implementation, two markets have to clear simultaneously: (i) the whole-

sale market for electricity and (ii) the region-wide CO2 market. The need to look for a joint

solution to both markets arises due to the complementary nature of electricity output and

CO2 emissions. A change in the CO2 price affects the relative cost of the different fuels. This

in turn changes the relative position of each plant in the merit order of the aggregate elec-

tricity supply and, therefore, impacts the equilibrium in that market. With state-by-state

CPP implementation, there are 11 CO2 markets and 11 different CO2 prices. We now have

to clear these 11 markets together with the PJM wholesale market simultaneously.
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Let qist denote the electricity output of source i located in state s at time t. In addition,

HRist is the associated heat rate and rist is the CO2 emission rate. The mass-based target

of CO2 emissions for state s is Est. Finally, let S denote the set of the 11 PJM states.

With regional implementation, the equilibrium carbon price is the solution to the following

problem:

PC
t = min{P :

∑
s∈S

∑
i∈s

(qist(P )×HRist × rist) ≤
∑
s

Est}. (A17)

With state-by-state implementation, the solution is given by the following vector of CO2 prices:

PC
t = min{P :

∑
i∈s

(qist(P)×HRist × rist) ≤ Est} ∀s ∈ S. (A18)

With state-by state implementation, the algorithm to solve the minimization problem is the

following:

• Step 1: start with zero CO2 prices for all states and compute the PJM wholesale

market equilibrium.

• Step 2: If at least one state has excess emissions, proceed to Step 3; otherwise, end.

• Step 3: Increase the CO2 price of the state that has the most excess emissions by $1

per short ton.

• Step 4: Compute PJM wholesale equilibrium and check for excess emissions.

With regional implementation, we treat the entire PJM area as a single state and the algo-

rithm works in the same way.

A.7 Dynamic Analysis: Optimal Investment Details

The state vector, which consists of both exogenous and endogenous variables, is an important

component of our dynamic model. We discuss the evolution of the exogenous state variables

in Section 5.3 so our focus here is on the endogenous state variables. The first endogenous

state variable is the current BAT capacity, which is also the cumulative investment. The

second state variable is the average heat rate for each strategic firm. In order to solve our

model, we assume that in each time period the sum of BAT capacity across all strategic

firms cannot be more than 60,000 MW and we discretize the capacity dimension of the state
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space using an equally-spaced fine grid with increments of 50 MW. For the BAT heat rate

dimension of the state space, we use three nodes corresponding to the minimum, average,

and maximum heat rates for 2013–2030. We create a dense grid for the state along the

BAT heat rate dimension using a cubic spline. Interpolating the BAT capacity dimension

over a small number of nodes does not capture well enough investment behavior because the

interpolation is too smooth relative to the step cost function.

Guided by our estimates, we assume that the strategic firms invest only in gas-fired capacity.

Moreover, we only allow positive amounts of investment (no divestment) and assume that

capacity does not depreciate. Therefore, BAT capacity either increases or stays at its current

level. This assumption allows us to solve the model iteratively because once aggregate BAT

capacity reaches 60,000 MW no firm has the incentive to invest and BAT capacity remains

at this level. The value function when aggregate BAT capacity equals 60,000 MW is just

π/(1 − β), where π is the firm’s payoff at this state and β is the discount factor. We can

then solve backwards for the value function along the BAT capacity dimension.

Finally, the investment problem is non-stationary because prices, demand, new investment

heat rates, and CO2 targets, change each year. To solve the model, we fix all exogenous

variables at their 2030 levels post 2030, and solve the associated stationary infinite-horizon

problem. Once we have the value functions for 2030, we proceed backwards, starting in 2029

and ending in 2013, noting that the exogenous variables change every year.

A.8 New Source Complements

In the context of the Clean Power Plan, states can voluntarily include emissions from new

capacity in their CO2 targets to address leakage. To accommodate new capacity in the

CO2 targets, the EPA provides an additional emissions budget, the New Source Complements

(NSCs) to Mass Goals under Section 111(d) of the Clean Air Act, which implies an upward

adjustment to the targets.44

To understand the implications of policies to address leakage, we simulate a single-firm

optimal investment scenario by taking the equilibrium CO2 prices from the scenario with

44The EPA has developed a methodology for quantifying these NSCs that may be summarized as follows.
The EPA first calculates the incremental generation needed for each interconnection (Eastern, Western,
Texas) to satisfy projected growth in demand from 2012 levels. Following a series of adjustments, the
EPA apportions the remaining incremental generation to states on the basis of each state’s 2012 share
of the interconnection’s total generation. Finally, the EPA converts state-level generation to state-level
emissions using a predetermined rate (lbs/MWh). For a more detailed discussion of the NSCs, we refer
the interested reader to the Technical Support Documentation https://www.epa.gov/sites/production/

files/2015-11/documents/tsd-cpp-new-source-complements.pdf.
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industry-profit maximizing and a single CO2 market (1F-SIN), but not exempting emissions

from BAT capacity from CO2 prices. Given that this approach is equivalent to adjusting the

CO2 targets, we use the term NSC to refer to this scenario.

Our results point to an alarming unintended consequence of policies like the NSCs that are

based on projected demand growth—that is, on anticipated investment—and not on actual

investment. As Adair and Hoppock (2015) point out, if firms do not invest in new capacity ex

post, the NSCs effectively reduce the stringency of the regulation by increasing the emissions

budget. In fact, we find that under the NSC, firms do not invest. An important issue arises

due to a one-sided commitment problem: the regulators commit to targets that accommodate

new capacity without firms’ commitment to build this new capacity. Once the new targets

are set and fixed, incentives to invest decrease and it is in the firms’ interest not to invest in

the first place.

More generally, the one-sided commitment problem provides a rationale for the differential

regulatory treatment of new capacity relative to existing capacity, as embedded in the design

of the Clean Air Act (Sections 111(b) and (d)). To solve the commitment problem, the

regulator has to condition the additional emissions budget allocation on investment actually

materializing and this new capacity being used. But this means that there will be a separate

accounting of emissions from new sources versus from existing ones, which would necessitate

different CO2 prices for new and existing sources.
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Table A1: Number of plants and units by firm type

year
plants coal units gas units

non-strategic strategic non-strategic strategic non-strategic strategic

2003 73 47 53 55 109 107

2004 108 95 96 142 186 170

2005 149 107 138 160 265 186

2006 133 118 109 182 236 215

2007 118 107 71 149 229 229

2008 119 113 71 150 229 255

2009 119 114 70 153 231 262

2010 130 107 86 133 252 265

2011 139 114 81 153 300 251

2012 156 109 85 135 334 262

Table A2: Capacity and generation by firm type

all firms strategic firms

year
capacity generation capacity generation

coal gas coal gas coal % gas % coal % gas %

2003 26.03 16.43 157.50 13.76 76.74 60.04 77.91 41.83

2004 59.56 33.79 363.49 29.47 80.20 52.33 81.10 54.11

2005 67.85 38.27 421.99 39.42 76.98 48.72 79.01 36.48

2006 67.75 39.67 418.96 41.38 85.10 56.48 86.56 42.59

2007 55.63 42.43 357.58 51.40 89.30 54.46 88.83 52.54

2008 55.53 43.92 343.44 49.22 90.16 55.89 90.11 51.15

2009 56.80 45.68 293.38 62.42 90.34 56.74 90.58 51.76

2010 49.06 48.24 262.59 85.96 86.42 55.11 87.61 52.81

2011 57.06 51.94 284.40 106.89 88.04 48.84 90.40 48.67

2012 60.19 55.34 274.60 146.71 85.48 50.19 87.25 50.88

Note: capacity in thousand MW and generation in million MWh. The 4 rightmost columns of the
table show the percentage of capacity and generation by fuel type that strategic firms account for.
For example, strategic firms account for 76.74% of coal capacity and 60.04% of gas generation in
2003.
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Table A3: Summary statistics for strategic firms

firm obs units
cost fuel price VOM heat rate

mean s.d. mean s.d. mean s.d. mean s.d.

AEP 468 39 42.63 15.51 2.88 0.08 14.61 14.15 10.17 0.55

AES 168 14 36.12 3.26 3.34 0.08 10.27 1.67 10.16 0.89

DOM 276 23 68.10 22.67 3.58 0.17 35.33 18.29 10.22 0.39

DUK 108 9 51.16 1.06 2.52 0.11 26.30 0.00 10.36 0.23

FE 168 14 55.72 32.30 2.96 0.08 32.61 31.29 10.08 0.20

GEN 216 18 56.15 19.92 2.90 0.10 26.78 20.93 10.04 0.51

NRG 108 9 68.69 6.20 3.59 0.64 34.10 4.97 11.20 0.36

PPL 72 6 43.30 1.45 3.60 0.30 12.25 0.50 10.08 0.07

PSE 36 3 62.96 6.52 4.05 0.30 17.22 0.39 11.69 0.03

ALL 1620 135 50.03 22.28 3.04 0.34 22.68 21.33 10.16 0.49

(a) coal

firm obs units
cost fuel price VOM heat rate

mean s.d. mean s.d. mean s.d. mean s.d.

AEP 300 25 33.04 12.30 3.30 0.49 10.06 10.75 7.50 0.87

AES 180 15 78.83 37.66 5.18 1.51 11.82 0.00 13.00 0.47

DOM 576 48 49.09 25.48 4.07 0.75 19.83 21.77 8.14 1.45

DUK 264 22 49.93 7.28 2.91 0.52 30.88 0.00 7.36 0.53

EXE 96 8 69.07 7.15 4.11 0.49 9.65 0.00 14.45 0.00

FE 300 25 32.41 10.69 3.84 0.42 9.68 0.99 7.60 1.39

GEN 240 20 33.13 7.98 3.84 0.65 9.64 0.09 7.41 1.17

NRG 264 22 65.44 20.73 3.56 0.61 8.79 0.19 13.40 1.54

PPL 168 14 40.86 10.07 3.15 0.49 12.62 3.49 9.08 2.21

PSE 756 63 33.70 8.08 3.82 0.78 5.15 1.66 7.86 1.09

ALL 3144 262 40.19 15.73 3.55 0.78 14.77 14.03 7.81 1.28

(a) gas

Note: Cost refers to all-inclusive costs of producing 1 MWh of electricity ($/MWh). The fuel prices
are in $/MMBtu. The variable operations-and-maintenance (VOM) costs are in $/MWh. The heat
rate is in MMBtu/MWh. The mean and standard deviations reported are weighted by generation.
The statistics reported are based on data for the 10 strategic firms listed in the leftmost column.
An observation is an electric generating unit by month-of-sample combination in 2012. The full
names of the firms listed in the leftmost column are available in Table 4.
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Table A4: Capacity of strategic firms (MW, thousands)

firm 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

AEP 0.000 15.583 15.299 15.299 20.096 20.096 20.096 11.669 20.096 19.439

AES 0.378 3.899 3.899 3.899 3.664 3.664 3.664 3.893 3.893 3.893

DOM 0.000 5.504 5.504 5.504 5.575 5.575 5.575 5.495 5.495 6.163

DUK 0.000 0.000 0.000 4.025 0.000 0.000 0.000 0.000 0.000 3.810

EXE 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.354 0.000

FE 7.462 12.635 17.781 17.781 9.901 9.901 9.901 9.901 9.901 9.340

GEN 3.198 3.712 3.719 9.353 8.321 8.906 9.672 8.558 9.938 8.648

NRG 5.022 5.022 5.040 1.296 1.278 1.278 1.278 1.278 1.278 1.278

PPL 3.513 3.513 3.496 3.496 3.183 3.183 3.200 3.200 3.200 3.200

PSE 1.313 1.313 1.313 1.313 1.313 1.313 1.313 1.313 1.313 1.313

ALL 21.780 52.075 56.945 62.860 54.226 54.811 55.594 46.202 55.467 57.084

(a) coal

firm 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

AEP 0.000 0.000 1.700 1.700 3.237 3.237 3.237 3.237 3.237 3.915

AES 1.744 3.354 3.354 3.336 2.539 2.572 2.572 2.572 1.606 0.828

DOM 0.000 5.179 4.873 4.873 5.749 6.106 6.285 6.285 6.844 6.844

DUK 0.000 0.000 0.000 3.889 2.737 0.000 2.737 3.462 3.462 3.578

EXE 0.230 0.000 0.000 0.000 0.407 0.407 0.407 0.407 0.407 0.407

FE 1.355 1.756 2.225 2.552 1.825 1.852 1.834 1.834 1.834 1.719

GEN 0.876 0.326 0.326 1.564 1.919 1.919 2.839 2.839 2.839 2.839

NRG 0.087 0.060 0.144 0.100 0.000 0.841 0.951 0.951 0.951 0.951

PPL 0.000 0.000 0.000 0.000 0.550 0.644 0.644 0.639 0.099 2.577

PSE 4.786 5.445 4.524 5.710 5.710 5.710 5.710 5.710 5.255 5.574

ALL 9.077 16.121 17.146 23.724 24.672 23.286 27.214 27.934 26.532 29.232

(b) gas

Note: The full names of the firms listed in the leftmost column are available in Table 4.
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Table A5: PJM Real-Time Energy Market

year price load value

2003 $41.23 37,395 $13,506,131,646

2004 $44.34 49,963 $19,406,548,519

2005 $63.46 78,150 $43,444,335,240

2006 $53.35 79,471 $37,140,453,966

2007 $61.66 81,681 $44,119,306,030

2008 $71.13 79,515 $49,545,701,082

2009 $39.05 76,034 $26,009,558,652

2010 $48.35 79,611 $33,718,920,606

2011 $45.94 82,546 $33,219,349,982

2012 $35.23 87,011 $26,852,882,363

Note: The PJM real-time average hourly load (MWh) is from Table 2-30 of the PJM State of the
Market Report 2012 available at http://www.monitoringanalytics.com/reports/PJM_State_

of_the_Market/2018.shtml. The PJM real-time load-weighted average locational marginal price
(LMP) is from Table 2-38 of the same report. The entries in the rightmost column are based on
the authors’ calculation using value=8760×price×load.
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Figure A1: Paths of endogenous variables II, 2013–2062
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(b) gas capacity

10.0

10.2

10.4

10.6

10.8

11.0

11.2

11.4

11.6

11.8

M
B

tu
/M

W
h

2015 2020 2025 2030 2035 2040 2045 2050 2055 2060

AEP AES DOM DUK EXE

FE GEN NRG PPL PSE

(c) coal heat rate
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(d) gas heat rate

Note: The heat rates are weighted averages using capacity as weight. The full names of the firms
listed in the leftmost column are available in Table 4.
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Figure A2: Paths of endogenous variables III, 2013–2062
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(b) gas generation
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(c) profit from electricity sales
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(d) cost of electricity

Note: The profit from electricity sales exclude investment costs. The full names of the firms listed
in the leftmost column are available in Table 4.
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Figure A3: Data and model predictions, 2003–2030
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(b) fuel prices

0

20

40

60

80

100

120

140

M
W

h 
(m

ill
io

ns
)

2005 2010 2015 2020 2025 2030

AEP AES DOM DUK EXE
FE GEN NRG PPL PSE
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(d) gas generation
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(e) coal capacity
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(f) gas capacity

Note: The vertical line indicates the first year of model predictions (2013). BAT refers to best
available technology. The full names of the firms listed in the leftmost column are available in
Table 4.
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