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Abstract

In markets where consumers seek expert advice regarding purchases, firms seek to
influence experts, raising concerns about biased advice. Assessing firm-expert interac-
tions requires identifying their causal impact on demand, amidst frictions like market
power. We study pharmaceutical firms’ payments to physicians, leveraging instrumen-
tal variables based on regional spillovers from hospitals’ conflict-of-interest policies and
market shocks due to patent expiration. We find that the average payment increases
prescribing of the focal drug by 73 percent. Our structural model estimates indicate
that payments decrease total surplus, unless payments are sufficiently correlated with
information (vs. persuasion) or clinical gains not captured in demand.

1 Introduction

In many markets, consumers seek expert advice before making a purchase decision. In health
care and financial services, for example, consumers often select a product in conjunction with
an intermediary, typically a physician or certified financial adviser. Experts can provide valu-
able information about complex products, helping to increase market efficiency. However,
experts frequently receive various forms of remuneration from firms selling in the market,
raising concerns that their advice may be biased. Whether and how expert-firm interactions
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impact welfare are contentious and important policy questions, animating debates over re-
cent initiatives in the United States to address conflicts of interest, including the Department
of Labor’s Fiduciary Rule (2016), and in the health care context we study, the Physician
Payment Sunshine Act (2010).1

In this article, we examine the causal and welfare impact of payments from pharmaceu-
tical firms to cardiologists in the market for statins, an important class of drugs that reduce
cholesterol and the likelihood of heart attack and stroke. In general, both policy-making
and empirical research regarding expert-firm interactions are complicated endeavors. (1)
Interactions are often not transparent or systematically recorded. (2) Interactions are not
randomly chosen, making it difficult to infer the causal links among firm activities, expert
advice, and consumer decisions. (3) Assessing the welfare implications of any causal effect
must take into account other frictions such as market power, negotiated prices, insurance,
and agency problems. We address each of these challenges in this study.

In the US, many physicians receive payments and other in-kind compensation, such as
meals, from manufacturers of products they prescribe, inject, or recommend.2 Recently,
data on payments from firms to physicians in the US has become publicly available: select
pharmaceutical and medical device firms began self-reporting payments around 2010; all such
firms have been required to report payments on OpenPayments.CMS.gov since mid-2013.

Section 2 describes the setting, data, and identification strategy. We link data on
physician-firm-year-level payments to physician-drug-year-level prices and quantities ob-
served in a large market – the Medicare Part D prescription drug insurance program for
the elderly in the US. We focus on meals, which are the single most popular in-kind pay-
ment from pharmaceutical firms to physicians. Meals are also particularly relevant for our
counterfactual analyses, having been subject to statutory bans in several states and health
systems.3 We further focus our examination on the market for branded statins in 2011-2012,
as it is one of a few important markets with complete payment data prior to the introduction
of OpenPayments.CMS.gov.4 During this period, there were two branded statins (Pfizer’s

1For commentary, see, e.g. Rosenbaum (2015); Steinbrook et al. (2015), or the May 2017 issue of the
Journal of the American Medical Association, which was entirely devoted to this topic.

2As noted in Scott Morton and Kyle (2012), promotion of pharmaceuticals embodies both potential
inducements to use firms’ products and some scientific information. In our study, we focus on payments
from manufacturers to physicians, which is just one component of firms’ promotional strategies. Millenson
(2003) presents an overview of these practices for drugs and medical devices.

3Massachusetts, Minnesota, and Vermont had certain statutory gift bans during 2011-2012. As described
in Larkin et al. (2017), nineteen academic medical centers nationwide introduced limits or bans on phar-
maceutical representatives providing meals, branded items, and educational gifts between October 2006 and
May 2011.

4The transparency introduced by OpenPayments.CMS.gov may alter the nature of physician-industry
interactions; we consider this an interesting area for future research as more data become available.
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Lipitor and AstraZeneca’s Crestor) – 59 percent of cardiologists received a meal from one or
both in 2011 – and several generic substitute statins. The expiry of Lipitor’s patent at the
end of 2011, and ensuing generic entry, also provides variation that allows us to disentangle
market power effects for our welfare analysis.

We employ an identification strategy that accounts for the potential endogeneity of these
meals by exploiting regional variation in Academic Medical Centers’ (AMCs) Conflict of
Interest (CoI) policies, which were designed to curb interactions between physicians and
industry. We document significantly lower rates of sponsored meals in regions with strict
AMC CoI policies – e.g., those that ban on-site interactions – a result we argue is consistent
with economies of scale in firms’ marketing efforts.5 Importantly, conditional on rich controls,
AMCs’ policies are plausibly unrelated to the latent preferences of unaffiliated physicians in
the same region, motivating our use of these policies as instrumental variables.

Discussions with industry participants, supported by our data, indicate that payments
between a firm and physician are highly persistent over time, implying that analysis based
on within-physician meal variation is unlikely to recover the full magnitude of the treatment
effect relevant for examining the welfare impact of these payments. Our identification strat-
egy is thus cross-sectional in nature, making it critical to include a rich set of physician- and
market-level controls related to prescribing. The size of the potential control set we assemble,
and the fact that we allow these variables to enter the model nonlinearly and interacted with
other variables, creates a dimensionality and sparsity problem, which we address by drawing
on the recent literature at the intersection of machine learning and econometrics. We follow
a procedure outlined in Belloni et al. (2017), using LASSO regressions to select controls
and an “orthogonalized” two-stage least squares (2SLS) regression to estimate the treatment
effect of interest in a way that is robust to small errors in the variable selection process.6

Section 3 presents details on the estimation procedure and our instrumental variables (IV)
regression results regarding the effects of meals on prescribing.

Existing empirical studies on this topic document positive correlations between firms’
payments to physicians and prescribing of those firms’ products.7 The study that is perhaps
closest to ours is Carey et al. (2017), which analyzes similar payment data, but in con-
trast uses physician fixed effects to address physician selection and focuses on patients who
switch prescribers to address patient selection. Across all drugs in their data, they find that

5Wemeasure these policies using the American Medical Students Association (AMSA) Conflict of Interest
Report Card scores. In related work using these data, Larkin et al. (2017) examine the direct effects of
conflict-of-interest policies, finding that they have a modest, but significant negative effect on prescribing.

6LASSO stands for “least absolute shrinkage and selection operator.” It is a commonly-used form of
penalized regression that shrinks the least squares regression coefficients in a high-dimensional linear model
towards zero (Varian 2014).

7Kremer et al. (2008) provides a review of early research on this topic.
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payments from a firm raise expenditures on promoted products by around 6 percent. For
statins 2011-12, we find that the average payment increases prescribing of the focal drug by
73 percent. We attribute the difference primarily to our cross-sectional strategy, which seeks
to identify the effect of an entire relationship, vs. a panel data strategy, which estimates the
incremental effect of an additional payment.8

To put our estimate in context, it is equivalent to an increase in promoted drugs’ car-
diovascular prescribing market share from 2.7 percent, the sample average, to about 4.6
percent. This increase is close to half of a standard deviation in the observed prescribing
heterogeneity across physicians. This IV estimate is larger than the corresponding OLS es-
timate, consistent with pharmaceutical sales representatives successfully targeting meals to
physicians who would otherwise prescribe less of the firm’s drug. We present evidence on
heterogeneity in treatment effects suggesting that most of this effect is driven by increasing
prescribing among low and moderate prescribers of branded statins. We also show that there
are no marginal returns to higher-value meals, conditional on providing any meal. Finally,
our results are robust to a placebo test performed within states banning or limiting meals.

Even as meals (and associated interactions) causally shift physician decisions toward
the sponsoring firm, the implications for efficiency are ambiguous (Inderst and Ottaviani
2012). For example, if patients consume too little of a product due to manufacturer market
power or other frictions, then payments may move utilization toward the optimum, though
perhaps at great cost to patients/payers. To account for this, in Section 4, we estimate a
structural model of demand and supply in order to shed light on the welfare effects of demand
inducement in the presence of important real-world distortions: market power, strategic
interactions, negotiated prices, insured demand, and behavioral hazard.9 In this dimension,
our approach adds to several recent studies on causal welfare effects of marketing in oligopoly
settings: e.g., Dubois et al. (2018) examine the effects of a ban on junk food advertising; and
Shapiro (2018), Sinkinson and Starc (2018), and Alpert et al. (2015) estimate causal effects
of direct-to-consumer advertising (DTCA) on drug utilization.

In order to examine the interactions between market power and payments to physicians,
we estimate a nested logit model of statin choice, integrating our demand estimation with
the machine learning procedures from Belloni et al. (2017), similar to Gillen et al. (2015).

8At least two other published studies we are aware of incorporate physician-level fixed effects: Mizik and
Jacobson (2004) and Datta and Dave (2016). In a market such as statins, where relationships likely pre-date
the beginning of the payment data, a fixed effect intuitively controls for the unobserved relationship. In a
new market, where relationships and prescribing behavior are still being established, the effect captured by
a fixed effect estimator would be more nuanced.

9We use the term “behavioral hazard” to mean the phenomenon recently characterized in Baicker et al.
(2015), in which patients’ decision utility over a treatment may, for a number of potential reasons, be biased
upward or downward relative to its true medical value.
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Lipitor’s patent expiration results in generic entry, price changes, and changes in meals for
both Lipitor and Crestor. Because the timing of generic entry is driven by patent length,
it provides plausibly exogenous variation that traces out substitution patterns as different
products respond differently to entry. In addition to substantial meal effects, our demand
estimates indicate low price sensitivity in this insured and subsidized population.

We also estimate a bargaining model between upstream manufacturers/distributors and
insurers to capture the forces driving the point-of-sale prices that insurers pay for pharma-
ceuticals. Our results are sensible in that the estimated bargaining parameters are consistent
with branded manufacturers receiving a large portion of the surplus they create, while com-
petition among many manufacturers drives down margins on generics dramatically.

The estimated demand and supply models allow us to consider the equilibrium response
of prices and quantities to a ban on meals, and map those outcomes into welfare. We
also analyze a counterfactual efficient benchmark scenario, where meals are banned and
out-of-pocket prices are set at marginal cost. These exercises draw on the logic in Inderst
and Ottaviani (2012), where hidden kickbacks allow firms to expand market share without
lowering prices, and welfare implications depend on the primitives and strategic interaction.10

In the market studied here, payments cause the market to overshoot the efficient level
of branded statin usage. Our baseline estimates, with consumer welfare measured by our
revealed preference demand estimates and meals assumed to be purely persuasive, indicates
payments lower consumer welfare by $190M relative to a counterfactual equilibrium with
payments banned. These consumer losses outweigh producer gains, so that payments de-
crease total surplus as well. However, if the additional patients receiving statins due to
meals are clinically appropriate (perhaps because agency or other biases cause physicians to
under-prescribe), then the clinical literature would imply a 10 percent increase in life years
gained due to payments, which would be worth about $1.2B at standard valuations.11

2 Setting, Data, and Empirical Strategy

In this Section, we describe the market for statin medications, our data sources, and our
approach to identifying causal effects of payments from statin manufacturers to prescribers.

10One might speculate that the disclosure policy embodied in the Physician Payment Sunshine Act (2010)
would be analogous to a ban in its effects on conflicts of interest. However, as noted in Inderst and Ottaviani
(2012), disclosure may have limited real-world effects. E.g., Pham-Kanter et al. (2012) find that early state-
based physician payment disclosure laws had a negligible to small effect on physicians switching from branded
therapies to generics and no effect on reducing prescription costs.

11The assumption that marginal patients consuming statins due to payments are appropriate for statin
therapy is strong. We provide these results as a suggestive caveat specific to this setting, due to the strong
evidence that statins are underutilized in practice (see summary in Baicker et al. (2015)).
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Statin medications reduce blood levels of low-density lipoprotein cholesterol (LDL, or “bad”
cholesterol), and in turn reduce the risk of coronary heart disease and heart attacks. We focus
on cardiologists treating enrollees in the Medicare Part D program in 2011 and 2012. This
sample and time horizon are useful for several reasons. (1) We have physician-firm interaction
data for the two major on-brand statin producers during this time. Pfizer (which produces
Lipitor) and AstraZeneca (which produces Crestor) accounted for 49 percent and 33 percent
of statin revenue in Medicare Part D in our sample in 2011, respectively. This is before the
Open Payments website created under the Physician Payment Sunshine Act was published,
implying that we can analyze the effects of payments prior to the shock of broad disclosure.
(2) These statins were each the chief source of revenue from cardiologists’ prescribing for these
two firms, with Lipitor accounting for 84 percent of Pfizer’s cardiologist-driven revenues and
Crestor similarly accounting for 80 percent of AstraZeneca’s cardiologist-driven revenues.
Thus, if a Pfizer or AstraZeneca representative were taking a cardiologist out to lunch in
this time period, it is very likely that statins were the focus of any drug-related discussions.12

(3) Lipitor’s patent expiration offers a large and visible shock to statin prices and substitutes,
helping to identify demand curves.13

Statins are generally considered to be effective drugs with few side effects. The American
College of Cardiology (ACC)’s 2013 guidelines recommended statin therapy for adults with
elevated risk of atherosclerotic cardiovascular disease; full adoption under these guidelines
would have increased statin use by 24 percent (American College of Cardiology 2017). Statins
are close substitutes for most patients, but atorvastatin (Lipitor) and rosuvastatin (Crestor)
are available as high-intensity statins appropriate for some patients with elevated risk.14

2.1 Physician-Firm Interactions

Firms’ promotional strategies generally include direct-to-consumer advertising, “detailing”
to physicians, advertisements in venues targeted to physicians, and various payments. “Pay-
ments” from firms to physicians include meals that are bundled with sales details, com-
pensation for travel, speaking, consulting, and education, research-related payments, and
payments related to physicians’ firm ownership interests. In the current study, we focus on
payments in the form of meals, which are expected to be accompanied by sales effort.

12Cardiologists as a specialty account for 10 percent of Part D statin claims. Even though cardiologists
write relatively few prescriptions, they are targeted because specialist prescriptions are sustained by primary
care physicians (Fugh-Berman and Ahari 2007).

13Carrera et al. (2018) find that cross-sectional variation in patients’ copays has a modest impact on
statin prescribing (ε = −0.31), while large changes in average copays due to patent expiration imply much
larger responses (ε = −0.76).

14A moderate-intensity statin is expected to reduce LDL by 30 to 50 percent, while a high-intensity statin
would reduce LDL by 50 percent or more (ConsumerReports 2014).
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Field sales forces are considered “the most expensive and, by consensus, highest-impact
promotional weapon” in pharmaceutical firms’ arsenals (Campbell 2008). Sales represen-
tatives target prescribers with product presentations regarding safety, efficacy, side effects,
convenience, compliance, and reimbursement. This targeting approach is described in greater
detail below, particularly as it relates to our identification strategy.

We examine the statin market at the end of 2011, 15 years after Lipitor was introduced
and 8 years after Crestor was introduced. Statins as a class have been available since Mevacor
was introduced in 1987 by Merck. By 2011, there was likely very little information regarding
the atorvastatin and rosuvastatin molecules that was not available to cardiologists. The
classic justification for physician-industry interactions is that they allow physicians to learn
about a drug’s features. Below, when we document evidence of a causal effect of interactions
on prescribing, it is unlikely to be due to firms providing new information about the promoted
drugs, though interactions may act as persuasive nudges or reminders.15

2.2 Sample and Data Sources

Our analysis of prescribing focuses on physicians treating enrollees in Medicare Part D (see
Appendix A.1 for detail on the program). The structure of Medicare Part D implies that
enrollees should be sensitive to price variation across and within branded and generic drugs.16

This sensitivity may be muted by various frictions, including enrollees’ limited understanding
of coverage and physicians’ imperfect agency.17 Part D plan issuers’ strategies and profits are
heavily regulated by the Centers for Medicare and Medicaid Services (CMS), but they have
both motive and opportunity to constrain costs through formulary design (drugs’ placement
on tiers), negotiations with drug manufacturers, and negotiations with pharmacies.18

2.2.1 Data on Medicare Part D, prescribing, and provider characteristics

We obtain data on physician demographics, specialties, and affiliations from CMS’ Physi-
cian Compare database, which contains all physicians treating Medicare patients.19 Each
physician’s practice location is matched to his or her relevant Hospital Service Area (HSA)

15In the Appendix Section B.3, we document trends in scientific publications on these statins to support
our assumption that 2011-12 is not characterized by any flurry of new information.

16See Chandra et al. (2010) and Goldman et al. (2007) for helpful reviews of the literature.
17E.g., enrollees are more responsive to current prices than marginal prices, and respond disproportion-

ately to salient coverage changes such as copay changes for entire drug classes (Abaluck et al. 2018).
18E.g., Duggan and Scott Morton (2010) show that initial introduction of Part D in 2006 lowered the

price of drugs by increasing insurer market power relative to drug manufacturers.
19See: https://data.medicare.gov/data/physician-compare.
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and Hospital Referral Region (HRR) according to the Dartmouth Atlas.20

Prescribing behavior is based on the publicly-available CMS Part D claims data for
2011 and 2012.21 These claims data describe total prescription claims and spending for
each prescriber-drug-year. The prescriber information includes physicians’ National Provider
Identifier (NPI), which allows us to link claims data to the Physician Compare database as
well as industry interaction data. Drugs are defined by brand and molecule name (if the
drug is “generic,” these two are equivalent). Claims may vary in terms of unobserved drug
dosages, days supplied, and formulation. However, we are unaware of any evidence that
industry payments target particular dosages or presentations, so we follow prior studies in
analyzing claims directly (Einav et al. 2015).

Our price variables are the plan enrollment-weighted average point-of-sale and unsubsi-
dized out-of-pocket prices per one-month supply for each Part D pricing region-drug-year
from the Medicare Part D Public Use Files. One month is the modal supply per claim.

Using the name of the drug, we also match branded drugs in the prescribing data to their
respective manufacturers using the FDA’s Orange Book and match all drugs to their WHO
Anatomical Therapeutic Classification (ATC) codes. The ATC codes provide a hierarchy of
drug categories that reflect similarities in drug mechanism and disease intended to treat. In
that way, it usefully mimics the choice sets faced by physicians. We focus mostly on two
measures of prescribing outcomes: (1) log quantity of the focal drug’s claims; and (2) (for
the structural analysis) the focal drug’s share of all cardiovascular (ATC code = “C”) and
statin (ATC code = “10AAC”) prescribing within physician-year.

2.2.2 Data on manufacturer payments to providers

Although federally mandated reporting of manufacturer-provider payments did not begin
until 2013, nationwide interest had been growing for some time. By 2010, states had begun
to institute their own payment limitations and/or public reporting rules;22 a number of
high-profile lawsuits found conflicts of interest between physicians and manufacturers to be

20See: https://www.dartmouthatlas.org for more. HRRs represent regional health care markets for ter-
tiary medical care. Each HRR has at least one city where both major cardiovascular surgical procedures and
neurosurgery are performed. HSAs are local health care markets for hospital care. An HSA is a collection of
ZIP codes whose residents receive most of their hospitalizations from the hospitals in that area. There are
3,436 HSAs and 306 HRRs in the US.

21See: https://www.cms.gov/Research-Statistics-Data-and-Systems/Research-Statistics-Data-and-
Systems.html.

22The District of Columbia, Maine, and West Virginia required disclosure of payments and gifts to physi-
cians prior to our time horizon; Massachusetts, Minnesota, and Vermont required disclosure and had certain
statutory gift bans.
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a punishable offense;23 and calls from politicians and patient advocacy groups were gaining
momentum (Grassley 2009). Amidst this growing concern, a number of firms, including
Pfizer and AstraZeneca, began to publicly release data on payments to physicians, often due
to legal settlements.24 These documents are the basis of our payments data, which were
generously shared by Kyruus, Inc.25

Our analyses primarily focus on two “payment” variables: (1) a dummy that equals one if
a physician received a meal from the focal drug’s firm in a given year; and (2) the dollar value
of all meals for the physician-firm-year. As discussed below, the vast majority of “general
(non-research)” payments during the period of interest were in the form of a meal. Moreover,
meals are the most likely type of physician-firm interaction to be related to pure persuasion.
This is in contrast to, for example, payments associated with consulting or speaking activities,
which are likely to be payments for services rendered. This restriction is not intended to
imply that other payment types do not influence physicians. However, the limited numbers
of these payments inherently limits the welfare impact of any biases they might induce in
prescribing patterns of the physicians receiving them. Our identification strategy is also not
designed to examine quasi-random variation in these types of interactions.

2.3 Data Set Construction and Summary Statistics

Starting with the full sample of cardiologists in the Medicare Physician Compare database, as
identified by their self-reported primary specialty, we restrict our sample to “active” Medicare
prescribers with at least 500 Part D claims on average in 2011 and 2012; this is approximately
the 10th percentile of claims per physician-year. The final sample used in our analyses
contains about 15,000 cardiologists.26

The first panel of Table 1 summarizes the cardiologist-year-level quantity data for the
six statins (two branded, four generic) available during 2011-2012.27 The effect of entry by
generic atorvastatin in December 2011 is clear – in its first full year of availability, this new

23For example, in 2009 Eli Lilly paid a $1.4 billion fine following allegations of the off-label promotion of
its drug Zyprexa (United States Department of Justice 2009).

24The existence of some voluntary disclosures is not entirely surprising. In 2009, the industry trade
association PhRMA introduced a voluntary Code on Interactions with Healthcare Professionals limiting
informational presentations to the workplace and entertainment to “modest meals,” and prohibiting trips to
resorts, sponsored recreation, and gifts to the physicians. For more, see: https://projects.propublica.org/d4d-
archive/.

25The raw disclosures were published in a wide variety of formats both across firms and within firms
over time. In order to account for irregularities in formatting – primarily of names – a machine-learning
algorithm was developed by Kyruus to create a disambiguated physician-level dataset of payments from
Pfizer and AstraZeneca in 2011 and 2012. Appendix B.2 compares this data to that made publicly available
post-Sunshine Act and finds no evidence of any major biases or censoring in our data.

26Table A3 presents summary statistics for the full set of control variables and instruments.
27These account for more than 99 percent of statin claims and expenditures in this period.
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alternative accounted for roughly 24 percent of cardiologists’ statin claims, while Lipitor’s
share dropped from 22 percent in 2011 to about 5 percent in 2012.28

The second panel of Table 1 summarizes prices. As expected, branded Lipitor and Crestor
both had high out-of-pocket (OOP) and point-of-sale (POS) prices in 2011, relative to gener-
ics. In 2012, generic atorvastatin entered with intermediate OOP and POS prices due to
limited generic competition in its first year. While other generic drugs’ prices were some-
what lower in 2012 than in 2011, both Pfizer and AstraZeneca increased their POS prices
in 2012. Finally, while Crestor’s OOP price was the same in 2011 and 2012, Lipitor’s OOP
price increased dramatically, as insurers removed Lipitor from their formularies (Appendix
A.2 provides further detail on 2012 pricing).

The bottom panel of Table 1 describes the average payment amounts (all and the meal-
related subset) from Pfizer and AstraZeneca. Meal-related payments account for more than
90 percent of these interactions, with the vast majority of these meals being valued at less
than $150.29 The Table also includes the percentiles of the non-zero distributions for each
variable, which highlights the extremely skewed nature of payments. It is clear that Pfizer
and AstraZeneca implemented different strategies in this timeframe: cardiologists were about
two and a half times as likely to receive a meal from AstraZeneca compared to Pfizer in 2011
(48 percent vs. 18 percent), and conditional on receiving a meal, AstraZeneca’s median meal
value per cardiologist was twice as large in 2011 ($38 vs. $24).

2.4 Identification Strategy – Responsiveness to Meals

Our primary identification strategy exploits variables that shift the costs of interacting with
physicians, but which are plausibly exogenous to those physicians’ latent preferences over
drugs or responsiveness to interactions. The intuition of this approach is that drug firms,
directly or via their marketing contractors, typically first determine marketing budgets and
strategies based on aggregate market characteristics. Then the firms’ “boots-on-the-ground”
representatives use their knowledge of specific physicians to target high-value individuals.

Firms’ marketing models can be very detailed and data-driven, and pharmaceutical sales
forces maintain rich databases on prescribers’ practice characteristics, prescribing behavior,
and history of interactions with the firm (Campbell 2008). They then target physicians

28A number of papers have examined market dynamics around these loss-of-exclusivity events. In par-
ticular, Aitken et al. (2018) detail the shifts in prices and quantities surrounding these events for a number
of high-profile molecules. They cover the Lipitor case we study here, outlining the legal events and entry of
generics during the time period in our sample. They also note Pfizer’s response to the event of instituting
an aggressive coupon program around this time, but importantly, this program was not relevant to Medicare
enrollees, nor even well taken up by those eligible. Thus, we do not know of any evidence that Pfizer or
AstraZeneca made any strategic responses that we do not capture via prices or payments.

29The data does not specify the total number of interactions within a year for each physician.
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Table 1: Summary Statistics

2011 (Pre) 2012 (Post)
Claims q σ(q) q σ(q)
Cardio 2,404 1,993 2,590 2,029
Statins 418 349 468 375
Lipitor 92 96 22 29
(Atorvastatin) - - 112 107
Crestor 64 83 66 82
Other Generics (3) 246 224 226 206

Prices $ OOP $ σ(OOP ) $ POS $ OOP $ σ(OOP ) $ POS
Lipitor 39 5 140 88 8 163
(Atorvastatin) - - - 11 1 31
Crestor 42 8 137 39 7 160
Other Generics (3) 5 0.5 12 4 0.4 9
Payments Frac > 0 $ p50|>0 $ p90|>0 $ p99|>0 Frac > 0 $ p50|>0 $ p90|>0 $ p99|>0

Lipitor (All) 0.19 28 149 5,137 0.03 23 157 3,576
(Meals) 0.18 24 119 358 0.02 20 128 430

Crestor (All) 0.48 40 123 274 0.53 77 260 19,950
(Meals) 0.48 38 114 230 0.52 71 237 920

Note: N=28,290 cardiologist-year observations during 2011-2012. Payments include all non-research interac-
tions, for example, speaking fees, consulting payments, reimbursements for travel, and meals.

based on the expected incremental costs and benefits of sales effort. The expected benefit of
interacting with a given physician depends on the size and appropriateness of the physician’s
patient panel, the physician’s latent preferences over substitute products, and the physician’s
expected responsiveness to inducement. Costs include the labor costs of additional sales rep-
resentatives, the opportunity costs of diverting sales effort from other physicians, and any
direct costs of the interaction (e.g., meal expenditure); they also implicitly include factors
that limit or prohibit access for sales representatives. For example, the consulting firm ZS
Associates publishes the Access MonitorTM survey, which focuses on characterizing pharma-
ceutical representative access to physicians. The 2015 Access MonitorTM report notes several
key factors restricting access: academic medical centers’ restrictive access policies, specialty-
specific physician employment by hospitals and health systems that have central purchasing
or otherwise limit physicians’ autonomy, pressures on physicians that limit available time for
firm interaction, etc. (Khedkar and Sturgis 2015).

Pharmaceutical sales territories are defined by geography and other organizing principles,
such as therapeutic area (Campbell 2008). Given the fixed costs of deploying a sales force
to a market, individual physicians’ interactions with pharmaceutical firms will experience
spillover effects from market-level characteristics. Thus, conditional on variables that proxy
for individual physicians’ attractiveness to pharmaceutical representatives – which may be
correlated with physicians’ underlying preferences – variables that proxy for attractiveness
of other physicians in the same geographic market are useful instruments for interactions.

The variables we focus on for identification are academic medical centers’ (AMCs’) con-
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flict of interest policies. These are described in detail in Larkin et al. (2017). We rely on
data on AMCs’ conflict of interest policies from the American Medical Student Association’s
(AMSA) conflict of interest scorecard. The AMSA scores evaluate the strictness of AMC
policies regarding physician interactions with pharmaceutical/device companies, including
salesperson access to AMC facilities, gifts to physicians, and enforcement of the policies.30

To get a sense of our approach, consider Sioux Falls, SD and Lubbock, TX, two cities
whose major HRRs surround moderately-sized state universities with associated AMCs: the
University of South Dakota and Texas Tech University, respectively. These markets each have
24-28 cardiologists in our sample. However, the USD AMSA CoI score is 30, vs. only 24 at
Texas Tech, and many more of the cardiologists in the Sioux Falls region are faculty than
in the Lubbock region. These differences are associated with large differences in meal rates:
16 percent in the Sioux Falls region vs. 41 percent in the Lubbock region. Simultaneously,
we see large differences in prescribing of branded statins: 2.1 percent of cardiovascular drug
prescriptions by Sioux Falls-area cardiologists are for branded statins, vs. 2.9 percent for
Lubbock-area cardiologists. Of course, there may be other important differences in Sioux
Falls vs. Lubbock that we want to account for, including the illness of the patient population,
insurance rates, managed care penetration, and so on, which motivates our control inclusion
and selection procedure described below.

Moving to the aggregate numbers, the top two panels in Figure 1 show the raw exten-
sive and intensive margin relationships between meal receipt and AMSA CoI scores at the
individual cardiologist (left panel) and hospital (right panel) levels. At the individual car-
diologist level, AMSA scores are shown for AMC faculty; the faculty linkage is from the
Association of American Medical Colleges (AAMC) faculty roster. Only 8 percent of sample
cardiologists are AMC faculty and there are strong extensive and intensive margin associ-
ations between AMC linkage and meals – faculty are a little more than half as likely to
receive meals as non-faculty, and within faculty, those with the strictest (highest) AMSA
CoI policies are a little more than half as likely to receive meals as those with the weakest
(lowest) CoI policies. At the hospital level, scores are aggregated across all cardiologists
affiliated with the hospital, other than the focal cardiologist (non-faculty physicians receive

30In every school year since 2007, medical schools have been asked to submit their policies to the AMSA
for rating. Each institution’s policy is graded in 13 different categories, including Gifts, Consulting, Speak-
ing, Disclosure, Samples, Purchasing, Sales Reps, On-Campus, Off-Campus, Industry Support, Curriculum,
Oversight, and sanctions for Non-Compliance. For each category except Oversight and Non-Compliance,
the institution is assigned a numerical value ranging from zero to three. A zero is awarded if the institution
did not respond to requests for policies or declined to participate; a one if no policy exists or the policy is
unlikely to have an effect; two if the policy represents “good progress” towards a model policy; and a three
if the policy is a “model policy.” We generate aggregate AMSA scores for each institution; this aggregate
ranges from 11 to 31-32 in 2011-2012.
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zeros, which mechanically shifts the scale of the x-axis toward zero).31 The extensive margin
association between AMSA scoring and meals is muted at the hospital level – the 29 percent
of sample cardiologists whose affiliated hospitals have any AMSA scores have slightly lower
meal incidence. However, the intensive margin association is strongly negative.

Figure 1: Raw AMSA Score – Meal Correlations

0
0.

2
0.

4
0.

6
Pr

(M
ea

l)

No Yes
Any AMSA
(8% Yes)

0
0.

2
0.

4
0.

6
Pr

(M
ea

l)

15 20 25 30
Avg. Weighted AMSA 

if Any

Cardiologist

0
0.

2
0.

4
0.

6
Pr

(M
ea

l)

No Yes
Any AMSA
(29% Yes)

0
0.

2
0.

4
0.

6
Pr

(M
ea

l)

0 10 20 30
Avg. Weighted AMSA 

if Any

Hospital

0
0.

2
0.

4
0.

6
Pr

(M
ea

l)

No Yes
Any AMSA
(51% Yes)

0
0.

2
0.

4
0.

6
Pr

(M
ea

l)

0 5 10 15 20
Avg. Weighted AMSA 

if Any

H.S.A.
0

0.
2

0.
4

0.
6

Pr
(M

ea
l)

No Yes
Any AMSA
(81% Yes)

0
0.

2
0.

4
0.

6
Pr

(M
ea

l)
0 2 4 6 8 10

Avg. Weighted AMSA 
if Any

H.R.R.

Note: Each panel plots raw meal probabilities (averaged over all firm-years). Bar graphs: sample is split by
whether cardiologists are exposed to any AMSA score at a given level of aggregation (where the Cardiologist
panel is for faculty only), with the percentage of exposed cardiologists in parentheses. Binned scatter plots:
conditional on being exposed to any AMSA score, these plots show average meal probabilities vs. average
AMSA score, with a marker for each vigintile of the relevant AMSA score distribution.

While we might expect conflict of interest policies to have large effects on pharmaceutical
company interactions with the cardiologists and hospitals under their jurisdiction, that does
not make them valid instruments. The exclusion restriction may fail due to direct effects of
conflict of interest policies on norms regarding prescribing, or due to unobservable factors
correlated with selection into more restrictive policies. We address this concern by leveraging
identification from jackknifed versions of AMSA scores at the HSA and HRR levels. These
raw relationships are shown in the bottom two panels in Figure 1. There is now essentially

31Each analysis is performed at the cardiologist level, and each AMSA variable excludes the lower units
of aggregation associated with the same focal cardiologist. I.e., “Hospital” AMSA scores exclude the scores
of the focal cardiologist; “HSA” (hospital service area) scores exclude the scores associated with cardiologists
at the focal cardiologist’s hospital; and “HRR” (hospital referral region) scores exclude the scores associated
with cardiologists in the focal cardiologist’s HSA.

13



no extensive margin effect – cardiologists exposed to any AMSA policy in their HSA/HRR
are about as likely to receive meals as cardiologists with no local AMC faculty. However,
exposure to stricter local AMC conflict of interest policies still has a significant negative
effect on meals, even though those policies do not directly govern the focal cardiologist’s
own or affiliated hospital’s behavior.

This first stage relationship is assumed to be driven by marketing economies of scale that
result in local spillovers at the HSA and HRR levels. This exclusion restriction assumption
is consistent with conversations with current and former pharmaceutical sales executives and
pharmaceutical marketing consultants. Under this assumption, instruments based on jack-
knifed HSA and HRR AMSA variables are exogenous with respect to the focal cardiologist’s
own preferences over drugs and susceptibility to inducement, conditional on a rich set of
controls for cardiologist and market characteristics. We cannot test this directly, but we
examine placebo checks on this assumption in Section 3.

2.4.1 A note on “meals” and cross-sectional identification

Our identification strategy has two nuances that deserve further discussion. First, our es-
timates of the effects of “meals” on prescribing behavior may be proxying for the effects
of a long-term sales relationship between a physician-firm pair. Second, our cross-sectional
instrumental variables approach is intended to address the endogenous selection of physi-
cians into receiving meals based on their patients’ diagnoses and preferences, as well as the
physicians’ own preferences.

We consider our approach to be appropriate for several reasons. First, as many researchers
have noted, extensive margin effects of payments are large and the evidence on heterogeneity
of effects by payment size is mixed (see, e.g., Carey et al. (2017), Yeh et al. (2016), and
DeJong et al. (2016)). We confirm this in our analyses in Section 3: cardiologists’ tendency
to prescribe firms’ drugs is not increasing significantly in the dollar value of interactions.
Second, our conversations with pharmaceutical marketing specialists and consultants indicate
that physician-firm relationships involve repeat interaction by design. This is confirmed
in our data, in which payments are highly persistent across years: about 70 percent of
cardiologists that received a meal from AstraZeneca in 2012 also did so in 2011.

This places our study in contrast to Carey et al. (2017), Datta and Dave (2016), Mizik and
Jacobson (2004), in which the researchers include physician fixed effects to take out persistent
unobserved differences across physicians.32 The average treatment effect of a pharmaceu-
tical firm providing one fewer meal to a physician in the context of a long physician-firm

32Carey et al. (2017) contains an additional innovation: they address patient panel endogeneity using
patients’ moving behavior.

14



relationship, or of providing the first meal to a physician at the initiation of a physician-firm
relationship, may be very different than the average treatment effect of turning an entire
relationship on or off. Thus we argue that a cross-sectional identification strategy is most
appropriate for considering a counterfactual ban on meals, our interest here. This empha-
sizes the importance of controlling for a rich and flexible function of physician, hospital, and
regional variables, to account for heterogeneity in prescribing patterns.33

3 The Effects of Meals on Prescribing

In this Section, we describe our main instrumental variables (IV) specifications and results
regarding the causal effects of physician-firm interactions (meals) on prescribing for the
branded drugs Lipitor (Pfizer) and Crestor (AstraZeneca) for 2011 and 2012. We estimate
a linear IV model:

ln(qjdt) = βm1{mjdt>0} + x′jdtβ
x
jt + βjt + εjdt (1a)

1{mjdt>0} = x′jdtγ
x
jt + z′jdtγ

z
jt + γjt + µjdt (1b)

where the utilization outcome qjdt for a cardiologist d and branded molecule j in year t
depends on whether or not the drug’s manufacturer provided a meal to the cardiologist in
that year (1{mjdt>0} = 1). In each equation, we control for a potentially high-dimensional set
of exogenous covariates xjdt that proxies for heterogeneity in physicians’ patient populations
and other preference-relevant factors. We allow for the effects of these variables to vary by
year and drug (and thus firm). For example, high-volume prescribers may have different
preferences over Crestor and Lipitor; similarly, AstraZeneca and Pfizer may employ different
physician-targeting models, and those models likely respond differently to Lipitor’s patent
expiration. The focal parameter βm describes the effect of industry interaction on the physi-
cian’s treatment decisions. Since these interactions do not randomly occur, we are concerned
that simple ordinary least squares (OLS) estimation of Eq. 1a will over- or underestimate
βm, which motivates the instrumental variable approach using zjdt. The term zjdtγ

z in Eq.
1b represents the exogenous component of the physician targeting function that is based only
on market-level variation in nearby AMC conflict of interest policies described in Section 2.4.

The cross-sectional nature of our identification strategy makes a rich set of controls and
33A particular strategic decision of firms that may be correlated with meals are other advertising efforts

(i.e. DTCA). But since these sorts of initiatives typically target broad geographic territories (i.e. via
television markets), we believe that we can adequately account for any impact they may have with our
regional level controls under the assumption that firm’s advertising decisions are some function of these
controls.
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flexible functional form especially important. Relatedly, we have no a priori theory for
the functional form relating our potential instruments to meals. As we allow the control
and instrument sets to grow larger and more flexible, we run into the issues of sparsity
and collinearity which have been the topic of a growing literature at the intersection of
econometrics and machine learning.

3.1 LASSO Regression and Orthogonal Controls/Instruments

Here we discuss how we construct large, flexible sets of potential controls x̃ and instruments
z̃, and our strategy for estimating βm. The first challenge is to identify subsets of relevant
instruments and controls, noting that z may only be a valid set of instruments conditional
on a relatively small set of variables x in x̃, whose identities are a priori unknown. This
presents a variable selection problem, which may be prone to error – under a given variable
selection method, irrelevant variables may be erroneously included or relevant variables may
be erroneously excluded. To address this issue, we use the procedure from Chernozhukov
et al. (2015) (which also presents a particularly clear description of the problem – see Belloni
et al. (2017) for a general treatment). We use a series of LASSO regressions to select controls
for the prescribing and meals equations, and construct “orthogonal” moment conditions that
immunize estimation against small errors in model selection. In the remainder of the paper,
we call this the “orthogonal 2SLS approach” (O2SLS) for the sake of brevity.

3.1.1 Potential Control Variables

Table 2 below outlines the sets of variables and transformations thereof included in our
estimation procedure. To summarize, we include sets of variables that capture the number
of patients a physician treats with certain types of drugs, variables that describe a wide
range of characteristics related to the sizes and types of own and adjacent organizations, and
variables regarding the insurance and health status of local populations. Together, these
form our potential controls set x̃. We generate these variables for four levels of observation:
individual cardiologists, hospitals, HSAs, and HRRs, with each unit subsuming the last.

We identify each physician’s drug-class-specific historical claims volumes using the 2010
Medicare Part D claims data. We calculate volume metrics at two levels of ATC drug
classes: Cardiovascular and Statins. Statins are a subset of Cardiovascular drugs. We con-
trol for historical cardiovascular drug claims to proxy for latent characteristics of the local
patient population. The HRR-, HSA-, and Hospital-level volume metrics are calculated
using jack-knife procedures in which each physician is excluded from the Hospital-level mea-
sures, each physician’s hospital is excluded from the HSA-level measures, etc. This is an
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Table 2: Overview of Potential Control Set

Cardiologist Hospital HSA & HRR
2010 Claims, Statins1 2010 Claims, Statins1 2010 Claims, Statins1
2010 Claims, Cardiovascular1 2010 Claims, Cardiovascular1 2010 Claims, Cardiovascular1
2010 Claims, Total1 2010 Claims, Total1 2010 Claims, Total1
Num. Practice Zip Codes1 Num. Cardio. & Doc. Affiliated1 Num. Cardio. & Doc. Affiliated1
Num. Hospital Affiliations1 Num. AAMC Affils.2 Num. AAMC Affils.2
Num. Practice Affiliations1 Num. AAMC Faculty2 Num. AAMC Faculty2
Num. Specialties1 Share Doc. AAMC Faculty2 Share Doc. AAMC Faculty2
Is AAMC Faculty2 Hospital Beds & Admissions3 Teaching Hosp. Bed & Adms. Share3

Medicare Advantage, N Eligible & %Covered4
Pop., %Uninsured & %Medicaid5

Note: Hospital, HSA and HRR aggregations of each variable are averaged at the cardiologist. In each level
of aggregation, the next level down associated with the focal cardiologist is excluded in a jackknife procedure.
Superscripts indicate data source. 1CMS Part D Public Use Files & CMS Physician Compare Data; applicable to
all claims data. 2American Academic Medical Center Faculty Roster. 3American Hospital Association Annual
Survey. 4CMSMedicare Advantage enrollment and landscape files. 5Behavioral Risk Factor Surveillance Survey.

effort to minimize collinearity and endogeneity while mimicking a firm’s marketing efforts,
wherein resources are allocated to regions, hospitals, and physicians with larger patient pools
indicated for the firm’s drug.

In addition to cardiologist-specific claims history, specialty, practice characteristics, and
faculty status (as additional proxies for patient population size and complexity), we also
control for a number of hospital- and market-level affiliation and density metrics. These
include: number of cardiologists and doctors, number of academic medical centers and asso-
ciated faculty, share of physicians who are faculty, total hospital beds and admissions, and
total teaching hospitals beds and admissions share.

Finally, we include HRR-level data from CMS and the Behavioral Risk Factor Surveillance
System (BRFSS). From CMS, we obtain local Medicare Advantage penetration variables,
noting that managed care penetration may impact price sensitivity. Relatedly, from the
2011 BRFSS we identify three additional variables: (1) population; (2) the uninsurance rate;
and (3) the Medicaid enrollment rate. Together these variables proxy for variation market
size, health insurance coverage, and incomes.

Beginning with these raw volume and attribute variables (46 in total), we include: squared
terms; log-transformations; and interactions of all linear terms. This yields a set x̃ of 1,173
candidate control variables (for each drug-year, yielding 4,692 in total).

3.1.2 Instruments

As described in Section 2.4, we rely on spillovers from local hospitals’ conflict of interest
policies to generate pseudo-random identifying variation in meal receipt. We have four
candidate instruments: HSA-level average and faculty-weighted average AMSA score across
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all AMC faculty not affiliated with the focal cardiologist’s hospital; HRR-level average and
faculty-weighted average AMSA score across all AMC faculty not affiliated with hospitals
in the focal cardiologist’s HSA.34 In theory, each variable could contribute independent
identifying variation: the first and third describe strictness of local AMCs’ conflict of interest
policies; the second and fourth add information on how many local physicians are faculty; and
the different levels of geography may have distinct, additive effects on sales force allocations.

We have no a priori theory on the functional form of the relationship between these
instruments and meals, so starting with our 4 baseline instruments, we again include: squared
terms; log-transformations; and interactions of all linear terms. This yields a set of 18
candidate instruments for meals for each drug-year (72 in total).

3.1.3 LASSO Selection Results

Following Chernozhukov et al. (2015), the O2SLS algorithm is as follows, omitting subscripts
for simplicity:35

1. LASSO of q on x̃, selecting a covariate vector xq, and use it to form a post-LASSO
residual rq = q − q̂

2. LASSO of 1{m>0} on x̃ and z̃, selecting a covariate vector (xm1, zm1), and use it to form
a post-LASSO prediction 1̂1

{m>0}

3. LASSO of the prediction 1̂1
{m>0} on x̃, selecting a covariate vector xm2, and use it to

form a second post-LASSO prediction 1̂2
{m>0}

4. Create the residualized endogenous regressor rm = 1{m>0}− 1̂2
{m>0} and the orthogonal

instrument zm = 1̂1
{m>0} − 1̂2

{m>0}

5. 2SLS regression of rq on rm, instrumenting with zm, to obtain β̂m

See Belloni et al. (2017) for a helpful review of how this form of orthogonal moment con-
struction “immunizes” the estimation of the parameter of interest βm to small errors in the
selection of the model controls.

While the large sets of controls aid with flexible prediction, they do make standard
approaches to assessing results by looking at tables of parameters unwieldy. In an effort to
shed some light in this direction, Table 3 displays the ten most “important” control variables
selected by the LASSO in the claims ln(qjdt) and meals 1{mjdt>0} equations for Pfizer in

34In generating each of the “faculty-weighted” instruments, we assign AMSA scores of zero to non-faculty,
intuitively measuring the regional importance of the AMC.

35See Appendix C.1 for details on penalty selection in the LASSO.
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2011, along with the effect of removing the given control variable on the R2 of the post-
LASSO-selected “flexible” model with polynomials, log transformations, and interactions.
The analogous results for AstraZeneca and Pfizer in 2012 are available in Appendix Tables
A5-A7.

Table 3: Important Variables, Pfizer 2011

Utilization Equation (y: log(Claimsjdt)) Meal Equation (y: 1{mjdt>0})
X Var. Flexible X Var. Flexible

∆R2 ∆R2

NPI ’10 Claims, Statins -.156 NPI ’10 Claims, Statins -.083
HRR Medicare Advnt. Penet. -.007 HSA N Faculty -.056
HRR Faculty Shr. -.007 HRR Faculty Shr. -.054
HRR N Cardiol. -.007 Hosp-Card. ’10 Claims, Statin -.053
HRR Pop. %Medicaid -.006 HRR Medicare Advnt. N Elgbl. -.052
HSA N AMCs -.005 Hosp-Card. ’10 Claims, Year -.042
HSA Medicare Advnt. Penet. -.005 HSA Medicare Advnt. N Elgbl. -.035
Hosp. N AMC Affls. -.005 HSA-Card. ’10 Claims, Statin -.034
HRR N Docs. -.005 Hosp. N Cardiol. -.031
HRR N AMCs -.005 HRR N AMCs -.031

Z Var. Flexible
∆R2

HRR AMSA CoI, Wgt. -.021
HRR AMSA CoI -.015
HSA AMSA CoI, Wgt. -.002
HSA AMSA CoI -.001

In Panel A, as expected, we see that an individual cardiologist’s claims history has a
large effect on current utilization. We also generally see large effects from the share of local
physicians that are AMC faculty, and from the share of Medicare Advantage enrollment. In
the right Panel B, we see that past use of statins is also strongly correlated with meals, as
are several market density variables. The bottom of Panel B shows the effects of market-
level AMSA scores on meals. HRR-level AMSA scores are stronger predictors of meals than
HSA-level scores when all are included. All of these patterns are also borne out graphically
and in the more detailed first stage results in Appendix C.2.

3.2 Main Results

Table 4 shows the estimated effects of meal receipt on the logarithm of claims. Here we focus
on the pooled regressions where variable selection and parameters vary by drug-year, but
the meal parameter βm is assumed constant across drug-years in our main specification.36

Columns (1) and (2) present the results of estimating Equation 1a via OLS. Without con-
trols (1), βm indicates that meal receipt is correlated with a 39 percent increase in promoted
drug prescribing. However, when we include our base set of (46×4) controls for cardiologist,

36Specifications that allow drug-year specific meal effects are summarized below in Section 3.2.1, and full
results can be found in Appendix C.4.
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hospital, and market characteristics (2), the estimate drops to 16 percent, emphasizing the
likely non-random selection on part of the drug firms.

Column (3) continues to use our base set of controls, and estimates the 2SLS regression,
using our base set of (4×4) instruments for meals. The IV estimate of βm is significantly
larger than the OLS, indicating the average physician receiving a meal will increase their
utilization by 83 percent. There is still, however, the chance that even this relatively large
set of controls may not sufficiently capture regional and physician variation in prescribing,
leaving omitted variable bias that drives up the effect through a correlation between the
instruments and unobserved determinants of prescribing.

Table 4: Main Results, log(claims)

(1) (2) (3) (4) (5) (6)

βm 0.385*** 0.157*** 0.833*** 0.733*** 0.925*** 0.660***
(0.00888) (0.00811) (0.144) (0.195) (0.184) (0.158)

[9.49] [60.36] [74.71] [93.96]

Nobs 52419 52419 52419 52419 52419 52419
Spec. OLS OLS 2SLS O-2SLS O-2SLS O-2SLS
Incl. X X X L(X) L+(X) Lmin(X)
X Set B B E E E
NX 184 184 1375 685 1917
NZ 16 31 24 40

Variable sets: “B” = baseline, totaling 46 X and 4 Z variables; “E” = exploded baseline set via interactions, logs,
and squares, totaling 1173 X and 18 Z variables; all models with X controls also include firm-year fixed effects.
The preferred LASSO penalty λ (Col. 4) is chosen via cross-validation (“CV”) as the largest λ within 1 s.e. of the
out-of-sample MSE-minimizing λ; alternative control sets L+(X) and Lmin(X) formed using penalties that are one
log point higher than the 1 s.e. λ and the MSE-minimizing λ, respectively. NX/Z indicates the total number of
control/instrumental variables selected across firm-years, averaging the number of X variables selected across the 3
selection routines within each firm-year. Standard errors clustered at the physician-level are shown in parentheses.
F-statistics are shown in brackets.

Column (4) – our preferred estimate – addresses this potential issue by using our fully
flexible exploded sets of controls and instruments, and estimating the model via O2SLS. The
added richness of this model appears to matter a great deal, as βm now indicates meals are
increasing prescribing among those receiving them by 73 percent, which is roughly equivalent
to half a standard deviation. This is still a large number relative to the OLS, suggesting
“negative selection” – sales representatives allocate meals to many physicians who otherwise
would prescribe relatively low amounts of their drugs, and the interactions embodied in these
meals materially affect prescribing patterns.37

Columns (5) and (6) present results from O2SLS, but varying the LASSO penalty to
select fewer (5) or more (6) variables. The similarity of (5) to the 2SLS results (3) with
our base set of variables (despite including many more variables at 685 controls and 24

37Intuitively, if there are decreasing returns to persuasion across the claims distribution – marginal claims
are harder to “buy” as volume increases, a result we obtain below that is consistent with physicians being
constrained in the number of suitable patients they see – then it is efficient for firms to have a strategy that
targets many, smaller payments to (relatively) more responsive, but lower-volume, physicians.
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instruments) suggests there is nothing about including more flexible functional forms or the
O2SLS procedure per se that drives our preferred result. Instead, the key factor seems to
be allowing for enough flexibility. The similarity of (6) to our preferred results suggests that
our estimate is not overly sensitive to allowing an even more flexible model.

Our primary finding here – that the interactions surrounding meal payments from in-
dustry to physicians have a meaningful effect on physician prescribing (nearly four times
that of the OLS correlation) – is large in relative magnitude, but not necessarily surprising
in the context of popular press and industry insider writings on pharmaceutical sales.38 It
is different in nature and larger than estimates using physician fixed effects, which intu-
itively estimate the effect of an additional meal for an individual physician who is likely
involved in an ongoing relationship; in contrast, our instrumental variables strategy seeks
to estimate the causal effect of the entire meal relationship vs. the counterfactual with no
relationship. However, there are a number of modeling choices underlying our estimates, and
cross-sectional causal identification is inherently difficult. And the large estimated average
treatment effect on the treated naturally begs the question of why meals are not even more
lavish and widespread. We address each of these issues in turn in the next three subsections.

3.2.1 Robustness Checks

The pooled specification reported above is flexible at the drug-year on all variable selection
and parameter estimation, except for the meals parameter. Appendix Table A8 shows results
that allow meal effects to differ across drug-years. In each drug-year, we cannot reject (at
the 95 percent level) the hypothesis that the drug-year meal effects are identical to the
pooled effect. The deviations of the individual point estimates from the pooled also make
sense: The effect for Pfizer in 2011 is larger, as might be the case if Pfizer maintains meals
where they have the largest impact, even as it allocates less resources to them with the
impending patent expiry. The effect for AstraZeneca 2012 is smaller, as might be the case if
additional meals provided in 2012 are allocated to more marginal physicians, or if all meal
relationships have less of an impact in the presence of generic atorvastatin. Pfizer 2012
has a weak instruments problem where our identification strategy has difficulty predicting
the remaining few cardiologists receiving Pfizer payments in 2012. However, re-running the
pooled analysis with Pfizer 2012 excluded provides similar results to our preferred estimates,
so Pfizer 2012 does not affect our pooled inference on the meal effect substantially.39

38E.g., this is consistent with the observation in industry publications that physicians may be high-value
either because they are already high prescribers, or because they are initially low prescribers but can be
influenced by targeted marketing (Fugh-Berman and Ahari 2007).

39We also explore the effect of meals on the extensive margin of utilization – whether they increase the
likelihood of using a drug at all – and our preferred O2SLS specification cannot statistically reject a null
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The specifications so far have also involved several decisions regarding: which cardiol-
ogists to include in the estimation sample, how best to address direct effects of conflict-
of-interest policies, how best to control for geography, and how best to control for past
prescribing. Appendix C.4 tests sensitivity of our results to these decisions. Our results
remain similar if we: add AMSA scores as controls for faculty or hospitals; drop faculty,
AMC hospitals, or AMC hospital affiliates altogether; add Census region fixed effects; or use
more or fewer past prescribing controls.

3.2.2 Placebo Check

During 2011-2, six US states had bans on meals or gifts to physicians, and/or manda-
tory interaction disclosure requirements before the Physician Payment Sunshine Act went
into effect: Maine, Massachusetts, Minnesota, Vermont, West Virginia, and the District of
Columbia.40 Table 5 shows the reduced form and orthogonal 2SLS results for three sets of
states: no disclosures or bans (columns (1)-(2)); disclosure and ban (columns (3)-(4)); and
disclosure only (columns (5)-(6)). In restrictive states, we see that meal-based interactions
are substantially muted relative to the full sample (though not entirely shut down); for ex-
ample, in Table 5 below, 39 percent of sample cardiologist-firm-years involved a meal from
in states without such policies, vs. only 21 percent in states with disclosure rules and 3
percent in states with bans. These policies thus shut down much of the first stage relation-
ship between market AMSA scores and meals: in Table 5, we also see that the F -statistic
on the first stage relationship between AMSA scores and meals is at most 3 in restrictive
states. Given the substantially limited ability of firms to detail physicians in the restrictive
states, we use the restrictive state sample to explore the reduced form relationship between
AMSA scores and prescribing behavior. That is, to the extent that we see a correlation
between AMSA scores and prescribing that is not mediated by meals, this would invalidate
our exclusion restriction.

While the restrictive state subsamples are much smaller than the full sample and thus
the subsample results are noisy, we see no reduced form or IV effect of meals on prescribing
in restrictive states. These results are consistent with our exclusion restriction assumption:
that, conditional on controls, local AMSA scores are not correlated with preferences, absent
the mediating effect of firm payments.

hypothesis of no effect, nor the OLS estimates which range from about a 2 to 10 p.p. effect (see Table A10).
40See King and Bearman (2017) and Gorlach and Pham-Kanter (2013) for details.
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Table 5: Main Results across State Policies, log(Claims)

No Rules Restrict Restrict / Report
RF IV RF IV RF IV
(1) (2) (3) (4) (5) (6)

Orthog.-IV, or βm 0.777*** 0.827*** -1.213 -2.265 -0.935 -1.039
(0.177) (0.206) (1.167) (3.352) (0.722) (1.097)

[56.71] [0.71] [2.75]

N 50024 50024 574 574 2395 2395
Mean(Claims) 80.70 44.90 63.60
Mean(Meal) 0.391 0.026 0.206

All IV models estimated via orthogonalized 2SLS. Reduced Form (RF) models estimated using the orthogonal
instrument as the independent variable, controlling for firm-year-fixed effects and firm-year-level LASSO-selected
variables from the exploded set. Instruments and residuals are calculated on the full sample, and then the
regressions are separately estimated on the state subsets. “Restrict” states had some sort of restriction imposed
on industry interactions (i.e., could not take place at physician’s office); “Report” states had mandates that all
industry interactions must be reported to authorities for public dissemination. Standard errors clustered at the
physician-level are shown in parentheses. F-statistics are shown in brackets.

3.2.3 Treatment Effect Heterogeneity by Claims and Meal $

The results above suggested latent heterogeneity in treatment effects among cardiologists.
To provide further evidence on this phenomenon, the top panel of Table 6 explores the shape
of the reduced form effect of the combined orthogonalized AMSA instrument using reduced
form quantile regressions. Assuming that the first-stage relationship is constant across the
distribution of realized claims, any pattern in reduced form effects can inform how treatment
effects vary across this distribution, noting that the absolute magnitudes of the coefficients
will be slightly inflated since our instrument only increases the probability of meal receipt. We
observe that the reduced form effect of stricter AMSA scores is smallest for the 80th percentile
of the prescribing distribution. This result reinforces that the large average treatment effect
of meals on the treated is driven to a greater extent by particularly large effects among
otherwise low prescribers – e.g., those that would have otherwise prescribed the promoted
drug to only a handful of patients.

Finally, because we can observe the aggregate dollar value associated with these meals, we
can examine the extent to which effects are driven by meal receipt per se vs. the dollar value
of meals. To this end, the bottom panel of Table 6 presents coefficients when restricting the
sample to different maximum payment amounts at the 25th, 50th, 75th, and 90th percentiles
of the non-zero meal value distribution. That is, column (1) shows the estimated effect of
meals under $21, and column (3) shows the estimated effect of meals under $104. The results
in the Table indicate that the effect of the interactions are not increasing in their dollar value.

Together, these results suggest that the extensive margin effect of receiving any meal leads
to a large absolute and relative increase in claims for the relevant firm’s drugs. However, as
larger meal values are included in the sample, the apparent returns to the marginal dollar
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Table 6: Main Results Heterogeneity, log(Claims)

(1) (2) (3) (4)
Panel A: Across Realized Distribution

Orthog.-IV 0.901*** 0.943*** 0.840*** 0.563***
(0.211) (0.185) (0.161) (0.188)

Quantile Est. .20 .40 .60 .80
N 52419 52419 52419 52419

Panel B: Across Meal Dollar Value

βm 1.081*** 0.822*** 0.772*** 0.739***
(0.325) (0.230) (0.213) (0.196)
[31.56] [46.92] [49.88] [60.07]

Max $ Percentile. 25 50 75 95
Max $ 21 45 104 247
N 37532 42399 47480 51420
Mean(Claims) 70.50 73.30 76 78.90
Mean(Meal) 0.138 0.237 0.319 0.371

All models are IV models using only LASSO-selected variables from the exploded set, selected separately at the
firm-year level, estimated either as a quantile IV model including the union of controls selected for the dependent
and endogenous independent variables (A), or via orthogonalized 2SLS (B), all including firm-year-fixed effects.
Dollar value groupings in (C) are based on including all meals less than the corresponding percentile of the
dollar-value distribution (Max $ Percentile.). Standard errors clustered at the physician-level are shown in
parentheses. F-statistics are shown in brackets.

are not significant. It appears that the effect is driven by the receipt of any meal, regardless
of its value. It is not surprising then that the vast majority of meal values we observe are
less than $100. For this reason, in the structural analyses below we will simply focus on the
dummy variable indicating any meal receipt.

When combined with the prior comparison of OLS and O2SLS results, this apparently
large role of the extensive margin effect has important implications for the policy discussions
surrounding physician-firm interactions. Our results would indicate limited practical effects
of policies focused on limiting high-value meals (e.g., over $50) or high-upper-tail prescribing
behavior. Firms seem to have great influence over cardiologists who otherwise would have
been low- or moderate-volume prescribers, and this influence is largely driven by interactions
involving a low-valued meal.

4 Welfare Analysis: Supply and Demand Model

In this Section, we present a model of supply and demand that allows us to analyze the net
welfare effects of industry interactions with physicians. The results in the previous section
showed that such interactions increase prescribing of related drugs. However, they have
little to say about welfare on their own: in this context, welfare analysis of physician-firm
interactions must account for market power, strategic interactions, insured demand, and the
possibility that physician/patient decision making could be imperfect due to physician agency
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or physician/patient behavioral biases. For this, we develop an explicit demand model of
how consumers trade off the influences of meals and prices and substitute across competing
drugs. We also develop a supply model of how prices are determined in equilibrium for given
demand and market structure.

To build intuition regarding this point, consider the welfare effects of interactions that
shift the demand curve outward. Panel (a) of Figure 2 presents a hypothetical demand
curve in blue and a “biased” demand curve shifted outward in red. Assuming without loss of
generality that the drug’s marginal cost is zero, the welfare loss under perfect competition is
shown in the shaded triangle below the line segment QeffQb – marginal patients prescribed
the drug in the presence of physician-firm interactions receive negative health benefits.

Figure 2: Welfare Analysis with Other Frictions

(a) Perfect Comp. (b) Market Power (c) Ins/Beh/Olig

In a setting with perfect competition, this conceptual framework suggests that our anal-
ysis in Section 3.2 is all that is needed. However, in many empirically-relevant settings with
firm payments to experts, firms also have market power, and utilization is distorted away
from the social optimum due to high prices (Inderst and Ottaviani 2012). In prescription
drug markets, branded products have patent protection, and they often compete with dif-
ferentiated branded and generic substitutes whose manufacturers make their own strategic
pricing and promotion decisions. A simple version of this model is presented in panel (b)
of Figure 2: a branded pharmaceutical manufacturer faces the residual demand curve in
blue, which is again shifted outward in the presence of physician-firm payments. Market
power causes “unbiased” quantities Qm to be too low; thus, payments may increase prescrib-
ing toward the optimum Qm < Qb < Qeff (pictured) or cause prescribers to overshoot the
optimum Qm < Qeff < Qb. In the former case, the overall welfare impact of payments is pos-
itive, though consumer surplus declines; in the latter case, both total and consumer surplus
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decline. In our structural analyses, we model this supplier market power and incorporate it
into our counterfactual analyses.

Finally, we must also account for reasons that the “effective" demand curve for a given
drug may not represent the appropriate one for welfare analysis. A leading example is
insurance, pictured in panel (c) of Figure 2. The “true” demand curve is the solid blue
line; the insured residual demand curve is the dotted blue line (which is significantly less
elastic with respect to the producer’s price, as insurance enrollees bear only a fraction of that
price out of pocket); and the “biased” demand curve is again in red. In this hypothetical,
payments from firms reinforce the effects of insurance, each increasing consumption above
the uninsured equilibrium: Qm < Qins < Qb. The welfare implications are again ambiguous,
and the consumer surplus effects of firm payments will depend on pass-through of producer
prices to enrollee premiums. In our structural analyses, we account for the details of patient
insurance and model prices as determined via bilateral bargaining between insurance plans
and pharmaceutical suppliers.

The general point of panel (c) extends beyond insurance. In oligopoly, the residual
demand curve can be distorted due to competitor pricing or payment behavior. This is
the phenomenon highlighted in Inderst and Ottaviani (2012), where payments may even
increase consumer surplus by improving allocative efficiency. Further, a large literature
in health care markets finds that utilization of health care products and services can be
biased due to information frictions and imperfect agency. As documented in Baicker et al.
(2015), such “behavioral” biases could be positive or negative.41 While welfare analysis in
the presence of behavioral frictions is notoriously problematic (Bernheim and Rangel 2009),
we take advantage of the additional information available regarding pharmaceutical product
effectiveness, and complement our revealed preference estimates with welfare estimates based
on the clinical literature regarding the health benefits of statins.

4.1 Demand and Pricing Models

Let the utility of molecule j ∈ J = {1, ..., J}, branded status b, for use case i (a doc-
tor/patient/visit combination) in each market – defined by doctor d in year t – be given by:
uijbdt = δjbdt + εijbdt. The use-specific i.i.d. unobservable εijbdt = εigdt + (1 − λg)εijbdt is the
random coefficients representation of the nested logit model (Cardell 1997), where εigdt is a
random component common to group g, and εijbdt is the standard type I extreme value error
term (with scale normalized to one). As the nesting parameter λg ∈ [0, 1] approaches 1, there
is less substitution outside the nest. Our preferred specification has separate nests for ator-

41See Figure A7 for one hypothetical extension of panel (c) with a downward behavioral bias.
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vastatin (Lipitor and generic), for all other statins, and for the outside good. We measure
the market size of potential statin patients as the number of all cardiovascular prescriptions,
including other lipid-modifying drugs, for each physician-year.

The mean utility across use cases is specified as

δjbdt = θm1{mjbdt>0} − θppoopjbdt + θj + θb + θt + x′jbdtθ
x
jb + ξjbdt, (2)

where θm1{mjbdt>0} is an indicator for whether provider d received a meal from the manufac-
turer and its utility weight; θppoopjbdt is the average out-of-pocket price paid by patients and
its weight; θj is a molecule-specific coefficient; θb is a branded dummy and its weight; θt is
a year-specific coefficient; x′jbdtθxj is the molecule-brand-specific linear function of LASSO-
selected x variables to capture regional and provider variation in prescribing patterns; and
ξjbdt is a product-physician-year unobservable preference heterogeneity term.42

Given a set of products available to a provider Jdt and flow of choice opportunities Qdt,
we assume the provider/patient chooses the product that maximizes utility for each use
opportunity, so that quantities demanded are given by:

qjbdt = QdtPr[uijbdt > uikb′dt,∀kb′ ∈ Jdt] = Qdt
e
δjbdt
1−λg∑

kb′∈Jdt e
δkb′dt
1−λg

(∑
kb′∈Jdt e

δkb′dt
1−λg

)1−λg

1 +
(∑

kb′∈Jdt e
δkb′dt
1−λg

)1−λg ,

(3)
and consumer surplus across all products is given by:

CSdt(Jt) = Qdt
1

θp
ln

1 +

( ∑
jb∈Jdt

e
δjbdt
1−λg

)1−λg
− ∑

jb∈Jdt

qjbdt

(
θm

θp
1{mjbdt>0}

)
︸ ︷︷ ︸
adjustment for meal “bias"

, (4)

which is the standard formula derived by McFadden (1978), minus an adjustment for the
fact that potential bias due to meals affects demand, but not patients’ utility. An equivalent
interpretation would be that physicians maximize a sum of physician (chooser) and patient
(consumer) utility, and all terms but θm1{mjbdt>0} represent patient utility.

We next characterize how prices are set in equilibrium. Let the supplier’s profit be:
π(pposjbt ) =

∑
d qjbdt(p

pos
jbt − mcjbt), where mcjbt captures the cost of manufacturing and dis-

42Several recent papers (e.g. Dubois et al. (2018); Shapiro (2018); Sinkinson and Starc (2018)) focused on
television advertising have explicitly focused on the possibility that such ads can have spillover effects across
brands in a category. We have used the fact that we allow for different controls across molecule-brands to
attempt to estimate such cross-effects, but they have always been small and noisy (recall our identification
strategy based on regional spillovers does not provide strong explicit firm-specific variation).

27



tributing the marginal unit of molecule j. pposjbt is the point-of-sale price insurers pay for the
drug, which we assume is constant across providers. We link the negotiated point-of-sale
price and out-of-pocket price paid by enrollees via poopjbdt = csjbdtp

pos
jbt , where csjbdt is an exoge-

nous cost-sharing parameter that can vary across markets and years, depending on product
mix and insurer mix (discussed in detail in Appendix A.2).

We assume that prices of substitute drugs in the market are determined in a simultaneous
Nash Equilibrium of Nash Bargaining between suppliers (manufacturers/wholesalers/pharmacies)
and buyers (PBMs/insurers).43 This captures the primary forces relevant to our research
question, abstracting from some of the details of the upstream interactions between suppli-
ers, and from insurer competition and insurance plan structure.44 In the model, each price
maximizes the Nash Product of the gains from trade for each supplier and buyer pair, taking
other prices as given.45 The first-order condition on each price is:

pposjbt = arg max
(
π(pposjbt , p

oop
jbt ,mjbdt)

)bjbt (
C̃St(Jt)− C̃St(Jt \ jb)

)1−bjbt
= mcjbt + bjbt

[(
1 +

∂qjbt
∂poopjbt

poopjbt −mcjbt
qjbt

)
C̃St(Jt)− C̃St(Jt \ jb)

qjbt
+ pposjbt −mcjbt

]
(5)

where qjbt :=
∑

d qjbdt denotes the sum over physicians. The term bjbt is a bargaining
ability parameter, weighting the extent to which the optimal price depends on supplier
profits vs. the expected additional buyer surplus in the case that a contract is agreed
to for product jb: C̃St(Jt) − C̃St(Jt \ jb). Note that quantities and thus elasticities are
driven by physician/enrollee decision-making based on out-of-pocket price under insurance
coverage poop, but the insurer and supplier negotiate over point of sale price ppos. In contrast
to some recent papers on insurer-hospital bargaining (e.g., Gowrisankaran et al. 2015; Ho
and Lee 2017), we model pricing of a single product class (statins) rather than a bundle
of products. Also, given that we do not observe how plan enrollment might respond to
disagreement, we proxy for plan surplus by using a parameter α ∈ [0, 1] to capture the
relative weight insurers place on consumer surplus, and subtracting plan costs: C̃St(Jt) :=

αCSt(Jt)−
∑

jb qjbt(p
pos
jbt − p

oop
jbt ).

43As discussed by Starc and Swanson (2018a), both pharmacies and pharmaceutical manufacturers have
market power, but relative market power of different suppliers varies by drug. Pharmacies make larger
margins on generic drugs than on branded drugs, while branded manufacturers command higher markups
(even net of rebates) than generic manufacturers.

44These details are captured in a reduced form sense by the bargaining and cost-sharing parameters.
Our counterfactual analysis will hold these fixed. This assumes that banning meals to physicians does not
change the fundamental supply chain of the pharmaceutical industry or the general treatment of branded
and generic therapies in insurance plan formularies.

45We can also model the supply side of meals; see Appendix C.2.1. It is not necessary for our counterfac-
tuals to estimate the parameters underlying meal provision, but the likelihood of a physician receiving meals
depends on the marginal benefit and marginal cost of meals for that physician. This cost-benefit analysis is
the motivation for our AMSA-based identification strategy.
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4.2 Identification and Estimation

We follow Berry (1994), setting choice probabilities implied by the demand model equal to
observed market shares, and inverting the system to yield a linear specification:

ln(sjbdt/s0dt) = λgj ln(sjb|gdt) + θm1{mjbdt>0} − θppjbdt + θj + θb + θt + x′jbdtθ
x
jb + ξjbdt (6)

where sjbdt is jb’s overall market share, s0dt is the market share of the outside good (non-statin
treatments), and sjb|gdt is jb’s market share within nest g.

Theory suggests that ln(sjb|gdt), pjbdt, and 1{mjbdt>0} are all correlated with the unobserv-
able term ξjbdt. We take an instrumental variables approach to solving this identification
problem, again using regional spillovers from AMC CoI policies to identify the meal effect,
and leveraging the variation induced by the introduction of generic atorvastatin and the
regional variation in prices introduced by the timing of formulary changes across insurers to
disentangle price elasticities.

To use the variation induced by the introduction of generic atorvastatin to the choice
set, we follow the suggestion of Gandhi and Houde (2016), constructing an instrument that
interacts the post-entry period with indicators for Lipitor, Crestor, and the other generics,
za = 1{t=2012}·[1{jb=Lipitor}, 1{jb=Crestor}, 1{b=0}]. With our molecule and time fixed effects, this
instrument captures difference-in-differences variation, allowing the effect of the treatment on
substitution patterns to differ by whether a drug is Lipitor (branded atorvastatin – the same
molecule), Crestor, or a generic moderate statin, such as simvastatin. These instruments
help identify substitution patterns broadly, and in theory are valid for both ln(s|g) and p.

We further leverage the heterogeneity in insurer responses to atorvastatin entry across
geography, as described in Appendix A.2. When Lipitor’s patent expired, some insurers
instantly added generic atorvastatin to their preferred drug lists and/or removed Lipitor
from their formularies, while others took more than a year. The variation in penetration
of these insurers across geography generated large variation in the relative prices consumers
faced for Lipitor and generic atorvastatin. To utilize this variation, we create instruments
for each plan-drug-year-region as the average out-of-pocket price for that drug-year-insurer
across other regions. We then average across plans to create an instrument for physician d’s
region. We also create an analogous instrument based on an average dummy for formulary
coverage, alone and interacted with the Lipitor dummy. The instrument set is then: zp =

[poop,IVjbdt , 1̄{jb∈formIVdt }, 1̄{jb∈formIVdt } · 1{jb=Lipitor}]. These are similar to the bargaining ability
instruments in Grennan (2013, 2014) and Dickstein (2016), with the added benefit of a clear
mechanism driving their variation. As such, they are also valid for both ln(s|g) and p.46

46We are sensitive to the fact that firm activities besides the prices and meals we measure may change
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In addition to the instruments linked to generic atorvastatin entry, we also follow much
of the literature (e.g., Berry and Waldfogel 1999) in using a polynomial in the size of the set
of generic statins prescribed zJ = [1/|J gs

dt |, |J
gs
dt |, |J

gs
dt |2] as an instrument. This leverages

the fact that more variety will mechanically affect within-group shares.47

Finally, we use the same identification strategy for meals 1{mjbdt>0} detailed previously.
The strategy from Belloni et al. (2017) is built to work in any generalized method of mo-
ments (GMM) framework, so we implement it here as well. We allow the LASSO-selected
sets of instruments z and controls x to vary flexibly across molecule-brand (now including
generics as well). We then construct the residuals and orthogonal instruments as before, for
each endogenous variable in turn. In our preferred implementation, we jointly estimate the
above (linearized) demand model with the supply model using GMM. This enables us to
simultaneously recover the demand, bargaining, and marginal cost parameters.48

4.3 Parameter Estimation Results

The top panel of Table 7 shows the demand parameter estimates. The nesting parameters
on atorvastatin and other statins both indicate more substitution within statins than to the
outside good, and further, generic atorvastatin is a stronger substitute for Lipitor (the iden-
tical molecule) than for other statins. The price coefficient is small, as we would expect given
the muted incentives provided by insurance, and the related own-price elasticity ηp = ∂s

∂p
p
s

has an average of −0.06, which is also consistent with insurer negotiating power preventing
manufacturers from fully exercising their market power. Product fixed effect parameters fol-
low a pattern that matches clinical evidence on the quality of the different molecules, and the
brand dummy has a small positive (but noisy) coefficient (see Appendix Table A12 for these
coefficients, elasticities, and other results, for this and alternative demand specifications).

The relative size of the meal and price coefficients suggest that a meal has an equivalent
impact to a $454 decrease (= θm/θp) in out-of-pocket price. While this seems like a large
effect, it is in part driven by the observed lack of price sensitivity. Perhaps more enlightening
is the implied semi-elasticity ηm = ∂s

∂m
1
s
, which measures the percent change in market share

of the focal drug associated with a meal. The average of 125 percent suggests this payment
effect is indeed substantial.49 The meal coefficient of 0.88 is about three quarters of a standard

around the period of patent expiration. See Appendix C.6 for a discussion and results along these lines.
In particular, our results remain unchanged if we allow selection and estimation of xθx for Lipitor to vary
across years.

47This is also closely related to the intuition behind Sinkinson and Starc (2018), who use managed care
penetration to proxy for restricted choice sets in the statin market in an earlier time period.

48It also imposes the constraints of the supply model that mcjbt ∈ [0, pjbt], and
∂sjbt
∂pjbt

pjbt−mcj
sjbt

∈ [−1, 0]

(though these constraints do not bind in our preferred model when demand is estimated separately).
49This is larger than our 2SLS estimates from Section 3.2 since it is averaged here across all physicians
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deviation of the variation across product-physician observable (sd(θj + x′jbdtθ
x
jb) = 1.13) and

unobservable (sd(θj + x′jbdtθ
x
jb + ξjd) = 1.22) dimensions.

Table 7: Demand and Supply Parameter Estimates

Demand: θm θp λator=1 λator=0

0.88 -0.0019 0.50 0.45
(0.09) (0.0006) (0.02) (0.03)

Supply: Atorvastatin Lipitor Lovastatin Pravastatin Crestor Simvastatin
mc 0 0 0 0 0 0
B2011 - 0.26 0.04 0.05 0.44 0.03

- (0.01) (0.00) (0.00) (0.01) (0.00)
B2012 0.07 0.50 0.03 0.03 0.51 0.02

(0.00) (0.01) (0.00) (0.00) (0.01) (0.00)
N = 124, 876 doctor-drug-brand-year observations with standard errors clustered at the doctor level (Nd = 15, 063) via
delete-120 jacknife.

The bottom panel of Table 7 summarizes supply side parameter estimates.50 The most
striking feature is the high bargaining parameter estimates for the branded drugs relative
to generics. Because the generic sales are aggregated over firms, the bargaining parameters
also capture within-molecule competitiveness. This can also be seen in the slightly larger
bargaining parameter for generic atorvastatin, where only two manufacturers compete during
the first six months of 2012, before 11 enter. The larger bargaining parameters for Lipitor
and Crestor in 2012 reflect the fact that POS prices remain high in many regions for much
of 2012 as insurers are slow to adjust formularies, despite the improved outside option with
generic atorvastatin entry.51 Finally, we estimate that the weight insurers place on enrollee
surplus in negotiations is equivalent to the weight they place on net costs: α = 1. This may
reflect that enrollees are sensitive at the plan choice stage to formulary inclusion of important
drugs, and/or downward bias in our revealed preference measure of enrollees’ valuation of
statins relative to their true health value (a possibility we address in the next Section).

These demand and supply estimates cannot by themselves speak to the effect of payments
on pharmaceutical markets. By construction, they measure the effect “holding all else equal”,
but both prices and quantities may adjust to any policy change. And with the oligopoly
structure of the market, these strategic reactions will depend on one another in equilibrium.

and drugs (including generics and physicians with very low prescribing that receive no meals in practice).
50For simplicity, we set marginal costs to zero. The small number of negotiated drug-year prices ppos

makes it difficult to estimate marginal costs as a statistical exercise. As the generic margins are quite small,
any reasonable marginal cost assumption would give very similar numbers in our counterfactual analyses.

51One potential caveat to this approach is that we do not observe confidential rebates between plans
and manufacturers. To the extent that realized net-of-rebate prices to plans are much lower than observed
point-of-sale prices for branded pharmaceuticals, our estimates of b for Pfizer and AstraZeneca may be biased
upward. These unobserved potential rebates are an endemic challenge to research on pharmaceutical pricing.
Our counterfactuals should be interpreted as holding fixed these rebate incentives (conditional on changes
to demand induced by a meal ban).
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4.4 Welfare: Status Quo vs. Meal Ban vs. Efficient Benchmark

To better understand the effects of payments to physicians on market welfare, we consider two
counterfactual scenarios banning meals/payments from pharmaceutical firms to physicians.
The first scenario bans payments and allows all prices and quantities to adjust to a new
equilibrium. The second scenario computes equilibrium quantities and prices with banned
payments and OOP prices at marginal cost: an efficient static allocation benchmark.52

In each scenario, we also calculate several functionals of the equilibrium prices and
quantities: retail producer surplus PSretail, which is equivalent to out-of-pocket spending;
consumer surplus CSretail implied by the utility model of demand; the component of re-
vealed preference “consumer surplus” driven by meals CSmeals =

∑
jb∈Jt qjbdt

θm

θp
1{mjbdt>0}

(which we assume to be pure bias in our overall consumer and total surplus calculations);
and total point-of-sale transfers from insurers to manufacturers/distributors POStransfers.
We summarize the welfare implications in two ways: First, we calculate “total surplus”
TS = CSretail − CSmeals + PSretail − PSmeals. Here, we net out PSmeals (the dollar value of
meals to physicians) as a lower bound on the firms’ costs of physician interactions, so that
TS represents an upper bound on true surplus. Second, we compute an alternative measure
of consumer welfare based on estimated health impacts from studies of statin efficacy.

Table 8 displays the results, under the observed data and counterfactual regimes (and
separately for each year in order to show how the results depend on market structure).
Focusing first on quantities, the primary result is that payments offset the underprovision
of statins due to (market power keeping) prices above marginal cost, but in such a way that
quantity of statins consumed with payments (column (1)) overshoots the efficient benchmark
(column (3)). The model estimates that Lipitor is under-utilized with payments banned in
2011 at 1.18 million prescriptions, vs. 1.26 million at the efficient allocation, whereas the
observed payments raise Lipitor to 1.38 million. Thus, payments cause Lipitor quantity to
overshoot the efficient benchmark, by slightly more than the shortfall with payments banned.
By contrast, the model predicts that payments cause Crestor utilization to overshoot the
efficient benchmark by much more than the shortfall in the “no payments” scenario: quantity
under the meal ban is 0.47 million prescriptions, slightly less than the efficient 0.53 million,
whereas payments cause Crestor to jump to 0.97 million prescriptions.

Comparing 2011 and 2012 shows the importance of modeling strategic interaction and
substitution across drugs. In 2012, after the entry of generic atorvastatin, Pfizer almost com-
pletely stopped providing meals, and both Lipitor and generic atorvastatin were utilized less

52This is efficient in the sense that it removes any meal or market power pricing distortions. It does not
speak to other potential distortions in patient/physician choice or insurer weighting of the implied consumer
surplus in price negotiations.
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Table 8: Welfare and Counterfactual Estimates

2011 2012
(1) (2) (3) (4) (5) (6)
Obs Ban Eff Obs Ban Eff

Qstatins (millions) 6.05 5.63 5.77 6.43 6.17 6.31
Qatorvastatin 1.38 1.18 1.26 2.03 2.04 2.13
QCrestor 0.97 0.47 0.53 0.99 0.46 0.52

p̄statins ($, OOP) 19 15 0 16 13 0
p̄atorvastatin 39 39 0 24 23 0
p̄Crestor 42 41 0 38 37 0

PSretail ($ millions) 113.7 86.0 0 100.0 79.2 0
PSmeals -0.5 0 0 -0.9 0 0
CSretail ($ millions) 3452.0 3190.6 3279.5 3685.8 3542.2 3608.6
CSmeals -451.6 0 0 -312.2 0 0
TS ($ millions) 3113.6 3276.5 3279.5 3472.5 3603.4 3608.6
POStransfers 254.1 187.1 290.1 195.6 130.6 230.4
CSLY G 17,325.1 16,150.3 16,551.5 18,685.0 17,948.6 18,389.5
Welfare estimates using data (Obs) and counterfactual equilibrium (Ban and Eff) quantities and
prices. All parameters different from zero at 1% level (clustered via delete-120 jackknife at the
doctor level). Table with standard errors in Appendix.

with meals than without because meals drove substitution to Crestor. Also, since payments
were limited to Crestor in 2012, we observe that payments moved total quantity closer to
the efficient benchmark in 2012 (|Q(3) − Q(1)| < |Q(3) − Q(2)|), but payments moved total
quantity further from the efficient benchmark in 2011 (|Q(3) −Q(1)| > |Q(3) −Q(2)|).

These quantity effects highlight several of the issues motivated in Section 4.1 and Inderst
and Ottaviani (2012). The extent to which payments affect allocative efficiency depends upon
their scale relative to the distortion due to high prices, and upon their affect on strategic
interactions between the firms. In the market studied here, payments may move total quan-
tity closer to the efficient allocation, but these aggregate effects also play out very differently
across individual products in the market. Moreover, translating these quantity effects into
surplus measures requires further analysis, depending on the extent to which meals affect
prices and/or better align consumption with the true quality/cost tradeoffs of the various
drugs in the market and vs. the outside option.

Equilibrium prices in the meal ban counterfactual indicate that meals have little effect on
out-of-pocket prices. The reason is that the combination of low price sensitivity of demand,
and prices that are often below firm profit maximizing levels due to insurer-firm bargaining,
mean that the price decreases we might expect with a meal ban are small in this market.

Regarding the efficient allocation of consumers to specific products, the direct effect of
payments is to move quantity towards the paying firm’s drug in cases where it otherwise
would not have been used. This results in a loss of consumer surplus of CSmeals = −$452

million in 2011, vs. −$312 million in 2012. This could be offset to the extent that payments

33



steer patients towards better treatments – in particular, since two firms have patented drugs
in 2011, payments could in principle better align their market shares with their qualities – but
the comparison of CSretail+CSmeals across columns (1) and (2) shows that this is not the case
here. Banning payments results in an increase of $190M (6.3 percent) in consumer surplus
in 2011 via allocation. These distortions are stronger in 2011 than in 2012: the distortion
for Crestor alone is stronger than for Lipitor alone in 2011, but the total distortion for
Crestor+Lipitor in 2011 is stronger than for Crestor alone in 2012.

Even if consumer surplus is harmed, total surplus need not be. To the extent the market
expands to allocate more statins to patients who should receive them at marginal cost, this
may increase surplus in an efficient manner. Here, we see that consumer surplus losses
outweigh producer gains in both 2011 and 2012, resulting in payments being inefficient in
terms of total surplus in both 2011 and 2012, in spite of moving closer to the aggregate
efficient allocation on the extensive margin in 2012. Banning payments results in an increase
of $163M (5.2 percent) in total surplus in the retail market for statins in 2011.

While the above effects in the retail market all hint towards a value in banning payments,
they leave out at least three potentially important features of the market. The first is the
valuable information that may be provided via the interactions the meals facilitate. This
has been assumed to be zero in the context we study here, due to the late stage of the statin
market, but it could be large in other contexts. If we were to instead interpret changes in
prescribing due to meals as utility enhancing, this would imply that a ban reduces consumer
surplus by $261M (7.6 percent) in 2011 (the break-even number for consumer surplus is if
42 percent of the meal effect is associated with true utility vs. pure persuasive bias).

The second is the point of sale price ppos that insurers pay, which is split among pharma-
ceutical manufacturers, distributors, and pharmacies. This number is difficult to compare
with the others as it is a cost shared by enrollees and, in the case of Part D, the government,
and so it is not easily translatable into a per person effect on premiums, let alone welfare.
With that caveat, however, the calculations under POStransfers suggest that these drug cost
effects are meaningful. Because payments steer patients toward much more expensive drugs,
they increase spending on statins by $67M (26 percent) in 2011 and $65M (33 percent) in
2012 relative to our counterfactual where payments are banned.

Finally, there is the fact that our consumer welfare measurements are based on revealed
preference estimates of a utility function that represents doctor/patient choice for statin
treatment. While this estimated function has a straightforward interpretation in terms of
the choice process driving market demand, it could deviate from a measure of true consumer
surplus due to physician agency or physician/patient biases. In light of this, we construct
an alternative measure of consumer welfare, CSLY G, by combining our equilibrium quantity
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predictions with estimates of the health value of statins from the clinical literature valuing
“life years gained.”53 Because the health value of statins is so large in the clinical literature,
the calculations in the final row of Table 8 would indicate a large welfare loss from a meal
ban relative to any spending considerations.54

5 Conclusion

In many industries, firms reach consumers through expert intermediaries. Interactions be-
tween firms and these experts, which can involve direct payments and other kinds of re-
muneration, risk creating conflicts of interest that can hinder efficiency. However, these
interactions can also facilitate valuable information flows, enhancing welfare, and they often
take place in conjunction with other distortions due to agency, market power, and strategic
interactions between firms. While recent theoretical work (Inderst and Ottaviani 2012) has
shed new light on these tradeoffs, it has remained challenging to identify these relationships
empirically. This gap in the literature is particularly important, given recent debates over
conflicts of interest and disclosure in the US health care and financial services industries.

We address this gap by proposing an instrumental variables strategy to overcome the
challenges of empirically estimating these effects in the health care industry. We show
that local academic medical center conflict of interest policies influence the probability of
payments from pharmaceutical companies for unaffiliated doctors in the same region. We
also exploit variation in market structure over time using the Lipitor patent expiration and
ensuing generic entry to disentangle market power effects. Leveraging this approach with
detailed data on prescriptions, prices, and payments, we are able identify the impact of these
interactions on prescribing behavior and overall welfare.

Overall, we find the IV estimates for the effect of meals on prescribing to be positive and
53Here, we assume that all prescribing is “appropriate” – i.e., marginal patients are indicated for treatment

– up to the efficient quantities with no price or meal distortion. For usage above this, we assign utility
value zero. This assumption seems appropriate for drugs like statins, which are generally thought to be
underutilized even absent price distortions (see Baicker et al. (2015)). We would urge caution in applying
this assumption for drugs that are prone to overutilization, such as opioids (Hadland et al. (2018)).

54Our life-years gained calculation is as follows. First, there are approximately 6.93 claims per beneficiary
year in the 2013 Medicare Part D Data, the first year that days supply and beneficiary counts are publicly
reported; we therefore divide our claim counts by 6.93 in each year. Second, statins are intended to treat
chronic conditions and effectiveness will depend on medication adherence; we apply the minimum 37 percent
adherence rate from hyperlipidemia trials (adherence rates range from 37 percent to 80 percent) (Deichmann
et al. 2006). Third, among our estimated count of adherent beneficiaries choosing moderate statins, we apply
the life year gain of 0.69 for Medicare-age enrollees estimated by the Heart Protection Study Collaborative
Group (Heart Protection Study Collaborative Group 2009); and for the incremental benefit of the “strong
statins” atorvastatin/rosuvastatin, we apply the additional 0.09 life year gain from high-dose atorvastatin
vs. low-dose atorvastatin from the TNT study (Wagner et al. 2009). Finally, we apply a conservative value
of $75,000 per life year gained (Cutler 2004).
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significant, both statistically and economically. The IV estimates are also larger than OLS
estimates, consistent with firms targeting payments to physicians who would otherwise have
prescribed the focal drug with low probability. These effects appear to be highly nonlinear
within and across physicians. In particular, larger or more frequent payments make little
difference compared to the event of having any payment at all.

Our counterfactual welfare analysis of banning payments indicates that such a ban would
have a positive effect on consumer and total surplus as measured from our estimated demand
and supply models. This is the result of two conflicting forces. High prices due to market
power keep statin consumption – overall and of the powerful branded molecules – ineffi-
ciently low, and increased consumption due to payments partially offsets this, bringing the
market closer to the efficient allocation. However, this comes at the cost of higher prices,
which outweighs the extensive margin gains. This result is sensitive to the consumer welfare
measure, though – an alternative measure based on estimates of life-year gains from statins
suggests that consumer health gains are sufficient to justify the increased costs.

There are limitations in our approach. We focus on a particular market, cardiologists and
statin prescriptions, during a two-year time period near the expiration of the Lipitor patent.
The dynamics of this market could differ in important ways from other drug and device
markets in health care, and other industries where expert intermediaries play an important
role, such as financial services. Future research can address these limitations, perhaps by
building on our identification strategy for payments, which is quite general, or by providing
alternative approaches to identify causal effects and model market responses.
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APPENDICES – FOR ONLINE PUBLICATION ONLY

A Additional Institutional Background

A.1 Medicare Part D

37 million people, or 70 percent of eligible Medicare beneficiaries, enrolled in Part D plans in
2014.55 Medicare-eligible individuals can acquire prescription drug coverage through stan-
dalone Part D plans or bundled with medical and hospital coverage in the form of “Medicare
Advantage” plans. Utilization of drugs in the Part D program is a function of physicians’ pre-
scribing decisions. These in turn may be impacted by: prescribers’ training and knowledge,
interactions with pharmaceutical firms, and preferences over cost control; the relevant drugs’
effectiveness, side effects, and out-of-pocket costs; and Part D insurers’ coverage policies.

Part D plans are offered by private insurers, but the federal Centers for Medicare and
Medicaid Services mandates coverage generosity of plans in terms of actuarial value, types
of drugs covered, and pharmacy network breadth. Enrollees are entitled to basic coverage
of prescription drugs by a plan with equal or greater actuarial value to a standard Part D
plan.56

The majority of Part D enrollees are not enrolled in standard plans, but rather in ac-
tuarially equivalent or “enhanced” plans with non-standard deductibles and tiered copays
where enrollees’ out-of-pocket costs vary across drugs and pharmacies. Branded drugs with
close generic substitutes (e.g., Lipitor and Crestor vs. simvastatin and pravastatin prior to
Lipitor’s patent expiration) generally have higher copays than generics, while branded drugs
with generic equivalents (e.g., Lipitor after patent expiration) have even higher copays or
may not be covered by plans at all. On the other hand, approximately 30 percent of Part D
enrollees qualify for low-income subsidies (LIS), which entitles them to substantial reductions
in premiums and out-of-pocket costs on covered drugs; maximum copays for LIS enrollees
are low or zero.57

Part D issuers receive premiums from enrollees and a variety of subsidy payments from
55Hoadley, J., Summer, L., Hargrave, E., Cubanski, J., and Neuman, T. (2014). Medicare part d in its

ninth year: The 2014 marketplace and key trends, 2006-2014. Technical report, Kaiser Family Foundation.
56In 2011, the standard plan covered: none of the first $310 in drug costs each year (the deductible); 75

percent of costs for the next $2,530 of drug spending (up to $2,840 total; the “initial coverage region”); 50
percent of branded costs for the next $3,607 of drug spending (up to $6,447 total; the “donut hole”); and 95
percent of costs above $6,447 in total drug spending (the “catastrophic region”).

57Partial subsidies are available at 150 percent of the federal poverty level (FPL); full subsidies are
available at 100 percent of FPL. LIS enrollees can enroll premium-free in “benchmark plans” or enroll in a
non-benchmark plan and pay the difference between the chosen plan’s premium and the benchmark premium
out-of-pocket.
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CMS: risk-adjusted direct subsidies for each enrollee, additional subsidies to cover LIS pre-
miums and cost-sharing, and reinsurance for particularly high-cost enrollees. They also
receive or pay “risk corridor” transfers such that the issuers’ profits/losses are within certain
bounds.58 Although issuers’ strategies and profits are heavily regulated by CMS, they can
constrain costs through formulary design (drugs’ coverage and placement on tiers, which
determine patients’ access to those drugs and out-of-pocket costs), negotiations with drug
manufacturers, and negotiations with pharmacies.

A.2 Regional Pricing/Formulary Variation in 2012

In our structural analyses in Section 4, we identify the price sensitivity of demand using
panel variation in out-of-pocket prices faced by Medicare enrollees. This variation is driven
by Lipitor’s patent expiration and by regional variation in insurers’ responses to Lipitor’s
patent expiration.

Out-of-pocket prices are generally determined using insurance plan-specific formulas as
a function of drug coverage, placement on tiers, point-of-sale price, and benefit phase. If
a drug is covered, the out-of-pocket price will be either the tier-phase-specific copay or the
product of the tier-phase-specific coinsurance and the point-of-sale price of the drug. In our
analyses, we focus on prices per one-month supply of the relevant drug in the initial coverage
phase of the Medicare Part D plan – most claims are filled in the initial coverage phase as
opposed to the deductible, donut, or catastrophic phase.

Figure A1 shows the trend in point-of-sale prices for Lipitor and generic atorvastatin
over 2011-2012. After Lipitor’s patent expired in November 2011, generic atorvastatin was
introduced by two generic manufacturers – the “authorized” generic firm Watson Pharma-
ceuticals and the paragraph IV challenger Ranbaxy Laboratories – that were afforded 180
days of exclusivity from other generic competition. Prices for generics remained high, near
$115, for the 180-day generic exclusivity period, then dropped dramatically and leveled out
near $25. Branded Lipitor’s price remained high, increasing slightly from $135 in early 2011
to $155 during 2012.59

Figure A2 shows the percent of Medicare Part D plans covering atorvastatin and Lipitor
during 2011 and 2012. When Lipitor’s patent expired in November 2011, there was an im-
mediate jump from 0 percent to about 80 percent of plans covering atorvastatin. Conversely,

58Insurers bear all upside/downside risk within a 5 percent band of zero profit; outside this risk corridor,
the plan absorbs 20-25 percent of profits and losses.

59The observed point-of-sale prices are the basis to which enrollees’ coinsurances are applied, but they are
not net of rebates, and thus do not accurately represent the prices that pharmaceutical manufacturers receive
per claim. Rebates are known to be an important strategic variable for branded manufacturers (though not
for generic manufacturers). We return to this issue in our discussion of the structural results.
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Figure A1: Point-of-Sale Price of Atorvastatin/Lipitor, 2011-2012

Note: Reproduced from Starc and Swanson (2018b). Average point-of-sale price of Lipi-
tor/atorvastatin observed in monthly prescription drug event data. Claims made by non-LIS
enrollees for 30-day supply in the initial coverage phase of the drug benefit only.

the trend downward in plans’ coverage of branded Lipitor is much flatter, as many plans did
not remove Lipitor from their formularies until well after patent expiration. As of December
2012, 27 percent of plans still covered Lipitor.

Finally, Figure A3 shows the trend in out-of-pocket prices for Lipitor and atorvastatin
in 2011-2012, conditional on Lipitor being on-formulary. Generic copays for atorvastatin
dropped from about $25 to about $9 after 180-day exclusivity. Lipitor copays were fairly
flat, declining from about $38 to $32 over 2011-2012, implying that the primary incentives
plans used to induce enrollees to switch from Lipitor to atorvastatin were to drop Lipitor
from their formularies and/or reduce copays for atorvastatin.

For our structural model estimation, we use point-of-sale and out-of-pocket prices from
the CMS Part D public use files for Q2 2011 and Q3 2012. Prices are collected at the plan-
drug-year level. Given that our prescription drug claims data cannot be linked to plans, we
aggregate up to the Part D region-drug-year level (Part D regions are 39 supersets of states)
using plan enrollment data to construct weighted averages. Cross-sectional variation in prices
is generated by plan-pharmacy negotiations over point-of-sale prices and by plan-specific
decisions regarding drug coverage and tiering. The coefficients of variation for the point-of-
sale (out-of-pocket) price across Part D regions in 2011 were 0.03 (0.18) for Crestor, 0.03
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Figure A2: Coverage of Atorvastatin/Lipitor, 2011-2012

Note: Reproduced from Starc and Swanson (2018b). Average formulary coverage of Lipi-
tor/atorvastatin observed in monthly prescription drug event data.

(0.13) for Lipitor, and 0.33 (0.22) for simvastatin. The coefficients of variation for point-of-
sale price for Lipitor and Crestor were similar in 2012; however, the coefficient of variation on
out-of-pocket price increased to 0.19 for Lipitor, and there was substantial variation in 2012
in terms of both point-of-sale (CV =0.27) and out-of-pocket price (CV =0.28) for generic
atorvastatin. This price variation is presented for our focal drugs in Table A1 below.60

Many of the determinants of both point-of-sale and out-of-pocket prices across regions
at a point in time are likely driven by insurer-specific factors that are correlated across
regions. These might include management, contracts with prescription benefit managers,
and costs. Given this, we introduce another source of identifying variation – for each plan-
drug-region-year, we calculate the average price for that plan-drug-year in other regions,
and we aggregate that instrument across plans within each region to generate a region-drug-
year-specific instrument. The logic is as follows: if (for instance) United HealthCare were

60The primary distinctions between Table A1 and Figures A1 and A3 are (1) that the prices in the Figures
are claims-weighted, while the prices in the Table are enrollment-weighted across plans; and (2) that the
Figures are from claims data and are thus conditional on drugs being covered on plans’ formularies. We set
out-of-pocket price equal to average point-of-sale price in the relevant region when Lipitor is excluded from
a plan’s formulary. This results in Lipitor’s out-of-pocket price increasing from $38 to $84 between 2011 and
2012. To the extent that some enrollees whose plans dropped Lipitor from the formulary were motivated to
purchase Lipitor in cash (in which case the claim would not be recorded in the Medicare Part D data), this
will bias our estimates of price sensitivity upward in magnitude.
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Figure A3: Out-of-Pocket Price of Atorvastatin/Lipitor, 2011-2012

Note: Reproduced from Starc and Swanson (2018b). Average out-of-pocket price of Lipi-
tor/atorvastatin observed in monthly prescription drug event data. Claims made by non-LIS
enrollees for 30-day supply in the initial coverage phase of the drug benefit only. Prices are
from claims and are thus conditional on drugs’ formulary inclusion.

Table A1: Lipitor, Atorvastatin, and Crestor Prices – 2011-2012

Price 2011 Price 2012 Panel
Mean SD 25th 75th First Stage Mean SD 25th 75th First stage First Stage

w/ Doc FE

Lipitor OOP 38.10 5.09 34.02 41.16 0.702∗∗∗ 84.21 16.16 77.54 95.01 1.197∗∗∗ 1.265∗∗∗
POS 114.92 3.62 113.34 113.86 0.378∗∗∗ 136.21 4.60 134.35 134.83 0.356∗∗∗ 1.210∗∗∗

Atorvastatin OOP 11.66 3.23 9.77 11.99 0.839∗∗∗
POS 31.18 8.31 28.51 31.62 1.352∗∗∗

Crestor OOP 40.96 7.28 37.09 45.67 0.932∗∗∗ 38.85 6.89 35.31 41.78 1.109∗∗∗ 0.822∗∗∗
POS 138.32 4.15 136.55 137.12 0.360∗∗∗ 161.66 4.93 159.60 160.45 0.312∗∗∗ 1.732∗∗∗

particularly slow to remove Lipitor from its formularies, then Lipitor prices in 2012 would
be higher in regions dominated by United HealthCare for reasons unrelated to those regions’
latent price-sensitivity or willingness to substitute to generic equivalents. The association
between the point-of-sale and out-of-pocket prices within and across time is in the “first
stage” columns in Table A1. There is a strong positive association between the pricing
policies of the dominant firms in each region and their pricing policies in other regions – this
holds within each year and across years, which we can see in the “first stage” result in the
final column that pools years and controls for physician fixed effects.
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B Appendix: Payment Data, Construction and Context

B.1 Building the Dataset

The payment data is based on publicly available data released by firms prior to the Sunshine
Act-required reporting that began in 2013. When posting these reports, each firm adopted
its own standards for specificity,61 categorization approach,62 and accuracy. Physician-level
identifiers were ambiguous and often limited to a name, city of address and perhaps a spe-
cialty. Furthermore, many of these documents have since been removed from easily accessible
websites. During the period that these payments were still posted on the firms’ websites,
the enterprise software company Kyruus collected these reports as a part of their initiative
to analyze physician-firm interactions.63 In order to create a disambiguated physician-level
dataset using the unstandardized reports, Kyruus utilized their proprietary machine-learning
algorithms to match each individual-firm data point with the physician most likely to be the
true recipient. The resulting dataset, generously provided to us by Kyruus, connects each
firm-physician-payment to the most probable unique National Provider Identifier – a variable
enabling us to merge this data to a number of other datasets.

There is significant heterogeneity in the nature of payments as they relate to the potential
for conflict of interest. For example, a physician may receive a royalty payment for an
invention sold by a company or a consulting payment for advice on product development.
Other payments might not be related to a product at all. We construct two main categories
of payments: “research” and “general” (all non-research payments). This scheme closely
follows that of Open Payments and excludes all royalty payments. Within general payments
we identify three sub-categories: “meals,” “travel or lodging,” and “consulting, speaking or
education.” Table A2 summarizes interactions levels for all of the firms, active physicians64

and years of data we observe. In the focal analysis, we utilize only payments from Pfizer
(which owns Lipitor) and AstraZeneca (which owns Crestor) to active Cardiologists.

The concern for misreporting, and in particular underreporting, in the early years of these
documents led us to remove certain firm-year outliers.65 To identify those firm-years most

61For example, while many firms reported whole dollar amounts, Allergan reported payments in large
bins uninformative for analyses (e.g. $1-$1,000, $1,001-$10,000, etc.)

62Some firms utilized three mutually exclusive categories (e.g., consulting, meals, research), while others
utilized non-exclusive labels (e.g., meals; meals, consulting; consulting, teaching and education).

63E.g., Rose, S. L., Sanghani, R. M., Schmidt, C., Karafa, M. T., Kodish, E., and Chisolm, G. M.
(2015). Gender differences in physicians’ financial ties to industry: A study of national disclosure data.
PlosOne.

64Active prescribers here defined as being above the bottom 10th percentile of total annual claims in the
Medicare Part D data.

65For anecdotes related to the inaccuracies of these early reports, see: Ornstein, C. and Weber, T. (2010).
In Minnesota, drug company reports of payments to doctors arrive riddled with mistakes. Technical report,
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likely to suffer from significant misreporting, we collapsed each firm’s annual total number
of payments and payment amounts and dropped any firm-year for which either of these
variables were an order of magnitude smaller than the most recent year’s data. Given the
relative stability in payment behaviors across firms and over time, we assume these sharp
discontinuities were the result of misreporting and not any dramatic change in firm policies.

Table A2: Firm-wide Total Interaction Amounts

Firm Years Avg. total, $M Avg. total, n
General Research General Research

AstraZeneca 2011-2013 $31.8 $0.95 115,490 119
Cephalon 2010-2013 $6.43 $10.5 27,736 258
EMD-Serono 2011-2013 $1.81 N.R. 7,070 N.R.
Forest 2012-2013 $39.8 $7.66 222,308 422
GlaxoSmithKline 2012-2013 $9.26 N.R. 40,989 N.R.
Eli Lilly 2011-2013 $35.8 $148 85,403 3,079
Merck 2012-2013 $22.3 $174 19,038 4,256
Novartis 2012-2013 $49.9 $74.4 99,129 2,853
Pfizer 2010-2012 $39.1 $93.9 137,012 1,855
Valeant 2010-2013 $1.78 N.R. 19,549 N.R.

Note: Expenditures and number of payments per year, dollars in millions. General and research
payments are defined in text. N.R. indicates type was not reported.

B.2 Comparing the Dataset to Post-Sunshine Act Data

As outlined in the main text, the Kyruus-developed physician-industry interaction data we
analyze was available due to the fact that Pfizer and AstraZeneca, among other drug firms,
released this information prior to the mandatory reporting regulations of the Sunshine Act,
which began reporting in late 2013. Because these disclosures prior to the Sunshine Act
occurred on an ad hoc basis without any standardized reporting agency (the interaction
files were typically posted on each firm’s website), it is important to provide evidence that
this pre-Sunshine Act data is relatively accurate, e.g. it is not censored or biased in any
way that would alter our conclusions. To investigate this, we explored post-Sunshine Act
data made available by ProPublica66, examining trends and distributions under the working
assumption that firm-level annual trends in physician payments should be smooth, and
within-year distributions of payments should be relatively stable.

Like our Kyruus-developed data, the ProPublica version of the official Sunshine Act
data, (available at https://openpaymentsdata.cms.gov), is matched to National Provider

Dollars for Doctors.
66https://www.propublica.org/article/about-the-dollars-for-docs-data
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Identifiers. This enables us to hold fixed our set of cardiologists from the main analyses,
and compare payments from Pfizer and AstraZeneca in 2011-2012 (from Kyruus) to those
in 2014-2015 (from ProPublica).67

Figure A4 Panel (a) plots the total number of our cardiologists (out of roughly 15,000)
that receive any general (non-research) payment from the two firms in each year, based on
either data source. In the case of AstraZeneca, the trend is clearly smooth between the two
data sources, supporting our assumption that the self-reported data is not notably censored
in any way. Although the Pfizer trend line appears to be dramatically different across the
two data sources, the spike in 2014 can be explained by the fact that this year marked the
approval of Eliquis, a joint venture between Pfizer and Bristol Myers Squibb. Eliquis is
an anticoagulant for the treatment and prevention of deep vein thrombosis and pulmonary
embolisms, thus cardiologists are the most relevant specialty, and in the OpenPayments
data – where, unlike in the Kyruus data, the specific drug associated with each interaction is
reported – Eliquis accounts for roughly 60% of the interactions with cardiologists and 78%
of total spending on cardiologists. Figure A4 Panel (b) indicates very little variation in the
distribution of payment dollar values across the data years/data sources, further supporting
the notion that our data is not censored or biased in any significant way.

Figure A4: Kyruus vs. OpenPayment Comparison
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B.3 The State of Science of Statins

A key assumption we make when interpreting our estimates is that the effect we observe is
not (significantly) due to a transfer of information from the firms to the physicians. This

672013 is omitted because OpenPayments reporting only includes the last quarter of the year.
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would not be an ideal assumption in the early years of a drug’s release, when information
surrounding a drug’s mechanism, formulation, indications, etc., would likely not yet be
disseminated. However, the statin market was arguably quite mature by 2011-12, 15 and
8 years after Lipitor’s and Crestor’s FDA approvals, respectively. To further support this
claim, Figure A5 plots the trend in scientific publications that contain Lipitor or Crestor’s
brand or generic (molecule) name in the abstract or title. First examining the full set of
publications, we see that in sum or as a share of all cardiovascular-related publications,
there was considerable growth in study during the 2000’s; however, the rate of publications
stabilized starting around 2008. Examining the subset of publications that were directly
linked to clinical trials (the green dashed line), we see further evidence that the rate of
study of these statins has been roughly constant since 2008, even declining in recent years.
Thus, we interpret these plateauing trends as evidence that the major scientific studies that
developed the key pieces of information surrounding these drugs had been completed and
their results largely disseminated by 2011-12.

Figure A5: Trends in Science of Statins

0
20

0
40

0
60

0
80

0
To

ta
l

0
.0

1
.0

2
.0

3
Sh

ar
e

1995 2000 2005 2010 2015
 

All Pub Share of Cardio. All Pub
Clinical Trial Pub

Note: Data from PubMed, per searches for any journal article with Lipitor, Atorvastatin, Crestor, or Rosu-
vastatin in either the abstract or title, showing the total count of these publications (right-axis) scaled by the
total number of cardiovascular publications (left-axis), or including only those flagged by PubMed as being
connected to a Clinical Trial (right-axis). Sample years, 2011-12, flagged with vertical lines.
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C Additional Tables and Figures

Table A3: Summary Statistics, X and Z Variables

Variable Mean AstraZeneca 2012
(s.d.) If $ Diff.

X Variables

NPI ’10 Claims, Cardio. 2355 524.3***
(2145)

NPI ’10 Claims, Statins 402 78.8***
(359)

NPI ’10 Claims, Year 3068 686.9***
(3073)

NPI Is Faculty .089 -.0919***
(.285)

NPI N Hosp. Affls. 3.6 .21***
(1.4)

NPI N Practice Affls. 1.5 .08***
(.8)

NPI N Specialties 1.4 -.02**
(.60)

NPI N Zip Affls. 1.7 .01
(1.9)

Hosp-Card. ’10 Claims, Cardio. 2085 425.8***
(1709)

Hosp-Card. ’10 Claims, Statin 355 63.1***
(276)

Hosp-Card. ’10 Claims, Year 2712 559.9***
(2355)

Hosp. Faculty Shr. .077 -.0555***
(.146)

Hosp. N Beds 353 -17.5***
(345)

Hosp. N Admits. 17455 -955.8***
(17333)

Hosp. N Cardiol. 18 -2.5***
(19)

Hosp. N Docs. 380 -76.7***
(349)

Hosp. N AMC Affls. 4.3 -.48***
(3.6)

Hosp. N Faculty 57 -57.3***
(163)

HSA-Card. ’10 Claims, Cardio. 796 47.2
(4577)

HSA-Card. ’10 Claims, Statin 140 11.7
(769)

HSA-Card. ’10 Claims, Year 1045 71
(5895)

HSA Medicare Advnt. N Elgbl. 118814 -2207.9
(198980)

HSA Medicare Advnt. % Penet. 24 -1***
(14)

HSA Pop. %Uninsured 11 1.3***
(4)

HSA Pop. %Medicaid 22 -.2
(8)

HSA Faculty Shr. .036 -.0044***
(.023)

Variable Mean AstraZeneca 2012
(s.d.) If $ Diff.

X Variables

HSA N Cardiol. 49 -7.3***
(86)

HSA N Docs. 1575 -267.1***
(2365)

HSA N AMCs 8.1 -1.16***
(11.5)

HSA N Faculty 275 -84.1***
(610)

HSA Teach. Hosp. Bed Shr. .109 -.0263***
(.19)

HSA Teach. Hosp. Admit Shr. .119 -.0276***
(.212)

HRR-Card. ’10 Claims, Cardio. 679 -443.2**
(10572)

HRR-Card. ’10 Claims, Statin 113 -77.2**
(1829)

HRR-Card. ’10 Claims, Year 888 -554.2**
(13921)

HRR Medicare Advnt. N Elgbl. 98694 561.6
(181413)

HRR Medicare Advnt. % Penet. 21 -.60***
(13)

HRR Pop. %Uninsured 11 1.4***
(5)

HRR Pop. %Medicaid 23 .3***
(7)

HRR Faculty Shr. .029 -.0015***
(.018)

HRR N Cardiol. 142 -5.6**
(151)

HRR N Docs. 4630 -484.4***
(4613)

HRR N AMCs 16 -.4*
(15)

HRR N Faculty 423 -60.1***
(843)

HRR Teach. Hosp. Bed Shr. .145 -.0026
(.151)

HRR Teach. Hosp. Admit Shr. .166 -.0025
(.178)

Z Variables

HSA AMSA CoI 26 -.2***
(2)

HSA AMSA CoI, Wgt. 3.5 -.25***
(1.9)

HRR AMSA CoI 26 -.1**
(3)

HRR AMSA CoI, Wgt. 2.4 -.14***
(1.2)

Note: NPI-level means (standard deviations in parentheses) for the 46 baseline X controls and 4 Z instruments.
As cross-sectional variables, these do not vary over time. The third columns present unconditional t-tests of
means across physicians that do and do not receive a meal from AstraZeneca in 2012 (i.e. for variable v,
mean(vmeal) - mean(vnomeal). Consistent with what is observed in the first-stage analyses of our instruments,
paid physicians have lower AMSA CoI scores on average.

C.1 Preventing Overfitting via LASSO

This and all LASSO regressions use common machine learning practices of: 10-fold cross-
validation (split data set into 10 equal parts, and use each in turn as the holdout sample on
which the model trained on the other 9 is tested) at 100 potential penalty parameters to select
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the simplest model (i.e., the largest penalty) within one standard deviation of the penalty
that minimizes the mean RMSE in the hold-out samples of the 10-fold cross validation runs.

The 100 potential penalty parameters range up to a maximum of MaxPenaltyGuess =

2 × max(x̃′y), where x̃ is the pre-standardized regressor matrix and y is the vector of the
outcome variable, from a minimum of [MaxPenaltyGuess/1000]; the 100 potential penalties
are evenly spaced between the minimum and maximum penalty guess values over a log
scale. This appears to be the most common approach in machine learning to addressing
overfitting problems. We have also used the combined cross-validation, estimation, and
averaging approach discussed in Chernozhukov et al. (2017), and found similar results. With
our relatively large data and regressor sets, especially in the demand estimation with all
statins pooled, the computational savings of separating cross-validation and estimation are
significant, so we proceed with this approach in the paper.

C.2 Instruments

As described above, we rely on spillovers from local hospitals’ conflict of interest policies to
generate identifying variation in meal receipt. We have four candidate instruments: HSA-
level average AMSA score across all AMC faculty not affiliated with the focal cardiologist’s
hospital; HSA-level faculty-weighted average AMSA score across all cardiologists not affili-
ated with the focal cardiologist’s hospital; HRR-level average AMSA score across all AMC
faculty not affiliated with hospitals in the focal cardiologist’s HSA; and HRR-level faculty-
weighted average AMSA score across all cardiologists not affiliated with hospitals in the
focal cardiologist’s HSA.68 In theory, each variable could contribute independent identifying
variation: the first and third describe strictness of local AMCs’ conflict of interest policies;
the second and fourth add information on how many local physicians are faculty; and the
different levels of geography may have distinct, additive effects on sales force allocations.

The first four panels of Table A4 show the independent effects of the faculty-weighted
hospital-, HSA-, and HRR-level AMSA scores on meal receipt, separately for each firm-year.
Column (1) indicates that hospital-level AMSA scores have a strong negative association
with meals, but this relationship is not robust to the inclusion of controls in column (2).
Columns (3) and (5) show negative associations between HSA- and HRR-level AMSA scores
and meals for AstraZeneca and Pfizer 2011. This relationship remains large and significant
when controls are included in column (4) and (6). As expected, the first stage is much weaker
for Pfizer in 2012, after Pfizer significantly scaled back marketing of Lipitor. Finally, the
last two panels in the Table pool firm-years, with and without Pfizer 2012. They indicate

68In generating each of the “faculty-weighted” instruments, we assign AMSA scores of zero to non-faculty.
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that both HSA- and HRR-level AMSA scores have a meaningful effect on meal receipt,
conditional on controls. These results emphasize the importance of including rich controls
for physician-, hospital-, and market-level characteristics, and highlight the different effects
of hospital-level AMSA scores vs. market-level AMSA scores.

Table A4: “First Stage”: Meals vs. Faculty-Weighted AMSA Scores

Dependent Variable: 1{mjdt>0}

Hospital AMSA Scores HSA AMSA Scores HRR AMSA Scores
(1) (2) (3) (4) (5) (6)

AstraZeneca 2011: -0.0824*** -0.0238*** -0.0187*** -0.0203*** -0.0122*** -0.0276***
(0.00387) (0.00709) (0.00431) (0.00743) (0.00431) (0.00871)

N 13274 13274 13274 13274 13274 13274
R2 0.0281 0.124 0.00145 0.123 0.000612 0.124
Mean(Meal) 0.590
AstraZeneca 2012: -0.0907*** -0.0141* -0.0310*** -0.0147** -0.0283*** -0.0519***

(0.00386) (0.00751) (0.00415) (0.00736) (0.00415) (0.00844)

N 13762 13762 13762 13762 13762 13762
R2 0.0358 0.140 0.00417 0.140 0.00347 0.142
Mean(Meal) 0.642
Pfizer 2011: -0.0192*** 0.0136*** -0.00276 -0.0123** -0.00704** -0.0507***

(0.00275) (0.00519) (0.00314) (0.00550) (0.00316) (0.00642)

N 14699 14699 14699 14699 14699 14699
R2 0.00230 0.0977 0.0000476 0.0977 0.000310 0.101
Mean(Meal) 0.199
Pfizer 2012: -0.000734 0.00244 0.00684*** 0.00891*** 0.000606 0.00346*

(0.00187) (0.00188) (0.00206) (0.00205) (0.00196) (0.00197)

N 10684 10684 10684 10684 10684 10684
R2 0.0000131 0.0282 0.00113 0.0300 0.00000889 0.0284
Mean(Meal) 0.0430
Pooled All Firm-Years: -0.0507*** -0.00231 -0.0134*** -0.00444* -0.0145*** -0.0178***

(0.00176) (0.00219) (0.00211) (0.00232) (0.00209) (0.00230)

N 52419 52419 52419 52419 52419 52419
R2 0.0109 0.347 0.000761 0.347 0.000885 0.348
Mean(Meal) 0.383
Pooled exc. Pfizer-2012: -0.0640*** -0.00664* -0.0169*** -0.0156*** -0.0160*** -0.0437***

(0.00208) (0.00376) (0.00244) (0.00389) (0.00242) (0.00450)

N 41735 41735 41735 41735 41735 41735
R2 0.0164 0.264 0.00115 0.264 0.00102 0.265
Mean(Meal) 0.470
Incl. L(X) Y Y Y
Jackknife Y Y Y Y

Note: Each estimate and standard error from a separate regression of meal dummy on standardized AMSA
variables, with and without LASSO-selected controls. Standard errors clustered at hospital level. Jackknife
formulations exclude the AMSA scores from the focal units at the sub-level of aggregation (i.e. the HSA-level
measure for doctor i at hospital h and HSA s is the average score for all other doctors in s but not at hospital
h).

C.2.1 Meals Model

Here, we modify the supply side to endogenize meals as well as prices. Let the supplier’s
profit be:

π(pposjbt ,mjbdt) =
∑
d

(
qjbdt(p

pos
jbt −mcjbt)− (m̄+ cmdt)1{mjbdt>0}

)
(7)
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wheremcjbt captures the cost of manufacturing and distributing the marginal unit of molecule
j, m̄ is the fixed and exogenous cost of a meal, and cmdt captures the fixed cost of interacting
with physician d (roughly equivalent to a “marketing” cost over and above the dollar value
of the meal). Intuitively, the quantity consumed of each drug will depend on the availability
of substitutes, relative prices, and meals.

Given our assumption that the point-of-sale price insurers pay for the drug is constant
across providers, the firm’s first-order condition on price will be as in the main text, and the
first-order condition on meals will be:

m∗jbdt > 0 ⇔ (qjbdt,{mjbdt>0} − qjbdt,{mjbdt=0})(p
pos
jbt −mcjbt) > m̄+ cmdt, (8)

where m̄ is the dollar value of a meal and cmdt is the physician-specific marginal cost of
interaction. Firms give meals to any physician when the meal-induced shift in revenues is
greater than the total costs of interacting with that physician. While it is not necessary
for our counterfactuals to estimate the parameters underlying this optimality condition, it
is worth noting that this condition motivates our identification strategy. The likelihood of
a physician receiving meals will depend on the marginal benefit and marginal cost of meals
for that physician. For example, if there are lower costs of interacting with physicians that
are geographically close to the firm’s headquarters, or of interacting with physicians in large
practices, then physicians’ propensity to receive meals will vary in geographic space and in
practice size. More to the point, the conflict of interest policies embodied in our instruments
are exogenous shocks to the marginal value of interactions.

In the instrumental variables (IV) results in the following Section, we show results both
for simple 2SLS on all HSA- and HRR-level instruments, and for our preferred specifica-
tion that uses the “orthogonal 2SLS approach” described above. To fix ideas, Figure A6
below shows the relationship between the combined, orthogonalized AMSA instrument and
each component instrument: jackknifed HSA- and HRR-level AMSA averages, unweighted
and faculty-weighted. With the exception of Pfizer 2012, the orthogonalized instrument is
significantly negatively associated with each individual instrument in each firm-year, after
conditioning out controls for cardiologist, hospital, and market covariates.
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Figure A6: Orthogonal 2SLS Instrument vs. Individual AMSA Instruments
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Note: Each figure plots standardized values of the orthogonalized instrument ˜̂z as described in text, vs. each

AMSA component instrument.
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C.3 Firm-Year-Level LASSO Importance Tables

Table A5: Important Variables, Pfizer 2012

Utilization Equation (y: log(Claimsjdt)) Meal Equation (y: 1{mjdt>0})
X Var. Flexible X Var. Flexible

∆R2 ∆R2

NPI ’10 Claims, Statins -.207 NPI ’10 Claims, Year -.95
HRR N Cardiol. -.02 HSA Pop. %Medicaid -.95
HSA Pop. %Medicaid -.019 Hosp. N Admits. 0
HRR N Docs. -.014 HSA Medicare Advnt. Penet. 0
HRR Medicare Advnt. N Elgbl. -.01 HRR Faculty Shr. 0
HSA Medicare Advnt. N Elgbl. -.01 HRR-Card. ’10 Claims, Cardio. 0
HRR Teach. Hosp. Bed Shr. -.01 HRR Medicare Advnt. Penet. 0
HSA Teach. Hosp. Bed Shr. -.009 HRR N Docs. 0
HRR Faculty Shr. -.009 Hosp-Card. ’10 Claims, Cardio. 0
HSA Medicare Advnt. Penet. -.009 HSA Medicare Advnt. N Elgbl. 0

Z Var. Flexible
∆R2

HSA AMSA CoI, Wgt. -.042
HSA AMSA CoI -.003
HRR AMSA CoI, Wgt. -.002
HRR AMSA CoI -.002

Table A6: Important Variables, AstraZeneca 2011

Utilization Equation (y: log(Claimsjdt)) Meal Equation (y: 1{mjdt>0})
X Var. Flexible X Var. Flexible

∆R2 ∆R2

NPI ’10 Claims, Statins -.313 HRR Pop. %Uninsured -.043
NPI ’10 Claims, Year -.023 NPI Is Faculty -.037
HRR Faculty Shr. -.006 NPI N Hosp. Affls. -.037
HSA Medicare Advnt. N Elgbl. -.005 HRR Teach. Hosp. Bed Shr. -.033
HRR Pop. %Uninsured -.004 HRR Medicare Advnt. Penet. -.03
HRR N Faculty -.003 HRR Faculty Shr. -.03
Hosp. N Admits. -.003 Hosp. N Faculty -.029
Hosp. N Cardiol. -.003 Hosp. N Admits. -.028
HRR Medicare Advnt. Penet. -.002 Hosp-Card. ’10 Claims, Statin -.026
Hosp-Card. ’10 Claims, Statin -.002 HSA Medicare Advnt. Penet. -.026

Z Var. Flexible
∆R2

HRR AMSA CoI -.007
HSA AMSA CoI, Wgt. -.005
HRR AMSA CoI, Wgt. -.002
HSA AMSA CoI -.001
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Table A7: Important Variables, AstraZeneca 2012

Utilization Equation (y: log(Claimsjdt)) Meal Equation (y: 1{mjdt>0})
X Var. Flexible X Var. Flexible

∆R2 ∆R2

NPI ’10 Claims, Statins -.265 HRR Faculty Shr. -.045
NPI ’10 Claims, Year -.027 NPI N Hosp. Affls. -.038
HRR N Cardiol. -.013 NPI ’10 Claims, Cardio. -.032
HRR Faculty Shr. -.009 NPI Is Faculty -.032
HSA Medicare Advnt. N Elgbl. -.009 Hosp. N Admits. -.032
NPI N Hosp. Affls. -.008 NPI N Zip Affls. -.029
Hosp-Card. ’10 Claims, Statin -.006 Hosp-Card. ’10 Claims, Statin -.025
HRR N Docs. -.004 HRR N AMCs -.025
NPI ’10 Claims, Cardio. -.004 NPI N Practice Affls. -.025
HRR Medicare Advnt. Penet. -.004 HSA Teach. Hosp. Bed Shr. -.025

Z Var. Flexible
∆R2

HRR AMSA CoI -.012
HRR AMSA CoI, Wgt. -.009
HSA AMSA CoI -.007
HSA AMSA CoI, Wgt. -.001

56



C.4 Firm-Year-Level Table Replications

In the below, we show each of our main 2SLS results separately for each firm-year combina-
tion. For each firm-year, we cannot reject (at the 95 percent level) the null hypothesis that
the firm-year meal effects are identical to the pooled effect. The effect for Pfizer in 2011 is
larger, as might be the case if Pfizer maintains meals where they have the largest impact,
even as it allocates less resources to them with the impending patent expiry. The effect for
AstraZeneca 2012 is smaller, as might be the case if additional meals provided in 2012 are
allocated to more marginal physicians, or if all meal relationships have less of an impact
in the presence of generic atorvastatin. Pfizer 2012 has a weak instruments problem where
our identification strategy has difficulty predicting the remaining few cardiologists receiving
Pfizer payments in 2012. However, as shown in the final panel of each Table, re-running the
pooled analysis with Pfizer 2012 excluded provides similar results to our preferred estimates,
so Pfizer 2012 does not affect our pooled inference on the meal effect substantially.

It is worth noting that the meal effects within year for AstraZeneca are often just on
the margin of significance at conventional levels. Significance levels vary slightly by sample
and included controls (compare Tables A8, A9, and A11). However, point estimates are
fairly consistent across these decisions and we consider our baseline specification to be fairly
conservative. Accordingly, we do not focus on these small variations in p-values.
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Table A8: Main Results, Firm-Year Subsets, log(claims)

(1) (2) (3) (4) (5) (6)

Panel A: Pfizer 2011

βm 0.454*** 0.172*** 0.974*** 1.264*** 1.369*** 1.101***
(0.0166) (0.0123) (0.160) (0.293) (0.306) (0.254)

[27.18] [35.98] [35.91] [44.27]

Nobs 14699 14699 14699 14699 14699 14699
NX 46 46 417.33 252.67 582.33
NZ 4 9 6 11

Panel B: Pfizer 2012

βm 0.368*** 0.125*** 5.104 -0.862 1.273** 4.675
(0.0365) (0.0280) (3.168) (1.971) (0.631) (7.840)

[0.82] [2.51] [15.46] [0.47]

Nobs 10684 10684 10684 10684 10684 10684
NX 46 46 257.33 49.33 394.33
NZ 4 4 4 6

Panel C: AstraZeneca 2011

βm 0.300*** 0.159*** 0.866*** 0.805 1.363** 0.457
(0.0150) (0.0120) (0.314) (0.543) (0.656) (0.399)

[6.07] [7.69] [7.71] [13.67]

Nobs 13274 13274 13274 13274 13274 13274
NX 46 46 320.67 154 436.67
NZ 4 9 6 9

Panel D: AstraZeneca 2012

βm 0.266*** 0.149*** 0.597*** 0.341 0.496** 0.466**
(0.0151) (0.0126) (0.198) (0.227) (0.208) (0.186)

[15.31] [41.45] [51.43] [58.66]

Nobs 13762 13762 13762 13762 13762 13762
NX 46 46 379.67 229 503.67
NZ 4 9 8 14

Panel E: Pooled, Excl. Pfizer-‘12

βm 0.186*** 0.159*** 0.820*** 0.722*** 0.910*** 0.649***
(0.00988) (0.00832) (0.143) (0.192) (0.188) (0.156)

[12.58] [61.31] [69.19] [93.85]

Nobs 41735 41735 41735 41735 41735 41735
NX 138 138 1117.67 635.67 1522.67
NZ 12 27 20 34
Spec. OLS OLS 2SLS O-2SLS O-2SLS O-2SLS
Incl. X X X L(X) L+(X) Lmin(X)
X Set B B E E E

Variable sets: “B” = baseline, totaling 46 X and 4 Z variables; “E” = exploded baseline set via interactions, logs,
and squares, totaling 1173 X and 18 Z variables; all models with X controls also include firm-year fixed effects.
The preferred LASSO penalty λ (Col. 4) is chosen via cross-validation (“CV”) as the largest λ within 1 s.e. of the
out-of-sample MSE-minimizing λ; alternative control sets L+(X) and Lmin(X) formed using penalties that are one
log point higher than the 1 s.e. λ and the MSE-minimizing λ, respectively. NX/Z indicates the total number of
control/instrumental variables selected across firm-years, averaging the number of X variables selected across the 3
selection routines within each firm-year. Standard errors clustered at the physician-level are shown in parentheses.
F-statistics are shown in brackets.
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Table A9: Specification & Robustness Tests, log(Claims)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Pfizer 2011

βm 1.264*** 1.271*** 1.307*** 1.262*** 1.412** 1.568* 1.143*** 1.154*** 1.126*** 0.916***
(0.294) (0.286) (0.311) (0.327) (0.576) (0.951) (0.268) (0.275) (0.302) (0.236)
[35.77] [37.75] [32.68] [28.25] [10.67] [5.04] [39.13] [72.73] [34.17] [34.6]

N 14699 14699 13553 10112 6429 2818 14694 14699 14699 14699
Mean(Claims) 102.2 102.2 104.3 103.4 101.9 100.8 102.2 102.2 102.2 102.2
Mean(Meal) 0.199 0.199 0.204 0.201 0.195 0.186 0.199 0.199 0.199 0.199

Panel B: Pfizer 2012

βm -0.858 -0.574 -0.119 0.0538 0.401 0.167 0.693 0.189 -1.861 -0.617
(1.971) (1.943) (1.365) (2.974) (1.483) (0.943) (2.091) (0.505) (2.395) (1.782)
[2.51] [2.46] [4.81] [0.91] [2.75] [8.87] [2.04] [40.17] [2.35] [2.45]

N 10684 10684 9915 7238 4516 1945 10679 10684 10684 10684
Mean(Claims) 37.50 37.50 38 37.50 37 37.40 37.50 37.50 37.50 37.50
Mean(Meal) 0.0430 0.0430 0.0430 0.0410 0.0370 0.0340 0.0430 0.0430 0.0430 0.0430

Panel C: AstraZeneca 2011

βm 0.796 0.893 0.807 2.316 1.356 0.875 0.676 0.504 0.540 0.805
(0.544) (0.581) (0.593) (2.494) (1.058) (0.641) (0.507) (0.493) (0.517) (0.543)
[7.63] [7.05] [6.44] [1.02] [2.98] [5.91] [8.23] [15.46] [9.15] [7.69]

N 13274 13274 12292 9163 5837 2528 13269 13274 13274 13274
Mean(Claims) 82.20 82.20 83.90 85.70 88.20 90 82.20 82.20 82.20 82.20
Mean(Meal) 0.590 0.590 0.610 0.618 0.604 0.583 0.590 0.590 0.590 0.590

Panel D: AstraZeneca 2012

βm 0.339 0.376 0.293 0.415* 0.516* 0.489 0.266 0.603* 0.171 0.340
(0.227) (0.244) (0.220) (0.235) (0.292) (0.469) (0.230) (0.335) (0.245) (0.226)
[41.72] [36.37] [44.29] [39.46] [25.64] [10.82] [40.14] [36.36] [41.72] [41.92]

N 13762 13762 12709 9476 6027 2599 13757 13762 13762 13762
Mean(Claims) 86.90 86.90 88.70 89.90 92.20 93.60 86.90 86.90 86.90 86.90
Mean(Meal) 0.642 0.642 0.664 0.671 0.663 0.652 0.642 0.642 0.642 0.642

Panel E: Pooled

βm 0.734*** 0.772*** 0.715*** 0.816*** 0.827*** 0.811** 0.630*** 0.786*** 0.560*** 0.651***
(0.195) (0.199) (0.194) (0.223) (0.279) (0.379) (0.187) (0.225) (0.209) (0.190)
[60.25] [59.31] [59.78] [46.92] [31.4] [19.66] [62.47] [109.29] [61.01] [60.14]

N 52419 52419 48469 35989 22809 9890 52399 52419 52419 52419
Mean(Claims) 79.90 79.90 81.50 82.10 83 83.70 79.90 79.90 79.90 79.90
Mean(Meal) 0.383 0.383 0.395 0.399 0.392 0.380 0.383 0.383 0.383 0.383

Panel F: Pooled, Excl. Pfizer-‘12

βm 0.722*** 0.778*** 0.708*** 0.812*** 0.835*** 0.829** 0.628*** 0.838*** 0.544*** 0.660***
(0.192) (0.198) (0.191) (0.221) (0.282) (0.389) (0.184) (0.238) (0.206) (0.187)
[61.22] [59.13] [60.82] [47.33] [30.26] [18.63] [63.62] [94.34] [61.94] [61.22]

N 41735 41735 38554 28751 18293 7945 41720 41735 41735 41735
Mean(Claims) 90.80 90.80 92.70 93.30 94.30 95 90.80 90.80 90.80 90.80
Mean(Meal) 0.470 0.470 0.485 0.489 0.480 0.465 0.470 0.470 0.470 0.470
Own AMSA Y Y
Hosp. AMSA Y
Drop Faculty Y Y Y Y
No Fac Hosp. P-P P-A A-A
Census Div FE Y
Vol. Controls None y,c y,c,s,d

All models estimated via orthogonalized 2SLS using only LASSO-selected variables from the exploded set, selected
separately at the firm-year level, all including firm-year-fixed effects. “No Faculty at Hospital” columns drop any
physician whose own primary (P) hospital is also the primary (P) hospital of any faculty (P-P), whose own primary
hospital is any (A) of a faculty’s affiliated hospitals (P-A), etc. Volume controls legend: y-Year, c-Cardiovascular,
s-Statins, d-Focal Drug; main specification in other tables is y,c,s.
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Table A10: Main Results, Any Claims

(1) (2) (3) (4) (5) (6)

Panel A: Pfizer 2011

βm 0.0504*** 0.0225*** 0.116** 0.0516 0.00123 0.0595
(0.00314) (0.00309) (0.0570) (0.0913) (0.0912) (0.0844)

[27.71] [38.79] [39.46] [45.99]

Nobs 15569 15569 15569 15569 15569 15569
NX 46 46 301 187.33 462
NZ 4 9 6 11

Panel B: Pfizer 2012

βm 0.138*** 0.0240 4.172 -2.334 0.584 4.781
(0.0167) (0.0169) (2.728) (2.096) (0.494) (4.064)

[.79] [2.56] [19.19] [1.79]

Nobs 15569 15569 15569 15569 15569 15569
NX 46 46 194 11.67 339
NZ 4 4 4 6

Panel C: AstraZeneca 2011

βm 0.112*** 0.0781*** 0.289** 0.178 0.335 0.405*
(0.00585) (0.00574) (0.133) (0.241) (0.205) (0.222)

[7.23] [7.19] [10.33] [11.86]

Nobs 15569 15569 15569 15569 15569 15569
NX 46 46 299.67 145.33 408.33
NZ 4 9 6 9

Panel D: AstraZeneca 2012

βm 0.0879*** 0.0633*** 0.123* 0.115 0.130 0.118
(0.00563) (0.00554) (0.0743) (0.0947) (0.0828) (0.0738)

[19.08] [45.94] [58.07] [66.52]

Nobs 15569 15569 15569 15569 15569 15569
NX 46 46 354 215 489.67
NZ 4 9 8 14

Panel E: Pooled, Excl. Pfizer-‘12

βm 0.0497*** 0.0589*** 0.148*** 0.102 0.120* 0.131**
(0.00317) (0.00356) (0.0559) (0.0784) (0.0674) (0.0638)

[13.57] [63.04] [77.79] [96.51]

Nobs 46707 46707 46707 46707 46707 46707
NX 138 138 954.67 547.67 1360
NZ 12 27 20 34
Spec. OLS OLS 2SLS O-2SLS O-2SLS O-2SLS
Incl. X X X L(X) L+(X) Lmin(X)
X Set B B E E E

Variable sets: “B” = baseline, totaling 46 X and 4 Z variables; “E” = exploded baseline set via interactions, logs,
and squares, totaling 1173 X and 18 Z variables; all models with X controls also include firm-year fixed effects.
The preferred LASSO penalty λ (Col. 4) is chosen via cross-validation (“CV”) as the largest λ within 1 s.e. of the
out-of-sample MSE-minimizing λ; alternative control sets L+(X) and Lmin(X) formed using penalties that are one
log point higher than the 1 s.e. λ and the MSE-minimizing λ, respectively. NX/Z indicates the total number of
control/instrumental variables selected across firm-years, averaging the number of X variables selected across the 3
selection routines within each firm-year. Standard errors clustered at the physician-level are shown in parentheses.
F-statistics are shown in brackets.
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Table A11: Main Results across State Policies, Firm-Year Subsets, log(Claims)

No Rules Restrict Restrict / Report
RF IV RF IV RF IV
(1) (2) (3) (4) (5) (6)

Panel A: Pfizer 2011

Orthog.-IV, or βm 1.222*** 1.288*** 1.804 57.00 1.108 0.831
(0.219) (0.309) (1.878) (976.9) (0.964) (0.790)

[32.61] [0] [4.49]

N 14011 14011 176 176 688 688
Mean(Claims) 103.5 47.70 75
Mean(Meal) 0.204 0.006 0.102

Panel B: Pfizer 2012

Orthog.-IV, or βm 0.374 -0.443 4.558 -2.640 4.881 2.664
(1.361) (1.637) (10.83) (6.016) (4.472) (4.765)

[3.8] [4.59] [0.35]

N 10237 10237 71 71 447 447
Mean(Claims) 37.80 22.30 30.90
Mean(Meal) 0.0430 0.0140 0.0470

Panel C: AstraZeneca 2011

Orthog.-IV, or βm 0.695* 1.120 -2.135 3.411 -0.0426 -0.0115
(0.395) (0.775) (2.893) (8.722) (1.725) (0.464)

[4.61] [0.19] [9.68]

N 12657 12657 161 161 617 617
Mean(Claims) 82.90 47.50 69.50
Mean(Meal) 0.604 0.0250 0.301

Panel D: AstraZeneca 2012

Orthog.-IV, or βm 0.502** 0.465** -2.512 -9.568 -2.602** 4.659
(0.238) (0.223) (1.553) (25.76) (1.056) (5.502)

[44] [0.17] [0.66]

N 13119 13119 166 166 643 643
Mean(Claims) 87.80 49.10 68.40
Mean(Meal) 0.657 0.0540 0.336

Panel E: Pooled, Excl. Pfizer-‘12

Orthog.-IV, or βm 0.781*** 0.817*** -1.254 -2.661 -0.951 -1.130
(0.178) (0.203) (1.168) (4.174) (0.725) (1.222)

[57.71] [0.57] [2.38]

N 39787 39787 503 503 1948 1948
Mean(Claims) 91.80 48.10 71.10
Mean(Meal) 0.481 0.0280 0.242

All IV models estimated via orthogonalized 2SLS, RF models using the orthogonal instrument as the independent
variable, using only LASSO-selected variables from the exploded set, selected separately at the firm-year level,
also including firm-year-fixed effects. Instruments and residuals are calculated on the full sample, and then the
regressions are separately estimated on the state subsets. “Restrict” states had some sort of restriction imposed
on industry interactions (i.e. could not take place at physician’s office); “Report” states had mandates that all
industry interactions must be reported to authorities for public dissemination.
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C.5 Alternative Graphical Theory

Figure A7: Welfare Analysis with Behavioral Hazard
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C.6 Alternative Demand Specifications

Figure A12 displays the full set of parameter estimates and related statistics on elasticities
and variation in prescribing for our main specification (column (1)) and several alternative
specifications. Column (2) displays results where we allow Lipitor 2012 to have its own
selected x and coefficients, and its own fixed effect. This is the strongest set of controls
we can introduce for the variation in Lipitor prescribing/meals other than price as generic
atorvastatin enters the market. The downside is that it also controls for the effect of generic
atorvastatin on Lipitor as a source of demand parameter identification. As a result, the price
coefficient becomes smaller, as does the nesting parameter on atorvastatin. Because we do
not think anything has unobservably changed about Lipitor that we cannot control for, we
prefer to use this as a credible source of demand identification – importantly, our results
remain the same if we allow for Lipitor 2012 to have its own x and coefficients to control for
regional changes in, say, other promotional activities.

Columns (3) and (4) allow for different nesting specifications. Column (3) nests all statins
vs. the outside good. It gives results that are qualitatively similar to our preferred speci-
fication, but it doesn’t account for the fact that Lipitor and generic atorvastatin are close
substitutes, and so the meal elasticity increases, intuitively because the model is now in part
using Crestor’s meals in 2012 to explain some of the lack of substitution from Crestor to
generic atorvastatin. Column (4) nests the “strong” statins (atorvastatin/Lipitor and rosu-
vastatin/Crestor), other statins, and the outside good. Again, the results are qualitatively
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similar, but placing Crestor in the same nest as atorvastatin again increases the estimated
meal effect. Thus we choose our preferred model (1) because it seems to respect the most
important institutional details and their interaction with the identifying variation in the
data.

Table A12: Alternative Demand Specifications

(1) (2) (3) (4)
θpost -0.0863*** -0.0817*** -0.00498* -0.0768***

(0.00244) (0.00235) (0.00286) (0.00285)
θm 0.877*** 0.718*** 0.633*** 1.773***

(0.0909) (-0.0828) (0.0629) (0.123)
θp -0.00193*** -0.000974 -0.00306*** -0.00449***

(0.000624) (0.000611) (0.000296) (0.000688)
λAtor=1 0.497*** 0.187***

(0.0213) (0.0549)
λAtor=0 0.453*** 0.481***

(0.0264) (0.0256)
λStatin 0.724***

(0.0158)
λSS=1 0.376***

(0.0202)
λSS=0 0.419***

(0.0234)
ηp (own) -0.0649 -0.0294 -0.217 -0.138
ηm (own) 1.254 1.018 1.893 2.392
sd(θjb + x′jbdtβjb) 1.134 1.183 1.610 1.040
sd(θjb + x′jbdtβjb + ξjd) 1.216 1.243 1.621 1.300
N = 124, 876 doctor-drug-brand-year observations with standard errors clustered at the doctor level (Nd = 15, 063). Estimates
for nested logit demand ln(sjbdt/s0dt) = λgj ln(sjb|gdt) + θm1{mjbdt>0} − θppjbdt + θj + θb + θt + x′jbdtβjb + ξjbdt, 2011-12.

C.7 Demand Instruments and Identification

The top panel of Table A13 shows the demand parameter estimates for several different
specifications, to help to illustrate how our instrumental variables move coefficient estimates.
Column (1) estimates the model with no excluded instruments – all variables are instruments
for themselves. The nesting parameters are large while the parameters on price and meals
are very small in magnitude. The approximately zero price coefficient is what we might
expect if, for example, changes in prices with the introduction of generic atorvastatin are
larger for products whose residual demand is more affected.

Column (2) adds our instruments {za, zp, zJ} discussed above, and removes the within-
group share ln(s|g) and price p terms from the instrument set. The nesting parameters
decrease, consistent with the identification strategy correcting for the mechanical correlation
of these terms with the unobservable. The magnitude of the price coefficient increases in
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magnitude, as expected if unobserved product attributes are positively correlated with price.
Column (3) also replaces the meal indicator 1{m>0} with zm in the instrument set, to now
instrument for all endogenous variables, and the coefficient on meals increases, similar to
what we observed in the 2SLS regressions of quantities on meals.

Table A13: Demand and Supply Parameter Estimates

(1) (2) (3)
θm 0.048 0.078 0.88

(0.004) (0.005) (0.09)
θp 0.0000 -0.0017 -0.0019

(0.000) (0.001) (0.0006)
λg1 0.65 0.59 0.50

(0.01) (0.02) (0.02)
λg0 0.95 0.55 0.45

(0.00) (0.02) (0.03)
ηp (own) 0.01 -0.07 -0.06
ηm (own) 0.46 0.13 1.25
sd(θj + x′jbdtβjb) 1.13
sd(θj + x′jbdtβjb + ξjd) 1.22
IV for: − ln(s|g ), p ln(s|g ), p, 1{m>0}

N = 124, 915 doctor-drug-brand-year observations with standard errors clustered at the doctor level (Nd = 15, 074). Estimates
for nested logit demand ln(sjbdt/s0dt) = λgj ln(sjb|gdt) + θm1{mjbdt>0} − θppjbdt + θj + θb + θt + x′jbdtθ

x
jb + ξjbdt, 2011-12.

C.8 Standard Errors on Counterfactuals
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Table A14: Welfare and Counterfactual Estimates

2011 2012
(1) (2) (3) (4) (5) (6)
Obs Ban Eff Obs Ban Eff

m = 0 m = 0 m = 0 m = 0

p∗oop pmcoop p∗oop pmcoop

p∗pos p∗pos p∗pos p∗pos

Qstatins (millions) 6.05 5.63 5.77 6.43 6.17 6.31
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Qatorvastatin 1.38 1.18 1.26 2.03 2.04 2.13
(0.00) (0.00) (0.01) (0.00) (0.00) (0.01)

QCrestor 0.97 0.47 0.53 0.99 0.46 0.52
(0.00) (0.00) (0.01) (0.00) (0.00) (0.01)

p̄statins ($, OOP) 19 15 0 16 13 0
(0.01) (0.01) (0.00) (0.01) (0.01) (0.00)

p̄atorvastatin 39 39 0 24 23 0
(0.01) (0.01) (0.00) (0.01) (0.01) (0.00)

p̄Crestor 42 41 0 38 37 0
(0.01) (0.02) (0.00) (0.01) (0.01) (0.00)

PSretail ($ millions) 113.7 86.0 0 100.0 79.2 0
(0.15) (0.24) (0) (0.14) (0.16) (0)

PSmeals -0.5 0 0 -0.9 0 0
(0) (0) (0) (0) (0) (0)

CSretail ($ millions) 3452 3190.6 3279.5 3685.8 3542.2 3608.6
(194.1) (179.9) (179.7) (207.1) (198.5) (198.2)

CSmeals -451.6 0 0 -312.2 0 0
(26.7) (0) (0) (18.45) (0) (0)

TS ($ millions) 3113.6 3276.5 3279.5 3472.5 3603.4 3608.6
(169.0) (179.9) (179.7) (189.7) (198.5) (198.2)

POStransfers 254.1 187.1 290.1 195.6 130.6 230.4
(0.3) (0.6) (1.2) (0.3) (0.5) (1.2)

Welfare estimates using data (Obs) and counterfactual equilibrium (Ban and Eff)
quantities and prices. N = 124, 876 doctor-drug-brand-year observations with
standard errors clustered at the doctor level (Nd = 15, 063) via delete-120 jacknife.
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