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Abstract

In OLS regressions with several regressors, measurement error affects estimated

coefficients through two distinct channels: a multivariate attenuation factor that ap-

plies to all coefficients and generalizes the standard attenuation factor in univariate

regressions; weight shifting associated with measurement error on each mismeasured

regressor that further attenuates the coefficient on that regressor and affects coefficients

on other regressors. I introduce a scalar "measurement error multiplier" that indicates

the contribution of measurement error to the generalized variance of the measured

regressors. It multiplies the variances of the measurement errors where it appears in

both the multivariate attenuation channel and the weight shifting channel.
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"If more than one variable is measured with error, there is very little that can be

said."—Greene (2003, p. 86)1

When the lone regressor in a univariate regression has classical measurement error, the

OLS estimate of its coefficient will be biased toward zero. Although this attenuation of the

OLS coefficient in a univariate regression is universally known and trivial to derive, there are

no simple or widely-known generalizations to the case of OLS regressions with an arbitrary

number of regressors, some or all of which suffer from classical measurement error.2 In

this paper, I provide such a generalization. In particular, I derive a simple expression for

the  of OLS estimates of the coefficients of an arbitrary number of regressors in the

presence of classical measurement error. To make the interpretation as intuitive as I can,

I introduce some new terminology. I define a measurement error multiplier, which is a

scalar that arises in several places in the expressions for the OLS coefficients. Wherever

this scalar appears, it multiplies the variance of measurement error in a particular regressor

or multiplies the product of the variances of measurement errors in all the regressors. Not

only is this multiplier useful in simplifying expressions, it has a natural interpretation. It

is an increasing function of the share of the generalized variance of the vectors of measured

regressors that is accounted for by the generalized variance of the vector of measurement

errors. The larger is the share accounted for by the generalized variance of measurement

errors, the larger is the measurement error multiplier.

Measurement error affects the estimated OLS coefficients through two distinct channels.

One of these channels operates through what I call the multivariate attenuation factor. This

factor is the multivariate generalization of the standard attenuation factor. It attenuates

the OLS estimates on all coefficients by the same proportion. The degree of multivariate

1Greene includes a footnote at the end of this sentence that cites several references that provide analytic

results for cases with more than one variable measured with error. I discuss some of these references in the

literature review in Section 1.
2This assessment, which is reflected in the quotation above from Greene (2003), is shared by Wooldridge

(2002), another leading econometrics textbook, which states "If measurement error is present in more than

one explanatory variable, deriving the inconsistency in the OLS estimators under extensions of the CEV

[classical errors-in-variables] assumptions is complicated and does not lead to very usable results." (p. 76).

It also shared by Roberts and Whited (2013), which states "What if more than one variable is measured

with error under the classic errors-in-variables assumption? Clearly, OLS will produce inconsistent estimates

of all the parameter estimates. Unfortunately, little research on the direction and magnitude of these

inconsistencies exists because biases in this case are typically unclear and complicated to derive..." (p.498)



attenuation is an increasing function of the product of the measurement error multiplier and

the product of the variances of the measurement errors of all regressors. If one or more

regressors are measured without error, the multivariate attenuation factor is simply equal to

one—that is, there is no attenuation through this channel.

The other channel is what I call weight shifting. When a particular variable is measured

with error, some other variable(s) may help account for the variation in the dependent

variable that would have been due to the particular measured variable if it were measured

without error. This weight shifting further attenuates the OLS coefficient on the particular

mismeasured regressor and can affect the OLS coefficients on other variables. Of course,

when account is taken of measurement error affecting all regressors, the further attenuation

of the coefficient of the particular mismeasured regressor could be exacerbated or reversed

by the weight shifting from other mismeasured regressors. The degree of weight shifting

associated with measurement error in any particular regressor is an increasing function of

the product of the measurement error multiplier and the variance of the measurement error

in that regressor.

Taking account of the two channels described above, the  of the vector of coefficients

estimated by OLS is the product of (1) the scalar multivariate attenuation factor, which is

less than or equal to one; (2) a matrix capturing weight shifting, which is itself a weighted

average of the identity matrix and another matrix reflecting interactions among the measured

regressors; and (3) the true value of the coefficient vector. After deriving this simple

expression for the  of the estimated coefficient vector, I apply this expression to cases

with one or more irrelevant regressors. An irrelevant regressor is a regressor for which the

true coefficient in the underlying linear model is zero. It is well known that an irrelevant

variable can have a nonzero estimated coefficient if it is correlated with a relevant variable

that is measured with error. In this case a nonzero coefficient will cause false rejection of

the null hypothesis that the irrelevant variable has a zero coefficient. I demonstrate a more

troubling finding that an irrelevant variable can have a nonzero estimated coefficient even

if it is uncorrelated with any relevant variable, if the irrelevant variable is correlated with

another irrelevant variable that happens to be correlated with a relevant variable measured

with error.

After a brief review of the literature in Section 1, I describe the basic linear model,

including regressors with classical measurement error, in Section 2. I present the simple

2



analytics and interpretation of the impact of measurement error in Section 3, where I de-

vote subsection 3.1 to the definition and interpretation of the measurement error multiplier,

subsection 3.2 to a derivation of the bias induced by measurement error, and subsection 3.3

to a simple expression for the  of the estimated coefficient vector as the product of a

scalar multivariate attenuation factor, a matrix representing weight shifting, and the vector

of true coefficients in the underlying linear model. In Section 4, I show that measurement

error can lead to false rejection of the null hypothesis that an irrelevant variable has a zero

coefficient. Section 5 concludes and an Appendix contains various proofs.

1 Literature Review

Theil (1965) provides an early analysis of the impact of classical measurement error on OLS

estimates in regressions with two regressors, both of which are measured with error. He

derives approximate3 expressions for the biases in the estimated coefficients. Interpreting

his findings in the nomenclature of this paper, Theil shows that the multivariate attenuation

factor is an increasing function of the correlation between the explanatory variables. Theil

also shows the "the influence of [one the regressors] on  is partly allocated to [the other

regressor], (p. 215), which is essentially the weight shifting channel that I described in the

introduction and analyze in Section 3.

Levi (1973) examines the case with an arbitrary  ≥ 2 regressors in which one variable
is observed with measurement error and the other  − 1 regressors are observed without
error. He shows that the OLS estimate of the coefficient on the variable measured with

error is attenuated toward zero. As I will show, the presence of one or more variables

measured without error in this framework implies that the multivariate attenuation factor

equals one, that is, there is no multivariate attenuation. The attenuation noted by Levi is

indeed operative, but it operates through the weight shifting channel I introduce.

Griliches (1986) examines OLS regressions with two regressors and presents expressions

for the  of the biases in these coefficients when one or both regressors are measured

with error. If only one of the regressors is measured with error, he shows that "the bias in

the coefficient of the erroneous variable is ‘transmitted’" to the other coefficient (p. 1479).

3Thiel (1965, p. 328) points out that the expressions hold "only if the error moments are sufficiently

small compared to the moments of the true explanatory variable."
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As in Levi (1973), in the presence of regressors measured without error, the multivariate

attenuation factor is one. The attenuation of the coefficient on the mismeasured regressor

and the "transmission" of bias to the other coefficient(s) are captured by the weight shifting

I analyze. Griliches also provides expressions for the plims of the OLS coefficients in re-

gressions with two regressors, both measured with error. The biases in the two coefficients

contain a common factor that is related to the multivariate attenuation factor I introduce.

Garber and Klepper (1980) is the closest antecedent to the analysis in this paper. They

examine OLS coefficients in regressions with an arbitrary   2 regressors, two of which are

measured with error. They describe two channels of bias in the estimated coefficients on

regressors measured with error: an "own" effect that captures attenuation due to spurious

variation in the regressor arising frommeasurment error; and a "smearing" effect in which the

bias in the other mismeasured regressor contaminates the coefficient of a given mismeasured

regressor. The coefficients of the regressors measured without error are also contaminated by

smearing from the coefficients of the mismeasured errors, which Garber and Klepper describe

as a "picking up" effect. The effects that Garber and Klepper label "own" and "smearing"

have a superficial similarity to the two channels I identify as multivariate attenuation and

weight shifting, but there is an important difference. As I will show, if the regression

includes at least one variable measured without error, as in Garber and Klepper, then the

multivariate attenuation factor equals one so there is so multivariate attenuation bias. All

of the bias is captured by weight shifting. The matrix that represents weight shifting in

Proposition 1 is a weighted average of own-effect attenuation arising from spurious variation

due to measurement error and smearing from other variables that are measured with error.

Only if all of the regressors are measured with error will the scalar multivariate attenuation

factor in Proposition 1 be less than 1.

My interest in the impact of measurement error was kindled by analyzing a time-honored

question in corporate finance, namely, the extent to which cash flow affects a firm’s capital

investment, after taking account of the firm’s  ratio, which is the ratio of the market value of

the firm to the replacement cost of its capital The widely used  theory of investment implies

that cash flow should not have any additional impact on investment after taking account

of . Nevertheless, empirical studies repeatedly find that in OLS regressions of investment

on  and cash flow, both  and cash flow have significant positive coefficients. In Abel

(2017) I interpret the positive estimated coefficient on cash flow as rising from measurement
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error in  combined with a positive correlation between  and cash flow. I derived closed-

form expressions for the regression coefficients and interpreted them in terms of what I

called bivariate attenuation bias (bivariate, rather than multivariate, since there were  = 2

regressors) and weight shifting. In the current paper, I extend the analysis to an arbtrary

number of regressors, and that extension is far from trivial. I explore more fully the role and

interpretation of the measurement error multiplier. In addition, the weight-shifting matrix,

which is the weighted average of the identity matrix and the matrix of attenuation-adjusted

coefficients from auxiliary regressions, is new.

2 The Linear Model

Consider a linear model relating a dependent variable  to  explanatory variables, 1  ,

 =  +  (1)

where  = [1   ]
0
is the  × 1 vector of observations on the dependent variable,  is

the  ×  matrix with th row [1  ], which is the vector of th observations on the

regressors,  is the ×1 vector [1  ]0 of coefficients on the regressors, and  is the ×1
vector [1   ]

0
where  {} = 0. I assume that the regressors 1   are de-meaned,

 0 has rank , and  and  are independent.

The regressors are measured with classical measurement error, so the econometrician sees

e =  +  (2)

where  is the measurement error in the th observation of ,  = 1  . The mea-

surement errors are classical measurement errors: they have mean zero, are independent of

all  and all , and are independent of each other. The variance of the measurement

error  is constant across , so that   () = 2 ≥ 0, for  = 1   and  = 1  .

The variance-covariance matrix of the vector of measurement errors [1  ] is the  × 

diagonal matrix Σ, with th diagonal element equal to 2 ≥ 0.
The econometrician’s observations on the regressors are represented by the  × matrixe with th row equal to [e1  e] and the measurement errors are represented in matrix
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form as E with th row equal to [1  ], so

e =  + E  (3)

Let b be the estimate of  in an OLS regression of  on e, so
b = ³ e 0 e´−1 e 0 (4)

Define the  × 1 vector  ≡  b, and take  of both sides of equation (4) to obtain

 = ( + Σ)
−1

  (5)

where  = 
¡
1

 0

¢
is the  ×  variance-covariance matrix with ( ) element equal

to  ( ), and 
¡
1

E 0E¢ = Σ. An alternative expression for  is obtained by

substituting ( + Σ− Σ) for   in equation (5) to obtain

 =  − ( + Σ)
−1

Σ (6)

Equations (5) and (6) immediately deliver well-known expressions for the attenuation

factor and attenuation bias in univariate regressions with classical measurement error. If

 = 1, then  is the scalar  (1), which is the variance of the true value of the regressor,

and Σ is 21, which is the variance of the measurment error in that regressor. Thus, the

scalar ( + Σ)
−1

 in equation (5) is the well-known attenuation factor
(1)

(1)+
2
1
≤ 1 and

the scalar − ( + Σ)
−1

Σ in equation (6) is the well-known attenuation bias
−21

(1)+
2
1
1.

The goal of this paper is to provide an intuitive interpretation of equations (5) and (6)

in situations with multiple regressors. This interpretation is facilitated by introducing the

concepts of multivariate attenuation and weight shifting. In developing these concepts, a

measurement error multiplier arises and I will define and interpret that multiplier.

3 The Impact of Measurement Error

Consider an OLS regression with multiple regressors, some or all of which may be observed

with classical measurement error. I begin by describing notational conventions:
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(1) for any ×  matrix  , the ×  diagonal matrix  is formed from  by setting

all off-diagonal elements of  equal to zero;

(2) for any  ×  matrix  , the ( − 1) × ( − 1) matrix − is formed from  by

eliminating its th row and th column;

(3) for any  × 1 vector , the ( − 1)× 1 vector − is formed from  by eliminating its

th element.

Under notational convention (1),  is the × diagonal matrix with th diagonal element
equal to  (), which is the variance of the true value of the th regressor. Define the

 ×  diagonal matrix

 ≡  −1 Σ (7)

The th diagonal element of  is 2 ≡
2

()
, which is the variance of the measurement error

in the th regressor relative to the variance of the true value of that regressor.

3.1 Measurement Error Multiplier

To develop an expression for the bias in the coefficient vector , define the following mea-

surement error multiplier.

Definition 1 Define the measurement error multiplier  ≡
h
det(+Σ)−detΣ

det

i−1
.

The rationale for this terminology is that, as I will show later, the impact of measurement

error is mediated through 2 ,  = 1  , in the weight-shifting channel and  det in the

multivariate attenuation channel; in both channels, the measurement error multiplier 

multiplies the variances of measurement errors.

The determinant of a variance-covariance matrix of a vector is the generalized variance

of that vector.4 Therefore, Definition 1 implies that  is inversely related to the amount by

4Wilks, Samuel S., Mathematical Statistics, New York: John Wiley and Sons, Inc., 1962, p. 547: “The

determinant of the variance-covariance matrix is sometimes called the generalized variance of” the distri-

bution. The generalized variance of a vector can be interpreted as the amount of independent variation

in that vector. For example, the generalized variance of the random vector (1 2) is   (1)  (2) −
[ (1 2)]

2
=
¡
1−212

¢
  (1)  (2), where 

2
12 is the squared correlation of 1 and 2. As 212

increases for given   (1) and   (2), the linear dependence between 1 and 2 increases, thereby reduc-

ing the independent variation in (1 2) and reducing the generalized variance of (1 2). In general, let

Ω be the (non-singular) variance-covariance matrix of 1  . If 1   are mutually independent, the
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which the generalized variance of the measured regressors, det ( + Σ), exceeds the general-

ized variance of the measurement errors, detΣ, normalized by the product of the variances

of the true values of the regressors, det. Thus, when the generalized variance of the mea-

sured regressors exceeds the generalized variance of the measurement error by only a small

amount, so that measurement error contributes a large part of the generalized variance of

the measured regressors, the measurement error multiplier, , is large.

Before presenting properties of  for general  ≥ 1 in Lemma 1, I will illustrate  in the
simple case in which  = 2. With  = 2,  =

"
 (1)  (1 2)

 (1 2)  (2)

#
, Σ =

"
21 0

0 22

#
,

 =

"
 (1) 0

0  (2)

#
, and  =

"
21 0

0 22

#
, so straightforward calculation yields

 =
1

1 + 21 + 22 −212
, if  = 2, (8)

where 212 ≡ [(12)]
2

(1)(2)
is the squared correlation of 1 and 2. An increase in 

2
12, which

increases the correlation between the true regressors, reduces the amount of independent

variation in the true regressors relative to the independent variation in measurement error,

for given  (1) and  (2). Thus, an increase in 212 implies that measurement error

provides more of the independent variation in the measured regressors, and this increased rel-

ative contribution of measurement error to independent variation is reflected in an increased

value of the measurement error multiplier  in equation (8).

Lemma 1 Recall  ≡ det
det(+Σ)−detΣ and  ≡  −1 Σ. Define5  ≡ det−

det(−+Σ−)−detΣ− .

Then

1.   0

2.   0, for  = 1   and  ≥ 2

generalized variance is simply
Q
=1

  (). Since Ω is positive definite, Hadamard’s inequality implies that

detΩ ≤
Q
=1

  (). Correlation among the random variables 1   reduces the independent variation

in these variables as indicated by a generalized variance smaller than
Q
=1

  ().

5By convention,  = 1 when  = 1.
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3. if  = 1, then  = 1

4. if  = 2, then 1 = 2 = 1

5. 2
det(−+Σ−)
det(+Σ)

= 

2
1+ det−
1+ det

=



2+ det

1+ det
for  = 1  

6. 

2  1 for  = 1  

The properties in Lemma 1 will be useful in analyzing the impact of measurement error

on OLS estimates.

3.2 Bias in 

To derive an expression for ( + Σ)
−1

Σ, which is the (negative of the) bias in  in equation

(6), first use the standard formula for the inverse of a matrix6 to obtain

( + Σ)
−1
=

1

det ( + Σ)
 (9)

where  is the  ×  matrix of co-factors of  + Σ: the ( ) element of  is the ( )

co-factor  = (−1)+  where  is the ( ) minor of  + Σ. Therefore,

 = det (− + Σ−)  0  = 1   (10)

Equation (10) implies that the diagonal matrix , which has ( ) element equal to   0,

is invertible so

( + Σ)
−1

Σ = ( + Σ)
−1

−1 Σ (11)

Substitute the right hand side of equation (9) for ( + Σ)
−1
on the right hand side of equation

(11) to obtain

( + Σ)
−1

Σ =
1

det ( + Σ)
−1 Σ (12)

The expression on the right hand side of equation (12) explicitly contains the co-factors

of  +Σ. To obtain an expression that does not explicitly contain co-factors, I calculate the

6In general, the inverse of a matrix is the product of the reciprocal of the determinant of the matrix and

the transpose of the matrix of co-factors. For a variance-covariance matrix, which is symmetric, the matrix

of co-factors is symmetric, so I have dispensed with transposing it in equation (9).
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matrix products −1 and Σ that appear in equation (12). To calculate −1 , recall

that e− is the ( − 1)× 1 vector consisting of the measured regressors e1  e, excludinge, and use the following definition.
Definition 2 Define Γ as the  ×  matrix with diagonal elements equal to zero and off-

diagonal elements ,  6= , equal to the coefficient on e in an auxiliary OLS regression ofe on e−. 7
Thus, the th column of Γ contains the coefficients of the auxiliary regression of e on

the other − 1 regressors. Lemma 2 uses the definition of Γ to present a simple expression
for −1 .

Lemma 2 −1 =  − Γ.

Now consider the product 1
det(+Σ)

Σ, which appears in equation (12). In this product,

the scalar 1
det(+Σ)

is positive but can be greater than, less than, or equal to one, and the

diagonal elements of the diagonal matrix  are co-factors of  +Σ. To obtain an alternative

expression in which (1) the positive scalar is less than or equal to one, and (2) co-factors do

not explicitly appear, I define the diagonal matrices  and  for  ≥ 2.8

Definition 3 For  ≥ 2, define the  ×  diagonal matrix  as 
³


1
21 



2

´
.

I will refer to as a weighting matrix and will explain the rationale for this terminology in

the discussion following Proposition 1. Note that the measurement error multiplier multiplies

the variances of the measurement errors, 2 , in individual regressors e,  = 1  .
Definition 4 For  ≥ 2, define the × diagonal matrix  as  (1 + 1 det−1  1 +  det−).

As I will explain in the discussion following Proposition 1, the diagonal elements of  are

the reciprocals of the multivariate attenuation factors in each of the  auxiliary regressions

of e on e−,  = 1  . The measurement error multiplier, , multiplies det−, which

7Note that if  = 1, then Γ is a scalar and equals 0.
8For  = 1, 1 and det−1 are undefined, so the definitions of and  in Definitions 3 and 4, respectively,

do not apply. With  = 1,  and  are scalars, and I adopt the conventions  = 0 and  = 1, when

 = 1.
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is the product of the variances of the measurement errors, 2 ,  6= , in each of the  − 1
regressors in these regressions.

The following lemma presents some properties of the diagonal matrices  and  and

provides a simple expression for 1
det(+Σ)

Σ that does not directly involve co-factors.

Lemma 3 For matrices 1 and 2, use the notation 1  2 to denote that 2 −1 is

positive definite and 1 ≤2 to denote that 2 −1 is positive semi-definite. Then

1. 0 ≤   ≤ .

2. (− ) = ( det) .

3. 1
det(+Σ)

Σ =
1

1+ det
  .

Statement 1 of Lemma 3 implies that the diagonal elements of the weighting matrix 

are non-negative and strictly less than 1. It also implies that all of the diagonal elements

of , which are the reciprocals of the multivariate attenuation factors in the  auxiliary

regressions, are greater than or equal to 1. Therefore, all of the multivariate attenuation

factors in the auxiliary regressions are less than or equal to one. Statement 2 of Lemma 3 is

a relationship between  and  that is helpful in proving Proposition 1 below. Statement

3 of Lemma 3 provides an expression for the diagonal matrix 1
det(+Σ)

Σ that does not

explicitly include co-factors, and all of the elements of this diagonal matrix are strictly less

than 1.

Use Lemmas 2 and 3 to rewrite the expression for the (negative of the) bias in  in

equation (12) as

( + Σ)
−1

Σ =
1

1 +  det
( − Γ) (13)

3.3 Estimated Coefficients

To obtain an expression for the  of OLS coefficients, substitute the expression for the

(negative of the) bias from equation (13) into equation (6) to obtain

Proposition 1 The plim of the OLS estimate of  is

 =
1

1 +  det
[( − ) + Γ ]

11



To apply Proposition 1 to a univariate regression, use the conventions in footnote 8 that

 = 0 and  = 1 when  = 1, along with Statement 3 of Lemma 1 that  = 1 when  = 1

and det = 21 when  = 1 to obtain  = 1
1+21

1, which illustrates the standard attenuation

in univariate regressions with classical measurement error. For  ≥ 2, Proposition 1 shows
that the coefficient vector  can be expressed as the product of a positive scalar less than or

equal to one, a matrix, and the vector of true coefficients, . I will call the scalar, which

is 1
1+ det

, the multivariate attenuation factor because it multiplies all of the estimated

coefficients by a factor that is less than one, provided that det  0, that is, provided that

all of the regressors are measured with error. If one or more of the regressors is measured

without error, then det = 0, and the multivariate attenuation factor equals 1.

The × matrix ( − )+Γ , which appears in Proposition 1, is a weighted average,

with weights  − and  , respectively, of the identity matrix  (which is suppressed in

this notation) and the matrix product Γ. The weights  − and  sum to the identity

matrix; Statement 1 of Lemma 3 implies that the weight  is positive semi-definite and

the weight  −  is positive definite. In the matrix product Γ, which is weighted

by  , the matrix Γ is the matrix of regression coefficients on e,  6= , in an auxiliary

regression of e on e−,  = 1   , and the diagonal matrix , adjusts these coefficients

for multivariate attenuation in each of these  auxiliary regressions. If all regressors are

measured without error, then  = 0, so that ( − ) + Γ = ; therefore, since the

multivariate attenuation factor equals 1 in this case,  = .

The following corollary is simply an alternative statement of Proposition 1.

Corollary 1

⎡⎢⎣ 1





⎤⎥⎦ = 1

1 +  det

⎛⎜⎜⎝
⎡⎢⎢⎣
³
1− 

1
21

´
1

³
1− 


2

´


⎤⎥⎥⎦+ Γ

⎡⎢⎣ (1 + 1 det−1) 
1
211



(1 +  det−) 

2

⎤⎥⎦
⎞⎟⎟⎠

Corollary 1 directly implies the following expression for th element of  in terms of scalars

rather than matrices,

 =
1

1 +  det

"µ
1− 



2

¶
 +

X
 6=

 (1 +  det−)




2

#
 (14)
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4 Irrelevant Regressors

Define a regressor  as relevant if its true coefficient, , is non-zero, and define a regressor 

as irrelevant if its true coefficient, , equals zero. In this section, I show that measurement

error in one or more relevant variables can lead to a non-zero estimated coefficient on an

irrelevant variable, thereby leading to false rejection of the null hypothesis that the coefficient

on the irrelevant variable is zero. To simplify the exposition, I will focus on the case with only

one relevant variable. After examining the coefficient  for an arbitrary number of irrelevant

regressors, I examine the case with one relevant regressor and one irrelevant regressor. I

show that if the relevant regressor is measured with error, then the estimated coefficient on

the irrelevant regressor will be nonzero if the two regressors have nonzero correlation with

each other. Then, I extend the analysis to  = 3 regressors and show that an irrelevant

regressor can have a nonzero estimated coefficient, even if it is uncorrelated with any relevant

regressors, if it is correlated with an irrelevant regressor that is correlated with a relevant

regressor measured with error.

Consider the case with  ≥ 2 regressors and assume that only one regressor is relevant.
Let 1 be the lone relevant regressor, so 1 6= 0 and  = 0,  = 2  . Corollary 1 implies
that if  = 0, for  = 2  , then

 =
1

1 +  det

⎡⎢⎢⎢⎢⎣
1− 21


1

21

1
(1 + 1 det−1) 21



21

1
(1 + 1 det−1) 1

⎤⎥⎥⎥⎥⎦1, if 2 =  =  = 0 (15)

If e1 is measured without error, so that 21 = 0, then det = 0 and equation (15) implies
that 0 = [1 0  0]

0
so that the OLS estimate of the vector  is consistent.

If e1 is measured with error, so that 21  0, then the first element in the vector on

the right hand side of equation (15) is positive and less than one, which attenuates the

estimated coefficient b1. If all of the regressors are measured with error, so that 2  0,

 = 1  , then det  0 and the multivariate attenuation factor 1
1+ det

is less than

one, which further attenuates b1. As for the coefficients on the other regressors, say e,
 ∈ {2  }, the estimated coefficient b will be nonzero if and only if 1 6= 0. The nonzero
values of b,  = 2  , and the attenuation of b1 by the factor 1 − 21


1
reflect weight

13



shifting. Using the terminology of Garber and Klepper (1980), the attenuation of b1 by
the factor 1− 21


1
reflects the "own" effect of spurious variation due to measurement error

and the nonzero values of b,  = 2  , reflect "smearing" for the estimated coefficients of
mismeasured regressors and reflect "picking up" for the estimated coefficients of correctly-

measured regressors. If all of the regressors are measured with error, then det  0 and

all of the estimated coefficients are further attenuated by the multivariate attenuation factor
1

1+ det
 1. Since the true value of ,  = 2  , is zero, the estimated coefficient b

will be inconsistent, and the null hypothesis 0 :  = 0 will be falsely rejected, if 1 6= 0,
provided that 21  0, regardless of whether any or all of the other 

2
 are zero.

4.1 One Relevant Regressor and One Irrelevant Regressor

In this subsection, I examine the simple case with one relevant regressor and one irrelevant

regressor to illustrate how weight shifting leads to a nonzero estimated coefficient on an

irrelevant variable.9 Specifically, consider the case with  = 2, 1 6= 0, and 2 = 0. With

 = 2, det = 21
2
2, det−1 = 22, and, from Statement 4 of Lemma 1, 1 = 1. Therefore,

equation (15) implies

 =
1

1 + 21
2
2

"
(1− 21)1

21 (1 + 22) 211

#
, if 2 = 0 (16)

The regression coefficient 21 in the second element of the vector on the right hand side

of equation (16) is the coefficient on e2 in an auxiliary (univariate) regression of e1 on e2,
that is, 21 =

(12)
(2) . Since  (e1 e2) =  (1 2) and  (e2) = (1 + 22)  (2),

it follows that (1 + 22) 21 =
(12)

(2)
, which is the coefficient on true 2 in a univariate

OLS regression of true 1 on true 2. Thus, (1 + 22) 21 can be viewed as the regression

coefficient, corrected for attenuation, on e2 in a univariate OLS regression of e1 on e2. With
that interpretion, the two elements in the vector on the right hand side of equation (16)

can be viewed as weighted regression coefficients that show the impact of each of the two

variables on the dependent variable, . The weights are 1−21 and 
2
1, respectively. The

first element captures the direct effect of 1 on , through the coefficient 1. The second

9As discussed in Section 1, this case is examined in Abel (2017) in the context of capital investment and

its dependence on  and cash flow.
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element captures the indirect effect of 2 on ; specifically, an increase in 2 is associated

with an increase in 1 of (1 + 22) 21, which then affects  by (1 + 22) 211. The larger is

the measurement error in e1, that is, the larger is 21, the smaller is the weight 1−21 on 1

in the expression for 1 and the larger is the weight 
2
1 on (1 + 22) 211 in the expression

for 2.
10 Even though 2 is irrelevant, that is, has no direct effect on  in the underlying

linear model, it will have a nonzero coefficient provided that e1 is measured with error and
1 and 2 have nonzero correlation. In effect, e2 provides information about the true value
of the mismeasured relevant variable 1.

4.2 An Irrelevant Regressor That Is Uncorrelated with Relevant

Variables

In subsection 4.1, I showed that an irrelevant variable, e2, will have a nonzero OLS coefficient
if it is correlated with a relevant variable, e1, that is measured with error. However, when
  2, it is possible for an irrelevant variable, e3, to have a nonzero OLS coefficient even
if it is not correlated with any relevant variable. I illustrate this possibility in a case with

 = 3, 1 6= 0, 2 = 3 = 0, and  (1 3) = 0. With  = 3 and 2 = 3 = 0, equation

(15) implies that

 =
1

1 + 21
2
2
2
3

⎡⎢⎢⎣
³
1− 21


1

´
1

21

1
(1 + 1

2
2
2
3) 211

21

1
(1 + 1

2
2
2
3) 311

⎤⎥⎥⎦  if 2 = 3 = 0 (17)

The regression coefficients 21 and 31 in the vector on the right hand side of equation

(17) are the OLS coefficients in an auxiliary regression of e1 on e2 and e3. These coefficients
are presented in the following lemma.

Lemma 4 Let 21 and 31 be the OLS coefficients on e2 and e3, respectively, in an OLS
10An increase in 21 will decrease the measurement error multiplier  for given 

2
2 and 

2
12, but the reduction

in  is outweighed by the increase in 21. To verify that an increase in 
2
1 increases 

2
1 and decreases 1−21,

use equation (8) obtain 21 =
21

1+21+
2
2−2

12

and 1− 21 =
1+22−2

12

1+21+
2
2−2

12

. For given 22 and 212, an increase

in 21 reduces 1− 21 and hence increases 
2
1, as asserted in the text.
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regression of e1 on e2 and e3. Then"
21

31

#
=

1

(1 + 22) (1 + 23)−223

"
(1 + 23) 21 − 2331

(1 + 22) 31 − 3221

#


where  ≡ ()

()
is the coefficient on  in a univariate OLS regression of  on , and

223 ≡ [(23)]
2

(2)(3)
is the squared correlation of 2 and 3.

Proposition 2 Suppose that (1) 1 6= 0 and 2 = 3 = 0; (2)  (e1 e3) = 0,  (e2 e3) 6=
0, and  (e1 e2) 6= 0; and (3) 21  0. Then"

21

31

#
=

1

(1 + 22) (1 + 23)−223

"
(1 + 23) 21

−3221

#


so 21 and 31 are both nonzero and the plims of the OLS coefficients, 1, 2, and 3, are all

nonzero.

Proposition 2 is a cautionary note about including irrelevant regressors in a regression.

Even if an irrelevant regressor is uncorrelated with all relevant regressors, the irrelevant

regressor can have a nonzero coefficient if it is correlated with another irrelevant regressor that

is correlated with a relevant regressor measured with error. Therefore, the null hypothesis

0 :  = 0 can be falsely rejected when e is an irrelevant variable (measured with or
without error), even if it is uncorrelated with all relevant regressors.

5 Conclusion

I examine the impact of classical measurement error in OLS regressions with several regres-

sors. The framework has three fundamental objects: (1) the parameter vector , which

characterizes the linear relation between the true values of the regressors and the dependent

variable; (2) the variance-covariance matrix,  , of the vector of true regressors; and (3) the

diagonal matrix Σ, which contains the variances of the classical measurement errors in each

regressor. These measurement errors are uncorrelated with each other and with the true

regressors.
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I show that when there is more than one regressor, measurement error can impact OLS

coefficient estimates through two distinct channels that I call multivariate attenuation and

weight shifting. The strength of these channels is related to the measurement error multiplier

, which is the reciprocal of
det(+Σ)−detΣ

det
, where  is a diagonal matrix obtained from  by

setting all the off-diagonal elements of  equal to zero. The measurement error multiplier

 gauges the amount of independent variation in the mismeasured regressors that is due

to measurement error. It indicates the impact of measurement error on the estimated

coefficients through both the multivariate attenuation channel and weight shifting channel.

The multivariate attenuation factor is a scalar 1
1+ det

where  =  −1 Σ is a diagonal

matrix with elements equal to the ratio of the variance of measurement error to the variance

of the true regressor. The multivariate attenuation factor, which is less than or equal to one,

applies to all estimated coefficients. If any regressor is measured without error, then the

multivariate attenuation factor equals one, so there is no multivariate attenuation; otherwise,

the multivariate attenuation factor is less than one.

In addition to multivariate attenuation, measurement error in a regressor further atten-

uates the estimated coefficient on that variable and shifts weight to other regressors. If

a particular variable is measured with error, it leaves room for other regressors that are

correlated with that variable (or correlated with other regressors that are correlated with

that variable) to pick up some of the impact of the particular variable. The measurement

error multiplier  affects the degree of this shifting. Weight shifting can lead to false rejec-

tions of the null hypothesis that an irrelevant variable has a zero coefficient, even when that

irrelevant variable is uncorrelated with all of the relevant variables.
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Proofs

Proof. of Lemma 1. Statement 1: Since  is a diagonal matrix with all diagonal

elements strictly positive, det  0. Therefore, it suffices to prove that det ( + Σ) 

detΣ. The following proof of this statement is taken from Suvrit (2011) with some minor

adaptation. Since  is positive definite, 0 ( + Σ)  = 0  + 0Σ  0Σ for every

non-zero  × 1 vector of real numbers. Therefore, −0 ( + Σ)   −0Σ for  6= 0,

and hence (2)
−2 R∞

−∞ exp
¡−1

2
0 ( + Σ) 

¢
  (2)

−2 R∞
−∞ exp

¡−1
2
0Σ

¢
. Now use

the Gaussian integral, (2)
−2 R∞

−∞ exp
¡−1

2
0

¢
 = det−12 for any positive definite

 ×  matrix , to rewrite this inequality as det ( + Σ)
−12

 detΣ−12, which implies

det ( + Σ)  detΣ.

Statement 2: For  ≥ 2, Statement 2 follows immediately from Statement 1 by consid-

ering a case with  − 1 regressors instead of  regressors.
Statement 3: If  = 1, then  =  =  (1) and Σ = 21, so  =

(1)

((1)+21)−21
= 1.

Statement 4: If  = 2, then Statement 4 follows immediately from Statement 3 by

considering the case with  − 1 = 1 regressor.
Statement 5: Since det ( + Σ) = −1 det+detΣ and det (− + Σ−) = −1 det−+

detΣ−, it follows that 2
det(−+Σ−)
det(+Σ)

= 2
−1 det−+detΣ−

−1 det+detΣ
. Use the facts that (det)

−1
detΣ

= det
¡
 −1 Σ

¢
= det () and (det−)

−1
detΣ− = det (−) to obtain 2

det(−+Σ−)
det(+Σ)

=

2
det−
det

−1 +det−
−1+det = 2

−1 +det−
−1+det , where the second equality follows from the definition

2 ≡
2

()
and the fact that

det−
det

= 1
()

. Finally, multiply the numerator and de-

nominator by  and by − and use the fact that 2 det− = det to obtain 
2

det(−+Σ−)
det(+Σ)

= 

2
1+ det−
1+ det

=



2+ det

1+ det
.

Statement 6: 2


=

2
()

det
det−

det(−+Σ−)−detΣ−
det(+Σ)−detΣ =

2 det(−+Σ−)−2 detΣ−
det(+Σ)−detΣ

=
2 det(−+Σ−)−detΣ

det(+Σ)−detΣ where the first equality follows from the definitions of 2 , , and ; the

second equality uses  () det− = det; and the third inequality uses 2 detΣ− =

detΣ. It suffices to prove that 2 det (− + Σ−)  det ( + Σ). To do so, define the ×

matrix 1 to be the matrix  + Σ, except that the th diagonal element,  () + 2 , is

replaced by  (), and define the  ×  matrix 2 to be the matrix  + Σ, with th row

replaced by zeros everywhere except for the element in the th column, which is replaced

by 2 . The matrices 1 and 2 are constructed so that det ( + Σ) = det1 + det2
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and det2 = 2 det (− + Σ−). Therefore, det ( + Σ) − 2 det (− + Σ−) = det1.

Observe that 1 defined above is the variance-covariance matrix of the measured variablese,  = 1  , except that e is replaced by the true variable . Hence, det1  0, so

det ( + Σ)− 2 det (− + Σ−) = det1  0.

Proof. of Lemma 2: Let Ω ≡  +Σ be the × variance-covariance matrix of [e1  e]0.
The ( ) element of Ω is Ω ≡  (e e). Let Ω (; ) be the ( − 1) × ( − 1) matrix
obtained by deleting the th row and th column of Ω, and let Ω (;  ) be the ( − 2)×
( − 2) matrix obtained by deleting the th row, th row, th column and th column of Ω.
Let e− be the ( − 1)× 1 vector obtaining by deleting the th element of [e1  e]0.
Define  as the ( − 1)× 1 vector of coefficients on e1  e−1 in a regression of e one1  e−1, so  = [Ω ( )]−1 , where  ≡ [ (e1 e)    (e−1 e)]0 is a ( − 1)×1

vector. Since (−1)+ detΩ ( ;  ) is the ( ) co-factor of the ( − 1) × ( − 1) matrix
Ω ( ), the ( ) element of [Ω ( )]

−1
is 1

detΩ()
(−1)+ detΩ ( ;  ). Therefore, ,

the th element of  = [Ω ( )]
−1

, is  =
1

detΩ()

−1P
=1

(−1)+ detΩ ( ;  ), where
 ≡  (e e) is the th element of . Since detΩ ( ) = , where  is the ( )

co-factor of Ω, the regression coefficient  is

 =
1



−1X
=1

(−1)+ detΩ ( ;  ). (1)

To calculate the ( ) co-factor of Ω, for   , which is  = (−1)+ detΩ ( ), ex-
pand Ω ( ) along its bottom row, [ (e e1)    (e e−1)] = 0, to obtain  =

(−1)+
−1P
=1

(−1)−1+ detΩ ( ;  ). Therefore,

 = −
−1X
=1

(−1)+ detΩ ( ;  ) (2)

Substitute equation (2) into equation (1) to obtain





= { −, if  6= 

1, if  = 
 (3)
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Since the ordering of the regressors is arbitary, equation (3) implies that





= { −, if  6= 

1, if  = 
(4)

and hence

−1 =  − Γ (5)

Proof. of Lemma 3. Statement 1:  is a diagonal matrix with th diagonal element

0 ≤ 

2  1, where the first inequality follows from Statements 1 and 2 of Lemma 1 along

with 2 ≥ 0, and the second inequality is Statement 6 in Lemma 1. Therefore,  .  is

a diagonal matrix with th diagonal element 1+ det− ≥ 1, where the inequality follows
from   0 (Statement 2 in Lemma 1) and det− ≥ 0. Therefore  ≤ .

Statement 2: Definition 4 of  implies that  −  =  (1 det−1   det−),

which, along with Definition 3 of , implies (− ) =  (21 det−1  
2
 det−).

Use the fact that 2 det− = det to obtain (− ) =  ( det   det) =

( det) .

Statement 3: Since =  (det (−1 + Σ−1)  det (− + Σ−)) andΣ=  (21  
2
),

it follows that 1
det(+Σ)

Σ= 
³
21 det(−1+Σ−1)

det(+Σ)
 

2

det(−+Σ−)
det(+Σ)

´
. Now use 2

det(−+Σ−)
det(+Σ)

= 

2
1+ det−
1+ det

from Statement 5 in Lemma 1 to obtain 1
det(+Σ)

Σ =


³


1
21
1+1 det−1
1+ det

  

2
1+ det−
1+ det

´
. Use the definitions of and to obtain 1

det(+Σ)
Σ

= 1
1+ det

 , which is the equality to be proved. To prove the inequality, observe that

1
det(+Σ)

Σ is a diagonal matrix with th diagonal element


2
1+ det−
1+ det

=



2+ det

1+ det
 1,

where the equality follows from 2 det− = det, and the inequality follows from Statement

6 in Lemma 1. Therefore, 1
det(+Σ)

Σ =
1

1+ det
  .

Proof. of Proposition 1: Substitute the expression for ( + Σ)
−1

Σ on the right hand

side of equation (13) into equation (6) to obtain  = − 1
1+ det

( − Γ), which can be

rewritten as  = 1
1+ det

[(1 +  det)  − ( − Γ) ]. Use Statement 2 of Lemma 3 to

substitute (− ) for ( det)  to obtain =
1

1+ det
[ + (− ) − ( − Γ) ],

which can be simplified to  = 1
1+ det

[ − + Γ ].

Proof. of Lemma 4: The OLS coefficients on e2 and e3, respectively, in a regression of
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e1 on e2 and e3 are"
21

31

#
=

"
 (2) + 22  (2 3)

 (2 3)  (3) + 23

#−1 "
 (2 1)

 (3 1)

#

since  (e e) =  ( ) for  6= . Use the definition 2 ≡ 2
()

and rewrite the

equation for

"
21

31

#
to obtain

"
21

31

#
=

"
(1 + 22)  (2)  (2 3)

 (2 3) (1 + 23)  (3)

#−1 "
 (2 1)

 (3 1)

#


Use the standard formula for the inverse of a matrix to obtain"
21

31

#
=

1

(1 + 22)  (2) (1 + 23)  (3)− [ (2 3)]2

×
"
(1 + 23)  (3) − (2 3)
− (2 3) (1 + 22)  (2)

#"
 (2 1)

 (3 1)

#


Divide the numerator and denominator by  (2)  (3) to obtain"
21

31

#
=

1

(1 + 22) (1 + 23)−223

×
"

(1 + 23)
1

(2)
− (2 3) 1

(2)(3)

− (2 3) 1
(2)(3)

(1 + 22)
1

(3)

#"
 (2 1)

 (3 1)

#


Perform the indicated multiplication to obtain"
21

31

#
=

1

(1 + 22) (1 + 23)−223

×
"
(1 + 23)

1
(2)

 (2 1)−  (2 3)
1

(2)(3)
 (3 1)

(1 + 22)
1

(3)
 (3 1)−  (2 3)

1
(2)(3)

 (2 1)

#


Finally, define the coefficient on  in a univariate OLS regression of  on  as  ≡ ()

()
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and rewrite the expression for

"
21

31

#
as

"
21

31

#
=

1

(1 + 22) (1 + 23)−223

"
(1 + 23) 21 − 2331

(1 + 22) 31 − 3221

#


Proof. of Proposition 2: The assumption that  (e1 e3) = 0 implies that 31 = 0.

Substituting 31 = 0 into Lemma 4 yields"
21

31

#
=

1

(1 + 22) (1 + 23)−223

"
(1 + 23) 21

−3221

#


which implies that 21 and 31 are both nonzero since  (1 2) =  (e1 e2) 6= 0 and

 (2 3) =  (e2 e3) 6= 0 and hence 21 6= 0 and 32 6= 0. Substituting 1 6= 0, 21 6= 0,
31 6= 0 and 21  0 into equation (17) and using 0 



2  1 from Statements 1, 2, and 6

of Lemma 1 implies that 1, 2, and 3 are all nonzero.
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