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Abstract: Over the last several decades, minimum distance (or minimum
divergence, minimum disparity, minimum discrepancy) estimation methods
have been studied in different statistical settings as an alternative to the
method of maximum likelihood. The initial motivation was probably to ex-
hibit that there exists other estimators apart from the maximum likelihood
estimator (MLE) which has full asymptotic efficiency at the model. As the
scope of and interest in the area of robust inference grew, many of these esti-
mators were found to be particularly useful in that respect and performed
better than the MLE under contamination. Later, a weighted likelihood
variant of the method was developed in the same spirit, which was sub-
stantially simpler to implement. In the statistics literature the method of
minimum disparity estimation and the corresponding weighted likelihood
estimation methods have distinct identities. Despite their similarities, they
have some basic differences. In this paper we propose a method of estima-
tion which is simultaneously a minimum disparity method and a weighted
likelihood method, and may be viewed as a method that combines the pos-
itive aspects of both. We refer to the estimator as the minimum distance
weighted likelihood (MDWL) estimator, investigate its properties, and il-
lustrate the same through real data examples and simulations. We briefly
explore the applicability of the method in robust tests of hypothesis.

MSC 2010 subject classifications: Primary 62F35, 62F12, 62F10; sec-
ondary 62F03.
Keywords and phrases: Disparity, Discrepancy, Minimum disparity esti-
mation, Weighted Likelihood, Kernel Density Estimation, Integral Density
Functional.

1. Introduction

Statistical inference based on density based distances has a long history and
dates back at least to Pearson (1900). The maximum likelihood method itself
may be viewed as a minimum distance method and therefore represents a par-
ticular case of minimum distance inference procedures. However, barring the
maximum likelihood estimator, research activity in density based minimum dis-
tance estimation has been somewhat sporadic till the 1960s. Rao provided a
rigorous treatment of first order efficiency (and the relatively more complicated
second order efficiency) in the 1960s; see Rao (1961, 1962, 1963). The descrip-
tion of general chi-square distances in the form of phi-divergences was considered
independently by Csiszár (1963) and Ali and Silvey (1966). There was a prolif-
eration in the area of minimum distance methods of estimation in the 1970s, as
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evidenced by the bibliographic collection of Parr (1981); these include the work
of Robertson (1972), Fryer and Robertson (1972) and Berkson (1980), among
others.

It is important to point out that the measures of “distance” which we con-
sider here are not necessarily mathematical metrics. Some of these measures
are not symmetric in their arguments and some do not satisfy the triangle in-
equality. The only properties that we demand are that the measure should be
non-negative and should equal zero if and only if the arguments are identically
equal. For the sake of an unified notation, we refer to all such measures loosely as
statistical distances or simply distances. Most of the measures that we consider
will be statistical distances in the above sense. In particular, we will consider the
class of disparities which is essentially the same as the class of φ-divergences.

The primary consideration in the literature till the late 1970s appears to have
been the construction of a parallel method of estimation which is as efficient (or
close in efficiency to) the method of maximum likelihood. The robustness angle
originated with Beran (1977); he studied minimum Hellinger distance estima-
tion in case of general continuous parametric models and proved asymptotic
first order efficiency of the parameter estimator that minimizes the Hellinger
distance between a kernel density estimator and a density from the model fam-
ily. This work assumed somewhat restrictive conditions, but did exhibit many
nice robustness properties of the estimator and subsequent research in minimum
distance estimation was very significantly influenced by it. Since then, minimum
disparity estimation has been studied from both the robustness and efficiency
perspectives.

In case of discrete models, minimum disparity estimation was rigorously stud-
ied by Lindsay (1994) who established first order efficiency under fairly general
conditions on the class of disparities. In the case of continuous models, Park
and Basu (2004) provided a general framework albeit under somewhat restric-
tive conditions on the distance. Their approach excluded some common dispar-
ities such as the Pearson’s chi-square, the Hellinger distance and the likelihood
disparity. But they did show that there are many families of disparities which
satisfied their conditions and led to robust inference with full efficiency. Recently,
this framework was extended to include all the popular disparities by Kuchib-
hotla and Basu (2015). Minimum disparity estimation has been used in various
statistical scenarios. See Basu et al. (2011) for more details on applications of
minimum disparity estimation.

The minimum disparity estimators derive their robustness from the fact that
they downweight the outliers in the data. Using this idea, Markatou et al. (1998)
proposed weighted likelihood estimating equations with smaller weights for out-
liers in the data. They also showed that one can choose weights corresponding
to a minimum disparity estimation procedure. But their estimators are not min-
imizers of a proper objective function, although this estimation procedure has
been extended to different scenarios. See Basu et al. (2011) for more details.

These two methods, minimum disparity estimation which describes a min-
imization problem and weighted likelihood estimation which describes a root
solving problem, have been dealt with separately in the literature. Each of these
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methods have certain advantages which are specific to it. In case of minimum
disparity estimation, the advantages are as follows: (i) the method has a valid
objective function; (ii) selection of the correct root, when there are multiple ze-
ros of the estimating function, is automatic; (iii) one can easily generate robust
analogues of the likelihood ratio type tests; see, for example, Simpson (1989),
and (iv) the presence of the objective function allows one to study the break-
down properties of the estimator using routine techniques without requiring a
parallel disparity measure, e.g., Markatou et al. (1998, Sec. 8.2, Appx. A.3). On
the other hand, the advantages of the weighted likelihood estimating equation
method are as follows: (i) the estimating equation is now a sum of the observed
data points, rather than an integral over the whole support, so that all the nu-
merical evaluations related are substantially simpler, particularly in multivari-
ate/multiparameter situation; (ii) the form of the estimating equation readily
leads to an iterative reweighting algorithm similar to the iteratively reweighted
least squares, and the computation of the estimator can avoid the evaluation of
the second derivative Hessian matrix; a weighted likelihood equation with given
fixed weights can be solved at one step for most common parametric models;
Basu and Lindsay (2004) have described some of the simplifications that sim-
ilar algorithms lead to in case of exponential families, and (iii) the final fitted
weights give a measure of “fitness” of each individual observation in terms of
their compatibility with the rest of the data given the parametric model, e.g.,
Markatou et al. (1998). Unfortunately, in either case, the advantages of the
method are not shared by the other.

In this paper we present a formulation where the minimum disparity estima-
tion procedure can be equivalently described as a weighted likelihood estimation
procedure, so that the advantages of the two methods are combined in this par-
ticular formulation. We believe that this formulation increases the scope and
the applicability of both these methods. We also provide a general proof for our
minimum distance weighted likelihood estimator under fairly accessible condi-
tions following the approach of Kuchibhotla and Basu (2015). Taken together
with the latter paper, the current manuscript provides the general continuous
analogue to Lindsay (1994) and integrates it within the weighted likelihood set
up.

The outline of the rest of the paper is as follows. In Section 2, we introduce the
procedure of minimum disparity estimation and also the modification to view
this as a weighted likelihood procedure. In Section 3, we derive the asymptotic
results under fairly general conditions in the spirit of Kuchibhotla and Basu
(2015). In Section 4, we study the robustness properties of our estimators. In
Section 5, we introduce a computational algorithm for fitting finite mixture
models which is similar to the EM algorithm in this case. In Section 6, we apply
our methodology on some real datasets. In Section 7, we discuss applications of
our procedure in robust testing of hypothesis. In Section 8, we conclude with
some remarks and ideas about future directions. The lengthier proofs and several
additional real data examples are provided in Supplementary material.
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2. Minimum Disparity and Weighted Likelihood

Let G represent the class of all distribution functions having densities with
respect to the Lebesgue measure. We assume that the true distribution G and
the model Fθ = {Fθ : θ ∈ Θ ⊂ Rp} belong to G. Let g and fθ be the corre-
sponding densities. Here we do not assume that g = fθ0 for some θ0 ∈ Θ, but
assume that g is “close” to fθg for some θg ∈ Θ in some appropriate sense. Let
X1, X2, . . . , Xn be a random sample from G which is modelled by Fθ. Our aim
is to estimate the parameter θg by choosing the model density which gives the
“closest” fit to the data.

Let C be a thrice differentiable convex function defined on [−1,∞), satisfying
C(0) = 0. Define

ρC(g, fθ) =

∫
C

(
g(x)

fθ(x)
− 1

)
fθ(x)dx. (2.1)

This form describes the class of disparities between the densities g and fθ. A
simple application of Jensen’s inequality shows that ρC(g, fθ) ≥ 0 with equal-
ity if and only if g = fθ identically. Without changing the disparity, one can
standardize the disparity generating function C(·) by requiring C ′(0) = 0 and
C ′′(0) = 1. We denote by θg or T (G), the “best fitting parameter” which min-
imizes ρC(g, fθ) over all θ ∈ Θ. We consider the minimum disparity estimator

θ̂n of θg defined by

θ̂n := arg min
θ

ρC(gn, fθ), (2.2)

where gn is a kernel density estimator obtained from the sample. Under differ-
entiability of the model, θ̂n can be obtained as a root of the equation∫

A(δn(x))∇fθ(x)dx = 0, (2.3)

where ∇ represents the gradient with respect to θ,

A(δ) = C ′(δ)(δ + 1)− C(δ) and δn(x) + 1 = gn(x)/fθ(x).

Here C ′ represents the derivative of C with respect to its argument. Primes and
double primes will be employed to denote the first and the second derivatives
of relevant functions throughout the manuscript. The function A(·) is called
the residual adjustment function (RAF) of the disparity and δn is referred to
as the Pearson residual. Convexity of C implies that the function A(·) is an
increasing function. The function A(·) plays a very crucial role in determining
the robustness properties of the estimator. Under the standardization of C(·),
we get A(0) = 0 and A′(0) = 1. See Basu et al. (2011) for more details.

Observe that the objective function ρC(gn, fθ) is the same as the one in (2.1)
except that g is replaced by its nonparametric density estimator gn; ρC(gn, fθ)
is a natural estimator of ρC(g, fθ). Having both the objective function and the
estimating function defined in terms of an integral can make the estimation
procedure difficult for a practitioner because of integral calculations at every
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iterative step; one also needs to look for convergence of the numerical integral
to the actual one. This can be particularly difficult if the observed data is in a
higher dimension and the objective function involves multiple integrals.

Define, δ(x) + 1 = g(x)/fθ(x). Notice that

ρC(g, fθ) =

∫
C(δ)fθdx =

∫
{C(δ) + kδ}fθdx

=

∫
{C(δ) + kδ}fθ

g
gdx

=

∫
C(δ) + kδ

δ + 1
gdx

= Eg
[
C(δ) + kδ

δ + 1

]
,

for every k ∈ R, since
∫
δ(x)fθ(x)dx = 0. So, consider the modification

Eg
[
C(δ(X)) + kδ(X)

δ(X) + 1

]
≈ Eg

[
C(δ(X)) + kδ(X)

δ(X) + 1
1{X∈An}

]
, (2.4)

for some sequence of sets An ↑ R as n ↑ ∞. In practice, we take

1

n

n∑
i=1

C(δn(Xi)) + kδn(Xi)

δn(Xi) + 1
1{Xi∈An},

as an empirical estimate of the right hand side of Equation (2.4). In this paper,
we use

An = {x : gn(x) > γn/2}

for some γn ↓ 0 as n ↑ ∞ at some rate to be mentioned later. Here we are trim-
ming the tails in order to avoid dividing by small values since having gn(x) in
the denominator might cause numerical instability for x in the tails. We antici-
pate that it is also possible to proceed without trimming since the denominator
actually contains gn(x) and fθ(x) both of which converge to zero as x→∞, but
we do not deal with this in this paper. However in models like the normal or the
exponential where the tails decay exponentially such trimmings are generally
not necessary.

Instead of considering the criterion function on the right hand side of (2.2)
as an estimate of ρC(g, fθ), consider the right hand side of (2.4) as the estimate.
Since, the objective function now is an average over the sample at hand, the
estimating function will also be an average. It is easy to see that the estimating
equation is given by

1

n

n∑
i=1

κn,i
A(δn(Xi)) + k

δn(Xi) + 1
uθ(Xi) = 0, (2.5)

where κn,i = 1{Xi∈An}, and uθ(x) = ∇ ln fθ(x). Denote by Ψn(θ) the expres-
sion on the left hand side of Equation (2.5); Ψn(θ) is our estimating function.
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Comparing with the ordinary likelihood score equation

1

n

n∑
i=1

uθ(Xi) = 0

it may be seen that Equation (2.5) is basically a weighted likelihood estimating
equation. This form of the estimating equation makes it clear why one would
require |A(δ)| ≤ |δ| in order to get an estimator which is robust to both outliers
and inliers. Also, note that if this inequality holds the weights will all be bounded
by 1. In this paper, we take k = 1, but the proofs will go through with any real
constant. One might want to take k = −A(−1) = C(−1) to make sure that the
weights are all non-negative. If we take k = 1 and A(t) = t for t ∈ [−1,∞),
then the estimating equation will exactly coincide with the likelihood equation
whenever κn,i’s are all equal to one. We refer to the estimator obtained as
the solution of Equation (2.5) as the minimum distance weighted likelihood
(MDWL) estimator.

This type of estimation of integral functionals of density, in which we replace
the expectation by an average and the unknown density by a nonparametric
density estimator, is not entirely new in the density functional estimation liter-
ature. Joe (1989) used this idea in estimating functionals of the type

∫
J(f)fdx

for some thrice differential function J and gave expressions for the bias and the
variance of the estimator. Giné and Mason (2008) also used the same idea for
functionals of the type∫

φ(x, F (x), F (1)(x), . . . , F (k)(x))dF (x),

for some twice differentiable function φ with certain boundedness assumptions
where F is the unknown distribution function. They proved uniform in band-
width asymptotic normality of their estimator. See also the references therein.

We will not get into a geometric description of the robustness of the proposed
estimator obtained as a solution of Equation (2.5), as all the interpretations and
insights provided by Lindsay (1994) and Markatou et al. (1998) also remain valid
in our context. Clearly, a residual adjustment function A(δ), which exhibits a
severely dampened response to increasing δ exhibits greater local robustness.
On the other hand the coefficient of uθ(Xi) may be looked upon as weights and
therefore as a measure of the fitness of the observation Xi in the parametric
estimation scheme. In this respect the method of estimation described in this
section can be considered to be a minimum distance estimation method as well
as a weighted likelihood estimation method. Thus, although the estimator is
generated by a legitimate optimization process, it automatically generates a
measure of fitness corresponding to each Xi as described above. More generally
the MDWL combines the positive aspects of minimum disparity and weighted
likelihood estimation.

See Lindsay (1994), Markatou et al. (1998) and Basu et al. (2011) for an
expanded discussion on the role of the residual adjustment function in robust
estimation.
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3. Asymptotic Results

Before proceeding to the assumptions and the proof of asymptotic normality,
we provide a short discussion on the existing literature which deals with es-
timating functions like Ψn(θ) which are averages over some function with a
nonparametric function estimate involved. In econometrics and empirical pro-
cesses theory, these type of estimators are called semi-parametric M-estimators.
Newey and McFadden (1994) discuss different assumptions under which one
can prove asymptotic normality of these estimators. Andrews (1994) also gives
asymptotic results via stochastic equicontinuity. These procedures applied in
our case will readily lead to asymptotic normality of the estimator but will be
under a restrictive class of disparities. In the case of weighted likelihood esti-
mating equation also, the proofs that are available in literature use restrictive
boundedness assumptions on the residual adjustment function. We will provide
a new proof, along the lines of Kuchibhotla and Basu (2015), which operates on
assumptions similar to those in the latter paper.

We use the theorems of Yuan and Jennrich (1998) to prove the asymptotic
normality of the estimator. So, we only prove asymptotic normality of Ψn(θ)
and uniform convergence of the derivative of Ψn(θ) to a non-random function
of θ. We refer the reader to Yuan and Jennrich (1998) for more details. Our
necessary assumptions are detailed in the next subsection.

3.1. Assumptions

The nonparametric density estimator gn based on independent and identically
distributed observations X1, X2, . . . , Xn is given by

gn(x) =
1

nhn

n∑
i=1

K

(
x−Xi

hn

)
,

where K is the kernel function and hn is the bandwidth. In the following A(δ)
will represent the residual adjustment function of the disparity ρC .

(A1) A′′(δ)(δ + 1)α is bounded for some fixed α, i.e, |A′′(δ)(δ + 1)α| ≤M <∞
for some α and for all δ ≥ −1, where 1 + δ(x) = g(x)/fθ(x). All the other
instances of α in the assumptions relate to this specific value.

(A2) The support of fθ is independent of θ and is same as the support of g.
(A3) The density g is twice differentiable. Also, the first and the second deriva-

tives g′, g′′ are bounded
(A4) The kernel K is symmetric and has a compact support denoted by Ω;

hn → 0, nhn →∞, as n→∞.
(A5) The trimming sequence {γn} is assumed to satisfy, in conjunction with

the bandwidth sequence, the following: hn/γn → 0, n1/2h2
n/γn → 0 and

nhnγ
2
n/ ln(1/hn)→∞ as n→∞.
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(A6) Let Dn := {x : g(x) ≥ γn}. Then trimming sequence {γn} satisfies, in
association with A, the following conditions:∫

Dcn

A(δ(x))∇fθ(x)dx = op(n
−1/2),∫

Dcn

|A′(δ(x))∇fθ(x)|dx = op(n
−1/2),∫

Dcn

fα−1
θ (x)

gα−2(x)
|uθ(x)|dx = O(1).

Here Dc
n represents the complement of Dn.

(A7) The random vectors [A(δ(X))+1]∇fθ(X)/g(X), A′(δ(X))uθ(X) and fα−1
θ (X)uθ(X)/gα−1(X)

have component-wise finite moments of some order strictly greater than
2.

(A8) There exists a compact subset Θ0 of Θ, which is a neighbourhood of θg
such that

Tθ|[A(δ(X)) + 1]∇2fθ(X)|/g(X), Tθ|A′(δ(X))∇2fθ(X)|/fθ(X),
Tθf

α−1
θ (X)|∇2fθ(X)|/gα−1(X), Tθf

α−1
θ (X)uθ(X)u>θ (X)/gα−1(X)

are all finite. Here Tθ is used to denote the operator E supθ∈Θ0
. Also,∫

|A(δ(x))∇2fθ(x)|dx and
∫
|A′(δ(x))|g(x)uθ(x)uTθ (x)dx are both finite

for θ ∈ Θ0.
(A9) V (θ) is finite and positive definite and B(θ) is non-zero for θ = T (G),

where

V (θ) = lim
n→∞

Var

[∫
Khn(x−X1)A′(δ(x))uθ(x)dx

]
= Var [A′(δ(X1))uθ(X1)] ,

B(θ) =

∫
A(δ(x))∇2fθdx−

∫
A′(δ(x))(δ(x) + 1)uθu

T
θ fθdx.

Here ∇2 represents the second derivative with respect to θ.

3.2. Estimating Function

For the trimming sequence {γn} satisfying the assumption (A5), define κi =
1{g(Xi)≥γn}. Notice that the definition of κn,i involves the kernel density esti-
mate gn and κi is based on the actual density g. For simplicity of notation, we
will drop the subscript n from hn, unless specifically demanded by the situation.

Define the function

Tn(θ) := − 1

n

n∑
i=1

κi
C(δn(Xi)) + δn(Xi)

δn(Xi) + 1
.
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Here δ and δn both depend on θ. The corresponding estimating function (deriva-
tive) is given by

∇Tn(θ) =
1

n

n∑
i=1

κi
A(δn(Xi)) + 1

δn(Xi) + 1
uθ(Xi).

In proving asymptotic normality of the estimating function Ψn(θ), we will
closely follow the method of Lewbel (1997) and will prove the following:

• Step 1:

n1/2

(
∇Tn(θ)−

∫
A(δ(x))∇fθ(x)dx

)
L→ N(0, V (θ)).

• Step 2:
∇Tn(θ)−Ψn(θ) = op(n

−1/2).

We now state three propositions which will be used in the proofs of the
lemmas and theorems related to step 1. Proofs of all these results are deferred
to the Supplementary Material.

Proposition 3.1. If w is a measurable function such that w(X1) has finite
mean and w(X1)g(X1) has finite second moment, then

1

n

n∑
i=1

w(Xi) [gn(Xi)− g(Xi)]−
∫
w(y) [gn(y)− g(y)] g(y)dy = op(n

−1/2).

Remark 3.1 Here the assumption that w(X1) has finite mean is used only to
control the asymptotic bias. This assumption can be relaxed if instead of w(x),
we have w(x)1{x∈Dn}. This relaxation results in,

1

n

n∑
i=1

κiw(Xi) [gn(Xi)− g(Xi)]−
∫
Dn

w(y) [gn(y)− g(y)] g(y)dy = op(n
−1/2).

Proposition 3.2. If t is a measurable function such that t(X1) has finite second
moment, then

Sn :=
1

n

n∑
i=1

κit(Xi)−
∫
Dn

t(x)gn(x) = op(n
−1/2). (3.1)

Proposition 3.3. If w is a measurable function such that w(X1)/g(X1) has
finite expectation, then

1

n

n∑
i=1

κiw(Xi)

[
1

gn(Xi)
− 1

g(Xi)

]
= − 1

n

n∑
i=1

κi
w(Xi)

g(Xi)

gn(Xi)− g(Xi)

g(Xi)
+op(n

−1/2).

Lemma 3.1. Under the assumptions (A1)-(A7),

1

n

n∑
i=1

1{Xi∈Dn}Wn(Xi)
∇fθ(Xi)

gn(Xi)
= op(n

−1/2),

where Wn(x) = [A(δn(x))−A(δ(x))−A′(δ(x))(δn(x)− δ(x))] .
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Theorem 3.1. Under the assumptions (A1) - (A7),

∇Tn(θ)−
∫
A(δ(x))∇fθ(x)dx =

∫
A′(δ(x)) [gn(x)− g(x)]uθ(x)dx+op(n

−1/2).

The following theorem presents the statement of step 2.

Theorem 3.2. Under the assumptions (A1)-(A7), ∇Tn(θ)−Ψn(θ) = op(n
−1/2).

Corollary 3.1. Under the assumptions (A1)-(A7),

n1/2

(
Ψn(θ)−

∫
A(δ(x))∇fθ(x)dx

)
L→ N(0, V (θ)).

Proof. By Theorem 3.1 and Theorem 3.2, we have that the asymptotic distri-
bution of

n1/2

(
Ψn(θ)−

∫
A(δ(x))∇fθ(x)dx

)
is same as that of

n1/2

∫
A′(δ(x))uθ(x) [gn(x)− g(x)] dx.

Also, note that by Proposition 3.2, we have that∫
A′(δ(x))uθ(x)gn(x)dx− 1

n

n∑
i=1

A′(δ(Xi))uθ(Xi) = op(n
−1/2).

By central limit theorem for iid random variables and the assumption that V (θ)
is non-singular, we get that

n1/2

∫
A′(δ(x))∇fθ(x) [gn(x)− g(x)] dx

L→ N(0, V (θ)).

See Kuchibhotla and Basu (2015) for more details.

Remark 3.2 Theorems 3.1 and 3.2 combined proves that

Ψn(θ)−
∫
A(δ(x))∇fθ(x)dx =

∫
A′(δ(x)) [δn(x)− δ(x)]∇fθ(x)dx+op(n

−1/2).

Proposition 1 of Kuchibhotla and Basu (2015) proves that∫
[A(δn(x))−A(δ(x))]∇fθ(x)dx

=

∫
A′(δ(x)) [δn(x)− δ(x)]∇fθ(x)dx+ op(n

−1/2).

These two statements compared yields,

Ψn(θ)−
∫
A(δn(x))∇fθ(x)dx = op(n

−1/2).
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Under g = fθ0 we have, by Theorems 3.1 and 3.2 and using A′(0) = 1,

Ψn(θ0) =

∫
δn(x)∇fθ0(x)dx+ op(n

−1/2) =

∫
gn(x)uθ0(x)dx+ op(n

−1/2).

Thus, by Proposition 3.2, we get

Ψn(θ0) =
1

n

n∑
i=1

uθ0(Xi) + op(n
−1/2). (3.2)

3.3. The Derivative of the Estimating Function

The derivative of the estimating function Ψn(θ) is given by,

∇Ψn(θ) =
1

n

n∑
i=1

1{Xi∈An}

[
A(δn(Xi)) + 1

gn(Xi)
∇2fθ(Xi)−A′(δn(Xi))uθ(Xi)u

>
θ (Xi)

]
.

We will prove uniform (in θ) convergence of ∇Ψn(θ) to a non-stochastic function
in the following sequence of Lemmas.

Lemma 3.2. Under assumptions (A5) and (A8),

1

n

n∑
i=1

1{Xi∈An}

[
A(δn(Xi)) + 1

gn(Xi)
∇2fθ(Xi)−

A(δ(Xi)) + 1

g(Xi)
∇2fθ(Xi)

]
= op(1),

uniformly in θ ∈ Θ0.

Lemma 3.3. Under assumptions (A5) and (A8),

1

n

n∑
i=1

1{Xi∈An} [A′(δn(Xi))−A′(δ(Xi))]uθ(Xi)u
>
θ (Xi) = op(1),

uniformly in θ ∈ Θ0.

For notational ease, define

Kθ(x) =
A(δ(x)) + 1

g(x)
∇2fθ(x)−A′(δ(x))uθ(x)u>θ (x)

for the next Lemma.

Lemma 3.4. Under assumptions (A3) - (A5) and (A8),

1

n

n∑
i=1

Kθ(Xi)
[
1{Xi∈An} − 1{Xi∈Dn}

]
= op(1),

uniformly in θ ∈ Θ0.

Theorem 3.3. Under assumptions (A1) - (A9), ∇Ψn(θ)
P→ B(θ), uniformly

in θ ∈ Θ0.
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Proof of Theorem 3.3. This theorem follows from Lemmas 3.2, 3.3 and 3.4. Here
we also need assumption (A9) in order to ensure that the tail integral of B(θ)
converges to zero.

Theorem 3.4. Under assumptions (A1) - (A9), there exists a zero of Ψn(θ),

θ̂n, which converges almost surely to θg and

n1/2(θ̂n − θg)
L→ N(0, B−1(θg)V (θg)B

−1(θg)).

Proof of Theorem 3.4. The proof follows from Corollary 3.1 and Theorem 3.3
using Theorems 1, 2 and 4 of Yuan and Jennrich (1998).

Remark 3.3 Theorem 3.4 parallels the general asymptotic normality results
of Lindsay (1994), Park and Basu (2004), Markatou et al. (1998) and Kuchib-
hotla and Basu (2015).

Remark 3.4 Under the model, g = fθ0 with θ0 ∈ Θ, we get θg = θ0 and
B(θ0) = −I(θ0) and V (θ0) = I(θ0), where I(θ0) represents the Fisher informa-
tion matrix. Therefore, in this case, we get

n1/2(θ̂n − θ0)
L→ N(0, I−1(θ0)).

Remark 3.5 Since, Ψn(θ̂n) = 0, a Taylor series expansion of Ψn(θ) with
respect to θ around θ0, exhibits,

0 = Ψn(θ̂n) = Ψn(θ0) +∇Ψn(θ∗)(θ̂ − θ0),

for some θ∗ belonging to the line joining the points θ̂n and θ0. Hence, we get

θ̂n − θ0 = − [∇Ψn(θ∗)]
−1

Ψn(θ0).

Now by Theorem 3.3,

− [∇Ψn(θ∗)]
−1

= − [B(θ0)]
−1

+ op(1),

Hence, under the model g = fθ0 we get, by Equation (3.2), the representation

n1/2(θ̂n − θ0) = n1/2
[
I−1(θ0)

] 1

n

n∑
i=1

uθ0(Xi) + op(1), (3.3)

proving that the estimator is first order efficient and

n1/2(θ̂n − θ̂ML) = op(1), (3.4)

where θ̂ML represents the unrestricted maximum likelihood estimator.
Remark 3.6 Remark 3.2 paired with the arguments in Remark 3.5 also

proves that n1/2(θ̂MDWL − θ̂MD) = op(1) under any distribution G, where

θ̂MDWL and θ̂MD represents the MDWL estimator and the minimum disparity
estimator corresponding to the common disparity generating function C(·).
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4. Robustness Properties

We will now provide asymptotic robustness results for the MDWL estimator
which is a zero of the equation Ψn(θ) = 0. We follow the approaches of Lindsay
(1994) and Park and Basu (2004).

4.1. First and Higher Order Influence Analysis

The influence function, loosely speaking, calculates the derivative of the esti-
mator functional, at zero, with respect to the proportion of contamination at a
given point y. Lindsay (1994) demonstrated that the first order influence func-
tion of the minimum disparity estimator is the same as that of the maximum
likelihood estimator under the model and therefore the first order influence func-
tion is not a very good indicator of the robustness of these estimators. Lindsay
(1994) suggested taking one more derivative of the functional and demonstrated
that the second order influence function can better approximate, often substan-
tially, the bias of the estimator compared to the first. The theorem below gives
the influence functions of the first and second order and expresses the second
as a function of the first.

Theorem 4.1. The influence function of the minimum disparity estimator func-
tional T at G has the form T ′(y) = D−1N , where

N = A′(δ(y))uθg (y)− E
[
A′(δ(X))uθg (X)

]
D = E

[
A′(δ(X))uθg (X)u>θg (X)

]
−
∫
A(δ(x))∇2fθg (x)dx.

Let T (y) = θε represent the functional corresponding to the contaminated density
gε = (1− ε)g + ε∆y, ∆y represents the density of a random variable degenerate
at y and θg = T (G). Moreover, if g = fθ for some θ ∈ Θ ⊂ R, then

T ′′(y) = T ′(y)[m1(y) +A′′(0)m2(y)]/I(θ),

where I(θ) represents the Fisher information and

m1(y) = 2∇uθ(y)− 2E[∇uθ(X)] + T ′(y)E[∇2uθ(X)],

m2(y) =
I(θ)

fθ(y)
+ E[u3

θ(X)]
uθ(y)

I(θ)
− 2u2

θ(y).

Here T ′(y) and T ′′(y) are the first and the second derivative of the functional
T (y) evaluated at ε = 0.

Proof of Theorem 4.1. Direct differentiation of the estimating equation corre-
sponding to the contaminated density gε gives

Dε
∂

∂ε
θε = Nε, (4.1)
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where

Dε =

∫
A′(δε(x))gε(x)uθε(x)u>θε(x)dx−

∫
A(δε(x))∇2fθε(x)

Nε = A′(δε(y))uθε(y)−
∫
A′(δε(x))uθε(x)gε(x)dx,

which immediately leads to the formula for influence function at the model by
evaluating at ε = 0.

Differentiating Equation (4.1) a second time with respect to ε, gives

DεT
′′(y) +

∂

∂ε
DεT

′(y) =
∂

∂ε
Nε.

Hence,

T ′′(y) = D−1
ε

[
∂

∂ε
Nε −

∂

∂ε
DεT

′(y)

]
.

Calculating the required derivatives and evaluating them at ε = 0 using the
assumption g = fθ implies the stated result. See Basu et al. (2011, p. 134) for
more detailed calculations.

Remark 4.1 We can do a second order influence function study using the
MDWL estimators along the lines of the analysis done by Lindsay (1994) and
can produce results, examples and graphs similar to those presented by Basu
et al. (2011); exactly the same kind of interpretations hold, and the second
order predicted bias of our estimators demonstrate similar improvements as
presented by these authors. The interested reader can look up the description
in Section 4.4 of Basu et al. (2011). Our estimators exhibit exactly the same
kind of improvements. For brevity, we refrain from presenting such results in
this paper.

Remark 4.2 Similar calculations can also be done in higher dimensions of θ
but the derivative expressions will get more complicated and also interpreting
the result would be harder.

4.2. Breakdown Point

The breakdown point of a statistical functional can be thought of as the smallest
fraction of contamination in the data that may cause an extreme change in
the functional. We can derive asymptotic breakdown points for our estimators
using the results of Park and Basu (2004) which were given under fairly general
conditions. The key conditions on the disparity in the Park and Basu (2004)
approach are the finiteness of C(−1) and C ′(∞).

Consider the contamination model,

Hε,n = (1− ε)G+ εKn,

where {Kn} is a sequence of contaminating distributions. Let hε,n, g, kn rep-
resent the corresponding densities. Following Simpson (1987), we state that
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breakdown occurs for the functional T at ε level contamination if there exists
a contaminating sequence {Kn} such that |T (Hε,n) − T (G)| → ∞ as n → ∞.
Under the conditions stated below, Theorem 4.1 of Park and Basu (2004) is di-
rectly applicable in case of the MDWL estimators. For the sake of completeness,
we state the result below without repeating the proof. Define θn = T (Hε,n).

The list of assumptions needed for this theorem in respect of the contami-
nating sequence {kn}, the truth g and the model fθ are as follows.

(B1)
∫

min{g(x), kn(x)}dx→ 0 as n→∞.
(B2)

∫
min{fθ(x), kn(x)}dx→ 0 as n→∞ uniformly for |θ| ≤ c, for any fixed

c.
(B3)

∫
min{g(x), fθn(x)}dx→ 0 as n→∞ if |θn| → ∞ as n→∞.

(B4) C(−1) and C ′(∞) are finite.

Theorem 4.2 (Theorem 4.1, Park and Basu (2004)). Under the assumptions
(B1) - (B4) above, the asymptotic breakdown point of the MDWL estimator is
atleast 1/2 at the model.

5. Computational Algorithms

We have already pointed out that the weighted likelihood representation allows
us to use a simple fixed point iterative reweighting algorithm for the evaluation
of the estimators. While in our actual illustrations we will restrict ourselves to
standard parametric models in this paper, we also describe here a appropriate
computational algorithm to fit the MDWL method for finite mixture models.
Our proposal may be considered to belong to the class of MM (Majorization–
Minimization) algorithms; we primarily deal with the minimization part only.
For a fuller description of the MM method, see Hunter and Lange (2004). One
of the many advantages offered by MM is that it ensures a descent property and
thus offers a numerically stable algorithm.

Let θ(m) represent a fixed value of the parameter θ, and let h(θ|θ(m)) de-
note a real-valued function of θ whose form depends on θ(m). We say h(θ|θ(m))
majorizes a function k(θ), if

k(θ) ≤ h(θ|θ(m)) for all θ 6= θ(m) and k(θ(m)) = h(θ(m)|θ(m)).

We now minimize the majorizing function instead of the function itself. Define,

θ(m+1) = argminθh(θ|θ(m)).

This implies that

k(θm+1) ≤ h(θ(m+1)|θ(m)) ≤ h(θ(m)|θ(m)) ≤ k(θm).

Hence, the descent property of the algorithm follows. Possibly, the most difficult
part in applying this technique is to get a “simple” majorizing function. The EM
algorithm which was brought into limelight by Dempster et al. (1977) can be
shown to be a special case of MM. See (Lange, 2010, pg. 226) for more details.
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5.1. Finite Mixture Models

Cutler and Cordero-Braña (1996) proposed an EM-type algorithm called HMIX
for fitting finite mixture models in the continuous case using Hellinger distance.
Karlis and Xekalaki (1998) also proposed an EM-type algorithm called HELMIX
for Poisson mixture models using Hellinger distance. These two algorithms are
very similar and convergence properties of these two iterative algorithms were
exhibited by Monte Carlo studies, but no theoretical properties were derived.
Fujisawa and Eguchi (2006) also proposed an EM-type algorithm in the case
of density power divergences introduced by Basu et al. (1998). In this section,
we present an algorithm for fitting finite mixture model with distributions in
the mixture having densities with respect to some common dominating measure
using our minimum distance weighted likelihood method. This algorithm is not
specific to the Hellinger distance and it is straightforward to extend this algo-
rithm to all minimum disparity estimation procedures. Also, we show that this
algorithm has the descent property similar to the ascent property of the EM
algorithm. In particular, we show that all these algorithms belong to a class of
algorithms governed by MM methodology.

Getting back to the minimization problem at hand, if C is a convex function,
then the map Y defined by t 7→ tC(−1 + [a/t]) is also convex for all a ≥ 0.
Thus, for any two vectors u, v ∈ Rk with all components non-negative, we get
by convexity,

Y (u>v) ≤
k∑
j=1

u
(m)
j v

(m)
j

u(m)>v(m)
Y

(
u(m)>v(m)

u
(m)
j v

(m)
j

ujvj

)
, (5.1)

for any two vectors u(m), v(m) ∈ Rk with all components non-negative. Now, take
u>v =

∑k
j=1 wjfj(x; θj) where wj ≥ 0 for 1 ≤ j ≤ k,

∑k
j=1 wj = 1, fj(x; θj) rep-

resents a probability density evaluated a fixed point x with parameter θj . Note
that here we are not assuming that the densities in the mixture model are from
the same parametric family. In this case, u(m) and v(m) can be taken as vector of
weights in the past iterate and as vector of probability densities with parameters

obtained in the past iterate respectively. That is u(m) = (wm1 , w
(m)
2 , . . . , w

(m)
k )

and v(m) = v(m)(x) = (f1(x; θ
(m)
1 ), f2(x; θ

(m)
2 ), . . . , fk(x; θ

(m)
k )). Define, follow-

ing Cutler and Cordero-Braña (1996),

aj(x; θ(m)) =
w

(m)
j fj(x; θ

(m)
j )

u(m)>v(m)(x)
, and f̃j(x; θj , wj) =

wjfj(Xi; θj)

aj(Xi; θ(m))
.

Hence using inequality (5.1) and the definitions, we get

1

n

n∑
i=1

κn,if(Xi)
C(δn(Xi)) + δn(Xi)

gn(Xi)
≤

k∑
j=1

Z(θj , wj), (5.2)

where

Z(θj , wj) =
1

n

n∑
i=1

f̃j(Xi; θj , wj)

gn(Xi)
C

(
gn(Xi)

f̃j(Xi; θj , wj)
− 1

)
+ 1− f̃j(Xi; θj , wj)

gn(Xi)
.



Kuchibhotla, A. K. and Basu, A./Minimum Distance Weighted Likelihood 17

Taking the right hand side of inequality (5.2) as a majorizer h(θ|θ(m)), we get
an iterative algorithm which is as explained above. By the descent property of
MM, this algorithm also has a descent property. Also, observe that the majorizer
has θj in only the j-th term so that minimizing the majorizer can be shifted to
minimizing the j-th term with respect to θj once new weights are found. Note
that the majorizer has to be minimized under the constraint of sum of weights
equal to one. This can be achieved by the Lagrange multiplier method. The
algorithm discussed here which we will refer to as DMIX becomes HMIX and
HELMIX algorithm when applied to those specific cases.

Convergence results for MM algorithms were derived by Vaida (2005). Vaida
(2005) proved that under certain regularity conditions on the majorizer the
sequence of MM iterations converge to an element of the set of stationary points
of the actual function which is being minimized. In particular, if the majorizer
has a unique minimum at the stationary points of the actual function, then
the MM algorithm is convergent. See Theorems 2 and 4 and comments before
Section 6 of Vaida (2005). These results prove the convergence of our algorithm.

6. Real Data and Simulation Studies

In this section, we apply our estimation procedure on some real datasets. All
the robust estimator presented in this section are obtained as solutions to the
corresponding minimum distance weighted likelihood estimating equations.

6.1. Newcomb: Speed of Light Data

In 1882, Simon Newcomb set up an experiment which measured the amount
of time required for light to travel a distance of 7442 metres. The data are
recorded as deviations from 24,800 nanoseconds. There are two unusually low
measurements (−44 and −2) and then a cluster of measurements that seems to
be approximately symmetrically distributed. For a full description of Newcomb’s
data, see Stigler (1977).

The histogram of Newcomb’s data and normal density fits given by the maxi-
mum likelihood estimator and the minimum symmetric chi-square estimator (see
Lindsay (1994), Markatou et al. (1998)) are presented in Figure 1. For compar-
ison, we also present a kernel density fit to the given data in 1. The estimators
corresponding to the symmetric chi-square (SCS), the Hellinger distance (HD)
and the negative exponential disparity (NED) obtained using our methodology
are given in Table 1. Taken together, Figure 1 and Table 1 demonstrate that
our proposed estimators successfully discount the effect of the large outliers,
unlike the MLE, and lead to much more stable inference. Here and in all other
datasets presented, we used Epanechnikov kernel with optimal bandwidth for
nonparametric density estimation.
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Fig 1. Normal Density Fits for Newcomb’s Data.

6.2. Melbourne: Daily Rainfall Data

This dataset is taken from Staudte and Sheather (1990). Rainfall varies with the
seasons in Melbourne, Australia. For the sake of time homogeneity, we restrict
attention to the winter months of June, July, and August. During this rainy
season roughly half the days have no measurable rainfall, and we will hereafter
restrict attention to “rain days,” those in which there is at least one millimeter of
measured rainfall. The distribution of the daily rainfall for the winter months of
1981-1983 can be approximated by an exponential distribution as suggested by
the histogram in Figure 2. Since there is some day-to-day dependence, a Markov
model is more appropriate if one wants to use all the information. However, we
will select every fourth rain day observation from the data in Table C.2 of the
Appendix of Staudte and Sheather (1990) and assume independence as was also
done by Staudte and Sheather (1990). The measurements in millimeter are:

1. 1981: 6.4, 4.0, 3.2, 3.2, 8.2, 11.8, 6.0, 0.2, 4.2, 2.8, 0.6, 2.0, 16.4.
2. 1982: 0.4, 8.4, 1.0, 7.4, 0.2, 4.6, 0.2.
3. 1983: 0.2, 0.2, 0.8, 0.2, 9.8, 1.2, 1.0, 0.2, 30.2, 1.4, 3.0 .

The value 30.2 is a clear outlier and stands out in the histogram. The exponen-
tial density fits given by maximum likelihood and symmetric chi-square with
and without the outliers are shown in Figures 2 and 3 respectively. The esti-



Kuchibhotla, A. K. and Basu, A./Minimum Distance Weighted Likelihood 19

mators of the mean parameter given by the symmetric chi-square (SCS), the
Hellinger distance (HD) and the negative exponential disparity (NED) using our
methodology are given in Table 1. It is clear the that effect of outlier has been
largely arrested by our robust estimators unlike the MLE. On the other hand,
when the outlier is removed, all the estimators including the MLE are closely
clustered together.

Fig 2. Exponential Density Fits for the Melbourne Rainfall Data (with the outlier).

The estimators obtained by using the Hellinger distance, the symmetric chi-
square disparity and the negative exponential disparity for the datasets pre-
sented in Sections 6.1-6.2 are given in Table 1. The two rows for the Newcomb

Table 1
Estimates for the Newcomb and the Melbourne Datasets

Data MLE HD SCS NED

Newcomb 26.212121 27.728633 27.725862 27.745055
10.745325 5.011576 5.000903 5.032101

Melbourne 4.496774 4.063245 3.777422 3.475987
Melbourne(−O) 3.640000 3.730983 3.631070 3.448983

data represent the estimates of mean (µ) and the standard deviation (σ) in the
normal density. Melbourne(−O) represents the Melbourne data obtained after
deleting the outlier 30.2.

6.3. Simulation Studies

The following tables give the MSE of the estimated parameters under the
normal model, based on 125 samples, each containing 100 observations from
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Fig 3. Exponential Density Fits for the Melbourne Rainfall Data Without the Outlier.

(1− ε)N(0, 1) + εN(10, 1) for ε = 0, 0.0, 0.10, 0.15, 0.20, 0.25. Our targets are
the parameters of the larger, N(0, 1) component. We used Epanechnikov kernel
with optimal bandwidth for nonparametric density estimation. The observed
mean square error for the mean parameter is computed against the target 0,
while the observed MSE of the parameter of standard deviation is computed
against the target value of 1. The tabled values show that all the MDWL esti-
mators are highly successful in ignoring the smaller, contaminating component,
unlike the MLE.

Table 2
MSEs of the MLE and the MDWL estimates of the Mean parameter

Error(ε) HD SCS NED MLE

0% 0.009103 0.009236 0.009028 0.009034
5% 0.012910 0.013133 0.013112 0.311434

10% 0.010239 0.010376 0.010091 1.056103
15% 0.011506 0.011516 0.011650 2.369552
20% 0.011384 0.011493 0.011184 4.074779
25% 0.014786 0.015430 0.015732 6.368500

7. Hypothesis Testing

A popular and useful statistical tool for the hypothesis testing problem is the
likelihood ratio test. The likelihood ratio test statistic is constructed as twice
the difference of the unconstrained maximum log likelihood and the maximum
log likelihood under the null hypothesis. In the language of disparities, the test
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Table 3
MSEs of the MLE and the MDWL estimates of the scale parameter

Error(ε) HD SCS NED MLE

0% 0.005566 0.006390 0.006209 0.004927
5% 0.005589 0.006191 0.006052 2.130894

10% 0.005653 0.006171 0.006163 4.745307
15% 0.006299 0.006524 0.006582 7.348949
20% 0.006411 0.006915 0.007069 9.768701
25% 0.007965 0.008243 0.008178 11.910837

statistic is constructed by taking the difference between the minimum of the like-
lihood disparity under the null and that without any constraint. Under certain
regularity conditions, the likelihood ratio test enjoys some asymptotic optimal-
ity properties.

However, as in the case of the maximum likelihood estimator, the likelihood
ratio test exhibits poor robustness properties in many cases. As an alternative
to the likelihood ratio test, Simpson (1989) introduced the Hellinger deviance
test which was later generalized to disparity difference tests, in a unified way;
see eg. Lindsay (1994) and Basu et al. (2011).

The set up under which we deal with the problem of hypothesis testing is as
follows. We assume the parametric set up of Section 2 and let independent and
identically distributed random variables X1, X2, . . . , Xn be available from the
true distribution G. The hypothesis testing problem under consideration is

H0 : θ ∈ Θ0 and H1 : θ ∈ Θ \Θ0,

for a proper subset Θ0 of Θ. We define the empirical divergence to be

ρC(gn, fθ) =
1

n

n∑
i=1

C(δn(Xi)) + δn(Xi)

δn(Xi) + 1
1{Xi∈An}.

As an analog of the likelihood ratio test, define the test statistic,

WC(gn) := 2n
[
ρC(gn, fθ̂0)− ρC(gn, fθ̂)

]
, (7.1)

where θ̂ and θ̂0 denote the unrestricted minimizer of ρC(gn, fθ) and the mini-
mizer under the constraint of θ ∈ Θ0 and gn is the kernel density estimate.

We will now present the main theorem of this section which establishes the
asymptotic distribution of WC .

Theorem 7.1. Under the model fθ0 , θ0 ∈ Θ0 and assumptions (A1) - (A9),
the limiting null distribution of the test statistic WC(gn) is χ2

r, where r is the
number of restrictions imposed by the null hypothesis H0.

proof of Theorem 7.1. A Taylor series expansion of ρC(gn, fθ̂0) with respect to
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θ around θ̂, gives

WC(gn) = 2n
[
ρC(gn, fθ̂0)− ρC(gn, fθ̂)

]
= 2n

[
(θ̂0 − θ̂)>∇ρC(gn, fθ̂)

]
+ 2n

[
1

2
(θ̂0 − θ̂)>∇2ρC(gn, fθ∗)(θ̂0 − θ̂)

]
,

where θ∗ belongs to the line joining θ̂0 and θ̂. Note that the first term in the
last expression is zero as θ̂ is the minimizer of ρC over Θ. So, we only need to
deal with the second term in the expansion. Now

WC(gn) = n
[
(θ̂0 − θ̂)>I(θ0)(θ̂0 − θ̂)

]
+ n

[
(θ̂0 − θ̂)>{∇2ρC(gn, fθ∗)− I(θ0)}(θ̂0 − θ̂)

]
. (7.2)

Under the model fθ0 , n1/2(θ̂0 − θ0) and n1/2(θ̂ − θ0) are both Op(1). Thus,

n1/2(θ̂0 − θ̂) = Op(1). By Theorem 3.3, ∇2ρC(gn, fθ) = ∇Ψn(θ) converges to
−B(θ) uniformly in θ ∈ Θ0. Note that B(θ0) = −I(θ0) under g = fθ0 . Since

θ̂0 − θ0 = op(1) and θ̂ − θ0 = op(1), θ∗ ∈ Θ0 for large enough n and so

|∇2ρC(gn, fθ∗)− I(θ0)| ≤ |∇2ρC(gn, fθ∗) +B(θ∗)|+ | −B(θ∗)− I(θ0)|

≤ sup
θ∈Θ0

|∇2ρC(gn, fθ) +B(θ)|+ |B(θ∗) + I(θ0)| P→ 0.

Hence, by the arguments above, the second term on the right hand side of
Equation (7.2) converges in probability to zero. By Equations (3.3) and (3.4),
we have

n1/2(θ̂ − θ̂0) = n1/2(θ̂ML − θ̂0,ML) + op(1),

where θ̂ML and θ̂0,ML are the unrestricted and constrained maximum likelihood
estimators. Hence, WC(gn) is equivalent to the likelihood ratio test statistic
under the model fθ0 in the sense that

WC(gn)− n
[
(θ̂0,ML − θ̂ML)>I(θ0)(θ̂0,ML − θ̂ML)

]
= op(1). (7.3)

From the theory of likelihood ratio test, we conclude that WC converges in
distribution to a χ2

r as n→∞ as stated. See Serfling (1980, Section 4.4.4) for a
complete discussion on likelihood ratio test.

Theorem 7.2. The conditions of Theorem 7.1 and the additional assumption
that the parametric family Fθ satisfies the local asymptotic normality (LAN)
condition indicate that under fθn and as n→∞

WC(gn)− 2

n∑
i=1

[
log fθ̂ML(Xi)− log fθ̂0,ML(Xi)

]
P→ 0,

where θn = θ0 + τn−1/2.



Kuchibhotla, A. K. and Basu, A./Minimum Distance Weighted Likelihood 23

Proof of Theorem 7.2. Under the assumptions of Theorem 7.1, Equation (7.3)
implies the stated claim under fθ0 , since the Wald test statistic is equivalent to
the likelihood ratio test statistic under the null. See Serfling (1980, pg. 158 –
160) for more details. By LAN condition, we have that fθn is contiguous to fθ0
and so convergence in probability under fθ0 implies convergence in probability
under fθn . Hence the proof is complete.

The following theorem explores the stability of the limiting distribution of the
test statistic WC(gn) under contamination. For this theorem the null hypothesis
under consideration is H0 : θg = θ0, where the unknown true distribution G may
or may not be in the model.

Theorem 7.3. Under assumptions (A1) - (A9), under the null hypothesis,
we have the following

WC(gn)− Y2n = Y1 + op(1),

where Y1 ∼ χ2
p and limg→fθ0 Y2n = 0 for any C. Here by g → fθ0 , we mean the

convergence in L1 sense. The rate at which the convergence to 0 of Y2n holds
depend on the form of C. See Remark 7.1 for more details.

Proof of Theorem 7.3. The proof of this theorem closely follows the proof of
Theorem 7.1. As in Theorem 7.1, we get by Taylor series expansion of the test
statistic around θ̂n,

WC(gn) = 2n
[
ρC(gn, fθ0)− ρC(gn, fθ̂n)

]
= n(θ0 − θ̂n)>∇2ρC(gn, fθ∗)(θ0 − θ̂n),

where θ∗ belongs to the line joining θ and θ0. By Theorem 3.3, ∇2ρC(gn, fθ∗)
converges in probability to B(θ0) under the null hypothesis. Hence, we have

WC(gn) = −n(θ0 − θ̂n)>B(θ0)(θ0 − θ̂n) + op(1).

Note that

−B(θ0) = B(θ0)V −1(θ0)B(θ0)−B(θ0)
[
V −1(θ0) +B−1(θ0)

]
B(θ0).

By, Theorem 3.4, we get

n(θ̂n − θ0)B(θ0)V −1(θ0)B(θ0)(θ̂n − θ0) = Y1 + op(1),

where Y1 ∼ χ2
p. The remaining term given by

Y2n = −n(θ̂n − θ0)B(θ0)
[
V −1(θ0) +B−1(θ0)

]
B(θ0)(θ̂n − θ0),

becomes zero if g = fθ0 and stays close to zero as g ≈ fθ0 .
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Remark 7.1 This result extends Theorem 6 of Lindsay (1994), which was
in the case of a scalar parameter. In our case, if p = 1, both B = −B(θ0) and
V = V (θ0) are scalars, so that

WC(gn) =
V

B
Xn + op(1),

where Xn
L→ χ2

1 under H0. Thus V/B, as a function of the true density g, and
the disparity generating function C(·) represents the inflation in the χ2 distri-
bution, and can be legitimately called the χ2 inflation factor. This is exactly the
same as the inflation factor described in Theorem 6, part (ii) of Lindsay (1994).
When g = fθ0 is the true distribution, V = B so that there is no inflation.
However, when the true distribution is a point mass mixture contamination
Lindsay (1994) demonstrated, using the binomial model for illustrations, that
the inflation factor for the likelihood ratio test rises sharply with the contamina-
tion proportion, whereas for the Hellinger deviance test this rise is significantly
dampened in comparison. Our inflation factor calculations in the normal mean
model exhibit improvements of similar order between the likelihood ratio test
and other robust tests, although we do not present the actual numbers here.

In the multidimensional case, however, the relation is not so simple as now
it requires comparison between the matrices B(θ0)V −1(θ0)B(θ0) and −B(θ0),
rather than the between scalars. While we have presented the essential result,
it could be interest to develop a single quantitative measure of inflation for the
multidimensional case in the future.

8. Conclusions and Future Work

This paper demonstrates that the minimum disparity estimation procedure can
be simultaneously viewed as a weighted likelihood estimation procedure and
also gives a proof of asymptotic normality of the MDWL estimator under fairly
general conditions on the family of disparities. For example, all the disparities
presented in Table 2.1 of Basu et al. (2011) satisfy our assumptions but not
all of them satisfy the assumptions of Markatou et al. (1998). We also gener-
alize the proof of asymptotic normality due to Kuchibhotla and Basu (2015)
by appropriately modifying their assumption (A8) which may not be satisfied
over the whole real line. In the proof presented here, we trim the kernel density
estimator so that such an assumption is valid on this trimmed set. Hence the
proof of Kuchibhotla and Basu (2015) may be carried out with assumption (A8)
and with an inclusion of trimming parameter as is done here.

As the proof presented here involves a trimming parameter, the application
of this method involves choosing such a parameter. This choice will certainly
require further research. We anticipate that the proof can be done without trim-
ming since the numerator C(δn(x))fθ(x) and the denominator g(x) converges
to zero as |x| → ∞ at an approximately same rate if θ = θg.

Also, the proof explicitly uses the form of the nonparametric density estima-
tor used, namely, the kernel density estimator. But using the techniques from
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semiparametric M-estimation or those of empirical processes, we feel that a
proof can be done without explicitly using the form of density estimator. Den-
sity estimators based on spacings are easier to calculate numerically than the
kernel density estimator. We think that this method might give a competitive
alternative to the one with kernel density estimator.

Finally, we note that in the context of minimum disparity estimation, we
now that have two estimated estimating functions (sample versions), the usual
one involving integrals and the other as introduced here, with both having the
same asymptotic robustness properties because of the same population objec-
tive function. It would therefore be appropriate to have a detailed simulation
study comparing the small sample properties of the two corresponding estima-
tors. Small sample theoretical properties like finite sample breakdown point or
expected finite sample breakdown point of these two estimators would give a
better comparison of their capabilities.

Acknowledgements

The authors thank Dr. Arijit Chakrabarti and Mr. Promit Kumar Ghosal, both
of the Indian Statistical Institute, for helpful discussions.

Supplementary Material

Supplement to “A Minimum Distance Weighted Likelihood Method
of Estimation”
(). Propositions and Theorems which have not been proved in this manuscript
are provided in the supplementary material. Several additional real data exam-
ples have also been included in the supplementary material.
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