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Abstract

In this paper we consider the problem of estimating average treatment effects
(ATE) with a single (or a few) treated unit(s), a large number of control units, and
large pre and post-treatment sample sizes. Long panel data are quite common in
marketing due to the prevalence of weekly data at the customer, store or company
level and or even daily data from scanner or online transaction data. This is in
contrast to many economic data at the quarterly or annual frequency. We estimate
counterfactual outcomes with a factor model. To select the number of factors, we
propose a modification of Bai and Ng’s (2002) procedure to improve its finite sample
performance. We establish the asymptotic distribution theory of the ATE estima-
tor allowing for both stationary and non-stationary data. Simulations confirm our
theoretical analysis, and an empirical application examines the effect of opening a
showroom by WarbyParker.com on its online sales.
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1 Introduction

Estimation of average treatment effects (ATE) is important because it is commonly encoun-

tered in almost all areas of science: economics, management science, marketing, political

science, sociology, medical science, and others. The early literature on estimating ATE

focused mainly on the effects of education or training programs on labor market outcomes

(Ashenfelter 1978, Ashenfelter and Card 1985). In recent years, marketing and manage-

ment scientists increasingly have applied various ATE estimation methodologies to a wide

range of issues. These include offline bookstore openings on sales at Amazon (Forman,

Ghose and Goldfarb 2009), offline TV advertising on online chatter (Tirunillai and Tellis

2017) and on online shopping (Liaukonyte, Teixeira and Wilbur 2015), online multidimen-

sional ratings on consumption (Chen, Hong and Liu 2017), online book reviews on driving

sales (Chevalier and Mayzlin 2006), and offline stores on online sales (Wang and Goldfarb

2017).

Most of this work uses the difference-in-differences (DID) method to estimate ATE. DID

is best suited for estimating ATE when both treated and control individuals are random

draws from a common population. But even when treated individuals are not randomly

selected, DID still may be used to estimate ATE. For example, when the average outcomes

of the treated and the control groups follow a ‘parallel line’, the DID method can be used

to accurately estimate ATE.

Much of the empirical data involves a large number of treated and control individuals

over a short time horizon. Then, the DID methodology, together with some proper matching

methods, is perhaps the best available approach for estimating ATE. That is because the

‘parallel line’ assumption is likely to hold for properly matched pairs within a short panel.

However, when there are few (possibly only one) treated unit(s), and many control units in

a long panel (a panel with long time-series data), alternative methods may be more suitable

for estimating ATE because without random assignment of the treated units, the ‘parallel

line’ assumption is likely to be violated in a long panel.

The synthetic control method (SCM) proposed by Abadie and Gardeazabal (2003) and

Abadie, Diamond and Hainmeller (2010) is another popular and powerful approach for

estimating ATE. It is designed for use with a few treated units (or a single one) and a small

or moderate number of control units in a long panel. However, when the number of control

units is large, this method may lead to large estimation variance (because of the need to

estimate a large number of parameters) and to imprecise ATE estimation. The least squares
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approach suggested by Hsiao, Ching and Wan (2012, HCW) also can be used to estimate

ATE. However, similar to the synthetic control method, having a large number of control

units can lead the HCW method to over-fit the in-sample data and generate imprecise

out-of-sample predictions. If the number of control units is larger than the pre-treatment

time period, then the HCW method becomes invalid.1

In this paper, we estimate counterfactual outcomes based on a factor model also known

as the generalized synthetic control method. We argue in Section 2 that a factor model

structure is ideal for estimating ATE of a single treated unit with a large number of control

units and a long time-series panel.

Long panels are quite common in marketing due to the prevalence of daily or weekly data

at the customer, store or company level such as sales or scanner data. This is in contrast to

many economic data at the quaterly or annual frequency. Most existing inference methods

focus on panels with short post-treatment period. We provide inference theory for long

panel which should be particularly useful to marketing and management scientists.

While Gobillon and Magnac (2016) and Chan and Kwok (2016) consider the case of

large number of treated and control units, we focus on the case with one treated unit and

a large number of control units. In addition, Chan and Kwok (2016) only consider the case

that treatment effects are time invariant, whereas we consider a more general case that

allows for time varying treatment effects.

Xu (2017) has a similar set up to ours, but he does not provide distribution theory

for the factor-model-based method, which is also referred to as the generalized synthetic

control method (GSC).2 Xu proposes using a bootstrap method to conduct inferences, which

relies on the assumption that the variances of the idiosyncratic errors are the same for the

treated and control groups, However, this assumption is likely to be violated, especially

when treated units are not randomly assigned such as in quasi-experimental settings.

Recently, Chernozhukov, Wüthrich and Zhu (2017) propose a general inference proce-

dure covering different ATE estimators, including Difference-in-Differences (DID), synthetic

control, and a factor-model-based method. They consider two situations: (i) Under the

assumption that the idiosyncratic error term satisfies an exchangeability condition (e.g.,

iid), they propose a permutation inference method that achieves exact finite sample size.

(ii) If the data exhibit dynamic and serial correlation, they propose an inference procedure

1When the number of control units is large. Chernozhukov, Wüthrich and Zhu (2017), and Li and Bell
(2017) show that the LASSO method can be used to select control units.

2Xu (2017) refers to the factor-model-based method as the ‘generalized synthetic control method’ (GSC).
We also use these two terminologies interchangeably in this paper.
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that achieves approximate uniform size control under the condition that the pre-treatment

sample is larger and the post-treatment sample is small. Exchangeability assumption is

strong and may not be plausible in many applications; also, for many marketing data, the

post-treatment sample period may not be negligibly small compared with pre-treatment

sample size, rendering inference methods, based on small-post-treatment-sample-size, in-

valid to this type of data.

For panels with a single treated unit and a short post-treatment period, existing infer-

ence methods either assume that idiosyncratic errors have the same variance for the treated

and control units (Ferman and Pinto 2017); or require the treated units’s error variances to

be the same during the pre and post-treatment periods (Chernozhukov et al. 2017). Equal

variance assumption can be violated in practice because the treated and control units are

usually heterogeneous without random assignment of treated units. Also, a treatment may

not only affect the mean value of an outcome variable, but also affects its variance so that

the treated unit’s idiosyncratic error variance can be substantially different during pre and

post-treatment periods.

In this paper, we derive the asymptotic distribution theory in order to facilitate in-

ference for our factor-model-based ATE estimator that is ideal for settings with a large

number of control units, and large pre- and post-treatment sample sizes. Our distribution

theory fills a gap in the literature and provides a simple inference method for the gener-

alized synthetic control ATE estimator with long panels under quite general (regularity)

conditions. Specifically, we allow for both stationary and non-stationary data, idiosyn-

cratic errors can be weakly dependent both cross sectionally and over time (e.g., Bai 2003,

2004). Moreover, we allow for the variances of the idiosyncratic errors from the treated

and control groups to be different, and we also allow for the treated unit’s idiosyncratic

errors to have different variances during the pre- and post-treatment periods. Because our

inference method is based on normal distribution theory, an additional advantage is that

it is computationally much more efficient than bootstrap or permutation based inference

procedures. Simulations reported in Section 5 confirm our theoretical result.

The paper is organized as follows. In Section 2 we review several popular ATE esti-

mation methods. Then we discuss our set up and estimation method. In Section 3 we

propose a modification to Bai and Ng’s (2002) method of estimating the number of factors

in a factor model (for the stationary data case). Section 4 provides distribution theory of

the factor-model-based ATE estimator. In Section 5, we use simulations to examine the

finite sample performances of our modified method in selecting the number of factors, and
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the estimated confidence intervals based on our distribution theory. Section 6 reports on

an empirical application where we estimate the ATE of opening a showroom in Boston on

Boston online sales by WarbyParker.com. Section 7 concludes and Appendix A contains

proofs of the main theoretical results.

2 Different ATE estimation methods

First, we describe the general problem and notation for average treatment effect (ATE)

estimation. Then, we introduce several methods for estimating ATE and describe their

relative advantages and disadvantages. Let y1
it and y0

it denote the outcomes of unit i in

period t with and without treatment, respectively. The treatment intervention effect for

the ith unit at time t is defined as

∆it = y1
it − y0

it. (2.1)

However, for the same unit i, we do not simultaneously observe y0
it and y1

it. Thus, the

observed data takes the form yit = dity
1
it + (1− dit)y0

it, where dit = 1 if the ith unit is under

the treatment at time t, and dit = 0 otherwise. That is, we observe y1
it or y0

it, depending on

whether unit i receives a treatment at time t or not.

In estimating ATE, the difficulty lies in how to obtain the counterfactual outcome y0
it

when the ith unit receives a treatment, because we only observe y1
it for post-treatment period

t for a treated unit. We focus on the case where only one unit receives a treatment at time

T1 + 1 and the other Nco control units do not receive any treatment throughout the sample

period.3 Without loss of generality, we assume that the first unit receives a treatment at

time T1 + 1. We want to estimate the post-treatment period average treatment effects for

the treated unit. Specifically, we want to estimate ∆1 = E(y1
1t − y0

1t). Let ŷ0
1t be a generic

estimator of y0
1t. Then, a sample analogue of ∆1 is given by

∆̂1 =
1

T2

T∑
t=T1+1

(y1t − ŷ0
1t),

where T2 = T − T1 is the number of post-treatment time periods. Here we would like

to emphasize that since there is only one unit (the first unit) that receives a treatment,

the ATE estimator is obtained by averaging over the post-treatment periods (time series

3If more than one unit receives treatment, possibly at different times, we can first estimate ATE (over
post-treatment period) for each treated unit, then average these units’ ATE to obtain a total ATE, an
average over both treated units and their post-treatment periods.
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averaging) for the treated unit. This differs from the usual Difference-in-Differences (DID)

method in which one often has a larger number of units receiving treatments and the

average is usually done over many treatment units (cross sectional averaging).

Because we only have one unit that receives a treatment, consistent estimation of ∆1

usually requires that both the number of pre-treatment periods, T1, and the number of

post-treatment period, T2 are large, while the number of control units, Nco, can be either

large or small. In the following subsections, we discuss different estimation methods that are

designed for estimating ATE for a single treated unit, and compare their relative advantages

and disadvantages, in particular their performance when the total number of time periods,

T , and the number of control units, Nco, are large.

2.1 The synthetic control method

The synthetic control method (SCM) proposed by Abadie and Gardeazabal (2003), and

Abadie, Diamond and Hainmeller (2010), uses a weighted average of control units to ap-

proximate the counterfactual outcome of the treated unit in the absence of treatment. The

weights are restricted to be non-negative and to sum to one. The synthetic control method

includes the Difference-in-Differences method as a special case when each control unit is

assigned a weight of 1/Nco. The performance of the synthetic control method relies cru-

cially on the assumption that the weighted average of the control units’ sample path is

parallel to the treated unit’s sample path in the absence of treatment. Doudchenko and

Imbens (2016) suggest that when the parallel line assumption is violated, one can remove

the restriction that weights sum to one. This modification effectively relaxes the original

‘parallel line’ assumption to a weaker condition that the weighted average (with weights

summing to one) of the control unit times a positive constant (a scale factor) is parallel to

the sample path of the treated unit in the absence of treatment (so that the new weights

may not sum to one). This modified synthetic control method (MSCM) contains the syn-

thetic control method as a special case when the scale factor equals one. The performance

of the modified version requires large a T1 and T2 but that Nco is not too large. When

the number of control units, Nco, is large, it may be better not to use all of the control

units when estimating ATE using the synthetic control method (or the modified version)

because a large number of explanatory variables in a regression model can lead to overfit-

ting in-sample and imprecise out-of-sample predictions. In this case, one can use the best

subset selection method proposed by Doudchenko and Imbens (2016) or the least absolute

shrinkage and selection operator (LASSO) method suggested by Chernozhukov, Wüthrich
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and Zhu (2017), and Li and Bell (2017) to select control units in applications. Recent work

on synthetic control methods include Chernozhukov, Wüthrich and Zhu (2017), Ferman

and Pinto (2017), Firpo and Possebom (2017), Hahn and Shi (2016), Li (2017) and Xu

(2017) who provide inference methods or asymptotic distribution theory of the synthetic

control (or modified syntheic control) ATE estimator.

2.2 The least squares method

Hsiao, Ching and Wan (2012, HCW) propose estimating ATE based on a least squares

approach. They motivate their estimation method via a factor model data generating

process. The common factors are the main forces driving all the outcome variables, yit, to

exhibit some co-movement over time. Specifically, suppose that the outcome variables for

the control units are generated by the following factor model

y0
it = λ′iFt + eit, i = 2, ..., N ; t = 1, ..., T, (2.2)

where λi is a r-dimensional vector of factor loadings, Ft is a r-dimensional vector of (un-

observable) common factors and eit is a zero mean idiosyncratic error. Note that the first

element of Ft can be a constant of 1 so that the model contains an individual specific

intercept term.

Similarly, the treated unit’s pre-treatment period outcome is generated by y1t = λ′1Ft +

e1t for t = 1, ..., T1. At time T1 +1, the first unit receives a policy intervention or treatment.

Therefore, the treated unit outcome for the post-treatment periods is

y1t = y1
1t = λ′1Ft + ∆1t + e1t for t = T1 + 1, ..., T , (2.3)

where ∆1t is the treatment effect to the first unit at time t.

HCW suggest a method for estimating the counterfactual outcome y0
1t without estimat-

ing unobserved factors and factor loadings. They propose first regressing the treated unit

outcome, y1t, on control units’ outcomes, xt = (1, y2t, ..., yNt)
′, using pre-treatment period

data to estimate the coefficients β in the following regression model

y1t = x′tβ + u1t t = 1, ..., T1, (2.4)

Let β̂OLS denote the resulting estimator of β. Then, the counterfactual outcome, y0
1t, can

be predicted by ŷ0
1t = x′tβ̂OLS for t = T1 + 1, ..., T .

Effectively, HCW’s method uses the control units’ outcome variables to replace Ft in

the regression analysis. The rationale for this approach is that outcome variables are all
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correlated via common factors. Under the identifying assumption that the correlation

between outcomes of the treated and the control units remains stable in the absence of

treatment, HCW’s method can be used to estimate a counterfactual outcome and the

ATE. However, one problem with this approach is that when the number of control units,

Nco, is large (e.g. Nco > T1), the least squares estimator of β does not exist. Hence, the

HCW method is not well suited when the number of control units, Nco, is large. Even

when the number of control units is smaller than the pre-treatment sample size (Nco ≤ T1),

a large number of regressors usually leads to large estimation variation and may lead to

inaccurate estimation results. HCW propose using some model selection criteria, such as

AICC or BIC, to select a subset of control units for estimating the counterfactual outcomes,

y0
1t. AICC or BIC procedures can be computationally extremely costly when the number

of control units, Nco, is large. Chernozhukov, Wüthrich and Zhu (2017), and Li and Bell

(2017) show that the LASSO method is computationally more efficient than the AICC or

BIC method in selecting control units.

2.3 A factor model approach

Unlike HCW, Gobillon and Magnac (2016), Chan and Kwok (2016) and Xu (2017) suggest

estimating ATE by directly estimating a factor model. Suppose that in the absence of

treatment, outcomes are generated by the following factor model

y0
it = λ′iFt + eit, (2.5)

where Ft is a r × 1 vector of unobservable common factors, λi is a r × 1 vector of factor

loading coefficients, and eit is an idiosyncratic error term that has a zero mean and finite

fourth moment. For the control units (i = 2, ..., N), this outcome equation holds for all

time periods, t = 1, ..., T whereas for the treated unit (i = 1), this outcome equation only

holds for the pre-treatment time periods (t = 1, ..., T1).

If Ft were observable, then one could estimate λ1 by the least-squares method using

the pre-treatment data, and predict the counterfactual outcome as in HCW. However,

in practice, Ft is not observable. A popular approach for estimating factors is principal

components analysis. Gobillon and Magnac (2016) and Xu (2017) suggest using control

units’ full data (yit for i = 2, ..., N and t = 1, ..., T ) to estimate the common factors

(principal components).

Usually the number of factors (r) is small. For example, in our empirical application

the number of factors is one. However, accurately estimating the number of factors (r)
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requires both a large number of time periods (T ) and a large number of control units (Nco).

In addition, to accurately estimate the factors, Ft, we need a large number of controls

units. When the number of control units is large, the HCW’s least squares method involves

estimation of the high dimensional model (2.4) (which has Nco coefficients to be estimated).

In contrast, estimating ATE using a factor model approach only requires estimation of a low

dimensional model (e.g., (2.5)) with r unknown coefficients. With a given sample size T1,

a low dimensional model can be estimated much more accurately than a high dimensional

model. Hence, using a factor model approach to estimate ATE is ideal in a setting with a

large number of control units and a long time series.

Following Gobillon and Magnac (2016) and Xu (2017), we consider estimating ATE

based on a factor model. However, first we need to determine the number of factors. We

propose a modification to Bai and Ng’s (2002) model selection criteria (a small sample

correction): the modified method performs better in determining the number of factors for

small to moderate sample sizes. Also, filling a gap in the literature, we derive the asymp-

totic distribution of the generalized synthetic control estimator under weak conditions. For

example, we do not require that the idiosyncratic errors from treated and control groups

have the same variance and also do not require that the treated unit have the same variance

in the pre and posttreatment periods , which makes our inference theory applicable to a

wider range of empirical data applications, which previously could not be accurately ana-

lyzed using the factor-model-based generalized synthetic control method. The simulation

results show that our inference theory leads to accurate estimates of finite sample confi-

dence intervals. Finally, the generalized synthetic control method is also computationally

more efficient, especially when the number of control units is large, than some existing

estimation methods such as HCW’s panel data approach which relies on using AICC or

BIC to select control units.

3 Determining the number of factors

In this section, we consider the problem of determining the number of factors (r) with

stationary data. Determining the number of factors precisely is important in accurately

predicting counterfactual outcomes, and thus the ATE, using a factor model. Xu (2017)

proposes using the leave-one-out cross-validation method to estimate the number of factors.

However, Shao (1993) shows that in a regression model, the leave-one-out cross-validation

method tends to select a number of factors larger than the true number of factors even
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when the sample size is large. Bai and Ng (2002) propose several criteria functions that

can be used to consistently estimate the number of factors. For the stationary data case,

one popular approach for determining the number of factors is Bai and Ng’s (2002) PCp1

criterion. This criterion selects the number of factors by choosing the value of k that

minimizes

PCp1(k) =
1

NcoT

N∑
i=2

T∑
t=1

(yit − λ̂′iF̂Kt)2 + k σ̂2

(
Nco + T

NcoT

)
ln

(
Nco + T

NcoT

)
(2.6)

where k ∈ {0, 1, ..., kmax}, kmax is a pre-specific constant satisfying 0 ≤ r ≤ kmax, Nco =

N − 1 is the number of control units, σ̂2 is an estimator of σ2, and σ2 is the variance of the

idiosyncratic error in the factor model. As shown in Bai and Ng (2002), the PCp1 criterion

can consistently estimate the true number of factors when the number of control units, Nco,

and the total number of time periods, T , are large. However, for small to moderate sample

sizes, we find that PCp1 tends to select a value of k̂ (the estimated number of factors)

larger than r (the true number of factors). This means that the penalty term in PCp1 is

not large enough for small to moderate sample sizes. Therefore, we suggest modifying the

PCp1 criterion by multiplying its penalty term by a factor

cN,T,mN ,mT
= (Nco +mN)(T +mT )/(NcoT ), (2.7)

where mN and mT are bounded non-negative integers so that cN,T,mN ,mT
≥ 1 for all Nco, T

and that cN,T,mN ,mT
→ 1 as Nco, T →∞. The simulations reported in Section 5 show that

the choice of mN and mT such that Nco + mN ≥ 60 and T + mT ≥ 60 perform quite well.

Hence, we recommend using the following mN and mT in practice

mN = max{0, 60−Nco} and mT = max{0, 60− T}.

Note that mN (mT ) is non-negative, non-increasing in Nco (T ) and equals zero for Nco ≥ 60

(T ≥ 60). For example, when Nco = 30 and T = 30, this correction factor cN,T,mN ,mT
=

(30 + 30)(30 + 30)/(30)2 = 4. While cN,T,mN ,mT
= 1 if min{Nco, T} ≥ 60.

Therefore, we propose choosing the number of factors as the value of k ∈ {0, 1, ..., kmax}
that minimizes the following modified version of Bai and Ng’s (2002) PCp1 criterion:

PCp1,mN ,mT
(k) =

1

NcoT

N∑
i=2

T∑
t=1

(yit − λ̂′iF̂Kt)2 + k σ̂2cN,T,mN ,mT

(
Nco + T

NcoT

)
ln

(
Nco + T

NcoT

)
.

(2.8)

By construction, the modification factor cN,T,mN ,mT
≥ 1 and asNco, T →∞, cN,T,mN ,mT

→
1 so we have the nice result that the asymptotic property of PCp1,mN ,mT

is the same as
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that of PCp1 . In fact, we have equivalence of the two criterion, PCp1,mN ,mT
≡ PCp1 , if

min{Nco, T} ≥ 60. Hence, the modified criterion PCp1,mN ,mT
has the same behavior as

PCp1 for large Nco and T . In other words, when the number of control units and num-

ber of time periods goes to infinity, both criterions will choose the true number of factors

with probability 1. Mathematically, limNco,T→∞ P (k̂PCp1,mN ,mT
= r) = 1 follows directly

from limNco,T→∞ P (k̂PCp1
= r) = 1 by Bai and Ng (2002), where k̂PCp1,mN ,mT

and k̂PC1 are

the selected number of factors by the modified and the original criteria PCp1,mN ,mT
and

PCp1 , respectively. We examine the performance of the modified criterion by simulations

in Section 5.

4 Inference Theory for the ATE Estimator

Previously, the inference theory for the generalized synthetic control (GSC) ATE estimator

based on a factor model approach was limited. We will this gap for both the stationary

and non-stationary data cases in order to facilitate inference using the GSC estimator.

4.1 The Stationary Data Case

In the absence of treatment, the outcome variable y0
it is generated by a factor model:

y0
it = λ′iFt + eit, (4.1)

For the control units (i = 2, ..., N), this outcome equation holds for all time periods,

t = 1, ..., T whereas for the treated unit (i = 1), this outcome equation only holds for the

pre-treatment time periods (t = 1, ..., T1).

Let k̂ be the estimated number of factors obtained by minimizing PCp1,mN ,mT
using the

full control units’ data (i.e., using yit for i = 2, ..., N and t = 1, ..., T ). Let F̂t be the k̂ × 1

vector of estimated factors for t = 1, ..., T . We estimate the factor loading λ1 based on the

following regression model using the pre-treatment data

y1t = λ′1F̂t + ε1t, t = 1, ..., T1 (4.2)

where ε1t = λ′1(Ft − F̂t) + e1t.

Let λ̂1 be the OLS estimator of λ1 based on (4.2), i.e.,

λ̂1 =

[
T1∑
t=1

F̂tF̂
′
t

]−1 T1∑
t=1

F̂ty1t. (4.3)
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Then we estimate the post treatment period counterfactual outcome y0
1t by ŷ0

1t = λ̂′1F̂t, for

t = T1 +1, ..., T . The treatment effects are estimated by ∆̂1t = y1t− ŷ0
1t for t = T1 +1, ..., T ,

and the average treatment effect is given by

∆̂1 =
1

T2

T∑
t=T1+1

∆̂1t =
1

T2

T∑
t=T1+1

(y1t − ŷ0
1t), (4.4)

where T2 = T − T1 is the post-treatment sample size. In Appendix A we show that

√
T2(∆̂1 −∆1) =

[ T1∑
s=1

e1sF
′
s

][ T1∑
s=1

FsF
′
s

]−1[ 1√
T2

T∑
t=T1+1

Ft

]
+

1√
T2

T∑
t=T1+1

v1t + op(1)

= A1 + A2 + op(1), (4.5)

where v1t = ∆1t−E(∆1t)+e1t is a zero mean stationary process. Equation (4.5) shows that

the ATE consists of two parts, A1 and A2, where A1 captures the estimation error in the

pre-treatment period and A2 captures the post-treatment error. From the proofs presented

at Appendix A, we know that A1 is from estimation error of λ̂1 − λ1, while A2 is from

average of v1t over the post-treatment period. It can be shown that under the regularity

conditions discussed in Appendix A, Al
d→ N(0,Ωl) for l = 1, 2, and that A1 and A2 are

asymptotically independent with each other. Hence, we have the following result.

Theorem 4.1 Under the assumptions given in Appendix A.1 (mainly Bai’s (2003) regu-

larity conditions) and letting ∆1 = E(∆1t), we have

√
T2(∆̂1 −∆1)√

Ω̂

d→ N(0, 1),

where Ω̂ is a consistent estimator of Ω (see Appendix A for a specific definition of Ω̂),

Ω = Ω1 + Ω2, Ω1 = φΣ, φ = limT1,T2→∞ T2/T1, Σ = η′Ψ−1η with η = E(Ft), Ψ =

[E(FtF
′
t)]
−1V [E(FtF

′
t)]
−1, V = limT1→∞ T

−1
1

∑T1
t=1

∑T1
s=1E(e1te1sFtF

′
s), Ω2 = limT2→∞ T−1

2

∑T
t=T1+1

∑T
s=T1+1 E(v1tv1s)

and v1t = ∆1t − E(∆1t) + e1t.

The proof of Theorem 4.1 is given in Appendix A.

Remark 4.1: If Ft were observable, then one could replace F̂t by Ft in estimating the ATE,

∆1. Call this the ‘infeasible ATE estimator’. Then by comparing the results of Theorem

4.1 and Theorem 3.2 of Li and Bell (2017), one can see that Theorem 4.1 claims that the

asymptotic distribution of our feasible ATE estimator and the ‘infeasible ATE estimator’

that uses the true Ft in regression model (2.5) have the same asymptotic distribution. That
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is, asymptotically, the estimated factor F̂t is as good as the true Ft as far as the asymptotic

distribution of ∆̂1 (the ATE estimator) is concerned.

Remark 4.2: When the number of pre-treatment time periods, T1, is much larger than

the number of post-treatment time periods, T2 (i.e.T2/T1 = o(1)), we have Ω1 = 0 because

φ = 0. The asymptotic variance reduces to Ω2. This result is quite intuitive. When T1 is

much larger than T2, the factor loading λ1 can be accurately estimated and the estimation

error in λ̂1 − λ1 is negligible. In other words, A2 becomes the dominating term and A1 is

asymptotically negligible compared with A2.

Remark 4.3: Our Theorem 4.1 allows for the idiosyncratic errors from the treated and

control group to have different variances. It also allows for the treated unit’s idiosyncratic

errors to have different variances for the pre- and post-treatment periods.

In Appendix A, we propose consistently estimating Ω1 and Ω2 by Ω̂1 and Ω̂2, respec-

tively. A consistent estimator of Ω is given by Ω̂ = Ω̂1 + Ω̂2. Then, for α ∈ (0, 1), Theorem

4.1 implies that

P [cα/2 ≤
√
T2(∆̂1 −∆1)/

√
Ω̂ ≤ c1−α/2]→ 1− α, (4.6)

where cα is the α-th quantile of a standard normal random variable, i.e., P (N(0, 1) ≤ cα) =

α. Therefore, the asymptotic (1− α) confidence interval (CI) of ∆1 is given by

[∆̂1 − c1−α/2

√
Ω̂/
√
T2, ∆̂1 − cα/2

√
Ω̂/
√
T2]. (4.7)

For example, for α = 0.05, a 95% CI for ∆1 is given by

[∆̂1 − 1.96
√

Ω̂/
√
T2, ∆̂1 + 1.96

√
Ω̂/
√
T2]

because c0.975 = 1.96 and c0.025 = −1.96.

To our knowledge, we are the first to provide asymptotic theory for the factor model

based ATE estimator, also known as the generalized synthetic control estimator. Xu (2017)

does not provide an asymptotic theory for the generalized synthetic control estimator, but

rather proposes using a bootstrap method to conduct inferences. Xu suggests drawing

bootstrap sample for the treated unit (in the absence of treatment) from the control group’s

data. Hence, his method requires that the idiosyncratic error term ejt have the same

variance for the treated and control units. When the idiosyncratic errors from the treated

and control units are heterogeneous and have different variances, Xu’s method yields biased

CI estimation results, while our inference method based on (4.7) works well whether the

idiosyncratic errors from the treated and control groups have the same variance or not.

12



Chernozhukov, Wüthrich and Zhu (2017) propose a using permutation procedure to

conduct inferences under quite general conditions, but they consider the cases of (i) fixed

T1 and T2, and (ii) large T1 and fixed T2, while we consider large T1 and T2 and we allow

for T2/T1 converges to a non-negative constant. Hence, while we consider large T1 and T2

scenario, we allow T2 to have the same order as T1, or has an order smaller than T1. Hence,

our results complement that of Chernozhukov, Wüthrich and Zhu (2017).

4.2 The Non-Stationary Data Case

The model and the notation is the same as described in the previous subsection except

that now Ft is non-stationary rather than stationary. To be specific, we consider the case

that Ft follows a drift-less unit root process: Ft = Ft−1 + ut, where ut is weakly dependent

stationary process with zero mean and finite fourth moment. Now equation (4.1) becomes

a co-integration model because e1t is a zero mean stationary process.

Let Y be the T × Nco data matrix of the control units’ outcomes. As in Bai (2004),

for a fixed value of k, we estimate factors and factor loadings by solving the following

minimization problem

V (k) = min
Λk,Fk

1

NcoT

N∑
i=2

T∑
t=1

(Yit − λk
′

i F
k
t )2 (4.8)

subject to the normalization F kF k′/T 2 = Ik or Λk′Λk/Nco = Ik. The estimator of FT×k is

denoted by F̃ k, which is T times the eigenvectors corresponding to the k largest eigenvalues

of the T × T matrix Y Y ′. The estimator of the factor loading matrix (Λk)k×Nco can be

obtained by Λ̃k′ = (F̃ k′F̃ k)−1F̃ k′Y = F̃ k′Y/T 2 because F kF k′/T 2 = Ik.

Another way of obtaining estimators for F and Λ is to first obtain Λ̄k as
√
Nco times the

eigenvectors corresponding to the k largest eigenvalues of the Nco × Nco matrix Y ′Y and

then obtain F̄ k = Y Λ̄k(Λ̄k′Λ̄k)−1 = Y Λ̄k/Nco because Λk′Λk/Nco = Ik. Bai (2004) further

defines a rescaled version of (F̄ k, Λ̄k) as follows

F̂ k = F̄ k(F̄ k′F̄ k/T 2)1/2 and Λ̂k = Λ̄k(F̄ k′F̄ k/T 2)−1/2.

For a fixed k ≥ 1, there exists Hk
l (l = 1, 2) matrix with rank(Hl) = min{k, r} such

that F̂ k
t estimates (Hk

1 )′Ft and F̃ k
t estimates (Hk

2 )′Ft. We will suppress the superscript k

for notational simplicity, i.e., we will write F̂t = F̂ k
t and Hl = Hk

l for l = 1, 2.

For determining the number of factors, we use the method suggested by Bai (2004, page

13



145) and select the number of factors by minimizing:

IPC1(k) = V (k) + kσ̂2αT

(
N + T

NT

)
log

(
NT

N + T

)
, (4.9)

where αT = T/[4 log log(T )] and σ̂2 is an estimator of the variance of the idiosyncratic error

for the control group. Let k̂ denote the number of factors selected by miniming IPC1(k),

Bai (2004) proves that Pr(k̂ = r)→ 1 as T,Nco →∞.

The estimator of the factor loading, λ̂1, and the ATE estimator, ∆̂1, are the same as

given in (4.3) and (4.4). Moreover, we also have√
T2(∆̂1 −∆1) = A1 + A2 + op(1), (4.10)

where the definitions of A1 and A2 are the same as given in (4.5) except that now Ft is an

unit root process. The following Theorem shows that standardized ATE estimator has an

asymptotic standard normal distribution.

Theorem 4.2 Under the assumptions given in Appendix A.2 (mainly Bai’s (2004) regu-

larity conditions) and the assumption that ∆1t is a stationary process, we have

√
T2(∆̂1 −∆1)√

Ω̂

d→ N(0, 1),

where ∆1 = E(∆1t) and Ω̂ is the same as in Theorem 4.1 (which is defined in Appendix

A).

Remark 4.4: Comparing Theorem 4.1 and Theorem 4.2, we see that the asymptotic distri-

butions of the ATE estimator are the same whether the data is stationary or non-stationary.

The reason for this result follows similar logic to the estimation of a co-integration model,

where we know that even when the co-integration coefficient estimator is not asymptotically

normal, the t-statistic from a co-integration model can still be asymptotically normal under

some conditions (Hayashi 2000, page 658). This greatly simplifies the inference procedure.

In particular, we do not need to conduct a pre-test to determine whether or not the data

is stationary, as the construction of confidence intervals is the same whether the data is

stationary or non-stationary. The confidence intervals for ∆1 is given in (4.7).

Remark 4.5: Similar to the stationary data case, when the number of pretreatment

time periods, T1, is much larger than the number of posttreatment time periods, T2 (i.e.,

φ = limT2,T1→∞ T2/T1 = 0), we show in supplementary Appendix B that A1 is asymptotically
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negligible compared with A2 (i.e. A1 = op(1) as shown Lemma B.6 and the non-stationary

component F does not show up in the asymptotic distribution). Hence, the asymptotic

distribution of
√
T2(∆̂1−∆1) is determined by A2 = T

−1/2
2

∑T
t=T1+1 v1t, which converges to

N(0,Ω2) in distribution.

Remark 4.6: Note that Ω1 defined in Theorem 4.1 is a non-negative constant, while

it does not have a well defined meaning when Ft is a drift-less unit root process, and Ω̂1

does not converge to a constant when Ft is non-stationary. Nevertheless, we still have

A1/
√

Ω̂1
d→ N(0, 1) for the reason given in remark 4.4.

5 Simulation Results

5.1 Selecting the number of factors: the modified Bai and Ng’s
(M-BN) criterion

In this subsection, we focus on the stationary data case and use simulations to examine the

accuracy of using Xu’s leave-one-out cross-validation method, Bai and Ng’s (2002) PCp1

criterion, and the modified criterion PCp1,mN ,mT
to select the number of factors. We show

that the modified method overcomes the small sample bias problem of the original PCp1

method. Following HCW (2012) and Du and Zhang (2015), we consider the following

3-factor model:

DGP1 :


F1t = 0.8F1t−1 + v1t,

F2t = −0.68F1t−1 + v2t + 0.8v2t−1,

F3t = v3t + 0.9v3t−1 + 0.4v3t−2,

where vit is iid N(0, 1). The outcome variables (in the absence of treatment) are generated

by y0
it = λ′iFt + eit for i = 1, ..., N ; t = 1, ..., T , where eit is iid N(0, σ2) and λi is iid

N(1, 1). We choose the value of variance as σ2 = 2, 1, 0.5 and 0.1 and we consider number

of control units to be Nco = 30, 60, 120 (N = Nco + 1) and the number of time periods to

be T = 30, 60, 120. The number of simulation replications is 5,000. We select the number

of factors in the range of {0, 1, ..., 10} by minimizing Bai and Ng’s (2002) criterion PCp1

defined in (2.6), the modified criterion PCp1,mN ,mT
defined in (2.8), and the least-squares

cross-validation method suggested by Xu (2017). Our simulation results are reported in

Table 1.

The middle panel of Table 1 shows the number of estimated factors k̂ using the PCp1

criterion. From Table 1, we observe that when Nco and T are small, the PCp1 criterion tends

to select a number that is much larger than the true number of factors (r = 3). In fact,
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when T = 30 and N = 30, the PCp1 method often selects the upper bound value k̂ = 10

(since the maximum allowed number of factors is kmax = 10). Even for (Nco, T ) = (60, 30)

and (Nco, T ) = (30, 60), the PCp1 method still selects a number much larger than three,

the true number of factors. In contrast, the PCp1,mN ,mT
criterion (whose results are in

the right panel) performs better because it penalizes more for small sample cases and thus

avoids selecting a large number of factors. It virtually always selects the correct number,

three for all cases.

Note that when both Nco and T are large, Bai and Ng (2002) and the modified methods

perform equally well as expected, because the two criteria become the same for large Nco

and T . Also, the cross-validation method suggested by Xu (2017) tends to select a model

with a number larger than the true value of three. This is true even for large values of Nco

and T . Shao (1993) shows that the leave-one-out cross validation method is inconsistent

in selecting the true model. Our simulations verify that the leave-one-out cross-validation

method is also inconsistent in selecting the number of factors (see left panel).

Table 1: Selecting # of factors by LS-CV, PCp1 and PCp1,mN ,mT

LS-CV PCp1 PCp1,mN ,mT

σ2 2 1 0.5 0.1 2 1 0.5 0.1 2 1 0.5 0.1
T Nco = 30
30 3.517 3.588 3.765 3.840 9.455 9.486 9.465 9.429 2.992 3.000 3.000 3.000
60 3.467 3.606 3.556 3.715 6.874 6.862 6.892 6.839 2.999 3.000 3.000 3.000
120 3.512 3.684 3.593 3.738 4.169 4.176 4.248 4.191 3.000 3.000 3.000 3.000

Nco = 60
30 3.502 3.582 3.763 3.801 6.854 6.897 6.852 6.869 3.000 3.001 3.000 3.000
60 3.480 3.587 3.564 3.672 3.187 3.198 3.198 3.206 3.000 3.000 3.000 3.000
120 3.568 3.632 3.639 3.656 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000

Nco = 120
30 3.511 3.613 3.666 3.744 4.226 4.155 4.187 4.201 3.000 3.000 3.000 3.000
60 3.453 3.594 3.646 3.827 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000
120 3.621 3.646 3.600 3.749 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000

5.2 Estimation of confidence intervals

In this section we use simulations to examine the coverage probabilities of confidence in-

terval estimated using (4.7). We consider both cases where the idiosyncratic errors for the

treated and control groups have the same and different variances in section 5.2.1 and sec-

tion 5.2.2, respectively. Also, we consider both stationary and non-stationary data cases.
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The key takeaway is that our inference method performs well (i.e. able to recover the cov-

erage probabilities) in all cases allowing our inference method to be more widely applied

compared to previous methods. In addition, because the simulation results are very similar

for both the case where there the true ATE is a null effect, ∆1 = 0, and where the true

ATE is non-zero, we only report the ∆1 = 0 case in this section for brevity.

5.2.1 The stationary data: equal variance case

The common factors are generated by DGP1. We choose T1 = 30, 60, 120, T2 = 20 and

Nco = 30, 60, 120.

Table 2 reports estimated confidence intervals using the inference theory developed in

Section 3 with the number of factors determined by our proposed modified Bai and Ng’s

criterion PCp1,mN ,mT
. The variance of eit is the same for the treated and control units:

σtr = σco with σ2
co ∈ {2, 1, 0.5}. Table 2 reveals that our asymptotic theory works well with

estimated confidence intervals close to their nominal values for all cases considered.

Table 2: Equal Variance Case Estimated CI (DGP1): σtr = σco, T2 = 20

σ2
co 2 1 0.5 2 1 0.5 2 1 0.5

T1/Nco Nco = 30 Nco = 60 Nco = 120
95% CI

30 0.9660 0.9600 0.9650 0.9660 0.9600 0.9650 0.9330 0.9350 0.9440
60 0.9655 0.9670 0.9685 0.9655 0.9670 0.9685 0.9490 0.9340 0.9410
120 0.9595 0.9580 0.9555 0.9595 0.9580 0.9555 0.9595 0.9580 0.9555

90% CI
30 0.9140 0.9045 0.9135 0.9120 0.9045 0.9135 0.8845 0.8900 0.9015
60 0.9090 0.9145 0.9165 0.9090 0.9145 0.9165 0.8850 0.8915 0.8825
120 0.9110 0.9050 0.9090 0.9110 0.9050 0.9090 0.8935 0.8920 0.9015

80% CI
30 0.7975 0.7960 0.8060 0.8030 0.7980 0.8110 0.7975 0.7960 0.8085
60 0.8010 0.7995 0.8085 0.8130 0.7980 0.7975 0.8010 0.7995 0.8085
120 0.8180 0.7925 0.8135 0.8130 0.7980 0.7975 0.8010 0.7995 0.8085

50% CI
30 0.4830 0.4965 0.4975 0.4910 0.4785 0.4825 0.4830 0.4965 0.4975
60 0.4945 0.4885 0.4830 0.4820 0.5060 0.4960 0.4945 0.4885 0.4905
120 0.5105 0.4950 0.4935 0.4935 0.4880 0.5020 0.5105 0.4950 0.4935

5.2.2 The stationary data: unequal variance case

Now we consider the case where the variance of the idiosyncratic error eit is different for

the treated and control units. We consider both the case where the control group’s error
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variance is larger than the treated unit’s error variance (Table 3) and the reverse case where

the treated unit’s error variance is larger than that of the control group (Table 4). The

number of factors is still determined by our modified Bai and Ng’s criterion PCp1,mN ,mT
.

Table 3: Unequal Variance Case Estimated CI (DGP1): σtr = 0.5σco, T2 = 20

σ2
co 2 1 0.5 2 1 0.5 2 1 0.5

T1/Nco Nco = 30 Nco = 60 Nco = 120
95% CI

30 0.9554 0.9539 0.9592 0.9564 0.9636 0.9622 0.9608 0.9626 0.9632
60 0.9636 0.9630 0.9632 0.9626 0.9610 0.9620 0.9596 0.9668 0.9612
120 0.9626 0.9630 0.9635 0.9592 0.9662 0.9690 0.9586 0.9614 0.9616

90% CI
30 0.8999 0.9011 0.9000 0.8996 0.9102 0.9144 0.9004 0.9110 0.9184
60 0.9090 0.9117 0.9127 0.9042 0.9088 0.9138 0.9018 0.9120 0.9030
120 0.9092 0.9120 0.9149 0.9018 0.9180 0.9118 0.9056 0.9114 0.9084

80% CI
30 0.7841 0.7839 0.7846 0.7850 0.8042 0.8142 0.7880 0.7988 0.8120
60 0.8003 0.8069 0.8035 0.7962 0.8024 0.8034 0.7924 0.8006 0.7980
120 0.8060 0.8064 0.8099 0.7868 0.8038 0.8068 0.7918 0.7932 0.8006

50% CI
30 0.4796 0.4855 0.4765 0.4764 0.4888 0.5024 0.4772 0.4910 0.4982
60 0.4886 0.4911 0.4890 0.4778 0.4804 0.4806 0.4782 0.4812 0.4936
120 0.5000 0.4927 0.4895 0.4796 0.4816 0.4962 0.4740 0.4828 0.4892

From Tables 3 and 4, we see that our inference theory is robust to different error

variance values for the treated unit, σ2
tr, and control group, σ2

co. This is in contrast to Xu

(2017) who proposes using a bootstrap method for inference for the generalized synthetic

control estimator. Xu’s approach requires that variance for treated and control group

are equal (σ2
tr = σ2

co) because he draws a bootstrap sample for the treated units from

the control group’s data. It is easy to see that when the error variances are unequal

(i.e. σ2
tr < (>)σ2

co), his treated unit from the bootstrap sample will have either a larger

(smaller) variation than that of the treated unit from the original sample. This implies

that the estimated confidence intervals using a bootstrap sample will be wider (narrower)

than the true confidence intervals, resulting in over (under) coverage.

5.2.3 The non-stationary data

In this subsection, we examine the performance of our confidence interval estimates when

common factors are non-stationary. Hence, the outcome variables yit are also non-stationary.
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Table 4: Unequal Variance Case Estimated CI (DGP1): σtr = 2σco, T2 = 20

σ2
co 2 1 0.5 2 1 0.5 2 1 0.5

T1/Nco Nco = 30 Nco = 60 Nco = 120
95% CI

30 0.9579 0.9610 0.9541 0.9544 0.9700 0.9632 0.9580 0.9670 0.9686
60 0.9655 0.9645 0.9677 0.9578 0.9662 0.9636 0.9568 0.9672 0.9642
120 0.9624 0.9645 0.9640 0.9540 0.9658 0.9686 0.9582 0.9618 0.9656

90% CI
30 0.9033 0.9020 0.9019 0.8984 0.9158 0.9156 0.9050 0.9156 0.9138
60 0.9144 0.9140 0.9128 0.9038 0.9120 0.9094 0.9066 0.9190 0.9150
120 0.9139 0.9178 0.9143 0.8910 0.9112 0.9178 0.9014 0.9080 0.9128

80% CI
30 0.7954 0.7915 0.7875 0.7774 0.8154 0.8058 0.7934 0.8042 0.8040
60 0.8125 0.8026 0.8090 0.7980 0.8046 0.8022 0.8072 0.8164 0.8114
120 0.8105 0.8076 0.8093 0.7752 0.8000 0.7846 0.8024 0.8068 0.8144

50% CI
30 0.4821 0.4699 0.4763 0.4662 0.4862 0.4964 0.4876 0.4926 0.4920
60 0.4948 0.4873 0.4986 0.4748 0.5000 0.4888 0.4808 0.4924 0.5048
120 0.4894 0.4926 0.4877 0.4694 0.4842 0.5054 0.4784 0.4836 0.4914

The idiosyncratic errors eit are stationary and are generated as before. We consider the

following three factors, all of which are non-stationary:

DGP2 :


F4t = F4,t−1 + ε4t,

F5t = (0.2 + ξt)t+ ε5t,

F6t =
√
t+ ε6t + 0.9ε6,t−1 + 0.4ε6,t−2,

where εit is iid N(0, 1), ξt is iid Uniform[0, 1], and εit and ξs are independent with each

other for all i, t and s. The above three factors are non-stationary. F4t is a non-stationary

(drift-less) unit root process, F5t has a linear trend component with a random coefficient

uniformly distributed between 0.2 to 1.2, and F6t has a non-linear (square-root) trend and

an MA(2) error structure.

The outcome variables yit are generated the same way as before using y0
it = λ′iFt + eit

except the three stationary factors (DGP1) are replaced by the three non-stationary factors

as described in DGP2. We consider two cases of generating the idiosyncratic errors eit: (i)

eit ∼ σN(0, 1) as before and (ii) eit ∼ σ uniform[−
√

3,
√

3]. Simulation results are almost

identical for these two cases. Therefore, we only report case (ii) for brevity. The simulation

results are presented in Table 5. The results are almost identical to the stationary data case.

Hence, the results strongly support our theoretical analysis that our inference procedure is
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valid whether the data is stationary or non-stationary, and whether or not the idiosyncratic

errors are normally distributed.

Table 5: Estimated CI for DGP2: uniformly distributed eit, σtr = σco, T2 = 20

σ2 2 1 0.5 2 1 0.5 2 1 0.5
T1/Nco Nco = 30 Nco = 60 Nco = 120

95% CI
30 0.9576 0.9536 0.9552 0.9544 0.9576 0.9560 0.9560 0.9608 0.9504
60 0.9628 0.9630 0.9658 0.9626 0.9642 0.9650 0.9652 0.9620 0.9634
120 0.9646 0.9618 0.9634 0.9608 0.9636 0.9612 0.9626 0.9658 0.9660

90% CI
30 0.9014 0.9040 0.9028 0.9008 0.9046 0.9010 0.8988 0.9000 0.8938
60 0.9140 0.9058 0.9200 0.9132 0.9120 0.9148 0.9214 0.9040 0.9108
120 0.9074 0.9186 0.9168 0.9096 0.9158 0.9078 0.9112 0.9224 0.9162

80% CI
30 0.7798 0.7866 0.7864 0.7836 0.7960 0.7936 0.7780 0.7902 0.7884
60 0.8056 0.7952 0.8142 0.8050 0.8052 0.8094 0.8088 0.8042 0.8000
120 0.7982 0.8048 0.8112 0.8048 0.8140 0.8058 0.8064 0.8120 0.8080

50% CI
30 0.4872 0.4794 0.4830 0.4800 0.4898 0.4748 0.4685 0.4828 0.4758
60 0.4884 0.4806 0.5008 0.4854 0.4840 0.4944 0.5058 0.4928 0.4880
120 0.4888 0.4934 0.5012 0.4968 0.5032 0.4970 0.5094 0.4892 0.5018

6 An Empirical Application

6.1 Estimating ATE of opening a showroom

We illustrate the usefulness of the factor-model-based inference with an application to

an online-first e-tailer, WarbyParker.com. Starting completely online, WarbyParker.com

disrupted the eyewear industry by offering the products at a lower price point due to cost

advantages of vertical integration and online operations. However, as part of their growth

strategy, WarbyParker.com opened physical showrooms in certain cities to allow customers

to try their product before deciding to purchase or not. Specifically, we will examine the

effect of a showroom opening in Boston on the total sales in Boston. The average treatment

effect (ATE) is the average weekly change in total sales in Boston due to the openning of

the showroom. The showroom opened in Boston on September 22, 2011. We use weekly

sales data from February 2010 to March 2013, which is a total sample size of 110 weeks. We

have 83 pre-treatment periods (before showroom openned) and 27 post-treatment periods
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(after showroom opened), i.e., T1 = 83 and T2 = 27. As the control group, we use the

largest 30 U.S. cities that do not have showrooms during our sample period. First, we

apply our modified Bai and Ng’s (2002) criterion PCp1,mN ,mT
to the control group data and

select one factor.4 The ATE estimation result, the in-sample fitted curve (the dashed curve

for t ≤ 83), and the predicted counterfactual curve (the dashed curve for t > 83), and the

real data (the solid line) are drawn in Figure 1.

The time period when the showroom opens (treatment) is indicated by a vertical line

(T1 = 83). We observe that before the treatment occurs, the fitted curve traces the actual

sales quite well, suggesting that our method gives a reasonably good in-sample fit. After

the treatment, the two curves start to deviate from each other with the real sales being

above the counterfactual sales most of the time. This indicates a positive treatment effect

on sales from opening the showroom. Our results show that opening a showroom increases

Boston’s weekly sales by $926.70, or a 62.9% increase in weekly sales.

Figure 1: Boston: GSC fitted curve, Nco = 30
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6.2 Confidence interval estimation

We report estimated confidence intervals using (4.7). We compute the 80%, 90% and 95%

confidence intervals for ATE ∆1. They are given by CI80% = [702.5, 1150.8], CI90% =

4The least squares cross validation method suggested by Xu also selects one factor for this empirical
data.
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[639.0, 1214.4] and CI95% = [583.9, 1269.5], respectively. All of these intervals lie far right

of zero, suggesting that Boston’s showroom opening has a significant positive effect on total

weekly eyewear sales.

We also can conduct hypothesis tests for testing a specific positive ATE. That is, we can

conduct a one-sided test for the null hypothesis H1: ATE = ATE0 against the alternative

hypothesis H1: ATE > ATE0, where ATE0 is a pre-specified positive constant. For

example, if we conduct a 10% level one-sided test for ATE0 = 700, we reject ATE =

700 and claim that ATE > 700 because the estimated 10th percentile of ATE is 702.5

which is greater than 700. This can be very useful from a managerial perspective because

WarbyParker.com knows the operating costs of a showroom and thus, may be interested in

testing whether weekly sales revenue are above a certain cutoff to determine whether the

keep the showroom open or not.

6.3 Comparison with other methods

For comparison, we also use the least squares method to estimate the ATE. This consists of

the following steps: (i) Regress the treated unit outcome, y1t, on control units’ outcomes,

xt = (1, y2t, ..., yNt)
′, using pre-treatment data to estimate β based on y1t = x′tβ + u1t. Let

β̂OLS denote the resulting estimator of β. We estimate ATE by ∆̂1,OLS = T−1
2

∑T
t=T1+1(y1t−

ŷ0
1t,OLS), where ŷ1t,OLS = x′tβ̂OLS. The OLS-based method yields an estimated ATE of $1041

increase in weekly sales or an 68.3% increase in weekly sales due to opening a showroom

in Boston.

To examine which method gives a more accurate ATE estimate, we examine the out-

of-sample prediction performances of the two methods. We select a value T0 < T1 and

treat T0 + 1 as a pseudo treatment time. We estimate the counterfactual outcome y0
1t for

t = T0 +1, ..., T1. Specifically, let F̃t be the r×1 vector of estimated factor using the control

group data for t = 1, ..., T1. We estimate λ1 by λ̃1 = (F̃ ′F̃ )−1F̃ ′ỹ1, where F̃ is the T0 × r
matrix of estimated factors and ỹ1 = (y11, ..., y1T0)

′. We then estimate y0
1t by ŷ0

1t = λ̃′1F̃t for

t = T0 + 1, ..., T1. However, because there were no treatments during T0 + 1, ..., T1, we in

fact observe y0
1t = y1t for t = T0 + 1, ..., T1. Hence, we can compute the prediction mean

squared error (PMSE) for our method by

PMSEGSC =
1

T1 − T0

T1∑
t=T0+1

(y1t − ŷ0
1t)

2.

Similarly, we compute PMSE using Xu’s (2017) method. That is, first we use the
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leave-one-out cross validation method to determine the number of factors using the pre-

treatment sample (so the selected number of factors depends on T0) and then we estimate

PMSE as discussed above. We also use the least squares method as discussed in Section 2.2

to compute PMSE. We use PMSEGSC,Xu and PMSEOLS to denote the resulting PMSEs.

We report PMSE ratio PMSEOLS/PMSEGSC and PMSEGSC,Xu/PMSEGSC where GSC

is our method. The results are shown in Table 6.

Table 6: Out-of-sample Prediction MSE ratio

T0 45 50 55 60 65 70 75 80
PMSEOLS

PMSEGSC
2.484 2.068 1.369 1.414 1.565 1.352 1.463 1.118

PMSEGSC,Xu

PMSEGSC
1.000 1.455 1.392 1.000 1.000 1.000 1.337 1.403

#factors by M-BN 1 1 1 1 1 1 1 1
#factors by Xu 1 8 6 1 1 1 6 6

From Table 6 we see that our proposed method gives smaller PMSE for all cases com-

pared to the least-squares method. When compared to Xu’s method (GSC,Xu), there

are four cases where both our method and Xu’s method select one factor and the PMSEs

are the same for these four cases. For the remaining four cases, Xu’s method selects more

factors and gives a larger PMSE than our method. Thus, our proposed method performs

well when compared with these competing methods.

7 Conclusion

In this paper we consider using a factor-model-based method, also known as the generalized

synthetic control method, to estimate average treatment effects. This method is best suited

for cases where there is only one (or a few) treated unit(s), a large number of control units,

and large pre and post-treatment sample sizes (i.e., long panel). Long panel data are quite

common in marketing due to the prevalence of daily and weekly data at the customer, store

or company level.

Existing inference methods either assume that idiosyncratic errors have the same vari-

ance for the treated and control units or require that the treated units’s error variances

to be the same during the pre and post-treatment periods. However, equal variance as-

sumption can be violated in practice because the treated and control units are usually

heterogeneous without random assignment of treated units (i.e. any quasi-experimental

setting). In addition, because treatment may affect ATE’s variance in addition to its

mean, the treated unit’s idiosyncratic error variance can be substantially different during
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pre and post-treatment periods. Filling a gap in the literature, our inference for the factor

model based ATE addresses both of these issues and provides previously unknown distribu-

tion theory properties. We establish asymptotic (normal) distribution theory of the ATE

estimator that allows for idiosyncratic errors to have different variances for the treated and

control groups, and during the pre- and post-treatment periods. In addition, the inference

theory holds for both stationary and non-stationary data. To the best of our knowledge, we

are the first to establish distribution theory for the generalized synthetic control method.

We propose a modified Bai and Ng model selection criterion and show that it performs well

in finite sample applications. Simulation results support our theoretical analysis and an

empirical application that examines the effect of opening a showroom by WarbyParker.com

on its average weekly sales demonstrates the usefulness of the factor-model-based method

in estimating ATE. With the rise of quasi-experimental panel data with long panels and

many control units, factor-model-based methods and the ability to conduct inference are

powerful tools for marketing and social science researchers.

Appendix A: Proofs of Theorems 4.1 and 4.2

A.1: Proof of Theorem 4.1

Throughout this Appendix, we sometimes replace Nco by N = Nco + 1 = O(Nco) to simply

notation, especially when we evaluate the order of a term because such a substitution will

not affect our asymptotic analysis.

Since both the factors and factor loadings are unobservable. They are not identified

without some identification conditions. In this subsection we use the same identification

conditions as in Bai (2003). Let F denote the T × r matrix of common factors and Λ

denote the N × r factor loading matrix. Following Bai (2003) we know that there exists an

invertible matrix H such that F̂ is an estimator of FH and Λ̂ is an estimator of Λ(H ′)−1.

Because F and FH span the same space, a regression model using F or FH give the same

result. We also adopt assumptions A to G in Bai (2003) so that we can borrow all needed

results from Bai (2003). In addition we assume that that (e1t, Ft)
T1
t=1 and (e1t, Ft,∆1t)

T
t=T1+1

are weakly dependent ρ-mixing process with mixing coefficients satisfying ρ(τ) = λτ for

some 0 < λ < 1 (see page 74 of Li and Bell (2017) for the definition of a ρ-mixing

process). This enables us to use a result from Li and Bell (2017, Lemma A.1) to derive

the asymptotic distribution of
√
T2(∆̂1 −∆1). Also, we assume that limT2,N→∞ T2/N

2 = 0

and limT1,T2→∞ T2/T1 = φ, where φ is a non-negative finite constant. We use a notation
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introduced in Bai (2003) that δN,T = min{
√
N,
√
T} so that δ−2

N,T = max
{

1
N
, 1
T

}
.

We first give an outline of the proof of Theorem 4.1. Let ∆̃1 be defined by replacing F̂t

by Ft in ∆̂1, we will show that

∆̃1 = ∆̂1 +Op(δ
−2
N,T2

) = ∆̂1 +O

(
max

{
1

N
,

1

T2

})
. (A.1)

Hence, we have√
T2(∆̂1 −∆1) =

√
T2(∆̃1 −∆1) +

√
T2(∆̂1 − ∆̃1)

=
√
T2(∆̃1 −∆1) + op(1)

because as in Bai (2004), we assume that T2 = o(N2). Thus, the asymptotic distribution

of
√
T2(∆̂1 −∆1) is the same as that of

√
T2(∆̃1 −∆1). The asymptotic of

√
T2(∆̃1 −∆1)

follows from Theorem 3.2 of Li and Bell (2017). A detailed proof of Theorem 4.1 is given

below.

By definition, λ̂1 =
[∑T1

t=1 F̂tF̂
′
t

]−1[∑T1
t=1 F̂ty1t

]
, and ŷ0

1t = λ̂′1F̂t =
[∑T1

s=1 y1sF̂
′
s

][∑T1
s=1 F̂sF̂

′
s

]−1

F̂t

for t = T1 + 1, . . . , T . Then

∆̂1t
def
= y1t − ŷ0

1t = y1t −
[ T1∑
s=1

y1sF̂
′
s

][ T1∑
s=1

F̂sF̂
′
s

]−1

F̂t for t = T1 + 1, . . . , T . (A.2)

By our model specification, for pre-treatment period,

y1s = λ′1Fs + e1s, s = 1, 2, . . . , T1, (A.3)

and for post-treatment period,

y1t = F ′tλ1 + ∆1 + v1t, t = T1 + 1, . . . , T, (A.4)

where ∆1 = E(∆1t) and v1t = ∆1t −∆1 + e1t.

Substituting (A.4) into (A.2), and using y1s = λ′1Fs + e1s for s = 1, ..., T1, we get

∆̂1t = ∆1+v1t+

{
Ft−

[ T1∑
s=1

FsF̂
′
s

][ T1∑
s=1

F̂sF̂
′
s

]−1

F̂t

}′
λ1−

[ T1∑
s=1

e1sF̂
′
s

][ T1∑
s=1

F̂sF̂
′
s

]−1

F̂t. (A.5)
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Therefore, the ATE estimator ∆̂1 = T−1
2

∑T
t=T1+1 ∆̂1t is given by

∆̂1 = ∆1 +
1

T2

T∑
t=T1+1

v1t +
1

T2

T∑
t=T1+1

{
Ft −

[ T1∑
s=1

FsF̂
′
s

][ T1∑
s=1

F̂sF̂
′
s

]−1

F̂t

}′
︸ ︷︷ ︸

B1

λ1

−
[ T1∑
s=1

e1sF̂
′
s

][ T1∑
s=1

F̂sF̂
′
s

]−1[ 1

T2

T∑
t=T1+1

F̂t

]
︸ ︷︷ ︸

B2

= ∆1 +
1

T2

T∑
t=T1+1

v1t +
[ T1∑
s=1

e1sF
′
s

][ T1∑
s=1

FsF
′
s

]−1[ 1

T2

T∑
t=T1+1

Ft

]
+Op(δ

−2
N,T2

)

(A.6)

where the last equality follows from Lemma A.3 and Lemma A.4 (for B1 and B2).

If we compare (A.5) with (A.6), we see that if one replaces F̂t in (A.5) by Ft, one obtains

the leading term of (A.6). Consequently, the asymptotic distribution of ∆̂1 using F̂t is the

same as that using Ft. The reason that using F̂t leads to the same asymptotic distribution

as using Ft is that, although F̂t − HFt = Op(N
−1/2); by Lemma A.2 (ii) we know that

T−1
∑T

t=1(F̂t−HFt) = Op(max{N−1, T−1}) = op(N
−1/2) (because N = o(T 2)). In general,

averaging over random variables reduce variance of the random variable and hence leads a

smaller order quantity.

Hence, under the conditions that
√
T2/N → 0 and T2/T1 → φ, we have

√
T2(∆̂1 −∆1) = −

√
φ

1√
T1

T1∑
s=1

e1sF
′
s

[ 1

T1

T1∑
s=1

FsF
′
s

]−1[ 1

T2

T∑
t=T1+1

Ft

]
+

1√
T2

T∑
t=T1+1

v1t + op(1)

= −
√
φ

1√
T1

T1∑
s=1

e1sF
′
s

[
E(FsF

′
s) + op(1)

]−1[
E(Ft) + op(1)

]
+

1√
T2

T∑
t=T1+1

v1t + op(1)

= −
√
φ

1√
T1

T1∑
s=1

e1sF
′
sC +

1√
T2

T∑
t=T1+1

v1t + op(1)

≡ A1 + A2,

where A1 = −
√
φ 1√

T1

∑T1
s=1 e1sF

′
sC, C =

[
E(FsF

′
s)
]−1[

E(Ft)
]

is a r× 1 vector of constants

and A2 = 1√
T2

∑T
t=T1+1 v1t.

Under the assumption that e1tFt and v1t are zero mean weakly dependent processes so

that central limit theorem hold for their partial sums, we have

A1
d→ N(0,Ω1), A2

d→ N(0,Ω2),

26



where Ω1 and Ω2 are defined in Theorem 4.1. Also, under the assumption that (e1t, Ft)
T1
t=1

and (e1t, Ft,∆1t)
T
t=T1+1 are ρ-mixing process with mixing coefficients satisfying ρ(τ) = λτ

for some 0 < λ < 1. Then by Lemma A.1 of Li and Bell (2017) we know that Cov(A1, A2) =

o(1). Hence, we have that√
T2(∆̂1 −∆1) = A1 + A2 + op(1)

d→ N(0,Ω1 + Ω2).

This completes the proof of Theorem 4.1.

Consistent estimators of Ω1 and Ω2

A consistent estimator of Ω1 is given by

Ω̂1 = (T2/T1)Ê(Ft)
′(V̂ /T2)Ê(Ft),

where Ê(Ft) = T−1
2

∑T
t=T1+1 F̂t,

V̂ = [Ê(FtF
′
t)]
−1[T−1

1

T1∑
t=1

T1∑
s=1,|s−t|≤l

ê1tê1sF̂tF̂s][Ê(FtF
′
t)]
−1 (A.7)

where Ê(FtF
′
t) = T−1

1

∑T1
t=1 F̂tF̂

′
t , ê1t = y1t − λ̂′1F̂t, l satisfies that l→∞ and l/T1 →∞ as

T1 →∞, one can choose l = O(T
1/4
1 ) as suggested by Newey and West (1987).

A consistent estimator of Ω2 is given by

Ω̂2 =
1

T2

T∑
t=T1+1

T∑
s=T1+1,|t−s|≤h

[∆̂1t − ∆̂1][∆̂1s − ∆̂1],

where h→∞ and h/T2 → 0 as T2 →∞. For example, one can choose h = O(T
1/4
2 ).

When e1t and ∆1t are serially uncorrelated, Ω̂1 and Ω̂2 can be simplified. In Ω̂1, one

can replace V̂ defined in (A.7) by V̂ = T−1
1

∑T1
t=1 ê

2
1tF̂tF̂

′
t , and Ω̂2 is simplified to Ω̂2 =

1
T2

∑T
t=T1+1(∆̂1t − ∆̂1)2.

Some useful lemmas

Below we present some Lemmas that are used in the proof of Theorem 4.1. Lemma A.1

summaries some useful results from Bai (2003).

Lemma A.1 Let δN,T = min{
√
N,
√
T}. Then under the regularity conditions given in

Bai (2003), we have

(i) 1
T1

∑T1
t=1 ||F̂t −H ′Ft||2 = Op(δ

−2
N,T1

).
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(ii) For all i = 1, ..., N , 1
T1

∑T1
t=1(F̂t −H ′Ft)eit = Op(δ

−2
N,T1

).

(iii) 1
T1

∑T1
s=1 FsF̂

′
s = 1

T1

∑T1
s=1 FsF

′
sH
′ +Op(δ

−2
N,T1

).

(iv) 1
T1

∑T1
t=1(F̂t −H ′Ft)′F̂t = Op(δ

−2
N,T1

).

Proof: See Bai’s (2003) Lemma A.1, Lemma B.1, Lemma B.2 and Lemma B.3 for proofs

of (i), (ii), (iii) and (iv), respectively.

Lemma A.2 Under the regularity conditions as in Lemma A.1 we have

(i) 1
T1

∑T1
s=1 F̂sF̂

′
s = 1

T1

∑T1
s=1HFsF

′
sH
′ +Op(δ

−2
N,T1

).

(ii) 1
T2

∑T
t=T1+1(Ft −H−1F̂t) = Op(δ

−2
N,T2

).

Proof of Lemma A.2 (i): By adding/subtracting terms, we have

1

T1

T1∑
s=1

F̂sF̂
′
s =

1

T1

T1∑
s=1

(F̂s −HFs)(F̂s −HFs)′ +H
1

T1

T1∑
s=1

Fs(F̂s −HFs)′

+

[
1

T1

T1∑
s=1

(F̂s −HFs)F ′s

]
H ′ +

1

T1

T1∑
s=1

HFsF
′
sH
′.

(A.8)

The first term on the right-hand-side of (B.1) is Op(δ
−2
N,T1

) by Lemma A.1 (i). By noting

that H = O(1) and that H is time-invariant, we see that the second and the third terms

on the right-hand-side of (B.1) are both Op(δ
−2
N,T1

) by Lemma A.1 (iii). Hence, we get

1

T1

T1∑
s=1

F̂sF̂
′
s =

1

T1

T1∑
s=1

HFsF
′
sH
′ +Op(δ

−2
N,T1

).

This completes the proof of Lemma A.2 (i).

Proof of Lemma A.2 (ii):

Lemma B.2 of Bai (2003) establishes T−1
∑T

t=1(F̂t − H ′Ft)F
′
t = Op(δ

−2
N,T ). Replacing

the second Ft by 1, by using the exactly the same arguments as in the proof of Lemma

B.2 of Bai (2003), one can show that T−1
∑T

t=1(F̂t −H ′Ft) = Op(δ
−2
N,T ), which implies that

T−1
2

∑T
t=T1+1(F̂t −H ′Ft) = Op(δ

−2
N,T2

).

Lemma A.3 Define B1 = 1
T2

∑T
t=T1+1

{
Ft −

[∑T1
s=1 FsF̂

′
s

][∑T1
s=1 F̂sF̂

′
s

]−1

F̂t

}
.

Then B1 = Op(δ
−2
N,T2

).
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Proof: By Lemma A.2 (i) we know that

1

T1

T1∑
s=1

F̂sF̂
′
s =

1

T1

T1∑
s=1

HFsF
′
sH
′ +Op(δ

−2
N,T1

). (A.9)

Also, by Lemma A.1 (iii) we have that

1

T1

T1∑
s=1

FsF̂
′
s =

1

T1

T1∑
s=1

FsF
′
sH
′ +Op(δ

−2
N,T1

). (A.10)

Substituting (B.9) and (B.10) into the expression of B1, we get

B1 =
1

T2

T∑
t=T1+1

{
Ft −H−1F̂t

}
+Op(δ

−2
N,T1

) = Op(δ
−2
N,T2

), (A.11)

where the last equality follows from T−1
2

∑T
t=T1+1

(
Ft −H−1F̂t

)
= Op(δ

−2
N,T2

) by Lemma

A.2 (ii) and that T2 = O(T1).

Lemma A.4 Define B2 =
[∑T1

s=1 e1sF̂
′
s

][∑T1
s=1 F̂sF̂

′
s

]−1[
1
T2

∑T
t=T1+1 F̂t

]
.

Then

B2 =
[ T1∑
s=1

e1sF
′
s

][ T1∑
s=1

FsF
′
s

]−1[ 1

T2

T∑
t=T1+1

Ft

]
+Op(δ

−2
N,T2

).

Proof: By adding/subtracting terms, we get

1

T1

T1∑
s=1

e1sF̂
′
s =

1

T1

T1∑
s=1

e1s(F̂s −HFs)′ +
1

T1

T1∑
s=1

e1sF
′
sH
′

=
1

T1

T1∑
s=1

e1sF
′
sH
′ +Op(δ

−2
N,T1

) (A.12)

by Lemma A.1 (ii).

Substituting (B.9) and (B.12) into B2, also using the result of Lemma A.2 (ii) and

noting that T2 = O(T1), we obtain

B2 =
1

T1

T1∑
s=1

e1sF
′
s

[
1

T1

T1∑
s=1

FsF
′
s

]−1 [
1

T2

T∑
t=T1+1

Ft

]
+Op(δ

−2
N,T2

).

This completes the proof of Lemma A.4.
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A.2: Proof of Theorem 4.2

We adopt assumptions A to H in Bai (2004) so that we can use all the results presented

in Section 2 to Section 4 in Bai (2004). Let k̂ denote the number of factors obtained by

minimizing IPC1(k) defined in (4.9). Because Pr(k̂ = r)→ 1 as T,N →∞,5 we can only

consider the case of k̂ = r, that is, F̂t is an r × 1 vector. Also, we use the notation in Bai

(2004) that δ2,NT = min{
√
N, T} so that δ−1

2,NT = max{1/
√
N, 1/T}. We now start the

proof of Theorem 4.2.

Because the ATE estimator is defined with the same algebraic expression whether the

data is stationary or not, by the same derivations that lead to (A.6), for the non-stationary

data case, the ATE estimator ∆̂1 has the following expression.

∆̂1 = ∆1 +
1

T2

T∑
t=T1+1

v1t + λ′1
1

T2

T∑
t=T1+1

{
Ft −

[ T1∑
s=1

FsF̂
′
s

][ T1∑
s=1

F̂sF̂
′
s

]−1

F̂t

}
︸ ︷︷ ︸

B1

−
[ T1∑
s=1

e1sF̂
′
s

][ T1∑
s=1

F̂sF̂
′
s

]−1[ 1

T2

T∑
t=T1+1

F̂t

]
︸ ︷︷ ︸

B2

= ∆1 +
1

T2

T∑
t=T1+1

v1t −
[ T1∑
s=1

e1sF
′
s

][ T1∑
s=1

FsF
′
s

]−1[ 1

T2

T∑
t=T1+1

Ft

]
+ op(T

−1/2
2 )(A.13)

where the second equality follows from Lemma B.4 and Lemma B.5 (for B1 and B2) of the

supplementary Appendix B.

From (A.13) we obtain

√
T2(∆̂1 −∆1) = − 1√

T2

[
T1∑
s=1

e1sF
′
s

] [ T1∑
s=1

FsF
′
s

]−1[ T∑
s=T1+1

Fs

]
+

1√
T2

T∑
t=T1+1

v1t + op(1)

≡ A1 + A2 + op(1), (A.14)

where the definitions of A1 and A2 should be apparent.

Let CT =
[∑T1

s=1 FsF
′
s

]−1[∑T
t=T1+1 Ft

]
. Then we have

A1 = − 1√
T2

[
T1∑
s=1

e1sF
′
s

]
CT .

Now we first make a strong assumption that {e1t}Tt=1 is iid N(0, σ2
e) and is independent with

{ut}Tt=1 (recall that Ft = Ft−1 + ut), hence, independent with {Ft}Tt=1. Then conditional on

5When discussing the order of an quantity, we often use N rather than Nco as they have the same order
of magnitude.

30



the common factor F , we have

A1|F
d∼ N(0,Σ1,T ), (A.15)

where Σ1,T = σ2
eC
′
T [
∑T1

s=1 FsF
′
s]CT/T2.

Now we make another strong assumptions that v1t is normally distributed with zero

mean and finite variance so that

A2 ∼ N(0,Σ2,T ), (A.16)

where Σ2,T = T−1
2

∑T
t=T1+1

∑T
s=T1+1E(v1tv1s). Also, assume that {v1t}Tt=T1+1 is independent

with {Ft}Tt=1, {e1t}T1t=1 and {eit}Tt=1 for 2 = 1, ..., N . Then A1 and A2 are independent with

each other. Hence, we have

A1 + A2√
Σ1,T + Σ2,T

|F d∼ N(0, 1). (A.17)

Since the right-hand-side of (A.17) does not depend on F , we have, unconditionally,

A1 + A2√
Σ1,T + Σ2,T

d∼ N(0, 1). (A.18)

The above strong assumptions can be relaxed. For example, by assuming that v1t is

a zero mean weakly dependent process such that a central limit theorem applies to its

partial sum, then we have A2/
√

Σ2,T
d→ N(0, 1). For A1, Saikkonen (1991) and Stock and

Watson (1993) show that the normality assumption on e1t can be dropped by assuming

proper (functional) central limit theorems hold to partial sums involving e1t and us. Also,

the independence assumption between e1t and us can be relaxed to be uncorrelated for all

t and s. Hayashi (2000, page 658) provides a summary of these results. The uncorrelated

assumption can be further relaxed. When e1t and us are correlated, but e1t is uncorrelated

with ut−s for |s| > p, where p is a positive integer. Then one can add lead and lag values

of ∆F̂t−τ = F̂t−τ − F̂t−τ−1, for τ = −p,−p + 1, ..., p, as additional regressors in the co-

integration model to make the new idiosyncratic error, say ẽ1t, to be uncorrelated with us

for all t and s, see Hamilton (1994, pages 608-610) for a detailed discussion on this. We

assume that proper regularity conditions discussed in Stock and Watson (1993) hold so

that the t-statistic for λ̂1 has an asymptotic standard normal distribution. This, together

with that A1 and A2 are asymptotically independent with each other, leads to the following

result.

A1 + A2√
Σ1,T + Σ2,T

d→ N(0, 1). (A.19)
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In applications we replace Σl,T by Σ̂l,T , where for l = 1, 2, Σ̂l,T can be obtained from

Σl,T with Ft, v1t and σ2
e replaced by F̂t, v̂1t = ∆̂1t − ∆̂1 and σ̂2

e = T−1
1

∑T1
t=1 ê

2
1t with

ê1t = y1t − λ̂′1F̂1 for t = 1, ..., T1. It is easy to show that Σ̂l,T/Σl,T = 1 + op(1) for l = 1, 2.

Hence, we have

√
T2(∆̂1 −∆1)√
Σ̂1,T + Σ̂2,T

=
A1 + A2√
Σ̂1,T + Σ̂2,T

=
A1 + A2√
Σ1,T + Σ2,T

+ op(1)
d→ N(0, 1). (A.20)

This completes the proof of Theorem 4.2.
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Supplementary Appendix B: Some useful lemmas

In this appendix, we present some lemmas which are used in the proof of Theorem 4.2.

Lemma B.1 Let δ2,NT = min{
√
N, T}. Then under the regularity conditions given in Bai

(2004), we have

(i) 1
T

∑T
t=1 ||F̂t −H ′1Ft||2 = Op(δ

−2
2,NT );

(ii) 1
T 2
1

∑T1
t=1 F̂tF

′
t = 1

T 2
1

∑T1
t=1H

′
1FtF

′
t +Op(T

−1
1 δ−1

2,NT1
);

(iii) 1
T 2
1

∑T1
t=1(F̂t −H ′1Ft)′F̂t = Op(T

−1
1 δ−1

2,NT1
).

Note that all the results in Lemma B.1 hold true when (F̂t, H1) is replaced by (F̃t, H2).

Proof of (i), see the proof of Lemma 1 in Bai (2004, equation (6) in page 143).

Proofs of (ii) and (iii), see Lemma B.4 (i) and Lemma B.4 (ii) of Bai (2004, page 171) for

proofs of (ii) and (iii), respectively.

Lemma B.2 Under the regularity conditions as in Lemma B.1 we have

(i) 1
T 2
1

∑T1
t=1 F̂tF̂

′
t = 1

T 2
1

∑T1
t=1H

′
1FtF

′
tH1 +Op(T

−1
1 δ−1

2,NT1
).

(ii) 1
T2

∑T
t=T1+1(F̂t −H ′1Ft) = Op((NT2)−1/2).

Proof of Lemma B.2 (i): By adding/subtracting terms, we have

1

T 2
1

T1∑
t=1

F̂tF̂
′
t =

1

T 2
1

T1∑
s=1

(F̂t −H ′1Ft)(F̂t −H ′1Ft)′ +H ′1
1

T 2
1

T1∑
t=1

Ft(F̂t −H ′1Ft)′

+

[
1

T 2
1

T1∑
t=1

(F̂t −H ′1Ft)F ′t

]
H1 +

1

T1

T1∑
s=1

H ′1FtF
′
tH1.

(B.1)

The first term on the right-hand-side of the above equation is Op(T
−1
1 δ−2

2,NT1
) by Lemma

B.1 (i). By noting that H1 = O(1) and H1 is time-invariant, we see that the second and

the third terms on the right-hand-side of the above equation are both Op(T
−1
1 δ−1

2,NT1
) by

Lemma B.1 (iii). Hence, we get

1

T 2
1

T1∑
t=1

F̂tF̂
′
t =

1

T 2
1

T1∑
s=1

H ′1FtF
′
tH1 +Op(T

−1
1 δ−1

2,NT1
).

This completes the proof of Lemma B.2 (i).
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Proof of Lemma B.2 (ii): Using the notation of (A.1) in Bai (2004, page 164), we have

F̂t −H ′1Ft = T−2

T∑
s=1

F̃sγN(s, t) + T−2

T∑
s=1

F̃sζst + T−2

T∑
s=1

F̃sηs,t + T−2

T∑
s=1

F̃sξs,t,

(B.2)

where γN(s, t) = N−1
co

∑N
i=2 E(eiseit), ζst = N−1

co

∑N
i=2 eiseit − γN(s, t), ηst = F ′sΛet/Nco,

ξst = F ′tΛ
′es/Nco, (et)Nco×1 = (e2t, ..., eNt)

′, Λ is the r × Nco factor loading matrix for the

control group.

Hence

A1T ≡ 1

T2

T∑
t=T1+1

(F̂t −H ′1Ft)

=
1

T2T 2

T∑
t=T1+1

T∑
s=1

F̃sγN(s, t) +
1

T2T 2

T∑
t=T1+1

T∑
s=1

F̃sζst

+
1

T2T 2

T∑
t=T1+1

T∑
s=1

F̃sηs,t +
1

T2T 2

T∑
t=T1+1

T∑
s=1

F̃sξs,t

= I + II + III + IV.

By parts (a), (b) and (d) of Lemma B.2 in Bai (2004, page 167), we know that I =

Op(T
−3/2), II = Op((NT )−1/2) and IV = Op((NT )−1/2). For III, we have

1

T 2

T∑
s=1

F̃sηst = H ′2
1

T 2

T∑
s=1

Fsηst +
1

T 2

T∑
s=1

(F̃s −H ′2Fs)ηst

= H ′2
1

T 2

T∑
s=1

Fsηst +Op((NT )−1/2δ−1
2,NT ), (B.3)

where T−2
∑T

s=1(F̃s − H ′2Fs)ηst = Op((NT )−1/2δ−1
2,NT ) was proved in Bai (2004, page 169,

line 3).

Substituting (B.3) into III gives

III = H ′2
1

T 2T2

T∑
t=T1+1

T∑
s=1

Fsηst + op((NT )−1/2)

= H ′2

(
T−2

T∑
s=1

FsF
′
s

)(
1

NT2

T∑
t=T1+1

N∑
i=2

λieit

)
+ op((NT )−1/2)

= Op((NT2)−1/2) (B.4)
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because T−2
∑T

s=1 FsF
′
s = Op(1), and the second moment of D ≡ 1

NT2

∑T
t=T1+1

∑N
i=2 λieit

has an order O((NT2)−1). To see this. We evaluate the second moment of D:

E[||D||2] = E[tr(DD′)]

≤ 1

N2T 2
2

T∑
t=T1+1

T∑
s=T1+1

N∑
i=2

N∑
j=2

|tr[(λiλ′j)]| |E(eitejs)|

≤ C

N2T 2
2

T∑
t=T1+1

T∑
s=T1+1

N∑
i=2

N∑
j=2

|τij,ts|

= O((NT2)−1), (B.5)

because |tr[(λiλ′j)]| ≤ C and
∑T

t=T1+1

∑T
s=T1+1

∑N
i=2

∑N
j=2 |τij,ts| = O(NT2), where τij,ts =

E(eitejs). Now, (B.5) implies that D = Op((NT2)−1/2).

Lemma B.3 In additional to the assumptions made in Bai (2004), we also assume that∑N
i=2

∑N
j=2

∑T1
t=1

∑T1
s=1 |τ0,ij,ts| = O(NT1), where τ0,ij,ts = E(e1teite1sejs). Then we have

A2T = 1
T1

∑T1
t=1(F̂t −H1Ft)e1t = Op((NT1)−1/2).

Proof: Following the notation defined below (B.2), we have

F̂t −H ′1Ft = T−2

T∑
s=1

F̃sγN(s, t) + T−2

T∑
s=1

F̃sζst + T−2

T∑
s=1

F̃sηs,t + T−2

T∑
s=1

F̃sξs,t,

where γN(s, t) = N−1
co

∑N
i=2E(eiseit), ζst = N−1

co

∑N
i=2 eiseit − γN(s, t), ηst = F ′sΛet/Nco,

ξst = F ′tΛ
′es/Nco.

Hence

A2T ≡ 1

T1

T1∑
t=1

(F̂t −H ′1Ft)e1t

=
1

T1T 2

T1∑
t=1

T∑
s=1

F̃sγN(s, t)e1t +
1

T1T 2

T1∑
t=1

T∑
s=1

F̃sζste1t

+
1

T1T 2

T1∑
t=1

T∑
s=1

F̃sηs,te1t +
1

T1T 2

T1∑
t=1

T∑
s=1

F̃sξs,te1t

= I1 + II1 + III1 + IV1.

Similar to the proof of Lemma B.2, one can show that I1 = Op(I) = Op(T
−3/2),

II1 = Op(II) = Op((NT )−1/2), III1 = Op(III) = Op((NT1)−1/2) and IV1 = Op(IV ) =
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Op((NT )−1/2), where I, II, III and IV are defined in the proof of Lemma B.2. Below we

will only prove for the term III1.

For III1, first note that

1

T 2

T∑
s=1

F̃sηste1t = H ′2
1

T 2

T∑
s=1

Fsηste1t +
1

T 2

T∑
s=1

(F̃s −H ′2Fs)ηste1t

= H ′2
1

T 2

T∑
s=1

Fsηste1t +Op((NT )−1/2δ−1
2,NT ), (B.6)

where T−2
∑T

s=1(F̃s − H ′2Fs)ηste1t = Op((NT )−1/2δ−1
2,NT ), which can be proved similar to

Bai (2004, page 169, the third line).

Substituting (B.6) into III1 gives

III1 = H ′2
1

T 2T1

T1∑
t=1

T∑
s=1

Fsηste1t + op((NT )−1/2)

= H ′2

(
T−2

T∑
s=1

FsF
′
s

)(
1

NT1

T1∑
t=1

N∑
i=2

λieite1t

)
+ op((NT )−1/2)

= Op((NT1)−1/2) (B.7)

because T−2
∑T

s=1 FsF
′
s = Op(1) and D1 ≡ 1

NT1

∑T1
t=1

∑N
i=2 λieite1t = Op((NT1)−1/2) since

the second moment of D1 has an order O((NT1)−1). To see this we evaluate the second

moment of D1:

E[||D1||2] = E[tr(D1D
′
1)]

≤ 1

N2T 2
1

T1∑
t=1

T1∑
s=1

N∑
i=1

N∑
j=1

|tr[(λiλ′j)]| |E(eitejse1te1s)|

≤ C

N2T 2
1

T1∑
t=1

T1∑
s=1

N∑
i=2

N∑
j=2

|τ0,ij,ts|

= O((NT1)−1), (B.8)

because |tr[(λiλ′j)]| ≤ C and
∑T1

t=1

∑T1
s=1

∑N
i=2

∑N
j=2 τ0,ij,ts = O(NT1). Equation (B.8)

implies that D1 = Op((NT1)−1/2).

Lemma B.4 Define B1 = 1
T2

∑T
t=T1+1

{
Ft −

[∑T1
t=1 FtF̂

′
t

][∑T1
t=1 F̂tF̂

′
t

]−1

F̂t

}
.

Then B1 = op(T
−1/2
2 ).
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Proof: By Lemma B.2 (i) we know that

1

T 2
1

T1∑
t=1

F̂tF̂
′
t =

1

T 2
1

T1∑
t=1

H ′1FtF
′
tH1 +Op(T

−1
1 δ−1

2,NT1
). (B.9)

Also, by Lemma B.1 (ii) we have that

1

T 2
1

T1∑
t=1

FtF̂
′
t =

1

T 2
1

T1∑
t=1

FtF
′
tH1 +Op(T

−1
1 δ−1

2,NT1
). (B.10)

Substituting (B.9) and (B.10) into the expression of B1, we get

B1 =
1

T2

T∑
t=T1+1

{
Ft −

[
(H ′1)−1 +Op(T

−1
1 δ−1

2,NT1
)
]
F̂t

}
= Op((NT2)−1/2) +Op(T

−1/2
1 δ−1

2,NT2
) = op(T

−1/2
2 ), (B.11)

where the last equality follows from T−1
2

∑T
t=T1+1

(
Ft − (H ′1)−1F̂t

)
= (H ′1)−1T−1

2

∑T
t=T1+1

(
H ′1Ft − F̂t

)
=

Op((NT2)−1) by Lemma B.2 (ii), T−1
2

∑T
t=T1+1 F̂t/

√
T = Op(1) and T1/T = O(1).

Lemma B.5 Define

B2 =
[ T1∑
t=1

e1tF̂
′
t

][ T1∑
t=1

F̂tF̂
′
t

]−1[ 1

T2

T∑
t=T1+1

F̂t

]
≡
√
T

T1

[ 1

T1

T1∑
t=1

e1tF̂
′
t

][ 1

T 2
1

T1∑
t=1

F̂tF̂
′
t

]−1[ 1

T2

√
T

T∑
t=T1+1

F̂t

]
.

Then

B2 =

√
T

T1

[ 1

T1

T1∑
t=1

e1tF
′
t

][ 1

T 2
1

T1∑
t=1

FtF
′
t

]−1[ 1

T2

√
T

T∑
t=T1+1

Ft

]
+ op(T

−1/2
2 ).

Proof: By adding/subtracting terms, we get

1

T1

T1∑
t=1

e1tF̂
′
t =

1

T1

T1∑
t=1

e1t(F̂t −H ′1Ft)′ +
1

T1

T1∑
t=1

e1tF
′
tH1

=
1

T1

T1∑
t=1

e1tF
′
tH1 +Op((NT1)−1/2) (B.12)

by Lemma B.3.
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By Lemma B.2 (ii), we know that

1

T2

√
T

T∑
t=T1+1

(F̂t −H ′1Ft) = Op(T
−1/2(NT2)−1/2). (B.13)

Substituting (B.9), (B.12) and (B.13) into B2, also using the result of Lemma B.2 (ii)

and noting that T2 = O(T1), we obtain

B2 =

√
T

T1

1

T1

T1∑
t=1

e1tF
′
t

[
1

T 2
1

T1∑
t=1

FtF
′
t

]−1 [
1

T2

√
T

T∑
t=T1+1

Ft

]
+Op(T

−1
1 δ−1

2,NT1
).

This completes the proof of Lemma B.5.

Lemma B.6 Let φ = limT1,T2→∞ T2/T1, then we have (i) A1 = Oe(1) if 0 < φ < ∞, here

A1 = Oe(1) means that A1 = Op(1) and A1 6= op(1); (ii) A1 = op(1) if φ = 0.

Proof of (i): We first consider the case that φ > 0. Note T/T1 = (T1+T2)/T1 = 1+T1/T2 →
1 + φ, and (T1 + 1)/T = T1/T + 1/T → (1 + φ)−1, we have

A1 = −
√
T2

T1

(
T

T1

)3/2
[

1

T1

T1∑
t=1

e1tF
′
t

] [ 1

T 2
1

T1∑
t=1

FtF
′
t

]−1[ T1

T2T 3/2

T∑
s=T1+1

Fs

]
(B.14)

= −
√
φ(1 + φ)3/2

∫ 1

0

Bu(r)dBe(r)
[
B2,u + op(1)

]−1[
Bφ,u + op(1)

]
+ op(1)(B.15)

= −
√
φ(1 + φ)3/2

[ ∫ 1

0

Bu(r)dBe(r)
]
B−1

2,uBφ,u + op(1), (B.16)

where Bu(·) and Be(·) denote Browning motions generated by innovations ut and e1t, re-

spectively, B2,u =
∫ 1

0
Bu(r)Bu(r)

′dr, Bφ,u = φ−1
∫ 1

1/(1+φ)
Bu(r)dr. Here, we assume that

the following results hold: T−2
1

∑T1
t=1 FtF

′
t

d→
∫ 1

0
Bu(r)Bu(r)

′dr and T−1
1

∑T1
t=1 Fte1t

d→∫ 1

0
Bu(r)dBe(r)

′dr. It is obvious that A1 = Oe(1) since φ > 0 is a finite positive con-

stant.

Proof of (ii). We now consider the case φ = 0. Let φT = T2/T1. Then using the same

arguments that lead to (B.14), we have

A1 = −
√
φT (1 + φT )3/2

[ ∫ 1

0

Bu(r)dBe(r)
]
B−1

2,uBφT ,u + op(1),

where BφT ,u = T1
T2T 3/2

∑T
s=T1+1 Fs. Because φT = o(1), it suffices to show that BφT ,u =

Op(1).

BφT ,u =
1

φT

∫ 1

1/(1+φT )

Bu(r)dr + op(1)

= B0,ΦT ,u + op(1) = Op(1),
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because B0,φT ,u = φ−1
T

∫ 1

1/(1+φT )
Bu(r)dr has zero mean and a bounded variance:

V ar(B0,φT ,u) = φ−2
T

∫ 1

1/(1+φT )

[ ∫ 1

1/(1+φT )

E[Bu(r)Bu(s)]dr
]
ds

= σ2
uφ
−2
T

∫ 1

1/(1+φT )

[ ∫ 1

1/(1+φT )

min{r, s}dr
]
ds

= σ2
uφ
−2
T [φ2

T +O(φ3
T )]

= σ2
u +O(φT ) = O(1),

where we used the following calculation that for any δ ∈ (0, 1), letDδ =
∫ 1

δ

[ ∫ 1

δ
min{r, s}dr

]
ds,

then we have

Dδ =

∫ 1

δ

[ ∫ s

δ

rdr + s

∫ 1

s

dr
]
ds

=

∫ 1

δ

[
(1/2)[s2 − δ2] + s(1− s)

]
ds

= (1/6)[1− δ3]− (1/2)δ2(1− δ) + (1/2)[1− δ2]− (1/3)[1− δ3].

Replacing δ by 1/(1 + φT ) = 1− φT + φ2
T +O(φ3

T ), we obtain

D1/(1+φT ) = φ2
T +O(φ3

T ).
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