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Abstract. A fundamental premise of the strategy field is the existence of persistent firm-
level differences in resources and capabilities. This property of heterogeneity should
express itself in a variety of empirical “signatures,” such as firmperformance and arguably
systematic and persistent differences in firm-level growth rates, with low cost firms out-
pacing high cost firms. While this property of performance differences is a robust regu-
larity, the empirical evidence on firm growth and Gibrat’s law does not support the later
conjecture. Gibrat’s law, or the “law of proportionate effect,” states that, across a popula-
tion of firms and over time, firm growth at any point is, on average, proportionate to size of
the firm.We develop a theoretical argument that provides a reconciliation of this apparent
paradox. The model implies that in early stages of an industry history. firm growth may
have a systematic component, but for much of an industry’s and firm’s history should
have a random pattern consistent with the Gibrat property. The intuition is as follows.
In a Cournot equilibrium, firms of better “type” (i.e., lower cost) realize a larger market
share, but act with some restraint on their choice of quantity in the face of a downward
sloping demand curve and recognition of their impact on the market price. If firms are
subject to random firm-specific shocks, then in this equilibrium setting a population of
such firms would generate a pattern of growth consistent with Gibrat’s law. However, if
broader evolutionary dynamics of firm entry, and the subsequent consolidation of market
share and industry shake-out is considered, then during early epochs of industry evolu-
tion, one would tend to observe systematic differences in growth rates associated with
firm’s competitive fitness. Thus, it is only in these settings far from industry equilibrium
that we should see systematic deviations from Gibrat’s law.

Keywords: evolutionary economics • industry dynamics • industrial organization

It is conventional to speak of “stylized facts” about
economic activity. The aim of identifying these reg-
ularities is to both inform our understanding of the
world and provide a basis for our theorizing about the
world. In the industrial organization literature, two of
the most prominent regularities are Gibrat’s (1931) law
of random proportionate growth rates and the pres-
ence of systematic firm differences in firm capabili-
ties and their broader performance. As Geroski (2000)
has noted, these two properties seem strikingly in con-
flict.1 If there exists pronounced and persistent firm
differences in their capabilities or, more broadly, in
their economic value proposition (allowing for differ-
ences in value creation, as well as cost differences),
why aren’t those differences expressed in differential
growth rates? We reconcile this apparent conflict by
contrasting the pattern of growth rates in a competitive
equilibrium with the realized patterns in route to this
equilibrium outcome.

A well-known and broadly accepted fact in the
empirical strategy literature is the existence of persis-
tent firm-level differences in resources and capabilities,

which in turn translate into firm-level differences
in costs, value creation, and ultimately profitability
(Schmalensee 1985, Rumelt 1991, McGahan and Porter
1997). One might also expect to see these firm differ-
ences expressed in the form of systematic and persis-
tent differences in firm-level growth rates, with low
cost firms outpacing high cost firms. However, the
empirical evidence on firm growth and Gibrat’s law
does not support this conjecture. Gibrat’s law, or the
“law of proportionate effect,” states that, across a pop-
ulation of firms and over time, firm growth at any point
is, on average, proportionate to a firm’ size, i.e., firm
growth rates are scale-invariant and independent of
initial size. Apparently, persistent differences in firm
capabilities are not expressed in firm growth rates.

In the empirical literature on firm growth (Ijiri and
Simon 1967, Axtell 2001, Coad 2009), size is typically
measured by sales, although other indicators, such as
number of employees, have been explored. Estimation
of growth rates allows for random factors by assuming
that firm size evolves from period to period as a ran-
dom walk in the logarithm of sales, with i.i.d. shocks.2
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This very strong and simple assumption has a number
of implications, one of which is that the firm size dis-
tribution is log normal, with ever increasing variance
of the logs. While the Gibrat process is quite stark in
its simple but bold claim, its descriptive accuracy is
quite high (Geroski 2000, Axtell 2001, Coad 2009). As a
result, researchers have tended to take it as a baseline
and taken up the tasks of analyzing deviations from it,
both in the period-to-period firm-level dynamics and
in the long run distribution of firm size (Evans 1987,
Bottazzi and Secchi 2006).
Thus, models in this tradition have a dual ground-

ing in empirical regularities. First, the characterization
of the stochastic dynamics at the firm level should
roughly capture some stylized facts about real change
processes. Second, the asymptotic firm size distribu-
tion implied by the model should correspond with
empirical observations of these cross sections. An
important and classic example of this dual approach is
the work of Ijiri and Simon (1964 and 1967), whose pro-
cess model combines growth of existing firms where
the property of “proportionate effect” is assumed to
hold, and the characterization of the industry dynam-
ics includes the entry by new firms at a designated
minimum scale. The process leads asymptotically to a
Pareto distribution. A special case, in which the prob-
ability of sizes in the upper tail of the size distribution
greater than a value s is inversely proportional to the
value s, is known as Zipf’s law (Axtell 2001).
While the Ijiri and Simon approach provides a use-

ful baseline model that is broadly consistent with the
basic empirical regularities of firm growth rates and
firm size distribution, there are other important lines of
inquiry that have supplemented this work. Jovanovic
(1982) develops a model of a firm learning about its
“type,” where type is characterized by its cost value.
In this set-up, firms analyze their output and possi-
ble exit decision based on their assessment of their
cost value, which itself is subject to stochastic shocks.
Building on this work, Hopenhayn (1992) considers
the implications for the aggregate pattern of turnover,
entry and exit, in a steady-state equilibrium model.
While these models bring in useful explicit firm-level
calculus regarding output and exit decisions, the mod-
els themselves are premised on an industry structure
of a continuum of firms, each arbitrarily small so as
to be treated as price-takers in market competition. As
a consequence, this line of work cannot speak to the
empirical patterns of industry evolution of phases of
net growth in the number of firms, a period of “shake-
out” or decline, and a subsequent period of relative sta-
bility (Gort and Klepper 1982). Klepper (1996) provides
an account of these patterns based on the logic of firm
size impacting its investment in process innovations,
leading to later and smaller industry entrants being
driven from the market. Klepper’s work is targeted at

this pattern over an industry lifecycle of entry, exit, and
aggregate industry size, but the issue of firm growth
rates is not developed. In another line of work, both
Sutton (1997) and Klepper and Thompson (2006) use
the random arrival of new “sub-markets” to explain
firm growth rates, but these analyses do not link back
to the consideration of the pattern of entry and exit of
an industry’s lifecycle.

We develop a relatively simple model that, while
not fully general, is able to capture both issues of firm
growth rates and industry evolution. Further, this joint
consideration provides a theoretical reconciliation of
evidence that suggests firm growth is, at the same time,
both systematic and random. The intuition is as fol-
lows. In a Cournot equilibrium, firms of better “type”
(i.e., lower cost) realize a larger market share, but act
with some restraint on their choice of quantity in the
face of a downward sloping demand curve and recog-
nition of their impact on the market price. If firms are
subject to random firm-specific shocks, then in this
equilibrium setting a population of such firms would
generate a pattern of growth consistent with Gibrat’s
law. However, if broader evolutionary dynamics of
firm entry, and the subsequent consolidation of market
share and industry shake-out are considered (Klepper
1996), then during early epochs of industry evolution
one would tend to observe systematic differences in
growth rates associatedwith firms’ competitive fitness.
Thus, it is only in these settings far from industry equi-
librium that we should see deviations from Gibrat’s
law. In the Model Structure section, we lay out the struc-
ture of our formal model for which we provide com-
putational results in the Results section.

Model Structure
We develop a fairly conventional model of Cournot
competition, but one that incorporates the entry and
exit dynamics of realized and potential competitors
(Klepper 1996, Knudsen et al. 2014). As is typical in
such models, the demand environment is treated as
being fixed. We represent market demand by an expo-
nential function, where

P � P0 exp(−Q/Q1)

with P0 and Q1 as fixed parameters, P as the industry
level equilibrium price at time t, and Q the aggregate
output value that sums the quantity level of all firms at
time t. The exponential demand function shares some
analytical properties with linear demand, but has the
additional virtue that price is strictly decreasing over
its unbounded domain of quantity values. This is a
useful analytical property when global comparisons
are made across a wide range of cost and capacity
conditions.

In each period, there is a cohort of Nc potential en-
trants where Nc is fixed to a constant value. Potential
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entrants randomly draw a firm-specific cost value ci . By
cost values, we refer to unit costs of individual firms.
Cost values are drawn from the general beta distribu-
tionwith shape parameters (α, β) and support in a non-
negative finite interval. Since cost distributions deter-
mine the arrival rate of firms entering with low versus
high cost values, this distribution has significant influ-
ence on the realized firm and industry dynamics as
well as steady state properties. In our baseline model,
we examine the effect of a Bell-shaped cost distribution
with α � 5 and β � 5.

Cost values may be subject to random firm-specific
shocks. That is, stochastic variation can perturb firm-
specific cost values ci so that the next period’s cost
value ci , t+1 is given by

ci , t+1 � ci , t + εi , t ,

where the firm-specific random shocks εi , t are i.i.d. and
normally distributed, N(µ, σ), with mean µ � 0 and
variance σ2. The process results in a set of distinct
and independent random walks in cost values for each
firm.3

Scale Adjustment
A firm calculates its desired scale of production q∗
based on its own unit cost and the cost values of all
firms that are currently operating. As a result, the
desired scale of production q∗ is a moving target that
the firm aims to achieve by expanding (or reducing)
its current production capacity. The realized scale of a
given firm’s production at period t + 1 is modeled as

qt+1 � δq∗t+1 + (1− δ)qt .

We find the optimal output q∗i by analytically solving
for the Cournot equilibrium output.4 For the exponen-
tial case, the elasticity of demand is Q1/Q, and the
Cournot equilibrium output for firm i is

q∗ � Q1

(
W

( ∑nt
i�1 ci

P0 exp(nt)

)
ci∑nt

j�1 c j

)
,

where nt is the number of incumbent firms in the
industry, ci is the unit cost value for firm i, and W is
the Lambert W function (see Knudsen et al. 2014 for
derivation).
Firms remain in the market as long as their unit

cost ci is less than industry price P. These firms are
found sequentially by starting with the highest cost
firm and eliminating it, then recomputing the indus-
try equilibrium in the absence of this highest cost firm.
This process is continued until all the remaining firms
are viable. The target output of each firm depends on
its unit cost:

q∗i �
P − ci

P
Q1.

Serial Correlation in the Rate of Growth
Serial correlation is a central measure since we are in-
terested in examining the seeming paradox noted by

Geroski (2000), where apparently random variation in
firm growth rates is associated with persistent hetero-
geneity in firm attributes. If there is no reflection of
the heterogeneity in growth rates, serial correlations of
the rates should be zero. To extract a measure of serial
correlation, we compute differences in firm size:

∆1 � log(qi(t4)) − log(qi(t3)),
∆2 � log(qi(t2)) − log(qi(t1)),

where qi(t) is the value of firm size at time t. Serial
correlation is the correlation of the vectors ∆1 and ∆2.5
Estimates of serial correlation on the residuals from
the estimated growth equation give almost identical
values (according to numerous tests) and are therefore
omitted.

We use a common instantiation of the growth equa-
tion (e.g., Geroski 2000):

log(qi(t))� α+ β log(qi(t − 1))+ϕ,i , t ,

where qi(t) is the value of firm size at time t, and ϕi , t is
a normally distributed i.i.d. random variable with zero
mean and variance σ. In our computational analyses,
the coefficient β is estimated in each time step. The
firms included in that estimate are those present in
the two consecutive time steps: t and t − 1. We then
consider the mean of the values of the β coefficient
that is obtained across 1, 000 runs of the computational
model.

There are two distinct factors within the model that
can generate a systematic pattern in firm growth rates.
First, firms are assumed to adjust to their desired out-
put level q∗. This systematic adjustment to q∗ will tend
to generate positive serial correlation in the measured
error term of the regression early on in an indus-
try’s evolution, but not at later stages when some near
steady-state values are realized. Low-cost firms will
tend to enter the industry at a small to moderate scale
relative to their desired q∗. As a result, low-cost firms
will experience a high level of serial correlation in what
is treated as the error term as they “grow into” their
target q∗ level. Thus, in early stages of the industry,
the model predicts a significant degree of serial cor-
relation in the error term. A second issue relates to
changes in this desired output level q∗. As a result of
entry-and-exit processes, as well as random shocks to
a firm’s cost level, the q∗ value itself will change over
time. At a more mature stage of the industry at which
point the entry/exit processes have largely stabilized,
the primary impetus to a change in q∗ stems from the
random shocks in cost values. These random shocks
are independent of firm size. Furthermore, given that
the shocks aremodest inmagnitude and symmetrically
distributed around amean of zero, the adjustment pro-
cess (number of time periods) to the new q∗ should be
modest and therefore should not provide a significant
impact on the serial correlation of the error term.
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Results
Before considering the aggregate results, it is useful
to examine a single history of our model to under-
stand the sources of variation in firm size distributions.
To facilitate comparison, the demand function and the
cost distribution is defined exactly as in the baseline
experiments explained later, with P0 � 1, Q1 � 250, and
unit costs ci drawn from the general beta distribution
(α � 5, β � 5) in the interval [0.2, 0.8]. Each period, a
cohort of 10 latent entrants draws a value from the cost
distribution. The cost value received by each potential
entrant determines whether that entrant has realized a
cost value that allows it to be viable in the current mar-
ket setting. In addition, as outlined earlier, the incum-
bent firms face the possibility of exit if their cost value
is no longer viable. Incumbent firms that remain in
the market calculate their target Cournot quantity level
and adjust to that level from their current production
as a function of the adjustment parameter δ. Figure 1
provides a history in the case of no noise, while Fig-
ure 2 provides a history where σ > 0 (σ � 0.01). Note
that the introduction of “noise,” i.e. random shocks to
firms’ cost value, does not exert a qualitative effect on
these patterns. Both curves depicting industry evolu-
tion, as characterized by the number of firms at each
point in time, provide the standard pattern of increas-
ing aggregate quantity with the pattern of the number
of firms over time consistent with an industry shakeout
(Gort and Klepper 1982, Klepper and Graddy 1990).
In the following, we present results from a system-

atic examination of our model. The results reported
here are based on averages of 1,000 such histories
with each ‘history’ spanning 1,000 discrete time steps.
We use a baseline setting of an exponential demand
curve with parameters, P0 � 1 and Q1 � 250, and set
the default size of the cohort of potential entrants
to NC � 10. Thus, each period, a cohort of NC firms
considers entering the industry. Each member of this
cohort is randomly assigned a unit cost value ci drawn
from the general beta distribution (α � 5, β � 5) in
the interval [0.2, 0.8]. A firm enters the industry if its
cost value is less than the current market price of a
unit of output. Thus, while the cohort size of poten-
tial entrants is held fixed over time, the number of
actual entrants varies a great deal, with the typical pat-
tern being that the set of entrants is equal or nearly
equal to the number of potential entrants early on and
declining over time. Each run of the model produces
a particular history of an industry. The rate of scale
adjustment δ is a critical parameter as it determines
the extent to which firms adjust output in a system-
atic way. As δ approaches 1, the firms’ adjustment of
output becomes instantaneous. We examine values of
δ � {0.005, 0.01, 0.05, 0.10, 0.50, 1.00} and a range of σ
values considering σ � {0, 0.001, 0.010, 0.025}. In addi-
tion, beyond these reported results, we have engaged

Table 1. Industry Dynamics

No. of firms

Delta Sigma t � 5 t � 10 t � 100 t � 1,000 Max. Shakeout

0.005 0.000 16.6 26.5 56.4 31.1 67.5 36.3
0.001 16.7 26.5 56.9 31.2 67.9 36.7
0.010 16.6 26.3 56.1 28.2 66.1 37.8
0.025 16.5 25.4 51.9 25.0 61.2 36.2

0.01 0.000 16.7 26.5 39.8 29.0 57.7 28.7
0.001 16.5 26.4 39.9 29.0 57.7 28.7
0.010 16.6 26.3 39.1 24.9 55.3 30.5
0.025 16.3 25.4 35.0 21.1 51.1 30.0

0.05 0.000 16.7 26.0 20.1 27.1 38.8 11.8
0.001 16.6 25.7 20.1 24.9 38.0 13.1
0.010 16.5 25.6 18.8 12.2 31.9 19.7
0.025 16.3 24.9 16.5 8.6 31.5 23.0

0.10 0.000 16.5 21.8 18.7 27.1 32.6 5.5
0.001 16.5 21.9 18.8 26.8 33.0 6.1
0.010 16.3 21.6 16.0 10.8 25.5 14.7
0.025 16.3 21.1 12.7 7.2 25.0 17.8

0.50 0.000 10.9 11.5 17.3 26.7 30.6 3.9
0.001 10.9 11.3 17.7 26.7 30.9 4.2
0.010 10.8 11.0 11.0 9.7 17.1 7.4
0.025 10.6 9.7 7.1 5.8 14.8 8.9

1.00 0.000 8.4 10.3 17.4 26.8 30.5 3.7
0.001 8.6 10.4 17.5 26.6 30.4 3.9
0.010 8.1 9.1 10.0 9.3 15.3 6.0
0.025 7.6 7.5 6.0 5.3 12.3 7.0

in a large number of experiments with additional val-
ues of NC , Q1, as well as shape parameters and range of
the underlying cost distribution. The results presented
here are qualitatively robust to changes within a very
broad range of these parameters.

Tables 1 and 2 provide a sense of the industry
dynamics over a broad range of parameter values.
The subset of parameter values that “dock” well with
observed patterns (Gort and Klepper 1982, Dunne et al.
1988) correspond to settingswithmoderate to low rates
of adjustment of firm capacity to its target value. In par-
ticular, Dunne et al. (1988, p. 503), report the entry and
exit rates in the four-digit U.S. manufacturing indus-
tries over the period 1963–1982 (see the data in their
Table 2). They find that the average entry rate over
the entire period was 49.0%, or 38.6% if the smallest
firmswere deleted (firms that jointly produce 1% of the
industry’s output). The corresponding exit rates were
46.4% (all firms) and 35.2% (small firms deleted). These
numbers translate to average yearly entry and exit rates
of 9.81% and 9.29%, respectively, including all firms,
and 7.72% and 7.04% if small firms are deleted. Newer
data, drawing from the Canadian economy, are con-
sistent with these numbers as well. In particular, dur-
ing the period of 2000–2008, the average yearly entry
and exit rates in the Canadian economy were 10.8%
and 9.0%, respectively (Ciobanu and Wang 2012). This
link between the rate of capacity adjustment to indus-
try dynamics points to an important, but arguably
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Table 2. Entry and Exit Over the Industry Lifecycle

Entry rates (%) Exit rates (%) Entry-Exit (%)

Phase Phase Phase

Delta Sigma 1 3 1 3 1 3

0.005 0.000 6.27 0.12 2.60 0.10 3.67 0.02
0.001 6.17 0.12 2.53 0.11 3.63 0.01
0.010 6.35 0.13 2.63 0.14 3.71 −0.01
0.025 6.62 0.17 2.94 0.20 3.68 −0.03

0.01 0.000 9.06 0.14 3.73 0.12 5.33 0.02
0.001 9.08 0.14 3.72 0.12 5.36 0.02
0.010 9.22 0.17 3.77 0.17 5.44 0.00
0.025 9.66 0.23 4.23 0.26 5.43 −0.03

0.05 0.000 11.73 0.20 4.81 0.19 6.92 0.01
0.001 14.34 0.21 5.89 0.20 8.44 0.01
0.010 19.35 0.38 8.03 0.43 11.32 −0.06
0.025 20.72 1.35 8.87 1.46 11.85 −0.11

0.10 0.000 2.97 0.13 1.55 0.15 1.42 −0.02
0.001 3.85 0.15 1.88 0.17 1.98 −0.01
0.010 22.93 0.47 9.83 0.52 13.09 −0.05
0.025 26.69 1.84 11.56 2.05 15.13 −0.20

0.50 0.000 1.15 0.14 0.87 0.15 0.29 −0.02
0.001 1.18 0.12 0.88 0.14 0.30 −0.02
0.010 15.88 0.60 9.78 0.66 6.10 −0.06
0.025 35.61 3.04 16.81 3.51 18.79 −0.48

1.00 0.000 1.19 0.17 0.90 0.18 0.29 −0.01
0.001 1.19 0.16 0.90 0.18 0.29 −0.01
0.010 10.59 0.63 7.91 0.71 2.68 −0.08
0.025 78.88 3.93 6.62 4.69 72.26 −0.76

somewhat neglected factor in understanding industry
dynamics (Knudsen et al. 2014).
Given the range of values of the rate of adjustment

(δ) and level of random shocks (σ) that correspond
to the empirically observed broad patterns of indus-
try entry and exit, the critical question becomes what
these values imply for the growth dynamics, in par-
ticular the values of β and serial correlation that they
imply. Before exploring this relationship, it is impor-
tant to recognize that the model makes distinct predic-
tions for these values at different epochs of the pro-
cess of industry evolution. Per Gort and Klepper (1982)
and Klepper and Graddy (1990), it is useful to demark
industry dynamics by three epochs of pre-shake-out
growth phase, the shakeout phase, and the post shake-
out convergence to a steady state. Themodel suggests a
systematic deviation from Gibrat’s law during growth
and the shakeout phase of industry evolution. Early on
in the industry history, firms grow in scale to realize
the new market niche. During this period, we would
expect, on average, to see a β value of greater than 1.
Further, we would anticipate seeing positive levels of
serial correlation as stronger firms that grew more in
an earlier period continue to growmore. More broadly,
it is in this early epoch that we would expect to see the
empirically observable expression of firm heterogene-
ity as evolutionary theories would suggest (Nelson

Table 3. Serial Correlation and Slope of Growth Equation
for Phase 1 (Growth Phase) and Phase 3 (Steady State) of
Industry Lifecycle

Serial corr. Beta value

Phase Phase

Delta Sigma 1 3 1 3

0.005 0.000 0.76 0.99 1.02 1.00
0.001 0.74 0.89 1.02 1.00
0.010 0.51 0.22 1.02 1.00
0.025 0.23 0.07 1.01 1.00

0.01 0.000 0.68 0.99 1.04 1.00
0.001 0.67 0.98 1.04 1.00
0.010 0.47 0.18 1.04 1.00
0.025 0.21 0.05 1.02 1.00

0.05 0.000 0.67 0.98 1.09 1.01
0.001 0.53 0.42 1.10 1.00
0.010 0.36 0.15 1.12 0.98
0.025 0.15 0.12 1.07 0.97

0.10 0.000 0.89 0.98 1.04 1.01
0.001 0.68 0.48 1.05 1.01
0.010 0.27 0.07 1.16 0.98
0.025 0.10 0.07 1.10 0.96

0.50 0.000 0.91 0.97 1.03 1.01
0.001 0.15 −0.05 1.03 1.00
0.010 0.03 −0.11 1.08 0.88
0.025 −0.01 −0.10 1.00 0.81

1.00 0.000 0.99 1.00 1.03 1.00
0.001 0.03 0.00 1.03 1.00
0.010 0.01 0.00 0.73 0.52
0.025 0.23 0.00 1.02 0.37

Note. For each phase, averages were computed across all periods in
that phase.

and Winter 1982, Klepper 1996). The implications for
β values during the shakeout phase are ambiguous,
as some firms began a secular decline that will ulti-
mately lead to their exit, while a subset of firms will
experience systematic growth as they fill the market
space vacated by other firms. For the same reason, at
the firm-level, we will see high levels of serial correla-
tion during these first two epochs. In contrast, during
the post shake-out convergence to a steady-state phase
of maturity, we expect to see results that are consistent
with Gibrat’s law.

Looking at Table 3, we see that in the phase of indus-
try maturity, for the empirically relevant values of rate
of adjustment (δ) and level of random shock (σ) (i.e.,
moderate rates of scale adjustment δ, and moderate to
high rates of random shocks σ), that the value of β
takes on the value of 1. Indeed, even in the absence of
a firm-specific shock we see that β still takes on a value
of 1. However, the pattern for the value of serial corre-
lation is quite different. In the absence of a noise term,
the value of serial correlation approaches 1; whereas,
in the presence of a substantial noise term and a mod-
erate to substantial rate of adjustment to the Cournot
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quantity value, the serial correlation approaches the
empirically observed value of near zero.
Consistent with our predictions, we see that in the

early growth phase of the industry, β tends to take a
value slightly above 1 while in the mature phase 3, for
moderate values of δ, the value of β conforms well to
the empirically predicted value of 1. Thus, we find that
it is possible to reconcile the apparent contradictions
posed by Geroski (2000). In the mature phase, when
firms adjust their production scale, very small values of
serial correlation are present when cost values are sub-
ject to even very small random perturbations. Further-
more, β, the parameter of the growth equation, takes
on a value of 1 regardless of the rate of adjustment.
Although we were able to dock the synthetic data

generated by the model to baseline regularities of
entry and exit, what about the empirical linkages with
this contrast of the fit of Gibrat’s law in relatively
mature stages of an industry’s evolution and the lack
of correspondence in early stages of industry evolu-
tion? Empirical analyses of industry evolution such
as Klepper and Graddy (1990) generally either do not
have measures of firm size or, as in the case of Agarwal
et al. (2002), size is measured by plant capacity or other
discrete categorical variables that do not readily link

Table 4. Four Moments of Size Distribution for Phase 1 (Growth Phase) and Phase 3
(Steady State) of Industry Lifecycle

Mean Std. dev. Skew Kurtosis

Phase Phase Phase Phase

Delta Sigma 1 3 1 3 1 3 1 3

0.005 0.000 1.00 3.08 0.94 2.79 1.85 1.18 7.58 4.00
0.001 1.00 3.08 0.94 2.79 1.87 1.18 7.67 4.01
0.010 1.00 3.37 0.92 2.94 1.89 1.16 7.76 3.98
0.025 1.04 3.82 0.93 2.96 1.70 0.99 6.66 3.60

0.01 0.000 1.30 3.35 1.27 2.93 1.86 1.09 7.32 3.71
0.001 1.30 3.35 1.27 2.90 1.84 1.06 7.17 3.63
0.010 1.29 3.87 1.23 3.04 1.87 1.02 7.40 3.62
0.025 1.33 4.64 1.23 3.19 1.70 0.80 6.43 3.21

0.05 0.000 3.02 3.66 2.78 3.03 1.40 0.98 4.90 3.43
0.001 2.90 3.92 2.72 3.05 1.46 0.96 5.13 3.41
0.010 2.63 7.56 2.60 2.91 1.59 0.27 5.54 2.87
0.025 2.64 11.45 2.54 5.20 1.49 −0.30 5.17 2.30

0.10 0.000 4.06 3.49 3.42 2.84 1.04 0.97 3.61 3.43
0.001 4.03 3.54 3.42 2.89 1.07 0.97 3.73 3.41
0.010 3.80 8.51 3.68 2.98 1.39 0.24 4.64 2.74
0.025 3.73 13.05 3.58 5.53 1.37 −0.30 4.57 2.24

0.50 0.000 4.49 3.49 3.63 2.83 0.93 0.95 3.33 3.38
0.001 4.47 3.49 3.57 2.81 0.91 0.95 3.30 3.39
0.010 8.06 9.34 5.70 3.15 0.73 0.25 2.92 2.56
0.025 8.85 16.10 7.16 6.16 0.80 −0.12 2.89 2.07

1.00 0.000 4.53 3.47 3.61 2.82 0.92 0.95 3.30 3.36
0.001 4.55 3.50 3.61 2.81 0.92 0.94 3.33 3.35
0.010 9.64 9.87 5.60 3.65 0.43 0.15 2.54 2.43
0.025 13.73 17.83 10.98 7.60 0.55 0.01 2.28 1.98

Note. For each phase, averages were computed across all periods in that phase.

to a consideration of Gibrat’s law. However, the work
of Dinlersoz and MacDonald (2009) does allow us to
engage in a further docking and testing of the model’s
empirical implications. Dinlersoz andMacDonald built
a panel data set of 322 four-digit industries over a
35-year period. Critical for our purposes, they catego-
rize these industries over time as corresponding to one
of the three stages in the Gort-Klepper industry lifecy-
cle: growth, shakeout, and steady-state. They examine
how the skewness in firm size distributions changes in
these different epochs and find that the size distribu-
tion is relatively skewed during the growth phase of
the industry. In contrast, the skewness in the size dis-
tribution is more modest in the later industry maturity
period. In contrast, they find that the standard devi-
ation in size values increases in the phase of indus-
try maturity. Table 4 examines these properties in the
context of the synthetic data generated by our model.
Indeed, these are the properties of the model results
as well for moderate rates of scale adjustment (δ), and
moderate to high levels of the shock term σ (σ values
of 0.01 or 0.025). Thus, compared to the early epoch of
an industry lifecycle, firm heterogeneity is increased,
as measured by the standard deviation in size, while
the skewness and kurtosis of the size-distribution is
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Figure 1(a). Single History Industry Output
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Notes. Rate of scale-adjustment, δ � 0.10. Firm-specific random
shocks, σ � 0.

smaller in the mature stages of industry evolution. Fur-
thermore, there is a reassuring consistency in that the
parameter values (δ, σ) that dock with Dinlersoz and
MacDonald’s (2009) observations on the standard devi-
ation, skewness, and kurtosis of the firm-level size-
distribution also fit the basic pattern of industry entry-
and exit-rates as characterized by Dunne et al. (1988)
and Ciobanu and Wang (2012).
The motivating question for this exercise is whether

firm-level heterogeneity is compatible with the growth
dynamic regularities of near zero-correlation in growth
rates and a growth parameter of 1. We have clearly
addressed these latter two properties. Let us now
directly consider the property of firm-level heterogene-
ity. Figures 1(c) and 2(c) do so, providing the distribu-
tion of cost values, plus and minus standard deviation
from the mean, across time. We see a substantial level
of persistent heterogeneity. Further, this heterogeneity
is not simply a byproduct of firm-specific shocks.While
firm-specific shocks to cost values do, to some degree,
increase the level of variation in cost values, the basic
heterogeneity is due to the fundamental process of the
entry process and Cournot competition (cf., Lippman
and Rumelt 1982, Klepper 1996, Knudsen et al. 2014).

Discussion
The analysis has examined some of the most basic
and pervasive regularities about industry dynamics.

Figure 1(b). Single History Number of Firms
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Notes. Rate of scale-adjustment, δ � 0.10. Firm-specific random
shocks, σ � 0.

The fact that firms have persistent differences (Syver-
son 2011) has, on its surface, appeared to be at
odds with the regularities we observe regarding the
growth dynamics of industry populations. Our model-
ing effort, however, reveals that these properties are in
fact not inconsistent. We have used a stylized model of
industry evolution to generate data on which we have

Figure 1(c). Single History, Evolution of Cost Values
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Notes. Rate of scale-adjustment, δ � 0.10. Firm-specific random
shocks, σ � 0.
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Figure 2(a). Single History Industry Output
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Notes. Rate of scale-adjustment, δ � 0.10. Firm-specific random
shocks, σ � 0.01.

applied the standard empirical analysis of firm growth
rates. The model generates synthetic data that, when
estimated using the standard methods in this domain,
yield estimated results consistent with baseline regu-
larities of industry and growth.

Firm differences play themselves out in the bat-
tle for market share—a battle that is attenuated by
the Cournot recognition of relative market power.
As the industry approaches steady-state equilibrium,
heterogeneity is expressed in divergent cost values
and market share. Growth rates, however, reflect off-
equilibrium disturbances. In contrast, in the early
stages of an industry’s evolution, firm-level hetero-
geneity is expressed in growth rates as well. Superior
firms grow at a faster rate as they fill out the market
niche. More generally, dynamic manifestations of het-
erogeneity are revealed when the industry is far from
equilibrium. As the industry approaches equilibrium,
heterogeneity is only revealed in the cross section (cost,
market share, etc.) and not in the dynamics.

Further, the model helps to illuminate the empiri-
cal deviations that have been identified from Gibrat’s
law (Evans 1987, Hall 1987, Bottazzi and Secchi 2006).
The deviations from a process of random propor-
tionate growth stem from the relatively rapid rates
of growth of young and small firms. However, our
work suggests that these anomalies may largely stem
from the relationship between growth rates and the
dynamics of industry evolution. The demography of an

Figure 2(b). Single History Number of Firms
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Notes. Rate of scale-adjustment, δ � 0.10. Firm-specific random
shocks, σ � 0.01.

industry population is disproportionately composed
of young, small firms at the outset of an industry’s
development. Certainly, while there may be inter alia
industry entrants (Klepper and Simons 2000, Helfat
and Lieberman 2002), that at the level of overall firm
size are of substantial scale, de novo entrants are both
“young” and “small.” Thus, the industry population
is heavily weighted with young and small firms at

Figure 2(c). Single History, Evolution of Cost Values
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Notes. Rate of scale-adjustment, δ � 0.10. Firm-specific random
shocks, σ � 0.01.
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a point in the industry dynamics where our analysis
indicates that the growth rate parameter takes on val-
ues in excess of 1.
More generally, the empirical analysis of firm

growth, from the early work of Ijiri and Simon (1964
and 1967) onward, has been largely decontextualized
from historical time and place. By that, we mean stud-
ies generally consist of panel data sets andwhile indus-
try controls may be applied, where “industry” is iden-
tified by a SIC classification (typically at the four-digit
level), these classifications are very poor proxies for
industry membership where industry is conceived as
a set of products and services with high rates of sub-
stitutability. A further characteristic of such panel data
sets is that their beginning and end points tend to be
rather arbitrary time markers. Thus, even if the SIC
classification was a fairly good match of an underlying
industry, the sample is, in most instances, likely to cen-
sor the early stage of the industry’s developmentwhere
their evolutionary dynamics are most pronounced and
the manifestation of firm heterogeneity in growth rates
most visible.

The aggregate behavior of an industry population
is not merely the sum of independent firm character-
istics, as most treatments of Gibrat’s law have implic-
itly assumed. The structure of competition impacts
the observed firm-level dynamics. When competitive
forces are relatively weak in the early stages of an in-
dustry’s evolutionary dynamic, we see strong empir-
ical manifestations of firm-level heterogeneity in the
form of differential growth rates. It is when competi-
tive dynamics are more binding at more mature stages
of the industry, that firm-level heterogeneity is sup-
pressed with respect to growth rates. However, even
then, the observation of homogeneous and propor-
tionate growth rates need not be at odds with firms
being quite heterogeneous, having diverse cost values
and associated market share. Firm heterogeneity and
Gibrat’s law are not incompatible truths, but rather
basic elements of a more unified understanding of firm
and industry dynamics.
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Appendix. Outline of a Formal Explanation
Here we sketch a proof that can explain why even small
random shocks caused by sequential adjustment or pertur-
bations of cost values may cause zero serial correlation. Sup-
pose firms are subject to random shocks in cost values so they
adjust desired output upward or downwardwith equal prob-
ability. For simplicity, further assume that all adjustments are
of unit size, so that differences in scale between two points
in time are randomly distributed numbers drawn from the
set {−1, 0,+1}. We wish to extract the covariance between

the vectors ∆1 and ∆2, each containing differences in scale
between two points in time:

Cov(∆1 ,∆2)� E[(∆1 −E[∆1])(∆2 −E[∆2])]
� E[∆1∆2] −E[∆1]E[∆2].

As negative and positive values occur with equal probability,
they cancel each other out, and E[∆1] and E[∆2] both go to
zero as the number of firms increases, or, equivalently, if the
expectation is taken over a larger number of observed firm
histories. Thus, E[∆1] E[∆2] goes to zero as the number of
observations increases. The product∆1∆2 is, with equal prob-
ability, zero, negative, or positive. Hence, assuming negative
and positive values occurwith equal probability, E[∆1∆2] also
goes to zero as the number of observations increases. Since
E[∆1]E[∆2] and E[∆1∆2] both approach zero with increas-
ing number of observations, so does Cov(∆1 ,∆2). This means
that we shall observe evidence of unsystematic serial correla-
tion whenever mutual adjustments are symmetrical and unit
sized.

This argument is readily extended to the case where ran-
dom shocks to cost values are symmetrically distributed
around a mean of zero. In that case, two equal sized adjust-
ments of opposite signs occur with equal probability. Thus,
we see that the condition necessary to produce unsystem-
atic variation in firm size distributions, as measured by serial
correlation, is that firms are subject to random shocks that
make them scale up or down with equal probability. As we
have shown, the source of such shocks can either be random
firm-specific shocks in cost values, or a serial process of scale
adjustment that involves ongoing mutual adjustments. Even
though these shocks occur at random, it is easy to recon-
cile with a process where each firm systematically adjusts its
scale according to its circumstance. That is, external shocks in
a sense mask the underlying systematic nature of the adjust-
ment process. Thus, we argue that the size of a firm at any
time is more than just the sum of the whole history of shocks,
which it has received since it was founded (Geroski 2000).
Rather, the size of the firm is joint effect of sum of the history
of the shocks the firm has received and the way it has reacted
to those shocks.

Endnotes
1 Indeed, in our collaboration on this project we came to refer to these
seemingly inconsistent properties as “Geroski’s paradox.”
2We forego development of the elementary details, since they are
well established in the literature (c.f., Sutton 1997).
3This structure poses the potential for cost to fall below the value of
zero. If a sequence of random draws were to result in a realized cost
value that violates the bound of zero cost, then a new draw of the
random noise term is carried out. In our computations, however, the
probability that this occurs is small since σ2 ≥ 0.025. In the runs that
underlie the subsequent analysis, this condition was never realized.
4A more behaviorally plausible alternative would be for firms to
form their Cournot conjectures regarding market price based on
the prior period quantity choices by competitors. A Cournot model
based on prior period output generates model results that are essen-
tially the same as those provided here. A model that postulated con-
jectures as being some mixture of prior and current period product,
a behavioral adjustment model, generates somewhat distinct behav-
ior as the behavioral adjustment process is itself a source of “noise”
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in the process of industry dynamics. However, even in this case the
qualitative properties characterized here continue to hold.
5The serial correlation is defined when at least one firm changes
output between consecutive time steps (1, 2) and (3, 4). Because of
ongoing adjustment to entry and exit, this condition is almost always
fulfilled in our model.
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