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Abstract

I empirically measure the welfare gains from optimal incentive regulation in the context of

electric utilities facing both emissions and rate of return regulation (RORR). I provide evidence

that RORR induces lower fuel efficiency, leading to greater coal consumption and higher emis-

sions abatement costs. Replacing RORR with the optimal mechanism of Laffont and Tirole

(1986) yields annual welfare gains of $686 million or a 11% reduction in electricity prices. I

construct a much simpler two-contract menu that can achieve more than 65% of these welfare

gains.

1 Introduction

The theory of regulation has made important contributions to understanding the nature of regu-

latory problems and the design of optimal mechanisms (Laffont and Tirole, 1993; Laffont, 1994a;

Armstrong and Sappington, 2007; Nobel Media AB, 2014). Central to the theory are informational

constraints that limit the regulator’s ability to steer the firm towards the former’s objective (Laffont

and Tirole, 1993). The optimal mechanism explicitly takes into account the regulated firm’s infor-

mational advantage and anticipates how it can strategically exploit it (Laffont, 1994a). Although

much progress has been made in the characterization of the optimal mechanism, few empirical

studies measure their actual benefits. First, since optimal mechanisms can be quite complex and

require a high level of sophistication, they are rarely observed in practice hence making program
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evaluation infeasible. Second, a structural approach that evaluates the optimal mechanism as a

counterfactual requires estimation of elements unobserved by the regulator and the econometrician.

Identification in structural regulatory papers often assumes that the optimal mechanism is already

implemented in the data, which then precludes any normative analysis.

I empirically measure the welfare gains from optimal incentive regulation using data from U.S.

electric utilities that were subject to both price regulation known as rate of return regulation

(henceforth, RORR), and environmental regulation in the form of the Acid Rain Program–a market-

based sulfur dioxide (SO2) emissions program that targeted the dirtiest coal plants. I provide

evidence that RORR induced lower fuel efficiency, leading to greater coal consumption and higher

SO2 emissions abatement costs. I estimate a structural model of electricity production and emissions

abatement, and simulate a counterfactual where RORR is replaced by Laffont and Tirole’s (1986)

optimal mechanism.

The first contribution of the paper is to empirically quantify substantial welfare gains from the

optimal mechanism. The second contribution is to show that a large fraction of these welfare gains

can be achieved through a well-designed contract that is simple enough to implement.1

The electricity industry is one of the key industries with a long history of economic regulation.

In the U.S., electricity was mostly provided by vertically-integrated electric utilities that own and

operate the generation, transmission and distribution of electricity.2 These utilities were legal

monopolists protected from essentially any threat of entry. In return for the right to operate as a

monopolist, electricity prices were regulated by the state public utility commission.

Recent studies of the U.S. electricity industry provide empirical evidence of inefficiencies arising

from RORR.3 To explain these inefficiencies, the “new economics of regulation” (Laffont, 1994a)

emphasizes the role of asymmetric information in the regulator-firm interaction. In RORR, the

1Rogerson (2003) computes a numerical example to show that a simple menu composed of a fixed price contract

and full cost-reimbursement captures over 75% of welfare under the more complex optimal mechanism. Chu and

Sappington (2007), and Bose, Pal, and Sappington (2011) investigate the performance of simple linear contracts

using numerical examples as well. To the best of my knowledge, my paper is the first to empirically show the

performance of simpler contracts. There is an active theory literature that investigates the efficacy and robustness

of simpler contracts (e.g. Chassang, 2013; Garrett, 2014; Carroll, 2015; Dai and Toikka, 2017).
2My sample covers a period before the wave of electricity restructuring. For restructured states, utilities were

required to divest the the generation side of their business with the rest of the supply chain still owned by the utility

and regulated under RORR. There are currently 32 states that did not restructure. For these states, the generation

side remains under RORR.
3Recent examples that compute the “average treatment effect” of RORR include Fabrizio et al. (2007) on non-fuel

input costs, Davis and Wolfram (2012) on nuclear plant operations and maintenance, Cicala (2015) and Han et al.

(2018) on coal procurement, and H. S. Chan et al. (2017) on fuel efficiency, procurement costs, and capacity factors

of coal-fired plants. These papers essentially compare plants under RORR with similar plants in restructured states

that compete in a wholesale market.
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regulator needs to set regulated prices to cover the utility’s cost. However, cost is directly affected

by the utility’s actions which are not perfectly monitored by the regulator. The inability to perfectly

monitor the utility combined with the requirement that the utility has to be reimbursed for its cost

creates an agency problem. The utility is no longer the residual claimant of cost-reducing effort and

will not have the incentive to operate efficiently. Thus, asymmetric information and the resulting

agency problem serve as important constraints that shape regulatory instruments and limit the

ability of these instruments to achieve their intended outcomes.

Because of the electricity industry’s reliance on coal and natural gas, inefficient electricity

generation not only creates pecuniary negative effects brought about by higher electricity prices,

but also exacerbates the negative externality problem associated with burning fossil fuels (Cicala,

2015; H. S. Chan et al., 2017; Han et al., 2018). The externality problem cannot be overstated

since the electricity industry is arguably the single largest source of harmful emissions. Therefore,

it is necessary to understand the interaction between economic and emissions regulation in order

to make sound policies.

Figure 1 illustrates the interaction between economic and emissions regulation. This example

shows how the negative incentives from RORR lead to inefficiencies even with an otherwise efficient

market-based mechanism (Buchanan, 1969). Suppose there is a single electric utility producing a

fixed quantity of electricity q. Producing electricity generates emissions; assume that in producing

q the firm chooses to abate a tons of SO2 emissions. Under RORR, the total cost of producing

the pair (q, a) is Ĉ(q, a) with marginal abatement cost denoted by Ĉa(q, a). Ĉ(q, a) maps (q, a)

to some dollar amount and need not reflect cost minimization. If the firm faces a competitive

electricity price, it will have an incentive to minimize cost and so the total cost of (q, a) will be

given by the optimal C∗(q, a). On the other hand, if RORR does not provide incentives to minimize

cost, then it would be more expensive to produce (q, a) in total and possibly at the margin, i.e

C∗a(q, a) ≤ Ĉa(q, a). Consider a Pigouvian tax set equal to a constant marginal externality of

emissions (or marginal benefit of abatement), τ . Facing the Pigouvian tax, the firm abates â under

RORR, which is lower than the efficient level of abatement a∗. Thus, distortions due to RORR

lead to inefficient outcomes despite implementing an otherwise efficient market-based environmental

mechanism.

Incentive regulation theory gives us guidance on how to think about regulatory problems like in

the previous example, and how to design optimal regulatory mechanisms to handle these problems

(Laffont and Tirole, 1993; Laffont 1994b). The key insight is that when provision of incentives

is costly due to asymmetric information, it may be optimal to distort allocative efficiency to de-

crease information rents. The optimal form of regulation may involve abatement levels that do

not equate marginal damages from emissions with marginal abatement costs, up to the point that
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the first order gain from reducing information rents just balances the second order cost of ineffi-

ciency. Despite the simplicity of this insight, policies inspired by incentive regulation have rarely

been implemented. The design and implementation of such mechanisms require significant effort

and sophistication in terms of information gathering, rigorous auditing and analyses (Kahn, 1988;

Joskow and Schmalensee, 1986; Joskow, 2008). Moreover, uncertainty over the actual benefits

and costs of mechanisms, and the subsequent negative political and economic consequences in cases

where such attempts are unsuccessful, make it difficult to convince policy-makers to adopt untested

mechanisms. Therefore the goal of the paper is to quantify the theoretical gains from the optimal

incentive mechanism, and see whether we can design more practical yet effective alternatives.

To quantify the gains from the optimal mechanism, I adopt Laffont and Tirole’s (1986) model

of monopoly regulation under asymmetric information. Cost is a function of a firm’s intrinsic type

and endogenous effort. Although a higher type means higher cost, firms can exert effort to reduce

cost. Exerting effort is costly, and this cost is captured by the disutility of effort. In the model, the

regulator observes cost but cannot separately identify type and effort: a firm with high cost may

either be intrinsically inefficient or did not exert sufficient effort.

I use a novel identification strategy that exploits the variation in cost induced by the timing of

RORR to separately identify type and effort. RORR is characterized by alternating periods when

prices are set by the regulator (i.e. rate case), and when prices are essentially fixed until the next

rate case (i.e. regulatory lag). Using panel data on electric utility operations, I find that, all else

equal, firms’ fuel efficiency drops by more than 4% during rate case years compared to non-rate

case years. Lower fuel efficiency leads to higher marginal abatement cost since, when switching to

lower sulfur coal, less efficient plants suffer a greater loss in electricity production even for a small

reduction in SO2 emission rates.

The rate case regulatory institution and the observed pattern in fuel efficiency and cost are

consistent with the following story that I exploit for identification. During rate cases, costs are

fully reimbursed and so the firm has an incentive to increase cost as much as possible. The firm

optimally sets a minimum level of effort and this allows identification of the type distribution

from observed costs during rate case years.4 Next, the firm becomes the residual claimant to cost-

reducing effort during regulatory lag years and therefore has incentives to exert an optimal level of

effort characterized by the equality of the firm’s marginal benefit of exerting effort with its marginal

disutility. Thus, I can use the implied level of effort from taking the difference between cost during

the rate case and during the regulatory lag to invert the optimality condition and identify the effort

4The minimum level of effort can vary across firms, e.g. how strict the regulator is in auditing the firm. Since

I normalize the minimum level of effort to zero for all firms, the estimated type absorbs the variation in minimum

effort.
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disutility function.

The shape of the type distribution is an important determinant of the complexity of the optimal

mechanism and the size of the welfare gains. For example, if the type distribution is degenerate at a

single type, then the optimal mechanism is just a fixed price contract equal to this type’s cost under

optimal (first best) effort. The type distribution I estimate exhibits significant heterogeneity and

a particularly long tail. This observation alludes to potentially large welfare gains from allowing

firms flexibility in terms of optimally choosing emissions and effort. At the same time, we might

want to heavily distort effort downwards for extremely inefficient types to reduce information rents.

Using the estimated type distribution and effort disutility function, I simulate emissions under

counterfactual regulatory contracts. To isolate the impact of RORR on an otherwise efficient

market-based mechanism, I vary the form of economic regulation they face given a counterfactual

Pigouvian tax on SO2 emissions.5

I have the following results. First, assuming a constant marginal benefit from abatement equal

to $100 per ton of SO2, I find that observed emissions are 32% higher compared to the counterfactual

first best (i.e. competitive pricing and Pigouvian tax) level of emissions. Second, replacing RORR

with the Laffont and Tirole (1986) optimal mechanism achieves welfare gains of $686 million,

which in magnitude is equivalent to a 11% reduction in electricity prices. Compared to the first

best, emissions under the optimal mechanism are 5% higher. The optimal mechanism introduces

some distortion in efficiency (higher emissions) in exchange for lower information rents. Although

emissions are distorted upwards under the optimal mechanism, this level is far below the observed

upward distortion in emissions from RORR. Third, since the optimal mechanism is likely infeasible

to implement in practice,6 I construct a simple menu composed of two choices: a fixed price contract

or full cost-reimbursement.

I find that the optimal simple menu sets the fixed price equal to the first best cost of the 25th

percentile of the intrinsic cost distribution. Firms that have efficiency above the 25th percentile opt

for the fixed price contract and exert the first best level of effort. On the other hand, firms that have

5The Acid Rain Program is implemented via a cap-and-trade instead of a Pigouvian tax. Although theoretically

the equilibrium SO2 emissions price under cap-and-trade should be equal to the Pigouvian tax, in practice these

diverge. The cap set for the Acid Rain Program involved several concessions to achieve political consensus (Joskow

and Schmalensee, 1998), hence the resulting equilibrium price is likely to be lower than the marginal externality.

Another reason is that prices in the Acid Rain Program were volatile due to regulatory uncertainty and speculation

about the future of the program (see for example the Wall Street Journal article “Cap and No More Trade”, July

12, 2010). Finally, there are some concerns about the efficiency of the emissions permit market, although empirical

evidence is mixed (e.g. Bailey (1998); Joskow, et al. (1998); Schmalensee et al. (1988); Ellerman et al. (2000);

Ellerman and Montero (2001)).
6Laffont (1994b) shows that the optimal mechanism can be implemented via differentiated emissions taxes and

transfers, the complexity of which depends on the degree of heterogeneity across regulated firms.

5



efficiency below the 25th percentile opt for full cost-reimbursement and exert zero effort. Similar

to the optimal mechanism, incentives for low efficiency types are distorted to reduce information

rents paid to types that are receiving the fixed price. This simple menu can achieve at least 65%

of the welfare gains under the optimal mechanism. The ability of the simple menu to achieve a

sizable fraction of the welfare gains is tied to the shape of the estimated type distribution. Simply

“dropping” the long tail consisting of the most inefficient firms significantly reduces information

rents and brings us closer to the optimal mechanism.

The paper contributes to three main literatures. First, I contribute to the structural empirical

regulation literature pioneered by Wolak (1994). Wolak (1994) and Brocas et al. (2006) use the

normative models of Baron and Myerson (1982) and Besanko (1985) to provide a link between

observed behavior and the firm’s private information. This approach assumes that the actual regu-

latory institution can be modeled “as if” the optimal form of regulation was being implemented.7 In

contrast to the normative approach, I exploit the actual regulatory institution in my identification

strategy, similar to Gagnepain and Ivaldi (2002), and more recently, Lim and Yurukoglu (2018).

Second, I contribute to the growing empirical literature on environmental regulation. My work

is most related to recent papers studying the interaction between market-based mechanisms, and

existing market structure and regulatory institutions.8 Closest to the regulatory institutions in my

paper is Fowlie’s (2010) analysis of the interaction between RORR and the NOx budget program,

which is a cap-and-trade program to regulate NOx emissions. Comparing restructured states to

those still under RORR, she finds that firms facing RORR tend to utilize compliance methods

that are more capital-intensive. Unlike Fowlie (2010), I do not focus on the choice of abatement

method since firms mainly switch to lower sulfur coal during my sample period. In fact, the issue

of information asymmetry is unlikely to arise with respect to the choice of abatement method since

the regulator observes coal prices and the capital cost of end-of-pipe equipment to remove SO2 from

the emissions stream; thus my focus is on agency problems arising from the difficulty of monitoring

firms’ effort in managing fuel efficiency.

Third, I contribute to the empirical literature that examines the effects of economic regulation

7The optimal mechanism characterizes a mapping between the firm’s private information and observed regulatory

variables (e.g. price and rate of return) which can then be inverted to identify and estimate the firm’s primitives

(Perrigne and Vuong, 2011). Although Perrigne and Vuong (2011) allow observed regulatory variables to deviate

from the ones specified by the optimal mechanism, this deviation has to be unsystematic, i.e. unrelated to the firm’s

primitives.
8For example, looking at the U.S. cement industry, Fowlie, Reguant and Ryan (2016) find empirical support for

Buchanan’s (1969) argument that only under conditions of perfect competition would a Pigouvian tax be “unam-

biguously hailed as welfare-improving.” In fact, their estimated welfare losses under a Pigouvian tax are substantial

in this highly concentrated market: $18 billion with a carbon tax of $30 per ton.
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on the electricity industry. Recent literature focuses on agency problems and attempts to estimate

the effect on technical efficiency by comparing plants located in restructured states with plants in

states that remained under RORR (e.g. Fabrizio et al., 2007; Davis and Wolfram, 2012; Cicala,

2015; H. S. Chan et al., 2017; Han et al., 2018). In contrast, I provide firm-level evidence of the

impact of agency problems on fuel efficiency by looking at the variation in incentives induced by

the timing of rate cases.

The paper is organized as follows. The next section provides a brief overview of SO2 emissions

regulation and RORR. Section 3 examines RORR both theoretically and empirically. I construct

a three-period model of RORR with Laffont and Tirole’s (1986) information structure to study

how the timing of rate cases affect the utility’s incentives. I then move to the data and show

that variation in cost and fuel efficiency induced by the timing of rate cases is consistent with the

theory. The section ends with a discussion of the assumptions needed to exploit this variation

for identification of the firm’s type and disutility of effort. Section 4 is devoted to identification

and estimation while Section 5 uses the estimated parameters to conduct counterfactual welfare

analysis. Finally, Section 6 concludes. For the benefit of the reader, Figure 2 shows the key steps

involved in the estimation and counterfactual analysis.

2 Background

2.1 Pollution regulation

The electricity industry is arguably the single largest source of harmful emissions. In the U.S. for

example, the industry accounts for 38% of CO2 emissions (Environmental Protection Agency, 2014)

and 65% of SO2 emissions (Environmental Protection Agency, 2001). Because of its significant con-

tribution to pollution, the industry has constantly been the prime target of environment regulations.

I focus on the time period 1988-1999 which covers the design and first Phase (1995-1999) of the

Acid Rain Program (ARP).

The ARP is the George H. W. Bush administration’s answer to the demands for serious SO2

emissions regulation of electric utilities, and is enforced by the Environmental Protection Agency’s

(EPA) under the Clean Air Act. ARP is a federal cap-and-trade program that establishes a market

for SO2 emission permits. While generally lauded as a success (G. Chan et al., 2012), the legislative

history of ARP illustrates that implementation of the program largely hinged on the ability to

provide concessions to states and their local economies (Joskow and Schmalensee, 1998; Ellerman

et al, 2000 Ch 3; G. Chan et al., 2012; Schmalensee and Stavins, 2012). Concessions were in the form

of initial permits directly given to affected electric utilities for free, with the hope of eventually

passing the benefit of these free permits to consumers via lower electricity prices. Joskow and
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Schmalensee (1998) estimate the value of these permits to be about $600 million to $1.8 billion.

Phase I of the ARP regulates the top 300 dirtiest coal-fired plants in the U.S. in terms of SO2

emissions as designated in Table A of the statute. Although the electric utilities that own these

Table A plants burn other types of fuel (or generate electricity from non-fossil fuel sources), these

firms primarily rely on coal to produce electricity: the average ratio of coal consumption to total

fuel burned is about 92%.

Coal contains sulfur and SO2 is released to the atmosphere as a by-product of the fuel-burning

process. Sulfur content ranges from about 0.2 pounds per heat input (lbs/MMBtu) to about 7

lbs/MMBtu (Perry et al., 1997). There is a tradeoff between heat and sulfur content: bituminuous

coal tends to have a higher heat content—hence a higher ability to generate electricity for the same

mass of coal—but also high sulfur content compared to sub-bituminuous coal. Hence, all else equal,

plants tend to burn coal with higher sulfur content absent pollution regulation.

It is important to point out that distance of the plant from coal mines is another factor that

determines coal choice since transportation costs are a significant component of delivered prices.

The dirtiest plants in terms of SO2 are those that are located far from sources of lower sulfur coal.

Rail deregulation and falling delivered prices of sub-bituminuous coal from the Powder River Basin

(PRB) made this type of coal more competitive. However Ellerman et al. (2000, p. 89) note that

although the competitiveness of PRB coal led to an overall decrease in contracted prices of coal,

long-term contracts continued delivering high sulfur coal to Table A plants.

Two primary forms of reducing SO2 emissions are fuel-switching and installation of a flue-gas

desulfurization (FGD) unit, also known as a scrubber. Fuel-switching involves using coal with lower

sulfur content or blending different types of coal with varying sulfur contents. In contrast, a plant

can install an FGD which is an end-pipe control technology installed near the plant’s emission

stacks. The plant can still burn high sulfur coal, and the FGD will “scrub” SO2 from the emissions

stream. Compared to installing FGDs, fuel-switching was the more popular abatement method

during Phase I. Although FGDs can remove almost 100% of SO2 emissions, fuel-switching still

accounted for 54% to 60% emissions reductions (Ellerman and Montero, 2007, Table 5). Plants

with FGDs represent only 20% of all the plants during my sample period. Moreover, out of the 150

plants with scrubbers, only 15 plants installed scrubbers specifically in response to ARP. The rest

of the plants installed scrubbers to satisfy SO2 regulations that were in place well before the ARP.

For fuel-switching, the cost of reducing emissions is a function of the relative prices of coal with

different sulfur contents, and also of fuel efficiency. If the coal-burning process is more efficient, then

less coal is needed to produce the same amount of electricity. Consequently, the cost of changing

to lower sulfur coal will be less with greater fuel efficiency, the reason being that lower sulfur coal

contains less heat. In my sample, shifting to coal that complies with the ARP’s implicit emissions
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standard of 2.5 lbs per MMBtu leads to a “heat penalty” of 2%. That is, to produce the same

amount of electricity, coal consumption has to increase by 2%. In this case, abatement cost is

proportional to the amount of coal originally needed, which is higher the less efficient the firm is.

2.2 Rate of return regulation

Against the backdrop of SO2 emissions regulation, electric utilities were also facing state-level

price regulation in the form of rate of return regulation (RORR). During the sample period, the

electric utilities were operating as vertically-integrated monopolists responsible for the generation,

transmission and distribution of electricity for a service area in a given state.

In exchange for the right to be a monopolist, electricity prices are set by a state-level regulator

known as the Public Utility Commission (PUC) based on information about cost and operations

that the firm provides. Legally, the PUC is tasked to provide prices that reflect a “fair” rate

of return on an electric utility’s invested capital and that would adequately recover the utility’s

operating cost. As to what constitutes a fair rate of return is not explicitly specified and moreover,

the PUC can question the “used and usefulness” of the utility’s investments and the prudency of

the firm’s operations.

Different PUC objectives sway the generosity of approved rates of return and the stringency

of prudency reviews (Lim and Yurukoglu, 2018). While understanding the objectives of PUCs

is important, I take these objectives as given and focus on how utilities optimally react to two

procedural features of RORR. The first is the actual price-setting process, which is conducted via a

quasi-judicial proceeding called the rate case. The second feature is the regulatory lag that occurs

in between two consecutive rate cases, where prices remain fixed.

The primary goal in the rate case is to set the revenue requirement, which is the total amount

to be collected from consumers to compensate the firm for providing electricity. The revenue

requirement is the sum of operating expenses and a return on the assets of the firm. The return

is the product of the rate base, which is the value of the firm’s investment, and an allowed rate of

return.

Since the regulator needs information to determine what revenue requirement to authorize,

the rate case serves as a platform for the firm to provide information about its operating cost

and environment. A hearing takes place where the firm and concerned parties (e.g. consumer

interest groups) participate and provide testimony on the rationale of the proposed changes and

the potential impacts these may have on consumer welfare. The firm, consumer groups, and the

commission staff testify to support their position and to refute opposing arguments. A discovery

phase also occurs where data and evidence are presented. If a settlement between concerned parties

is not reached, the PUC commissioners decide on the case. The decision consists of the approved
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revenue requirement which often differs from the initial proposal of the firm (difference is about

4% of proposed revenue requirement, on average).

In theory, the debate and disagreement in rate cases revolve around the three components of

the revenue requirement: operating expenses, the rate base, and the rate of return. In practice,

major rate cases focus on the determination of the rate base and the rate of return. Reported

operating expenses are often passed through as long as these abide established accounting rules

(Alt, 2006). In fact in my data, an often cited reason for initiating a rate case is to adjust electric

utilities’ return on equity, or to include a new plant (or a previously disallowed portion of some

nuclear capacity) into the rate base. Moreover 80% of the amount the PUC disapproves are rate

base and return on equity-related.

Once the revenue requirement has been determined, electricity rates are then set. Rates essen-

tially remain fixed until the next rate case, except for adjustments triggered by significant changes

in fuel prices. The price of the most relevant fuel (coal) during my sample remained flat so was

unlikely to trigger a significant adjustment. Thus, at least to a first order approximation, electricity

prices during regulatory lags were fixed.9

3 Rate of return regulation: theory and evidence

I model RORR as a three-period model of regulator-firm interaction. The key aspect of RORR that

the model captures is the timing of rate cases. The model shows that RORR induces the utility

to (i) decrease effort and raise the regulated electricity price set during the rate case, and then

(ii) increase effort to some optimal level to maximize and extract the wedge between the approved

regulatory price and the firm’s operating cost during the regulatory lag. I then use panel data on

cost, operations and rate case variables to show that variation in cost and fuel efficiency induced

by the timing of rate cases is consistent with the theory. I end the section with a discussion of the

assumptions needed to exploit this variation for identification.

3.1 Incentives during rate cases and regulatory lags

The main objective of a rate case is to set the revenue requirement which I denote as RR. It is the

sum of operating cost, C̃, and the return on the rate base, R̄. R̄ is a utility’s profit over and above

its operating costs, and is equal to the monetary value of the firm’s capital (rate base) multiplied

by an allowed rate of return. The model’s focus is on how C̃ influences R̄ and I do not separately

model the components of R̄, i.e. the rate base and the rate of return.

9I show the robustness of my analysis to other institutional features of RORR including fuel adjustment clauses

in the online appendix.
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I adopt the information structure in Laffont and Tirole’s (1986) model of monopoly regulation

under asymmetric information. I assume the regulator observes operating cost C̃. Operating cost

is a function of an type θ that determines the firm’s intrinsic cost efficiency, and effort e ≥ 0 which

reflects activities that can improve efficiency, both of which are not separately observed by the

regulator. Formally, operating cost is given by C̃(θ) = exp (θ − e)C (q, s) where q is the quantity

of electricity produced and s is a measure of SO2 emissions. Cost is strictly increasing in θ and

strictly decreasing in e. The firm’s intrinsic type θ is a draw from some distribution Fθ. The firm

can reduce its cost by exerting effort. However, exerting effort is costly for the firm where this cost

is captured by the disutility function ψ (e). I assume ψ(·) is strictly increasing and strictly convex.

The goal is to examine how RORR affects a utility’s incentive to reduce its cost. To do this,

I consider a three-period model. In period t = 1, a rate case is held where C̃ is observed and

the regulator determines R̄ potentially using cost information. Once the rate case concludes, we

enter period t = 2, which is the regulatory lag. Consistent with the idea of a regulatory lag, I

assume that the regulator commits to setting the revenue requirement in period 2 to be equal to

the revenue requirement from the preceding rate case (i.e. period 1): RR2 = RR1 = C̃1 + R̄1(C̃1).

Finally, period t = 3 is a new rate case and the model ends once this case concludes. I allow

the return in period 3 to depend on current and past cost, i.e. R̄3(C̃1, C̃2, C̃3). Thus in period 3,

RR3 = C̃3 + R̄3(C̃1, C̃2, C̃3).

The relationship between R̄t and C̃t′ determines a utility’s incentive to exert effort at each time

t, t′. Suppose that the regulator completely ignores C̃1 in determining both current and future R̄t,

say because the regulator only uses information directly pertaining to the rate base or return on

equity. Then exerting effort to lower C̃1 will only decrease RRt without any additional benefit to

the utility. Therefore it will be optimal for the utility to exert zero effort in this case.

The following proposition summarizes conditions such that we would expect the utility to exert

(i) zero effort during rate cases, and (ii) optimal “first best” effort during regulatory lags.10

Proposition 1 If ∂R̄1(C̃1)

∂C̃1
, ∂R̄3(C̃1,C̃2,C̃3)

∂C̃1
, ∂R̄3(C̃1,C̃2,C̃3)

∂C̃3
≥ 0, and ∂R̄3(C̃1,C̃2,C̃3)

∂C̃2
= 0, then (i) e∗1 = 0,

(ii) e∗2 > 0 and solves exp (θ − e∗2)C (q, s) = ψ′(e∗2), and (iii) e∗3 = 0.

The conditions in Proposition 1 reflect the non-accountability of costs in periods 1 and 3,

consistent with the idea that costs are fully passed through to electricity prices during rate cases

(i.e. the notion of cost-of-service regulation). This means that at the margin, the benefit of exerting

effort to reduce costs during periods 1 and 3 is zero. Since exerting positive effort is always costly at

the margin, it will be optimal for the firm to exert zero effort in those periods. However, incentives

are different in period 2. Since now cost in period 2 affects period 2 profits because the utility is

10The online appendix constains the proof.
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the residual claimant of cost-reducing effort by virtue of R̄2 being fixed, it is worthwhile for the

firm to exert positive effort at the margin even if it incurs some disutility in doing so. Specifically,

the utility will set effort such that the marginal benefit of exerting effort is equal to its marginal

disutility.

3.2 Evidence on rate case timing and fuel efficiency

I now turn to the data to see how rate case timing is related to cost and fuel efficiency. My

sample consists of electric utilities that have coal plants covered by Phase I of the EPA’s Acid Rain

Program. I use operations and fuel data from the Energy Information Administration’s (EIA) Form

767 and the Federal Energy Regulatory Commissions’ (FERC) Form 423. I combine these with

financial and rate case data from SNL Financial and the Regulatory Research Associates (RRA).

Details on data construction are in the online appendix.

Table 1 contains operations and cost statistics for my sample. The number of firm-year obser-

vations is 351. The operating and maintenance (O&M) variable cost measure is the sum of fuel

and non-fuel O&M expense related to electricity generation. Fuel expense accounts for about 75%

of O&M expense, on average. Moreover, on average, coal accounts for about 93% of total fuel

consumption while about 5% and 3% are oil and natural gas respectively. Average O&M cost per

kilowatt-hour of net generation is about 1.8 cents. Fuel efficiency is inversely measured by heat

rate, which is the amount of fuel burned per unit of output. Firms that have higher heat rates are

less fuel efficient. The mean heat rate is 10.67. In terms of efficiency, this heat rate corresponds to

about 3.412/10.67 = 32%, which is typical for coal plants during this time period.

Table 2 contains rate case statistics for the utilities. On average, a rate case lasts just over a

year but can extend for 3 years. The average number of years from the time a rate case is authorized

to when a new rate case is proposed (i.e. the regulatory lag) is 2 but can be as long as 6 years.

Majority of utilities in my sample experienced no more than 3 rate cases during 1988-1999.

Recall that the return on the rate base (RRB) is the return that the utility gets from its

investment, net of operating cost. It is the product of the monetary value of its assets (rate base)

and a rate of return (ROR). The firm proposes the rate base and ROR at the beginning of the

case, and the regulator authorizes a rate base and ROR at the end. Although in theory, one can

go over the individual rate case reports and pinpoint which are the specific expense categories that

were not allowed by the regulator, I construct a summary measure instead. Specifically, I define a

disallowance as the difference between what the firm proposes and what is eventually authorized by

the regulator. A disallowance arises either because a specific expense was disallowed, or there was

a disagreement on the monetary value of a given expense. On average, about 4% of the proposed

revenue requirement is disallowed. This disallowance ranges from no disallowance to 12%. The
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Table 1: Summary statistics of operations and costs data (electric utility-level)

Variable Mean Std dev Min Max

O&M var cost $M 328 253 23 1198

Net generation MWh 2.4× 107 2.2× 107 558739 9.9× 107

Ave O&M cost / net gen cents / kwh 1.8 0.9 0.5 5.4

Heat rate MMBtu/MWh 10.67 1.30 6.60 19.63

SO2 Emission rate lbs/MMBtu 1.82 1.04 0.38 7.22

Capacity MW 5010 4897 232 23227

FGD dummy FGD dummy 0.33 0.47 0 1

Salary $000/emp/mo 15.8 8.2 .6 52.3

Price coal $/ton 33.11 9.93 12.48 53.80

Price oil $/barrel 22.53 4.94 10.06 37.38

Price gas $/MMBtu 2.96 0.97 1.38 15.48

Notes: Capacity is nameplate capacity which is the amount of electricity (in MW) the plant produces at 100% load.

average RRB disallowance, i.e. the difference between proposed and authorized RRB, as measured

as a percentage of proposed RRB is 7%, and ranges from no disallowance to as high as 31%. The

average RRB disallowance as expressed as a percentage of the total disallowance in the revenue

requirement is 80%, so most disallowances are due to disagreements on the rate base rather than

on operating costs.

A necessary implication of Proposition 1 is that, all else equal, we will observe higher cost

during rate cases compared to during the regulatory lag. To check whether this holds in the data, I

regress the log of O&M variable costs on the log of output (electricity and emissions), input prices

(labor, coal, oil and gas) and capital (nameplate and an indicator for FGD), together with indicator

variables for whether the observation comes from years when the rate case is ongoing. I construct

three indicator variables. The first dummy is equal to one if the observation occurs during the rate

case, i.e. from proposed to authorized year, inclusive. The second dummy is equal to one if the

observation occurs in the year immediately after the authorization year. Finally the third dummy

is equal to one if neither of the two dummies are one. In the regression, the omitted category is the

second one so coefficients measure the % difference relative to the year after the rate case concludes.

Table 3 contains the regression results.11

11I include specifications where I use state-level electricity demand as an instrument for electricity output, and

regional prices for low and high sulfur coal as instruments for emission rates. Low sulfur coal is defined as coal with

sulfur content below 1.2 lbs/MMBtu, while high sulfur coal is defined as coal with sulfur content above 3 lbs/MMBtu.
First stage F-statistics are 164 and 27 for electricity output and emission rates respectively. The first stage regression
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Table 2: Summary statistics of rate case data

Variable Mean Std dev Min Max

Rate case duration Years 1.2 0.7 0 3

Regulatory lag Years 2.3 1.9 0 6

Percent disallow Rev Req % of Prop Rev Req 4 3 0 12

Proposed RRB $M 320 406 7 1868

Authorized RRB $M 296 374 7 1617

Percent disallow RRB % of Prop RRB 7 4 0 31

Proposed rate base $M 2580 3272 73 15963

Authorized rate base $M 2453 3090 66 14485

Proposed ROR % 10.2 0.9 7.9 12.2

Authorized ROR % 9.8 1.0 7.4 11.8

Focusing on the estimates for the rate case dummy, we see that costs are 4% to 6% higher during

a rate case compared to the year after, when the regulatory lag starts. Moving to the “neither”

dummy coefficient estimate, I find no statistically significant difference in cost among non-rate case

years, i.e. regulatory lag years. These results hold even when looking at within firm and within

firm-rate case variation in cost. Including firm-rate case fixed effects in the regression allows us to

measure the effect of rate case timing on cost for a given firm and a particular rate case event.12

The observed pattern in cost can be explained by a firm strategically initiating a rate case and

locking-in high prices when it knows that costs will be (temporarily) high. Thus, this pattern can

be consistent with a story about asymmetric information on exogenous fluctuations on cost, and

not necessarily an unobserved endogenous “effort” story.13 More importantly, I need to find a link

coefficients are as expected. Specifically, I find that state demand and electricity output are positively related. In

terms of coal prices, I find that while emissions rate is both positively related with the prices of both low and high

sulfur coal, the coefficient on low sulfur coal is significantly larger than the coefficient on high sulfur coal.
12Firm-rate case fixed effects refer to firm-rate case events. Consider the following example. Suppose we have

annual data on PECO’s cost and operations from 1990 until 1999, and that PECO had a rate case in 1991 and then

in 1996. I tag PECO’s observations from 1991 to 1995 as “PECO 1991 rate case” (i.e. 5 years worth of observations),

and observations from 1996 to 1999 as “PECO 1996 rate case.” For “PECO 1991 rate case,” rate case cost is cost in

1991 while non-rate case cost are costs from 1992, 1993, 1994 and 1995.
13A related alternative story to strategic initiation of rate cases is a story about cost-padding. In this case, a firm

can exert effort to artificially increase its observed cost during the rate case. Laffont and Tirole (1992) extends Laffont

and Tirole (1986) to allow for cost-padding and explore issues such as auditing and collusion. In their extension, net

effort is equal to cost-reducing effort less cost-padding effort. Ultimately what is important in my empirical exercise

is that economic regulation (i.e. the way the regulator compensates the regulated utility) affects fuel efficiency and

operating cost endogenously. Thus in the cost-padding case, what is important is net effort and not its individual
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Table 3: Regression results: O&M variable cost and rate case dum-

mies.

log O&M var cost (1) (2) (3) (4) (5)

Rate case 0.037 0.054∗∗ 0.056∗∗∗ 0.052∗∗ 0.052∗∗

(0.030) (0.024) (0.019) (0.020) (0.020)

Neither Rate case −0.001 −0.006 −0.024 −0.023 −0.023

nor Year after (0.067) (0.018) (0.025) (0.027) (0.027)

Year FE Yes Yes Yes Yes Yes

Firm FE No Yes No No No

Firm-Rate Case FE No No Yes Yes Yes

IV for electricity No No No Yes Yes

IV for emission rate No No No No Yes

R2 0.89 0.98 0.99 0.99 0.99

Num. Obs. 351 351 351 293 293

Notes: Standard errors are either clustered at the firm level. Regression via OLS except

when indicated. Additional regressors are a dummy for FGD; the logs of electricity output,

emission rate, input prices (labor, coal, oil and gas), and nameplate capacity. I use log of

state electricity demand as an IV for electricity output and regional prices for low ( < 1.2

lbs/MMBtu) and high (> 3 lbs/MMBtu) sulfur coal for emission rates. Significance level:

* 10%, ** 5%, *** 1%.

between RORR and SO2 emissions. SO2 is a byproduct of burning coal to produce electricity.

Conditional on coal quality (heat, ash and sulfur content), a more efficient fuel-burning process

leads to lower SO2 emissions. Thus to examine the link between RORR and SO2 emissions, I check

whether the same pattern in costs we found earlier arises for heat rates.

Higher heat rates mean less efficient production since the firm burns more coal to produce the

same amount of electricity. Short-run variations in heat rates are more likely due to temporary

changes in how a firm operates its plants, or how the load is distributed across its plants.14 I regress

the log of heat rate on the log of electricity generated, log of capital, an indicator for FGD, and

the rate case dummies. Table 4 contains results of this regression.

Heat rates are about 4% to 6% higher during rate cases relative to the year after. Hence, during

components.
14Although it is not important whether the mechanism is reduction of efficiency within plants or re-allocation

of output across plants for my empirical exercise, I provide some suggestive evidence for the latter in the online

appendix.
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Table 4: Regression results: Heat rates and rate case dum-

mies

log heat rate (1) (2) (3) (4)

Rate case 0.065∗∗∗ 0.051∗∗ 0.046∗ 0.042∗∗

(0.024) (0.020) (0.026) (0.020)

Neither Rate case 0.003 −0.014 −0.016 −0.012

nor Year after (0.020) (0.035) (0.041) (0.033)

Year FE Yes Yes Yes Yes

Firm FE Yes No Yes No

Firm-Rate Case FE No Yes No Yes

IV for electricity No No Yes Yes

R2 0.92 0.96 0.89 0.95

Num. Obs. 351 351 293 293

Notes: Standard errors are clustered either at firm level. Regression via

OLS except when indicated. Additional regressors include a dummy for FGD

and the logs of electricity output and nameplate capacity. I use log of state

electricity demand as an IV for electricity output. Significance level: * 10%,

** 5%, *** 1%.

rate cases, a utility burns as much as 6% more coal to produce the same quantity of electricity.

Since the quality of coal delivered does not vary with the timing of the rate case, higher heat rates

directly imply more SO2 emissions during rate cases. Finally, I do not find statistically significant

differences in heat rates when I compare the year after the rate case and the succeeding non-rate

case years. Thus the decrease in fuel efficiency during the rate case is only temporary and disappears

immediately during the regulatory lag.

3.3 Interpreting low and high incentives: Assumptions on effort

The goal of the empirical exercise is to measure the welfare gains from the optimal mechanism. In

order to measure these gains, I need to predict how firms will behave when facing a counterfactual

regulatory regime. Firm behavior is driven by type θ and the disutility of exerting effort ψ(·), which

I estimate from the data.

The previous subsection shows that during rate cases, utilities tend to systematically burn more

coal per unit of electricity generated, and hence operating cost during rate cases are higher relative

to cost during the regulatory lag. This pattern in cost induced by RORR is a useful source of
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variation that provides snapshots of how a utility behaves when it faces low and high incentives.

However, we need to be able to understand how “low” or “high” incentives map to our model to

back out θ and ψ(·).
Let ωRC be a given utility’s cost during a rate case after conditioning out observables such as

electricity generated, emissions and fuel prices. Similarly let ωRL be the cost during the regulatory

lag. Following Laffont and Tirole (1986), we have ωRC = θ0 − eRC and ωRL = θ0 − eRL where θ0

is the given firm’s true intrinsic cost type, and eRC and eRL are the effort levels exerted during the

rate case and regulatory lag respectively. Since ωRC > ωRL, we have eRC < eRL.

If the conditions of Proposition 1 where in fact true in the data, then we have ωRC = θ0 and

eRL is equal to type θ0’s first best level of effort eFB(θ0), where eFB(θ0) solves MB(eFB(θ0)) =

ψ′(eFB(θ0)) and MB(·) denotes the marginal benefit from effort. In this case, “low” incentives

basically map to zero effort while “high” incentives map to first best effort. We can then use these

relationships for identification: (i) the distribution of costs during rate cases (after conditioning on

observables) identifies the distribution of θ0’s, and (ii) one can derive the implied first best level of

effort by looking at the difference in a utility’s cost between rate cases and regulatory lags, and use

this implied level of effort to identify the marginal disutility function.

The online appendix provide suggestive evidence consistent with the conditions of Proposition 1.

Data limitations preclude more convincing evidence. Moreover, even if we can find strong empirical

evidence, these conditions likely only hold approximately in practice, and it is useful to assess

how results will change if such strong conditions do not obtain. Therefore in what follows, I

explicitly assume Proposition 1 to aid identification, but show that these assumptions are, in a

sense, innocuous in that the welfare gains from the optimal incentive mechanism that I compute is

actually a lower bound of the true welfare gains.

I make the following two assumptions:

Assumption 1 Effort during the rate case is zero.

Assumption 2 Effort during the regulatory lag equates the marginal benefit of effort with its

marginal disutility.

Assumption 1 is a normalization since type θ is only identified up to location and scale (Perrigne

and Vuong, 2011). The question is how this normalization affects the interpretation of my results.

Suppose eRC > 0. For example, it is possible that the regulator can monitor fuel efficiency during

rate cases, albeit imperfectly, which then means the utility exerts some minimum positive level

of effort. Denoting my type estimate as θ̂, I will then have θ̂ ≡ θ0 − eRC < θ0. By assuming

effort is zero during rate cases, the estimate of θ0 will be biased downwards, i.e. the distribution of
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utilities will be more efficient than the true distribution. In using the distribution of θ̂ to compute

welfare gains, I essentially treat factors that induce a positive level of effort during the rate case

(e.g. imperfect monitoring of fuel efficiency) as “free” ways for the regulator to incentivize the

utility. As long as these “free incentives” exist and do not differ in their effect under RORR and

the optimal mechanism, then the assumption is just pure normalization.

I now turn to Assumption 2. Since the utility is still technically under economic regulation

during the regulatory lag, it may not fully receive the benefits of cost reductions from fuel efficiency.

Moreover, there may also be some risk that observed decreases in cost during regulatory lags will

be passed on to consumers through lower electricity prices. These factors dampen the utility’s

incentive to exert effort during the regulatory lag.

The marginal benefit from effort is just the cost reduction from a small change in effort, i.e.∣∣∣∂C̃/∂e∣∣∣ = exp(θ − e)C(q, s). Note that this marginal benefit is strictly decreasing in e. Next,

let ψ0(·) be the true effort disutility function with marginal disutility given by ψ′0(·). If eFB(θ) is

type θ’s first best level of effort, then the true marginal disutility function is identified through the

equation exp
(
θ − eFB(θ)

)
C(q, s) = ψ′0(eFB(θ)).

Suppose for each type θ, the estimated effort is below the first best, i.e. e(θ) < eFB(θ). The

level of effort is not of interest per se but is just used to identify the disutility function. Specifically,

from the first order condition of effort, a lower estimated effort implies a higher marginal disutility,

holding the marginal benefit curve fixed. Therefore, the marginal disutility function I will estimate

lies above (or to the left of) the true marginal disutility function as in Figure 3.

Effort under the optimal mechanism equates the marginal disutility with a distorted marginal

benefit of effort, the idea being that effort is distorted below first best levels to reduce information

rents. The online appendix shows that the distortion is an increasing function of the difference in

marginal disutilities between two adjacent types, i.e. ψ′(e)−ψ′(e−∆θ). Let Ψ(·) be the distortion

in marginal benefit that I estimate and let Ψ0(·) be the true distortion. If Ψ(e) ≥ Ψ0(e) for all

e, then, as Figure 3 illustrates, the estimate for effort under the optimal mechanism e∗ is a lower

bound for the true level of effort e∗0.

To find conditions leading to Ψ(e) ≥ Ψ0(e), I assume that the marginal disutility function is

increasing in a parameter γ. Denote the true value of γ as γ0 and the estimated one as γ̂. Since

the marginal disutility function that I estimate lies above the true one, then γ̂ > γ0. Therefore,

one condition that guarantees Ψ(e) ≥ Ψ0(e) is for ψ′(e; γ) to exhibit increasing differences:

ψ′(e; γ̂)− ψ′(e−∆θ; γ̂) > ψ′(e; γ0)− ψ′(e−∆θ; γ0).

The online appendix shows that this is indeed the case under the assumed functional form for

ψ(e; γ).
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Finally, as long as ψ(e; γ)−ψ(e−∆θ; γ) is increasing in γ—which is the case with the assumed

functional form—, the social planner’s value function when facing asymmetric information (Laffont,

1994b) will be decreasing in γ. This implies that the welfare gains from the optimal mechanism

that I estimate is a lower bound of the true welfare gains.

4 Structural model of abatement costs

In the previous section, I have provided evidence of how RORR affects strategic behavior of regu-

lated electric utilities. In particular, electric utilities strategically have lower fuel efficiency during

rate cases to increase operating costs and raise regulated electricity prices. During regulatory lags,

electric utilities’ fuel efficiency significantly improves which lowers operating cost and allows the

utility to extract rents from the previously set regulated price.

I use these observations together with Assumptions 1 and 2 to identify and estimate a structural

model of SO2 abatement costs. For fuel-switching, the cost of reducing emissions is a function of

fuel efficiency and the relative prices of coal with different sulfur contents. If the coal burning

process is more fuel efficient, then less coal is needed to produce the same amount of electricity.

Hence, the cost of switching to (or blending with) lower sulfur coal—which contains less heat to

produce electricity and is relatively more expensive for the coal plants in my sample15—will be

lower for more fuel efficient firms.

Similar to Carlson et al. (2000), I estimate a multiproduct cost function from which I derive a

measure of marginal abatement costs for electric utilities. Note that the cost function I estimate is

a behavioral cost function in that it does not necessarily represent cost minimization. I perform the

analysis at the utility-level since RORR involves the firm as a whole. Ellerman et al. (2000, p. 301)

remark that compliance decisions are often made at the utility-level even if pollution regulation per

se is at the plant-level. Finally, I restrict attention to costs, output, emissions and input choices

related to coal, oil and gas plants that the firm owns.

I assume the following stochastic specification for realized operations and maintenance (O&M)

variable costs of producing electricity and emissions. For firm i at year t, realized O&M variable

cost is given by

C̃it = exp(ωit)C (qit, sit, plit, pfit, Nit, dFGDit, dPBRit, dLit, dMit, d95it, t;β) exp (εit) (1)

15Table A coal plants had existing long-term coal contracts that continued to deliver high sulfur coal despite the

economy-wide decrease in low sulfur coal from the Powder River Basin (Ellerman et al., 2000). Such long-term

contracts distort the relative prices of high and low sulfur coal in a way that makes the former more attractive for

Table A plants, at the margin.
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where

ωit = θit − eit

pfit = (pcit, poit, pgit)

β = (β0, βN , βFGD, βY EAR, βq, βs, βsd, βl, βc, βo, βg)

C (q, s, pl, pf , N, dFGD, dPBR, dL, dM , d95, t;β) = exp (β0)NβN qβqsβsp
βl
l p

βc
c p

βo
o p

βg
g

β0 = β̃0 + βY EARt+ βFGDdFGD + βPBRdPBR

βs = β̃s + β95d95 + βsddFGD + βLdL + βMdM .

The term exp(ω) = exp (θ − e) captures cost efficiency where θ is the firm’s intrinsic type and e is

unobserved effort. The utility knows θ and chooses e. The function

Cit(β) ≡ C (q, s, pl, pf , N, dFGD, dPBR, dL, dM , d95, t;β)

is the baseline cost function of the utility where q is net generated electricity, s is the SO2 emission

rate, pl is the average salary for full-time employees related to electricity generation, pf is a vector

composed of fuel prices for coal, oil and gas averaged across the utility’s plants, N is the sum of

nameplate capacities of the utility’s plants, dFGD is a dummy equal to one if the utility has at

least one plant with a flue-gas desulfurization (scrubber) unit installed, dPBR is a dummy equal

to one if the utility is subject to Performance-Based Regulation (PBR), dL is a dummy equal to

one if the emission rate of the utility is below 1.2 lbs/MMBtu (i.e. low sulfur or compliance coal),

dM is a dummy equal to one if the emission rate is greater than 1.2 lbs/MMBtu but less than 2.5

lbs/MMBtu (the latter being the target emission rate in Phase I and I refer to this as mid sulfur

coal), and d95 is a dummy equal to one if t ≥ 1995, i.e. the year the Acid Rain Program (ARP)

was implemented. Finally, although there is no explicit SO2 price before 1995, utilities were still

subject to SO2 regulation under the previous Clean Air Act Amendment.

The baseline cost component captures differences in O&M costs that can be explained by

differences in input prices, outputs and capital. The vector β contains the parameters of the

baseline cost function that need to be estimated. I allow firms in states with PBR to have a

different average baseline cost. Moreover, I let the coefficient on the emission rate βs to depend on

the emission rate s (whether the firm’s emission rate is low, mid or high), to whether a firm has a

scrubber, and whether observations occur pre and post ARP implementation. Finally ε is a mean

zero stochastic error term that summarizes other factors that affect realized costs. I assume ε is

unanticipated by the firm when making its input choices and uncorrelated with the regressors.

I assume the firm’s type θit is a draw from the distribution Fθ. Ideally Fθ would be conditioned

on variables such as firm’s capacity or portfolio of plants, but to make estimation more tractable
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later, I assume Fθ is only a function of the rate case year. Next, I allow firms’ type to vary across

different rate cases but assume θ remains constant between consecutive ones. Formally, let tτ be

the time index (year) for a specific firm’s rate case τ . For example, if firm i has three rate cases

during the sample period, then τ ∈ {1, 2, 3} which occurs on years t1, t2 and t3 respectively. Thus

for each i, t and τ ,

θit =

 θitτ if t ∈ [tτ , tτ+1)

θitτ+1 if t = tτ+1.

I assume for each firm i, θit1 is a draw from Fθ, θit2 is a draw from Fθ|θit1 , θit3 is a draw from

Fθ|θit2 , etc. The distribution of types I identify will thus reflect the distribution of costs during the

τ -th rate case of firms that appear in my data, and not the distribution of costs for all rate cases

of these firms.

In the next subsection, I discuss identification of the baseline cost function parameters β, the

disutility function ψ (·), and the distribution of types Fθ.

4.1 Identification

There are two interrelated challenges for identification. The first challenge is an endogeneity prob-

lem in identifying the cost parameters β. The second challenge involves extracting the distribution

of the unobserved type θ from the variation in realized costs that is unobserved by the econo-

metrician, i.e. exp (θit − eit) exp (εit). The first challenge arises primarily because effort eit is an

endogeneous variable chosen by the firm. Variables that enter the firm’s baseline cost affect the

choice of effort since the baseline cost captures the marginal benefit from effort, i.e. cost reduction

from a small increase in effort. The firm’s cost efficiency (ω = θ−e) in turn affects costs, electricity

output (since regulated electricity prices are based on reported expenses), and potentially, input

prices (Cicala, 2015). If ωit were observed by the econometrician, then we can directly control for

it, and identify the vector β. However ωit is not observed.

Once we have identified the vector of baseline cost parameters β, we then need to identify

the distribution of θ. This distribution is a critical input in the counterfactual analysis since it

determines the degree of heterogeneity in marginal abatement costs, the complexity of the opti-

mal mechanism, and the size of the welfare gains. The second challenge then, is to extract the

distribution of θ from the unobserved variation exp (θit − eit) exp (εit).

My identification strategy involves two parts. First, to identify the parameters of the empirical

model, I use similar techniques from the production function literature to extract ωit out of the

estimating equations and identify the cost parameters β. In this step, the variation in incentives

and cost induced by the RORR is essential in pinning down ωit for different time periods which

allows me to use the techniques from the literature. Second, to identify the distribution of types θ,
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I recast the problem in the framework of measurement error with repeated measurements (e.g. Li

and Vuong (1988)) and use the deconvolution result of Kotlarski (1967).

4.1.1 Parameters

The potential endogeneity problem in estimating the parameters β is due to simultaneity and selec-

tion. Simultaneity may arise if regressors in Equation 1 are correlated with wit = exp (θit − eit) exp (εit),

which is unobserved by the econometrician. The theoretical model of the paper assumes there is

correlation since effort eit is chosen by the firm, and this choice is driven by cost-related informa-

tion. Finally, endogeneity due to selection may also arise since majority of rate cases are initiated

by utilities. All else equal, firms may strategically initiate a rate case when operating costs are

anticipated to be high.

Problems of simultaneity and selection arise in the estimation of production functions in that

unobserved productivity affects input choices—i.e. what is known as “transmission bias” (Griliches

and Mairesse, 1998)—, and that firms that we observe are the ones who do not exit (e.g. Olley

and Pakes (1996)). To address transmission bias, I follow the dynamic panel approach (Arellano

and Bond, 1991; Blundell and Bond, 1998, 2000) by adopting functional form assumptions that

exploit the panel structure of the data to difference out unobserved productivity (type, in my

case). To handle selection bias, I combine the dynamic panel approach with a simple Heckman

(1979) correction.16 As Kyriadizou (2001) first points out, time-differencing not only eliminates

unobserved individual effects but may also eliminate the effect of sample selection.

Under Assumptions 1 and 2, high costs during rate cases reflect zero effort and thus ωitτ = θitτ .

During the regulatory lag (time tτ + 1), the firm is the residual claimant to cost-reducing effort

and hence exerts the first best level: exp (ωitτ+1)Citτ+1(β) = ψ′ (eitτ+1). To determine what ωit

is during the regulatory lag, I impose the following functional form for ψ (·) similar to Gagnepain

and Ivaldi (2002):

Assumption 3 The disutility of effort is given by

ψ (eit, υit) =
1

γ
exp (γeit + υit)−

1

γ

where γ is a parameter and υit’s are mean zero shocks that are uncorrelated with

zit = (qit, sit, plit, pfit, Nit, dFGDit, dPBRit, dLit, dMit, d95it, t)

and iid across i and t.
16Related literature on the control function approach to estimating production functions include Olley and Pakes

(1996); Levinsohn and Petrin (2003); Ackerberg, Caves and Frazer (2015); Gandhi, Navarro and Rivers (2013);

Doraszelski and Jaumandreu (2013).
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Finally, to characterize how ωitτ evolves from one rate case to another, I assume that θit follows an

AR(1) process across two consecutive rate cases similar to Blundell and Bond (1998):

Assumption 4 For each i and τ , a firm’s types across two rate cases τ and τ −1 evolve according

to

θitτ = ρθitτ−1 + ξitτ

where ρ is a parameter and ξitτ is iid across i and tτ .

These assumptions allow me to write the log of realized cost (i) during a rate case (t = tτ ), (ii)

during the corresponding regulatory lag (t = tτ+1), and (iii) during the next rate case (t = tτ+1),

all as functions of type θitτ :

ln C̃itτ = θitτ + lnCitτ (β) + εitτ (2)

ln C̃itτ+1 =
γ

1 + γ
(θitτ + lnCitτ+1 (β)) +

1

1 + γ
υitτ+1 + εitτ+1 (3)

ln C̃itτ+1 = ρθitτ + ξitτ+1
+ lnCitτ+1 (β) + εitτ+1 . (4)

By taking (quasi) differences of Equations 2, 3 and 4, I construct the following moment condi-

tions to identify the parameters (β, γ, ρ):17

E
[
η1itτ

]
= 0 (5)

E

η2itτ ·

 zitτ−1

ln C̃itτ−1

 = 0 (6)

E

η3itτ ·

 1

ln C̃itτ+1

 = 0. (7)

where

η1itτ = ξitτ + εitτ − ρεitτ−1

η2itτ =
1

1 + γ
υitτ+1 + εitτ+1 −

γ

1 + γ
εitτ

η3itτ =
γ

1 + γ

(
ξitτ + εitτ

)
− ρ

(
1

1 + γ
υitτ−1+1 + εitτ−1+1

)
.

For the moment conditions to be valid, it suffices to (i) have the shocks η, ε and ξ to be iid

across i and t, and unanticipated by the firm, i.e. independent of zit−j for j > 1, and (ii) that rate

case initiation is not related to anticipated increases in operating cost. Reading through detailed

17The subsequent discussion shows that the order condition for identification is satisfied. However I have not

formally established the rank condition for identification. This requires proving that the system of equations defined

by Equations 5, 6 and 7 has a unique solution.
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summaries of about 50 randomly picked rate cases in my sample, I find that rate cases are often

formally initiated for reasons related to the rate base rather than on anticipated operating cost

increases. This observation is consistent with the fact that 80% of rate case disallowances are non

operating cost-related. Examples of reasons for initiating rate cases include adjustments of the

allowed return on equity, disagreement about how the rate base will be adjusted after a nuclear

plant is decommissioned, and inclusion of a previously disallowed plant from the rate base. In these

situations, the timing of the rate case is likely to be orthogonal to anticipated increases in operating

cost.18 Nevertheless, I allow for selection in what follows.

I assume that the firm initiates a rate case at t if

θit − θit−1 > −Z′itα, (8)

where Z is a vector of variables related to the firm’s perception of how likely it would succeed in a

future rate case and α is a vector of unknown coefficients. In other words, initiation of rate cases

is driven by a firm anticipating a significant increase in its cost type θ relative to its previous draw,

beyond some threshold that depends on rate case variables. Using Assumption 4, we can rewrite

the difference in subsequent types as

θit − θit−1 = ξit − (1− ρ)

t∑
j=1

ρj−1ξit−j .

Letting uit = −ξit + (1 − ρ)
∑t

j=1 ρ
j−1ξit−j , we have that the firm initiates a rate case at t if

Z′itα > uit. This form of selection invalidates the above moment conditions through the correlation

between uit and ξit. Specifically, moment conditions 5 and 7 are no longer valid. To parameterize

the selection equation, I assume the following:

Assumption 5 Assume that ξ’s are drawn from a normal distribution and let

Z′itα = α0 + αDDISALLOWit + αL1LASTit + αL2LAST
2
it

where DISALLOW is the fraction of the proposed revenue requirement that was disallowed in the

previous rate case, and LAST is the number of years since the last case.

Given Assumption 5, the selection error uit is also normally distributed. Following Heckman’s

(1979) two-step approach, I first estimate α using a Probit regression of a dummy variable indicating

18Suppose the correlation between the timing of rate cases and increase in cost was driven by exogenous improve-

ments in technology and observable decreases in overall cost over time. A well-informed regulator that is aware

of these trends would not allow future prices to be locked-in based on high costs reported during the rate case.

The fact that the data is inconsistent with the behavior of a well-informed regulator goes to show its informational

disadvantage and the resulting inefficiency with RORR.
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rate case initiation on the vector Z, and then include the inverse Mills ratio evaluated at Z′α as

an additional regressor in moment conditions 5 and 7.

4.1.2 Type distribution

Given the parameters and using Assumption 4, I can rewrite realized cost during two consecutive

rate cases as19

ln C̃itτ − lnCitτ (β)

ρ
= θitτ−1 +

ξitτ + εitτ
ρ

ln C̃itτ−1 − lnCitτ−1 (β) = θitτ−1 + εitτ−1 .

The problem of finding the distribution of θ can be recast in the framework of measurement error

with repeated measurements. Let
(
ξitτ + εitτ

)
/ρ and εitτ−1 be the “measurement errors” while

θitτ−1 is the latent variable. The two measurement errors and the latent variable are all mutually

independent and this follows from the assumptions on ξitτ and the unanticipated cost shocks. The

key intuition for identification is that the distribution of the latent variable can be extracted from

the joint distribution of the two observed measurements. For example, the covariance between the

two measurements reveal the variance of the latent variable under the independence assumptions.

Higher moments can be generated from functions of the two measurements, which then reveal higher

moments of the latent variable. The online appendix provides more discussion on identification.

4.2 Estimation and results

To estimate the parameters,20 I use the sample analog of the moment conditions given by equations

(5), (6) and (7). Ideally I would use the same set of firms to construct the three moment conditions.

However these moment conditions taken together require each firm in the sample to have at least

two rate cases that are initiated and completed in the period 1988-1998. This leaves me with just

26 firms. The vector β contains 11 elements and therefore I need to estimate 13 parameters in total

(i.e. β, γ and ρ).

Rate cases that were not completed by 1998 have missing regulatory lag observations. Although

these rate cases cannot be used for moment conditions (6) and (7), they can still be used for (5) since

it only depends on rate case observations. I define a dummy variable mi equal to 1 if regulatory lag

data is missing and 0 otherwise, and then weight moment conditions (6) and (7) by (1−mi). This

approach is similar in spirit to the approach proposed by Abrevaya and Donald (2017) to handle

19The error term ξ appears in the first equation hence is subject to the same selection bias discussed earlier. I

correct this equation using Assumption 5.
20I discuss estimation of the type distribution in the online appendix.
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missing data using GMM, where (5) serves a similar purpose to the assumed linear projection of

regressors with missing observation onto regressors with complete data.

Since types are firm-rate case specific, I treat the same firm in two different rate cases as if they

were different firms in order to increase the number of firms in my sample. For example, if PECO

had a rate case in 1991 and then followed by another rate case in 1996, I consider θitτ = “PECO

1991 rate case” and θitτ+1 = “PECO 1996 rate case” as two separate “firms.” Although there is

dependence across these two firms, this dependence is fully captured by ωit which we differentiate

out.

Table 5 presents the parameter estimates.21 The coefficient on the emission rate imply that dur-

ing ARP implementation (i.e. from 1995-1999) for a 10% decrease in emission rates, O&M variable

cost increases by about 5.5% if emission rates are low (less than 1.2 lbs/MMBtu). Interestingly,

the coefficient on emission rate goes down in magnitude after the implementation of ARP. This

is consistent with improved techniques in fuel-switching practices (Ellerman, et al., 2000). The

increase in O&M variable cost decreases to 3.5% with a 10% decrease in emission rates within the

mid range of 1.2 lbs/MMBtu to 2.5 lbs/MMBtu, although not statistically significant.

To assess model fit, I compare the distribution of the (residualized) log cost in the data with

the distribution generated by the model. The model predicts a cost distribution based on the

estimated distribution of θ, the effort disutility function parameter γ, and the baseline cost function

parameters β. Specifically, in panel (a) of Figure 4, the distribution of costs predicted by the model

is the distribution of non rate case costs that takes observations during the rate case as given,

applies the model (optimal effort), and then predicts the distribution of costs if firms exerted first

best effort instead. The predicted distribution in panel (b) instead takes non-rate case observations

as given, predicts what costs would look like if firms exerted zero effort instead of the first best,

and compares it with the observed distribution of costs during the rate case. For non-rate case

cost (panel (a)), the Kolmogorov-Smirnov statistic is 0.1290 with p-value of 0.130, and therefore we

cannot reject that the two distributions are the same. A difference in means test has a t-statistic

21The coefficient estimates of the first-step Probit regression are: α0 = 1.11 (SE = 0.05), αD = −4.1 (SE = 1.78),

αL1 = −0.91 (SE = 0.10) and αL2 = 0.08 (SE = 0.02). The estimates suggest some interesting results. First, the

likelihood of initiating a rate case declines as the firm experiences a larger disallowance in the past. Second, for every

observation in the data where the next rate case is at least one year apart, I compute a positive second derivative

of the probability of initiation with respect to time since rate case, suggesting a U-shaped relationship between the

likelihood of rate case initiation and time since the last case. New rate cases that occur almost immediately after the

previous case often reflect appeals which is thus consistent with the likelihood of a new case having an initial negative

relationship with the time since the last rate case. However, as time passes by, an appeal is less likely to occur and

the time since the last rate case is now positively correlated with the likelihood of a new case. Finally, the coefficient

on the inverse Mills ratio is −1.09 × 10−7 with SE equal to 0.002.
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Table 5: Parameter estimates

log O&M variable cost Model

Est SE

log emission rate -0.479∗∗ 0.142

log emission rate*FGD 0.298∗∗ 0.095

log emission rate*LOW -0.546∗ 0.196

log emission rate*MID -0.346 0.262

log emission rate*95 0.612∗∗ 0.177

log Electricity output 0.675∗∗∗ 0.140

log Price of coal 0.647∗∗∗ 0.110

log Price of oil 0.177∗∗∗ 0.052

log Price of gas 0.112∗∗∗ 0.041

log Price of labor 0.063∗∗∗ 0.046

log Nameplate -0.213∗∗ 0.121

FGD 0.768∗ 0.561

PBR -0.019∗∗ 0.287

Year -0.003∗∗∗ 0.003

Disutility (γ) 19.236∗∗ 3.15

Type evolution (ρ1) 0.658∗∗∗ 0.121

Inverse Mills −1.09 × 10−7∗∗ 0.002

Notes: Standard errors for these are computed using

bootstrap, where sampling is over firm-rate case. Sig-

nificance levels are determined using the bootstrap con-

fidence intervals. Significance level: * 10%, ** 5%, ***

1%.
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of 0.23 and p-value of 0.819. For rate-case cost (panel (b)), the Kolmogorov-Smirnov statistic is

0.2261 with p-value of 0.001 while a difference in means test (data versus model) has a t-statistic of

2.08 and p-value of 0.038. Although the model slightly under-predicts rate case costs for the lower

part of the cost distribution, the fit improves after.

The distribution of θ implies a distribution of marginal abatement costs (MACs). I compute

what MACs the model predicts under the parameters of Phase I of the Acid Rain Program. Figure

5 plots the distribution of marginal abatement costs (MACs) assuming (i) all firms have emission

rate of 2.5 lbs per MMBtu, (ii) observable variables (electricity output, input prices and fuel

burned) are at their mean values, and (iii) firms do not have FGDs installed (i.e. dFGD = 0). The

emission rate of 2.5 is the implicit emission standard under Phase I of the Acid Rain Program.

Thus this distribution is the model’s prediction of the distribution of MACs if the SO2 regulation

were implemented through a uniform emission standard. Additionally, I compute the distribution

of MACs assuming zero effort (panel (a)) and assuming optimal first best effort (panel (b)).

The estimated MAC distributions exhibit significant heterogeneity and a long tail despite con-

trolling for observable variables. Butraw (1999) presents a range of average MAC estimates from

various studies in the literature (both engineering-based and econometrically estimated). These

MACs range from $291 to $760. Note that these estimates from the literature are affected by

variation in output and input prices, while the distribution of MACs I estimate are fully generated

by the estimated distribution of θ.

5 Counterfactual welfare analysis

I use the estimated structural parameters to simulate SO2 emissions under counterfactual regulatory

regimes. I take a random sample of cost efficiency types from the estimated distribution of θ.

Denote this sample as Θ. Next, I rewrite the baseline cost function as a function of emission rate

s, i.e. C(s) = Ξsβs , where βs < 0 and Ξ = exp (β0)NβN qβqp
βl
l p

βc
c p

βo
o p

βg
g . Since Ψ is a function of

electricity output and input prices, I take the mean of Ξ in the data and use this in the simulations.

Thus all the variation in the simulations is due to variation in θ. Finally, to get aggregate numbers,

I calculate the implied number of firms such that aggregate emissions in a regulatory regime with a

uniform emission standard is equal to the number of freely distributed emission permits in Phase I of

the ARP. The basic rule for freely allocated permits multiplies the emission rate of 2.5 lbs/MMBtu

with historical fuel consumption, and this amounts to about 5.456 million tons of SO2 (Joskow and

Schmalensee, 1998), which is, by construction, the level of observed SO2 emissions.

Throughout the simulations, I assume firms face a Pigouvian tax on SO2 emissions. Denote the

Pigouvian tax as p. Under competitive pricing, the firm exerts optimal first best effort eFB(θ) > 0
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and chooses emissions sFB(θ) such that the efficient first best marginal abatement cost is equal to

the Pigouvian tax. Assuming p = 100,22 emissions under the first best scenario is 4.211 million tons,

which is 30% lower than observed emissions. This is consistent with first best marginal abatement

cost being below the marginal abatement cost under RORR, as in Figure 1. Finally, emissions

under a scenario assuming zero effort (i.e. as in during rate cases) is equal to 5.883 million tons.

Thus, effort under RORR is much closer to zero effort than first best effort.

I now consider scenarios where electricity prices remain regulated. Since there is full cost

reimbursement during rate cases with RORR, the firm will exert zero effort. On the other extreme,

if the economic regulator sets an electricity price that is fixed regardless of the firm’s reported cost,

i.e. a fixed price contract, then the firm has an incentive to exert first best effort, as if it were

facing a competitive electricity price. Since firms should receive at least zero profits as required

by economic regulation, the fixed price should be set high enough to accommodate even the least

efficient firm. This participation constraint leads to strictly positive economic profits (information

rents) for all but the least efficient firm. In the context of economic regulation, strictly positive

economic profits are costly due to the social cost of public funds since these profits could have

been used to replace funds raised through distortionary taxes (Laffont and Tirole, 1993; Goulder

et al., 1997). Thus, while the fixed price contract maximizes efficiency, it ignores these information

rents which can be substantial to the point of eliminating the efficiency benefits of high powered

schemes such as fixed price contracts. In fact, when these information rents are large, it may not be

desirable or even feasible to implement the first best allocations (Spulber, 1998). Laffont and Tirole

(1986) characterize the optimal mechanism that balances the tradeoff between efficiency distortion

and information rent extraction.

I focus on emission rates as the regulatory variable, taking the quantity of electricity, capital

and input prices as exogenously given. To make analysis easier, I characterize a regulatory regime

as a direct revelation mechanism that specifies a bundle
(
s, C̃, t

)
for each type θ. The bundle

consists of an emission rate s, a realized and observable cost C̃, and a lump-sum transfer t (=

revenue requirement RR). Finally, the mechanism can be implemented as follows: the firm reports

its emissions rate and realized cost to the regulator, and then the regulator provides a transfer

given this report.

Following Laffont (1994b), the planner maximizes social welfare given by

W =

∫
{V (q(θ))−D(s(θ))− (1 + λ)t(θ) + Π(θ)} dF(θ), (9)

where V (q) is the surplus from consuming electricity, D(s) is the damage from emissions, λ is the

22This value for the Pigouvian tax is consistent with a marginal damage under a planned 2.5 lbs/MMBtu standard,

at least as revealed ex post by the SO2 permit market with prices settling around this value.
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cost of public funds and Π(θ) is firm’s profit given by

Π(θ) = t(θ)−
[
C̃(θ) + ψ(e(θ))

]
. (10)

In choosing the optimal mechanism, the planner faces a couple of constraints. First, the planner

needs to satisfy participation constraints which require leaving firms with nonnegative economic

profits: Π (θ) ≥ 0 for all θ. As in Laffont (1994b) and Laffont and Tirole (1986, 1993), I assume

the social planner observes realized cost but not the firm’s type and effort. This informational

constraint leads to incentive compatibility constraints

Π (θ) ≥ t
(
θ′
)
−
{
C̃
(
θ′
)

+ ψ
[
e
(
θ′, θ

)]}
for all θ and θ′ 6= θ where e

(
θ′, θ

)
= θ − ln C̃(θ′)

C(s(θ′))
.These constraints ensure that a particular type

θ does not have an incentive to pick some other type’s bundle.

Given a regulatory regime, I compute welfare as

W̃ (p, λ) =
1

N

∑
θ∈Θ

{−p · S (s (θ))− (1 + λ) t (θ) + Π (θ)} .

This welfare metric W̃ does not include the surplus from electricity consumption and thus I focus

on welfare differences across different regulatory regimes. The linear function S (s (θ)) converts

an emission rate s (θ) to tons of SO2 emissions using the mean amount of fuel burned. Note that

I impose a linear pollution damage function so, with some abuse of notation, p > 0 represents

the constant marginal damage from a ton of pollution (as well as the earlier Pigouvian tax). The

variable λ > 0 is the social cost of public funds. I treat (p, λ) as simulation parameters and

I compute W̃ for different combinations of (p, λ) and different regulatory regimes. Throughout,

dollar amounts are in annual 1995 USD.

5.1 Optimal mechanism

The optimal mechanism maximizes W̃ subject to the participation and incentive compatibility

constraints. I provide more detail and closed-form solutions in the online appendix. For reference,

I compare the optimal mechanism with a fixed price contract. The fixed price contract is of interest

since it implements the first best emissions and effort levels, which minimizes the sum of damages

and abatement costs. However, because firms have private information about their intrinsic cost

types and effort, the planner has to pay sufficiently high profits to induce firms to reveal their

information, i.e. information rents.

In comparing the optimal mechanism and the fixed price contract, I focus on the case with

p = 100 and λ = 0.3 (30 cents for each dollar of public funds). The value of 0.3 for the social cost
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of public funds is motivated by estimates in the public finance literature (Laffont, 2005; Ballard,

Shoven and Whalley, 1985).

The optimal mechanism distorts first best emissions upwards to reduce the necessary informa-

tion rents paid to firms. There are two sources of distortion. First, the optimal mechanism allows

less efficient types to emit more relative to their first best levels. Second, conditional on the same

level of abatement, the optimal mechanism induces less effort. These two distortions only lead to

second order losses in welfare. In exchange for these distortions, first order gains are achieved by

lowering information rents.

Aggregate emissions under the optimal mechanism is 0.19 million tons higher compared to the

fixed price contract. Note that in both scenarios, firms face the same Pigouvian tax. Emissions

are higher under the optimal mechanisms since effort levels are distorted downwards compared

to the fixed price contract, leading to a higher marginal abatement cost curve under the optimal

mechanism. In terms of generation and emissions abatement cost (including cost of effort), cost

under the optimal mechanism is $203 million higher compared to the fixed price contract.

Although efficiency is higher with the fixed price contract, the economic regulator needs to set

the fixed price to be high enough so that even the least efficient type earns nonnegative profits.

This means that types that are relatively more efficient all get strictly positive profits, which carries

welfare costs as long as λ > 0. The difference in information rents between the fixed price contract

and the optimal mechanism is $540 million. The large information rents basically wipe out the

efficiency advantage of the fixed price contract. At the end, welfare under the optimal mechanism

is higher by $318 million.

Now consider the other extreme with full cost reimbursement and zero effort as in during a rate

case (RORR). Although information rents are zero, generation and emissions abatement cost are

$416 million higher compared to the optimal mechanism. The optimal mechanism yields annual

welfare gains of $686 million relative to full cost reimbursement.

Finally, I let λ vary and compute welfare gains from the optimal mechanism relative to RORR.

Annual welfare gains range from $578 million to $1.06 billion. These correspond to about a 9% to

17% reduction in electricity prices assuming reduction in costs are fully passed on to consumers.

5.2 Simple menu

Laffont (1994b) shows that the optimal mechanism can be implemented using a set of emission

taxes and monetary transfers, both of which are functions of reported cost. Each cost type will

then choose a particular pair of emissions tax and transfer, and report the corresponding cost to

the regulator. The menu is incentive-compatible by design. Such a mechanism is likely to be

complicated to implement in practice since the regulator has to design and implement a full menu
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of emission taxes and transfers, the complexity of which depends on the heterogeneity in types.

What we often see are much simpler contracts composed of a single contract or a menu consisting

of a limited number of contracts (Rogerson, 2003). Consistent with this observation, I construct a

simple menu composed of two choices: a fixed price contract or full cost reimbursement.

Define the cutoff type θ̂. The simple menu is constructed such that types that are less efficient

than θ̂, i.e. θ > θ̂ choose full cost reimbursement, while types that are more efficient, choose the

fixed price and receive the transfer T̂ . Types that choose full cost reimbursement exert zero effort

but get zero economic profits. In contrast, types that choose the fixed price exert optimal positive

effort and earn a payoff equal to the difference between T̂ and their true cost (i.e. includes effort

cost). Using the estimated type distribution and cost of effort, I solve for the optimal fixed price

T̂ that would maximize social welfare (subject to individual rationality and incentive compatibility

constraints). It turns out that T̂ is equal to the true cost of the cutoff type when it exerts optimal

positive effort, so the problem is equivalent to finding the optimal cutoff type.

Figure 6 plots the cutoff type and the fraction of welfare gains from the optimal mechanism

captured by our simple menu as we vary the social cost of public funds. The cutoff type is decreasing

with λ since larger λ means that information rents carries more welfare costs, and therefore it pays

to distort effort and convince more types to choose full cost reimbursement. For λ = 0.3, the

cutoff type is about 0.75. Types that have efficiency above the 25th percentile opt for the fixed

price contract and exert the first best level of effort while types below the 25th percentile opt for

full cost-reimbursement and exert zero effort. This observation is consistent with the substantial

heterogeneity of the estimated type distribution. That is, “dropping” (inducing zero effort) the

most inefficient firms substantially reduces information rents paid to everyone else who are exerting

first best effort.

Finally, in terms of welfare gains captured by our simple menu, for our benchmark value of

λ = 0.3, the simple menu captures 65% of the welfare gains. The value of λ where the curve hits

its minimum is the λ where the optimal mechanism diverges the most from either a fixed price

contract or full cost reimbursement. Despite the divergence, my results suggest that a simple two

menu contract can still capture a large fraction of welfare gains from the optimal mechanism. For

λ ∈ [0, 1], the simple menu captures at least 65% of the welfare gains.

6 Conclusion

The paper estimates large welfare gains from a mechanism that explicitly takes into account a

regulated firm’s informational advantage and the cost of incentive provision (Laffont and Tirole,

1986). Furthermore, I construct a simple mechanism that can achieve a substantial fraction of
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these welfare gains.

The shape of the type distribution is an important determinant in the design of the optimal

mechanism and the welfare gains it delivers. The gains from the optimal mechanism is not simply

about getting all firms to exert more effort, but rather more about effectively mitigating the

cost of the regulator’s informational disadvantage. The cost of the informational disadvantage is

determined by the shape of the type distribution and therefore importantly affects the measure of

welfare gains. Thus, as in most studies on asymmetric information, the key challenge is to estimate

this distribution.

I have exploited the timing of rate cases and how this timing induces different incentives for

fuel efficiency as the main source of identification. However, the approach I adopt to specifically

handle transmission and selection bias is highly parametric and crucially depends on the assumed

functional forms. One such assumption is the linearity of cost with respect to the firm’s type and

the baseline cost function. While this assumption allows me to conveniently estimate the type

distribution and parameters of the baseline function separately, it assumes away a richer model

for the type distribution which can potentially explain the substantial heterogeneity in unobserved

types that I estimate. For example, if the linearity assumption does not obtain, then the true type

distribution can still be an explicit function of variables that both the firm and regulator observe

hence reducing the latter’s informational disadvantage. More generally, the assumptions I take

impose a specific structure on the uncertainty that the regulator faces relative to the firm which

then importantly determines the gains from mitigating this uncertainty.

The empirical exercise in this paper covers a time period (1988-1999) when almost all of the

states’ generating capacity where still subject to RORR. Moreover, at this time, dirty coal was

still the dominant fuel source. The regulatory environment has evolved since, though a good

number of states still have their generation subject to RORR, and a sizable fraction of electricity

generation is still being produced using fossil fuels. Finally, the paper focuses on the efficiency of

generating electricity rather than the specific abatement method. Whether the future fuel mix will

be predominantly coal, natural gas, nuclear or renewables, efficiency in electricity generation will

remain an important topic that regulators and policy-makers care about. Well-designed incentive

mechanisms and simpler derivatives guided by theory can potentially yield large welfare gains

without needing to switch fuel, install expensive equipment, or fundamentally change how we

produce electricity.
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Figures

Figure 1: Distortion due to Rate of Return Regulation

Notes: C∗a(q, a) and Ĉa(q, a) are the marginal abatement cost under competitive pricing and RORR, respectively.

Figure 2: Empirical Analysis

39



Figure 3: Bounds analysis
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Figure 4: Model fit

(a) Non-rate case cost (b) Rate case cost
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Figure 5: Histogram of marginal abatement costs in $ per ton of SO2 emissions under

optimal and zero effort

(a) Zero effort (b) Optimal effort

Notes: The figure contains the histogram of marginal abatement costs (MAC) for the random sample I drew from the estimated

type distribution. MACs are evaluated at an emission rate of 2.5 lbs/MMBtu and expressed in 1995$ per ton.

Figure 6: Simple Menu

(a) Cutoff Type (b) Welfare Captured
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