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OA1 Model

We establish that our model is equivalent to a model that switches the order of the price-
setting and exit-entry phases. During the exit-entry phase, the state changes from e to e′;
during the price-setting phase, the state changes from e′ to e′′. Discounting occurs after the
price-setting phase. The exit-entry phase determines the value function Ûn along with the
policy function φ̂n with typical element Ûn(e

′), respectively, φ̂n(e
′); the price-setting phase

determines the value function V̂n along with the policy function p̂n with typical element
V̂n(e), respectively, p̂n(e).

We work backwards from the price-setting phase to the exit-entry phase.

Pricing decision of incumbent firm. We focus on firm 1. In the price-setting phase,
the expected NPV of incumbent firm 1 is

V̂1(e
′) = max

p1
D1(p1, p̂2(e

′))(p1 − c(e′1)) + βÛ1(e
′) +

2∑

n=1

Dn(p1, p̂2(e
′))β

[
Û1

(
e′n+

)
− Û1(e

′)
]
,

(OA1)

where e′1+ = (min{e′1 + 1,M}, e′2) and e′2+ = (e′1,min{e′2 + 1,M}). The pricing decision
p̂1(e

′) is uniquely determined by the first-order condition

p̂1(e
′)−

σ

1−D1(p̂(e′))
−c(e′1)+β

[
Û1

(
e′1+

)
− Û1(e

′)
]
+Υ(p̂2(e

′))β
[
Û1(e

′)− Û1

(
e′2+

)]
= 0.

(OA2)
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Exit decision of incumbent firm. In the exit-entry phase, if incumbent firm 1 exits the
industry, it receives the scrap value X1 in the current period and perishes. If it does not
exit, its expected NPV is

̂̂
X1(e) =

[
V̂1(e)(1− φ̂2(e)) + V̂1(e1, 0)φ̂2(e)

]
.

The probability of incumbent firm 1 exiting the industry in state e is therefore φ̂1(e) =

1− FX(
̂̂
X1(e)) and the expected NPV of incumbent firm 1 in the exit-entry phase is given

by the Bellman equation

Û1(e) = (1− φ̂1(e))
[
V̂1(e)(1 − φ̂2(e)) + V̂1(e1, 0)φ̂2(e)

]
+ φ̂1(e)EX

[
X1|X1 ≥

̂̂
X1(e)

]
.

(OA3)

Entry decision of potential entrant. If a potential entrant does not enter, it perishes.
If it enters, it becomes an incumbent firm without prior experience in the subsequent period.
Hence, upon entry, the expected NPV of potential entrant 1 is

̂̂
S1(e) =

[
V̂1(1, e2)(1 − φ̂2(e)) + V̂1(1, 0)φ̂2(e)

]
.

The probability of potential entrant 1 not entering the industry in state e is therefore

φ̂1(e) = 1− FS(
̂̂
S1(e)) and the expected NPV of potential entrant 1 in the exit-entry phase

is given by the Bellman equation

Û1(e) = (1− φ̂1(e))
{
[V̂1(1, e2)(1 − φ̂2(e)) + V̂1(1, 0)φ̂2(e)]− ES

[
S1|S1 ≤

̂̂
S1(e)

]}
. (OA4)

Equivalence. Let V1, U1, p1, and φ1 solve equations (2), (3), (4), and (5) in the main
paper. Define

V̂1 = βV1,

Û1 =
1

β
U1,

p̂1 = p1,

φ̂1 = φ1.

It is straightforward to verify that V̂1, Û1, p̂1, and φ̂1 solve equations (OA1), (OA2), (OA3),
and (OA4). This establishes the equivalence between the models.

OA2 Is dynamic competition necessarily fully efficient?

We provide further details on the first-best planner solution and the equilibria mentioned
thereafter in Section 4 of the main paper. In addition to Assumptions 1 and 2, we throughout
maintain κ > 0, ρ ∈ [0, 1], and β ∈ [0, 1).
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e pFB
1 (e) pFB

2 (e) ψFB
0,0 (e) ψFB

1,0 (e) ψFB
0,1 (e) ψFB

1,1 (e) V FB(e) UFB(e)

(0, 0) ∞ ∞ 0 1
2

1
2 0 v − p0 + β(v − κ) + β2

1−β
(v − ρκ)− S β(v − κ) + β2

1−β
(v − ρκ)− S

(0, 1) ∞ p−0 0 0 1 0 v − κ+ β
1−β

(v − ρκ) β(v − κ) + β2

1−β
(v − ρκ)

(0, 2) ∞ p−0 0 0 1 0 1
1−β

(v − ρκ) β
1−β

(v − ρκ)

(1, 0) p−0 ∞ 0 1 0 0 v − κ+ β
1−β

(v − ρκ) β(v − κ) + β2

1−β
(v − ρκ)

(1, 1) p−0 p−0 0 1
2

1
2 0 v − κ+ β

1−β
(v − ρκ) +X β(v − κ) + β2

1−β
(v − ρκ) +X

(1, 2) p0 p−0 0 0 1 0 1
1−β

(v − ρκ) +X β
1−β

(v − ρκ) +X

(2, 0) p−0 ∞ 0 1 0 0 1
1−β

(v − ρκ) β
1−β

(v − ρκ)

(2, 1) p−0 p0 0 1 0 0 1
1−β

(v − ρκ) +X β
1−β

(v − ρκ) +X

(2, 2) p−0 p−0 0 1
2

1
2 0 1

1−β
(v − ρκ) +X β

1−β
(v − ρκ) +X

Table OA1: First-best planner solution. Two-step learning curve. In columns labelled pFB
n (e), superscript − indicates that firm

n charges just below the price stated.
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First-best planner solution. Table OA1 shows the first-best planner solution. Note that
while there exist asymmetric solutions, we focus on the symmetric solution. In particular,
we set ψFB

1,0 (e) = ψFB
0,1 (e) = 1

2 in state e = (e, e). Note also that while we arbitrarily set

pn(e) = p−0 in state e ≥ (0, 0), firm n may charge any price below p0 in accordance with the
main paper.

The proof is similar to that of Proposition 1. First, we show that given the policy
functions, the value functions solve the Bellman equations (8) and (9) in the main paper.
Second, we show that there is no profitable one-shot deviation in any state of the industry.

Plugging in the policy functions, the Bellman equations (8) and (9) in the main paper
become:

UFB(0, 0) = −S + β

(
1

2
V FB(0, 1) +

1

2
V FB(1, 0)

)
,

UFB(0, 1) = βV FB(0, 1),

UFB(0, 2) = βV FB(0, 2),

UFB(1, 0) = βV FB(1, 0),

UFB(1, 1) = X + β

(
1

2
V FB(0, 1) +

1

2
V FB(1, 0)

)
,

UFB(1, 2) = X + βV FB(0, 2),

UFB(2, 0) = βV FB(2, 0),

UFB(2, 1) = X + βV FB(2, 0),

UFB(2, 2) = X + β

(
1

2
V FB(0, 2) +

1

2
V FB(2, 0)

)
,

V FB(0, 0) = v − p0 + UFB(0, 0),

V FB(0, 1) = v − κ+ UFB(0, 2),

V FB(0, 2) = v − ρκ+ UFB(0, 2),

V FB(1, 0) = v − κ+ UFB(2, 0),

V FB(1, 1) = v − κ+
1

2
UFB(1, 2) +

1

2
UFB(2, 1),

V FB(1, 2) = v − ρκ+ UFB(1, 2),

V FB(2, 0) = v − ρκ+ UFB(2, 0),

V FB(2, 1) = v − ρκ+ UFB(2, 1),

V FB(2, 2) = v − ρκ+ UFB(2, 2).

It is easy but tedious to show that the value functions solve the Bellman equations.
We proceed state-by-state to show that there is no profitable one-shot deviation. It

suffices to consider deviations in pure strategies.

1. Exit-entry phase in state e = (0, 0): Deviating to ψFB
0,0 (e) = 1 yields βV FB(e) <

UFB(e) by part (iii) of Assumption 2 because

β

(
v − p0 + β(v − κ) +

β2

1− β
(v − ρκ)− S

)
< β(v − κ) +

β2

1− β
(v − ρκ)− S
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⇔ (1− β)S < (1− β)β(p0 − κ) + β2(p0 − ρκ)

⇔ S < β

(
p0 − κ+

β

1− β
(p0 − ρκ)

)
.

Deviating to ψFB
1,0 (e) = 1 yields −S+βV FB(1, 0) = UFB(e). Deviating to ψFB

0,1 (e) = 1

yields−S+βV FB(0, 1) = UFB(e). Deviating to ψFB
1,1 (e) = 1 yields−2S+βV FB(1, 1) <

UFB(e) by part (ii) of Assumption 2 because

−2S + β

(
v − κ+

β

1− β
(v − ρκ) +X

)
< β(v − κ) +

β2

1− β
(v − ρκ)− S

⇔ βX < S.

2. Exit-entry phase in state e = (0, 1): Deviating to ψFB
0,0 (e) = 1 yields X+βV FB(0, 0) <

UFB(e) by parts (ii) and (iii) of Assumption 2. Deviating to ψFB
1,0 (e) = 1 yields

X −S+βV FB(1, 0) < UFB(e) by part (ii) of Assumption 2. Deviating to ψFB
1,1 (e) = 1

yields −S + βV FB(1, 1) < UFB(e) by part (ii) of Assumption 2.

3. Exit-entry phase in state e = (0, 2): Deviating to ψFB
0,0 (e) = 1 yields X+βV FB(0, 0) <

UFB(e) by parts (ii) and (iii) of Assumption 2. Deviating to ψFB
1,0 (e) = 1 yields

X −S+βV FB(1, 0) < UFB(e) by part (ii) of Assumption 2. Deviating to ψFB
1,1 (e) = 1

yields −S + βV FB(1, 2) < UFB(e) by part (ii) of Assumption 2.

4. Exit-entry phase in state e = (1, 0): Analogous to exit-entry phase in state e = (0, 1).

5. Exit-entry phase in state e = (1, 1): Deviating to ψFB
0,0 (e) = 1 yields 2X+βV FB(0, 0) <

UFB(e) by parts (ii) and (iii) of Assumption 2. Deviating to ψFB
1,0 (e) = 1 yields

X+βV FB(1, 0) = UFB(e). Deviating to ψFB
0,1 (e) = 1 yieldsX+βV FB(0, 1) = UFB(e).

Deviating to ψFB
1,1 (e) = 1 yields βV FB(e) < UFB(e).

6. Exit-entry phase in state e = (1, 2): Deviating to ψFB
0,0 (e) = 1 yields 2X+βV FB(0, 0) <

UFB(e) by parts (ii) and (iii) of Assumption 2. Deviating to ψFB
1,0 (e) = 1 yields

X + βV FB(1, 0) < UFB(e). Deviating to ψFB
1,1 (e) = 1 yields βV FB(1, 2) < UFB(e).

7. Exit-entry phase in state e = (2, 0): Analogous to exit-entry phase in state e = (0, 2).

8. Exit-entry phase in state e = (2, 1): Analogous to exit-entry phase in state e = (1, 2).

9. Exit-entry phase in state e = (2, 2): Deviating to ψFB
0,0 (e) = 1 yields 2X+βV FB(0, 0) <

UFB(e) by parts (ii) and (iii) of Assumption 2. Deviating to ψFB
1,0 (e) = 1 yields

X+βV FB(2, 0) = UFB(e). Deviating to ψFB
0,1 (e) = 1 yieldsX+βV FB(0, 2) = UFB(e).

Deviating to ψFB
1,1 (e) = 1 yields βV FB(e) < UFB(e).

10. Price-setting phase in state e = (0, 0): By default.
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11. Price-setting phase in state e = (0, 1): Deviating to firm 2 matching the outside good
(pFB

2 (e) = p0) yields

1

2
(v − p0) +

1

2
(v − κ) +

1

2
UFB(e) +

1

2
UFB(0, 2) ≤ V FB(e)

by part (i) of Assumption 2. Deviating to firm 2 being undercut by the outside good
(pFB

2 (e) > p0) yields v − p0 + UFB(e) ≤ V FB(e) by part (i) of Assumption 2.

12. Price-setting phase in state e = (0, 2): Deviating to firm 2 matching the outside good
(pFB

2 (e) = p0) yields

1

2
(v − p0) +

1

2
(v − ρκ) + UFB(e) ≤ V FB(e)

by part (i) of Assumption 2. Deviating to firm 2 being undercut by the outside good
(pFB

2 (e) > p0) yields v − p0 + UFB(e) ≤ V FB(e) by part (i) of Assumption 2.

13. Price-setting phase in state e = (1, 0): Analogous to price-setting phase in state e =
(0, 1).

14. Price-setting phase in state e = (1, 1): Deviating to firm 1, say, matching the outside
good and firm 2 undercutting the outside good (pFB

1 (e) = p0 and pFB
2 (e) = p−0 ) yields

v − κ+ UFB(1, 2) = V FB(e). Deviating to firm 1, say, being undercut by the outside
good and firm 2 undercutting the outside good (pFB

1 (e) > p0 and pFB
2 (e) = p−0 ) yields

v− κ+UFB(1, 2) = V FB(e). Deviating to firm 1 matching the outside good and firm
2 matching the outside good (pFB

1 (e) = p0 and pFB
2 (e) = p0) yields

1

3
(v − p0) +

2

3
(v − κ) +

1

3
UFB(e) +

1

3
UFB(2, 1) +

1

3
UFB(1, 2) ≤ V FB(e)

by part (i) of Assumption 2. Deviating to firm 1, say, being undercut by the outside
good and firm 2 matching the outside good (pFB

1 (e) > p0 and pFB
2 (e) = p0) yields

1

2
(v − p0) +

1

2
(v − κ) +

1

2
UFB(e) +

1

2
UFB(1, 2) ≤ V FB(e)

by part (i) of Assumption 2. Deviating to firm 1 being undercut by the outside good
and firm 2 being undercut by the outside good (pFB

1 (e) > p0 and pFB
2 (e) > p0) yields

(v − p0) + UFB(e) ≤ V FB(e) by part (i) of Assumption 2.

15. Price-setting phase in state e = (1, 2): Deviating to firm 1 undercutting the outside
good and firm 2 undercutting the outside good (pFB

1 (e) = p−0 and pFB
2 (e) = p−0 ) yields

1

2
(v − κ) +

1

2
(v − ρκ) +

1

2
UFB(2, 2) +

1

2
UFB(e) ≤ V FB(e).

Deviating to firm 1 being undercut by the outside good and firm 2 undercutting the
outside good (pFB

1 (e) > p0 and pFB
2 (e) = p−0 ) yields v − ρκ + UFB(e) = V FB(e).

Deviating to firm 1 undercutting the outside good and firm 2 matching the outside
good (pFB

1 (e) = p−0 and pFB
2 (e) = p0) yields v−κ+U

FB(2, 2) ≤ V FB(e). Deviating to
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firm 1 matching the outside good and firm 2 matching the outside good (pFB
1 (e) = p0

and pFB
2 (e) = p0) yields

1

3
(v − p0) +

1

3
(v − κ) +

1

3
(v − ρκ) +

2

3
UFB(e) +

1

3
UFB(2, 2) ≤ V FB(e)

by part (i) of Assumption 2. Deviating to firm 1 being undercut by the outside good
and firm 2 matching the outside good (pFB

1 (e) > p0 and pFB
2 (e) = p0) yields

1

2
(v − p0) +

1

2
(v − ρκ) + UFB(e) ≤ V FB(e)

by part (i) of Assumption 2. Deviating to firm 1 undercutting the outside good and
firm 2 being undercut by the outside good (pFB

1 (e) = p−0 and pFB
2 (e) > p0) yields

v− κ+UFB(2, 2) ≤ V FB(e). Deviating to firm 1 matching the outside good and firm
2 being undercut by the outside good (pFB

1 (e) = p0 and pFB
2 (e) > p0) yields

1

2
(v − p0) +

1

2
(v − κ) +

1

2
UFB(e) +

1

2
UFB(2, 2) ≤ V FB(e)

by part (i) of Assumption 2. Deviating to firm 1 being undercut by the outside good
and firm 2 being undercut by the outside good (pFB

1 (e) > p0 and pFB
2 (e) > p0) yields

(v − p0) + UFB(e) ≤ V FB(e) by part (i) of Assumption 2.

16. Price-setting phase in state e = (2, 0): Analogous to price-setting phase in state e =
(0, 2).

17. Price-setting phase in state e = (2, 1): Analogous to price-setting phase in state e =
(1, 2).

18. Price-setting phase in state e = (2, 2): Deviating to firm 1, say, matching the outside
good and firm 2 undercutting the outside good (pFB

1 (e) = p0 and pFB
2 (e) = p−0 ) yields

v − ρκ + UFB(e) = V FB(e). Deviating to firm 1, say, being undercut by the outside
good and firm 2 undercutting the outside good (pFB

1 (e) > p0 and pFB
2 (e) = p−0 ) yields

v − ρκ+ UFB(e) = V FB(e). Deviating to firm 1 matching the outside good and firm
2 matching the outside good (pFB

1 (e) = p0 and pFB
2 (e) = p0) yields

1

3
(v − p0) +

2

3
(v − ρκ) + UFB(e) ≤ V FB(e)

by part (i) of Assumption 2. Deviating to firm 1, say, being undercut by the outside
good and firm 2 matching the outside good (pFB

1 (e) > p0 and pFB
2 (e) = p0) yields

1

2
(v − p0) +

1

2
(v − ρκ) + UFB(e) ≤ V FB(e)

by part (i) of Assumption 2. Deviating to firm 1 being undercut by the outside good
and firm 2 being undercut by the outside good (pFB

1 (e) > p0 and pFB
2 (e) > p0) yields

(v − p0) + UFB(e) ≤ V FB(e) by part (i) of Assumption 2.
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Proposition 1. The proof proceeds in two steps. First, we show that given the policy
functions, the value functions solve the Bellman equations (2), (3), and (4) in the main
paper. Second, we show that there is no profitable one-shot deviation in any state of the
industry.

Plugging in the policy functions, the Bellman equations (2), (3), and (4) in the main
paper become:

U1(0, 0) =


1−

S − βX

β
(
p0 − κ+ β

1−β
(p0 − ρκ)

)
− βX




×


−S +

S − βX

β
(
p0 − κ+ β

1−β
(p0 − ρκ)

)
− βX

βV1(1, 0) +


1−

S − βX

β
(
p0 − κ+ β

1−β
(p0 − ρκ)

)
− βX


 βV1(1, 1)


 ,

U1(0, 1) = 0,

U1(0, 2) = 0,

U1(1, 0) = βV1(1, 0),

U1(1, 1) =
(1− β)X

β
(
p0 − κ+ β

1−β
(p0 − ρκ)

)
− βX

X +


1−

(1 − β)X

β
(
p0 − κ+ β

1−β
(p0 − ρκ)

)
− βX




×


 (1− β)X

β
(
p0 − κ+ β

1−β
(p0 − ρκ)

)
− βX

βV1(1, 0) +


1−

(1− β)X

β
(
p0 − κ+ β

1−β
(p0 − ρκ)

)
− βX


 βV1(1, 1)


 ,

U1(1, 2) = X,

U1(2, 0) = βV1(2, 0),

U1(2, 1) = βV1(2, 0),

U1(2, 2) =
(1− β)X

β
1−β

(p0 − ρκ)− βX
X +

(
1−

(1− β)X
β

1−β
(p0 − ρκ)− βX

)

×

(
(1− β)X

β
1−β

(p0 − ρκ)− βX
βV1(2, 0) +

(
1−

(1− β)X
β

1−β
(p0 − ρκ)− βX

)
βV1(2, 2)

)
,

V1(1, 0) = p0 − κ+ U1(2, 0),

V1(1, 1) = −
1

2

(
β

1− β
(p0 − ρκ)−X

)
+

1

2
U1(1, 2) +

1

2
U1(2, 1),

V1(1, 2) = U1(1, 2),

V1(2, 0) = p0 − ρκ+ U1(2, 0),

V1(2, 1) = κ(1− ρ) + U1(2, 1),

V1(2, 2) = U1(2, 2),

where we omit the Bellman equation (4) for state e if e1 = 0. Recall that the firm that sets
the lowest price makes the sale for sure and that, if there is more than one such firm, each
of them makes the sale with equal probability. It is easy but tedious to show that the value
functions solve the Bellman equations.
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We proceed state-by-state to show that there is no profitable one-shot deviation. It
suffices to consider deviations in pure strategies.1

1. Exit-entry phase in state e = (0, 0): Deviating to φ1(e) = 0 yields

−S +
S − βX

β
(
p0 − κ+ β

1−β
(p0 − ρκ)

)
− βX

βV1(1, 0) +


1−

S − βX

β
(
p0 − κ+ β

1−β
(p0 − ρκ)

)
− βX


 βV1(1, 1)

= 0 = U1(e).

Deviating to φ1(e) = 1 yields 0 = U1(e).

2. Exit-entry phase in state e = (0, 1): Deviating to φ1(e) = 0 yields −S + βV1(1, 1) <
U1(e) by part (ii) of Assumption 2.

3. Exit-entry phase in state e = (0, 2): Deviating to φ1(e) = 0 yields −S + βV1(1, 2) <
U1(e) by part (ii) of Assumption 2.

4. Exit-entry phase in state e = (1, 0): Deviating to φ1(e) = 1 yields X < U1(e) by parts
(ii) and (iii) of Assumption 2.

5. Exit-entry phase in state e = (1, 1): Deviating to φ1(e) = 0 yields

(1− β)X

β
(
p0 − κ+ β

1−β
(p0 − ρκ)

)
− βX

βV1(1, 0) +


1−

(1− β)X

β
(
p0 − κ+ β

1−β
(p0 − ρκ)

)
− βX


 βV1(1, 1)

= X = U1(e).

Deviating to φ1(e) = 1 yields X = U1(e).

6. Exit-entry phase in state e = (1, 2): Deviating to φ1(e) = 0 yields βV1(e) = βX <

X = U1(e).

7. Exit-entry phase in state e = (2, 0): Deviating to φ1(e) = 1 yields X < U1(e) by parts
(ii) and (iii) of Assumption 2.

8. Exit-entry phase in state e = (2, 1): Deviating to φ1(e) = 1 yields X < U1(e) by parts
(ii) and (iii) of Assumption 2.

9. Exit-entry phase in state e = (2, 2): Deviating to φ1(e) = 0 yields

(1− β)X
β

1−β
(p0 − ρκ)− βX

βV1(2, 0) +

(
1−

(1− β)X
β

1−β
(p0 − ρκ)− βX

)
βV1(2, 2)

= X = U1(e).

Deviating to φ1(e) = 1 yields X = U1(e).

1Note that in the price-setting phase in state e > (0, 0), the outside good remains priced out of the market
even after a deviation by parts (i), (ii), and (iii) of Assumption 2.
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10. Price-setting phase in state e = (0, 0): By default.

11. Price-setting phase in state e = (0, 1): By default.

12. Price-setting phase in state e = (0, 2): By default.

13. Price-setting phase in state e = (1, 0): Deviating to match the outside good (p1(e) =
p0) yields

1

2
(p0 − κ) +

1

2
U1(2, 0) +

1

2
U1(e) < V1(e).

Deviating to be undercut by the outside good (p1(e) > p0) yields U1(e) < V1(e).

14. Price-setting phase in state e = (1, 1): Deviating to undercut firm 2 (p1(e) =
(
κ−

(
β

1−β
(p0 − ρκ)−X

))−
)

yields

−

(
β

1− β
(p0 − ρκ)−X

)
+ U1(2, 1) = V1(e).

Deviating to be undercut by firm 2 (p1(e) > κ−
(

β
1−β

(p0 − ρκ)−X
)
) yields U1(1, 2) =

V1(e).

15. Price-setting phase in state e = (1, 2): Deviating to match firm 2 (p1(e) = κ−) yields

1

2
U1(e) +

1

2
U1(2, 2) = V1(e).

Deviating to undercut firm 2 (p1(e) = κ−−, where κ−− is the price just below κ−)
yields U1(2, 2) = V1(e).

16. Price-setting phase in state e = (2, 0): Deviating to match the outside good (p1(e) =
p0) yields

1

2
(p0 − ρκ) + U1(2, 0) < V1(e).

Deviating to be undercut by the outside good (p1(e) > p0) yields U1(e) < V1(e).

17. Price-setting phase in state e = (2, 1): Deviating to match firm 2 (p1(e) = κ) yields

1

2
(1− ρ)κ+

1

2
U1(e) +

1

2
U1(2, 2) < V1(e)

by parts (ii) and (iii) of Assumption 2. Deviating to be undercut by firm 2 (p1(e) > κ)
yields U1(2, 2) < V1(e) by parts (ii) and (iii) of Assumption 2.

18. Price-setting phase in state e = (2, 2): Deviating to undercut firm 2 (p1(e) = ρκ−)
yields U1(e) = V1(e). Deviating to be undercut by firm 2 (p1(e) > ρκ) yields U1(e) =
V1(e).
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e p1(e) φ1(e) V1(e) U1(e)

(0, 0) ∞ S−βX

β
(

p0−κ+ β

1−β
(p0−ρκ)

)

−βX
– 0

(0, 1) ∞ 0 – β
(
p0 − κ+ β

1−β
(p0 − ρκ)

)
− S

(0, 2) ∞ 1 – 0

(1, 0) p−0 1 p0 − κ+ β
1−β

(p0 − ρκ) X

(1, 1) κ−
(

β
1−β

(p0 − ρκ)−X
)

(1−β)X

β
(

p0−κ+ β

1−β
(p0−ρκ)

)

−βX
X X

(1, 2) κ 1 X X

(2, 0) p−0 0 p0−ρκ
1−β

β
1−β

(p0 − ρκ)

(2, 1) κ− 0 (1− ρ)κ+ β
1−β

(p0 − ρκ) β
1−β

(p0 − ρκ)

(2, 2) ρκ
(1−β)X

β

1−β
(p0−ρκ)−βX

X X

Table OA2: Additional equilibrium 1. Two-step learning curve. In column labelled p1(e), superscript − indicates that firm 1
charges just below the price stated.

e p1(e) φ1(e) V1(e) U1(e)

(0, 0) ∞ S−βX

β
(

p0−κ+ β

1−β
(p0−ρκ)

)

−βX
– 0

(0, 1) ∞ (1−β)X

β
(

p0−κ+ β

1−β
(p0−ρκ)

)

−βX
– 0

(0, 2) ∞ 1 – 0

(1, 0) p−0
S−βX

β
(

p0−κ+ β

1−β
(p0−ρκ)

)

−βX
p0 − κ+ β

1−β
(p0 − ρκ) X

(1, 1) κ−
(

β
1−β

(p0 − ρκ)−X
)

(1−β)X

β
(

p0−κ+ β

1−β
(p0−ρκ)

)

−βX
X X

(1, 2) κ 1 X X

(2, 0) p−0 0 p0−ρκ
1−β

β
1−β

(p0 − ρκ)

(2, 1) κ− 0 (1− ρ)κ+ β
1−β

(p0 − ρκ) β
1−β

(p0 − ρκ)

(2, 2) ρκ
(1−β)X

β

1−β
(p0−ρκ)−βX

X X

Table OA3: Additional equilibrium 2. Two-step learning curve. In column labelled p1(e), superscript − indicates that firm 1
charges just below the price stated.
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Additional equilibria. Tables OA2 and OA3 show the two other equilibria that exist in
addition to the one in Table 1 in the main paper. The proof is similar to that of Proposition
1 and therefore omitted.

Equilibrium with cost-inefficient exit. Table 2 in the main paper shows an equilibrium
with cost-inefficient exit. The proof is similar to that of Proposition 1 and therefore omitted.

OA3 Decomposition

Per-period, avoidable fixed costs. We establish that our model with scrap values is
equivalent to a model with per-period, avoidable fixed costs but without scrap values. For
simplicity, we focus on the special case of mixed exit and entry strategies: ∆X = ∆S = 0.

First consider incumbent firm 1. In the exit-entry phase in state e′ with e′1 > 0, the
Bellman equation (2) in the main paper becomes

U1(e
′) = max

{
X̂1(e

′),X
}
, (OA5)

where

X̂1(e
′) = β

[
V1(e

′)(1 − φ2(e
′)) + V1(e

′
1, 0)φ2(e

′)
]
.

In the price-setting phase in state e with e1 > 0, the Bellman equation (4) in the main paper
becomes

V1(e) = max
p1

D1(p1, p2(e))(p1 − c(e1))− F + U1(e) +

2∑

n=1

Dn(p1, p2(e))
[
U1

(
en+

)
− U1(e)

]
,

(OA6)

where F ≥ 0 is per-period, avoidable fixed costs. Note that incumbent firm 1 can avoid
the fixed costs for the subsequent period by deciding to exit the industry in the current
period. Next consider potential entrant 1. In the exit-entry phase in state e′ with e′1 = 0,
the Bellman equation (3) in the main paper becomes

U1(e
′) = max

{
Ŝ1(e

′)− S, 0
}
, (OA7)

where

Ŝ1(e
′) = β[V1(1, e

′
2)(1− φ2(e

′)) + V1(1, 0)φ2(e
′)].

Let V
(X,S,F )
1 , U

(X,S,F )
1 , p

(X,S,F )
1 , and φ

(X,S,F )
1 denote the value and policy functions of firm

1 in a symmetric equilibrium for given values of
(
X,S, F

)
; these solve the Bellman equations

(OA5), (OA6), and (OA7) along with the corresponding optimality conditions.
Our model sets X ≥ 0 and F = 0. We show that our model is equivalent to an alternative

model that sets X
′
= 0 and F

′
≥ 0. To this end, we show that if V

(X,S,0)
1 , U

(X,S,0)
1 , p

(X,S,0)
1 ,

and φ
(X,S,0)
1 solve the Bellman equations (OA5), (OA6), and (OA7) given

(
X,S, 0

)
, then

V
(0,S

′
,F

′
)

1 = V
(X,S,0)
1 −

X

β
,
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U
(0,S

′
,F

′
)

1 (e) =

{
U

(X,S,0)
1 (e) if e1 = 0,

U
(X,S,0)
1 (e)−X if e1 > 0,

p
(0,S

′
,F

′
)

1 = p
(X,S,0)
1 ,

φ
(0,S

′
,F

′
)

1 = φ
(X,S,0)
1

solve these equations given
(
0, S

′
= S −X,F

′
= (1−β)X

β

)
.

Starting with incumbent firm 1, plugging in the Bellman equations (OA5) and (OA6)

given
(
0, S

′
= S −X,F

′
= (1−β)X

β

)
reduce to those under

(
X,S, 0

)
. Turning to potential

entrant 1, the Bellman equation (OA7) given
(
0, S

′
= S −X,F

′
= (1−β)X

β

)
similarly reduces

to that under
(
X,S, 0

)
.

OA4 Why is the best equilibrium so good?

Linear demand. Consider a representative consumer who allocates her income I among
the inside goods that are offered by the incumbent firms at prices p = (p1, p2), an outside
good at an exogenously given price p0, and a numeraire good. Substituting the budget
constraint into the utility function, the maximization problem of the representative consumer
is

max
Q0,Q1,Q2

2∑

n=0

anQn −
b

2

2∑

n=0

Q2
n − θb (Q0Q1 +Q0Q2 +Q1Q2) + I −

2∑

n=0

pnQn,

where a0 > 0, a1 > 0, a2 > 0, b > 0, and θ ∈ [0, 1) are parameters. The parameter θ governs
the degree of product differentiation, with higher values of θ corresponding to weaker product
differentiation.

The first-order conditions in matrix form are:



1 θ θ

θ 1 θ

θ θ 1





Q0

Q1

Q2


 =




a0−p0
b

a1−p1
b

a2−p2
b


 .

Solving yields the demand functions

Q0 = D0(p) =
1

b(2θ + 1)(1− θ)
((1 + θ) a0 − θa1 − θa2 − (1 + θ)p0 + θp1 + θp2) ,

Q1 = D1(p) =
1

b(2θ + 1)(1− θ)
(−θa0 + (1 + θ) a1 − θa2 + θp0 − (1 + θ)p1 + θp2) ,

Q2 = D2(p) =
1

b(2θ + 1)(1− θ)
(−θa0 − θa1 + (1 + θ) a2 + θp0 + θp1 − (1 + θ)p2) .

The aggregate demand for the inside goods is

DT (p) =

2∑

n=1

Dn(p) =
1

b(2θ + 1)(1− θ)
[−2θa0 + a1 + a2 + 2θp0 − (p1 + p2)] .
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To prevent DT (p) < 0, we maintain −2θa0 + a1 + a2 + 2θp0 > 0. We compute the price
elasticity of aggregate demand as the percentage change in aggregate demand DT (p) that
from results a one-percent change in prices p:

ηT (p) =
∂DT (λp)

∂λ

λ

DT (λp)

∣∣∣∣
λ=1

=
−(p1 + p2)

−2θa0 + a1 + a2 + 2θp0 − (p1 + p2)
.

Note that the absolute value |ηT (p)| of this price elasticity increases in p1 + p2. Moreover,
the quantity of the outside good demanded D0(p) increases in p1 + p2. Thus, as the prices
of the inside goods decrease, the aggregate demand for the inside goods becomes less price
elastic, and at the same time, the quantity of the outside good demanded decreases.
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