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In this following sections, we will present complete proofs of the results stated in
Sections 3 and 5 of the main paper. For the convenience in readability, we repeat the
statements of the results. The supplementary material is organized as follows. We will
prove Theorem 4 (of the main paper) in Section S.1 along with some generalizations.
Lemmas 3 – 7 (of the main paper) in Section S.2. Theorem 5 of the main paper is proved
in Section S.3.

S.1 Lasso-type Post-Selection Inference

Before proving Theorem 4 (of the main paper), we prove a simple lemma which shows
that the lasso objective function is almost a surrogate loss function. Recall, we have
observations (Xi, Yi), 1 ≤ i ≤ n. The empirical and the expected objective functions are
defined as

R̂M (θ) =
1

n

n∑
i=1

{
Yi −X>i (M)θ

}2
and RM (θ) =

1

n

n∑
i=1

E
[{
Yi −X>i (M)θ

}2
]
,

for all θ ∈ R|M |. We also have the least squares estimator and the corresponding target
as

β0,M := arg min
θ∈R|M|

RM (θ) and β̂M := arg min
θ∈R|M|

R̂M (θ).

Lemma S.1.1. For any M ∈M(p) and θ ∈ R|M |, the following inequalities hold true:

R̂M (θ) ≤ RM (θ) +D0n + 2D1n ‖θ‖1 +D2n ‖θ‖21 ,
RM (θ) ≤ R̂M (θ) +D0n + 2D1n ‖θ‖1 +D2n ‖θ‖21 , (1)

where

D0n :=

∣∣∣∣∣ 1n
n∑
i=1

Y 2
i −

1

n

n∑
i=1

E
[
Y 2
i

]∣∣∣∣∣ .

1



Proof. We will only prove the first inequality and the second will be obvious to proof.
Recall the notation,

Σn =
1

n

n∑
i=1

XiX
>
i , and Γn =

1

n

n∑
i=1

XiYi.

Similarly, Σ = E [Σn] and Γ = E [Γn]. Expanding the square function in R̂M (θ), we have

R̂M (θ) =
1

n

n∑
i=1

Y 2
i − 2θ>Γn(M) + θ>Σn(M)θ

=
1

n

n∑
i=1

E
[
Y 2
i

]
− 2θ>Γ(M) + θ>Σ(M)θ +

(
1

n

n∑
i=1

Y 2
i −

1

n

n∑
i=1

E
[
Y 2
i

])
+ 2θ> [Γ(M)− Γn(M)] + 2θ> [Σ(M)− Σn(M)] θ

≤ RM (θ) +D0n + 2 ‖θ‖1D1n + ‖θ‖21D2n.

Combining these inequalities, we get

R̂M (θ) ≤ RM (θ) +D0n + 2 ‖θ‖1D1n + ‖θ‖21D2n.

Remark S.1.1 Note from the inequality (1) that the right hand side resembles the
lasso objective function except for the term based on ‖θ‖21, the coefficient of which is

D2n :=

∥∥∥∥∥ 1

n

n∑
i=1

XiX
>
i −

1

n

n∑
i=1

E
[
XiX

>
i

]∥∥∥∥∥
∞

.

Suppose, for instance, assume that the covariates are all fixed deterministic values. Then
D2n = 0 and the right hand side in inequality (1) is exactly the lasso objective function
except for a constant D0n that does not matter for minimizers. Also note that under
setting 1(a) of Lemma 2 in the main paper, D1n coincides in rate with the optimal tuning
parameter rate in lasso. This inequality suggests that lasso is a natural candidate for
high-dimensional linear regression but the derivation of a similar inequality for gener-
alized linear models is not so obvious which questions the use of ‖·‖1-penalty for other
linear models. �

Getting back to the lasso-type post-selection inference, for every M ∈M(p), we have
the confidence regions

ŘM :=

{
θ ∈ R|M | : R̂M (θ) ≤ R̂M (β̂M ) + 4C1(α)

∥∥∥β̂M∥∥∥
1

+ 2C2(α)
∥∥∥β̂M∥∥∥2

1

}
,

Ř†M :=

{
θ ∈ R|M | : R̂M (θ) ≤ R̂M (β̂M ) + 2C1(α)

[∥∥∥β̂M∥∥∥
1

+ ‖θ‖1
]

+ C2(α)

[∥∥∥β̂M∥∥∥2
1

+ ‖θ‖21
]}

where R̂M (·) is the empirical least squares objective function defined above. The follow-
ing is a generalization of Theorem 4 of the main paper.
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Theorem S.1.1. Under assumptions (A2) – (A3) and for every 1 ≤ k ≤ p that satisfies
(A4)(k), we have

lim inf
n→∞

P

 ⋂
M∈M(k)

{
β0,M ∈ ŘM

} ≥ 1− α.

Under no assumptions except for (A2), we have

P

 ⋂
M∈M(p)

{
β0,M ∈ Ř†M

} ≥ 1− α.

Proof. Since we are only concerned with objective functions at β0,M , we can get a sharper
inequality than the one presented in Lemma S.1.1 but the proof is similar. As noted in
the main paper, we have the equalities,

β̂M := arg min
θ∈R|M|

{
θ>Σn(M)θ − 2θ>Γn(M)

}
,

β0,M := arg min
θ∈R|M|

{
θ>Σ(M)θ − 2θ>Γ(M)

}
.

From these equalities, we get the following inequalities for every M ∈M(p),

β0,MΣn(M)β0,M − 2β>0,MΓn(M)

≤ β0,MΣ(M)β0,M − 2β>0,MΓ(M) + 2D1n ‖β0,M‖1 +D2n ‖β0,M‖21
≤ β̂MΣ(M)β̂M − 2β̂>MΓ(M) + 2D1n ‖β0,M‖1 +D2n ‖β0,M‖21
≤ β̂MΣn(M)β̂M − 2β̂>MΓn(M) + 2D1n

[∥∥∥β̂M∥∥∥
1

+ ‖β0,M‖1
]

+D2n

[∥∥∥β̂M∥∥∥2
1

+ ‖β0,M‖21

]
.

The first and third inequalities follow from the proof of Lemma S.1.1. The second
inequality follows from the definition of β0,M . Now add the sample average of {Y 2

i : 1 ≤
i ≤ n} on both sides and get

R̂M (β0,M ) ≤ R̂M
(
β̂M

)
+ 2D1n

[∥∥∥β̂M∥∥∥
1

+ ‖β0,M‖1
]

+D2n

[∥∥∥β̂M∥∥∥2
1

+ ‖β0,M‖21

]
, (2)

for all M ∈M(p). Using assumptions (A4)(k) and (A3) (following the proof of Theorem
1 of the main paper), we can make the probability statement

lim inf
n→∞

P

 ⋂
M∈M(k)

{
β0,M ∈ ŘM

} ≥ 1− α.

The second result follows trivially from inequality (2).
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Remark S.1.2 Based on this proof, one can derive a generalization similar to The-
orem 3 of the main paper with arbitrary matrices Σ∗n,Σ

∗ and arbitrary vectors Γ∗n,Γ
∗.

We leave it to the reader to figure out the details. �
Interestingly, one may ask if Dantzig selector and the lasso are the only methods that

can lead to valid post-selection confidence regions or is there a collection of such methods
that work for this purpose. We do not yet know of any general result in this direction
but we know that at least there is one another method that works. Before stating the
theorem, we state a lemma that shows that square-root lasso is also a surrogate and this
leads to the confidence regions.

Lemma S.1.2. For any model M ∈ M(p) and θ ∈ R|M |, the following inequality hold
true:

R̂
1/2
M (θ) ≤ R1/2

M (θ) + η1/2n (1 + ‖θ‖1) ,

R
1/2
M (θ) ≤ R̂1/2

M (θ) + η1/2n (1 + ‖θ‖1) ,

where ηn = max{D0n,D1n,D2n}.
Proof. From the proof of Lemma S.1.1, we have

R̂M (θ) ≤ RM (θ) +D0n + 2D1n ‖θ‖1 +D2n ‖θ‖21
≤ RM (θ) + ηn

(
1 + 2 ‖θ‖1 + ‖θ‖21

)
≤ RM (θ) + ηn (1 + ‖θ‖1)

2 .

Taking square root on both sides and using the inequality
√
a+ b ≤

√
a+
√
b, we get

R̂
1/2
M (θ) ≤ R1/2

M (θ) + η1/2n (1 + ‖θ‖1) .

Now, consider the confidence regions

R̆M :=
{
θ ∈ R|M | : R̂1/2

M (θ) ≤ R̂1/2
M (β̂) + 2C1/2(α)

(
1 +

∥∥∥β̂M∥∥∥
1

)}
,

R̆†M :=
{
θ ∈ R|M | : R̂1/2

M (θ) ≤ R̂1/2
M (β̂) + C1/2(α) (1 + ‖θ‖1) + C1/2(α)

(
1 +

∥∥∥β̂M∥∥∥
1

)}
,

where C(α) is either given by C(α) = max{C1(α), C2(α)} or C(α) is the (1− α)-upper
quantile of max{D1n,D2n}. The following theorem is the analogue of Theorem S.1.1
with square-root lasso.

Theorem S.1.2. Under assumptions (A2) – (A3) and for every 1 ≤ k ≤ p that satisfies
(A4)(k), we have

lim inf
n→∞

P

 ⋂
M∈M(k)

{
β0,M ∈ R̆M

} ≥ 1− α.

Under no assumptions except for (A2), we have

P

 ⋂
M∈M(p)

{
β0,M ∈ R̆†M

} ≥ 1− α.

4



Proof. The proof is almost the same as that of Theorem S.1.1 with same changes as in
Lemma S.1.2.

S.2 Uniform Convergence Results for Linear Regression

Lemma S.2.1. If k satisfies kD2n = op(1), then

sup
M∈M(k)

‖Σn(M)− Σ(M)‖op ≤ kD2n = op(1).

Proof. Since Σn(M) − Σ(M) is a symmetric matrix, the operator norm can be written
as

‖Σn(M)− Σ(M)‖op = sup
δ∈R|M|, ‖δ‖2≤1

|δ>(Σn(M)− Σ(M))δ|.

This implies that

sup
M∈M(k)

‖Σn(M)− Σ(M)‖op = sup
δ∈Rp,

‖δ‖0≤k,‖δ‖2≤1

|δ>(Σn − Σ)δ|,

≤ sup
δ∈Rp,

‖δ‖0≤k,‖δ‖2≤1

‖Σn − Σ‖∞ ‖δ‖
2
1 ,

≤ sup
δ∈Rp,

‖δ‖0≤k,‖δ‖2≤1

k ‖Σn − Σ‖∞ ‖δ‖
2
2 ,

= k ‖Σn − Σ‖∞ = kD2n = op(1),

by the given hypothesis.

Remark S.2.1 To comment on how to improve this result for the case of independent
and identically distributed random vectors case, we use the first equality,

sup
M∈M(k)

‖Σn(M)− Σ(M)‖op = sup
δ∈Rp,

‖δ‖0≤k,‖δ‖2≤1

|δ>(Σn − Σ)δ|

= sup
δ∈Rp,

‖δ‖0≤k,‖δ‖2≤1

∣∣∣∣∣ 1n
n∑
i=1

δ>(XiX
>
i − Σ)δ

∣∣∣∣∣ .
Now, use the techniques of symmetrization using Rademacher variables and covering
numbers for sparse vectors to get the correct rate. See Rudelson and Vershynin (2008)
for more details. �

Before proceeding to prove the remaining uniform consistency results, we need a
result that proves closeness of minimizers of close convex functions which was proved by
Hjort and Pollard (1993). For completeness, we state the result along with a detailed
proof here. As will be seen from the proof of the lemma, there is no randomness involved.
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Lemma S.2.2. [Lemma 2 of Hjort and Pollard (1993)] Suppose {An(s)} is a sequence
of convex functions defined on an open convex set S and {Bn(s)} is another sequence
of functions. Let αn be the minimizer of An and assume that Bn has a unique global
minimizer βn. Then for each δ > 0 and any norm | · |,

P (|αn − βn| ≥ δ) ≤ P
(

∆n(δ) ≥ 1

2
hn(δ)

)
,

where

∆n(δ) := sup
|s−βn|≤δ

|An(s)−Bn(s)| and hn(δ) := inf
|s−βn|=δ

Bn(s)−Bn(βn).

Proof. Define rn(s) := An(s)−Bn(s) and we have the minimizers

αn = arg min
θ∈S

An(θ) and βn = arg min
θ∈S

Bn(θ).

Let s be any point in S outside the ball around βn with radius δ, say, s = βn + `u with
|u| = 1 and ` > δ. By convexity of An, we get

An(βn + δu) = An

([
1− δ

`

]
βn +

δ

`
s

)
≤
(

1− δ

`

)
An(βn) +

δ

`
An(s).

Rearranging, we arrive at the inequality

δ

`
{An(s)−An(βn)} ≥ An(βn + δu)−An(βn)

= Bn(βn + δu)−Bn(βn) + rn(βn + δu)− rn(βn)

≥ inf
|u|=1

Bn(βn + δu)−Bn(βn)− 2 sup
|v|≤1
|rn(βn + δv)|

≥ hn(δ)− 2∆n(δ).

If hn(δ) ≥ 2∆n(δ), then An(s) ≥ An(βn) for all s satisfying |s − βn| ≥ δ and so the
minimizer of An cannot lie outside the ball around βn of radius δ. Therefore,

{|αn − βn| ≥ δ} ⊆ {hn(δ) ≤ 2∆n(δ)},

and implies the result.

It is easy to note from the inequality that if An and Bn are uniformly close and
1/hn(δ) is bounded, then αn and βn are also close. It would also be convenient (nota-
tionally) to define errors for model M , even though these errors are not assumed to have
any special properties: For any model M ,

εi,M := Yi −X>i (M)β0,M and εM := Y −X>(M)β0,M .

Here again we are writing M in the subscript to re-emphasize the fact that εi,M is not
an element of a fixed big vector of length p.
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Lemma S.2.3. For any k ≥ 1 and n ≥ 1 that satisfy 2kD2n ≤ λmin(Σ), the following
stochastic ordering holds:

sup
M∈M(k)

∥∥∥β̂M − β0,M∥∥∥
1
�

4k(D1n +D2nS1,k)

λmin(Σ)− 2kD2n
= op(1),

where the last equality holds under assumptions (A3) and (A4)(k) in main paper.

Remark S.2.2 We provide two different proofs of Lemma S.2.3. The first proof
is very specific to the case of linear regression and the second proof even though long
generalizes to the other M -estimation problems easily. See Negahban et al. (2009) for
more details. �

Proof 1 of Lemma S.2.3. The least squares estimator β̂M satisfies

Σn(M)β̂M − Γn(M) = 0,

and so, we have

β̂M − β0,M = (Σn(M))−1 ([Γn(M)− Γ(M)]− [Σn(M)− Σ(M)]β0,M ) .

By Lemma S.2.1, we have

‖Σ(M)‖op − kD2n ≤ ‖Σn(M)‖op ≤ ‖Σ(M)‖+ kD2n.

Therefore, for k satisfying kD2n ≤ λmin(Σ),∥∥∥β̂M − β0,M∥∥∥
2
≤
‖Γn(M)− Γ(M)‖2 + ‖[Σn(M)− Σ(M)]β0,M‖2

λmin(Σ(M))− kD2n
.

Using ‖·‖2 − ‖·‖1 inequality, we obtain uniformly over M ∈M(k),∥∥∥β̂M − β0,M∥∥∥
1
≤ k1/2

∥∥∥β̂M − β0,M∥∥∥
2
≤

k(D1n +D2nS1,k)

λmin(Σ(M))− kD2n
.

Note that this improves the results with respect to constants.

Proof 2 of Lemma S.2.3. A naive application of Lemma S.2.2 with An(·) and Bn(·) re-
placed by R̂M (·) and RM (·) will bring in the estimation error of the sample mean of Y 2

i

into the conditions for uniform consistency required. However, this term can be avoided
by realizing that the least squares estimator β̂M is also the minimizer of the least squares
loss On(s;M) subtracted by the mean of Y 2

i , 1 ≤ i ≤ n as stated after Lemma 1 in the
main paper.

Note that for M ∈M(k), γ̂M :=
(
β̂M − β0,M

)
is the minimizer of

R̂M (β0,M + s)− R̂M (β0,M ) = −2
1

n

n∑
i=1

(Yi −X>i (M)β0,M )X>i (M)s

+ s>

(
1

n

n∑
i=1

Xi(M)X>i (M)

)
s.
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For M ∈M(k) and s ∈ R|M |, define the objective functions

An(s;M) := R̂M (β0,M + s)− R̂M (β0,M ) = −2
1

n

n∑
i=1

εi,MX
>
i (M)s+ s>Σn(M)s.

Bn(s;M) := −2E
[
εMX

>(M)
]
s+ s>Σ(M)s = s>Σ(M)s.

The second equality in the definition of Bn(s;M) holds by the definition of β0,M . It is
easy to see that the minimizer of Bn(s;M) with respect to s ∈ R|M | is 0 ∈ R|M |.

For applying Lemma S.2.2, define for M ∈M(k),

∆n(δ;M) = sup
s∈R|M|: ‖s‖1≤δ

|An(s;M)−Bn(s;M)|,

hn(δ;M) = inf
s∈R|M|: ‖s‖1=δ

Bn(s).

The uniform consistency of β̂M to β0,M over M ∈ M(k) is equivalent to proving that
for any δ > 0,

P

(
sup

M∈M(k)
‖γ̂M‖1 ≥ δ

)
→ 0 as n→∞.

Notice that from the proof of Lemma S.2.2,{
sup

M∈M(k)
‖γ̂M‖1 ≥ δ

}
=

{
sup

M∈M(k)

∥∥∥β̂M − β0,M∥∥∥
1
≥ δ

}
=

⋃
M∈M(k)

{∥∥∥β̂M − β0,M∥∥∥
1
≥ δ
}

⊆
⋃

M∈M(k)

{hn(δ;M) ≤ 2∆n(δ;M)} . (3)

Firstly, we have

Bn(s) ≥ λmin(Σ(M)) ‖s‖22 ≥
λmin(Σ)

|M |
‖s‖21 ⇒ hn(δ;M) ≥ λmin(Σ)

|M |
δ2 (4)

To deal with ∆n(δ;M), note that

|An(s;M)−Bn(s;M)| ≤ 2

∥∥∥∥∥ 1

n

n∑
i=1

εi,MXi(M)− E [εMX(M)]

∥∥∥∥∥
∞

‖s‖1

+ ‖Σn(M)− Σ(M)‖∞ ‖s‖
2
1 .

This implies under the condition ‖s‖1 ≤ δ,

∆n(δ;M) ≤ 2

∥∥∥∥∥ 1

n

n∑
i=1

εi,MXi(M)− E [εMX(M)]

∥∥∥∥∥
∞

δ + ‖Σn(M)− Σ(M)‖∞ δ
2. (5)
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Breaking down the ‖·‖∞-norm in the first term by substituting the definitions of εi,M
and εM , we see that∥∥∥∥∥ 1

n

n∑
i=1

εi,MXi(M)− E [εMX(M)]

∥∥∥∥∥
∞

≤

∥∥∥∥∥ 1

n

n∑
i=1

Xi(M)Yi − E [X(M)Y ]

∥∥∥∥∥
∞

+ ‖[Σn(M)− Σ(M)]β0,M‖∞

≤

∥∥∥∥∥ 1

n

n∑
i=1

XiYi − E [XY ]

∥∥∥∥∥
∞

+ ‖Σn(M)− Σ(M)‖∞ ‖β0,M‖1 ≤ D1n +D2nS1,k.

Hence,
∆n(δ;M) ≤ 2(D1n +D2nS1,k)δ +D2nδ

2. (6)

Substituting these inequalities in the inclusion (3), we get{
sup

M∈M(k)
‖γ̂M‖1 ≥ δ

}
⊆

⋃
M∈M(k)

{hn(δ;M) ≤ 2∆n(δ;M)}

⊆
⋃

M∈M(k)

{
λmin(Σ)

|M |
δ2 ≤ 4(D1n +D2nS1,k)δ + 2D2nδ

2

}
(7)

⊆
⋃

M∈M(k)

{
λmin(Σ)

2|M |
δ2 ≤ 4(D1n +D2nS1,k)δ

}
∪

⋃
M∈M(k)

{
λmin(Σ)

2|M |
δ2 ≤ 2D2nδ

2

}
⊆ {λmin(Σ)δ ≤ 8k(D1n +D2nS1,k)} ∪ {λmin(Σ) ≤ 4kD2n} . (8)

Therefore, by union bound we get

P

(
sup

M∈M(k)
‖γ̂M‖1 ≥ δ

)
≤ P (8k(D1n +D2nS1,k) ≥ λmin(Σ)δ) + P (4kD2n ≥ λmin(Σ)) .

Hence the uniform rate of consistency holds, i.e.,

sup
M∈M(k)

∥∥∥β̂M − β0,M∥∥∥
1

= Op (kD1n + kD2nS1,k) , if kD2n = op(1).

From the inclusion (7), we have{
sup

M∈M(k)
‖γ̂M‖1 ≥ δ

}
⊆

⋃
M∈M(k)

{
λmin(Σ)

|M |
δ2 ≤ 4(D1n +D2nS1,k)δ + 2D2nδ

2

}
⊆ {(λmin(Σ)− 2kD2n) δ ≤ 4k(D1n +D2nS1,k)} .
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Thus, we obtain for every δ > 0 and every k such that 2kD2n < λmin(Σ),

P

(
sup

M∈M(k)

∥∥∥β̂M − β0,M∥∥∥
1
≥ δ

)
≤ P

(
4k(D1n +D2nS1,k)

λmin(Σ)− 2kD2n
≥ δ
)
,

and so,

sup
M∈M(k)

∥∥∥β̂M − β0,M∥∥∥
1
�

4k(D1n +D2nS1,k)

λmin(Σ)− 2kD2n
.

Remark S.2.3 Improvement to the case of independent and identically distributed
random vectors uses symmetrization techniques from the inequality (5). �

The complimentary results for uniform consistency in ‖·‖2-norm follows. Here too
two different proofs are possible. We do not repeat the proof 1 which is similar to that
of Lemma S.2.3.

Lemma S.2.4. For any k ≥ 1, and n ≥ 1 that satisfy 2kD2n ≤ λmin(Σ), the following
stochastic ordering holds:

sup
M∈M(k)

∥∥∥β̂M − β0,M∥∥∥
2
�

4(k1/2D1n + RIPn(k)S2,k)

λmin(Σ)− 2RIPn(k)
�

4(k1/2D1n + kD2nS2,k)

λmin(Σ)− 2kD2n
.

Proof. We follow the proof of Lemma S.2.3 with ‖·‖2-norm replacing the ‖·‖1-norm. Let
An(·;M) and Bn(·;M) be the same functions defined in Lemma S.2.3. For applying
Lemma S.2.2, define for M ∈M(k),

∆n(δ;M) = sup
s∈R|M|: ‖s‖2≤δ

|An(s;M)−Bn(s;M)|,

hn(δ;M) = inf
s∈R|M|: ‖s‖2=δ

Bn(s).

As in the proof of Lemma S.2.3, we have the inclusion,{
sup

M∈M(k)
‖γ̂M‖2 ≥ δ

}
=

{
sup

M∈M(k)

∥∥∥β̂M − β0,M∥∥∥
2
≥ δ

}
⊆

⋃
M∈M(k)

{hn(δ;M) ≤ 2∆n(δ;M)}

⊆

{
inf

M∈M(k)
hn(δ;M) ≤ sup

M∈M(k)
2∆n(δ;M)

}
. (9)

By definition of the minimum eigenvalue, we have

hn(δ;M) = λmin(Σ(M))δ2 ⇒ inf
M∈M(k)

hn(δ;M) ≥ λmin(Σ)δ2.

It is clear by Cauchy-Schwarz inequality that

∆n(δ;M) ≤ 2

∥∥∥∥∥ 1

n

n∑
i=1

εi,MXi(M)− E [εMX(M)]

∥∥∥∥∥
2

δ + δ2 ‖Σn(M)− Σ(M)‖op .

10



This implies (using (9)) that

P

(
sup

M∈M(k)
‖γ̂M‖2 ≥ δ

)
≤ P

(
inf

M∈M(k)
hn(δ;M) ≤ 2 sup

M∈M(k)
∆n(δ;M)

)
.

Using the two-term bound on ∆n(δ;M), we obtain

P

(
sup

M∈M(k)
‖γ̂M‖2 ≥ δ

)

≤ P

(
4 sup
M∈M(k)

‖Σn(M)− Σ(M)‖op ≥ λmin(Σ)

)

+ P

(
8 sup
M∈M(k)

∥∥∥∥∥ 1

n

n∑
i=1

εi,MXi(M)− E [εMX(M)]

∥∥∥∥∥
2

≥ λmin(Σ)δ

)
≤ P (4kD2n ≥ λmin(Σ))

+ P

(
8 sup
M∈M(k)

∥∥∥∥∥ 1

n

n∑
i=1

εi,MXi(M)− E [εMX(M)]

∥∥∥∥∥
2

≥ λmin(Σ)δ

)
,

where the last inequality follows from the calculations in the proof of Lemma S.2.1. This
inequality implies that if kD2n = op(1), then

sup
M∈M(k)

‖γ̂M‖2 = Op

(
sup

M∈M(k)

∥∥∥∥∥ 1

n

n∑
i=1

εi,MXi(M)− E [εMX(M)]

∥∥∥∥∥
2

)
.

This equality is rate-sharp in the sense that if the supremum were absent, then upto the
rate the equality is exact. To be more transparent, we now simplify the supremum term
on the right hand side above. We have the following sequence of inequalities,

sup
M∈M(k)

∥∥∥∥∥ 1

n

n∑
i=1

εi,MXi(M)− E [εMX(M)]

∥∥∥∥∥
2

≤ sup
M∈M(k)

∥∥∥∥∥ 1

n

n∑
i=1

Xi(M)Yi − E [X(M)Y ]

∥∥∥∥∥
2

+ sup
M∈M(k)

‖[Σn(M)− Σ(M)]β0,M‖2

≤ k1/2
∥∥∥∥∥ 1

n

n∑
i=1

XiYi − E [XY ]

∥∥∥∥∥
∞

+ sup
M∈M(k)

‖Σn(M)− Σ(M)‖op ‖β0,M‖2

≤ k1/2D1n + RIPn(k)S2,k ≤ k1/2D1n + kD2nS2,k.

The last inequality here follows from Lemma S.2.1. Therefore,

sup
M∈M(k)

‖γ̂M‖2 = Op

(
k1/2D1n + RIPn(k)S2,k

)
≤ Op(k1/2D1n + kD2nS2,k),

11



where the last inequality follows from RIPn(k) ≤ kD2n. Recall S2,k = supM∈M(k) ‖β0,M‖2.
This rate is in accordance with the rate obtained in Lemma S.2.3 in the sense that we
got

sup
M∈M(k)

‖γ̂M‖2 = Op

(
k−1/2 sup

M∈M(k)
‖γ̂M‖1

)
,

where we used the fact that S1,k ≤ k1/2S2,k. Following the final steps in the proof of
Lemma S.2.3, we obtain the inequality

P

(
sup

M∈M(k)
‖γ̂M‖2 ≥ δ

)
≤ P

(
4(k1/2D1n + RIPn(k)S2,k)

λmin(Σ)− 2RIPn(k)
≥ δ

)
,

for every δ > 0 and k such that 2RIPn(k) ≤ δ and hence,

sup
M∈M(k)

∥∥∥β̂M − β0,M∥∥∥
2
�

4(k1/2D1n + RIPn(k)S2,k)

λmin(Σ)− 2RIPn(k)
�

4(k1/2D1n + kD2nS2,k)

λmin(Σ)− 2kD2n
.

The constants 4 and 2 above can be removed by using the inequalities in proof 1 of
Lemma S.2.3.

Lemma S.2.5. For any k ≥ 1 such that assumptions (A3) and (A4)(k) are satisfied,
the uniform relative Lebesgue measure result holds:

sup
M∈M(k)

ν(R̂M )

(C1(α) + C2(α)S1,k)|M |
= Op(1).

Hence, it can be said that ν(R̂M ) = Op(D1n + D2nS1,k)
|M | uniformly for M ∈ M(k).

Moreover, additionally under the setting 1(a) of Lemma 2, we have

ν
(
R̂M

)
= Op

(
k

√
log p

n

)|M |
uniformly for M ∈M(k).

Proof. For any fixed model M , the Lebesgue measure of the confidence region is given
by

ν(R̂M ) = |Σ−1n (M)|
(
C1(α) + C2(α)

∥∥∥β̂M∥∥∥
1

)|M |
, (10)

which converges to zero as n tends to infinity. Here ν(A) is used to denote the Lebesgue
measure of the set A (ν can be over different dimensions) and for any matrix A ∈ Rp×p,
|A| denotes the determinant of A. This equality follows since the confidence region
CI(M) can be written as

R̂M =
{

Σ−1n (M)(θ + β̂M ) : ‖θ‖∞ ≤
(
C1(α) + C2(α)

∥∥∥β̂M∥∥∥
1

)}
.

By Lemma S.2.1, we get with probability converging to one,

sup
M∈M(k)

|Σ−1n (M)| ≤ 2

(
1 + max

M∈M(k)
|Σ−1(M)|

)
.

12



We know that C1(α) and C2(α) converge to zero for all distributions with finite fourth
moment with exact rate depending on how thin the tails are of the whole distribution.
Under the conditions of Lemma S.2.1, the sequence C1(α) +C2(α)S1,k converges to zero

as n→∞. The result now follows from equation (10) and uniform consistency of β̂M in
the ‖·‖1-norm.

The second result follows by plugging-in the result of Lemma 2, setting 1(a).

Lemma S.2.6. Under the condition D0n = op(1), assumptions (A3) and (A4)(k), we
have

sup
M∈M(k)

∥∥∥Vn,M − Ṽn,M∥∥∥
op

= k3/2 max
1≤i≤n

‖Xi‖2∞Op (D1n +D2nS1,k) = op(1).

Furthermore, if Xi(j) is sub-Gaussian for every 1 ≤ j ≤ n as in setting 1(a) of Lemma
2, then

sup
M∈M(k)

∥∥∥Vn(M)− Ṽn(M)
∥∥∥
op

= k3/2 log(pn)Op(D1n +D2nS1,k).

If instead we have bounded covariates, then

sup
M∈M(k)

∥∥∥Vn(M)− Ṽn(M)
∥∥∥
op

= k3/2Op(D1n +D2nS1,k).

In fact the following exact stochastic ordering is true. Suppose there exists a real constant
µ such that

1

n

n∑
i=1

E
[
Y 2
]
≤ µ2 <∞.

For every k ≥ 1 and n ≥ 1, that satisfy 2kD2n ≤ λmin(Σ), the following stochastic
ordering holds true:

sup
M∈M(k)

∥∥∥Vn,M − Ṽn,M∥∥∥
op
� 8k max

1≤i≤n
‖Xi‖2∞ E

1/2
n,k

[
µ+ E1/2n,k + 4(1 + S1,k) ‖Ωn − Ω‖∞

]
,

where

En,k :=
k(D1n +D2nS1,k)

2

λmin(Σ)− 2kD2n
.

Proof. We will only prove the last result since the first two follow from the last by
using the fact that maximum of N sub-Gaussian (possibly dependent) random variables
is of order

√
logN . Also, we assume identical distribution since the generalization to

non-identical distribution follows trivially.
The difference Vn,M − Ṽn,M can be written as

Vn,M − Ṽn,M =
1

n

n∑
i=1

Xi(M)X>i (M)
[
(Yi −X>i (M)β̂M )2 − (Yi −X>i (M)β0,M )2

]
.

13



Firstly note that
∥∥Xi(M)X>i (M)

∥∥
op

= ‖Xi(M)‖22 and by triangle inequality of operator
norm, we obtain∥∥∥Vn,M − Ṽn,M∥∥∥

op
≤ max

1≤i≤n
‖Xi(M)‖22

1

n

n∑
i=1

∣∣∣(Yi −X>i (M)β̂M )2 − (Yi −X>i (M)β0,M )2
∣∣∣ .

For any two real numbers A,B and any L > 0, we have 2|AB| ≤ LA2 + L−1B2 and so,

|a2 − b2| = |(a− b)2 + 2(a− b)b| ≤ (1 + L)(a− b)2 + L−1b2 for all a, b ∈ R.

Applying this inequality with a = Yi−X>i (M)β̂M and b = Yi−X>i (M)β0,M , we get for
any L > 0,∥∥∥Vn,M − Ṽn,M∥∥∥

op
≤ max

1≤i≤n
‖Xi(M)‖22

(1 + L)

n

n∑
i=1

{
X>i (M)(β̂M − β0,M )

}2

+ max
1≤i≤n

‖Xi(M)‖22
1

nL

n∑
i=1

(Yi −X>i (M)β0,M )2. (11)

From the definition of β̂0,M , we get

n∑
i=1

(Yi −X>i (M)β̂M )2 ≤
n∑
i=1

(Yi −X>i (M)β0,M )2

⇒
n∑
i=1

{
X>i (M)(β̂M − β0,M )

}2
≤ 2

n∑
i=1

(Yi −X>i (M)β0,M )X>i (M)(β̂M − β0,M ).

Using the Cauchy-Schwarz inequality with ‖·‖1 − ‖·‖∞-norms, we get

1

n

n∑
i=1

{
X>i (M)(β̂M − β0,M )

}2
≤ 2(D1n +D2nS1,k)

∥∥∥β̂M − β0,M∥∥∥
1
,

by noting that E
[
(Y −X>(M)β0,M )X(M)

]
= 0 and using the inequalities in the proof

of Theorem 1 of the main paper. Substituting these bounds in inequality (11), we have∥∥∥Vn,M − Ṽn,M∥∥∥
op
≤ (2 + 2L) max

1≤i≤n
‖Xi(M)‖22 (D1n +D2nS1,k)

∥∥∥β̂M − β0,M∥∥∥
1

+ max
1≤i≤n

‖Xi(M)‖22
1

nL

n∑
i=1

(Yi −X>i (M)β0,M )2.

Now, minimizing over L > 0, we arrive at the inequality∥∥∥Vn,M − Ṽn,M∥∥∥
op

max1≤i≤n ‖Xi(M)‖22
≤ 2(D1n +D2nS1,k)

∥∥∥β̂M − β0,M∥∥∥
1

+ 2
√

2(D1n +D2nS1,k)
1/2
∥∥∥β̂M − β0,M∥∥∥1/2

1
R̂M (β0,M ). (12)
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To deal with the last factor on the second term above, observe that

R̂
1/2
M (β0,M ) ≤

∣∣∣R̂M (β0,M )−RM (β0,M )
∣∣∣1/2 +R

1/2
M (β0,M )

≤

∣∣∣∣∣ 1n
n∑
i=1

Y 2
i − E

[
Y 2
]∣∣∣∣∣

1/2

+
√

2(D1n +D2n ‖β0,M‖1)
1/2 ‖β0,M‖1/21

+R
1/2
M (β0,M )

≤ D1/2
0n +

√
2(D1n +D1nS1,k)

1/2S
1/2
1,k +R

1/2
M (β0,M ),

where the second inequality follows by definition of D1n and D2n. Also, note that the
first two terms on the right hand side converge to zero as n → ∞. By the definition of
β0,M , we have

R
1/2
M (β0,M ) = min

s∈R|M|
E
[
(Y −X>(M)s)2

]
≤ E

[
Y 2
]
⇒ sup

M∈M(k)
O(β0,M ;M) ≤ E

[
Y 2
]
.

We, of course, need the assumption of finite second moment Y to consider best linear
regression functional. Substituting this bound in (12) and using the result of Lemma
S.2.3, the required result is proved by noting that max{D0n,D1n,D2n} = ‖Ωn − Ω‖∞
and

max
1≤i≤n

‖Xi(M)‖22 ≤ k max
1≤i≤n

‖Xi‖2∞ = k max
1≤i≤n;1≤j≤p

|Xi(j)|2.

S.3 Linear Regression under IID Setting

The following proof is a bit notationally involved as we need to prove semi-parametric
efficiency. The first two parts of the theorem can be generalized to the case of non-iid
random vectors as long as we can prove a weak law of large number and a central limit
theorem.

Theorem S.3.1. Suppose that the observations (Xi, Yi) are independent and identically
distributed with finite fourth moments. For any fixed model M of size not changing with
n, under assumption (A3), we have the following results

(a) The least squares estimator β̂M converges in probability to β0,M as n→∞;

(b) The following asymptotic normality result holds:

n1/2
(
β̂M − β0,M

)
L→ N|M |

(
0, B−1M VMB

−1
M

)
,

where BM = Σ(M) and VM = E
[
X(M)X>(M){Y −X>(M)β0,M}2

]
.

(c) The estimator β̂M is a semi-parametrically efficient estimator of β0,M over all
distributions of (X1, Y1) with finite fourth moments.
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(d) The well-known sandwich estimator [Σn(M)]−1 Vn,M [Σn(M)]−1 is a consistent es-
timator of B−1M VMB

−1
M , where

Vn,M =
1

n

n∑
i=1

Xi(M)X>i (M){Yi −X>i (M)β̂M}2.

Moreover, [Σn(M)]−1 Vn,M [Σn(M)]−1 is a semi-parametrically efficient estimator
of B−1M VMB

−1
M .

Proof. Since the result is about least squares estimator for a fixed M of fixed cardinality
(not changing with n), let Wi = Xi(M) for 1 ≤ i ≤ n. Let the regression estimators for
these variables be given by

α̂ := arg min
θ∈R|M|

1

n

n∑
i=1

(
Yi −W>i θ

)2
and α := arg min

θ∈R|M|
E
[
(Y −W>θ)2

]
.

By definition, we get that

1

n

n∑
i=1

Wi(Yi −W>i α̂) = 0.

Now adding and subtracting α to α̂, we obtain

1

n

n∑
i=1

Wi(Yi −W>i α) =
1

n

n∑
i=1

WiW
>
i (α̂− α) .

Under finite fourth moments of the variables, Wi(Yi −W>i α) for 1 ≤ i ≤ n have finite
second moments. Hence, by the weal law of large numbers, we get that as n→∞,

1

n

n∑
i=1

Wi(Yi −W>i α)
P→ 0.

The mean of the right hand side above is zero by definition of α. Again by weak law of
large numbers,

1

n

n∑
i=1

WiW
>
i

P→ E
[
WW>

]
.

Since the matrices here are finite dimensional and all norms are equivalent, we have
positive definiteness of the sample mean of WiW

>
i for large enough n with probability

converging to one and thus,(
1

n

n∑
i=1

WiW
>
i

)−1
P→
(
E
[
WW>

])−1
.

Combining these probability convergences, α̂ converges in probability to α as n→∞.
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By the classical central limit theorem, we also can derive

1√
n

n∑
i=1

Wi(Yi −W>i α)
L→ N|M | (0, VM ) .

Since

n1/2 (α̂− α) =

(
1

n

n∑
i=1

WiW
>
i

)−1
1√
n

n∑
i=1

Wi(Yi −W>i α),

by an application of Slutsky theorem, we can write the asymptotic linear representation

n1/2 (α̂− α) =
(
E
[
WW>

])−1 1√
n

n∑
i=1

Wi(Yi −W>i α) + op(1),

which then proves the asymptotic normality of n1/2(α̂− α).
To prove semi-parametric efficiency of the estimator α̂: Suppose the true distribution

of (W,Y ) ∈ R|M | × R is P and let (w, y) 7→ g(w, y) be any map such that EP g = 0 and
EP g2 <∞. Define the one-dimensional parametric family indexed by a variable t as

dPt(w, y) = c(t)K(tg(w, y))dP (w, y), with K(u) = 2(1 + exp(−2u))−1,

and c(t) such that Pt defines a probability measure. The family {Pt : t ∈ R} is quadratic
mean differentiable and the map g is the score function corresponding to at t = 0. Any
function in the set {(x, y) 7→ g(w, y) : EP g = 0,EP g2 <∞} is a valid score function and
defines a valid probability family. We want to estimate the least squares slope functional
given by

α = ψ(P ) =
(
E
[
WW>

])−1
E [WY ] =

(∫
ww>dP

)−1(∫
wydP

)
,

assuming the existence of these quantities. Note that if these quantities exist for P , then
they also exist for all Pt with t ∈ R and all g since K is a bounded function. Define the
family of distributions as

Pg := {Pt : dPt(w, y) = c(t)K(tg(w, y))dP (w, y), with K(t) = 2(1+exp(−2t))−1, t ∈ R}.

Note that K(0) = K ′(0) = 1. The Cramer-Rao lower bound for estimating ψ(P ) in the
parametric family Pg is given by

1

EP g2

(
∂ψ(Pt)

∂t

)(
∂ψ(Pt)

∂t

)> ∣∣∣∣
t=0

.

For any matrix function At, we have

∂A−1t
∂t

= −A−1t
(
∂At
∂t

)
A−1t .
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For this family of distributions, the functional ψ is given by

ψ(Pt) =

(∫
ww>K(tg(w, y))dP

)−1(∫
wyK(tg(w, y))dP

)
.

This implies,

∂ψ(Pt)

∂t
=

(∫
ww>K(tg(w, y))dP

)−1(∫
wyK ′(tg(w, y))g(w, y)dP

)
−
(∫

ww>K(tg(w, y))dP

)−1(∫
ww>K ′(tg(w, y))g(w, y)dP

)
×(∫

ww>K(tg(w, y))dP

)−1(∫
wydP

)
.

Define

ψ̃P (w, y) :=

(∫
ww>dP

)−1
w(y − w>α).

At t = 0, we get

∂ψ(Pt)

∂t

∣∣∣∣
t=0

= −
(∫

ww>dP

)−1(∫
ww>g(w, y)dP

)(∫
ww>dP

)−1(∫
wydP

)
+

(∫
ww>dP

)−1(∫
wyg(w, y)dP

)
=

(∫
ww>dP

)−1(∫
w(y − w>α)g(w, y)dP

)
= 〈ψ̃P , g〉P ,

where 〈g1, g2〉P = EP (g1g2). In a semi-parametric way, we are not restricted by a partic-
ular choice of g, and so the best semi-parametric lower bound on the variance for esti-
mating ψ(P ) is lower bounded by the supremum over all g ∈ L2(P ) such that EP g = 0.
But it is easy to prove that

sup
g∈L2(P ):EP g=0

1

EP g2

(
∂ψ(Pt)

∂t

)(
∂ψ(Pt)

∂t

)> ∣∣∣∣
t=0

= sup
g∈L2(P ):EP g=0

〈ψ̃P , g〉2P
〈g, g〉P

= EP ψ̃P ψ̃>P .

It is interesting note that

EP ψ̃P ψ̃>P =
(
E
[
WW>

])−1
E
[
WW>(Y −W>α)2

] (
E
[
WW>

])−1
,

which is the asymptotic variance of the (normalized) least squares estimator α̂. There-
fore, the ordinary least squares estimator is semi-parametrically efficient. The function
ψ̃P is called the efficient influence function and the least squares estimator satisfies

√
n(α̂− α) =

1√
n

n∑
i=1

ψ̃P (Wi, Yi) + op(1).
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The proof of consistency of the sandwich estimator is included in the proof of semi-
parametric efficiency of the sandwich estimator. The asymptotic variance of

√
n(α̂− α)

is given by

V :=
(
E
[
WW>

])−1 (
E
[
WW>(Y −W>α)2

])(
E
[
WW>

])−1
.

As before, define the family of distributions as

Pg := {Pt : dPt(w, y) = c(t)K(tg(w, y))dP (w, y), with K(t) = 2(1+exp(−2t))−1, t ∈ R}.

The least squares slope functional at Pt is given by β(Pt) which satisfies

E
[
W (Y −W>β(Pt))K(tg(W,Y ))

]
= 0 for all t ∈ R.

Differentiating both sides with respect to t, we get

E
[
W (Y −W>β(Pt))K

′(tg(W,Y ))g(W,Y )
]
− E

[
WW>

∂β(Pt)

∂t
K(tg(W,Y ))

]
= 0.

Therefore,

∂β(Pt)

∂t
=
(
E
[
WW>K(tg(W,Y ))

])−1 (
E
[
W (Y −W>β(Pt))g(W,Y )

])
,

and at t = 0,

∂β(Pt)

∂t

∣∣∣∣
t=0

=
(
E
[
WW>

])−1 (
E
[
W (Y −W>α)g(W,Y )

])
,

which was also what we derived above. Getting back to estimating the asymptotic
variance V and proving efficiency first note that it is enough to provide efficiency bound
for estimating a>V a for any fixed vector a. This functional being scalar is easy to deal
with than the matrix functional. The expressions for calculating the efficient influence
function get more cumbersome in this case and so, it is easy to first prove a general
result and then prove as a special case.

For any t ∈ R and given functionals φ1(·) and φ2(·), define the functional,

ψa(Pt) := a> [φ1(Pt)]
−1 φ2(Pt) [φ1(Pt)]

−1 a.

Suppose that φ̃1(w, y) and φ̃2(w, y) are the efficient influence functions for φ1 and φ2,
that is,

∂φ1(Pt)

∂t

∣∣∣∣
t=0

= 〈φ̃1, g〉, and
∂φ2(t)

∂t

∣∣∣∣
t=0

= 〈φ̃2, g〉.

By definition, EP φ̃1 = EP φ̃2 = 0. We now differentiate ψa(Pt) with respect to t to get
the efficient influence function for ψa.

∂ψa(t)

∂t
= 2a> [φ1(Pt)]

−1
(
∂φ1(Pt)

∂t

)
[φ1(Pt)]

−1 φ2(Pt) [φ1(Pt)]
−1 a

+ a> [φ1(Pt)]
−1
(
∂φ2(Pt)

∂t

)
[φ1(Pt)]

−1 a.
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Taking t = 0 and using efficient influence functions, we obtain

∂ψa(t)

∂t

∣∣∣∣
t=0

= 2a> [φ1(Pt)]
−1 〈φ̃1, g〉 [φ1(Pt)]−1 φ2(Pt) [φ1(Pt)]

−1 a+ a> [φ1(Pt)]
−1 〈φ̃2, g〉 [φ1(Pt)]−1 a

=

〈
2a> [φ1(Pt)]

−1 φ̃1 [φ1(Pt)]
−1 φ2(Pt) [φ1(Pt)]

−1 a+ a> [φ1(Pt)]
−1 φ̃2 [φ1(Pt)]

−1 a, g

〉
Therefore, the efficient influence function for the functional ψa(·) is given by

ψ̃a(w, y) = 2a> [φ1(Pt)]
−1 φ̃1(w, y) [φ1(Pt)]

−1 φ2(Pt) [φ1(Pt)]
−1 a

+ a> [φ1(Pt)]
−1 φ̃2(w, y) [φ1(Pt)]

−1 a.

If T1 and T2 are semi-parametrically efficient estimators of φ1 and φ2 in the sense that

T1 = φ1(P ) +
1

n

n∑
i=1

φ̃1(Wi, Yi) + op(n
−1/2),

T2 = φ2(P ) +
1

n

n∑
i=1

φ̃2(Wi, Yi) + op(n
−1/2).

Then by formal expansion of inverse of matrices, we get

T−11 = φ−11 (P ) + φ−11 (P )
1

n

n∑
i=1

φ̃1(Wi, Yi)φ
−1
1 (P ) + op(n

−1/2).

This implies that the estimator Ta = a>T−11 T2T
−1
1 a satisfies the equation

Ta = ψa(P ) +
1

n

n∑
i=1

ψ̃a(Wi, Yi) + op(n
−1/2),

and thus Ta is a semi-parametrically efficient estimator for ψa(P ). Furthermore, this
also implies that

T−11 T2T
−1
1 is a semi-parametrically efficient estimator for φ1(P )−1φ2(P )φ−11 (P ).

Getting back to V, take φ1(Pt) = c(t)E
[
WW>K(tg(W,Y ))

]
and

φ2(Pt) = c(t)E
[
WW>(Y −W>β(Pt))

2K(tg(W,Y ))
]
.

Here the expectation is taken with respect to (W,Y ) ∼ P. We will now compute the
efficient influence function of φ1 and φ2.

∂φ1(Pt)

∂t

∣∣∣∣
t=0

= E
[
WW>g(W,Y )

]
= 〈φ̃1, g〉, φ̃1(w, y) = xx> − EP

[
WW>

]
,
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The sample mean estimator T1 =
∑n

i=1WiW
>
i /n has this influence function and so is

an efficient estimator.
Regarding the functional φ2, we have

∂φ2(Pt)

∂t
= c′(t)E

[
WW>(Y −W>β(Pt))

2K(tg(W,Y ))
]

+ c(t)E
[
WW>(Y −W>β(Pt))

2K ′(tg(W,Y ))g(W,Y )
]

− 2c(t)E
[
WW>(Y −W>β(Pt))W

>∂β(Pt)

∂t
K(tg(W,Y ))

]
∂φ2(Pt)

∂t

∣∣∣∣
t=0

= E
[
WW>(Y −W>α)2g(W,Y )

]
− 2E

[
WW>(Y −W>α)W>

] (
E
[
WW>

])−1
E[W (Y −W>α)g(W,Y )]

= 〈φ̃2, g〉,

where φ̃2(w, y) = φ†2(w, y)− EPφ†2(W,Y ) and

φ†2(w, y) = xx>(y − w>α)2 − 2E
[
WW>(Y −W>α)W>

] (
E
[
WW>

])−1
w(y − w>α).

Consider the usual estimator

T2 =
1

n

n∑
i=1

WiW
>
i (Yi −W>i α̂)2.

We already have the asymptotic linearity as

α̂ = α+
(
E
[
WW>

])−1
Zn + op(n

−1/2), Zn :=
1

n

n∑
i=1

Wi(Yi −W>i α) = Op(n
−1/2).

Substituting this in T2, we get

T2 =
1

n

n∑
i=1

WiW
>
i

(
Yi −W>i α−W>i

(
E
[
WW>

])−1
Zn

)2

+ op(n
−1/2)

=
1

n

n∑
i=1

WiW
>
i (Yi −W>i α)2 − 2

1

n

n∑
i=1

WiW
>
i (Yi −W>i α)W>i

(
E
[
WW>

])−1
Zn + op(n

−1/2)

=
1

n

n∑
i=1

WiW
>
i (Yi −W>i α)2

− 2E
[
WW>(Y −W>α)W>

] (
E
[
WW>

])−1 1

n

n∑
i=1

Wi(Yi −W>i α) + op(n
−1/2)

=
1

n

n∑
i=1

φ†2(Wi, Yi) + op(n
−1/2).
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Therefore,

T2 − φ2(P ) =
1

n

n∑
i=1

φ̃2(Wi, Yi) + op(n
−1/2), and so is an efficient estimator.

Finally, we arrive at the conclusion that the sandwich estimator of the asymptotic vari-
ance of the least squares estimator is a semi-parametrically efficient estimator of V.
Observe that T1 and T2 used above are same as Bn,M and Vn,M respectively.

Bibliography

Hjort, N. L. and Pollard, D. (1993). Asymptotics for minimisers of convex processes.
Unpublished Manuscript, pages 1–24.

Negahban, S., Yu, B., Wainwright, M. J., and Ravikumar, P. K. (2009). A unified
framework for high-dimensional analysis of m-estimators with decomposable regular-
izers. In Bengio, Y., Schuurmans, D., Lafferty, J. D., Williams, C. K. I., and Culotta,
A., editors, Advances in Neural Information Processing Systems 22, pages 1348–1356.
Curran Associates, Inc.

Rudelson, M. and Vershynin, R. (2008). On sparse reconstruction from Fourier and
Gaussian measurements. Comm. Pure Appl. Math., 61(8):1025–1045.

22


	Lasso-type Post-Selection Inference
	Uniform Convergence Results for Linear Regression
	Linear Regression under IID Setting
	Bibliography

