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Abstract: We consider estimation and inference in a single index regression model with an
unknown convex link function. We propose two estimators for the unknown link function:
(1) a Lipschitz constrained least squares estimator and (2) a shape-constrained smoothing
spline estimator. Moreover, both of these procedures lead to estimators for the unknown finite
dimensional parameter. We develop methods to compute both the Lipschitz constrained least
squares estimator (LLSE) and the penalized least squares estimator (PLSE) of the parametric
and the nonparametric components given independent and identically distributed (i.i.d.) data.
We prove the consistency and find the rates of convergence for both the LLSE and the PLSE.
For both the LLSE and the PLSE, we establish n~1/2-rate of convergence and semiparametric
efficiency of the parametric component under mild assumptions. Moreover, both the LLSE and
the PLSE readily yield asymptotic confidence sets for the finite dimensional parameter. We
develop the R package simest to compute the proposed estimators. Our proposed algorithm
works even when n is modest and d is large (e.g., n = 500, and d = 100).

Keywords and phrases: Approximately least favorable sub-provided models, interpolation
inequality, penalized least squares, shape restricted function estimation.

1. Introduction

We consider the following single index regression model:
Y =mo(0] X)+¢e, E(e|X)=0, almost every (a.e.)X, (1.1)

where X € R? (d > 1) is the predictor, Y € R is the response variable, mg : R — R is the
unknown link function, f; € R? is the unknown index parameter, and e is the unobserved error.
The above single index model, a popular choice in many application areas, circumvents the curse of
dimensionality encountered in estimating the fully nonparametric regression function E(Y|X = -) by
assuming that the link function depends on X only through a one dimensional projection, i.e., 8] X;
see [45]. Moreover, the coefficient vector 8y provides interpretability; see [36]. The one-dimensional
unspecified link function mg also offers some flexibility in modeling.

In this paper, we assume further that mg is known to be convez. This assumption is motivated
by the fact that in a wide range of applications in various fields the regression function is known
to be convex or concave. For example, in microeconomics, production functions are often supposed
to be concave and component-wise nondecreasing (concavity indicates decreasing marginal returns;
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see e.g., [54]). Utility functions are often assumed to be concave (representing decreasing marginal
utility; see e.g., [39, 36]). In finance, theory restricts call option prices to be convex and decreasing
functions of the strike price (see e.g., [2]); in stochastic control, value functions are often assumed
to be convex (see e.g., [29]).

Given i.i.d. observations {(z;,y;) : i« = 1,...,n} from model (1), the goal is to estimate the
unknown parameters of interest — mg and 6y. In this paper we propose and study two estimation
techniques for mg and 6y in model (1). For both procedures, we conduct a systematic study of the
characterization, computation, consistency, rates of convergence and the limiting distribution of the
estimator of the finite-dimensional parameter 6y. Moreover, we show that under mild assumptions,
the finite dimensional estimators are semiparametrically efficient. Indeed, our paper represents the
first work on convexity constrained single index models (without any distributional assumptions on
the error and/or design).

Our first estimator, which we call the Lipschitz constrained least squares estimator (LLSE), is
defined as

n

. 1
(p,0p) := argmin — [y: — m(@Txi)F,
(m,0)eMx0 T ;

where M, denotes the class of all L-Lipschitz convex functions and

' :={n=(0n,...,na) €ER*: |y =1and m >0} c S
As any convex function is Lipschitz in the interior of its domain, (mn,én) defines a natural non-
parametric least squares estimator (LSE) for model (1). Moreover, this leads to a convex piecewise
affine estimator for the link function mg.
Our second approach, which yields a smooth convex estimator of mg, is obtained by penalizing
the squared loss with a penalty on the roughness of the convex link:

n

(1, 0p) := argmin L Z[yl —m(072;)]? + \? /[m”(t)]2dt,
(m,0)erx6 T =]
where R denotes the class of all convex functions that have absolutely continuous first derivatives.
We call this estimator the penalized least squares estimator (PLSE).

Although single index models are well-studied in the statistical literature (e.g., see [45], [35],
[28], [21], [25], [12], and [11] among others), estimation and inference in shape-restricted single index
models are not very well-studied, despite its numerous applications. The earliest reference we could
find was the work of Murphy et al. [41], where the authors considered a penalized likelihood approach
in the current status regression model with a monotone link function. During the preparation of
this paper we became aware of three relevant papers — [9], [17], and [3]. Chen and Samworth [9]
consider maximum likelihood estimation in a generalized additive index model (slightly more general
model than (1)) and prove consistency of the proposed estimators. However, rates of convergence
or asymptotic distributions of the estimators are not studied. Groeneboom and Hendrickx [17]
propose a +/n-consistent and asymptotically normal but inefficient estimator of the index vector
in the current status model based on the (non-smooth) maximum likelihood estimate (MLE) of
the nonparametric component under just monotonicity constraint. They also propose two other
estimators of the index vector based on kernel smoothed versions of the MLE for the nonparametric
component. Although these estimators do not achieve the efficiency bound their asymptotic variances
can be made arbitrarily close to the efficient variance. Balabdaoui et al. [3] study model (1) under
monotonicity constraint but they only prove n!/3-consistency of the LSE of y; moreover they do
not obtain the limiting distribution of the estimator of 6.

IHere | - | denotes the Euclidean norm, and S~ is the Euclidean unit sphere in R%. The norm-1 and the positivity
constraints are necessary for identifiability of the model as mq(0] z) = m1 (0] z) where my(t) := mo(—2t) and
01 = —00/2; see [6] and [11] for identifiability of the model (1).
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In the following we briefly summarize our major contributions and highlight the main novelties.

Both the proposed penalized and Lipschitz constrained estimators are optimal — the function
estimates are minimax rate optimal and the estimates of the index parameter are semipara-
metrically efficient; see [42] for a brief overview of the notion of semiparametric efficiency.
Moreover, our asymptotic results can be immediately used to construct confidence sets for 6y,
using a plug-in variance estimator; see Remark 4.4 for details.

To the best of our knowledge, this is the first work proving semiparametric efficiency for an
estimator of the finite dimensional parameter in a bundled parameter problem (where the
parametric and nonparametric components are intertwined; see [27]) where the nonparametric
estimate is shape constrained and non-smooth (in our case, the LLSE of mg is a piecewise
affine function).

Due to the imposed shape constraint on myg, the parametric submodels for the link function
are nonlinear and the nuisance tangent space is intractable. Also, no least favorable submodel
exists for the semiparametric model (1) for both the PLSE and the LLSE. This behavior can be
attributed to the fact that both the estimators lie on the boundary of the parameter space; see
[40] for a similar phenomenon. Furthermore, approximation to the least favorable submodels
are not well-behaved and require further approximations for both the PLSE and the LLSE.
Compared to the existing procedures that require the choice of multiple tuning parameters
(see [11], [59], and [25] among others), our approaches require just one tuning parameter.
Further, as explained in Section 6.4, the choice of the tuning parameter is less crucial (for our
estimators) than the selection of the smoothing parameters for typical nonparametric problems.
Moreover, the performance of the estimators is robust to the choice of the tuning parameter
(see Section 6.4 and Figure 3 for an illustration and discussion), due to the assumed convexity
constraint.

In contrast to the existing approaches in a single index model where it is typically assumed
that the index parameter belongs to a (known) bounded set in R? and that the first coordinate
of the index parameter is fixed at 1 (see e.g., [41, 37]), we study the model under the (weaker)
assumption that 6y € © C S9!, a Stiefel manifold; see Hatcher [23, page 301].

As is typical in single index models, the computation of the estimators is nontrivial: both the
LLSE and the PLSE are optimizers of non-convex problems (both the loss function and the
constraint set are non-convex) as the parameters m and 6 are bundled together. We employ an
alternating minimization scheme to compute the estimators — if 4 is fixed the LLSE is obtained
by solving a quadratic program with linear constraints, whereas for the PLSE, the estimator
of m can be shown to be a natural cubic spline; we update 6§ (with m fixed) by taking a small
step along a retraction on the Stiefel manifold © with a guarantee of descent (see Section 5
for the details; also see [58]). In the R package simest ([33]) we provide a fast and efficient
implementation of these algorithms; in particular, the computation of the convex constrained
spline in the PLSE is implemented in the C programming language. Since our optimization
problems are non-convex multiple initializations may be required to find the global minimum.
However, the assumed shape constraint appears to increase the size of the basin of attraction
for both the proposed estimators, thereby ameliorating the problem of multiple local minima.
Furthermore, both the LLSE and the PLSE have superior finite sample performance compared
to existing procedures, even when d is large (d ~ 100).

Our exposition is organized as follows: in Section 2 we introduce some notation and formally
define the LLSE and the PLSE of (mqg,f). In Sections 3.1 and 3.2 we state our assumptions, prove
consistency, and give rates of convergence of the LLSE and the PLSE, respectively. In Section 4 we use
these rates to prove efficiency and asymptotic normality of the PLSE and the LLSE of 6. We discuss
algorithms to compute the proposed estimators in Section 5. In Section 6 we provide an extensive
simulation study and compare the finite sample performance of the proposed estimators with existing
methods in the literature. Section 7 provides a brief summary of the paper and discusses some open
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problems. Appendices A and B provide additional insights into the proofs of main Theorems 4.1 and
4.2, respectively. Appendix C provides further simulation studies, whereas Appendix D analyzes the
Boston housing data and car mileage data. Appendices E-H contain the proofs omitted from the
main text.

2. Estimation
2.1. Preliminaries

In what follows, we assume that we have i.i.d. data {(x;,y;) }1<i<n from (1). We start with some
notation. Let X C R% denote the support of X and define

D:={0"z:zeX,0cO}

Let C denote the class of real-valued convex functions on D, S denote the class of real-valued
functions on D that have an absolutely continuous first derivative, and £; denote the class of
uniformly Lipschitz real-valued functions from D with Lipschitz bound L. Now, define

R:=8NC and M := £ NC.

For any m € S, we define
J2(m) = / (" (O)Y2dt.
D

For any m € My, let m’ denote the nondecreasing right derivative of the real-valued convex function
m. As m is a uniformly Lipschitz function with Lipschitz constant L, we can assume that |m/(¢)| < L,
for all t € D. We use P to denote the probability of an event, E for the expectation of a random
quantity, and Py for the distribution of X. For g : X — R, define

1 n
ol = [gPapxand gl = S,
i=1

Let P. x denote the joint distribution of (e, X) and let Py ,, denote the joint distribution of (Y, X)
when Y := m(0" X) +e¢, where € is defined in (1). In particular, Py, ,,, denotes the joint distribution
of (Y,X) when X ~ Px and (Y, X) satisfies (1). For any set I C RP (p > 1) and any function
g: I — R, we define ||g||oc := sup,¢; |g(w)|. Moreover, for I C I, we define ||g||7, := sup,¢z, [g(u)|.
For any differentiable function g : I C R — R, the Sobolev norm is defined as

lgll7 = sup|g(t)| + sup g’ (t)].
tel tel

The notation a < b is used to express that a is less than b up to a constant multiple. For any function
f:X—=R",r>1,let {fi}1<i<r denote each of the components of f, i.e., f(x) = (fi(z),..., fr(z))

and f; : X — R. We define || f |2,pgoymO = /i 1fill? and [|fll2,0 == /Doiey Ifill%- For any

function g : R — R and 0 € ©, we define

(go)(z) =g x), for all z € X.

We use standard empirical process theory notation. For any function f: R x X =+ R, § € ©, and
m : R — R, we define

PG,mf = /f(y’x)dp0,m(y>$)'
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Note that Py,,f can be a random variable if # (or m) is random. Moreover, for any function
f iR x X — R, we define

n

Prf = %Zf(@h‘»xi) and G, f:= %Z [f (i, 1) = Pog.mo f1-
i=1

i=1

The following lemma (proved in Appendix E.1) proves the identification of the composite popu-
lation parameter mg o 6g.

Lemma 2.1. Define Q(m,0) :=E[Y — m(0" X)]2. Then

Q(m,0) — Q(mo,0p) > 6°. (2.1)

inf
{(m,0): moOeL2(Px) and ||mof—mgoby|>5}

Remark 2.1. (2.1) tells us that one can hope to consistently estimate (mo,0y) by minimizing
Qn(m,0), the sample version of Q(m,0).

Note that identification of mg o 8y does not guarantee that both mg and 6, are separately iden-
tifiable. [28] (also see [24]) finds sufficient conditions on the distribution/domain of X under which
0o and mg can be separately identified when my is a non-constant almost everywhere differentiable
function?:

(A0) Assume that 6p1 > 0 and for some integer di € {1,2,...,d}, X1,...,Xq,—1, and X4, have

continuous distributions and Xg, 41,...,X4-1, and X4 be discrete random variables. Fur-
thermore, assume that for each 6 € © there exist an open interval Z and constant vectors
€0,C1y---3Cd—dy € R4=41 guch that

e ¢, —copforl e{l,...,d—dy} are linearly independent,

e ITC ﬂf:_odl {6Tz: 2 eXand (4,41,...7a) = ai}.

2.2. Lipschitz constrained least squares estimator (LLSE)

The Lipschitz constrained least squares estimator is defined as the minimizer of the sum of squared
errors

Qulm,0) i= = >~y — m(6T ),

where m varies over the class of all convex L-Lipschitz functions My, and § € © C R?. Formally,

(n,0p) := argmin  Q,(m,0). (2.2)
(m,0)eML xO

Note that if the true link function my is L-Lipschitz, then (mg, 8y) € M, x ©. For notational conve-

nience, we suppress the dependence of (1h,,, 6,,) on L. The following theorem, proved in Appendix E,
shows the existence of the minimizer in (2.2).

Theorem 2.1. (1h,,0,) € M x ©. Moreover, 1h,, is a piecewise affine convex function.

In Sections 3.1 and 4.3 we show that (17, 6,,) is a consistent estimator of (mg, fy) and study its
asymptotic properties.

Remark 2.2. For every fized 0, m(e My) — Qn(m,0) has a unique minimizer. The minimization
over the class of uniformly Lipschitz functions is a quadratic program with linear constraints and
can be computed easily; see Section 5.1.1.

2Note that all convex functions are almost everywhere differentiable.
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2.3. Penalized least squares estimator (PLSE)

With the goal of making the estimator of m smooth, we propose the following penalized loss,
L, (m, 0; ) := Qn(m,0) + N2J%(m), (A #0). (2.3)

The PLSE is now defined as

(Mp,0,) ;= argmin L,(m,0;\), (2.4)
(m,0)ERXO

where R denotes the class of all convex functions with absolutely continuous first derivative. As
in the case of the LLSE, we suppress the dependence of (1,,6,) on the tuning parameter A. The
following theorem, proved in Appendix E, shows that the joint minimizer is well-defined and that

My is a natural cubic spline.

Theorem 2.2. (7i,,0,) € R x ©. Moreover, m,, is a natural cubic spline.

In Sections 3.2 and 4.2 we study the asymptotic properties of (1, 0,,).

Remark 2.3. For every fized 6, m(€ R) — L,(m,0; ) has a unique minimizer. [13] propose
a damped Newton-type algorithm (with quadratic convergence) for finding the minimizer of this
constrained penalized loss function (also see Section 2 of [16]); see Section 5.1.2.

3. Asymptotic analysis

In Sections 3.1 and 3.2 we study the asymptotic behavior of the estimators proposed in Sections 2.2
and 2.3, respectively. When there is no scope for confusion, for the rest of the paper, we use (1, é)
and (1, 6), to denote (1, 6,) and (11, 6,), respectively. We will now list the assumptions under
which we prove the consistency and study the rates of convergence of the LLSE and the PLSE.

(A1) The support of X, X, is a compact subset of R? and we assume that sup ¢y |z| < T.
(A2) The error € in model (1) is assumed to be uniformly sub-Gaussian, i.e., there exists K1 > 0
such that
KiE[exp(e?/K1) — 1|X] <1 ae. X.

As stated in (1), we also assume that E(e|X) =0 a.e. X.
(A3) E[XX T{m{(f] X)}?] is a nonsingular matrix.
(A4) Var(X) is a positive definite matrix.

Define
Dy:={x"0y:2€X}, Dy:={0"2z:zecXx}.

(A5) There exists an r > 0, such that for every § € {n € © : |n — 6| < r} the density of 67 X
with respect to the Lebesgue measure is bounded away from zero on Dy and bounded above
by a finite constant (independent of €). Furthermore, we assume that for every 6§ € {n € © :
In—6o| <r}, Dy C D) where D) .= Ujg—go|<rDa- For the rest of the paper we redefine
D =D,

The above assumptions deserve comments. (A1) implies that the support of the covariates is
bounded. As the classes of functions M, and R are not uniformly bounded, we need sub-Gaussian
assumption (A2) to provide control over the tail behavior of ¢; see Chapter 8 of [50] for a discussion
on this. Observe that (A2) allows for heteroscedastic errors. Assumptions (A3) and (A4) are mild
distributional assumptions on the design. Assumption (A3) is similar to that in [41] and helps us
obtain the rates of convergence of estimators of mg and 6y separately from the rate of convergence
of the estimators of mg o 6. Assumption (A4) guarantees that the predictors are not supported on
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a lower dimensional affine space. Assumption (A5) guarantees that Dy, the true index set, does not
lie on the boundary of D. Assumption (A5) is needed to find rates of convergence of derivative of
the estimators of mg. If one of the continuous covariates with a nonzero index parameter (e.g., X1)
has a density that is bounded away from zero then assumption (A5) is satisfied.

3.1. Asymptotic analysis of the LLSE

In this subsection we study the asymptotic properties of the LLSE. The following assumption on
myg is used to prove that r is a consistent estimator of mg.

(L1) The unknown convex link function mg is bounded by some constant My(> 1) on D and is
uniformly Lipschitz with Lipschitz constant L.

Now we give a sequence of theorems (proved in Appendix F) characterizing the asymptotic properties
of (rn,0). Theorem 3.1 below proves the consistency and provides an upper bound on the rate of
convergence of 1 o § to mg o 6y under the Lo(Px) norm.

Theorem 3.1. Assume that (A1)-(A4) and (L1) hold. If L > Ly, then the LLSE satisfies
17208 — mg 0 Bg|| = O, (n~2/%).
In the following two theorems, we prove consistency and find upper bounds on the rates of
convergence of 6 and .

Theorem 3.2. Under the assumptions of Theorem 3.1, we have
6 =60l = 0p(1), [l —mollp, = 0p(1), and |’ —my|lc = oy(1)

for any compact subset C' in the interior of Dy.

Theorem 3.3. Under the assumptions of Theorem 5.1, and the assumption that the conditional
distribution of X given 0 X is nondegenerate, the LLSE satisfies

0 — 60| = O,(n~2/°) and || o6y —mg o 6| = O,(n~2/7).

Under additional smoothness assumptions on mg, we show that m/, the right derivative of n,
converges to my,.

Theorem 3.4. Assume that (A1)-(A5) and (L1) hold. If mq is twice continuously differentiable
on Do and L > Lg, then we have that

|7 0 8y — m} 0 Bo|| = Op(n~2/)  and (m (t) — my(t))2dt = O, (n=2/1%). (3.1)
Do
In fact,
sup 772 06 — my 0 0] = O, (n=2/1). (3.2)
0€{0€0: |0p—0|<n—2/15}

In particular, 3 5
| 00 —mgof| = Op(n_2/15). (3.3)

The fact that 72/ is a step function complicates the proof of the above result (given in Ap-
pendix F.6). In fact, the obtained rate need not be optimal, but is sufficient for our purposes (in
deriving the efficiency of 6; see Section 4.3).
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3.2. Asymptotic analysis of the PLSE

In this subsection we give results on the asymptotic properties of (1, é) Note that we will study
(h, é) for any random A\ satisfying some rate conditions. The smoothing parameter A can be chosen to
be a random variable. For the rest of the paper, we denote it by M. First, we need some smoothness
assumption on mg. We assume:

(P1) The unknown convex link function my is bounded by some constant My on D, has an absolutely
continuous first derivative, and satisfies J(mg) < oo.
(P2) A\, satisfies the rate conditions:

A= 0, (n?%) and An = 0p(n~ ). (3.4)

Our assumption (P1) on mg is quite minimal — we essentially require mg to have an absolutely
continuous derivative. Assumption (P2) allows our tuning parameter to be data dependent, as op-
posed to a sequence of constants. This allows for data driven choice of S\n, such as those obtained
from cross-validation. We will show that any choice of An satisfying ((P2)) will result in an asymp-
totically efficient estimator of 6. Now in a sequence of theorems, we study the asymptotic properties
of (1, 0); first up is the consistency and rate of convergence of 1 o 6.

Theorem 3.5. Under assumptions (A0)-(A4) and (P1)-(P2), the PLSE satisfies
J() = 0p(1), [li]lec = Op(1), and |lrivod —mo ool = Op(An).
We now establish the consistency and find the rates of convergence of 7 (in the Sobolev norm)

and # (in the Euclidean norm).

Theorem 3.6. Under assumptions (A0)-(A4) and (P1)-(P2),
6560, i —mollp, 50, and ||| = Op(1).

Theorem 3.7. Under assumptions (A0)-(A4) and (P1)-(P2), and the assumption that the con-
ditional distribution of X given 0] X is nondegenerate, m and 0 satisfy

0 — 60| = Op(Ay) and |0 By —mg o Oo|| = Op(An).

The proofs of Theorems 3.5, 3.6, and 3.7 follow from proof of Theorems 2, 3, and 4 of [32],
respectively. Even though the estimator proposed in [32] is not constrained to be convex, the proofs
of [32] can be easily modified for the PLSE; see Appendix G.1 for a brief discussion.

The following theorem, proved in Appendix G.2, provides an upper bound on the rate of con-
vergence of the derivative of m. This upper bound will be useful for computing the asymptotic
distribution of 4 in Section 4.2.

Theorem 3.8. Under the assumptions of Theorem 3.7 and (A5), we have

[ 0 8o — mfy o Bp|| = Op(AY/?).

4. Semiparametric inference

The main results in this section show that 8 and 6 are \/n-consistent and asymptotically normal (see
Sections 4.2 and 4.3, respectively). Moreover, both the estimators are shown to be semiparametrically
efficient for 6 under homoscedastic errors. The asymptotic analysis of 8 is more involved (than that
of é) as 1 is a piecewise affine function and hence not differentiable everywhere (while 7i is a smooth
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function). For this reason, we shall at first present the theory for 6 and then proceed to do the same
for 6.

Before going into the derivation of the limit law of the proposed estimators of 6y, we need to
introduce some further notation and regularity assumptions. Let p. x denote the joint density (with
respect to some dominating measure p on R x X) of (¢, X). Let p.x(-,z) and px(-) denote the
corresponding conditional probability density of € given X = x and the marginal density of X,
respectively. We define o : X — R™ such that

o?(x) == E(|X = ).

(B1) Assume that mg is three times differentiable and that m{’ is bounded on D. Furthermore, let
mg be strongly convex on D, i.e., for all s € D we have m{(s) > §y > 0 for some fixed d.

For every 6 € ©, define hy : D — R? as
ho(u) :==E[X]0T X = u]. (4.1)

(B2) Assume that hy(-) is twice continuously differentiable except possibly at a finite number of
points, and there exists a finite constant M > 0 such that for every 01,6, € O,

lho, — ho,lloo < M|91 — 04l (4.2)
(B3) Assume that px (e, z) is differentiable with respect to e, [|02(-)||oc < 00 and [|1/0%(:)/|o0 < 0.

Assumptions (B1)—(B3) deserve comments. The function hy plays a crucial role in the construc-
tion of “least favorable” paths and is part of the efficient score function; see Appendix A.1. For the
functions in the path to be in R or My, we need the smoothness assumption (B2) on hy. We need
the lower and upper bounds on the variance function as we are using a non-weighted least squares
method to estimate parameters in a (possibly) heteroscedastic model.

4.1. Efficient score

First observe that the parameter space © is a closed subset of R and the interior of © in R is
the null set. Thus to compute the score for the model in (1), we construct a path on the sphere.
We use R4™! to parametrize the paths for model (1) on the sphere. For each n € R?~! s € R, and
|s| < |n|~1, define the following path® through 6 (which lies on the unit sphere)

Cs(0,m) := V1 = s2[n|* 6 + sHon, (4.3)

where for every 6 € ©, Hy € R¥(@=1) gatisfies the following properties:

(H1) &+ Hyé¢ are bijections from R?~! to the hyperplanes {z € R?: 0Tz = 0}.
(H2) The columns of Hy form an orthonormal basis for {x € R%: § Tz = 0}.
(H3) |[Hp — Ha ]2 < [0 — Ool-

(H4) For all distinct n, 8 € © \ 6, such that |n — 0| < 1/2 and |8 — 6y| < 1/2,

In — B

HI — HI||y < 8(1+8/V15 .
[y = s N = S0 SV 5

See Lemma 1 of [32] for a construction of a class of matrices satisfying the above properties.
In the following two subsections we attempt to calculate the efficient score for the model:

Y =m(0"X) +e, (4.4)

where m € R or m € M. We will see that the efficient score is intractable when m is at the
boundary of R (or Mp), but we can work with a ‘surrogate’ score.

3Here 1 defines the “direction” of the path.
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4.1.1. Efficient score when (m,0) € R x ©
The log-likelihood of the model is
lo,m(y, ) = 10g [peix (y — m(07 ), 2)px ()] .

For any 7 € S92 consider the path defined as s + (s(6,7). Note that this is a valid path in ©
through 6 as {y(0,1) = 0 and (;(0,7n) € O for every s in some neighborhood of 0, as Hyn is orthogonal
to @ (by (H1)) and |Hyn| = |n| (by (H2)). The parametric score for this submodel is

31(3 (8,m),m (y7 1‘)

T
85 - 7] Sg,m(y)x)’

s=0

where ) ( 07 2) )

Pox(y—m 0'x),x - -

So.m(y, ) = — m/ (0 x)Hy x. (4.5)

pe|X(y_m(9Tx)7x) 0
Remark 4.1. Note that under (4.1), we have e = Y —m(0" X). For every function b(e, z) : RxX — R
in Lo(Pe x) there exists an “equivalent” function b(y,z) : RxX — R in La(Pp,.y,) defined asb(y, x) =
by —m(0Tx),2) € La(Py.m). In this section, we use the function arguments (e,x) (L2(Pex)) and
(y,z) (L2(Pa,m)) interchangeably.

We now define a parametric submodel for the unknown nonparametric components:

Ms,q(t) = m(t) — sa(t),
pe|X;s,b(67x) :pe|X(€ax)(1 + Sb(evx))a (46)
Px;s.0(%) = px (2)(1 4 sq(x)),
where s € R, b: RxX — R is a bounded function such that E(b(e, X)|X) = 0 and E(eb(e, X )| X) = 0,

a € § such that J(a) < co and mg, € R for every s in some neighborhood of 0 and ¢ : X - R is a
bounded function such that E(¢(X)) = 0. Consider the following parametric submodel of (4.1),

S (CS (07 77)7 ms,a7 pe\X;SJJ? pX§S7Q($)) (47)

where 1 € S972. Differentiating the log-likelihood of the submodel in (4.1.1) with respect to s, we
get that the score along the submodel in (4.1.1) is

p’elX(y —m(' ), z)
peix (y —m(0T ), x)

1" So.m(y, z) + a(0Tz) +b(y —m(0' z), ) + ().

It is now easy to see that the nuisance tangent space, denoted by Ag, of the model is

. Py (ex

Ag = lin{f € Lo(P.x): fle,x) = Ma(e—'—x) +b(e,x) + q(x),
Pex (€ )

where a € S, J(a) < 00 and m,, € R for small enough s,

b:RxX— Rand qg: X — R are bounded functions, E(eb(e, X)|X) = 0,
E(b(e, X)|X) = 0, and E(g(X)) = 0},
where for any set A C La(Ps ), linA denotes the closure in Ly(Pp,,,) of the linear span of functions

in A; see [42] for a review of the construction of the nonparametric tangent set as a closure of scores
of parametric submodels of the nuisance parameter. Now observe that

lin{a € §: J(a) < oo and ms,, € R for small enough s} C lin{a € S : J(a) < oo} (4.8)
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and
lin{g : X — R| ¢ is a bounded function and E(¢(X)) = 0} = {¢: X — R| ¢ € La(Px) and E(g(X)) = 0}.

However, by Theorem A.1 of [19], we have that the class of infinitely often differentiable functions on D (a
bounded subset of R) is dense in L2 (m), where m denotes the Lebesgue measure on D. Thus we have that

lin{fa €S:J(a) <x}={a:D —Rlac L(m)}

and lin{b : R x X — R|b is a bounded function, E(eb(e, X)|X) = E(b(e, X)|X) = 0} = {b € L2(P.x) :
E(eb(e, X)|X) = E(b(e, X)|X) = 0}. Thus, it is easy to see that under assumptions (A0)—(A4), (P1), and
(B1)—(B3), the nuisance tangent space of (1) satisfies

p/6|X(eax)
Pe|X(€a$)
where a € La(m),b € La(Pe x),q € L2(Px),E(eb(e, X)| X) =0,

E(b(e, X)|X) = 0, and E(g(X)) = o} = Ao.

As C { feLayPox): fle,a)= a(0z) + be, z) + q(z), (4.9)

Note that Ag and Ag differ as the set inclusion in (4.1.1) could be strict. However, it can be easily seen that,
if m is strongly convex then Ag = Ag.

Observe that the efficient score is the Lo(Pp.,) projection of Spm(y,z) onto Af, where Af is the
orthogonal complement of Ag in L2 (Py,m). Newey and Stoker [43] and Ma and Zhu [38] show that

Ay = {f € La(Pex) : fle,x) = [g(x) —E(g(X)\@TX = 9Tx)]e, and g: X — R} - A§(4.10)

where Ay is defined in (4.1.1). Using calculations similar to those in Theorem 4.1 of [43] and Proposition 1
of [38], it can be shown that

T(Se,m|A5) (y, ) =

2 Tx 4Ty
(y =m0 2))m' (0" ) Hy {xi E(c 2(X)X[|0TX =0 )}’

1
o2(x) E(c—2(X)[0TX =0Tx)
where for any f € Lo(Pp,m), II(f|Ag) denotes the La(Ps,m) projection of f onto the space Ag.
However to compute the efficient score of (4.1) when m € R, we need to evaluate I1(Sp,m|A%)(y, x).

And computation of II(Sp.|A%)(y, z) is infeasible due to the complicated nature of the set of parametric
submodels of m. Note that the efficient information (of (4.1) when m € R) is denoted by

T = Po,m [T1(So,m|AS)IT' (So,m|A)].
As Ay C AF (see (4.1.1)), we have
L5 m > Po,m [T1(So,m| AG)ILT (So,m|A5)] =: Z§ -
Moreover, we see that at the true parameter values (mo, 0o), as mo is strongly convex,
T1(S0y,mo |AS ) = TI(Sag,mo|Ad) and  Zg o = Lo .mo-

Once the efficient score is calculated, one usually finds an efficient estimator of (mo, o) by solving the
efficient estimating equation, i.e., by finding a (m, 0) that satisfy

P, I1(Sgm|As) = 0. (4.11)

However since I1(Sp,.»|A%) is intractable when m is at the boundary of R, we use I1(Sp,m|Ag") as its surro-
gate. In Section 4.2, we show that (17, 0) approzimately satisfies (4.1.1) with the surrogate score (see (4.1.1))
and this enables us to prove that 0 is an efficient estimator of 6o.

Lastly, it is important to note that (4.1.1), the efficient estimating equation, depends on ¢%(z). Since in the
semiparametric model 02(~) is left unspecified, it is unknown. Without additional assumptions, estimators of

o%(+) have slow rates of convergence to o2(-), especially if d is large. Thus if we substitute &(-) in the efficient
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score equation, the solution of the modified score equation may lead to poor finite sample performance; see
Tsiatis [48, page 93].

To focus our presentation on the main concepts, briefly consider the case when 02(-) = ¢2. In this
simplified case, we have

(S0, AR (5:2) = 5 (y — m(@72))m' (67 2)HJ {2~ ha(672) },

where hyg (07 z) is defined in (4). Asymptotic normality and efficiency of 6 would follow if we can show that
(1h, 0) satisfies the efficient score equation approximately, i.e.,

VP II(S; 1 [Ay) = V/nPy %(Y —m(0" X)) H, m' (0" X){X — hé(éTX)}} = 0,(1), (4.12)

and the class of functions TI(Sp,m|Ag) indexed by (,m) in a “neighborhood” of (8, mo) satisfies some
technical conditions. We formalize these in Section 4.2 and Appendix A.1.

4.1.2. Efficient score when (m,0) € My x ©

As m € My need not be differentiable everywhere, showing that the underlying class of distributions is
differentiable in quadratic mean requires some careful analysis; in Remark H.1 (in the Appendix) we show
this for the model with Gaussian errors. We can further show that the parametric score in this model
satisfies (4.1.1), where m’ denotes the right derivative of m. Moreover, using parametric submodel as in
(4.1.1) and (4.1.1) and calculations similar to those in Section 4.1.1, it can be shown that the nuisance
tangent space, denoted by Ar, of the model is

p:&|X (@7 x)

Pe|x (67 fE)

where a € L2(m), Ms,q € My for small enough s, b: R x X = R
and ¢ : X — R are bounded functions, E(eb(e, X)|X) = 0,

E(b(e, X)|X) = 0, and E(g(X)) = o}.

AL = H{f [S L2(P€,X) : f(eax) = a(QTm) + b(e7 .’E) + q(.’L‘),

Now using arguments similar to those in Section 4.1.1, it can be shown that
ZGL,m Z P9,m [H(S(”m'Aé_)HT (Sg,m|Aé_)] = Ig,ma (413)

where Zj',,, = Po,m [I1(So,m|AT)IT" (So,m|AL)] and Sp.m (Y, X) and Ao are defined as in (4.1.1) and (4.1.1),
respectively. It can easily seen that A, C Ag. In fact, if m is strongly convex then A = Ag. However for a
general (non-strongly convex) m, Ay, can be a strict subset of Ag and the inequality in (4.1.2) can be strict.

Remark 4.2. Assumptions (A0)-(A4) and (P1) (or (L1)) do not guarantee the existence of a least
favorable submodel for the model in (1), which can be the case when the estimators lie on the “boundary” of
the parameter set. Note that both the estimators m and ™ lie at the “boundary” of the respective parameter
sets. van der Vaart [51] introduced the notion of approzimately least favorable subprovided model to get
around this difficulty. Under the additional assumptions (B1)—(B3), we find the approximately least favorable
subprovided model and show that T1(Sey me|AT) is the efficient score at (6o, mo); see Appendiz A.1 and
Theorem B.1 for the PLSE and the LLSE, respectively. However, the score corresponding to the approrimately
least favorable subprovided model does not satisfy the conditions required in [51] for asymptotic normality
and efficiency of the finite dimensional parameter in semiparametric models. Thus, we find a well-behaved
approzimation to the score such that (M, é) (or (1, 6) ) is an approzimate zero of the corresponding estimating
equation; see (Step 2).

4.2. Efficiency of the PLSE

The following result gives the limiting distribution of the PLSE 6 and establishes its semiparametric efficiency
(under homoscedasticity).
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Theorem 4.1. Assume (X,Y) satisfies (1) and assumptions (A0)-(A5), (B1)-(B3), and (P1)-(P2)
hold. Define the function

Com(y, ) = (y — m(0 z))m/ (0 x)Hy {:r - hg(GTm)} , (4.14)
If Voo ,mo = Pog,mo (Log,mo S;;’mo) is a nonsingular matriz in RE4=1D>*E@=D then
V(8 = 00) < N(O, Ho Vg iy To0.mo (Hoo Vg imy ) )

where Ioy.mg := Poy,mo (49077,10@;—0%0). If we further assume that o2(-) = o and if the efficient information
matriz Lo, ,m, 15 nonsingular, then 6 is an efficient estimator of 0o, i.e.,

V(6 —60) % N(0,0" Hoy I, Hay )-

Remark 4.3. Observe that the variance of the limiting distribution (for both the heteroscedastic and ho-
moscedastic models) is singular. This can be attributed to the fact that © is a Stiefel manifold of dimension
R and has an empty interior in R%.

Remark 4.4 (Construction of confidence sets). Theorem 4.1 shows that (under homoscedastic errors) the
PLSE of 6y is \/n-consistent and asymptotically normal with covariance matriz:

%0 = U4H90P901m0 [E;ro,mo (Y: X)Z;ro,mo (Y7 X)]_IH;)f

where Loy mo is defined in (4.1). This result can be used to create confidence sets for 6p. However since £° is
unknown, we propose using the following plug-in estimator of X.°

S i=6"HyP; [0, (Y, X)05 .. (Y, X)] T HY

m

where 6% == 3" [yi — (0" x:)]/n. One can easily show that Theorems 3.5-3.8 imply consistency of .
For example one can construct the following 1 — 2 confidence interval for 6o,

[éz — % (2“)1/2 s éz + % (izz) e } ) (4.15)
where zo denotes the upper ath-quantile of the standard normal distribution; see Section 6.2 for a simulation
ezample. A similar analysis can be done for the LLSE using Theorem /.2.

Proof. We give a sketch of the proof below. Some of the steps are proved in Appendix A.
Step 1 In Theorem A.1 we find an approzimately least favorable subprovided model (see Definition 9.7 of [51])
with score

0"«
Som(z,y) = {y —m(0" x)}Hy [m'(GTx)x + / m’ (w)k' (u)du —m/ (0" 2)k(0 " )

S0

+ mg(so)k(s0) — mo(so)he, (50)} (4.16)
where k : D — R? is defined as
k(w) := ho, (u) + mfi(“) hi, (). (4.17)
mg (u)

We prove that there exists a constant M™* < co such that

sup (|k(w)| + |k (u)]) < M*. (4.18)

ueD
Moreover, (é, 1) satisfies the score equation approximately, i.e.,

VB, &; = o,(1). (4.19)
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Step 3
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Step 5
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Furthermore, define 9g,,m : X X R — R4 as
Yo.m(@,y) = (y —m(0" 2))Hg [m'(6" )z — ho, (6 2)m (6" 2)). (4.20)

Although &, . satisfies the score equation approximately it is quite complicated to deal with. The

0,
function g ., is an approximation to Sg,m and Ye,,me = Sog,me = Log,me (see (4.1)). Furthermore,

Yo,m is well-behaved in the sense that: ¢ . belongs to a Donsker class of functions (see (Step 4))
and v ;, converges to ¥g,,m, in the L2(Ps;,m,) norm; see Lemma H.1.

In Theorem A.2 we show that ¥4 1s an empirical approximation of the score Sj o 1€y
\/ﬁPn(Gé,m - wé,m) = op(1).

Thus in view of (Step 1) we have that 0 is an approzimate zero of the function 0 — Pp1)e s, ie.,

\/ﬁPnT/)é,m = op(1). (4.21)

In Theorem A.3 we show that ¢, . is approximately unbiased in the sense of [51], i.e.,

VP e i = 0p(1). (4.22)

Similar conditions have appeared before in proofs of asymptotic normality of maximum likelihood
estimators (e.g., see [26]) and the construction of efficient one-step estimators (see [30]). The above
condition essentially ensures that g, s is a good “approximation” to ¥e,,m,; see Section 3 of [40] for
further discussion.

‘We prove
Gn(wé,m — 0,mo) = 0p(1) (4.23)

in Theorem A.4. Furthermore, as 1a,,m, = £6,,mq, We have
Poy me [Yog,mo] = 0.
Thus, by (Step 2) and (Step 3), we have that (Step 4) is equivalent to
\/771(P§7m0 = Pog,mo )V 5 = Gulog,mo + 0p(1). (4.24)
To complete the proof, it is now enough to show that

\/E<Pé,mo - P9o,mo)1/’é,m = \/ﬁVfJOqWOHG;L (é - 90) + OP(\/ﬁ‘é - 90‘)' (4‘25)

A proof of (Step 5) can be found in the proof of Theorem 6.20 in [51]; also see [32, Section 10.4]. Lemma H.1
in Appendix H.8 proves that (8, 7h) satisfy the required conditions of Theorem 6.20 in [51]. Observe that
(Step 4) and (Step 5) imply

\/EVGO,MOH(;; (é - 60) = Gn[Goamo + Op(l + \/ﬁ|é - 90|)7
= VnHgy (0 — 00) = Vg o Grlog.mo + 0p(1) % Voo koo N0, Tggmo )-

The proof of the theorem will be complete, if we can show that

V(6 — 60) = Hoy/nHg, (0 — 60) + 0,(1),

the proof of which can be found in Step 4 of Theorem 5 in [32]. O
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4.3. Efficiency of the LLSE

In this section we show that @ is an asymptotically normal efficient estimator of 8. The following theorem
is similar to Theorem 4.1.

Theorem 4.2. Assume (X,Y) satisfies (1) and assumptions (A0)-(A5), (B1)-(B3), and (L1) hold. Let
Ly,m s Vog,mo, and Igy,m, be as defined in Theorem 4.1. If Voy m, is a nonsingular matriz in R(dfl)x(dfl),
then

V(8 = 60) % N(0, Hoy Vg sy Tog,m0 (Hoo Vg ) ' )-

If we further assume that o®(X) = o2 and if the efficient information matriz (Ioy.m,) is nonsingular, then

0 is an efficient estimator of 6o, i.e.,

Vil —60) % N (0,0 Hoy I, Hay )-

In Appendix B, we prove Theorem 4.2 via a series of results by showing that (é, ) satisfy the conditions
in Step 1-Step 5 of Theorem 4.1. These proofs/verifications of Step 1-Step 4 for the LLSE are more
complicated (when compared to that of the PLSE) as 1 is not differentiable everywhere.

5. Computational algorithms

In this section we describe algorithms for computing the estimators defined in (2.2) and (2.3). As mentioned
in Remarks 2.2 and 2.3, in each of these cases, the minimization of the desired loss function for a fixed
0 is a convex optimization problem; see Sections 5.1.1 and 5.1.2 below for more details. With the above
observation in mind, we propose the following general alternating minimization algorithm to compute the
proposed estimators. The algorithms discussed here are implemented in our R package simest [33].

We first introduce some notation. Let (m,6) — &€(m,6) denote a nonnegative criterion function, e.g.,
€(m, 0) can be L, (m,0; \) or Q,(m,0). And suppose, we are interested in finding the minimizer of €(m, 0)
over (m,0) € A x O, e.g., in our case A can be R or M. For every 0 € ©, let us define

me g := arg min €(m, 6). (5.1)
meA

Here, we have assumed that for every 6 € ©, m — €(m,6) has a unique minimizer in 2 and myg g exists.
The general alternating scheme is described in Algorithm 1.

Algorithm 1: Alternating minimization algorithm

Input: Initialize 6 at ().
Output: (m*,0*) := argmin,, gyeaxe €(m,0).
1 At iteration k > 0, compute m(¥) := My(k) o = argmin,, co €(m, 9(k>).
2 Find a point 0(*+1) ¢ © such that
e(m® oty < ¢(m*) gk,
In particular, one can take 8(**1) as a minimizer of 6 — €(m*) 6).
3 Repeat steps 1 and 2 until convergence.

Note that, our assumptions on € does not imply that 6 — €(myg g, 0) is a convex function. In fact in our
examples the “profiled” criterion function 6 — €(me s, 0) is not convex. Thus the algorithm discussed above
is not guaranteed to converge to a global minimizer. However, the algorithm guarantees that the criterion
value is nonincreasing over iterations, i.e., ¢(m*+D g¢+Dy < ¢(m® 9*) for all k > 0. In Section 5.1.1
we discuss an algorithm to compute mg ¢, , when €(m,0) = Qn(m,0) while in Section 5.1.2 we discuss the
computation of mg,r when €(m,0) = L,(m, 6; \).
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5.1. Strategy for estimating the link function

In the following subsections we describe algorithms to compute mg r and me r, as defined in (5). We use

the following notation. Fix an arbitrary € ©. Let (t1,t2,--- ,t,) represent the vector (01, --,0 x,)
with sorted entries so that t1 < t2 < --- < t,; in Remark 5.1 we discuss a solution for scenarios with ties.
Without loss of generality, let y := (y1,y2,...,Yyn) represent the vector of responses corresponding to the
sorted t;.

5.1.1. Lipschitz constrained least squares (LLSE)

When €(m,0) = Qn(m,0), we consider the problem of minimizing 31"  {y; — m(t;)}* over m € M.
In the following we use m to denote the function ¢ — m(t) as well as the the vector (m(t1),...,m(tn))
interchangeably. Consider the general problem of minimizing

(y = m)Qy —m) = |Q"*(y — m)|%,

for some positive definite matrix Q. In most cases @Q is the n x n identity matrix; see Remark 5.1 for other
possible scenarios. Here Q'/? denotes the square root of the matrix Q which can be obtained by Cholesky
factorization. Observe that any minimizer can only be uniquely determined at the points ¢; and so we define
the optimum to be the piecewise linear interpolation of {m;}i<;<, with possible kinks only at {t;}1<i<n.
The Lipschitz constraint along with convexity (i.e., m € My) reduces to imposing the following linear
constraints:

LM o ms Tme o M T Ml (5.2)

tg — t1 t3 — t2 t'n - tn71

In particular, the minimization problem at hand can be represented as

minimize |Q'/?(m — y)|? subject to Am > b, (5.3)

for A and b written so as to represent (5.1.1).

In the following we reduce the above optimization problem to a nonnegative least squares problem, which
can then be solved efficiently using the nnls package in R. Define z := Q1/2(m —1y), so that m = Q V%2 4y.
Using this, we have Am > b if and only if AQ™"/22 > b — Ay. Thus, (5.1.1) is equivalent to

minimize |z|> subject to Gz > h, (5.4)
where G := AQ™'/? and h := b — Ay. An equivalent formulation is
L _[aT o T 1
minimize |Eu — £|, over u »= 0, where F := 5 and £:=1[0,...,0,1] e R""". (5.5)
Here > represents coordinate-wise inequality. A proof of this equivalence can be found in Lawson and Hanson
[34, page 165]; see [8] for an algorithm to solve (5.1.1).

If & denotes the solution of (5.1.1) then the solution of (5.1.1) is given as follows. Define r := E4—£.Then
%, the minimizer of (5.1.1), is given by 2 := (=r1/Tn+1,--., —7n/Tnt1) ' - Hence the solution to (5.1.1) is
given by § = Q /%5 + 4.

5.1.2. Penalized least squares (PLSE)
When €(m,0) = L,(m,0; ), we need to minimize the objective function
P> ()4 A [ 0.
=1
As in Section 5.1.2, consider the general objective function

w—mfmywm+vfwfmﬁ%

4Note that (5.1.1) is a Least Distance Programming (LDP) problem and Lawson and Hanson [34, page 167] prove
that 7,41 cannot be zero in an LDP with a feasible constraint set.
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to be minimized over R and @ is any positive definite matrix. As in Section 5.1.1, we use m to denote
the function ¢ — m(t) as well as the the vector (m(t1),...,m(¢tn)) interchangeably. Theorem 1 of [16]
gives the characterization of the minimizer over R. They show that 7 := argmin,,cx (y — m)' Q(y — m) +
N [{m” (t)}?dt, will satisfy

' (t) = max{a' M(t),0} and m=y—-NQ 'K a.

Here M (t) := (M1 (t), M2(t), ..., My_2(t)) and {M;(-)}1<i<n—2 are the real-valued functions defined as

1 T—t; . X X
M;(z) := {tH»Z_tz ' trit+1—t¢ ifti <@ <tiga,
o T 1 i+2 7% :
tiya—ti m iftips <@ <tito,
and & is a solution of the following equation:
[T(a) + N KQ 'K 'a = Ky, (5.6)

where K is a (n — 2) x n banded matrix containing second order divided differences

1 P 1

(tix1 — ti)(fige — i)’ S (tigo — tig1)(tit1 — )’
1

(tig2 — ti)(tiya — tig1)’

Ki; =

Kiiyo =
(all the other entries of K are zeros) and the matrix T'(«) is defined by

T(a) := /M(t)M(t)T]l{arM(t)>0}dt.

We use the initial value of o as a; = (ti+2 —t;)/4 based on empirical evidence suggested by [16] and
use (5.1.2) repeatedly until convergence. This algorithm was shown to have quadratic convergence in [13].
In the simest package, we implement the above algorithm in C.

Remark 5.1 (Pre-binning). The matrices involved in all these algorithms have entries depending on frac-
tions such as 1/(ti41 —t;). Thus if there are ties in {t; }1<i<n, then the matriz K is incomputable. Moreover,
if tiv1 — t; is very small, then the fractions can force the matrices involved to be ill-conditioned (for the
purposes of numerical calculations). Thus to avoid ill-conditioning of these matrices, in practice one might
have to pre-bin the data which leads to a diagonal matriz QQ with different diagonal entries. One common
method of pre-binning the data is to take the means of all data points for which the t;’s are close. To be more
precise, if we choose a tolerance of n = 107° and suppose that 0 < to —t; < t3 —t1 < 7, then we combine the
data points (t1,y1), (t2,y2), (t3,y3) by taking their mean and set Q1,1 = 3; the total number of data points is
reduced to n — 2.

5.2. Algorithm for computing 6t

In this subsection we describe the algorithm to find the minimizer §*+1 of E(m(k)7 0) over 0 € ©. Recall
that © is defined to be the “positive” half of the unit sphere, a d — 1 dimensional manifold in R?. Treating
this problem as minimization over a manifold, one can apply a gradient descent algorithm by moving along a
geodesic as done in a similar context in [46, Section 3.3]. But it is computationally expensive to move along
a geodesic and so we follow the approach of [58] wherein we move along a retraction with the guarantee
of descent. To explain the approach of [58], let us denote the objective function by f(@), i.e., in our case
f(8) = ¢(m™,6). Let a € © be an initial guess for %+ and define

g:=Vf(a)eR? and A:=ga' —ag',

where V denotes the gradient operator. Next we choose the path 7 — 0(7), where

2
P (T a) e 1 Tl079) 1% + 70T -
0(r) == (I—i— 7A) (I - 7A) o= 4 o — g,
2 2 |- Pala? P |- P@a? | e
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for 7 in a small neighborhood of 0, and try to find a choice of 7 such that f(0(7)) is as much smaller than
f(a) as possible; see step 2 of Algorithm 1. It is easy to verify that

01 (0(r))

< .
or 0

=Y

7=0

see Lemma 3 of [58]. This implies that 7 — f(6(7)) is a nonincreasing function in a neighborhood of 0.
Recall that for every n € ©, 1 (the first coordinate of 7) is nonnegative. For () to lie in ©, 7 has to satisfy
the following inequality

2
™ (079 o)+ 7 (aTg _ %) L1300, (5.7)

where g1 and a1 represent the first coordinates of the vectors g and «, respectively. This implies that a valid
choice of 7 must lie between the zeros of the quadratic expression on the left hand side of (5.2), given by

(079~ 01/01) £ /(@9 — g1/on)” +lgF ~ (aT9)?
9P — (@7 g)? '

Note that this interval always contains zero. Now we can perform a simple line search for 7 — f(0(7)), where
7 is in the above mentioned interval, to find 8**). We implement this step in the R package simest.

6. Simulation Study

In this section we illustrate the finite sample performance of the two estimators proposed in this paper;
see (2.3) and (2.2). We also compare their performance with other existing estimators, namely, the EFM
estimator (the estimating function method; see [11]), the EDR estimator (effective dimension reduction;
see [25]), and the estimator proposed in [32] with the tuning parameter chosen by generalized cross-validation
(see [55] and [32]; we denote this method by SmoothGCV). For the convex constrained estimators, we use
CvxLip to denote the LLSE, and CvxPen to denote the PLSE (to compute CvxPen we take A, = 0.1 x n~2/%).

6.1. Another convex constrained estimator

Alongside these existing estimators, we also numerically study another natural estimator under the convexity
shape constraint — the convex LSE — denoted by CvxLSE below. This estimator is obtained by minimizing
the sum of squared errors subject to the convexity constraint. Formally, the CvxLSE is defined as

(mh,00) = argmin Q,(m,0). (6.1)
(m,0)€CxO

The convexity constraint (i.e., m € C) can be represented by the following set of n — 2 linear constraints:

mo — m1 ms3 — Mo Mp — Mp—1
< < .o mzomel
to — 11 t3 — to tn —tn—1

where we use the notation of Section 5. Similar to the LLSE, this reduces the computation of m (for a given
0) to solving a quadratic program with linear inequalities; see Section 5.1.1. However, theoretically analyzing
the performance of this estimator is difficult, because of various reasons; see Section 7 for a brief discussion.
In our simulation studies we observe that the performance of CvxLSE is very similar to that of CvxLip.

In what follows, we will use (1, 0) to denote a generic estimator that will help us describe the quantities
in the plots and tables; e.g., we use ||/ 0 0 — mq o 0o||n = (L3 (0" x:) — mo(6g 24))*]"/? to denote
the in-sample root mean squared estimation error of (7, 0), for all the estimators considered. From the
simulation study it is easy to conclude that the proposed estimators have superior finite sample performance
in all sampling scenarios considered.
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FiG 1. QQ-plots for \/n(01 —00,1) (over 800 replications) based on i.i.d. samples from (6.2) for n € {100,500, 1000}.
The solid black line corresponds to the Y = X line. Left panel: CvzPen; right panel: CvzLSE.

6.2. Verifying the asymptotics

Theorems 4.1 and 4.2 show that (under homoscedastic error) both CvxLip and CvxPen are +/n-consistent
and asymptotically normal with the following covariance matrix:

20 := o Hoy Pag,mo [£oo,mo (Vs X )lag mg (Vs X)) ™' Hy,,

where £og,mq (¥, ) = (y — mo(0 z))mb(0 x)Hy {x — E[X|0g X =0y 2]} and o® = E(€®). In this section,
we give a simulation example that corroborates our theoretical results. We generate i.i.d. samples from the
following model:

Y = (63 X)? + N(0,.3%), where X ~ Uniform[—1,1]* and 6 = 15/V/3. (6.2)

In Figure 1, on the y-axis we have the empirical quantiles of \/ﬁ(él — 6p,1) and on the z-axis we have the
theoretical quantiles of the Gaussian distribution with mean 0 and variance 29,1. For the model (6.2), we
computed 2(1),1 to be 0.22.

In Remark 4.4, we describe a simple plug-in procedure to create confidence sets for 6y; see (4.4). In
Table 1, we present empirical coverages (from 800 replications) of 95% confidence intervals based on CvxLip
and CvxPen as the sample size increases from 50 to 2000.

TABLE 1
The estimated coverage probabilities and average lengths (obtained from 800 replicates) of nominal 95% confidence
intervals for the first coordinate of Oy for the model described in Section 6.2.

n CvxLip CvxPen
Coverage Avg Length  Coverage Avg Length
50 0.92 0.30 0.94 0.29
100 0.91 0.18 0.92 0.19
200 0.92 0.13 0.93 0.13
500 0.94 0.08 0.92 0.08
1000 0.93 0.06 0.92 0.06

2000 0.92 0.04 0.93 0.04
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F1G 2. Bozplots of Z?:1 |6; —80.,5]/d (over 500 replications) based on 200 observations from Ezample 2 in Section 6.3
for dimensions 10, 25,50, and 100, shown in the top-left, the top-right, the bottom-left, and the bottom-right panels,
respectively. The bottom-right panel doesn’t include EDR as the R-package EDR does not allow for d = 100.

6.3. Increasing dimension

To illustrate the behavior/performance of the estimators as d grows, we consider the following single index

model:
Y = (63 X)? + N(0,.2%), where 6y = (2,1,04_2)" /v/5 and X € R? ~ Uniform[—1, 5]°.

In each replication we observe n = 200 i.i.d. samples from the model. It is easy to see that the performance
of all the estimators worsen as the dimension increases from 10 to 100 and EDR has the worst overall
performance; see Figure 2. However when d = 100, the convex constrained estimators have significantly
better performance. This simulation scenario is similar to the one considered in Example 3 of Section 3.2

in [11].

6.4. Choice of A\, and L

In this subsection, we consider a simple simulation experiment to demonstrate that the finite sample per-
formances of both the PLSE and LLSE are robust to the choice of tuning parameter. We generate an
i.i.d. sample (of size n = 500) from the following model:

Y = (63 X)® + N(0,.1%), where X ~ Uniform[—1,1]* and 6 = 14/2. (6.3)

Observe that for the above model, we have —2 < #7 X < 2 and Lo := SUP;e(—2.2) my(t) = 4 as mo(t) = 2.

To compare the performances of the proposed estimators as their tuning parameter change, we vary \n from
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exp(—=7/2) x n~2/% to n=?/% and vary L from 3 (< Lo) to 10. Figure 3 shows box plots of 1 Zle 6; — 60,
for both CvxPen and CvxLip as their respective tuning parameter varies. The plots clearly show that the
performance of both the estimators are not significantly affected by the particular choice of the tuning
parameter. The observed robustness in the behavior of the estimators can be attributed to the stability
endowed by the convexity constraint.

Convex PLSE Convex LLSE
8l - - : : 5 i Q| : 5 ! E 5
§° E E : ; 5 5 §o E E E E 5 !
s ! ! : ! ; : 8 : ! ! | ! :
3384 E ; 5 : : gs| : : : ; :
o . \ | , ' ! ; : ! . . ! .
9 ' ] 1 [ E o
= =
2 3] 23]
oS o =
< < ©
& - - &
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0 0.7 1, 2 5 7 3 4 5 7 10  CvxLSE
—log(2A,n*/®) L

F1G 3. Boz plots of i Z?zl |0; — 60.5] (over 1000 replications) for the model (6.4) (d =4 and n = 500) as the tuning

parameter varies. Left panel: CvzPen when An = exp(—T/2) x n=2/5 for T = {0,0.7,1,2,5,7}; right panel: CvzLip
for L =4{3,4,5,7,10} and CvzLSE.

7. Discussion

In this paper we have proposed and studied two estimators in a convex single index model, namely the LLSE
and the PLSE. Both the estimators are optimal — the function estimates are minimax rate optimal and the
estimates of the index parameter are semiparametrically efficient. We have also introduced another natural
estimator in this model, namely the convex LSE (see (6.1)), and have investigated its performance in our
simulation studies. However, a thorough study of the theoretical properties of the convex LSE is difficult,
and an open research problem. The difficulty can be attributed to the lack of our understanding of the
behavior of m}, and its right-derivative near the “boundary” of the covariate domain. In single index models
inconsistency of mL at the boundary affects the estimation of 6o, as 8o and mg are intertwined /bundled (as
opposed to a partially linear model). Even in the simple univariate convex regression problem there are no
existing upper bounds on the value of the LSE at the boundary. It is worth noting that in the recent paper [3]
where the authors study the monotone single index model the unboundedness of LSE of the link function at
the boundary turned out to be a major hurdle in deriving the asymptotic properties of the estimator (even
though there exists closed form expressions for the LSE).

Appendix A: Proof of Theorem 4.1

In this section we give a detailed discussion of Step 1-Step 5 in the proof of Theorem 4.1.

A.1. An approzimately least favorable subprovided path [Step 1]

We now construct a path whose score for any (8, m) € © x {g € R|J(g) < oo} is &9,m. Before proceeding
further, for notational convenience, let us define

R":={g € R|J(g9) < oo}
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Recall (4.1). For any (6, m) € © xR*, let t — ({+(0,m),&:(+; 0,17, m)) denote a path in © x R* through (¢, m),
ie., (Co(0,n),&(:0,m7,m)) = (0, m). Recall that (6, 7) minimizes £, (m,0; \,). Hence, for every n € S472,
the function ¢ — L, (&(+; 6, n,m), (e (é,n); :\n) is minimized at ¢ = 0. In particular, if the above function is
differentiable in a neighborhood of 0, then

0

57 Ln(&(50,m,m),C(0,m); )| =0, (A1)
t=0
Moreover if ({t(é,n)7§t(-;é,n,m)) satisfies
Oty —c@mTmbnm)’|  =nT6 (@),
=0 (A.2)

0 A -
o @0mm)|  =0,(1), Vnes

t=0

then we obtain (Step 1) as A2 = 0,(n"'/?); see assumption (P2).

Observe that 6 is a consistent estimator of 0o and we are concerned with constructing the function
t— Ln(&(5 6, n,m), (é, n); j\n), a path through (é, m). As we know that 6 and 7 are consistent estimators
of 0o and my, it suffices to construct a similar path through any (6, m) € {©N By, (r)} x R* that satisfies the
above requirements (7 is as defined in (A5)). For any set A C R and any v > 0, let us define A” := Uge 4 Bq(v)
and let OA denote the boundary of A. Fix v > 0. By assumption (A5), for every § € © N By, (r), n € S472,
and t € R sufficiently close to zero, there exists a strictly increasing function ¢g ¢ : D¥ — R with

¢6,n,t(u) =u, u € D07

A.
Gooma(u+ (0 C(0,m) k(w) = u, uedD, (&.3)

where (;(0,7n) and k(u) are defined in (4.1) and (Step 1), respectively. Furthermore, we can ensure that
u € D ¢g 5, (u) is infinitely differentiable and that %¢g’n7t|t:0 exists. Note that ¢, +(D) = D. Moreover,
u — ¢ ,n.t(u) cannot be the identity function for t # 0 if (8 — ¢:(6,71)) " k(u) # 0 for some u € dD. Let us
now define

Te(u; 0,m,m) == m’ 0 G0 (u+ (0 — G:(0,m)) " k(w)).

Observe that ¢t — T;(u;0,m,m) is a path through m’. Thus we can integrate T:(u;6,7n,m) to construct a
path through m. Let us define

€uCus.m) = [ Tews O,y + (Gr6,7) — ) (i (s0) — ' (50) (s0) — (50 iy ()] + (4680

where hyg, is defined in (4), k is defined in (Step 1), and so € Ny, () Do Where r satisfies assumption (A5).
0

The function ¢g,,,¢ helps us control the partial derivative in the second equation of (A.1). In the following
theorem, proved in Appendix H.1, we show that (Q(é, n), & (; 0, n,m)) is a path through (é, m) and satisfies
(A.1) and (A.1). Here n € S92 is the “direction” for (:(#,7) and (1, k(u)) defines the “direction” for the
path &(-;0,n,m).

Theorem A.l (Step 1). Under the assumptions of Theorem 4.1, (Ct(é,n),ft(-;é,n,Th)) is a valid para-
metric submodel, i.e., (Ct(é,n),ft(~;é,n,ﬁz)) € © x R* for all t in some neighborhood of 0. Moreover,
({t(é,n),ft(;é,n,m)) satisfies (A1), t — cn(gt(-;é,n,m),gt(é,n);S\n) is differentiable at 0, &, . satisfies
(Step 1), there exists M* < co which satisfies (Step 1), and Sgy.mq = £og,mo - 7

A.2. A well-behaved approxzimation [Step 2]

We observe that Gg ., (the score for the approximately least favorable subprovided path) does not satisfy
the conditions required by [51]. In this section we introduce g m, a well behaved “approximation” of &g .
Note that g,m is not a score of (4.1) for any particular path. However, g ,, is well-behaved in the sense
that: (1) ¢, ;, belongs to a Donsker class of functions (see (Step 4)), (2) Yeg,mo = log,me = Sog,mg, and
(3) ¥4, converges to Ygy,m, in the Lz(Pyy,m,) norm; see Lemma H.1. The following theorem proves that

6, 5, and v, . are “approximately” the same.
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Theorem A.2 (Step 2). Under the assumptions of Theorem /4.1, we have
\/ﬁpn(Gé,m - wé,m) = op(1). (A.5)

We break the proof of this theorem into a number of lemmas proved in Appendix H. In the following
lemma, proved in Appendix H.2, we find an upper bound for the left hand side of (A.2).

Lemma A.1. Under model (1), we have
VAP (S5 5 — ¥5.5)| < Gr[(mo 080 — 1720 60)Uj ]| + [Gn[(172 0 g — 1710 O)Up .| + [VPreUy |
+ \/’E}Pgoymo[(m o0fg—1mo é)Ué’m” + \/’E’Pgmmo [(mg 0fg—1o GQ)Ué’m](IA(;)

where Ug,m : X — R4 s defined as

Ugm(z) := Ht;r

0Tz
/ [m (u) — mo(w)| k' (u)du + (mo' (0" x) — m’(@Tx))k(GTx)] . (A7)

Note that the proof of Theorem A.2 will be complete if we show that each of the terms on the right
hand side of (A.1) converges to 0 in probability. We begin with some definitions. Let a,, be a sequence of
real numbers such that a, — 0o as n — 0o and a7 — mo||D, = 0p(1). Note that we can always find such
a sequence an, as by Theorem 3.6 we have |[1iz — mol|D, = 0p(1). For all n € N, define’

Chit ats = {m € Rs mlloe < My, [l oo < Mz, and J(m) < My},
City My, 05 (1) 7= {m € Cllft aa 0y ¢ Gnllm — mol| D, < 1}»

Ciry,ntz vty = { (0,m) 50 € © 11 Bay (1/2) and m € CFi; ary s
C’(n) = {9660390(1/2):5\;1/2\9—90\ g1}, (A-8)
Coiy Mo, Mg (N) 1= {(9, m):0eC’(n)and m e City Mo, Ms (n)}7

Wity Mo, M5 2= {Ue,m 1 (0,m) € CX/Il,Mg,Mg},
Wity vz, 05 () 2= {Ug,m = (6,m) € Cary,naz, 015 ()}

As a first step in proving that each term on the right hand side of (A.1) converges to 0, we analyze the
classes of functions War, a1y, M5 (n) and Wiy, ar, ar,- In the following lemma, proved in Appendix H.3, we
find the bracketing numbers and envelope functions for the classes. The result will be used in some of the
remaining proofs.

Lemma A.2. Fiz My, M, Ms, and 6 > 0. Then Whar, mo, 05 (1) is a Donsker class and

. . 1
sup 1Us.mll2,00 < Wity g, 015 (n) := M*Vd — 1 (2(M3 + Mo)TAY* + (T + 1)7>, (A.9)

(Q,m)ECMlvM%MS n n
where M* is defined in (Step 1) and || - ||2,00 1s defined in Section 2.1. Moreover, for some ¢ depending
only on d, M1, M2, and Ms, we have the following upper bound on the bracketing entropy of Wi, , My, m5 (1) :

d
Ny (e, Wty Mz m5(n), || - | ‘

2,Pg . mo) < N(EWM My M5 || - 12,5 1y ) < cexXP(c/E)e™™

see Section 2.1.1 of [53] for a definition of Nyj(-,-, ).

The study of limiting behaviors of the first three terms on the right hand side of (A.1) are similar. For
every fixed My, Ms, and Ms, the first term in the right hand side of (A.1) can be bounded above as

]P’(|Gn([mo 0 6o — 1m0 6o)Us ;)| > 5)

< P(IGu ([mo 0 80 — 1iv 0 00]U; )| > 6, (0,77) € Cary,atz s () ) + P((B10) ¢ Caty vtz 11 ()

IN

P( sup G ([mo © 60 =m0 0]Us,m) | > 6) +P((9,77)  Cary, a1z 12 ().

(60,m)ECAM, My, Mg (1)

5The notations with % denote the classes that do not depend on n while the ones with n denote shrinking neigh-
borhoods around the truth.
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By Theorem 3.6 we have that § and 1 are consistent for 0o and mo in the Euclidean and Sobolev norms,
respectively and [|//]|co is Op(1). Furthermore by Theorem 3.5, we have that both ||/||c and J() are
0,(1) and by Theorem 3.7 we have A, /?|6 — 6| = 0,(1). Thus, it is easy to see that, for any & > 0, there
exists M1, M2, and M3, (depending on €) such that

P ((6,17) ¢ Cary iz s () <2,
for all sufficiently large n. Hence, it is enough to show that for the above choice of My, M2, and M3 we have
P ( sup |G ([mo © o — m 0 60]Us,m)| >5> <e
(0,m)EC N, My, Mg (1)
for sufficiently large n. We show this in the following lemma (proved in Appendix H.4).
Lemma A.3. Fiz My, M, M3, and § > 0. For n € N, let us define

Dy My M5 = {[mo 060g—mo8|Upm : (6,m) € CX417M2’M3} ,
Dty My, 5 (1) = {[mo 0 0o — m 0 0o]Us,m : (0,m) € Chiy,mz,m5(N) ] -

Then D, Mo, M5 (1) is a Donsker class and

sup | fll2,00 < Dty nap,nag(n) := 2M1 Wiy a1 (7). (A.10)

FED My, My, M5 (1)

Moreover, J11(6, Dy ma,m5 (1) ||+ 12,20 g ) S 62, where for any class of functions F, Jjj (the entropy
integral) is defined as

§
TNEF N o ray ) = [ OENG T o)

e.g., see [52]. Hence, we have P(SqueDMl |Gnf| > 6) =0 as n — occ.

My, Mg (1)

The following two lemmas, proved in Appendices H.5 and H.6, complete the proof of Theorem A.2 and
show that the last four terms on right side of (A.1) converge to zero in probability.

Lemma A.4. Fiz My, M2, Ms, and 6 > 0. For n € N, let us define
Anty My a5 () := {[m o o —m o 0lUp,m : (6,m) € Cary,naz,015 ()},
ANty arg M = {[m 060y —mo8lUs,m: (6,m) € CJT/IMMQ,MS} .

Then Anry amo, M5 (1) s a Donsker class and SUD fe Aps, ary ary (m) | fll2,00 < Dnty aao 015 (n). Moreover, Jj(0, Anty ,ay, 015 (0), ||

2. Pog mg ) S 612 and, as n — oo, we have
IP( G100 — 110 0)U; 5] | > 5) 0.
Lemma A.5. If assumptions (A0)-(A4), (B1)-(B3), and (P1)-(P2) hold, then
VP [eUp ]| = 0p(1),
\/ﬁ’Pgmmo [(m0000 7m090)Uéym]| :Op(l), (A.ll)
\/E|P901mo (17000 — 10 é)Ué,m] | = op(1).

Now that we have shown (6,7) is an approximate zero of (6,m) +— Pntpg,m and vo,,me = £og,mos
asymptotic normality and efficiency of 6 follows from the theory developed in Section 6.6 of [51]. In the next
theorem (proved in H.7), we prove that ¢; , satisfies the “no-bias” condition; see (6.6) of [51] and Section 3
of [40].

Theorem A.3 (Step 3). Under assumptions (A0)-(A4) and (B2),
\/ﬁpé,mowé,m = Op(l),
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The following theorem (proved in Appendix H.9) completes the proof of Theorem 4.1.
Theorem A.4 (Step 4). Under assumptions (A0)-(A4) and (B2), we have

Gn(wé,m - ¢9o,mo) = Op(l)' (A'12)

The proof of the above theorem is similar to that of Theorem A.2. We first find an upper bound for
the left side of (A.4) and then show that each of the terms converge to zero; see Lemmas H.2 and H.3 in
Appendix H.9.

Appendix B: Proof of Theorem 4.2

The following theorem (proved in Appendix I.1) shows that submodel defined in (A.1) is an approximately
least favorable subprovided submodel for model (1). The proof of Theorem B.1 is more complicated (when
compared to that of the proof of Theorem A.1) as 1 is not differentiable everywhere.

Theorem B.1 (Stvep 1). Under assumptions of Theorem /.2, (¢ (0,n),&(-0,n,7)) is a valid parametric
submodel, i.e., (C:(0,n),&(:;0,m,m)) € © x My for all t in some neighborhood of 0 and &gy me = Log,m;
see (Step 1) for definition of Goy,m,. Moreover, we have that t — Qn (& (+;0,m,m),¢:(0,7)) is differentiable
at 0,

o o
5 W= &G0 ) 2 0,0,m)" | =06 (xy),
t=0
and o
&Qn(&t( 707 7, ’I:/'L), Ct(e,n)) =n PnGé,m =0
t=0

B.1. A well-behaved approzimation [Step 2]

As in Appendix A.2, the following theorem (proved in a series of results) shows that &; ,;, is empirically
well-approximated by vy ; (defined in (Step 1)).

Theorem B.2 (Step 2). Under assumptions of Theorem 4.2, we have
\/ﬁPn(Gé,m - ¢'é,m) = o0p(1).

The proof of Theorem B.2 is very similar to the proof of Theorem A.2. As the definitions of &y ,, and
g.m have not changed, Lemma A.1 clearly holds with (6,7h) instead of (é,m) Note that the proof of
Theorem A.2 will be complete if we show that each of the terms on the right hand side of (A.1) converges
to 0 in probability. We begin with some definitions. Let b,, be a sequence of real numbers such that b, — oo
as n — 00, by = o(n'/?), and b, ||/ — mo||p, = 0p(1). Note that we can always find such a sequence b,, as
by Theorem 3.2 we have |72 — mo||p, = 0p(1). For all n € N, define®

e {m e Mz |mlleo < Ml},

Chr, (n) == {m € Ch - nl/s/

Dg

Cir, = {(am) :0 € ©N Byy(1/2) and m € cxg},

(m () — ml(£))2dt < 1, bn|lm — mol|p, < 1},

c’(n) = {9 € 0N By (1/2) : n/°)0 — 6] < 1},
Cr, (n) := {(Q,m) :0eC’(n)and m e Car, (n)},

W&l = {UB,'m : (e,m) S CX/[1}7
W, (n) :={Ug,m : (6,m) € Crr, ()}

6As in (A.2), the notations with * denote the classes that do not depend on n while the ones with n denote
shrinking neighborhoods around the truth.
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where Ug,m (-) is defined in (A.1). As a first step in proving that each term on the right hand side of (A.1)
converges to 0, we study the properties of the classes of functions Wh, (n) and Wyy, . In the following
lemma, proved in Appendix 1.2, we find the bracketing numbers and envelope functions for these two classes
of functions. This will be used to prove the results that follow.

Lemma B.1. Fiz My, and 6 > 0. Then Wz, (n) is a Donsker class and there exists a V* < oo such that
sup « 2,00 < V*. Moreover, for some ¢ depending only on M, we have
FEW3, ,
1

Nij(e, War, (), 11+ 12,Pgg g ) < Nij(e, Wanys | |

2.Pog.my) < coxp(c/e)e ™ (B.1)

and

sup || f113.pyy g < EKin %, (B.2)
FEWNM, (n)

where K3 = 2||k'||2 + L2||K'|AT? and k(-) is defined in (Step 1).

The study of limiting behaviors of the first three terms on the right hand side of (A.1) (with 0,m)
replaced by (6,71)) are similar. For every fixed M7 > 0 the first term in the right hand side of (A.1) can be
bounded from above as

P(IGu(fmo o B0 — 172 0 60]Up )| > 9)
(B.3)

SIP’( sup |Gr([mo 0 6o — m o 0o]Ug,m)| > (5) —HP’((V,m) ¢CM1(n)),
(@,m)ECar, (n)

where Uy 5, + X — R4 is defined in (A.1). By Theorem 3.2 we have that 6 and 7n are consistent in
the Euclidean and supremum norms, respectively. Furthermore, by Theorems 3.3 and 3.4, we have that
nt/6 — 0y| = 0,(1) and nl/® fDo |77/ (t) — mg(t)|*dt = op(1), respectively. Thus, it is easy to see that, for
any € > 0, there exists M1 (depending on ) such that

P((6,m) ¢ Car, (n)) <&, for all sufficiently large n.

Hence, it is enough to show that for the above choice of M; > 0 we have the first term on the right hand
side of (B.1) is smaller than e for sufficiently large n. We prove this in Lemma B.2.
Lemma B.2. Fix M, and § > 0. For n € N, let us define
Dis, = {[moobo —mo)Upm : (0,m) €Chr},
Djul (n) = {[mo 0fyp—mo 90]U97m : (G,m) S C’M1 (n)} .

Then Dar, (n) is a Donsker class such that

2 _
sup  [|f113,ppy 0y < Dirm ',
F€D M,y (n)

where Dy »= 2M1 K 1. Moreover Ji1(8, Dary (n), || - l|2.P5g 1y ) S 52 and
]P’( sup |an|>5)—>0, n — oo.
fE€D M, (n)

The following two lemmas, proved in the Appendices 1.5 and 1.6, complete the proof of Theorem B.2.
Lemma B.3. Fix M, and § > 0. For n € N, let us define
Anry (n) = {[m 0 80 — m 0 6Usm : (6,m) € Cary (M)},
Adr, i =A{[mobo —moblUpm:(0,m) € Ch}.
Then Anr, (n) is Donsker class and Dpr,n~/1°
Moreover, J;j(8, Anr, (n), || -

is an envelope function with respect to the || - ||2,P90Ym0.

|2,Pgy g ) S 82, and, as n — oo, we have

P(\Gn [(m oo —mo0)Us,.|| > 6) — 0.
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Lemma B.4. If (A0)-(A4), (B1)-(B3), and (L1) hold, then
|ﬁPn{€Ué,m]| = o0p(1),
V1| Pog,mq [(mo 0 0 — 11 0 00)Us ]| = 0p(1), (B.4)
\/ﬁ|P90’mo (000 —mmo é)Ué,m] | = op(1).

Now that we have shown (,77) is an approximate zero of Pntp.m and ¥e, me = Log.mo, asymptotic
normality and efficiency of § now follows from the theory developed in Section 6.6 of [51]. In the next
theorem, we prove that 15 ,, satisfies the “no-bias” (see equation 6.6 of [51]) condition.

Theorem B.3 (Step 3). Under assumptions of Theorem 4.2, \/nPj . g - = 0p(1).

In Lemma 1.2, stated and proved in Appendix 1.8, we prove that v ,, is a consistent estimator of ¥g,,m,
under La(Py,,m,) norm. The following theorem (proved in Appendix 1.9) completes the proof of Theorem
4.2.

Theorem B.4 (Step 4). Under (A0)-(A4) and (B2), we have
Gn(wé,m = Yog,mo) = Op(l)' (B.5)

The proof of the above theorem is similar to that of Theorem B.2. We first find an upper bound for
the left side of (B.4) and then show that each of the terms converge to zero; see Lemmas 1.3 and 1.4 in
Appendix [.9.

Appendix C: Additional Simulation Studies

C.1. A simple model

o~
>
Truth e SR
- -+ SmoothGCV o ) A
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" | — CwxLSE i
T I
-1 XTeo 1

FI1G 4. Function estimates for the model Y = (8] X)? + N(0,1), where 8y = 15/v/5,X ~ Uniform[—1,1]°, and
n = 100.

In this section we give a simple illustrative (finite sample) example. We observe 100 i.i.d. observations
from the following homoscedastic model:

Y = (6g X)? + N(0,1), where 6y = 15/v/5 and X ~ Uniform[—1,1]°. (C.1)

In Figure 4, we have a scatter plot of {(8g i, yi) }1<i<100 overlaid with prediction curves {(0 " @, m(0 " x;)}1<i<100
for the proposed estimators obtained from one sample from (C.1). Table 2 displays all the corresponding
estimates of 6y obtained from the same data set. To compute the function estimates for EFM and EDR ap-
proaches we used cross-validated smoothing splines to estimate the link function using their estimates of
0.
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TABLE 2
Estimates of 6g, “Theta Error”:= Z?:1 |6; — 60|, “Punc Error”:= || 06g —mq o 6o||n, and “Est
Error”:= ||in 0 0 — mg o 0g||n for one sample from (C.1).
Method 01 02 03 04 05 Theta Error Func Error  Est Error
Truth 045 0.45 045 045 045 — — —
SmoothGCV  0.38 0.49 041 0.50 0.45 0.21 0.10 0.10
CvxPen 0.36 0.50 0.42 0.47 047 0.21 0.12 0.13
CvxLip 0.35 050 043 048 0.46 0.21 0.13 0.15
CvxLSE 0.36 050 043 0.45 048 0.20 0.18 0.15
EFM 0.35 0.49 041 049 047 0.24 0.10 0.11
EDR 0.30 0.48 046 0.43 0.53 0.29 0.12 0.15

C.2. Piecewise linear function and dependent covariates

To understand the performance of the estimators when the truth is convex but not smooth, we consider the
following model:

Y =6y X|+ N(0,.1°%), (C.2)
where X € RS is generated according to the following law: X; ~ Uniform[—1,1], X2 ~ Uniform[—1, 1],
X3 :=0.2X14+0.2(X2+2)>+0.2Z1, X4 := 0.140.1( X1+ X2)4+0.3(X14+1.5)>+0.2Z>, X5 ~ Ber(exp(X1)/{1+
exp(X1)}), and Xs ~ Ber(exp(X2)/{1 + exp(X2)}). Here (Z1,Z2) ~ Uniform[—1,1]? is independent of
(X1, X2) and 6o is (1.3,—1.3,1,—0.5,—0.5,—0.5)/+/5.13. The distribution of the covariates is similar to the
one considered in Section V.2 of [37]. The performances of the estimators is summarized in Figure 5. Observe
that as the truth is not smooth, the convex constrained least squares estimators (CvxLip and CvxLSE) have
slightly improved performance compared to the (roughness) penalized least squares estimators (CvxPen and
SmoothGCV). Also observe that both EFM and EDR fail to estimate the true parameter 6.

EDR- b--] [} 3
EFMo F-==----mmmmm- ] I
smoothGev-{ F{]}----- 1
CVXPEN- pﬂ] -

cvxLsE H{}--4

CvxLip— I-ﬂ:l-"-‘|

0.0 0.2 0.4 0.6

Fic 5. Box plots of Z?:l |6; — 60.:| for the model (C.2). Here d = 6, n = 200 and we have 500 replications.

Appendix D: Real data analysis

In this following we analyze two real datasets and apply the developed methodology for prediction and
estimation.

D.1. Boston housing data

The Boston housing dataset was collected by [22] to study the effect of different covariates on the real estate
price in the greater Boston area. The dependent variable Y is the median value of owner occupied homes in
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each of the 506 census tracts in Boston standard metropolitan statistical areas. [22] observed 13 covariates
and fit a linear model after taking log transformation for 3 covariates and power transformations for three
other covariates; also see [57] for a discussion of this dataset.

Breiman and Friedman [5] did further analysis to deal with multi-collinearity of the covariates and
selected four variables using a penalized stepwise method. The chosen covariates were: average number of
rooms per dwelling (RM), full-value property-tax rate per 10,000 USD (TAX), pupil-teacher ratio by town
school district (PT), and proportion of population that is of “lower status” in percentage points (LS). As
in [56] and [60], we take logarithms of LS and TAX to reduce sparse areas in the dataset. Furthermore, we
have scaled and centered each of the covariates to have mean 0 and variance 1. [56] fit a nonparametric
additive regression model to the selected variables and obtained an R? (the coefficient of determination) of
0.64. [57] fit a single index model to this data using the set of covariates suggested in [7] and obtained a
decreasing and approximately convex link function; see Fig. 2 of [57]. Moreover, we think it is logical that
the “law of diminishing returns” should apply to the median home prices in this dataset. This motivates us
to fit a convex single index model to the Boston housing dataset. Moreover, the convexity constraint adds
interpretability to the estimators of both 6y and mo. We summarize our results in Table 3. In Figure 6, we
plot the scatter plot of {(07 x;,y:)}2% (recall that 6 denotes the CvxPen) overlaid with the plot of (6" z),
for the SmoothGCV, CvxPen, CvxLip, and CvxLSE. We also observe that the R? for the convexity constrained
single index models (CvxPen, CvxLip, and CvxLSE), when using all the available covariates, was approximately
0.79. Inclusion of all the extra variables leads to only a minor increase in R? at the cost of interpretability;
[57] also reached to a similar conclusion.

TABLE 3
Estimates of 0o and generalized R? for the datasets in Appendices D.1 and D.2.

Method Boston Data Car mileage data

RM  log(TAX) PT log(LS) R? D w A H R?
LM’ 2.34 —0.37 —1.55 —5.11 0.73 -0.63 —449 -0.06 -1.68 0.71
SmoothGCV  0.44 —0.18 —0.27 —0.83 0.77 0.42 0.18 0.11 0.88 0.76
CvxPen 0.48 -0.19 —0.25 —0.82 0.77 0.45 0.15 0.13 0.87 0.76
CvxLip 0.44 —0.14 —0.18 —0.87 0.77 0.44 0.18 0.12 0.87 0.76
CvxLSE 0.44 —0.14 —0.18 —0.87 0.79 0.39 0.14 0.12 0.90 0.77
EFM 0.48 —0.19 —0.21 —0.83 — 0.44 0.18 0.13 0.87 —
EDR 0.44 —-0.14 —0.18 —0.87 — 0.33 0.11 0.15 0.93 —

D.2. Car mileage data

As a second application for the convex single index model, we consider a dataset containing mileages of dif-
ferent cars; which can be found at http://1lib.stat.cmu.edu/datasets/cars.data. We model the mileages
(Y) of 392 cars using the covariates (X): displacement (D), weight (W), acceleration (A), and horsepower
(H). Cheng et al. [10] fit a partial linear model to this this dataset, while [32] fit single index model (without
any shape constraint).

As in Appendix D.1, we have scaled and centered each of covariates to have mean 0 and variance 1 for
our data analysis. It is easy to argue that, as in the previous dataset, “law of diminishing returns” applies
to the millages of cars. The right panel of Figure 6 illustrates this. All index coefficients are positive and
the estimates of mo are decreasing. We performed a test of significance for 6y using the plug-in variance
estimate in Remark 4.4. The covariates acceleration, engine displacement, and power output were found to
be significant and each of them had p-value less than 10™° (for both the PLSE and LLSE). In the right panel
of Figure 6, we have the scatter plot of {(éTxi, yi)}322 overlaid with the plot of ﬁl(éTx), for the SmoothGCV,
CvxPen, CvxLip, and CvxLSE. Table 3 lists different estimators for fy and their respective RZ.

Appendix E: Proof of results in Section 2

The following two lemmas of [32] will be used to prove results of Section 2.

7LM denotes the linear regression model.


http://lib.stat.cmu.edu/datasets/cars.data
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Boston Housing Data

Car mileage data
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F1G 6. Scatter plots of {(m;ré,yl)}le overlaid with the plots of function estimates corresponding to CvzPen, CvzLip,
and SmoothGCV estimators for the two real datasets considered. Left panel: Boston housing data (Appendiz D.1); right
panel: the car mileage data (Appendiz D.2) .

Lemma E.1 (Lemma 4 of [32]). Let m € {g € R : J(g) < co}. Then |m’(s) —m/(s0)| < J(m)|s — so|*/? for
every s,so € D.

Lemma E.2 (Lemma 5 of [32]). For any set A € R¥ (k > 1), let g(A) denote the diameter of the set A.
Letme{geR:J(g) <oo and ||g|lec < M}, where M is a finite constant. Then

Im’||oe < 2M/2(D) + (1+ J(m))2(D)"/?,
where & (D) is the diameter of D. Moreover if &(D) < oo, then
[ [l < C(1 4 J(m)),

where C' is a finite constant depending only on M and & (D).

E.1. Proof of Lemma 2.1

In the following we show that (mo,6) is the minimizer of @ and is well-separated, with respect to the
Ly (Px) norm, from {(m,0) : mo 8 € La(Px)} \ mo o 6p. Choose arbitrarily small 6 > 0, and pick any (m, 6)
such that m o @ € La(Px) and ||m o 6 —mg o 6g]|* > 62. Then

Q(m,0) = E[Y —mo(fg X)]” + Elmo(6 X) — m(6" X)]*,

since E(e|X) = 0. Thus we have that Q(m, 8) > Q(mo, 8o) + 5°.

E.2. Proof of Theorem 2.1

We consider the estimator

(tn,0,) = argmin  Qn(m,d).
(m,0)eM xO
Fix 6 € ©. Observe that m € My — Qn(m,0) is a coercive continuous convex function on a convex domain.
Thus for every 6 € ©, the minimizer of m € Mr — Qn(m,0) exists. Let us define
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meg := argmin Q,(m,0) and T(0) := Qn(my,0). (E.1)
meMy,

Observe that 0, := argmingce T'(0). As © is a compact set, the existence of the minimizer 6 — T'(6) will
be established if we can show that T'() is a continuous function on ©; see the Weierstrass extreme value
theorem. We will now prove that 6 — T'() is a continuous function. But first we will show that for every
0 € O, |msll < C, where C depends only on {(zi,y:)}i_1, L, and T. Observe that >, (y; —me(0 " 2;))* <
> y? and the constant function 0 belongs to M. Thus

n

. N 1/2 L\ 12
[mg(HTan)]Q < 2Zyimg(9T:vi) <2 (Z y,2> (Z [me(GTxi)] ) .

=1

M:

=1

Hence, we have [mg(0"z1)| < 21/>._, y?. As my is uniformly L-Lipschitz, we have that for any ¢ € D,

[mo(t)] < [me(0 " @1)| + Lt — 0" a:1| <

As C does not depend on 6, we have that supycg ||mellcc < C. To show that 0 exists, it suffices to show that
0 — T'(0) is a continuous function. As a first step, we will show that the class of functions

{0 = Qn(’l’)% 9) tm e ML7 Hm”OO < C}

is uniformly equicontinuous. Observe that for 6,7 € ©, we have

n|Qn(m, 0) — Qu(m,n)| = > (yi —m(0T:)* = > (v —m(n" z:))°

i=1 i=1

n n ‘

> (mn i) —m(0" i) (2y; —m(0 xi) - m(nT%))‘

=1

<> imn @) =m0 2:)| x 2y — m(0" 2:) — m(n x|
=1

< LS I w0 2] x 2(jyi| +O)

i=1

< 2nLT (max lys| + C) |0 — n|.

Thus, we have that

sup |Qn(m70) _Qn(mvn” < 03‘0_77‘7
{meMp: |Imllec<C}

where Cj3 is a constant depending only on {y;}i—; and C. Next we show that |T(0) — T'(n)| < 2C3|0 — n|.
Recall that T'(0) = Qn(ms, 8). By (E.2), we have
Qn(me,0) — Qn(me,n) = T(0) — Qn(me,n) <T(0) —T(n)

and
T(0) = T(n) < Qu(my,0) —T(n) = Qn(my,0) — Qn(my,mn).
Thus

IT(0) = T(n)] < [Qn(ma,0) = Qulmny,n)| + |Qn(me,0) — Qnme,n)| < 2C5|0 —nl.
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E.3. Proof or Theorem 2.2

The minimization problem considered is

inf  Ln(m,0; ),
0€0,meR

where £, is defined in (2.3). For any fixed vector € O, define t! := 6" x;, for i = 1,...,n. Then we have

Lo(m, 0;0) = iZ(yi—m(t?))QJrf/D!m"(t)|24t]

i=1
and the minimization can be equivalently written as infgco infer Ln(m,0; \). Let us define

T(0) := inf L,(m,0;)\) and mg:=argminLy,(m,0;N). (E.2)
meR meR

Theorem 1 of [16] proves that the infimum in (E.3) is attained for every § € © and the unique minimizer
mg is a natural cubic spline, see Section 5.1.2 for more details. Furthermore [16] note that mg does not

depend on D beyond the condition that {t!}1<i<. € D. Moreover, mj is zero outside (tfl), t?n>)’ where for

k=1,...,n, t?k.) denotes the k-th smallest value in {t¢}7_;. In the proof of Theorem 1 of [33], they show
that 6 — T'() is a continuous function if my satisfies the above properties. This completes the proof as ©
is a compact set; see the Weierstrass extreme value theorem.

Appendix F: Proofs of results in Section 3.1
F.1. Proof of Theorem 3.1

To find the rate of convergence of 77 o 8, we use the following modification of Theorem 3.2.5 of [53]. In the
following to avoid measurability difficulties, we use P* and E*, outer probability and outer expectation.

Lemma F.1. Let M, be stochastic processes indexed by a semimetric set T and M : T — R be a deterministic
function, such that for everyn € Y

M(n) —M(no) S —d*(n,70), (F.1)
where d(-,m0) : T — R*Y. Let ), := argmax, .y M (n). For each € > 0, suppose that the following hold:

1. There exists Y., a subset of Y, containing no in its interior that satisfies
P* (7 ¢ Ye) <k, Vn. (F.2)

2. For every n and § > 0, the centered process M,, — M satisfies

\/H]E* . su})) , |(Mn — M) (7]) - (Mn — M) (770)‘ < Ca¢n(6)v (FS)
ne=

for functions ¢, (not depending on €) such that § — ¢, (8)/8% is decreasing in & for some constant
a < 2 (not depending on n) and a constant Ce > 0.
Then rnd(fin,m0) = Oy (1) for every rv, satisfying radn(1/rn) < /n for every n.

Remark F.1. The proof of Lemma F.1 is similar to the proof given in Page 290 of [53]. The only difference
is that in the “peeling” argument the “shells” are now defined as Sjn := {n: 277" < rpd(n,m0) < 27 andn €
Y.} and the first inequality in the proof now reads

P (rad(f,mo) > 2M) < ) P* ( sup (Mo (1) — Mn(n0)) > 0) +PT(7) ¢ o).

i>M n€Sj,n
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We will now obtain the desired rate of convergence in Theorem 3.1 by verifying conditions of Lemma F.1.
For the LLSE, T = My x ©, n = (m, 8), no = (mo, o), and
1 n
fin = (Thn,0,) = argmax —— Z(yz - m(@T:vi))z.
(m,0)empxe T —]

The stochastic processes M,, and function M are defined as
M., ( == Z m(0" z;))* and M(m, ) := —E(Y —m(0' X)) (F.4)

For any (m1,01) and (ma2,02) in My x ©, we define
d((ma,01), (m2,02)) := [[m1 0 61 — ma 0 6a]|. (F.5)
We first show that M defined in (F.1) satisfies (F.1). Observe that
M(m, ) — M(mo, 0o)

= E[(Y —mo(8y X))* = (Y —m(6" X))*]

=~ 9B[(Y — mo(6] X)) (mo(63 X) — m(0" X))] — E(mo(03 X) — m(6” X))?

= —E[{m(07X) —mo(6g X)1| (a5 E(Y[X) = mo(6] X))

= —d*((m,9), (mo, b0)).

Next for every € > 0, we find Y. that satisfies (1). The following result (proved in Appendix F.2) gives the
form of Y..

Lemma F.2. Under assumption (A2), we have that ||Mnllc = Op(1). Moreover, for every e > 0, there
exists a finite M. such that
P(ivn, & Mu..) <e, Vn,
where for any M > 0, we define
ML = {mGML: ||m||oo§M} (FG)
We can now define Y. := My, X ©. By Lemma F.2, we have
]P’((mn,én) ¢ TE) <eg, Vn.

To find the rate of convergence of 1y, o 6,, we need to find a function ¢, (8) that satisfies (2). Recall that
e=Y — mo(HJX). By definition of M,, and M, we have

Vn|(My, —M)(m, 0) — (My — M)(mo, 6o)|
]G 2(Y — mo (g X))(mo(8g X) —m(07 X)) + (mo(8g X) —m(0 X))]

’Gn [26(m(07 X) — mo(0g X))] ( ‘G 0TX)—mO(00TX))2H. (F.7)

IN

Now, we find the upper bound ¢,(d) by obtaining upper bounds for both the terms in (F.1). Define two
classes of functions

Hur,,L(0) :={mob —mgoby:(m,8) €Y. and d((m,0), (mo,60)) <6}

, (F.8)
O, (0) :={f": f € Har L (9)},
where d(-,-) is defined in (F.1). Thus by (F.1), we have
E* sup V| (Mn — M)(m, 0) — (Mn — M)(mao, 6o)]
d((m,0),(mo,00)) <,
(m,0)eY,
<E* sup [Gulef]|+E* sup |Gnf]. (F.9)
FE€H M, ,L(5) FE€ENM,,L(3)

In the following two lemmas (proved in Appendices F.3.1 and F.3.2, respectively) we show that both the
terms (F.1) are bounded by constant multiples (depending only on L, e, D, M. and M) of §3/* +n~1/25%/2,
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Lemma F.3. For every e,v > 0, we have

1Og]\][](ya HME,L(é)aLQ(P%,mo)) < CIV71/2 and sup Hf”oo < M. + Mo,
f€HM,,L(5)

34

where H,,(0) is defined in (F.1) and CT is a constant that depends only on M., L,D,T, Mo, d, and the

distribution of €. Furthermore
E*  sup |Gnlef]| S C. <53/4 + ﬁ)
sermny vn )’
where Ce 1 is a constant depending only on CT, M., Mo, d, and the distribution of e.

Lemma F.4. For every e > 0,

sup  |flloc < 4(Me+ Mo)* and  sup || fI| < 2(M. + Mo)s.
FeIM, 1 (8) fedn, 1 (0)

Furthermore, for v > 0 we have

M. + L;a(D))”2
14

log N1y (vr 93v..2(6), La (Pog ) < (
and

3/4 51/2
E° sup  |Gufl < Cen (6 +—),
fe€HM,,L(5) \/ﬁ

where C: 2 is a constant that depends only on M., L, D,T, My, and d.

Now by applying the upper bounds (F.3) and (F.4) to (F.1), we have ¢, (8) = (C¢,1+C:,2) (63/4 +

Observe that ¢,(8)/6%/* is a decreasing function of § and

n*%¢,(n"%) < V.

Thus, by Lemma F.1, we have n?/®||1i, 0 6, —mq o fo|| = O;(1).

F.2. Proof of Lemma F.2

By the definition of (17, 6y ), we have

n

Z(y mn 9 xz < Z ))2

i=1
for all m € M. Since any constant function belongs to My, for any fixed real x, we have

n

D (e = (6 w0)* < 35— (6] ) + ).

i=1

A simplification of the above inequality gives us:

QK,Z — 1, (07 2;)) + nx? >0, for all kK = Z — 1 (0 ) = 0.

i=1

(F.10)

(F.11)

n71/251/2) '

(F.12)
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Thus for any t € D, we have

. . I~ 1< s
j=1 j=1
1 - . . . 1 n
< gZ‘mn(t)*mn(Hng) + £Z{mg(6’ng)+ej} (by (F.2))
j=1 =
1« ,
SE;L|1§—9I$]'|+ Z|mo 901’]|+ Zeﬂ

< Lg(A)+ My +

k]

I

where My is the upper bound on mg; see (L1). The third inequality in the above display is true because iy,
is L-Lipschitz. As e is uniformly sub-Gaussian, we have that |>77_, €;/n| = Op(1). Thus for every € > 0,
there exists a finite c. (depending only on the distribution of € and ¢) such that P(|>27_, €;/n[ > c:) <,
for all n. Define M, := L& (A) + Mo + c.. The lemma follows as we have

P(|[rinllec > M) <&, Vn.

F.3. Proofs of Lemmas F.3 and F./

To prove Lemmas F.3 and F.4, we need the following entropy result.

Lemma F.5. Let
Hu,p :={mobf—mpoby:méeE Mu,1,0 €O},

where My, is defined in (F.2). Then there exist positive constants ¢ and vy, such that, for every M,L >0
and v < vo(M + Lz (D))

IOgN[](VaHM»Lv H : HOO) = IOgN[](V’ {moG : (m,@) € M, ¥ @}, ” : HOO) < Klyil/za

where K' is a constant depending only on M, L, T, D, and d.

Proof. To prove this lemma, we use the covering number for the class of uniformly bounded and uniformly
Lipschitz convex functions obtained in [18].

Lemma F.6 (Theorem 3.2, [18]). Let F denote the class of real-valued convex functions defined on [a,b]
that are uniformly bounded in absolute value by By and uniformly Lipschitz with constant L. Then there exist
positive constants ¢ and vy, depending only on the dimension d, such that for every Bo, L > 0 and b > a, we
have a2
Bo+ L(b—a
log N 7 | [) < o (B4 E0=)

for every v < vy(Bo + L(b — a)).

By Lemma F.6 and Lemma 4.1 of [44] for v € (0, 1), we have
M + L& (D) ) 1/2
- )
v

tog N Mar |1 <
log N(v,0,]-]) < —clog(v),

where c is a constant that depends only on d.

Recall that sup,cy x| < T; see (Al). Let {01,02,...,6,} be a v/(2LT)-cover (with respect to the
Euclidean norm) of © and {mi,m2,...,mq} be a v/2-cover (with respect to the || - [[co-norm) for Mns,z. In
the following we will show that the set of functions {m; 0 8; — mo 0 0o }1<i<q,1<j<p form a v-cover for Har 1
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with respect to the || - [|oo-norm. For any given m o 6 — mg o 0y € Has,r, we can get m; and 6; such that
lm — millc <v/2 and |6 — 0;| < v/(2LT). Therefore, for any = € X

Im(0" ) — mi(6] z)| < [m(0"x) — m(6] z)| + |m(6; &) — ma(6; )|

Lizlv v
< —0; — il < Y <
< Liz||0 — 05] + ||m — mi|lee < 3L T + 2 <v

Thus for v < vo(M + Lg(D)), we have
M+ La(D)\ '
log N(v, Han, || - [|oo) < ¢ | —log(v) + log(2LT) + 2 <++()) < K'v1/2
The result now follows as the covering number is equal to the bracketing number for the sup-norm. O

F.3.1. Proof of Lemma F.3

Suppose F is a class of real valued functions defined on X. We first present a result that gives a maximal
inequality for the class of functions
eF :={ef : f € F}

in terms of the bracketing entropy of F, with respect the La(Ps, m,) norm.
Lemma F.7. Suppose F is a class of functions (defined on X) such that

sup || flleo < @, sup ||f]| < &, and log Njj(v, F, || - ||) < Av™ 7,
feFr fer

for some constant A and 0 < a < 2, where || f||* := Jx f2dPx. Then
log Nij (K™, eF, || - ||B) < Av™ ¢,

where for any g € L2(Poy,my), ||lglla (Bernstein “norm”) is defined as
1/2

lgll = [2E(explgh) ~ 1 Igl)]

K* := sup, (E [¢® exp(2®le|)| X = m])l/Q, and eF := {ef : f € F}. Furthermore for all f € F, |lef||p <
K[| f|| and

1/2 g% 1—a/2 —a
E*sup [Gef| S DB r "7, AT (F.13)
feF (1-a/2) Vvn(1—a/2)
Proof. We will use the || - |[-bracket for F to form a || - ||p—bracket for F. Fix f € F. Observe that there
exist fi, f2 : X — [P, @], such that
[f2 = Al v and fi(z) < f(2) < fa(z), Vo eX. (F.14)

Define €t := max{e¢, 0} and ¢~ := max{0, —¢}. Multiplying ¢" and €~ to the second inequality in (F.3.1),
we have

fil@)et < fla)e” < fa(@)et and  — fa(@)e” < —flz)e” < —fi(a)e,
respectively. Combining the above inequalities, we have

fi(@)e" — fa(@)e” < fla)e < fa()e” = filx)e .
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Moreover,
12006t = A(X)e = L0+ L(X)e I
= [1(2) = Ai(X)Iel I3
= 28 { exp(|(£2(X) = Ai(X))el) = 1 = |(f2(X) = Fi(X))el}
< B{(f2(X) = 1(X))%€ exp (I(/2(X) — f1(X))el) }
<E{(£2(X) = 11(X))* exp (20]e]) }
= B{ (£20X) = f1(X))’E [¢* exp(20]e])| X] }
< (K2 = AP < (K7v)?,

where K™ is as given in the statement of the lemma.
Thus if (fi, f2) is a v-bracket (with respect to || - |-norm) for f, then (fiet — foe™, fae™ — f2e™) is a
K*v—bracket for ef (with respect to || - || p-norm). Therefore, we have

log N1 (K v, eF, | - ||B) < log Nij(v, F, || - ||) < Av™.

Hence, for every v > 0,

V —Q
log Ny (v, e, || - 12) < A (7

To prove (F.7), we use the following Lemma.

Lemma F.8 (Lemma 3.4.3 of [53]). Let G be a class of measurable functions such that sup g |lglls < p-

e I, )
* PyY,s |l - IB
E* sup |Gng| < J11(p, G, |l - ||B (1—}—[]7). F.15
sup |G| S 7 (0. - 1) e (F.15)
We now find an upper bound for sup; z [lef| 5. Observe that
lefllh = 22{ exp(lef (X)) — 1 — Jef(X)]}
<E{& P2 (X) exp (17 (X)el) }
<E{eF(X) exp (@e]) }
<E{P(OE [ exp(20]e]) | X] } < (K*)|If” < (K"*)*.
Thus, for the class eF, we can apply Lemma F.8 with p = K*k. By definition
Kim e (v o2 1/2 1—a/2
Jy(K s, e F, | - ) g/ AV (Y dy = AV R (1 - a2,
0 K+
Therefore by (F.8), we have
1/2 gr* 1—a/2 —a
E*sup [Galef]| S B2 0 AT 0
fer (1-a/2) Vn(l—a/2)

The proof of Lemma F.3 will now be completed by a simple application of Lemma F.7 with F = Has_ 1.().
By definition (F.1), we have

sup |[flle <M:c+ Mo and  sup | f[| <4
feH M, L(5) feH ., L(5)

As H.,(8) C Hia.,r, by Lemma F.5, we have

log Nij(v, Hat,1.(6), || - llso) < log Npj(v, Hateor, ||+ [loo) < K'v '3,
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Thus
log Nij(v, Har...(8), || - ) < Crv™ "2,

where Cf = v/2K'. By applying Lemma F.7 (see (F.7)) with
®=M.+ My, k=0, A=C], and a = 1/2,

we have

671/2
E* sup |Gn[€f” S Cs,l (53/4 + ) )
feH m,,L(d) \/ﬁ

where C¢ ;1 is constant depending only on K', M., My, L,d, and T.

F.3.2. Proof of Lemma F.}

We proceed as in the proof of Lemma F.3. For any function f € H, ., there exist functions fi, f2 : X —
[-M. — Mo, My + M.] such that fi(z) < f(z) < fa(z) and 0 < fo(z) — fi(z) < v, for each © € X; see
Lemma F.5. Observe that for any two real numbers z < y, we have ™ <y and y~ < 2. Thus, we have
Arsff<fand fy <f<fr.
The above inequalities lead to a bracket for f2. Observe that
A SIS+ =+ << +£),

and the length of the above bracket is

Ur+ B =R+ £ = -+ -+ B+ A+ f)
= (f2 = fu)(lfa| + | f2])
< Z(Me + MO)(fQ - fl) < Q(Me + MO)V~

Thus, if [f1, f2] is a v-bracket (with respect to the || - ||co-norm) for f then [(fi" + f5)2, (fi + £ is a
(2M. + 2Mo)v-bracket (with respect to the || - ||oo-norm) for f2. Therefore, we have

log N{) (v, 9a12.2.(8), | - low) < log Ny 10/ (2M: + 2M), Hare,r, | - loe) < Cv Y2,
Thus D(Mot M5
= . 8 Jaw 3/4
T @1 D < [ VCsv1/2dy < S /CE (M. + Ma)3] .
To complete the proof we use the following lemma.

Lemma F.9 (Lemma 3.4.2 of [53]). Let G be class of measurable functions such that Pg®> < p? and ||g|lec <
M for every g in G. Then

* J| 7g7L P
B sup (Cag| £ (6. |- ) (1 + W—MM) ,
g

pPV/n
Note that for every function f € Hu, , (s), we have,
0< f(-) S UM+ Mo)* and Ef? < ||fllEf < 4(M: + Mo)*6° =: p°.

Moreover

2(Me+Mo)s 8 4
J[](p,ijE,L((;),Lz(P)) < / \/Cgl/—l/QdI/ < g\/Cz* [(Ms +M0)5} / .

0
Thus by Lemma F.9,

3/4 571/2
B sup  |Gnf| < Ces (5 + —) .
FeHar, 1(5) vn
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F.4. Proof of Theorem 3.2

Let (mn, 6,) be any sequence in My x ©. Recall that M, is a class of closed, bounded, and equicontinuous
functions and © is a compact set. Thus, by Ascoli-Arzela theorem, there exists a subsequence {(mn, ,0n,)},
0 € ©,and m € M, such that |0,,, —6| — 0 and ||mn, —m/| p, — 0. Now suppose that ||m, 08, —mgoby| — 0.

This implies that |[m o & — mgo o || = 0. Then the continuity and almost everywhere differentiability of
{mn} implies that m = mo and 6 = 6. Now recall that in Theorem 3.1 and Lemma F.2, we showed that
08 —mo 06| = 0p(1) and ||rin||ec = Op(1), respectively. Thus by taking m, = m, and 6 = 6,,, we have

that |§ — 6o| = 0,(1) and ||/ — mo||p, = 0p(1). The following lemma applied to {7, } completes the proof
of the theorem by showing that ||, — m(||c = 0p(1) for any compact subset C' in the interior of Dy.

Lemma F.10 (Lemma 3.10, [47]). Let C be an open convex subset of R? and f a convex functions which is
continuous and differentiable on C. Consider a sequence of convex functions { fn} which are finite on C such
that fn — f pointwise on C. Then, if C C C is any compact set,

sup  [§ = Vf(z)] =0,
zeC
£€fn ()

where O fn(x) represents the sub-differential set of fn at x.

F.5. Proof of Theorem 3.3

We first state and prove a intermediary lemma.

Lemma F.11. Let mo and 6o satisfy the assumptions (A1), (A5), and (L1). Furthermore, let {6,} € ©
and {mn} € My be two non-random sequences such that

|0 — 00| — 0, lmn —mollp, — 0, and ||m, —mgllc — 0 (F.16)
for any compact subset C' of the interior of Do. Then
Px|ma (6, X) = mo(6g X) = {m(0g X)X " (0 — 00) + (ms — mo)(8g X)}* = o(|6 — bol*).

Proof. For any convex function f € My, denote the right derivative of f by f’. Note that f’ is a bounded
increasing function. First, observe that

(0 %) —mo (0 ) = [mo (00 2)z" (0 — b0) + (mn = m0) (60 )]
= min (0, ) — mn (09 ) — mp(0g )z (0, — bo).
Now,

|7 (0 ) — mn (05 ) — (0 )z (0 — 60)]”
BJz 2

= / mi, (t) dt — mg(0g )z (0, — o)
B;er

(my, is absolutely continuous)

04 © 2
= / ’ mb (t) dt —ml (0 2)z" (0 — 00) +miy(0g )z (00 — 00) — my(0g )z (0, — b0)
6

T
n T

2

0 =
_ / Ol () dt — ml (60 2)z T (0 — 00) + (s — mb) (63 @)z (6 — 60)
9;{1

2
+2 |(mh, = mb) (65 )" (6 — o)

GJQU 2
/ ml, (t) dt —ml, (0 z)z " (0, — 0o)
0

T
nT

<2

(F.17)

We will now find an upper bound for the first term on the right hand side of the above display. Observe
that m/, is an increasing function. When z' 0, # 2" 6, we have

QJI

o1 Mn(t)dt

< ’ T / T .
CCT(QTL — 90) = mn(en JI) 4 mn(eo CC)

my, (0, x) Amy, (0 z) <
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Thus for all z € X, we have

QTz
/ "l (t) dt — mly (67 2)z " (6 — 60)
0

Tz

n

< |m;(92x) — m;(HOTJc)HwT(Qn — 6)|. (F.18)

Note that if "6, = x ' 6, then both sides of (F.5) are 0. Combine (F.5) and (F.5), to conclude that

P |[mn (0 X) —mn(8g X) —mb(8g X)X (6 — 60)|* (F.19)

< 9P ’ T / T T 2 ’ ’ T T
= X (mn(enX)fmn(eo X))X (077‘700) +2Px (mnfmo)(e() X)X (6"790)

As X is bounded, the two terms on the right hand side of (F.5) can be bounded as

2 2
Py [(miy(6X) = mt (05 X)X (6 = 00)| <T10 = 00[* Px | (67 X) — iy (65 X)|

2

2
Px |(mly = mb) (09 X)2" (0 — 00)| T8, — 00" Pxc | (!, — m}) (65 X)

We will now show that both Px |my, (6, X) — m'n(HOTX)’2 and Px |(m), — mf))(GJX)|2 converge to 0 as
n — oo. First observe that

2 2 2
Px [ (07 X) = miy (05 X)| S P [miu(6.X) = mi(6.X)| + Px |mi (6] X) — mi(65 X)|
10T / T 2
+ Py |m0(90 X) — mly (0, X)’ . (F.20)
Recall that my is a continuous and bounded function; see assumption (P1). Bounded convergence theorem

now implies that Px [m(6, X) —mg (HJX)|2 — 0, as |6, — 00| — 0. Now consider the first term on the

right hand side of (F.5). As 6J X has a density, for any ¢ > 0, we can define a compact subset C. in
the interior of Do such that P(6] X ¢ C.) < e/4L. Now note that, by Theorem 3.2 and the fact that
P61 X ¢ C.) = P(6 X ¢ C.), we have

2
Px ‘m;(ezx) - mg(olx)j < sup fm, (1) —mo(t)| + 2LP( X ¢ C2) <,

as n — oo. Similarly, we can see that

2
Px ‘m{)(&JX) - m’n(ﬁoTX)’ < sup [ml(t) — mo(t)] + 2LP(0) X ¢ C.) < e,
teCe

as n — oo. Combining the results, we have shown that for every € > 0
P |mo (6, X) = m(6g X) = mo (60 X)X (0n — 00)|” < T°(0 — o,
for all sufficiently large n. Thus the result follows. O

We will now use the above lemma to prove Theorem 3.3. Let us define, An(z) := ma, (61 z) — mo(6g )
and By (z) := my(0g ©)x " (0 — o) + (n — mo)(fg ). Observe that
An(2) — By (x) = 170 (0, ) — my(0g z)z " (0, — 0) — 1hn (6 ).
T

= 11t (0, ) = mo(0g ) — {mo (65 @)z (0 — 00) + (171 — mo) (65 @)}

We will now show that 1
T 18n — 00

It is equivalent to show that for every subsequence {Dy, }, there exists a further subsequence {anl} that

Px|An(X) — Ba(X)|> = 0,(1). (F.21)

n

converges to 0 almost surely; see Theorem 2.3.2 of [15]. We showed in Theorem 3.2, that {7hn, é’i } satisfies
(F.11) in probability. Thus by another application of Theorem 2.3.2 of [15], we have that {1, ,6,, } has a

a.s.

further subsequence {mnkl , é"kl } that satisfies (F.11) almost surely. Thus by Lemma F.11, we have anl =
0. Thus D, = o,(1).



Kuchibhotla et. al./Convex Single Index Model 41

We will now use (F.5) to find the rate of convergence of {ri,,0,}. We first find an upper bound for
Px|Bn(X)|?. By a simple application of triangle inequality and (F.5), we have
1 1

Px|An(X)]* 2 5 Px|Bu(X)|* = Px|An(X) = Ba(X)” 2 7 Px|Bn(X )I* = 0p (16 — 60l*).

[\V]

Note that, by Theorem 3.1, we have that Px|A,(X)[*> = O,(n~*/®). Thus we have
Px|miy (05 X)X (B — 00) + (17 —mo)(00 X)|* < Op(n™ %) + 0,(|0 — b0]*).

Now define }
g1(z) :==mb(0g )z (0, — 60) and  go(x) := (17, — mo)(0g ) (F.22)

and note that by assumption (A3) there exists a A1 > 0 such that

Pxg? = (00 —00) " Px[XX " |mb (09 X)|*)(6n — 00) > A1]0, — 00> (F.23)
With (F.5) in mind, we can see that proof of this theorem will be complete if we can show that

Pxgi + Pxg3 < Px|mj(0g X)X (6 — 00) + (17n — mo)(0 X)|”. (F.24)
The following lemma from [41] gives a sufficient condition for (F.5).

Lemma F.12 (Lemma 5.7 of [41]). Let g1 and g2 be measurable functions such that (Pgige)? < cPgiPg3
for a constant ¢ < 1. Then
P91+ g2)* > (1 — V&) (Pgi + Pg3).

We now show that g; and g2 (defined in (F.5)) satisfy the condition of the above lemma. Observe that

Px[g1(X)g2(X)]* = Px|mi( TX)QQ(X) (XT(0 - 60)l60 X)|”

< Px [{my(0g X)}*E*[X (6 — 60)|00 X]] Pxg3(X)
< Px [{mo(80 X)}* E[{X (6 — 60)}°160 X]] Px g5(X)
= Px [E[{m((0y X)X (0 — 00)}|00 X)]] Pxg3(X)

= Px[mo (6 )XT(G — 600))*Px g3(X)
= Pxg; Pxgs.

The strict inequality in the above sequence of inequalities holds under the assumption that the conditional
distribution of X given 67 X is nondegenerate.

F.6. Proof of Theorem 3./

We first show (3.4). Let d, be a sequence of positive numbers decreasing to 0. Let a,b € R such that
Do = [a,b]. Define Cy, := [a+20,,b—25,]. By (A5), fo7 x> the density of 69 X is bounded away from 0 and
oo. Let K and K’ denote the minimum and the maximum of fQJX(') in Do. Also, let x denote the bound
on my (t) over ¢t € Dy. As the 77 is a convex function, we have
m(t) — m(t — 6,)
On

m(t + on) — 1m(t)

< i (=) < (1) < TR ,
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for all t € Cp, where m’(t+) and 77/ (t—) denote the right and left derivatives of 7h at ¢, respectively. Observe
that

[ [Prsd om0 moiers) —mo<t>rdt

- 63/ it + 8,) — mo(t + 6n)}2dt + 5 /ecn{m(t)—mo(t)}2dt
2
52

/em%n b {m(t) —mo(t)}?dt + = 5 /GCn{m(t) — mo(t)}dt
{m(e) = mo(0))* fog ()t + 7 /tec [t) — mo() 7 (1

IN

2
K5 €la+36n,b—5,]

= 520 (n *4/5)7 (F.25)

where the last equality follows from Theorem 3.7. Similarly, it can be shown that

/ {m(t) —m(t —6,)  mo(t) — mo(t — mr
eC

5 5 1o (%), (F.26)

-2
Now observe that, as k > ||mg || p,, we have

[t 4 6,) —m(t)  mo(t+8,) —mo()] -
A;(t).,{ ») - o) }_

where z;, lies between ¢t and ¢ 4 J,,. Moreover,

A;(t) — |:Th(t) — gr:b(t — 5n) _ mo(t) — gzo(t - 5n):| < ﬁl/(t-i-) o mg(l‘;")

< (t+) — mo(t) + mo(t) — mo(t,,)
</ (t+) — mo(t) + Kbn,

where z} lies between ¢ — &, and ¢. Combining the above two results, we have
Ay (t) — K0 < 0/ (t4) — mo(t) < AT () + Kbn;
see proof of Corollary 1 of [14] for a similar inequality. Thus for every ¢t € C,,, we have [/ (t+) — m(t)]? <

26767 + 2max {[A, (1)]%, [AF ()]} . By (F.6) and (F.6), we have

> 1o L(n~4%), (F.27)

/ [ (¢4) — mo(5)]* fo7 x (£)dt < 26767, + 5
€Cn

as

/t o {[An (O, [ATO) } fog x (Bt
n 2 + 2
S/tecn{A" ()} fegx(t)dtJr/tecn{An(t)} Fog x (B)dt

<K' [ {an@Pa+ K[ {afm)d
teChp teChp

! Op (n_4/5)7

TR
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where K’ is an upper bound on f,7 x(-) in Dg. Moreover, note that |77 ||cc < L and ||[mg|lec < Lo < L.
Thus

/@ i (4) = mb(OF fog x Ot = [ (4) = mb (O fop < (B

teC,

+f W (t4) — ()Y o7 x (Dt
teDoNCE

= 2252 4 5 0p(n~ %) + AL2P(99 X € Do 11 C)

L

52 O0,(n~"?) + 16K'L?5,.

< 2k%8% +

The tightest upper bound for the left hand side of the above display is achieved when &, = n~41% With
this choice of J,,, we have

/ w (t4) — mo (D)} fo7 x (Ddt < 267071 4 0 (n™Y1%) + 16K'Ln 1% = O, (n= /"),
teDy
We can find a similar upper bound for ftEDO {m/ (t+) — m{(t) }2dt :

/ ' (t+) — mo(t)}dt = / m (t+) — mo ()} dt + / ' (t+) — mo(t) ) dt (F.28)
teDg teCy teDoNCE

K6y, 1 —4/5 2

< n

<2 e —I—K(s%Op(n )+ 16L%6,,

where the first term on the right hand side of (F.6) is bounded above via (F.6) and K is the minimum of
fg(‘)FX. When 8, = n~*1 we have

/ m (t+) — mo(£)2dt < 267073 4 0,(n~ ) £ 16L°n~**° = O, (n~*/"®). (F.29)
teDg

Recall that by assumption (A5), we have

sup Il forxllp < ¢ < oo,
|6—00|<n=2/15

for large enough n. Now the proof of (3.4) easily follows from (F.6), since
swp [l () —my ) frx@dt S sw o [ ) - mio) e
|6—60|<n—2/15 JteDg |0—00|<n—2/15 teDg
S Op(n_4/l5)7

where the last inequality follows from (F.6). Note that the upper bound in (F.6) is independent of 6. The
proof of (3.4) follows from (3.4) as |6 — 6| = 0, (n"2/1%).

Appendix G: Proofs of results in Section 3.2
G.1. Discussion for Proofs of Theorems 3.5, 3.6, and 3.7

Proof of Theorem 3.5 is almost identical to the proof of Theorem 2 of [32]. They propose following estimator
for (mo,0o) in a similar single index model:

(m™,0") ;= argmin L, (m,0;\),
(m,0)eSx®

where S is defined in Section 2.1. The single index model in [32] does not assume any shape constraint on mg
and m*? is a (possibly non-convex) cubic spline. Under assumptions (A1)—(A4), they prove that (m*?, %)
satisfies the properties of Theorem 3.5. The only modification in the proof of Theorem 2 of [32] needed for it
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to be applicable to (1, é) is in the definition of Bc and Lemma 8 of [32]. For our purposes, we can redefine
Bc as follow:

mof —mgoby llm]lo0 }
Be = .meR, §cO, and <cl.
c {1—|—J(mo)+J(m) mn T T(mo) + J(m)

The rest of the proof of Theorem 2 of [32] will follow if we can show that
log N (6, Bes || - loe) S /2. (G.1)

The proof of (G.1) follows from Lemma 8 of [32]. Proofs of Theorems 3.6 and 3.7 are identical to the
proof of Theorems 3 and 4, respectively.

G.2. Proof of Theorem 3.8

We use the following interpolation inequality in [1] to prove this theorem.

Lemma G.1. (Corollary 3.1, [1]) Let f : R — R be a continuously differentiable function on (a,b) and
suppose we can write f'(z) = f'(n) + f: f"(s)ds for all a < n < x < b. Furthermore, let g : R — R be a
continuous density function and is bounded away from 0, i.e., g(s) > 6 > 0 for all s € (a,b). If 0 <e < 1,
then

b b b
[ 17 ads <alz 176 o)ds+=7 [ 176) ao)ds].
where v depends only on d,a,b, and maxe(qp) 9(5).

Take g to be the density of 6] X with respect to the Lebesgue measure. By assumption (A5), we have
that g is continuous and bounded away from zero on the bounded set Dg. Furthermore, let f = m — mo.
By assumption (P1), we have that mo has an absolutely continuous first derivative. It can also be seen that
m, has an absolutely continuous derivative; see Section 2 of [16]. Thus by an easy application of the Lemma
G.1, we have that

[[ri" © B0 — mg © 6ol|* < y[elli” 0 8o — mg © B||* + & "[|172 0 o — mo o 6ol|].

By Theorem 3.6, we have that J(1) = O,(1). Because g is bounded away from both zero and infinity,
we have that fDo " (s)%g(s)ds < J(1h) and fDo mg (s)?g(s)ds < J(mo). Fixing € = Ay, by Theorem 3.6, we

have
[ 0 80 — mp 0 o> < v[An(J2 (1) + J*(m0)) + An ' Op(A2)] = Op(An).

Appendix H: Proofs of results in Appendix A

Remark H.1 (Quadratic mean differentiability). If the errors are Gaussian random variables then in
the following, we show that the model is quadratic mean differentiable in 0. The proof of quadratic mean
differentiability for any error distribution satisfying assumption (B3) follows similarly. Under Gaussian
error, the density of (Y, X) is

1
o) = ex (= 550 =m0 2)? Jox (o),
Note that 0 — fo.m(y, ) is differentiable a.e. (y,x). Define

nly. . 0.m) = 4 2Fom@ DLW ) fom(y,2) >0 and f5.m(y,) evists,
B 0 otherwise,

where f4 . (y,x) denotes the derivative with respect to 0. Hdjek [20] proved that the family of distributions is
quadratic mean differentiable (q.m.d) at 0o if

L,;(0) 1:/771(:%96797m)ﬁj(yaw797m)dPX($)dy
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is finite and continuous at 0. In the following we prove that I; ;(0) is finite and continuous at 0. Observe
that,

1,(6) = / .0, (9.0, m) Py
X X

T W21 1T \12 1 T W2
— [ =m0 0 iy exp (= ozl m(T ) )P @)y
= Paun(¥ = m(0" X))/ 07 X)X, X;]
= Pun [BIY = m(07 X))’ (07 X)X, 10" X]]
= Paon [ (07 X ELX, X107 X1,

As both m(-) and E[X;X;|07 X = ] are bounded functions, we have that I; ;(0) is finite and continuous at
0o. Thus, the model is differentiable in quadratic mean in 6.

H.1. Proof of Theorem A.1

We will first show that &:(u; 6,71, m) is a valid submodel. Let us define

0.0 (w) = don.e(u+ (6 = Ce(6,m) " k(w)). (H.1)

Note that to prove that & (u;0,7n,m) is a convex function it is enough to show that T.(:;60,n,m) is an
increasing function. First observe that

1" /
E(u) = 2k, _ Mh' mo () B (). H.2
(’LL) ) (u) (mg(u)) 6o (’U,) + mg(u) 6o (’IJ,) ( )
Hence, by assumptions (P1), (B1), and (B2), we can find M* such that ||k||% < M*. Thus u — u + (6 —
C:(0,m)) Tk(u) is a strictly increasing function for ¢ in neighborhood of zero as k is a Lipschitz function on
D; see (H.1). As ¢a,5,¢(-) is a strictly increasing function for ¢ sufficiently close to zero. It now follows that
u > g 5.+(1) is a nondecreasing function for all t € R? such that |t — 6| is sufficiently close to zero. Finally,

recall that m’ is an increasing function and
Te(us 0,1,m) =m0 e, (u).

Thus we have that T¢(-;0,m,m) is an increasing function for ¢ € R is close enough to 0. Next we show that
& (u;0,m,m) = m(u) when t = 0. By definition we have

€(s a;0,m,m) = / " 0 @0 ()dy + (G (6,m) —0) [(mg(so) —m(s0))k(s0) 7mg(so)h90(so)} +m(so).

50
We have that g ,,0(u) = u, Yu € D. Hence,

0Tz 0Tz

€0(Co(6,m) 0,1, m) = / ' 0 Po.n,0(y)dy + m(s0) = / ! (y)dy + m(s0) = m(6" )
S0 50
and (o(0,7n) = 6 for all n € S?~2. Now we show that J?(&:(-;0,71,m)) < co. Observe that
J(E(0,m,m /{a 30,17, m) () 2du

— / [ —lt(u 0,m,m )]2du
Dy

= [ " 0 000 ()}
D

= [ o @ et o i)
D
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where g ,,; is defined in (H.1) and g, ,(u) = %¢9,n,t(u). Thus, we have that J2(&(+;0,1,m)) < oo
whenever J(m) < oco.

Next we compute d7;(u;0,n,m)/0t and (¢ (0,m) 2;0,n,m)/dt to help with the calculation of the
score function for the submodel {¢:(6,7),&:(-;0,n,m)}. Observe that

SN 0,m,m) = S’ 0 G-t (6= G (0,m) K(w)

=m" 0 go.ne(ut (0 —G(0,m) ku)) {éﬁe,n,t(u +(0 = Ce(0,m) "k (uw))

20 4]

= Gon.e (u+ (0 = Co(0,m)) Th(u) =5,

where ¢g ;¢ (1) := Opg..+(u)/dt and @0t (1) := OPo 5,¢(u)/Ou. Moreover,
0
576G (0,m) T30, m)

Ce@m e T
-0 { [ wen, m)dy} + OBy (50) — m (50 K(50) — 50y )]

= _lt(Ct(eaﬂ)Tx$977lam) dy

d¢(6,m) Tx + /wwz dTe(y; 0,m,m)
ot i ot

0

T
+ aCt (07 ’f])

ot
.
= QI [0, 1) 0, ) + (i (s0) — ' (50) K (50) — (50 s0)]

AR RS .
+ / m" o ¢ n.i(u+ (0 — Ce(0,n)) " k(u)) |:¢9,n7t(“ + (0= G(0,m)) Tk(u))

= Gyt (0= G0.) k) D k)|

[ (s0) = m'(s0))k(s0) — () (s0)]

The interchange of derivative and the integral is possible by assumptions (P1), (B1), and (B2). Using the
fact that ¢, ,(u) =1 and ¢g +(u) = 0 for all u € Dy (follows from the definition (A.1)) and 8¢:(6,7)/8t =
—[n?t//1T = 2[n]? 6 + Hon, we get

0
agt (Ct (07 n)va 97 7, m)

=" Hy [m'(6" @)z + (mo(s0) — m'(s0))k(s0) — mo(s0)haq (s0)]
0z

o [ k(o)
S0

and

|

% [y — &(¢(8,m) a3 6,m,m)]

Q

t

= (y—m(0 2))n" H [m'(GTm)x + / m” (u)[—k(u)]du

+ (mi(s0) — ' (50) (s0) — mb(s0)ha, (50)| (H.3)

0Tz
=(y— m(GTm))nTH(;r [m'(GTm)x + / m/ (w)k' (w)du —m/ (0" z)k(0" x)

+m/(s0)k(s0) + (mg(s0) —m'(s0))k(s0) — mo(so)he, (so)]

=1 Gom(z,y).
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Next, observe that (0, 7%) minimizes £, (m, 0; \,) and & (Co(0,1) " 230,71, m) = m (0" x). Hence the function
tes Z =G0, b i) + 3 [ {60 ()

is minimized at ¢t = 0 for every n € S%72. Observe that (H.1) and the fact that J?(&(-;0,n,m)) is differen-
tiable imply that the above function is differentiable in ¢ on a small neighborhood of 0 (which depends on
n). Hence, we have that

A2 02 (&(:0,m,1)
PG, - —>-" " =0. .
S5 5 5 0 (H.4)
t=0
Moreover, after some tedious algebra it can be seen that
fJ2 (&(0mm))|  <C [ Kp{m"(p)}dp, (H.5)
t=0 Dg

where C is constant independent of 7, k is defined in (Step 1). Thus by Theorem 3.5, (Step 1), and (H.1),
we have

G 6 0m )| < M) = 0,(0)

Finally, (H.1) and (P2) imply P,&; . = o,(n~"/?).
Next, we show that Goy,m, = fo,,me- By definition, it is enough to show that,

QJIE

mo(0o z) (@ — k(Bo x)) +mi(s0)k(s0) + / mo(w)k' (u)du — mi(s0)ho, (s0) = mo(0g @) (z — hey (66 2))

S0

T

0y x
& mo(0g 2)k(0g ) — mj (s0)k(s0) — / mo(w)k’ (u)du +mp(s0)ha, (s0) = mo(6o x)he, (60 )

S0

90 T 90 x
o / Ok, [ )k (a5 iy (s0) = 72603 ) (05 2

©/0 mg (u)k(w)du + m(so)hey (s0) = mo (8o @)ha, (6 @), (H.6)

which is true by (Step 1). As the score of the sub-model is the efficient score at the truth, we have that
¢:(0,m) is an approximately least favorable subprovided model.

H.2. Proof of Lemma A.1

From the definitions of &g ., and vs,m, we have

Ge,m(m, y) - 1/J9ym(xa y)
0Tz
={y—m(0"z)}H, [ m' (u)k' (w)du —m’ (0" 2)k(0 " z) + mo’ (s0)k(s0)

S0

—mg(s0)hoey (s0) + (Mg heo)(eTm)}.
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Observe that
0Tz

/ m/ (w)k' (u)du —m' (0" 2)k(0 " x) + mo' (s0)k(s0) — mo(s0)haq (s0) + (mo hay ) (0" )

07 0Tz 07
= / m/(u)k' (u)du — / mo(u)k’ (w)du + / my(u)k (u)du —m/ (0" z)k(0" )
+mo’ (s0)k(s0) — mo(50)ha, (50) + (Mo he, ) (0 @)
A 0T
= / {m’ () — mo(u) Yk (u)du + / mp(u)k' (w)du —m' (0" z)k(0 z)
+mi(s0)k(s0) + (mg ho,) (0" @) — (mo hey)(s0)- (H.7)

We now analyze the terms in the right hand side of the above display. First observe that
0Tz

/ mi(w)k (u)du —m/ (0" 2)k(0" z) + mh(s0)k(so)

0T R

t / my (w)k(uw)du —m/ (0T 2)k(0" x) + mg(so)k(so) (H.8)

50
6Tz

= — / my (w)k(u)du + (mo(0" =) —m' (0" )k z).
S0
Finally, by definition (Step 1) and integration by parts, we have
0"z 0T 0T
/ mg (u)k(u)du = / [mo (w)heo (w) + mo(u)hg, (w)]du = mg(u)he, (u) . (H.9)
s0 50 S0

By substituting (H.2) and (H.2) in (H.2), we have that
VP (85 5, = ¥4 ) = VAPa|(Y = (07 X))Up , (X)].
In the following, we find an upper bound of \/nP,[(Y (QTX))U (X

|
Up i (X)] + VnPreUs (X))
X)]IJrl\/ﬁﬁ”n[(m(@oT ) = (07 X))V 5, (X)]]

VAP [(Y = (0" X)Uj (X
= |VnP,[(mo(8o " X) — (0 TX)
< VAP [(mo — m) (0" X)U; s, (

+ [VnPneUs ;, (X))
< |Gnl(mo — 1) (B0 X)U; 1, (X)]| + |Ga[(1i2(60 " X) — m(9TX))Ué (X

+ ‘\/ﬁPnEUé,m(X” + \/E|P9omm[ m (0 o X) - (é X)) ”

+ V1| Pogmo [(mo — 1) (60" X)Us 5, (X)]].

)
)

s

H.3. Proof of Lemma A.2

We will first show that
N(e, Wity wgvtys || - lloo) < cexp(e/e)e™*?, (H.10)

where ¢ depends only on M;, My, and Ms. By Theorem 2.4 of [49], we have

(e, {f": f€Ch oz 1o ||+ lloo) < exp(c/e),

where ¢ is a constant depending only on M, M>, and Ms. Let us denote the functions in the e-cover by
l1,...,l;. By Lemma 15 of [32], we have that there exists 61,...,0; for s < =% such that {6:}1<i<s form an
e?-cover of © N By, (1/2) and satisfies (86) of [32] (with &* instead of €). Fix (6,m) € Cs, ar,,a1,- Without
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loss of generality assume that the function nearest to m’ in the e-cover is I; and the vector nearest to § in
the €2 cover of © N By, (1/2) is 61, i.e.,

lm' —l1]|eo <€, HHgT—HngH <e?, and |0 —06.] <E

We define r1 to be the anti-derivative of I; i.e., [1 = r]. Let us define
0T
Vo,m(z) := |:/ [m (u) — mo(w) | k' (w)du + (mo' (0" ) — m/(HTx))k(HTa:):| .
50
Recall that Ug,m = HgT Vo,m. Now for every z € X, observe that

|U9,m(x) - U91,T1 (1‘)|
T T T
< |Uom(x) = Upry (@) + [(Hg — Ho, Vo, | + [Hoy (Vory (2) — Voy oy (2)) ]

<|m [ ) - (u)JK (u)du] + | HJ (m' — )07 2)k(6 )|

S0

+AM*My(T + 1)Vd — 12 + )H; [ = m) (07 @) k(0 x) — (5 — mb) (6] 2)k(67 )] ]

Tac
+ | [ sz[r'l(u) = mi (¥ (u)dul
< 2T (1 + [6o)) M* |m = v ||oo + M*||m’ — 71|joe + 4M*M2(T + 1)V/d — 1€°
n ‘(r'l — )0 k(8 ) — () — mg)(é)lTx)k((?Tm)‘ L 2MMET|0 — 6]
Furthermore, note that
| = m)(072) k(O w) — (1§ = m) (6] 2)k(6] )
< | = mb) (0T @)k(6T @) = (rh — mb) (0] @67 )|
+ |t =) (0] @) k(6 2) - k(6] )]

<M

(rh = mp)(07 @) — (7 — m) (6] @)| + 2Ma M0 — 6]
< 2MsM*T|0 — 612 + 2My M*T|0 — 6,],

where the last inequality in the previous display follows from Lemma F.1. Combining the above two displays,
we have

|Up,m () — Upy .y ()| < M¥|Im” — 7l ||oo(AT + 1) + AM* Mo(T + 1)Vd — 1€
+ 2MsM*T|0 — 61"? + 2MoM*T)0 — 61| + 2Ma M*T|0 — 64].

Thus, {Us;, 15} form an (constant multiple of) e-cover (with respect to || - ||2,00 norm) of Wiy, s, a4, and we
have (H.3). Moreover, as Nij(e, Whis, nryn5 || [12.P0 g ) S N (€ Wity a1y 05 ||+ [loo) and

.
Wiy Ma,m5 (1) C Whry a5

for every n € N, we have N|j(e, Wary,mz,05 (1), (| 12,Pp n ) S N1 (€, Winy ag a5 |I[l2,Pg, 1 ) Now we find an
envelope function for War, ar, a1, (n). Recall that |Hy z| < |z| for all z € R%. For every (1, f) € Cary,ary, 015 (1)
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and z € X, observe that
0T
Von@] < | [ ') = mb @)t (w)du| + (" = mi) (@7 k(6" )|
50

o) x 0Tz
<| [ )~ mb @K ] + | [ ') = mi (@l (w)da

S0 GJI

¥ ‘(m' - mé)(GTx)k(GTx)’
<Vd—1IM*(T||m — mo||D, + 2M2T|0 — 00| + 2M3VT |0 — 00| + ||m — mol|Dy)
< Wty Mo, M5 (1).

Thus, Wi, My, M5 (n) satisfies (A.2).

H.4. Proof of Lemma A.3

For every (0, m) € Cary,m5,m5(n), note that
|(mo — m)(@oTaz)Ue,m(:E)| < 2M1 |Upm ()| < 2Mi Wty a1y.005(n) = Dty ity 015 ().
Furthermore, we have
N(e, {(mo —=m)(0o"-) : m € Chiy aty vt} || - lloo) = N (&, Chty aty,ays [ - [loo) < exp(e/v/E),

where the inequality follows from Theorem 2.4 of [49] and c¢ is a constant depending only on M1, Ma, and
M;. By Lemma 9.25 of [31] (for entropy of product of uniformly bounded function classes), and Lemma A.2,
we have that

—4d Cc C
N (&, Dty ny niss || - [12,00) < ce™ " “exp (% + g> .

2,00) and Nyj(g, Dy, vz, 015 (1), || -
1/2

Since, N(g, Dary,mz,015 (1), || - ll2,00) < N(& Dhay aty vty Il - |
N(&, Disy nz 015 [ - ll2,00), we have Jiy(, Diay nz 115 (1), ||+ [12,Pog m ) S €7

Observe that f € Dy, my,m5(n) maps X to RY™L. For any f € Dary ary, a5 (1), let fi,..., fa_1 denote
each of the real valued components, i.e., f(-) := (fi(:),..., fa—1(-)). With this notation, we have

|2.Pg my ) S

d—1
]P( sup |G f| > 5> < ZIP’( sup |G fi| > 6/vd— 1). (H.11)

FED My, My, M5 (1) FE€D My, Moy, M5 (1)

We can bound each term in the summation of (H.4) using the maximal inequality in Corollary 19.35 of [52].
We have

]P’( sup |Gy f| > 5)

FED My, My, M5 (R)

a-1
< éflx/dfle( sup |ani|) (H.12)

FED My, My, My (0)
—1
<67 dvd — 1J( (| Dary vt a5 ()], Dy itz na5 (1), || - 2,2 )

< 6 M Doty atgnas ()|

< 1/2
5[)\,1/4+i] — 0, as n — o9,

Qn

where we have used (A.3) and the fact that D%ﬁ, Ma, M5 (1) is non-random in the last inequality.



Kuchibhotla et. al./Convex Single Index Model 51

H.5. Proof of Lemma A.J

First, note that for every (6, m) € Cay, s, 05 (1), we have
|(m(90Tx) —m(0" 2))Upm (z)| < 2M1|Ug,m (%)| < Dty vay,005 (1)

Observe that the proof of Lemma A.4 will be complete (by arguments similar to the proof of Lemma A.3)
if we can show that

* C C —
08 N (e, At g |- ) < coxp (€42 ) e, (1.13)

NG
where the constant ¢ depends only on M;, Ma, M3, and d.
However, arguments similar to the proof of Lemma 8 of [32] will show that

N(57 {m ° 90 —mof: (07m) € CXll,Mz,Mg}7 || ) ||°O) < CeXp(C/\/E)a_d’

for some constant ¢ depending only on d, M1, M2 and M3s. Thus by Lemma 9.25 of [31] and Lemma A.2, we
have (H.5).

H.6. Proof of Lemma A.5

Note that, we have
B(VAP (Up )| > 0)
sup VAP (cUo,m)| > 8) + (0, 77) & Coary a1 (1))

(0,m)ECN, , My, M5 (1)

(
IP’( sup [vVnPref| > 5) + P((é, m) & Cary ,mg, M5 (1))

FEWM, My, Mg (R)

=P( s [Guef|>0) +P((6,1) & ootz s (),

FEWM, My, M5 (N)

IA
<

IN

where the last equality is due to assumption (A2). Now it is enough to show that for every fixed M1, Mo,
and M3, we have
]P’( sup |Gref| >5) —0, asn—0.

FEWM, , My, M5 (1)
By Lemma A.2, we have
Nyy(e, Wty iz 05 (1), || - [l2,Pg, g ) < coxple/e)e™ .

Fix (8, m) € Cary,mz,m5(n). If [i1, Bi2] is a bracket (coordinate-wise) for Up n, then [A1e™ —hae™, Aoe™ —Are™]
is a bracket for eUp n,. Therefore, we have

N[](E» {Ef 1 fe WMLM2,M3(”)}7 H : ||27P90,rn,0) < Cexp(c/5)5_4d.
Moreover, for every (8, m) € Cny My ,m5(n) and z € X, we have
|€Up,m ()| < |elWhty az, 115 (1)

It follows that

1
I (v, Waiy aty a5 (n), || - | Q,Pso,mo) Sz
Thus using the maximal inequality in Corollary 19.35 of [52] and an argument similar to (H.4) and (H.4),
we have

d—1
IP’( sup |Gref| >5) 55_1\/d71§:E( sup |(Gnefi|)
FEWM, , My, M5 (1) i—1 FEWM, My, M5 (R)
1
<8910 (Pooumo (1€ W, 112 20 () * Wity sz 2t (), 1+ g g )
1

55\;1/4—1———)0 as n — oo,
an
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where in the first inequality fi,..., fi—1 denote each component of f. Now, we prove the second and third
equations in (A.5). First, note that

|P901m0 [(mo - m)(QOTX)Ué,m(X)” < \/P907m0 [(mo - m)Q(OOTX)] Poy,mo |Ué,m(X)|2

1o (H.14)

= Op(An) [Pog.mo U e (X)]

where the inequality is an application of the CauchySchwarz inequality and the equality is due to Theorem
3.7. Similarly, using Theorems 3.6, 3.7, and the mean value theorem we have

| Pog.mo (160" X) = (07 X))Uj , (X)]] < \/Peo,mo (80" X) = 1 (07 X)]2 Pog o [Up o (X) |

,m

~ 1 A 271/2
< 19 o1 = 60| [ Pag.ma | Ug 0 (X)|°]
. 971/2
= 04(A) [Pagumo | U5, O] (HL.15)
Now we find an upper bound for PQO,mO|Uéym(X)‘2- Note that

Pog.mo |Ug i (X)|* S Pogumo | Hy (1 —mo) (07 X)k(07 X)|*
2

. 6T x
+ Pogoo | ] / i’ () — iy (o) ()l
S0

2

+ M**(d = 1)TPoy ., [/ (u) — mg(u)]Qdu]

< M (d = 1) Py [0 = m) (07 X))

+ M**(d — 1)T Psy.mq /D [ (u) — m{)(u)]Qdu} , (H.16)

where M™ is defined in (Step 1). Since 10 — 60| = 0p(1), by assumption (A5), we have that the density of
A7 X w.r.t to the Lebesgue measure is bounded away from zero. Thus,

/ {1 (u) — miy(w)}2du < [ 06— miy o 6]12 = Op(3n).
Dy

The theorem now follows, as
!Pgoymo[(mo - m)(GOTX)Ué,rh(X)H = Op(j‘fzm) = Op(n73/5)7
| Pag.mo (1700 X) = (07 X)) Uy . (X)]| = Op(X/?) = Op(n~*/?).

H.7. Proof of Theorem A.3

We start with some notation. Recall that for any (fixed or random) (0, m) € © x R, Py, denotes the joint
distribution of Y and X, where Y = m (6" X)+ ¢ and Px denotes the distribution of X. Now, let P(,(}:;LX)‘GTX
denote the joint distribution of (Y, X) given ' X. For any (6,m) € © x R and f € La(Ppm), we have
Po,m[f(X)] = Px(f(X)) and
Pon [(Y = mo(07 X)) F(X)] =Px [P0 X [£(X) (Y = mo(07 X))]]
=Px [E(f(X)|0" X)(m(0" X) — mo (6" X))].
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By above display, we have that

.
By oo, = Hy 5

6~ 6,mg

[(Y — (0" X)) [ (07T X)X — (m§ hgo)(éTX)]}

= Hj Px |:(mo —m)(0TX) [ (0T X)E(X|07 X) — (mg heo)(éTX)ﬂ
= HJ Px[(mo —i)(8 X)E(X|87 X) (s — m{)(87 )] i
+ Hy Px[(mo — ) (87 X)my(87 X)[E(X07X) — hay (0 X))] | '

Now we will show that each of the terms in (H.7) are 0,(n~"'/?). By (A1) and the Cauchy-Schwarz inequality,
for the first term in (H.7) we have

| Px[(mo — 1) (0" X)E(X[0" X)(' —mp) (@' X))]|

< T\/PX [(mo —m)(07 X)2] Px [(1/ (0T X) — my(07 X))?]
< |jmo o b —1mod| || of —mhod|. (H.18)

We can bound the two terms on the right side above display as follows. For the first term, note that by
Theorems 3.5, 3.6, and 3.7, we have

[mo 06 — 1 00| < |lmo o 6o — mo 0 0] + |11 0 6 — mg o 6o
< Tmb)lse]80 — 0] + |12 0 6 — mg 0 60| (H.19)
= OP(S‘")'

For the second term in (H.7), observe that by Lemma E.1 and Theorems 3.7 and 3.8, we have

< ||’ 00 — 1 0 b0l + || 0 8o — mb o b0 + ||mb o o — m o 8|
< J()|0 — 002 TY? + || 0 0o — miy 0 Ool| + J(mo)|f — Bo|2 T2
= Op(j\’}L/Q)'

By the Cauchy-Schwarz inequality, the second term in (H.7) can be bounded as

| Px[(mo — i) (0" X)m(0" X)(E(X[07X) — he, (0" X))]]

< flmolloey/ P [(mo — )2(67 X)] Px [l5(67 X) = oy (67 X)) (1.20)

= |[mbllscllma 0 6 — 1 0 6| ||y © 8 — ho, o

< [mb s Op(An) M6 — 60| = Op(A7),

|27P90,m0

where M is defined in ((B2)). The last inequality in the above display follows from assumption (B2) and
(H.7). The theorem now follows by combining these results.

H.8. Consistency of Vg ;,
The following lemma is used in the proof of Step 5 in Theorem 4.1; also see [32, Section 10.4].
Lemma H.1. If the conditions in Theorem /.1 hold, then

Pog,mo W’é,m - w90,m0|2 = OP(D? (H'21)
Py 1ol l” = Op(1). (H.22)
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Proof. We first prove (H.1). By assumption (B2), we have
2
Pog,mq W)é,'fn = Yog,mol

= Pog.mo|(y = (0" X)) Hy [/ (07 X)X — (mj ho, )(07 X))

— (g~ mo (6] X)) H3, [mb (03 X)X — (mly hay) (67 X)] |

[(mo(By X) —m(0" X))+ e|H, [ (07 X)X — (mf hey)(0" X)]

= P901m0
2
— eHg, [miy (09 X)X — (miy hay)(03 X)] ‘

[mo (00 X) —m (07 X)|Hy [/ (07 X)X — (mf hey)(0" X))

2
= Pyy,mo ‘

o+ Pag.mo €[ Hy [ (07 X)X = (mf hay )87 X)] = Hol, [m} (095 X)X — (mf hay ) (8 X)]|

S PBO,mo

[mo (60 X) — (87 X)] [/ (07 X)X — (mb hay ) (67 X)] ‘2

2

o Pag.mo [eHg [11 (07 X)X = (my haq) (67 X) = mi(63 X)X + (miy hao) (63 X)]

2

+ Pagamo €[ H3 = Hay | [mi (05 X)X = (mh o) (65 X)]

< Pagmo| [mo(0g X) — (07 X)] [’ (07 X)X — (mi hao) (6 X)]

:

2 ~liAT / T / T ’ AT 2
+ [0 (lloe Pog.mo [ (6 X)X — mo (6 X)X + (mo hey) (0o X) — (mo he, ) (0 X)

+AMIT?|l0%()lloo | Hy — Hoo |13

< Pgo,mo

[mo(60 X) — (87 X)] [ (67 X)X — (ml hoy) (67 X)] (2

~ , 2
o+ 2010 (lloe Pag,mo | (07 X)X = my (63 X) X|

~ 2 ~
+2[10% () loo Pog.mo | (M hoy) (65 X) — (miy heo)((’TX). +AMT?0 — 60[*[|o” ()|

I+ 2]0°()]leo IT+2[[0*()||oe TIT+4MIT?||0>(-)]|o0|0 — o] (H.23)

We will now show that each of the first three terms in the above display are op(1). For the second term,
observe that

~ 2
II < T2 Poy g |1 (87 X) — m{)(OJX)‘

< Pogmo | (0 (07 X) — 10" (8 X))|” + Pog.mq | (1 (60 X) — mo(6g X))|*
< J2(M)T)0 — Oo| + || 0 6o — mj o B ||?
= o0p(1).

Here the last inequality follows from Lemma E.1 and the last equality is due to Theorems 3.7 and 3.8. For

I, recall that by Theorem 3.5, we have |jmg o 6o — 172 0 0]| 2 0. Thus,
T = Pag.mo | (mo (05 X) = in(8" X)) (' (07 X)X = (mh o) (07 X)) [*
< [lmo 0 8o — 10 O|* (MaT + Loy l2,00)* = 0p(1).

Finally, we have

IIT = Poy,mq |(m hay ) (00 X) — (mi hay )0 X)

‘ 2

N 2
< Pagumo [|Imé hay + mb g 12,00/ (B0 — 6) T X]]

< |Im§ hay +mo hoy 13,0 T?(00 — 0] = 0p(1).
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All these facts combined show that Pag,mq %5 5 — %60,mo |2 = 0,(1). We now prove (H.1). Note that
Py o %5,
< Py |(¥ = 1007 X)) [0/ (07 X)X = mb (87 X)hay (67 X)) ‘2
= Py | (087 X) = (07 X)) + ] [ (87 X)X — (my hay ) (07 X)]|
= Py | [(mo (@7 X) = (87 X))] [ (87 X)X — (my ho, )6 X)][

(H.24)

+ Py o | (07 X)X — (miy hoy) (07 X)|?
< (ImollZe + 102]12%) Py g [/ (07 X)X — (miy hoo) (8" X)|”
+ Py | (0T X)X — (mp he, ) (07 X)|?
< ([[moll2e + lImll3 + 1) Pj 17 (87 X)X — (mg hay ) (07 X)[.

0,mq

mo

)
)
The result now follows. O

H.9. Proof of Theorem A.

Recall the definition (Step 1). Under model (1),
Vg — Yoo,mo = e +mo(0 x) —m(0 )] Hy [’ (0" )z — (mh ha, ) (0 )]
— eH;) [mf)(GOTa:)a; — (m'ohgo)(HOTx)]
= e [ (87 ) — (60" + [(miy hay) 6 ) — (i ho, ) (07 )]
+e(H; — He,) [mo(6g )z — (mohe,) (0 )]
+H] [[mo(GOT ) — (0T )] (0T )z — (mi heo)(é%)}] . (H.25)
For every (6,m) € © x R, define functions vg,m : X — R4 and Tom : X — R4 as follows:
Toum () i= Hy {67 2) — (60 )]z + [(m o) (00 %) — (b hay) (6T 2)]}
+ (Hg — Hgy)[mo(00 @) — (moha,) (6 )], (H.26)
Vo,m (x) := Hy [mo(0g ) — m(0" 2)][m’ (0" )z — (mj ha,) (0" )],
and the classes of such functions

Enny My M5 (1) = {To,m ¢ (0,m) € Cary vap,005(n)

Y ary w05 (1) = {00, : (0,m) € Cary vy, 015 (n) }-

Observe that, for every fixed My, M2, and M3, we have

P(IGn (%9, — a0,mo)| > 9)
< P(|Gn(emg s + vg.0)| > 6, (0,10) € Cary sy az5 (n)) + P((0,172) & Casy nty.azs (n))
0 5 .
<P (16 (er3,0)1 > . (0.10) € Can vt s ()
0 5 . Foa
+P (\Gnuw > S (0m) ch,M2,MS(n)) + P ((0,) ¢ Cany vz asa () )

gIP’( sup |Gref| > g)

FE€EM, Moy, M5 (1)

+]P>( sup G f| > g) +P((B, 1) ¢ Cary vtz ot (). (H.27)

FEY My, My, M5 (R)
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By the discussion following Lemma A.1, we have

P((0,70) ¢ Cary,h1a.015(n)) — 0.

Hence to prove Theorem A.4, we only need to show that the first two terms in (H.9) are o(1). We prove this
in Lemmas H.2 and H.3.

Lemma H.2. Fix M1, Mz, Ms, and § > 0. For n € N, as n — oo, we have

IP’( sup |Gref| > g) — 0.

FE€EMy, My, Mg (1)
Proof. The proof of this lemma is similar to the first part of the proof of Lemma A.5. Let us define,
EMy Mo, My = {Te,m 2 (0,m) € CX/Il,Mg,Mg}-
We will prove that
N (&, Ehy Mo 1155 || - ll2i00) < cexple/e)e™, (H.28)
where ¢ depends only on M1, Ms, and Ms. Fix (6, m) € Ca, Mo, 05 (n). By Theorem 2.4 of [49] we have
N(e, {m': (-;m) € Chuy oty v ) | - [loo) < exp(c/e),

where ¢ is a constant depending only on M;i, M2, and Ms. Let us denote the functions in the e-cover of
{m’ : (\m) € Chty apn5} by li,...,1i. By Lemma 15 of [32], we have that there exists 61,...,0, for
s < e % such that {#;}1<i<s form an e2-cover of © N By, (1/2) and satisfies (86) of [32] (with £? instead of
g). Fix (0,m) € Cir, ary a1y~ Without loss of generality assume that the function nearest to m’ in the e-cover
is 11 and the vector nearest to § in the e2-cover of © N By, (1/2) is 61 i.e.,

|m' —lilleo <&, |Hy —Hg || <&, and [0—6:] <& (H.29)
We define r; to be the anti-derivative of I; i.e., l1 = r}. Moreover, let us define
00.m(x) 1= [m' (0" &) — m(Bo ' )]z + [(mh hay) (B0 " x) — (Ml haey) (0 ).

Note that to prove (H.9), it is enough to show that ||79,m — 70, |
every = € X observe that

2,00 < c1€, where ¢; is a constant. For

|70,m (%) — 7oy, (2)]
< |Hy 0o,m(x) — Hg, 00,,r, (z)| + |(Hy — Hy,)[mo(6g x)z — (mgha,) (60 2)] |
<|(Hg — Hg,)oo,m(®)| + |Hg, (00,m (%) — 06,1 ()] + % |mi (60 @)z — (moha, ) (6o )|
< &*100,m ()| + |00, (2) — 00,y ()] + 2MTe?
< E2AMLT + |00,m () — 064,y ()] + 2M2TE>, (H.30)
where the last two inequalities follow from properties of Hy (Lemma 1 of [32]), (H.9), and definition of
Chty Mo, M5 (s€€ (A.2)). Furthermore, we have
l00.m (%) — 00,y ()]
< |(m/ (07 @) = ri (61 @))z| + |((mo hao) (01 @) — (mp by ) (6 )
<|(m (07 @) —m/ (01" @))a| + |(m (61 @) — v (61" x))a
+1(mo(01 " @) = mo (87 2))hoy (01" )| + [m (0 ) (o, (01" @) — hoy (07 )]
< MsT?|0 — 61" + [[m = rillooT + [1hoy [loo M0 — 61["/* + Mz ||y || o016 — 61T
<e

(H.31)

Thus combining (H.9) and (H.9), we have ||79,m — To,,r |

2,00 < CIE.
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However, bracketing entropy for the || - ||2,P80YmO -norm is bounded above by a the covering entropy for
the uniform norm for a class of function. Thus, we have

Ny (e, Bhny vz vtz | 12201y ) < cexple/e)e™™ S cexp(c/e).

If [fi1, o] is a bracket for 7o, then [fize™ — hoe™, hae™ — h1e™] is a bracket (coordinate-wise) for e7p, .
Therefore, we have

Ny (e {ef - f € Bhnatnns} |-

|2.Pog my ) S cexP(c/€).
Now, we find the envelope of Ens, vy, 05 (n). For every (6,m) € Cary ,niy,m5(n) and x € X note that,
[To,m ()] < [Im/ (0" 2) —m' (60 " @)| + |m' (60 " x) — mo (60" @)]] ||
+[mo (00" )k (B0 " x) — mo (0" )Ry (60 @)
+ |mb (0 x)hey (B0 ") — m(0" x)he, (07 2)]
10— Bollmb (87 ) — (misha) (07 )|
< J(m)|0 w00 x| 2[x| + [|m’ — mp||D, ||
+ |hoy (60 ") ] J (m0)|00 & — 0 |'/?
+1mo(07 )| [hoy (6o ") — hoy (07 )| + 10 — Go|2MT

1
|27OOM3T —+ MQthgo ||2700T + 2M2T) + —T.

n

< A/ HMST? + || o,

Hence,

|70, ()] < elA/* (MsT? + [|hgy |

1
2700M3T —+ MQ”hIQOHQ,OOT -+ 2M2T) -+ |6|;T = Wh

Thus using arguments similar to (H.4) and (H.4) and the maximal inequality in Corollary 19.35 of [52] (also
see proof of Lemma A.3), we have

IF’( sup |Gref| > g) S 251\/ﬁ§ﬂ§( sup |Gnefi|)

FEEM, My, M5 (1) FEEM, My, M5 (1)
S 671 VA= 1y (IWall, Eany oty (), - gy )
. 1772
5[)\}/4+—} — 0 as n — oo,
Qn
where in the first inequality fi,..., fi—1 denote each component of f. O

Lemma H.3. Fiz My, M2, M3, and 6 > 0. For n € N, we have

IP’( sup |Gn f| > g) = op(1).

FEY My, Moy, M5 (1)

Proof. The proof of this lemma is similar to the proofs of Lemmas A.3 and A.4. Fix (0, m) € Cuy, My, M5 (1)
We first find an envelope of Y s, ar,,015 (n). Recall that for every 2 € X and 6 € ©, we have |Hy z| < |z].
Thus for every x € X,

vo,m (2)] < [mo(Bg ) —m(0o " )] - |m' (07 2)z — m (0 2)hoy, (0" )|
+ |m(t90Tx) - m(@T:c)| . \m'(OTx)x - mf)(@Tx)th (GTx)|
< [lmo — m| By Im/ (6" x)z — miy (0" 2)hay (0" )|
+ || T10 = Bo] - M’ (67 x)z — m (0 2)hoy (0" )|
< [i + TMQXL/Q} 2M,T < C[ai + X}/2],

Qan



Kuchibhotla et. al./Convex Single Index Model 58

where C' is a constant depending only on T, M1, M2, and Ms. Let us now define

Thry My M5 o= {Wﬁm 2 (0,m) € C}kwl,Mz,Mg}

Thus using arguments similar to the previous lemma, we have

IF’( sup |Go f| > g) < 2(51\/d—71jz;1E( sup |anz|)

FEY My, My, M4 (R) FEY My My, Mg (1)

- 1 «
<oslp <C[a— + Ai/?],Tzvfl,MQ,M:,(n), I - ||2’Oo>
<05t c[i 51/2] e
~ [] an + n s L My ,Msy, M3 || . ”2’00 ,

where C is a constant depending only on M;, M2, and M3 and fi,..., fa—1 denote each component of f.
Here, the last inequality is true because Y s n5(n) C Yhsy a,,n,- Thus, to prove the theorem it is
enough to show that, J;(v, Las, ary.azss || - [[2,00) < /2, for all 4 > 0, which is implied by

* c c —5d
N6 Vit o) S e (€ 4+ 52 ) 7, (.32

where ¢ is a constant depending only on d, M1, M2, and Ms. In the following, we show (H.9). Observe that
by an argument similar to the proof of Lemma 8 of [32], we have

N(e,{moo by —mo8:(0,m) € Capy rpnas} || lloo) S exp(c/a)sfd.

For simplicity of notation let us define
Vo,m(z) :=m/ (0" 2)x — (m hey) (0 ).

Observe that by definition of vy, (see (H.9)) and Lemma 9.25 of [31] (for the entropy of product of classes
of uniformly bounded functions) to prove (H.9), it is enough to show that

N(e, {Hyg Vom : (,m) € Ciry aayonzs 1o || - ll2,00) S & exp(c/vE). (H.33)

We will prove (H.9) by constructing a cover for {Hy Vo,m : (68, m) € Cis, ary.a1, }- By Theorem 2.4 of [49], we
have

N(e, {m': (-;m) € Chsy atp, 05 1 [ - llos) < exp(c/e),
where c is a constant depending only on M;, M2, and Ms. Let us denote the functions in the e-cover and
their anti-derivatives by l1,...,l; and r1,...,7, ie., I; = 7} for 1 <4 < t. By Lemma 15 of [32], we have
that there exists 01,...,0s for s < e * such that {6;}1<i<s form an e?-cover of © N By, (1/2) and satisfies
(86) of [32] (with £* instead of €). We now show that {Hg,V, r; h<i<s1<j<t forms a || - [|2,00 cover for

-
{Hy Vo,m(z) : (0,m) € Chry ary na }-

Fix (0, m) € Chs, wm,,m5, Without loss of generality assume that the function nearest to m’ in the e-cover
is I1 and the vector nearest to 6 in the £2 cover of © N By, (1/2) is 61, i.e.,

Im' = bl <, |[Hf = Hf, | <% and [0—6:] <&
Observe that

|Hg Vo.m(x) = Ho, Vo, iy (2)] < |Hg Vo () — Ho, Vo.m ()] + | Hg, Vo.m (z) — Hg, Voy iy ()]
< & Voum ()| + |Vo,m (@) = Voyr (2)]. (H.34)
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Furthermore, we have
Vo, m () = Vo, ()]
< (0" @)z — (mo heo ) (07 @) — r1(61 @)z + (mh he, ) (61 @)
< T|m' (0" 2) — ri(6] 2)| + [(mb hey) (0" ) — (M hey ) (01 2)]
< T|m'(9Tx) — m'(@?x)’ + T|m'(91Tx) -7 (GlTx)|
+ [(m heo) (6" x) — (mf he,) (61 )]
< TM3|9T1 — 9?:1:‘1/2 +Te
+ [(mo hey ) (07 @) — (mh hey ) (01 7)| S e (H.35)
Thus combining (H.9), (H.9), and the fact that |Vym(x)| < 27 M,, we have

| Hg Vo.m — Hg, Vo, iy [l2,00 S €. O

Appendix I: Proof of Results in Appendix B
I.1. Proof of Theorem B.1

We start by the following definition
0.0.0(1) = Po,n.(w + (6 = G:(8,)) " k().

Note that by (A.1), e,,,:(-) is an increasing function for ¢ € R close to 0. Hence, as m’ is a bounded
increasing function, &:(+;0,m,m) is a uniformly Lipschitz convex function for ¢ sufficiently close to 0. Since
|m'|so is bounded by L, so is ;. By definition we have

T

(s ai0,m,m) = [ (s 0, m)dy + (G (6.m) — 0) T [(m (s0) — m(s0))(50) + (0 ey (50)] + m(s0):

50
We have that ¢g .0(u+ (8 — o(0,1)) " k(u)) = u, Yu € D. Hence,
07z 0Tz

€o(Co(8,m) 216,17, m) = / To(us; 0,7, m)du + m(so) = / ' 0 Go,m0(u)du + m(s0) = m(8" ).

S0 S0

Observe that,
0 T
aft(ct(ea 77) €, 07 7, m)
9 Ct(0m) @ , aC(0.m) " , , ,
= a{‘/ m o @eyn,t(u)du} + % {(m (s0) — mp(s0))k(so) +mo(so)hey(so)| (I.1)
50

We next evaluate the first term on the right hand side of the above display. But first, we introduce some
notations. Let us define,

¢:9,7],t(’u‘) = %Qﬁey’mt(u)? ¢g,n,t(u) = %¢é,n,t(u)a q.se,n,t(u) = %¢9,n,t(u)7

and
Ghaw) 1= 22 gt (0= G0,m) ) (1 (0~ Gu(0,m) K ()

Now, observe that
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%&tw) = Gome(u+ (0 = G(0,m) k(W) = G e (u+ (0 = G(6,m) " k(w)) 8<tgi’ 2 hw)
D01l _ (14 (0~ Gu(0.m) K ()| 22012 (4 (0~ (6. 7) Th(w)

(k0 — Co(0,m) Th(w) 8%‘? N ew)

~ Gt (0= G0, k) By, 12)

Pe0nall0) D) _ g, (Gl 2+ (0 0m) TGO m) )

000 (00w (0 G 0,m) kG0, ) )) L0
{x — k(¢ (0,m) ") + (0 — C(6,m) K (¢e(0,m) Tx)z |

Now, we evaluate the first term on the right hand side of (I.1). Note that

o [ee@m’e

9 0,4 (Ce(0,m) T ) m'(u)
= 8—{ / T =1 N du}
t ©6,5,t(50) Po,n,t ° 900,7;,t(“)

_ m 00pn,i(Ce(0,m) ") 00,0, (Ce(0,m) ") m 0 0p,n,i(s0) Do m,i(s0)

Py (Ce(0,m)T ) ot Pt (50) ot
[l Ol ot
_ = U
©0,m,4(50) [0 e © a1 (w)]? ot
_ m 0 90,5,0(G(0,n) " %) po.n.e (Ce(8,m) ") M’ 0 o.5,6(50) Fpo..e(50)
©p.n.e(Ce(0,m) T ) ot ©p. .t (50) ot

.
O 0 g 0) D)
/ 2 ot O\t
50 [‘Pe,n,t(u)]

Using the fact that ¢p ., ;(u) = 1 and Go.m.t(u) = 0 for all u € Dy and t close to 0 (follows from the
definition (A.1)) and 8¢ (0,7)/0t = —|n|*t/\/1 — t2|n]2 04 Hen, i.e., 0(:(0,m)/Ot|t=0 = Hon, we get from (I.1)

o (GOl
a{ /so m' o cpg,n,t(u)du}
OT

— (Hom)" [m'w%)(m — k(67 2)) — (o) k(s = [ )=k (w)ldy .

t=0
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We now show that the score function of the sub-model {¢:(0,7),&:(+;0,17,m)} is Gg,m(z,y), i-e.,

10 T, 2
—55[(3;*&(@(9777) xvevnvm) } —o
T,..
= (y — &(C(8,m) "2;0,m,m) 8&(@(977%%6’”%) =0

0z

= (y—m(0"))(Hom) " [m’(HTx)(fE — k(6" x)) —m’(s0)[~k(s0)] - / m (y)[—K' (y)]dy

+ (m(s0) = mf (50) K (50) + mi (50 (50)]
607
= (y— m(®” ) (Hon) [/ (07 0)a — /(07 k(0 ) + [ ' K (0)dy

o+ mi(s0)(30) = (s0) oo (50) |-

The rest of the proof is similar to the proof of Theorem A.1; see (H.1).
1.2. Proof of Lemma B.1

s0
m/ (0" x))k(0 " z)]; see (A.1). Observe that D is a bounded set, sup,, ¢ p, (|k(w)|+|k'(u)|) < M* and ||[m/||o < L.
Hence

Recall that Up,m : X — R! is defined as Up,m(x) = Hy [ngz [m/ (u) — mo(w)] k' (u)du + (mo’ (07 z) —
|

QTz
|Uamcw|SA4ﬂ/ () — 1y (o) s + M [y (8" ) — (67 )|
S0

< 2LM*|9T1" —so| +2M*L <ALM™T +2M*L :=V".

Now we will try to find the entropy of Whs, (n). As the definition of Uy, involves m' to find entropy of the
class of functions Wj;, , we need the entropy of

H ={q: X > R|q(z)=g(0"z),0 € © and
g : D — R is an increasing function and ||g]jec < S}.

The following lemma, proved in Appendix 1.3, does this.

Lemma I.1. If supyee || foTx|lp < ¢ < 00, where fy7x denotes the density of 07 X with respect to the
Lebesgue measure. Then log N (e, H*, L2(Pog,mo)) S '

Fix (8,m) € Cas, (n). By definition we have that both H, k(-) and Hy k'(-) are coordinate-wise bounded
functions (see (Step 1)) and Hy k(u)+M*1 >= 0 and Hy k'(u)+M*1 > 0 (where 1 is the vector of all 1’s and
> represents coordinate-wise inequalities). Using these, we can write Up,, (x) = Ué’l)n (z) —Ue(iil(x) —i—UéiL(x),
where

0Tz

wm@:/ (1) — il ()] (HE9 K () + M 1)l

0T
U, @) = M0 [ ' ) = ()l

50
(z) := (mb(0"z) —m/ (0T x))Hy k(0" ).
We will find e;n-brackets (with respect to || - ||2,p,, ., ) for Ua(fzn,i = 1,2, and 3 separately and combine
them to get a cn—bracket (with respect to La(Pa,,m,)) bracket for Up,m, where ¢, c1,c2, and c3 are con-
stants depending only on S,T,d, M*, L and Lo. By Lemma I.1 there exists a N,’7 < exp(n™') such that
{(€k, ur) }r<k<ny form a n-bracket (with respect to La(Py,m,) norm) for {m/ (0T ) : (0,m) € Ciy, }, ie., for
all z € X

le(z) <m/ (07 z) < ug(), (1.3)
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and |lux — £i|| < Cn for some constant C. Similarly by Lemma 15 of [32], we can find a 61,62, ...,60x, with
N, < Cn~2? for some constant C' such that for every 8 € © N By, (1/2), there exists a 6; such that

|0 —0;] <n/T, ||Ho — H9j||2 <n/T, and |9Tx — 0;m| <n, Vr € x.

We first find a | - [|2,p,, ., Pracket for Uéi)n using Lemma 9.25 of [31]. For this application, we need to

find bracketing entropy for the following two classes of functions,
{HTKOT) 5 (0,m) € Cary (m)} and {mp(67-) —m'(87-) : (6,m) € Cary (n)}.
As mg is an increasing function bounded by Lo (see (L1)), we have that
my (0] & —m) < mo(0" x) < mo(8) = +m).
Thus by (I1.2), we have
mo (0] x —m) —ur(z) <m0 x) —m' (07 ) < mG(8] x4+ m) — Li(x).
The length of the above bracket is given by

Imo(6; - +m) — bk —mo(0; - —m1) + kll2,Poy g

< [Pogumo|mo (6] X +m1) = mi (0] X = m)*]? + flux — ]
< 2[|mg [leon + 1 = (2[|m{ [loo + 1)
Thus
Nij(n, {mo(07-) =m/(07-) : (0,m) € Car, ()}, |- 1) S exp(n™")n~>* (1.4)

Recall that [|k|l2,c0 + [|K[|2,0c < M. To find the || - [|2,p, ,,, bracket for {HS k" z) : (6,m) € Car,(n)}
observe that

|Hg k(07 x) — Hy k(0] x)| < |Hy k(0 x) — Hy, k(0 )|+ |Hg, k(0 ) — Hy, k(0] )|
< k2,00 /T + 1K' ||2.00m < 27M".

This leads to the brackets
Hg k(0 x) — 2nM*1 < Hq k(0" x) < Hg, k(0] x) + 2nM"1,
with [ - ||2,p,, ,,,, length 4nM*v/d — 1. Thus
Nj(n, {Hg k(07) : (6 c < T I
0 {He k(0" ) 2 (0,m) € Cary (M)}, || ll2.Pg5,my ) S €xp(n” )7 (L.5)
Thus by Lemma 9.25 of [31], (I.2) and (I1.2) gives us
Nij(n, {[mo(0"-) —m/ (0T )] Hg k(0" -) = (0,m) € Cary (W)}, 1| - |2y ) S exp( ™)~

For treating Ué’l)n and Uéi)n, we take so to be the minimum point of the set {# "z : 6 € ©N By, (1/2),2 €
X}. By Theorem 2.7.5 of [53], we have

log Nij(n, {m' : m € Ci/}, L2(m)) < nh

Let [mz, mu] be the n-bracket of m’, i.e, my(u) < m/(u) < my(u) for all w and [, [mu (t) —me(t)|*dt < n>.
As 0; satisfies |6 — 0;| < n/T, by Lemma 1 of [32] we have

|Hy k' (u) — Hg, k' (u)| < K (u)|n/T < M*n/T.
This implies
Hg k'(u) + M*1(1 —n/T) < Hg k' (u) + M*1 = Hg k'(u) + M*1 (1 +7/T).

The || - [|2,py, .., length of the above bracket is 2M*n/T'. Since Hy K (u) + M*1 > 0 for all § and u, we can
take the brackets to be

{Hy k'(u) + M*(1 = n/T)1} V0 = Hg K'(u) + M*1 < {Hg k' (u) + M* (1 +1/T)1} A (2M").
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From the brackets [mr, my] of m’, we get that
mu (u) — mo(u) < m'(u) —mo(u) < mu(u) —mo(u).

Combining the above two displays and the fact that 0Tz > so, we see that for every z € X and 6 €
© N By, (1/2),
0Tz
[ s — m(HE K )+ 27 (= 0/ D)1} 0)du = USH, (o),
s0 oo (1.6)
Ut a) = [ () = mb(OJCHA K () + M (L4 0/ T)1} A (2M))du

S0

These bounding functions are not brackets since they depend on 6 (in the limits of the integral). Since
mr,my, and m’ are bounded by L, we get that

0T
/ Imur (u) — mo (u)|({Hg, k' (w) + M*(1+n1/T)1} A (2M*))du < AM*L|0" z — 0] 2|1 < 4M" L1,
0T x
J
(coordinate-wise) and similarly,

0Tz

/eT |mr(u) — mg(u)\({HJj K'(w) + M*(1 —n/T)1} vV 0)du < 4M " Ln1.

Therefore, from the inequalities (1.2), we get the brackets [M\", M{V] for Ué}r)n as
T

OJ T
MY ;:/ [m(u) — mo(w)]({Hg, k' (w) + M*(1 —n/T)1} V 0)du — 4M* Ln1,

T

M ::/Jx[mU(u)fmg(u)]({HgTjk'(u)+M*(1+77/T)1}/\(2M*))du+4M*Ln1.

The || - |-length of this bracket can be bounded above as follows:

1 1
M5 = M2, Py
QT

/ " o () — ma )] (LG K (u) + M (1+0/T)1} A 2M))du

S0

<8M*Lnvd—1+

2,Po4,mq
-
o]

+ / o (u) — mi(u)]x

[({H; K (w) + M*(1+1/T)1} A (2M*1)) — ({Hg, k' (u) + M*(1 - /T)1} v 0)] du

2,Pyy mq
0] -
<8M*Lnvd—1+ 2]\/[*1/ [mu (u) — mp(u)]du
fo 2:P90,7n0
or.
+ 2L/ ’ [(H(,Tjk’(u) + M*(1+9/T)1) — (Hy k' (u) + M*(1 — n/T)l)} du
s0 2,Pgy,mq

1/2
<8M*LnVd —1+2M*Vd —1 (/ (mu(u) — mL(u))Qdu> +4M*Lyvd —1)T
D
=d—1(12M"* Ly + 2M*n).

Thus, we get that [Mg), MI(JI)] isav/d—1(12M* L+2M"*)n-bracket for Ué}gﬂ with respect to the [|-[|2,py, ., -
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Following very similar arguments, we can show that [M £2), M[(IQ)} forms a bracket for Uéi)n, where

M (z) = [/:;I[mL(u) — mg(u)]du — 2L7]] 1,
0]«

[mo(u) — mo(u)]du + 2Ln] 1.

The || - ||2,p,, ,,, ~length of this bracket is

05
||M[<JZ) _ M£2>||27P90’m0 <4ImvVd—14++Vd—1 / ’ (mu(u) —mr(u))du

50

<ALnVd —1+nvd—1=+d—1(4L + 1)n.

Thus for both Ué}}n and Ue(i)n, o

Hence we have (B.1).
Next we show (B.1). Observe that

the bracketing number is bounded by a constant multiple of exp(n~!)n

2 2

Vo @l s, < [ " ) - ()] (u)d + ||’ = miyeT k(6|

2,Pg,mq 2,Pgg,mg

< H /f{[m'(u) - mf)(u)]k'(u)duH:Pe(LmU N H /(:'[m'(u) B mg(u)]k’(u)duHQ

2,Pgg,mq

|| = mby @ w6

2,P,mq

<I+II+IIL

Observe that

2

0y X
I= / [m/ (u) — mg(w)]k' (u)du dPsq,mg

50

X

< / [ (1) — 1y () 2K (o) 2t AP g
x J Dg
< W11 o / [’ (1) — iy () 2t < K13 00m /",
Do
and

0. 2
= | [ ) ()l (w)du < LK I3.0cll(60 — 0) - 17 < L2310 — 0,
04 2,Po4,mq

1= ([~ mp)@ RO < I B’ = )67 = I e,

1P90,1n0
Combining the above two displays, we have

sup  |Usmlly p, < 2K B een '+ L2K |3 TP = Kin 0,
(0,m)EC 1, (n) om0

1.3. Proof of Lemma 1.1

Observe that by Lemma 4.1 of [44] we can get 61,02, ...,0N,, , with Ny, < ny ¢ such that for every § € ©,
there exists a j satisfying |0 — 6, < n:/T and

07z —60 x| <|0—0;] |z|<m VzeX.
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Thus for every 6§ € O, we can find a j such that H;Fx —m <0z < GJTac + 11,V € X. For simplicity of
notation, define t;l)(m) =0z —n, t§-2>(m) =0z +mn1, and

G* :={g|g: D — R is a uniformly bounded increasing function and ||g|jcc < S}.

Recall that m denotes the Lebesgue measure on D. By Theorem 2.7.5 of [53], we have that Njj(n2,G", L2(m)) <
exp(ny 1), i.e., there exists [l1, u1],. . ., [Ia1,,, > unt,, | with l; < g, [ [ui (£)—1:(t)|2dt < n3 and M,,, < exp(n; ')
such that for every g € G*, we can find a k € {1,..., M,, } such that I < g < ui. Without loss of generality
we can assume that both I; and u; are increasing and bounded for all 1 <7 < M,,.

Fix any function g € G* and 0 € O. Let |0; — 0] < 11 and [lx, ur] be the na—bracket for g, then for every
T EX,

() (2)) < 107 2) < g(07 @) < w0 2) < (P (2)),

where the outer inequalities follow from the fact that both [ and wuj are increasing functions. Proof of

Lemma .1 will be complete if we can show that
([l ot ur 0t 11 < j < Ny, 1 <k < My},

form a L2(Py,y,m,) bracket for H*. To complete the proof, we now choose 11 (the bracket length for ©) and
12 (the bracket length for G*) such that the || - ||-length of each bracket of H* is bounded by e. Note that
by the triangle inequality, we have

||k o t§.2) —lgo t;.l)H < ||ug o t§.2) —lgo t;.z)H + ||lk o t§.2) —lgo t;l)H. (I.7)

Assuming that the density (with respect to the Lebesgue measure) of X 0 is uniformly bounded above (by
(), we get that

e Y / [u(r) = b (r)]* dP;(r) < C / [ (r) — L (r)] dr < C13.

For the second term in (I1.3), we first approximate the lower bracket I by a right-continuous increasing step
(piecewise constant) function. Such an approximation is possible since the set of all simple functions is dense
in La(Pgy,my); see Lemma 4.2.1 of [4]. Since I is bounded (by S say), we can get an increasing step function
A:D — [-8, 8], such that [{lx(r) — A(r)}?dr < n3. Let v1 < --- < va, denote an points of discontinuity
of A. Then for every r € D, we can write

Aqg Aq
Alry=-5S+ Zcﬂl{riji}, where ¢; > 0 and Zci < 28.
=1 =1

Using triangle inequality, we get that
e ot — otV < kot — AotP ||+ |Aot?® — ActV|| +]|Act) — 1, 0t
<VCna +[|[Aot? — AotV | + VT,

where C'is the (uniform) upper bound on the density of X "8;. Now observe that

Ag ’
Zci (]]'{XTGJ"F’UlZUi} - I{XT9j+"1Z“i}):|

=1

2 1
[Aot® — AotV|> =E

Ag
Zci (]l{XTej+n12vi} - ]l{XT9j+"12”77}>
i=1
Ag
<28 GP(X 0, —m <vi < X0 +m)

i=1

< 2SE

Agq
< QSZQ‘P(W —m < XTHJ' < v + 771)
i=1

Ag
<28 " ci(2Cm) < 8CS*n.

i=1
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Therefore by choosing 72 = &/(6v/C) and n; = £2/(32C'S?), we have

g 0t — Ui 0 ¢ < 3v/Cia + 2v20S /i1 < e.

J
Hence the bracketing entropy of H* satisfies

< 6VC
3

log Ny (e, 1511 - 1) < —2dloge — dlog(32CS%) < et

for sufficiently small e.

1.4. Proof of Lemma B.2
For every (6, m) € Car, (n), note that

| (mo 0 6o —mo eo)Ugym”;Peo)mo < 4M12|]U9,m||jﬁp%ym0 < AMZK2n Y5 = D5,

Furthermore, note that D}, is a class of uniformly bounded functions, i.e.,
|(mo —m)(80 " 2)Up,m ()| < 2Mi |Up,m(z)| < 2M1 V™.
and by Lemma F.6 there exists a constant ¢ depending only on M; and L such that
N, {(mo 00y —moby:mée CA"E}, || llec) = N(&,Cait || - lloo) < cexp(e/eE).

By Lemma B.1 and Lemma 9.25 of [31] (for bracketing entropy of product of uniformly bounded function
classes), we have

c

— &
Niy(e Dasy (), - s ) S5 Hoxp (54 €)).

|2,Psg o) < N11(: Dy || - |

It follows that .
J (v, Dary (n), |- Ml2,Pgg g ) S 72
Now using arguments similar to (H.4) and (H.4) and the maximal inequality in Lemma 3.4.2 of [53] (for
uniformly bounded function classes), we have

IP’( sup \an|>6)

fE€DM, (n)
d—1
<o d= 121{3( sup |anz\)
i=1 feDMl(n)

T (Dary ™10 Diagy (), || N12,Pg g )
D3 n=Y5y/n

- - 2M1V* Dpgyn ™ /10
<5 ( /Dt 1/20 4 DI%/I n,]\/f%\/ﬁ — 0, as n — 0o,
1

SO I (Dan 0 Dary (), |1+ 12,85 ) (1 + 2M1V*>

where in the first inequality fi,..., fi—1 denote each component of f.

1.5. Proof of Lemma B.3
For every (0, m) € Cu, (n), note that
2 2 2 2 -1/5 _ 2, —1/5
|[fm o6y —mo 9]U@,m”27p%’mo < AM; ||U9,m]|2’P90,m0 <AMTKpn™'° = Dyn™ 7",

By Lemmas F.5 and F.6, we have

Nyy(e,{mo o —mo 6 : (6,m) € Car, ()} | - lloo) S exp(1/VE).
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By Lemma B.1 and Lemma 9.25 of [31] (for bracketing entropy of product of uniformly bounded function

classes), we have
* —2d C c
N[](S,Aﬂ/fl(n),”'H2’P00)MO) SN[](€7AM17||'| ) Sce exXp %""g :

It follows that .
Ji (v Ay (), 1 - 1) S 2.

The rest of the proof is similar to the proof of Lemma B.2.

1.6. Proof of Lemma B.

We first prove the first equation of (B.4). Note that, we have
P(VAPneUg 1, (X)] > 0)
<P( s [VaPucUom(X)| > 6) +B((0,17) & Car, (0)

(6,m)EC s, (n)

<P( sup |VaPuef| > 8) + P((0,7) ¢ Car, ()

FEWNM, (n)

=P(_sup [Guef>6) +P((0,1m) & Car, (),
FEWM, (n)

where the last equality is due to assumption (A2). Now it is enough to show that for every fixed M; and
L, we have

IP’( sup  |Gpef| > 5) =o0(1). (1.8)
FEWM, (n)

We will prove (1.6) by applying Lemma F.7 with F = Why, (n). Observe that by Lemma B.1, we have

log N(j(e, War, (n), | l2,ppy 1ny) €715 sup [|fll2,00 V¥, and  sup g S KinTHC.

' Wiy, FEWa, (n) '
By Markov inequality, we have
d—1
IP( sup  [Guef| > 5) <25 - 1ZE( sup |Gnefl-|>,
FEWM, (n) i—1 FEWM, (n)

where f1,..., fi—1 denote each component of f. We can bound each term in the summation of the above

display by Lemma F.7 (see Appendix F.3.1) with ® = V™, k= Krn~ Y% and o = —1. Thus by (F.7), we

have 1
]E( sup \Gnefi|) < \/KLn71/20 + 40 = 0, as n — 0o.
FEWM, (n) n'/10/n

We now verify the second and third equations inV(B.4). The proofs are similar to the proof of Lemma A.5.
Observe that by (H.6), (H.6), and (H.6) (with (77, 0) instead of (712, 0)), we have

[ Pag (1m0 — 12) (80 X) U 1 ()]| = Op(n™>/) [Pag g | U ()P] o
[Boy (72607 X) = 1207 X)) U (X0]] = Op(n=") [Py o U5 (O]
and
Paguma| U (O < M2(d = 1) Poymg [~ mip) (07 %))
(1.10)

+ M**(d — 1)T Pay m, [/D [/ (u) — my (u)]Qdu] .

6
Finally by (3.4) of Theorem 3.4, we have that
/ {1 (w) = mo(u)du < | 0 — mp 0 0)]* = Op(n™*'1%).
Dy

The required result now follows by combining (I.6) and (L.6).
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1.77. Proof of Theorem B.3
Proof of this theorem follows along the lines of the proof of Theorem A.3. By calculations similar to (H.7), (H.7),
and (H.7) (with (vn, 8) replaced by (1, 6)), we have that
|PgmoYa.m| S llmo 06 —m o 6|| [l 08 —mpod| (1.11)
+ [[mollocllmo 0 6 — 1 0 0|| kg 0 6 — hey © 0l|2,py, -

By Theorem 3.4, we have |/ o 0 — mj o 0| = O,(n~%/*®). Furthermore, by Theorems 3.1 and 3.3 and
assumption (B2), we have

Hm()Oé—’ﬁ’LOéH < H’Fhoé—moooou + ||m0090 —m009|\
< H’Ihoé—moooou +L0T2|90 —é‘
:Op(n72/5)

and ||hg 00 — hg, o é||27p00,m0 < M| — 6o|. Thus the first term on the right hand side of (I.7) is O,(n~%/1%)
and the second term on the right hand side of (1.7) is O,(n~*/®). Thus | P o Vm| = op(n=1/?).

1.8. Consistency of Vg

Lemma 1.2. If the conditions in Theorem 4.2 hold, then
Poy,mo ‘wé,m - ¢907m0|2 = 0:0(1)7 (I~12)
Py o |05 |” = Op (1) (1.13)

Proof. Observe that the proof of (1.2) is identical to the proof of (H.1) (with (,70) replaced by (6,7m)); see
We now prove (1.2). By assumption (B2) and calculations similar to (H.8), we have

Pog.mo|5,m = Yeo.mol” < T+ 2[|0°()lloo TL+2]|0”()lloe T+ 4MPT?||0”(-)||o0 |6 — b0,

where
A 1y / A 2
L= Pag.mo |[mo(05 X) = m(@7 X)] [ (87 X)X = (mf hay) (07 X)) |,
1T / T 2
11 := Poy g | (67 X)X — mi(6g X)X’ :
/ T / AT 2
ILLi= Pog o |(mf hay) (8 X) = (miy by ) (07 X)]| -

It is enough to show that I, II, and IIT are o,(1). By Theorems 3.3 and 3.4, we have

- 2
I1 < T2 Poy g | (67 X) — mf)(HOTX)‘

< T2 Pog e | (07 X) =m0 X)|? + T2 Pag,mo |m6 (07 X) — mb(8g X)|* = 0,(1).
For I, observe that
m/(éTx)x - mé(éTa:)heo(éTxﬂ < \ﬁl'(éTa:)ﬂ + |m6(éTx)h90(éTx)| < LT + L||hgyl|2,00-

Moreover, by Theorem 3.1, we have || 0 6 — mg o 6| £ 0. Thus,
T = Pog.mo |(mo(8g X) —m(8" X)) (67 X)X — (mj ho, )(8" X))|”
< (LT + Ll|ha|2,00) [0 0 60 — 100 ]| = 0, (1).

Finally, we have

I = Py, my

(i hoy)(603 X) — (my R, ) (07 )|

. 2
2.00/(60 — 0) T X]]
< |lmg ey +mb hoy 13,00 T7100 — 07 = 0p(1). O

< Pay.mo | Imi hag -+ |
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1.9. Proof of Theorem B.J

Observe that (H.9) and (H.9) imply that

Vo0 — Voo,mo = €Tg, 5 T Vi -

Thus, for every fixed M, we have

P(‘Gn(wé,m - weoymo)‘ > 6)
< P(IGn(€7g 1 + vg,m)| > 6,(0,m) € Cary (n)) +P((6,70) ¢ Car, (n))

<P (1Galers,nl > 5.0 € Con (o))

>

+P <|Gnvé’m| > 5, (6,1m) € Cary (n)) +P((0,m) ¢ Car, (n))
< ]P’( sup |GreTo,m| > é) —HP’( sup |Grvg,m| > é)
(6,m)€Chr, (n) 2 (6,m)€Chr, (n) 2
+P((0,1m) ¢ Car, (). (L.14)

Recall that by Theorems 3.1-3.4, we have P((0,m) ¢ Ca, (n)) = o(1). Thus the proof of Theorem B.4 will
be complete if we show that the first two terms in (I1.9) are o(1). Lemmas 1.3 and 1.4 do this.

Lemma 1.3. Fiz My and § > 0. For n € N, as n — oo, we have

é
]P’( sup |Grero,m| > 7) — 0.
(6,m)€Cr, (n) 2

Proof. Recall that
Tom (@) 1= Hy {[m (0" x) — my(00 " @)z + [(mh oy ) (00" ) — (miy hay ) (0" 2)]}
+ (Hg — Hgy) [mo (06 )z — (miha, ) (05 )],
Let us define,
Enmy (n) = {T@ml‘(e,m) €Cm, (n)} and Ejy, = {Tg,m](e,m) € Ca, }

We will prove that
N(&,Zhi,, || - lloo) < cexp(e/e)e™ 0%, (I.15)
where ¢ depends only on M; and d. We will now try to construct a bracket for Z},, . Recall that by Lemma I.1,
we have
Ny (e, {m/(07)1(0,m) € Cir, }, || - 1) S exp(1/e). (1.16)
Moreover, by Lemma 15 of [32], we can find a 61,02,...,0n. with N < €72% such that for every 6 €
© N By, (1/2), there exists a 6; such that

|0 —0;| <e/T, |Ho — Ho,||l2 < /T, and |0 'z — 0] x| < ¢, Vo € x.
Observe that for all x € X, we have HJJ_QE —e= H(;rx = H;—jx + &. Thus

Ny(e, {f : X = RYf(z) = Hy x,¥Yz € X,0 € ©N Boy (1/2)}, | - [|2,00) S ¢ (1.17)
Similarly as [mg (0" z) — mg (0] x)| < Loe, we have
Nij(e,{mp00:0 € ©N Boy(1/2)}, ]| - ) S e (1.18)
Finally observe that
|Hy hoy (0 @) — Hy hoy (0] )|
< |Hg hoo (0" ) — Hy hoy (0] )| + |Hg ho, (0] x) — Hg, ha, (0] )]
< |heq (8" @) — hoo (6] )| + || Hy — Hy, |12l heo|2.00
< [P ll2,0010 — 0517 + | Hy — Hy, ||2][haol2,00 < ([ ll2,00] + [0

l2.00/T) S €
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and

|Hg hay (00 x) — Hy, hoy (60 )| < |[hay (09 @)|2,002/T.

Thus we have

Nyj(e, {f : X = R%|f(z) = Hy hoy (0" x),0 € ©N By (1/2)}, | -

[2,00) S€
Ny(e, {f : X = R f(z) = Hy hoy(8) x),0 € © N Bgy(1/2)}, ]| - <

—2d (1.19)
g2, (1.20)

|2700)

Thus by applying Lemma 9.25 of [31] to sums and product of classes of functions in (1.9),(1.9), (1.9), (1.9),
and (1.9) we have (L.9).
Now, we find an upper bound for SUP ez, (n) IIf

|2,00. For every (6,m) € Ca, (n) and = € X note that,

[70,m ()] < [Im/ (0" @) —m/ (60" @)| + [m/ (60 ") — mo (60" )] ||
+ |mi (00 " z)hoy (60 ") — mb (0" x)hey (B0 )|
+ |m§ (0 x)hey (B0 " @) — mo(0 x)he, (07 )]
+160 = 6o|lmo (0" x)z — (moha, )0 )]
< L0 2 — 600 z||z] + [|m’ — mpllp|x]
+ |hay (00 " )| [[mg||oo |00 "2 — 0 |
+ Mo (07 )| 1o, ll2,00100 " — 60" |
+10 = 0o|lmo (07 x)z — (moha,)(0 )]
<10 = 00| LT? + 0~ °T + T2|m{ | T|0 — 0| + Lok, ||2,00T10 — 60| + |6 — 60| LoT.
S C117’L71/10,

where C1; is constant depending only on L, Lo, T, mo, and hg,. Now observe that,
5 d—1
]P’( sup  |Gref| > 7) <26 'd - IZIE( sup \Gnef¢|)
FESM, () 2 = \feEa ()
1 =1 1

where f1,..., fi—1 denote each component of f. We can bound each term in the summation of the above
display by Lemma F.7 with ® = x = C11n~ /%, and a = —1. By (F.7), we have

IE( sup |Gnefi\) <n V20 4 10— 5(1) O

FE€EM, (n)
Lemma 1.4. Fiz My and § > 0. For n € N, we have
)
P sup |Grve,m| > = | = o0p(1).
(6,m)€Cr, (n) 2
Proof. Recall that
Vo.m () 1= [mo(0g z) —m(0 " 2)][m/ (0" 2)Hy 2 — my(0" x) Hy ho, (07 2)].

We will first show that

T, {vem : (0,m) € Cary ()}, |- ll2,ppy 1y ) S ¥ (1.21)
By Lemmas F.5 and 1.1 and (1.9), (1.9), and (1.9), we have
Niy(e,{mo(B -) —m(0")[(0,m) € Cir, }, | - [loo) S exp(1/VE),
Niy(e, {m' (07 )[(0,m) € Car, }, || - 1) S exp(1/e),
Ny, {f : X = R f(z) = Hy x,Yx € X,0 € © N Byy (1/2)}, ]| - [l2,00) S e (1.22)
Nyj(e,{mb o0 :60 € ©N By, (1/2)}, - ) S
Nij(e A f : X = RY|f(z) = Hy hoo (0" ),0 € ©N Boy (1/2)} || - J|2.00) S e~
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Thus by applying Lemma 9.25 of [31] to sums and product of classes of functions in (1.9), we have

I 1\ —6d
oy ) S o0 (242 )7

N[](€7 {Ue,m : (07m) S CK{]}W ” : \/E

Now (1.9) follows from the definition of Jjj by observing that

T {vo,m : (0,m) € Cary (M)} ||+ l|2,Pog g ) < J11(: {vo,m = (0,m) € Chry 1[I+ 12,Pg g )-
Now we will find SUP(9,m)eCar, (n) ||v6,m ||2,00. For every x € X observe that,
[00,m ()| < |mo(0g x) —m(Bo" )| - |m' (0" 2)z — M (0" )hoy (0" )]
1m0 ) = m(O" )| - m’ (07 ) — (6" )hay (07 )]
< [lmo = ml|py|m/ (0T @)z — mo (0" @)he, (0" )|
+ L|0g . — 0" z||m/ (0" z)z — my(0 z)ho, (0" )]
< by 2LT + 2T% L* Ma |0 — 6y
S C[b:ll +n71/10]’
where C' is a constant depending only on T, L, and M;. Thus
sup  |vomllzpyy g < SUD [vemlla,ee < CPby 0TV
(0,m)€C 4 (n) (0,m)EC (n)

Now using arguments similar to (H.4) and (H.4) and the maximal inequality in Lemma 3.4.2 of [53] (for
uniformly bounded function classes), we have

é
P sup |Grve,m| > =
(6,m)EC1, () 2

d—1
<257 'd -1 ZIE( sup |Grvo,m,1 )
i=1 (9,m)€CM1 (n)
Tz + 1710 Wa, (1), 1 2. Pagymg)
-1 —-1/10 [J\LYn ’ 1 ) »Pog,m
S B+ 1) Wat, (00,1 g ) + i
< [bgl n n71/10]1/2 n bt + nfl/lo}
~ [b;l 4 n—l/lo]Q\/ﬁ
1
< -1 —1/1071/2 _
S +n | bgl\/ﬁJrn‘VlO o(1),
as by, = o(n'/?), here in the first inequality vg.m.1,- -, Vs.m.d—1 denote each component of vg . O
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