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Abstract: We consider estimation and inference in a single index regression model with an
unknown convex link function. We propose two estimators for the unknown link function:
(1) a Lipschitz constrained least squares estimator and (2) a shape-constrained smoothing
spline estimator. Moreover, both of these procedures lead to estimators for the unknown finite
dimensional parameter. We develop methods to compute both the Lipschitz constrained least
squares estimator (LLSE) and the penalized least squares estimator (PLSE) of the parametric
and the nonparametric components given independent and identically distributed (i.i.d.) data.
We prove the consistency and find the rates of convergence for both the LLSE and the PLSE.
For both the LLSE and the PLSE, we establish n−1/2-rate of convergence and semiparametric
efficiency of the parametric component under mild assumptions. Moreover, both the LLSE and
the PLSE readily yield asymptotic confidence sets for the finite dimensional parameter. We
develop the R package simest to compute the proposed estimators. Our proposed algorithm
works even when n is modest and d is large (e.g., n = 500, and d = 100).

Keywords and phrases: Approximately least favorable sub-provided models, interpolation
inequality, penalized least squares, shape restricted function estimation.

1. Introduction

We consider the following single index regression model:

Y = m0(θ>0 X) + ε, E(ε|X) = 0, almost every (a.e.)X, (1.1)

where X ∈ Rd (d ≥ 1) is the predictor, Y ∈ R is the response variable, m0 : R → R is the
unknown link function, θ0 ∈ Rd is the unknown index parameter, and ε is the unobserved error.
The above single index model, a popular choice in many application areas, circumvents the curse of
dimensionality encountered in estimating the fully nonparametric regression function E(Y |X = ·) by
assuming that the link function depends on X only through a one dimensional projection, i.e., θ>0 X;
see [45]. Moreover, the coefficient vector θ0 provides interpretability; see [36]. The one-dimensional
unspecified link function m0 also offers some flexibility in modeling.

In this paper, we assume further that m0 is known to be convex. This assumption is motivated
by the fact that in a wide range of applications in various fields the regression function is known
to be convex or concave. For example, in microeconomics, production functions are often supposed
to be concave and component-wise nondecreasing (concavity indicates decreasing marginal returns;
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see e.g., [54]). Utility functions are often assumed to be concave (representing decreasing marginal
utility; see e.g., [39, 36]). In finance, theory restricts call option prices to be convex and decreasing
functions of the strike price (see e.g., [2]); in stochastic control, value functions are often assumed
to be convex (see e.g., [29]).

Given i.i.d. observations {(xi, yi) : i = 1, . . . , n} from model (1), the goal is to estimate the
unknown parameters of interest — m0 and θ0. In this paper we propose and study two estimation
techniques for m0 and θ0 in model (1). For both procedures, we conduct a systematic study of the
characterization, computation, consistency, rates of convergence and the limiting distribution of the
estimator of the finite-dimensional parameter θ0. Moreover, we show that under mild assumptions,
the finite dimensional estimators are semiparametrically efficient. Indeed, our paper represents the
first work on convexity constrained single index models (without any distributional assumptions on
the error and/or design).

Our first estimator, which we call the Lipschitz constrained least squares estimator (LLSE), is
defined as

(m̌n, θ̌n) := arg min
(m,θ)∈ML×Θ

1

n

n∑
i=1

[yi −m(θ>xi)]
2,

where ML denotes the class of all L-Lipschitz convex functions and

Θ1 := {η = (η1, . . . , ηd) ∈ Rd : |η| = 1 and η1 ≥ 0} ⊂ Sd−1.

As any convex function is Lipschitz in the interior of its domain, (m̌n, θ̌n) defines a natural non-
parametric least squares estimator (LSE) for model (1). Moreover, this leads to a convex piecewise
affine estimator for the link function m0.

Our second approach, which yields a smooth convex estimator of m0, is obtained by penalizing
the squared loss with a penalty on the roughness of the convex link:

(m̂n, θ̂n) := arg min
(m,θ)∈R×Θ

1

n

n∑
i=1

[yi −m(θ>xi)]
2 + λ2

∫
[m′′(t)]2dt,

where R denotes the class of all convex functions that have absolutely continuous first derivatives.
We call this estimator the penalized least squares estimator (PLSE).

Although single index models are well-studied in the statistical literature (e.g., see [45], [35],
[28], [21], [25], [12], and [11] among others), estimation and inference in shape-restricted single index
models are not very well-studied, despite its numerous applications. The earliest reference we could
find was the work of Murphy et al. [41], where the authors considered a penalized likelihood approach
in the current status regression model with a monotone link function. During the preparation of
this paper we became aware of three relevant papers — [9], [17], and [3]. Chen and Samworth [9]
consider maximum likelihood estimation in a generalized additive index model (slightly more general
model than (1)) and prove consistency of the proposed estimators. However, rates of convergence
or asymptotic distributions of the estimators are not studied. Groeneboom and Hendrickx [17]
propose a

√
n-consistent and asymptotically normal but inefficient estimator of the index vector

in the current status model based on the (non-smooth) maximum likelihood estimate (MLE) of
the nonparametric component under just monotonicity constraint. They also propose two other
estimators of the index vector based on kernel smoothed versions of the MLE for the nonparametric
component. Although these estimators do not achieve the efficiency bound their asymptotic variances
can be made arbitrarily close to the efficient variance. Balabdaoui et al. [3] study model (1) under
monotonicity constraint but they only prove n1/3-consistency of the LSE of θ0; moreover they do
not obtain the limiting distribution of the estimator of θ0.

1Here | · | denotes the Euclidean norm, and Sd−1 is the Euclidean unit sphere in Rd. The norm-1 and the positivity
constraints are necessary for identifiability of the model as m0(θ>0 x) ≡ m1(θ>1 x) where m1(t) := m0(−2t) and
θ1 = −θ0/2; see [6] and [11] for identifiability of the model (1).
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In the following we briefly summarize our major contributions and highlight the main novelties.

• Both the proposed penalized and Lipschitz constrained estimators are optimal — the function
estimates are minimax rate optimal and the estimates of the index parameter are semipara-
metrically efficient; see [42] for a brief overview of the notion of semiparametric efficiency.
Moreover, our asymptotic results can be immediately used to construct confidence sets for θ0,
using a plug-in variance estimator; see Remark 4.4 for details.

• To the best of our knowledge, this is the first work proving semiparametric efficiency for an
estimator of the finite dimensional parameter in a bundled parameter problem (where the
parametric and nonparametric components are intertwined; see [27]) where the nonparametric
estimate is shape constrained and non-smooth (in our case, the LLSE of m0 is a piecewise
affine function).

• Due to the imposed shape constraint on m0, the parametric submodels for the link function
are nonlinear and the nuisance tangent space is intractable. Also, no least favorable submodel
exists for the semiparametric model (1) for both the PLSE and the LLSE. This behavior can be
attributed to the fact that both the estimators lie on the boundary of the parameter space; see
[40] for a similar phenomenon. Furthermore, approximation to the least favorable submodels
are not well-behaved and require further approximations for both the PLSE and the LLSE.

• Compared to the existing procedures that require the choice of multiple tuning parameters
(see [11], [59], and [25] among others), our approaches require just one tuning parameter.
Further, as explained in Section 6.4, the choice of the tuning parameter is less crucial (for our
estimators) than the selection of the smoothing parameters for typical nonparametric problems.
Moreover, the performance of the estimators is robust to the choice of the tuning parameter
(see Section 6.4 and Figure 3 for an illustration and discussion), due to the assumed convexity
constraint.

• In contrast to the existing approaches in a single index model where it is typically assumed
that the index parameter belongs to a (known) bounded set in Rd and that the first coordinate
of the index parameter is fixed at 1 (see e.g., [41, 37]), we study the model under the (weaker)
assumption that θ0 ∈ Θ ⊂ Sd−1, a Stiefel manifold; see Hatcher [23, page 301].

• As is typical in single index models, the computation of the estimators is nontrivial: both the
LLSE and the PLSE are optimizers of non-convex problems (both the loss function and the
constraint set are non-convex) as the parameters m and θ are bundled together. We employ an
alternating minimization scheme to compute the estimators — if θ is fixed the LLSE is obtained
by solving a quadratic program with linear constraints, whereas for the PLSE, the estimator
of m can be shown to be a natural cubic spline; we update θ (with m fixed) by taking a small
step along a retraction on the Stiefel manifold Θ with a guarantee of descent (see Section 5
for the details; also see [58]). In the R package simest ([33]) we provide a fast and efficient
implementation of these algorithms; in particular, the computation of the convex constrained
spline in the PLSE is implemented in the C programming language. Since our optimization
problems are non-convex multiple initializations may be required to find the global minimum.
However, the assumed shape constraint appears to increase the size of the basin of attraction
for both the proposed estimators, thereby ameliorating the problem of multiple local minima.
Furthermore, both the LLSE and the PLSE have superior finite sample performance compared
to existing procedures, even when d is large (d ≈ 100).

Our exposition is organized as follows: in Section 2 we introduce some notation and formally
define the LLSE and the PLSE of (m0, θ0). In Sections 3.1 and 3.2 we state our assumptions, prove
consistency, and give rates of convergence of the LLSE and the PLSE, respectively. In Section 4 we use
these rates to prove efficiency and asymptotic normality of the PLSE and the LLSE of θ0. We discuss
algorithms to compute the proposed estimators in Section 5. In Section 6 we provide an extensive
simulation study and compare the finite sample performance of the proposed estimators with existing
methods in the literature. Section 7 provides a brief summary of the paper and discusses some open
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problems. Appendices A and B provide additional insights into the proofs of main Theorems 4.1 and
4.2, respectively. Appendix C provides further simulation studies, whereas Appendix D analyzes the
Boston housing data and car mileage data. Appendices E-H contain the proofs omitted from the
main text.

2. Estimation

2.1. Preliminaries

In what follows, we assume that we have i.i.d. data {(xi, yi)}1≤i≤n from (1). We start with some
notation. Let χ ⊂ Rd denote the support of X and define

D := {θ>x : x ∈ χ, θ ∈ Θ}.

Let C denote the class of real-valued convex functions on D, S denote the class of real-valued
functions on D that have an absolutely continuous first derivative, and LL denote the class of
uniformly Lipschitz real-valued functions from D with Lipschitz bound L. Now, define

R := S ∩ C and ML := LL ∩ C.

For any m ∈ S, we define

J2(m) :=

∫
D

{m′′(t)}2dt.

For any m ∈ML, let m′ denote the nondecreasing right derivative of the real-valued convex function
m. As m is a uniformly Lipschitz function with Lipschitz constant L, we can assume that |m′(t)| ≤ L,
for all t ∈ D. We use P to denote the probability of an event, E for the expectation of a random
quantity, and PX for the distribution of X. For g : χ→ R, define

‖g‖2 :=

∫
g2dPX and ‖g‖2n :=

1

n

n∑
i=1

g2(xi).

Let Pε,X denote the joint distribution of (ε,X) and let Pθ,m denote the joint distribution of (Y,X)
when Y := m(θ>X)+ ε, where ε is defined in (1). In particular, Pθ0,m0

denotes the joint distribution
of (Y,X) when X ∼ PX and (Y,X) satisfies (1). For any set I ⊆ Rp (p ≥ 1) and any function
g : I → R, we define ‖g‖∞ := supu∈I |g(u)|. Moreover, for I1 ( I, we define ‖g‖I1 := supu∈I1 |g(u)|.
For any differentiable function g : I ⊆ R→ R, the Sobolev norm is defined as

‖g‖SI = sup
t∈I
|g(t)|+ sup

t∈I
|g′(t)|.

The notation a . b is used to express that a is less than b up to a constant multiple. For any function
f : χ→ Rr, r ≥ 1, let {fi}1≤i≤r denote each of the components of f , i.e., f(x) = (f1(x), . . . , fr(x))

and fi : χ → R. We define ‖f‖2,Pθ0,m0
:=
√∑r

i=1 ‖fi‖2 and ‖f‖2,∞ :=
√∑r

i=1 ‖fi‖2∞. For any
function g : R→ R and θ ∈ Θ, we define

(g ◦ θ)(x) := g(θ>x), for all x ∈ χ.

We use standard empirical process theory notation. For any function f : R× χ→ R, θ ∈ Θ, and
m : R→ R, we define

Pθ,mf :=

∫
f(y, x)dPθ,m(y, x).
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Note that Pθ,mf can be a random variable if θ (or m) is random. Moreover, for any function
f : R× χ→ R, we define

Pnf :=
1

n

n∑
i=1

f(yi, xi) and Gnf :=
1√
n

n∑
i=1

[
f(yi, xi)− Pθ0,m0

f
]
.

The following lemma (proved in Appendix E.1) proves the identification of the composite popu-
lation parameter m0 ◦ θ0.

Lemma 2.1. Define Q(m, θ) := E[Y −m(θ>X)]2. Then

inf
{(m,θ): m◦θ∈L2(PX) and ‖m◦θ−m0◦θ0‖>δ}

Q(m, θ)−Q(m0, θ0) > δ2. (2.1)

Remark 2.1. (2.1) tells us that one can hope to consistently estimate (m0, θ0) by minimizing
Qn(m, θ), the sample version of Q(m, θ).

Note that identification of m0 ◦ θ0 does not guarantee that both m0 and θ0 are separately iden-
tifiable. [28] (also see [24]) finds sufficient conditions on the distribution/domain of X under which
θ0 and m0 can be separately identified when m0 is a non-constant almost everywhere differentiable
function2:

(A0) Assume that θ0,1 > 0 and for some integer d1 ∈ {1, 2, . . . , d}, X1, . . . , Xd1−1, and Xd1
have

continuous distributions and Xd1+1, . . . , Xd−1, and Xd be discrete random variables. Fur-
thermore, assume that for each θ ∈ Θ there exist an open interval I and constant vectors
c0, c1, . . . , cd−d1

∈ Rd−d1 such that

• cl − c0 for l ∈ {1, . . . , d− d1} are linearly independent,

• I ⊂
⋂d−d1

l=0

{
θ>x : x ∈ χ and (xd1+1, . . . xd) = cl

}
.

2.2. Lipschitz constrained least squares estimator (LLSE)

The Lipschitz constrained least squares estimator is defined as the minimizer of the sum of squared
errors

Qn(m, θ) :=
1

n

n∑
i=1

{yi −m(θ>xi)}2,

where m varies over the class of all convex L-Lipschitz functions ML and θ ∈ Θ ⊂ Rd. Formally,

(m̌n, θ̌n) := arg min
(m,θ)∈ML×Θ

Qn(m, θ). (2.2)

Note that if the true link function m0 is L-Lipschitz, then (m0, θ0) ∈ML×Θ. For notational conve-
nience, we suppress the dependence of (m̌n, θ̌n) on L. The following theorem, proved in Appendix E,
shows the existence of the minimizer in (2.2).

Theorem 2.1. (m̌n, θ̌n) ∈ML ×Θ. Moreover, m̌n is a piecewise affine convex function.

In Sections 3.1 and 4.3 we show that (m̌n, θ̌n) is a consistent estimator of (m0, θ0) and study its
asymptotic properties.

Remark 2.2. For every fixed θ, m(∈ML) 7→ Qn(m, θ) has a unique minimizer. The minimization
over the class of uniformly Lipschitz functions is a quadratic program with linear constraints and
can be computed easily; see Section 5.1.1.

2Note that all convex functions are almost everywhere differentiable.
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2.3. Penalized least squares estimator (PLSE)

With the goal of making the estimator of m smooth, we propose the following penalized loss,

Ln(m, θ;λ) := Qn(m, θ) + λ2J2(m), (λ 6= 0). (2.3)

The PLSE is now defined as

(m̂n, θ̂n) := arg min
(m,θ)∈R×Θ

Ln(m, θ;λ), (2.4)

where R denotes the class of all convex functions with absolutely continuous first derivative. As
in the case of the LLSE, we suppress the dependence of (m̂n, θ̂n) on the tuning parameter λ. The
following theorem, proved in Appendix E, shows that the joint minimizer is well-defined and that
m̂n is a natural cubic spline.

Theorem 2.2. (m̂n, θ̂n) ∈ R×Θ. Moreover, m̂n is a natural cubic spline.

In Sections 3.2 and 4.2 we study the asymptotic properties of (m̂n, θ̂n).

Remark 2.3. For every fixed θ, m(∈ R) 7→ Ln(m, θ;λ) has a unique minimizer. [13] propose
a damped Newton-type algorithm (with quadratic convergence) for finding the minimizer of this
constrained penalized loss function (also see Section 2 of [16]); see Section 5.1.2.

3. Asymptotic analysis

In Sections 3.1 and 3.2 we study the asymptotic behavior of the estimators proposed in Sections 2.2
and 2.3, respectively. When there is no scope for confusion, for the rest of the paper, we use (m̌, θ̌)

and (m̂, θ̂), to denote (m̌n, θ̌n) and (m̂n, θ̂n), respectively. We will now list the assumptions under
which we prove the consistency and study the rates of convergence of the LLSE and the PLSE.

(A1) The support of X, χ, is a compact subset of Rd and we assume that supx∈χ |x| ≤ T.
(A2) The error ε in model (1) is assumed to be uniformly sub-Gaussian, i.e., there exists K1 > 0

such that
K1E

[
exp(ε2/K1)− 1|X

]
≤ 1 a.e. X.

As stated in (1), we also assume that E(ε|X) = 0 a.e. X.
(A3) E[XX>{m′0(θ>0 X)}2] is a nonsingular matrix.
(A4) Var(X) is a positive definite matrix.

Define
D0 := {x>θ0 : x ∈ χ}, Dθ := {θ>x : x ∈ χ}.

(A5) There exists an r > 0, such that for every θ ∈ {η ∈ Θ : |η − θ0| ≤ r} the density of θ>X
with respect to the Lebesgue measure is bounded away from zero on Dθ and bounded above
by a finite constant (independent of θ). Furthermore, we assume that for every θ ∈ {η ∈ Θ :
|η − θ0| ≤ r} , Dθ ( D(r), where D(r) := ∪|θ−θ0|≤rDθ. For the rest of the paper we redefine

D := D(r).

The above assumptions deserve comments. (A1) implies that the support of the covariates is
bounded. As the classes of functions ML and R are not uniformly bounded, we need sub-Gaussian
assumption (A2) to provide control over the tail behavior of ε; see Chapter 8 of [50] for a discussion
on this. Observe that (A2) allows for heteroscedastic errors. Assumptions (A3) and (A4) are mild
distributional assumptions on the design. Assumption (A3) is similar to that in [41] and helps us
obtain the rates of convergence of estimators of m0 and θ0 separately from the rate of convergence
of the estimators of m0 ◦ θ0. Assumption (A4) guarantees that the predictors are not supported on
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a lower dimensional affine space. Assumption (A5) guarantees that D0, the true index set, does not
lie on the boundary of D. Assumption (A5) is needed to find rates of convergence of derivative of
the estimators of m0. If one of the continuous covariates with a nonzero index parameter (e.g., X1)
has a density that is bounded away from zero then assumption (A5) is satisfied.

3.1. Asymptotic analysis of the LLSE

In this subsection we study the asymptotic properties of the LLSE. The following assumption on
m0 is used to prove that m̌ is a consistent estimator of m0.

(L1) The unknown convex link function m0 is bounded by some constant M0(≥ 1) on D and is
uniformly Lipschitz with Lipschitz constant L0.

Now we give a sequence of theorems (proved in Appendix F) characterizing the asymptotic properties
of (m̌, θ̌). Theorem 3.1 below proves the consistency and provides an upper bound on the rate of
convergence of m̌ ◦ θ̌ to m0 ◦ θ0 under the L2(PX) norm.

Theorem 3.1. Assume that (A1)–(A4) and (L1) hold. If L ≥ L0, then the LLSE satisfies

‖m̌ ◦ θ̌ −m0 ◦ θ0‖ = Op(n
−2/5).

In the following two theorems, we prove consistency and find upper bounds on the rates of
convergence of θ̌ and m̌.

Theorem 3.2. Under the assumptions of Theorem 3.1, we have

|θ̌ − θ0| = op(1), ‖m̌−m0‖D0
= op(1), and ‖m̌′ −m′0‖C = op(1)

for any compact subset C in the interior of D0.

Theorem 3.3. Under the assumptions of Theorem 3.1, and the assumption that the conditional
distribution of X given θ>0 X is nondegenerate, the LLSE satisfies

|θ̌ − θ0| = Op(n
−2/5) and ‖m̌ ◦ θ0 −m0 ◦ θ0‖ = Op(n

−2/5).

Under additional smoothness assumptions on m0, we show that m̌′, the right derivative of m̌,
converges to m′0.

Theorem 3.4. Assume that (A1)–(A5) and (L1) hold. If m0 is twice continuously differentiable
on D0 and L ≥ L0, then we have that

‖m̌′ ◦ θ0 −m′0 ◦ θ0‖ = Op(n
−2/15) and

∫
D0

(m̌′(t)−m′0(t))2dt = Op(n
−2/15). (3.1)

In fact,
sup

θ∈{θ∈Θ: |θ0−θ|≤n−2/15}
‖m̌′ ◦ θ −m′0 ◦ θ‖ = Op(n

−2/15). (3.2)

In particular,
‖m̌′ ◦ θ̌ −m′0 ◦ θ̌‖ = Op(n

−2/15). (3.3)

The fact that m̌′ is a step function complicates the proof of the above result (given in Ap-
pendix F.6). In fact, the obtained rate need not be optimal, but is sufficient for our purposes (in
deriving the efficiency of θ̌; see Section 4.3).
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3.2. Asymptotic analysis of the PLSE

In this subsection we give results on the asymptotic properties of (m̂, θ̂). Note that we will study

(m̂, θ̂) for any random λ satisfying some rate conditions. The smoothing parameter λ can be chosen to

be a random variable. For the rest of the paper, we denote it by λ̂n. First, we need some smoothness
assumption on m0. We assume:

(P1) The unknown convex link function m0 is bounded by some constant M0 on D, has an absolutely
continuous first derivative, and satisfies J(m0) <∞.

(P2) λ̂n satisfies the rate conditions:

λ̂−1
n = Op(n

2/5) and λ̂n = op(n
−1/4). (3.4)

Our assumption (P1) on m0 is quite minimal — we essentially require m0 to have an absolutely
continuous derivative. Assumption (P2) allows our tuning parameter to be data dependent, as op-

posed to a sequence of constants. This allows for data driven choice of λ̂n, such as those obtained
from cross-validation. We will show that any choice of λ̂n satisfying ((P2)) will result in an asymp-
totically efficient estimator of θ0. Now in a sequence of theorems, we study the asymptotic properties
of (m̂, θ̂); first up is the consistency and rate of convergence of m̂ ◦ θ̂.

Theorem 3.5. Under assumptions (A0)–(A4) and (P1)–(P2), the PLSE satisfies

J(m̂) = Op(1), ‖m̂‖∞ = Op(1), and ‖m̂ ◦ θ̂ −m0 ◦ θ0‖ = Op(λ̂n).

We now establish the consistency and find the rates of convergence of m̂ (in the Sobolev norm)

and θ̂ (in the Euclidean norm).

Theorem 3.6. Under assumptions (A0)–(A4) and (P1)–(P2),

θ̂
P→ θ0, ‖m̂−m0‖SD0

P→ 0, and ‖m̂′‖∞ = Op(1).

Theorem 3.7. Under assumptions (A0)–(A4) and (P1)–(P2), and the assumption that the con-

ditional distribution of X given θ>0 X is nondegenerate, m̂ and θ̂ satisfy

|θ̂ − θ0| = Op(λ̂n) and ‖m̂ ◦ θ0 −m0 ◦ θ0‖ = Op(λ̂n).

The proofs of Theorems 3.5, 3.6, and 3.7 follow from proof of Theorems 2, 3, and 4 of [32],
respectively. Even though the estimator proposed in [32] is not constrained to be convex, the proofs
of [32] can be easily modified for the PLSE; see Appendix G.1 for a brief discussion.

The following theorem, proved in Appendix G.2, provides an upper bound on the rate of con-
vergence of the derivative of m̂. This upper bound will be useful for computing the asymptotic
distribution of θ̂ in Section 4.2.

Theorem 3.8. Under the assumptions of Theorem 3.7 and (A5), we have

‖m̂′ ◦ θ0 −m′0 ◦ θ0‖ = Op(λ̂
1/2
n ).

4. Semiparametric inference

The main results in this section show that θ̂ and θ̌ are
√
n-consistent and asymptotically normal (see

Sections 4.2 and 4.3, respectively). Moreover, both the estimators are shown to be semiparametrically
efficient for θ0 under homoscedastic errors. The asymptotic analysis of θ̌ is more involved (than that

of θ̂) as m̌ is a piecewise affine function and hence not differentiable everywhere (while m̂ is a smooth
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function). For this reason, we shall at first present the theory for θ̂ and then proceed to do the same
for θ̌.

Before going into the derivation of the limit law of the proposed estimators of θ0, we need to
introduce some further notation and regularity assumptions. Let pε,X denote the joint density (with
respect to some dominating measure µ on R × χ) of (ε,X). Let pε|X(·, x) and pX(·) denote the
corresponding conditional probability density of ε given X = x and the marginal density of X,
respectively. We define σ : χ→ R+ such that

σ2(x) := E(ε2|X = x).

(B1) Assume that m0 is three times differentiable and that m′′′0 is bounded on D. Furthermore, let
m0 be strongly convex on D, i.e., for all s ∈ D we have m′′0(s) ≥ δ0 > 0 for some fixed δ0.

For every θ ∈ Θ, define hθ : D → Rd as

hθ(u) := E[X|θ>X = u]. (4.1)

(B2) Assume that hθ(·) is twice continuously differentiable except possibly at a finite number of
points, and there exists a finite constant M̄ > 0 such that for every θ1, θ2 ∈ Θ,

‖hθ1 − hθ2‖∞ ≤ M̄ |θ1 − θ2|. (4.2)

(B3) Assume that pε|X(e, x) is differentiable with respect to e, ‖σ2(·)‖∞ <∞ and ‖1/σ2(·)‖∞ <∞.

Assumptions (B1)–(B3) deserve comments. The function hθ plays a crucial role in the construc-
tion of “least favorable” paths and is part of the efficient score function; see Appendix A.1. For the
functions in the path to be in R or ML, we need the smoothness assumption (B2) on hθ. We need
the lower and upper bounds on the variance function as we are using a non-weighted least squares
method to estimate parameters in a (possibly) heteroscedastic model.

4.1. Efficient score

First observe that the parameter space Θ is a closed subset of Rd and the interior of Θ in Rd is
the null set. Thus to compute the score for the model in (1), we construct a path on the sphere.
We use Rd−1 to parametrize the paths for model (1) on the sphere. For each η ∈ Rd−1, s ∈ R, and
|s| ≤ |η|−1, define the following path3 through θ (which lies on the unit sphere)

ζs(θ, η) :=
√

1− s2|η|2 θ + sHθη, (4.3)

where for every θ ∈ Θ, Hθ ∈ Rd×(d−1) satisfies the following properties:

(H1) ξ 7→ Hθξ are bijections from Rd−1 to the hyperplanes {x ∈ Rd : θ>x = 0}.
(H2) The columns of Hθ form an orthonormal basis for {x ∈ Rd : θ>x = 0}.
(H3) ‖Hθ −Hθ0‖2 ≤ |θ − θ0|.
(H4) For all distinct η, β ∈ Θ \ θ0, such that |η − θ0| ≤ 1/2 and |β − θ0| ≤ 1/2,

‖H>η −H>β ‖2 ≤ 8(1 + 8/
√

15)
|η − β|

|η − θ0|+ |β − θ0|
.

See Lemma 1 of [32] for a construction of a class of matrices satisfying the above properties.
In the following two subsections we attempt to calculate the efficient score for the model:

Y = m(θ>X) + ε, (4.4)

where m ∈ R or m ∈ ML. We will see that the efficient score is intractable when m is at the
boundary of R (or ML), but we can work with a ‘surrogate’ score.

3Here η defines the “direction” of the path.
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4.1.1. Efficient score when (m, θ) ∈ R×Θ

The log-likelihood of the model is

lθ,m(y, x) = log
[
pε|X

(
y −m(θ>x), x

)
pX(x)

]
.

For any η ∈ Sd−2, consider the path defined as s 7→ ζs(θ, η). Note that this is a valid path in Θ
through θ as ζ0(θ, η) = θ and ζs(θ, η) ∈ Θ for every s in some neighborhood of 0, as Hθη is orthogonal
to θ (by (H1)) and |Hθη| = |η| (by (H2)). The parametric score for this submodel is

∂lζs(θ,η),m(y, x)

∂s

∣∣∣∣
s=0

= η>Sθ,m(y, x),

where

Sθ,m(y, x) := −
p′ε|X

(
y −m(θ>x), x

)
pε|X

(
y −m(θ>x), x

)m′(θ>x)H>θ x. (4.5)

Remark 4.1. Note that under (4.1), we have ε = Y−m(θ>X). For every function b(e, x) : R×χ→ R
in L2(Pε,X) there exists an “equivalent” function b̃(y, x) : R×χ→ R in L2(Pθ,m) defined as b̃(y, x) :=
b(y −m(θ>x), x) ∈ L2(Pθ,m). In this section, we use the function arguments (e, x) (L2(Pε,X)) and
(y, x) (L2(Pθ,m)) interchangeably.

We now define a parametric submodel for the unknown nonparametric components:

ms,a(t) = m(t)− sa(t),

pε|X;s,b(e, x) = pε|X(e, x)(1 + sb(e, x)),

pX;s,q(x) = pX(x)(1 + sq(x)),

(4.6)

where s ∈ R, b : R×χ→ R is a bounded function such that E(b(ε,X)|X) = 0 and E(εb(ε,X)|X) = 0,
a ∈ S such that J(a) <∞ and ms,a ∈ R for every s in some neighborhood of 0 and q : χ→ R is a
bounded function such that E(q(X)) = 0. Consider the following parametric submodel of (4.1),

s 7→ (ζs(θ, η), ms,a, pε|X;s,b, pX;s,q(x)) (4.7)

where η ∈ Sd−2. Differentiating the log-likelihood of the submodel in (4.1.1) with respect to s, we
get that the score along the submodel in (4.1.1) is

η>Sθ,m(y, x) +
p′ε|X

(
y −m(θ>x), x

)
pε|X

(
y −m(θ>x), x

)a(θ>x) + b(y −m(θ>x), x) + q(x).

It is now easy to see that the nuisance tangent space, denoted by ΛS , of the model is

ΛS := lin
{
f ∈ L2(Pε,X) : f(e, x) =

p′ε|X
(
e, x
)

pε|X
(
e, x
)a(θ>x) + b(e, x) + q(x),

where a ∈ S, J(a) <∞ and ms,a ∈ R for small enough s,

b : R× χ→ R and q : χ→ R are bounded functions,E(εb(ε,X)|X) = 0,

E(b(ε,X)|X) = 0, and E(q(X)) = 0
}
,

where for any set A ⊆ L2(Pθ,m), linA denotes the closure in L2(Pθ,m) of the linear span of functions
in A; see [42] for a review of the construction of the nonparametric tangent set as a closure of scores
of parametric submodels of the nuisance parameter. Now observe that

lin{a ∈ S : J(a) <∞ and ms,a ∈ R for small enough s} ⊆ lin{a ∈ S : J(a) <∞} (4.8)
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and

lin{q : χ→ R| q is a bounded function and E(q(X)) = 0} = {q : χ→ R| q ∈ L2(PX) and E(q(X)) = 0}.

However, by Theorem A.1 of [19], we have that the class of infinitely often differentiable functions on D (a
bounded subset of R) is dense in L2(m), where m denotes the Lebesgue measure on D. Thus we have that

lin{a ∈ S : J(a) <∞} = {a : D → R| a ∈ L2(m)}

and lin{b : R × χ → R| b is a bounded function, E(εb(ε,X)|X) = E(b(ε,X)|X) = 0} = {b ∈ L2(Pε,X) :
E(εb(ε,X)|X) = E(b(ε,X)|X) = 0}. Thus, it is easy to see that under assumptions (A0)–(A4), (P1), and
(B1)–(B3), the nuisance tangent space of (1) satisfies

ΛS ⊆
{
f ∈ L2(Pε,X) : f(e, x) =

p′ε|X
(
e, x
)

pε|X
(
e, x
)a(θ>x) + b(e, x) + q(x), (4.9)

where a ∈ L2(m), b ∈ L2(Pε,X), q ∈ L2(PX),E(εb(ε,X)|X) = 0,

E(b(ε,X)|X) = 0, and E(q(X)) = 0
}

=: Λ0.

Note that ΛS and Λ0 differ as the set inclusion in (4.1.1) could be strict. However, it can be easily seen that,
if m is strongly convex then ΛS = Λ0.

Observe that the efficient score is the L2(Pθ,m) projection of Sθ,m(y, x) onto Λ⊥S , where Λ⊥S is the
orthogonal complement of ΛS in L2(Pθ,m). Newey and Stoker [43] and Ma and Zhu [38] show that

Λ⊥0 =
{
f ∈ L2(Pε,X) : f(e, x) =

[
g(x)− E

(
g(X)|θ>X = θ>x

)]
e, and g : χ→ R

}
⊆ Λ⊥S ,(4.10)

where Λ0 is defined in (4.1.1). Using calculations similar to those in Theorem 4.1 of [43] and Proposition 1
of [38], it can be shown that

Π(Sθ,m|Λ⊥0 )(y, x) =
1

σ2(x)
(y −m(θ>x))m′(θ>x)H>θ

{
x− E(σ−2(X)X|θ>X = θ>x)

E(σ−2(X)|θ>X = θ>x)

}
,

where for any f ∈ L2(Pθ,m), Π(f |Λ⊥0 ) denotes the L2(Pθ,m) projection of f onto the space Λ⊥0 .
However to compute the efficient score of (4.1) when m ∈ R, we need to evaluate Π(Sθ,m|Λ⊥S )(y, x).

And computation of Π(Sθ,m|Λ⊥S )(y, x) is infeasible due to the complicated nature of the set of parametric
submodels of m. Note that the efficient information (of (4.1) when m ∈ R) is denoted by

ISθ,m := Pθ,m
[
Π(Sθ,m|Λ⊥S )Π>(Sθ,m|Λ⊥S )

]
.

As Λ⊥0 ⊆ Λ⊥S (see (4.1.1)), we have

ISθ,m ≥ Pθ,m
[
Π(Sθ,m|Λ⊥0 )Π>(Sθ,m|Λ⊥0 )

]
=: I0

θ,m.

Moreover, we see that at the true parameter values (m0, θ0), as m0 is strongly convex,

Π(Sθ0,m0 |Λ
⊥
S ) ≡ Π(Sθ0,m0 |Λ

⊥
0 ) and ISθ0,m0

= I0
θ0,m0

.

Once the efficient score is calculated, one usually finds an efficient estimator of (m0, θ0) by solving the
efficient estimating equation, i.e., by finding a (m, θ) that satisfy

PnΠ(Sθ,m|Λ⊥S ) = 0. (4.11)

However since Π(Sθ,m|Λ⊥S ) is intractable when m is at the boundary ofR, we use Π(Sθ,m|Λ⊥0 ) as its surro-
gate. In Section 4.2, we show that (m̂, θ̂) approximately satisfies (4.1.1) with the surrogate score (see (4.1.1))
and this enables us to prove that θ̂ is an efficient estimator of θ0.

Lastly, it is important to note that (4.1.1), the efficient estimating equation, depends on σ2(x). Since in the
semiparametric model σ2(·) is left unspecified, it is unknown. Without additional assumptions, estimators of
σ2(·) have slow rates of convergence to σ2(·), especially if d is large. Thus if we substitute σ̂(·) in the efficient
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score equation, the solution of the modified score equation may lead to poor finite sample performance; see
Tsiatis [48, page 93].

To focus our presentation on the main concepts, briefly consider the case when σ2(·) ≡ σ2. In this
simplified case, we have

Π(Sθ,m|Λ⊥0 )(y, x) =
1

σ2
(y −m(θ>x))m′(θ>x)H>θ

{
x− hθ(θ>x)

}
,

where hθ(θ
>x) is defined in (4). Asymptotic normality and efficiency of θ̂ would follow if we can show that

(m̂, θ̂) satisfies the efficient score equation approximately, i.e.,

√
nPnΠ(Sθ̂,m̂|Λ

⊥
0 ) =

√
nPn

[
1

σ2
(Y − m̂(θ̂>X))H>θ̂ m̂

′(θ̂>X)
{
X − hθ̂(θ̂

>X)
}]

= op(1), (4.12)

and the class of functions Π(Sθ,m|Λ⊥0 ) indexed by (θ,m) in a “neighborhood” of (θ0,m0) satisfies some
technical conditions. We formalize these in Section 4.2 and Appendix A.1.

4.1.2. Efficient score when (m, θ) ∈ML ×Θ

As m ∈ ML need not be differentiable everywhere, showing that the underlying class of distributions is
differentiable in quadratic mean requires some careful analysis; in Remark H.1 (in the Appendix) we show
this for the model with Gaussian errors. We can further show that the parametric score in this model
satisfies (4.1.1), where m′ denotes the right derivative of m. Moreover, using parametric submodel as in
(4.1.1) and (4.1.1) and calculations similar to those in Section 4.1.1, it can be shown that the nuisance
tangent space, denoted by ΛL, of the model is

ΛL := lin
{
f ∈ L2(Pε,X) : f(e, x) =

p′e|X
(
e, x
)

pe|X
(
e, x
)a(θ>x) + b(e, x) + q(x),

where a ∈ L2(m),ms,a ∈ML for small enough s, b : R× χ→ R
and q : χ→ R are bounded functions, E(εb(ε,X)|X) = 0,

E(b(ε,X)|X) = 0, and E(q(X)) = 0
}
.

Now using arguments similar to those in Section 4.1.1, it can be shown that

ILθ,m ≥ Pθ,m
[
Π(Sθ,m|Λ⊥0 )Π>(Sθ,m|Λ⊥0 )

]
= I0

θ,m, (4.13)

where ILθ,m := Pθ,m
[
Π(Sθ,m|Λ⊥L )Π>(Sθ,m|Λ⊥L )

]
and Sθ,m(Y,X) and Λ0 are defined as in (4.1.1) and (4.1.1),

respectively. It can easily seen that ΛL ⊆ Λ0. In fact, if m is strongly convex then ΛL = Λ0. However for a
general (non-strongly convex) m, ΛL can be a strict subset of Λ0 and the inequality in (4.1.2) can be strict.

Remark 4.2. Assumptions (A0)–(A4) and (P1) (or (L1)) do not guarantee the existence of a least
favorable submodel for the model in (1), which can be the case when the estimators lie on the “boundary” of
the parameter set. Note that both the estimators m̂ and m̌ lie at the “boundary” of the respective parameter
sets. van der Vaart [51] introduced the notion of approximately least favorable subprovided model to get
around this difficulty. Under the additional assumptions (B1)–(B3), we find the approximately least favorable
subprovided model and show that Π(Sθ0,m0 |Λ⊥0 ) is the efficient score at (θ0,m0); see Appendix A.1 and
Theorem B.1 for the PLSE and the LLSE, respectively. However, the score corresponding to the approximately
least favorable subprovided model does not satisfy the conditions required in [51] for asymptotic normality
and efficiency of the finite dimensional parameter in semiparametric models. Thus, we find a well-behaved
approximation to the score such that (m̂, θ̂) (or (m̌, θ̌)) is an approximate zero of the corresponding estimating
equation; see (Step 2).

4.2. Efficiency of the PLSE

The following result gives the limiting distribution of the PLSE θ̂ and establishes its semiparametric efficiency
(under homoscedasticity).
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Theorem 4.1. Assume (X,Y ) satisfies (1) and assumptions (A0)–(A5), (B1)–(B3), and (P1)–(P2)
hold. Define the function

`θ,m(y, x) :=
(
y −m(θ>x)

)
m′(θ>x)H>θ

{
x− hθ(θ>x)

}
. (4.14)

If Vθ0,m0 := Pθ0,m0(`θ0,m0S
>
θ0,m0

) is a nonsingular matrix in R(d−1)×(d−1), then

√
n(θ̂ − θ0)

d→ N(0, Hθ0V
−1
θ0,m0

Iθ0,m0(Hθ0V
−1
θ0,m0

)>),

where Iθ0,m0 := Pθ0,m0(`θ0,m0`
>
θ0,m0

). If we further assume that σ2(·) ≡ σ2 and if the efficient information

matrix Iθ0,m0 is nonsingular, then θ̂ is an efficient estimator of θ0, i.e.,

√
n(θ̂ − θ0)

d→ N(0, σ4Hθ0I
−1
θ0,m0

H>θ0).

Remark 4.3. Observe that the variance of the limiting distribution (for both the heteroscedastic and ho-
moscedastic models) is singular. This can be attributed to the fact that Θ is a Stiefel manifold of dimension
Rd−1 and has an empty interior in Rd.

Remark 4.4 (Construction of confidence sets). Theorem 4.1 shows that (under homoscedastic errors) the
PLSE of θ0 is

√
n-consistent and asymptotically normal with covariance matrix:

Σ0 := σ4Hθ0Pθ0,m0 [`>θ0,m0
(Y,X)`>θ0,m0

(Y,X)]−1H>θ0 ,

where `θ0,m0 is defined in (4.1). This result can be used to create confidence sets for θ0. However since Σ0 is
unknown, we propose using the following plug-in estimator of Σ0

Σ̂ := σ̂4Hθ̂Pθ̂,m̂[`θ̂,m̂(Y,X)`>θ̂,m̂(Y,X)]−1H>θ̂ ,

where σ̂2 :=
∑n
i=1[yi − m̂(θ̂>xi)]

2/n. One can easily show that Theorems 3.5–3.8 imply consistency of Σ̂.
For example one can construct the following 1− 2α confidence interval for θ0,i[

θ̂i −
zα√
n

(
Σ̂i,i

)1/2

, θ̂i +
zα√
n

(
Σ̂i,i

)1/2
]
, (4.15)

where zα denotes the upper αth-quantile of the standard normal distribution; see Section 6.2 for a simulation
example. A similar analysis can be done for the LLSE using Theorem 4.2.

Proof. We give a sketch of the proof below. Some of the steps are proved in Appendix A.

Step 1 In Theorem A.1 we find an approximately least favorable subprovided model (see Definition 9.7 of [51])
with score

Sθ,m(x, y) = {y −m(θ>x)}H>θ
[
m′(θ>x)x+

∫ θ>x

s0

m′(u)k′(u)du−m′(θ>x)k(θ>x)

+m′0(s0)k(s0)−m′0(s0)hθ0(s0)
]

(4.16)

where k : D → Rd is defined as

k(u) := hθ0(u) +
m′0(u)

m′′0 (u)
h′θ0(u). (4.17)

We prove that there exists a constant M∗ <∞ such that

sup
u∈D

(|k(u)|+ |k′(u)|) ≤M∗. (4.18)

Moreover, (θ̂, m̂) satisfies the score equation approximately, i.e.,

√
nPnSθ̂,m̂ = op(1). (4.19)
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Furthermore, define ψθ,m : χ× R→ Rd−1 as

ψθ,m(x, y) := (y −m(θ>x))H>θ [m′(θ>x)x− hθ0(θ>x)m′0(θ>x)]. (4.20)

Although Sθ̂,m̂ satisfies the score equation approximately it is quite complicated to deal with. The
function ψθ,m is an approximation to Sθ,m and ψθ0,m0 = Sθ0,m0 = `θ0,m0 (see (4.1)). Furthermore,
ψθ,m is well-behaved in the sense that: ψθ̂,m̂ belongs to a Donsker class of functions (see (Step 4))
and ψθ̂,m̂ converges to ψθ0,m0 in the L2(Pθ0,m0) norm; see Lemma H.1.

Step 2 In Theorem A.2 we show that ψθ̂,m̂ is an empirical approximation of the score Sθ̂,m̂, i.e.,

√
nPn(Sθ̂,m̂ − ψθ̂,m̂) = op(1).

Thus in view of (Step 1) we have that θ̂ is an approximate zero of the function θ 7→ Pnψθ,m̂, i.e.,

√
nPnψθ̂,m̂ = op(1). (4.21)

Step 3 In Theorem A.3 we show that ψθ̂,m̂ is approximately unbiased in the sense of [51], i.e.,

√
nPθ̂,m0

ψθ̂,m̂ = op(1). (4.22)

Similar conditions have appeared before in proofs of asymptotic normality of maximum likelihood
estimators (e.g., see [26]) and the construction of efficient one-step estimators (see [30]). The above
condition essentially ensures that ψθ0,m̂ is a good “approximation” to ψθ0,m0 ; see Section 3 of [40] for
further discussion.

Step 4 We prove
Gn(ψθ̂,m̂ − ψθ0,m0) = op(1) (4.23)

in Theorem A.4. Furthermore, as ψθ0,m0 = `θ0,m0 , we have

Pθ0,m0 [ψθ0,m0 ] = 0.

Thus, by (Step 2) and (Step 3), we have that (Step 4) is equivalent to

√
n(Pθ̂,m0

− Pθ0,m0)ψθ̂,m̂ = Gn`θ0,m0 + op(1). (4.24)

Step 5 To complete the proof, it is now enough to show that

√
n(Pθ̂,m0

− Pθ0,m0)ψθ̂,m̂ =
√
nVθ0,m0H

>
θ0(θ̂ − θ0) + op(

√
n|θ̂ − θ0|). (4.25)

A proof of (Step 5) can be found in the proof of Theorem 6.20 in [51]; also see [32, Section 10.4]. Lemma H.1
in Appendix H.8 proves that (θ̂, m̂) satisfy the required conditions of Theorem 6.20 in [51]. Observe that
(Step 4) and (Step 5) imply

√
nVθ0,m0H

>
θ0(θ̂ − θ0) = Gn`θ0,m0 + op(1 +

√
n|θ̂ − θ0|),

⇒
√
nH>θ0(θ̂ − θ0) = V −1

θ0,m0
Gn`θ0,m0 + op(1)

d→ V −1
θ0,m0

N(0, Iθ0,m0).

The proof of the theorem will be complete, if we can show that

√
n(θ̂ − θ0) = Hθ0

√
nH>θ0(θ̂ − θ0) + op(1),

the proof of which can be found in Step 4 of Theorem 5 in [32].
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4.3. Efficiency of the LLSE

In this section we show that θ̌ is an asymptotically normal efficient estimator of θ0. The following theorem
is similar to Theorem 4.1.

Theorem 4.2. Assume (X,Y ) satisfies (1) and assumptions (A0)–(A5), (B1)–(B3), and (L1) hold. Let
`θ,m, Vθ0,m0 , and Iθ0,m0 be as defined in Theorem 4.1. If Vθ0,m0 is a nonsingular matrix in R(d−1)×(d−1),
then √

n(θ̌ − θ0)
d→ N(0, Hθ0V

−1
θ0,m0

Iθ0,m0(Hθ0V
−1
θ0,m0

)>).

If we further assume that σ2(X) ≡ σ2 and if the efficient information matrix (Iθ0,m0) is nonsingular, then
θ̌ is an efficient estimator of θ0, i.e.,

√
n(θ̌ − θ0)

d→ N(0, σ4Hθ0I
−1
θ0,m0

H>θ0).

In Appendix B, we prove Theorem 4.2 via a series of results by showing that (θ̌, m̌) satisfy the conditions
in Step 1–Step 5 of Theorem 4.1. These proofs/verifications of Step 1–Step 4 for the LLSE are more
complicated (when compared to that of the PLSE) as m̌ is not differentiable everywhere.

5. Computational algorithms

In this section we describe algorithms for computing the estimators defined in (2.2) and (2.3). As mentioned
in Remarks 2.2 and 2.3, in each of these cases, the minimization of the desired loss function for a fixed
θ is a convex optimization problem; see Sections 5.1.1 and 5.1.2 below for more details. With the above
observation in mind, we propose the following general alternating minimization algorithm to compute the
proposed estimators. The algorithms discussed here are implemented in our R package simest [33].

We first introduce some notation. Let (m, θ) 7→ C(m, θ) denote a nonnegative criterion function, e.g.,
C(m, θ) can be Ln(m, θ;λ) or Qn(m, θ). And suppose, we are interested in finding the minimizer of C(m, θ)
over (m, θ) ∈ A×Θ, e.g., in our case A can be R or ML. For every θ ∈ Θ, let us define

mθ,A := arg min
m∈A

C(m, θ). (5.1)

Here, we have assumed that for every θ ∈ Θ, m 7→ C(m, θ) has a unique minimizer in A and mθ,A exists.
The general alternating scheme is described in Algorithm 1.

Algorithm 1: Alternating minimization algorithm

Input: Initialize θ at θ(0).
Output: (m∗, θ∗) := arg min(m,θ)∈A×Θ C(m, θ).

1 At iteration k ≥ 0, compute m(k) := mθ(k),A = arg minm∈A C(m, θ(k)).

2 Find a point θ(k+1) ∈ Θ such that

C(m(k), θ(k+1)) ≤ C(m(k), θ(k)).

In particular, one can take θ(k+1) as a minimizer of θ 7→ C(m(k), θ).
3 Repeat steps 1 and 2 until convergence.

Note that, our assumptions on C does not imply that θ 7→ C(mθ,A, θ) is a convex function. In fact in our
examples the “profiled” criterion function θ 7→ C(mθ,A, θ) is not convex. Thus the algorithm discussed above
is not guaranteed to converge to a global minimizer. However, the algorithm guarantees that the criterion
value is nonincreasing over iterations, i.e., C(m(k+1), θ(k+1)) ≤ C(m(k), θ(k)) for all k ≥ 0. In Section 5.1.1
we discuss an algorithm to compute mθ,ML , when C(m, θ) = Qn(m, θ) while in Section 5.1.2 we discuss the
computation of mθ,R when C(m, θ) = Ln(m, θ;λ).
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5.1. Strategy for estimating the link function

In the following subsections we describe algorithms to compute mθ,R and mθ,ML as defined in (5). We use
the following notation. Fix an arbitrary θ ∈ Θ. Let (t1, t2, · · · , tn) represent the vector (θ>x1, · · · , θ>xn)
with sorted entries so that t1 < t2 < · · · < tn; in Remark 5.1 we discuss a solution for scenarios with ties.
Without loss of generality, let y := (y1, y2, . . . , yn) represent the vector of responses corresponding to the
sorted ti.

5.1.1. Lipschitz constrained least squares (LLSE)

When C(m, θ) = Qn(m, θ), we consider the problem of minimizing
∑n
i=1{yi − m(ti)}2 over m ∈ ML.

In the following we use m to denote the function t 7→ m(t) as well as the the vector (m(t1), . . . ,m(tn))
interchangeably. Consider the general problem of minimizing

(y −m)Q(y −m) = |Q1/2(y −m)|2,

for some positive definite matrix Q. In most cases Q is the n× n identity matrix; see Remark 5.1 for other
possible scenarios. Here Q1/2 denotes the square root of the matrix Q which can be obtained by Cholesky
factorization. Observe that any minimizer can only be uniquely determined at the points ti and so we define
the optimum to be the piecewise linear interpolation of {mi}1≤i≤n with possible kinks only at {ti}1≤i≤n.
The Lipschitz constraint along with convexity (i.e., m ∈ ML) reduces to imposing the following linear
constraints:

−L ≤ m2 −m1

t2 − t1
≤ m3 −m2

t3 − t2
≤ · · · ≤ mn −mn−1

tn − tn−1
≤ L. (5.2)

In particular, the minimization problem at hand can be represented as

minimize |Q1/2(m− y)|2 subject to Am ≥ b, (5.3)

for A and b written so as to represent (5.1.1).
In the following we reduce the above optimization problem to a nonnegative least squares problem, which

can then be solved efficiently using the nnls package in R. Define z := Q1/2(m−y), so that m = Q−1/2z+y.
Using this, we have Am ≥ b if and only if AQ−1/2z ≥ b−Ay. Thus, (5.1.1) is equivalent to

minimize |z|2 subject to Gz ≥ h, (5.4)

where G := AQ−1/2 and h := b−Ay. An equivalent formulation is

minimize |Eu− `|, over u � 0, where E :=

[
G>

h>

]
and ` := [0, . . . , 0, 1]> ∈ Rn+1. (5.5)

Here � represents coordinate-wise inequality. A proof of this equivalence can be found in Lawson and Hanson
[34, page 165]; see [8] for an algorithm to solve (5.1.1).

If û denotes the solution of (5.1.1) then the solution of (5.1.1) is given as follows. Define r := Eû−`.Then
ẑ, the minimizer of (5.1.1), is given by ẑ := (−r1/rn+1, . . . ,−rn/rn+1)>4. Hence the solution to (5.1.1) is
given by ŷ = Q−1/2ẑ + y.

5.1.2. Penalized least squares (PLSE)

When C(m, θ) = Ln(m, θ;λ), we need to minimize the objective function

1

n

n∑
i=1

(yi −m(ti))
2 + λ2

∫
{m′′(t)}2dt.

As in Section 5.1.2, consider the general objective function

(y −m)>Q(y −m) + λ2

∫
{m′′(t)}2dt,

4Note that (5.1.1) is a Least Distance Programming (LDP) problem and Lawson and Hanson [34, page 167] prove
that rn+1 cannot be zero in an LDP with a feasible constraint set.
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to be minimized over R and Q is any positive definite matrix. As in Section 5.1.1, we use m to denote
the function t 7→ m(t) as well as the the vector (m(t1), . . . ,m(tn)) interchangeably. Theorem 1 of [16]
gives the characterization of the minimizer over R. They show that m̂ := arg minm∈R(y −m)>Q(y −m) +
λ2
∫
{m′′(t)}2dt, will satisfy

m̂′′(t) = max{α̂>M(t), 0} and m̂ = y − λ2Q−1K>α̂.

Here M(t) := (M1(t),M2(t), . . . ,Mn−2(t)) and {Mi(·)}1≤i≤n−2 are the real-valued functions defined as

Mi(x) :=

{
1

ti+2−ti
· x−ti
ti+1−ti

if ti ≤ x < ti+1,
1

ti+2−ti
· ti+2−x
ti+2−ti+1

if ti+1 ≤ x < ti+2,

and α̂ is a solution of the following equation:

[T (α) + λ2KQ−1K>]α = Ky, (5.6)

where K is a (n− 2)× n banded matrix containing second order divided differences

Ki,i =
1

(ti+1 − ti)(ti+2 − ti)
, Ki,i+1 = − 1

(ti+2 − ti+1)(ti+1 − ti)
,

Ki,i+2 =
1

(ti+2 − ti)(ti+2 − ti+1)
.

(all the other entries of K are zeros) and the matrix T (α) is defined by

T (α) :=

∫
M(t)M(t)>1{α>M(t)>0}dt.

We use the initial value of α as αi = (ti+2 − ti)/4 based on empirical evidence suggested by [16] and
use (5.1.2) repeatedly until convergence. This algorithm was shown to have quadratic convergence in [13].
In the simest package, we implement the above algorithm in C.

Remark 5.1 (Pre-binning). The matrices involved in all these algorithms have entries depending on frac-
tions such as 1/(ti+1− ti). Thus if there are ties in {ti}1≤i≤n, then the matrix K is incomputable. Moreover,
if ti+1 − ti is very small, then the fractions can force the matrices involved to be ill-conditioned (for the
purposes of numerical calculations). Thus to avoid ill-conditioning of these matrices, in practice one might
have to pre-bin the data which leads to a diagonal matrix Q with different diagonal entries. One common
method of pre-binning the data is to take the means of all data points for which the ti’s are close. To be more
precise, if we choose a tolerance of η = 10−6 and suppose that 0 < t2− t1 < t3− t1 < η, then we combine the
data points (t1, y1), (t2, y2), (t3, y3) by taking their mean and set Q1,1 = 3; the total number of data points is
reduced to n− 2.

5.2. Algorithm for computing θ(k+1)

In this subsection we describe the algorithm to find the minimizer θ(k+1) of C(m(k), θ) over θ ∈ Θ. Recall
that Θ is defined to be the “positive” half of the unit sphere, a d− 1 dimensional manifold in Rd. Treating
this problem as minimization over a manifold, one can apply a gradient descent algorithm by moving along a
geodesic as done in a similar context in [46, Section 3.3]. But it is computationally expensive to move along
a geodesic and so we follow the approach of [58] wherein we move along a retraction with the guarantee
of descent. To explain the approach of [58], let us denote the objective function by f(θ), i.e., in our case
f(θ) = C(m(k), θ). Let α ∈ Θ be an initial guess for θ(k+1) and define

g := ∇f(α) ∈ Rd and A := gα> − αg>,

where ∇ denotes the gradient operator. Next we choose the path τ 7→ θ(τ), where

θ(τ) :=
(
I +

τ

2
A
)−1 (

I − τ

2
A
)
α =

1 + τ2

4
[(α>g)2 − |g|2] + τα>g

1− τ2(α>g)2

4
+ τ2|g|2

4

α− τ

1− τ2(α>g)2

4
+ τ2|g|2

4

g,
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for τ in a small neighborhood of 0, and try to find a choice of τ such that f(θ(τ)) is as much smaller than
f(α) as possible; see step 2 of Algorithm 1. It is easy to verify that

∂f(θ(τ))

∂τ

∣∣∣∣
τ=0

≤ 0;

see Lemma 3 of [58]. This implies that τ 7→ f(θ(τ)) is a nonincreasing function in a neighborhood of 0.
Recall that for every η ∈ Θ, η1 (the first coordinate of η) is nonnegative. For θ(τ) to lie in Θ, τ has to satisfy
the following inequality

τ2

4
[(α>g)2 − |g|2] + τ

(
α>g − g1

α1

)
+ 1 ≥ 0, (5.7)

where g1 and α1 represent the first coordinates of the vectors g and α, respectively. This implies that a valid
choice of τ must lie between the zeros of the quadratic expression on the left hand side of (5.2), given by

2

(
α>g − g1/α1

)
±
√

(α>g − g1/α1)2 + |g|2 − (α>g)2

|g|2 − (α>g)2
.

Note that this interval always contains zero. Now we can perform a simple line search for τ 7→ f(θ(τ)), where
τ is in the above mentioned interval, to find θ(k+1). We implement this step in the R package simest.

6. Simulation Study

In this section we illustrate the finite sample performance of the two estimators proposed in this paper;
see (2.3) and (2.2). We also compare their performance with other existing estimators, namely, the EFM

estimator (the estimating function method; see [11]), the EDR estimator (effective dimension reduction;
see [25]), and the estimator proposed in [32] with the tuning parameter chosen by generalized cross-validation
(see [55] and [32]; we denote this method by SmoothGCV). For the convex constrained estimators, we use
CvxLip to denote the LLSE, and CvxPen to denote the PLSE (to compute CvxPen we take λ̂n = 0.1×n−2/5).

6.1. Another convex constrained estimator

Alongside these existing estimators, we also numerically study another natural estimator under the convexity
shape constraint — the convex LSE — denoted by CvxLSE below. This estimator is obtained by minimizing
the sum of squared errors subject to the convexity constraint. Formally, the CvxLSE is defined as

(m†n, θ
†
n) := arg min

(m,θ)∈C×Θ

Qn(m, θ). (6.1)

The convexity constraint (i.e., m ∈ C) can be represented by the following set of n− 2 linear constraints:

m2 −m1

t2 − t1
≤ m3 −m2

t3 − t2
≤ · · · ≤ mn −mn−1

tn − tn−1
,

where we use the notation of Section 5. Similar to the LLSE, this reduces the computation of m (for a given
θ) to solving a quadratic program with linear inequalities; see Section 5.1.1. However, theoretically analyzing
the performance of this estimator is difficult, because of various reasons; see Section 7 for a brief discussion.
In our simulation studies we observe that the performance of CvxLSE is very similar to that of CvxLip.

In what follows, we will use (m̃, θ̃) to denote a generic estimator that will help us describe the quantities
in the plots and tables; e.g., we use ‖m̃ ◦ θ̃ − m0 ◦ θ0‖n = [ 1

n

∑n
i=1(m̃(θ̃>xi) − m0(θ>0 xi))

2]1/2 to denote

the in-sample root mean squared estimation error of (m̃, θ̃), for all the estimators considered. From the
simulation study it is easy to conclude that the proposed estimators have superior finite sample performance
in all sampling scenarios considered.
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Fig 1. QQ-plots for
√
n(θ̃1− θ0,1) (over 800 replications) based on i.i.d. samples from (6.2) for n ∈ {100, 500, 1000}.

The solid black line corresponds to the Y = X line. Left panel: CvxPen; right panel: CvxLSE.

6.2. Verifying the asymptotics

Theorems 4.1 and 4.2 show that (under homoscedastic error) both CvxLip and CvxPen are
√
n-consistent

and asymptotically normal with the following covariance matrix:

Σ0 := σ4Hθ0Pθ0,m0 [`θ0,m0(Y,X)`>θ0,m0
(Y,X)]−1H>θ0 ,

where `θ0,m0(y, x) =
(
y − m0(θ>0 x)

)
m′0(θ>0 x)H>θ

{
x− E[X|θ>0 X = θ>0 x]

}
and σ2 = E(ε2). In this section,

we give a simulation example that corroborates our theoretical results. We generate i.i.d. samples from the
following model:

Y = (θ>0 X)2 +N(0, .32), where X ∼ Uniform[−1, 1]3 and θ0 = 13/
√

3. (6.2)

In Figure 1, on the y-axis we have the empirical quantiles of
√
n(θ̃1 − θ0,1) and on the x-axis we have the

theoretical quantiles of the Gaussian distribution with mean 0 and variance Σ0
1,1. For the model (6.2), we

computed Σ0
1,1 to be 0.22.

In Remark 4.4, we describe a simple plug-in procedure to create confidence sets for θ0; see (4.4). In
Table 1, we present empirical coverages (from 800 replications) of 95% confidence intervals based on CvxLip

and CvxPen as the sample size increases from 50 to 2000.

Table 1
The estimated coverage probabilities and average lengths (obtained from 800 replicates) of nominal 95% confidence

intervals for the first coordinate of θ0 for the model described in Section 6.2.

n
CvxLip CvxPen

Coverage Avg Length Coverage Avg Length

50 0.92 0.30 0.94 0.29
100 0.91 0.18 0.92 0.19
200 0.92 0.13 0.93 0.13
500 0.94 0.08 0.92 0.08

1000 0.93 0.06 0.92 0.06
2000 0.92 0.04 0.93 0.04
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Fig 2. Boxplots of
∑d
i=1 |θ̃i−θ0,i|/d (over 500 replications) based on 200 observations from Example 2 in Section 6.3

for dimensions 10, 25, 50, and 100, shown in the top-left, the top-right, the bottom-left, and the bottom-right panels,
respectively. The bottom-right panel doesn’t include EDR as the R-package EDR does not allow for d = 100.

6.3. Increasing dimension

To illustrate the behavior/performance of the estimators as d grows, we consider the following single index
model:

Y = (θ>0 X)2 +N(0, .22), where θ0 = (2, 1,0d−2)>/
√

5 and X ∈ Rd ∼ Uniform[−1, 5]d.

In each replication we observe n = 200 i.i.d. samples from the model. It is easy to see that the performance
of all the estimators worsen as the dimension increases from 10 to 100 and EDR has the worst overall
performance; see Figure 2. However when d = 100, the convex constrained estimators have significantly
better performance. This simulation scenario is similar to the one considered in Example 3 of Section 3.2
in [11].

6.4. Choice of λn and L

In this subsection, we consider a simple simulation experiment to demonstrate that the finite sample per-
formances of both the PLSE and LLSE are robust to the choice of tuning parameter. We generate an
i.i.d. sample (of size n = 500) from the following model:

Y = (θ>0 X)2 +N(0, .12), where X ∼ Uniform[−1, 1]4 and θ0 = 14/2. (6.3)

Observe that for the above model, we have −2 ≤ θ>X ≤ 2 and L0 := supt∈[−2,2] m
′
0(t) = 4 as m0(t) = t2.

To compare the performances of the proposed estimators as their tuning parameter change, we vary λ̂n from
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exp(−7/2)× n−2/5 to n−2/5 and vary L from 3 (< L0) to 10. Figure 3 shows box plots of 1
d

∑d
i=1 |θ̃i − θ0,i|

for both CvxPen and CvxLip as their respective tuning parameter varies. The plots clearly show that the
performance of both the estimators are not significantly affected by the particular choice of the tuning
parameter. The observed robustness in the behavior of the estimators can be attributed to the stability
endowed by the convexity constraint.
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Fig 3. Box plots of 1
4

∑4
i=1 |θ̃i − θ0,i| (over 1000 replications) for the model (6.4) (d = 4 and n = 500) as the tuning

parameter varies. Left panel: CvxPen when λ̂n = exp(−T/2) × n−2/5 for T = {0, 0.7, 1, 2, 5, 7}; right panel: CvxLip

for L = {3, 4, 5, 7, 10} and CvxLSE.

7. Discussion

In this paper we have proposed and studied two estimators in a convex single index model, namely the LLSE
and the PLSE. Both the estimators are optimal — the function estimates are minimax rate optimal and the
estimates of the index parameter are semiparametrically efficient. We have also introduced another natural
estimator in this model, namely the convex LSE (see (6.1)), and have investigated its performance in our
simulation studies. However, a thorough study of the theoretical properties of the convex LSE is difficult,
and an open research problem. The difficulty can be attributed to the lack of our understanding of the
behavior of m†n and its right-derivative near the “boundary” of the covariate domain. In single index models
inconsistency of m†n at the boundary affects the estimation of θ0, as θ0 and m0 are intertwined/bundled (as
opposed to a partially linear model). Even in the simple univariate convex regression problem there are no
existing upper bounds on the value of the LSE at the boundary. It is worth noting that in the recent paper [3]
where the authors study the monotone single index model the unboundedness of LSE of the link function at
the boundary turned out to be a major hurdle in deriving the asymptotic properties of the estimator (even
though there exists closed form expressions for the LSE).

Appendix A: Proof of Theorem 4.1

In this section we give a detailed discussion of Step 1–Step 5 in the proof of Theorem 4.1.

A.1. An approximately least favorable subprovided path [Step 1]

We now construct a path whose score for any (θ,m) ∈ Θ × {g ∈ R| J(g) < ∞} is Sθ,m. Before proceeding
further, for notational convenience, let us define

R∗ := {g ∈ R| J(g) <∞}
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Recall (4.1). For any (θ,m) ∈ Θ×R∗, let t 7→ (ζt(θ, η), ξt(·; θ, η,m)) denote a path in Θ×R∗ through (θ,m),
i.e., (ζ0(θ, η), ξ0(·; θ, η,m)) = (θ,m). Recall that (θ̂, m̂) minimizes Ln(m, θ; λ̂n). Hence, for every η ∈ Sd−2,
the function t 7→ Ln(ξt(·; θ̂, η, m̂), ζt(θ̂, η); λ̂n) is minimized at t = 0. In particular, if the above function is
differentiable in a neighborhood of 0, then

∂

∂t
Ln(ξt(·; θ̂, η, m̂), ζt(θ̂, η); λ̂n)

∣∣∣∣
t=0

= 0. (A.1)

Moreover if (ζt(θ̂, η), ξt(·; θ̂, η, m̂)) satisfies

∂

∂t

(
y − ξt(ζt(θ̂, η)>x; θ̂, η, m̂)

)2∣∣∣∣
t=0

= η>Sθ̂,m̂(x, y),

∂

∂t
J2(ξt(·; θ̂, η, m̂))

∣∣∣∣
t=0

= Op(1), ∀η ∈ Sd−2,

(A.2)

then we obtain (Step 1) as λ̂2
n = op(n

−1/2); see assumption (P2).
Observe that θ̂ is a consistent estimator of θ0 and we are concerned with constructing the function

t 7→ Ln(ξt(·; θ̂, η, m̂), ζt(θ̂, η); λ̂n), a path through (θ̂, m̂). As we know that θ̂ and m̂ are consistent estimators
of θ0 and m0, it suffices to construct a similar path through any (θ,m) ∈ {Θ∩Bθ0(r)}×R∗ that satisfies the
above requirements (r is as defined in (A5)). For any set A ⊂ R and any ν > 0, let us define Aν := ∪a∈ABa(ν)
and let ∂A denote the boundary of A. Fix ν > 0. By assumption (A5), for every θ ∈ Θ ∩Bθ0(r), η ∈ Sd−2,
and t ∈ R sufficiently close to zero, there exists a strictly increasing function φθ,η,t : Dν → R with

φθ,η,t(u) = u, u ∈ Dθ,

φθ,η,t(u+ (θ − ζt(θ, η))>k(u)) = u, u ∈ ∂D,
(A.3)

where ζt(θ, η) and k(u) are defined in (4.1) and (Step 1), respectively. Furthermore, we can ensure that
u ∈ D 7→ φθ,η,t(u) is infinitely differentiable and that ∂

∂t
φθ,η,t

∣∣
t=0

exists. Note that φθ,η,t(D) = D. Moreover,

u 7→ φθ,η,t(u) cannot be the identity function for t 6= 0 if (θ − ζt(θ, η))>k(u) 6= 0 for some u ∈ ∂D. Let us
now define

kt(u; θ, η,m) := m′ ◦ φθ,η,t(u+ (θ − ζt(θ, η))>k(u)).

Observe that t 7→ kt(u; θ, η,m) is a path through m′. Thus we can integrate kt(u; θ, η,m) to construct a
path through m. Let us define

ξt(u; θ, η,m) :=

∫ u

s0

kt(y; θ, η,m)dy + (ζt(θ, η)− θ)>
[
(m′0(s0)−m′(s0))k(s0)−m′0(s0)hθ0(s0)

]
+m(s0),(A.4)

where hθ0 is defined in (4), k is defined in (Step 1), and s0 ∈
⋂
θ∈Bθ0 (r) Dθ where r satisfies assumption (A5).

The function φθ,η,t helps us control the partial derivative in the second equation of (A.1). In the following
theorem, proved in Appendix H.1, we show that (ζt(θ̂, η), ξt(·; θ̂, η, m̂)) is a path through (θ̂, m̂) and satisfies
(A.1) and (A.1). Here η ∈ Sd−2 is the “direction” for ζt(θ, η) and (η, k(u)) defines the “direction” for the
path ξt(·; θ, η,m).

Theorem A.1 (Step 1). Under the assumptions of Theorem 4.1, (ζt(θ̂, η), ξt(·; θ̂, η, m̂)) is a valid para-
metric submodel, i.e., (ζt(θ̂, η), ξt(·; θ̂, η, m̂)) ∈ Θ × R∗ for all t in some neighborhood of 0. Moreover,
(ζt(θ̂, η), ξt(·; θ̂, η, m̂)) satisfies (A.1), t 7→ Ln(ξt(·; θ̂, η, m̂), ζt(θ̂, η); λ̂n) is differentiable at 0, Sθ̂,m̂ satisfies
(Step 1), there exists M∗ <∞ which satisfies (Step 1), and Sθ0,m0 = `θ0,m0 .

A.2. A well-behaved approximation [Step 2]

We observe that Sθ,m (the score for the approximately least favorable subprovided path) does not satisfy
the conditions required by [51]. In this section we introduce ψθ,m, a well behaved “approximation” of Sθ,m.
Note that ψθ,m is not a score of (4.1) for any particular path. However, ψθ,m is well-behaved in the sense
that: (1) ψθ̂,m̂ belongs to a Donsker class of functions (see (Step 4)), (2) ψθ0,m0 = `θ0,m0 = Sθ0,m0 , and
(3) ψθ̂,m̂ converges to ψθ0,m0 in the L2(Pθ0,m0) norm; see Lemma H.1. The following theorem proves that
Sθ̂,m̂ and ψθ̂,m̂ are “approximately” the same.
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Theorem A.2 (Step 2). Under the assumptions of Theorem 4.1, we have
√
nPn(Sθ̂,m̂ − ψθ̂,m̂) = op(1). (A.5)

We break the proof of this theorem into a number of lemmas proved in Appendix H. In the following
lemma, proved in Appendix H.2, we find an upper bound for the left hand side of (A.2).

Lemma A.1. Under model (1), we have

|
√
nPn(Sθ̂,m̂ − ψθ̂,m̂)| ≤ |Gn

[
(m0 ◦ θ0 − m̂ ◦ θ0)Uθ̂,m̂

]
|+ |Gn[(m̂ ◦ θ0 − m̂ ◦ θ̂)Uθ̂,m̂|+ |

√
nPnεUθ̂,m̂|

+
√
n
∣∣Pθ0,m0 [(m̂ ◦ θ0 − m̂ ◦ θ̂)Uθ̂,m̂]

∣∣+
√
n
∣∣Pθ0,m0

[
(m0 ◦ θ0 − m̂ ◦ θ0)Uθ̂,m̂

]∣∣,(A.6)

where Uθ,m : χ→ Rd−1 is defined as

Uθ,m(x) := H>θ

[∫ θ>x

s0

[
m′(u)−m′0(u)

]
k′(u)du+ (m0

′(θ>x)−m′(θ>x))k(θ>x)

]
. (A.7)

Note that the proof of Theorem A.2 will be complete if we show that each of the terms on the right
hand side of (A.1) converges to 0 in probability. We begin with some definitions. Let an be a sequence of
real numbers such that an →∞ as n→∞ and an‖m̂−m0‖SD0

= op(1). Note that we can always find such
a sequence an, as by Theorem 3.6 we have ‖m̂−m0‖SD0

= op(1). For all n ∈ N, define5

Cm∗M1,M2,M3
:=
{
m ∈ R : ‖m‖∞ ≤M1, ‖m′‖∞ ≤M2, and J(m) ≤M3

}
,

CmM1,M2,M3
(n) :=

{
m ∈ Cm∗M1,M2,M3

: an‖m−m0‖SD0
≤ 1
}
,

C∗M1,M2,M3
:=
{

(θ,m) : θ ∈ Θ ∩Bθ0(1/2) and m ∈ Cm∗M1,M2,M3

}
,

Cθ(n) :=
{
θ ∈ Θ ∩Bθ0(1/2) : λ̂−1/2

n |θ − θ0| ≤ 1
}
,

CM1,M2,M3(n) :=
{

(θ,m) : θ ∈ Cθ(n) and m ∈ CmM1,M2,M3
(n)
}
,

W∗M1,M2,M3
:=
{
Uθ,m : (θ,m) ∈ C∗M1,M2,M3

}
,

WM1,M2,M3(n) := {Uθ,m : (θ,m) ∈ CM1,M2,M3(n)} .

(A.8)

As a first step in proving that each term on the right hand side of (A.1) converges to 0, we analyze the
classes of functions WM1,M2,M3(n) and W∗M1,M2,M3

. In the following lemma, proved in Appendix H.3, we
find the bracketing numbers and envelope functions for the classes. The result will be used in some of the
remaining proofs.

Lemma A.2. Fix M1,M2,M3, and δ > 0. Then WM1,M2,M3(n) is a Donsker class and

sup
(θ,m)∈CM1,M2,M3

(n)

‖Uθ,m‖2,∞ ≤WM1,M2,M3(n) := M∗
√
d− 1

(
2(M3 +M2)T λ̂1/4

n + (T + 1)
1

an

)
, (A.9)

where M∗ is defined in (Step 1) and ‖ · ‖2,∞ is defined in Section 2.1. Moreover, for some c depending
only on d,M1,M2, and M3, we have the following upper bound on the bracketing entropy of WM1,M2,M3(n):

N[ ](ε,WM1,M2,M3(n), ‖ · ‖2,Pθ0,m0
) ≤ N[ ](ε,W∗M1,M2,M3

, ‖ · ‖2,Pθ0,m0
) ≤ c exp(c/ε)ε−4d;

see Section 2.1.1 of [53] for a definition of N[ ](·, ·, ·).

The study of limiting behaviors of the first three terms on the right hand side of (A.1) are similar. For
every fixed M1,M2, and M3, the first term in the right hand side of (A.1) can be bounded above as

P
(
|Gn

(
[m0 ◦ θ0 − m̂ ◦ θ0]Uθ̂,m̂

)
| > δ

)
≤ P

(
|Gn

(
[m0 ◦ θ0 − m̂ ◦ θ0]Uθ̂,m̂

)
| > δ, (θ̂, m̂) ∈ CM1,M2,M3(n)

)
+ P

(
(θ̂, m̂) /∈ CM1,M2,M3(n)

)
≤ P

(
sup

(θ,m)∈CM1,M2,M3
(n)

|Gn
(
[m0 ◦ θ0 −m ◦ θ0]Uθ,m

)
| > δ

)
+ P

(
(θ̂, m̂) /∈ CM1,M2,M3(n)

)
.

5The notations with ∗ denote the classes that do not depend on n while the ones with n denote shrinking neigh-
borhoods around the truth.
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By Theorem 3.6 we have that θ̂ and m̂ are consistent for θ0 and m0 in the Euclidean and Sobolev norms,
respectively and ‖m̂′‖∞ is Op(1). Furthermore by Theorem 3.5, we have that both ‖m̂‖∞ and J(m̂) are

Op(1) and by Theorem 3.7 we have λ̂
−1/2
n |θ̂ − θ0| = op(1). Thus, it is easy to see that, for any ε > 0, there

exists M1,M2, and M3, (depending on ε) such that

P
(

(θ̂, m̂) /∈ CM1,M2,M3(n)
)
≤ ε,

for all sufficiently large n. Hence, it is enough to show that for the above choice of M1,M2, and M3 we have

P

(
sup

(θ,m)∈CM1,M2,M3
(n)

|Gn
(
[m0 ◦ θ0 −m ◦ θ0]Uθ,m

)
| > δ

)
≤ ε

for sufficiently large n. We show this in the following lemma (proved in Appendix H.4).

Lemma A.3. Fix M1,M2,M3, and δ > 0. For n ∈ N, let us define

D∗M1,M2,M3
:=
{

[m0 ◦ θ0 −m ◦ θ0]Uθ,m : (θ,m) ∈ C∗M1,M2,M3

}
,

DM1,M2,M3(n) := {[m0 ◦ θ0 −m ◦ θ0]Uθ,m : (θ,m) ∈ CM1,M2,M3(n)} .

Then DM1,M2,M3(n) is a Donsker class and

sup
f∈DM1,M2,M3

(n)

‖f‖2,∞ ≤ DM1,M2,M3(n) := 2M1WM1,M2,M3(n). (A.10)

Moreover, J[ ](δ,DM1,M2,M3(n), ‖ · ‖2,Pθ0,m0
) . δ1/2, where for any class of functions F , J[ ] (the entropy

integral) is defined as

J[ ](δ,F , ‖ · ‖2,Pθ0,m0
) =

∫ δ

0

√
logN[ ](t,F , ‖ · ‖2,Pθ0,m0

) dt,

e.g., see [52]. Hence, we have P
(

supf∈DM1,M2,M3
(n) |Gnf | > δ

)
→ 0 as n→∞.

The following two lemmas, proved in Appendices H.5 and H.6, complete the proof of Theorem A.2 and
show that the last four terms on right side of (A.1) converge to zero in probability.

Lemma A.4. Fix M1,M2,M3, and δ > 0. For n ∈ N, let us define

AM1,M2,M3(n) := {[m ◦ θ0 −m ◦ θ]Uθ,m : (θ,m) ∈ CM1,M2,M3(n)} ,
A∗M1,M2,M3

:=
{

[m ◦ θ0 −m ◦ θ]Uθ,m : (θ,m) ∈ C∗M1,M2,M3

}
.

Then AM1,M2,M3(n) is a Donsker class and supf∈AM1,M2,M3
(n) ‖f‖2,∞ ≤ DM1,M2,M3(n). Moreover, J[ ](δ,AM1,M2,M3(n), ‖·

‖2,Pθ0,m0
) . δ1/2, and, as n→∞, we have

P
( ∣∣∣Gn[(m̂ ◦ θ0 − m̂ ◦ θ̂)Uθ̂,m̂

]∣∣∣ > δ

)
→ 0.

Lemma A.5. If assumptions (A0)–(A4), (B1)–(B3), and (P1)–(P2) hold, then

|
√
nPn[εUθ̂,m̂]| = op(1),

√
n
∣∣Pθ0,m0

[
(m0 ◦ θ0 − m̂ ◦ θ0)Uθ̂,m̂

]∣∣ = op(1),
√
n
∣∣Pθ0,m0

[
(m̂ ◦ θ0 − m̂ ◦ θ̂)Uθ̂,m̂

]∣∣ = op(1).

(A.11)

Now that we have shown (θ̂, m̂) is an approximate zero of (θ,m) 7→ Pnψθ,m and ψθ0,m0 = `θ0,m0 ,
asymptotic normality and efficiency of θ̂ follows from the theory developed in Section 6.6 of [51]. In the next
theorem (proved in H.7), we prove that ψθ̂,m̂ satisfies the “no-bias” condition; see (6.6) of [51] and Section 3
of [40].

Theorem A.3 (Step 3). Under assumptions (A0)–(A4) and (B2),
√
nPθ̂,m0

ψθ̂,m̂ = op(1),
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The following theorem (proved in Appendix H.9) completes the proof of Theorem 4.1.

Theorem A.4 (Step 4). Under assumptions (A0)–(A4) and (B2), we have

Gn(ψθ̂,m̂ − ψθ0,m0) = op(1). (A.12)

The proof of the above theorem is similar to that of Theorem A.2. We first find an upper bound for
the left side of (A.4) and then show that each of the terms converge to zero; see Lemmas H.2 and H.3 in
Appendix H.9.

Appendix B: Proof of Theorem 4.2

The following theorem (proved in Appendix I.1) shows that submodel defined in (A.1) is an approximately
least favorable subprovided submodel for model (1). The proof of Theorem B.1 is more complicated (when
compared to that of the proof of Theorem A.1) as m̌ is not differentiable everywhere.

Theorem B.1 (Step 1). Under assumptions of Theorem 4.2, (ζt(θ̌, η), ξt(·; θ̌, η, m̌)) is a valid parametric
submodel, i.e., (ζt(θ̌, η), ξt(·; θ̌, η, m̌)) ∈ Θ ×ML for all t in some neighborhood of 0 and Sθ0,m0 = `θ0,m0 ;
see (Step 1) for definition of Sθ0,m0 . Moreover, we have that t 7→ Qn(ξt(·; θ̌, η, m̌), ζt(θ̌, η)) is differentiable
at 0,

∂

∂t

(
y − ξt(ζt(θ̌, η)>x; θ̌, η, m̌)

)2∣∣∣∣
t=0

= η>Sθ̌,m̌(x, y),

and
∂

∂t
Qn(ξt(·; θ̌, η, m̌), ζt(θ̌, η))

∣∣∣∣
t=0

= η>PnSθ̌,m̌ = 0.

B.1. A well-behaved approximation [Step 2]

As in Appendix A.2, the following theorem (proved in a series of results) shows that Sθ̌,m̌ is empirically
well-approximated by ψθ̌,m̌ (defined in (Step 1)).

Theorem B.2 (Step 2). Under assumptions of Theorem 4.2, we have
√
nPn(Sθ̌,m̌ − ψθ̌,m̌) = op(1).

The proof of Theorem B.2 is very similar to the proof of Theorem A.2. As the definitions of Sθ,m and
ψθ,m have not changed, Lemma A.1 clearly holds with (θ̌, m̌) instead of (θ̂, m̂). Note that the proof of
Theorem A.2 will be complete if we show that each of the terms on the right hand side of (A.1) converges
to 0 in probability. We begin with some definitions. Let bn be a sequence of real numbers such that bn →∞
as n → ∞, bn = o(n1/2), and bn‖m̌−m0‖D0 = op(1). Note that we can always find such a sequence bn, as
by Theorem 3.2 we have ‖m̌−m0‖D0 = op(1). For all n ∈ N, define6

Cm∗M1
:=
{
m ∈ML : ‖m‖∞ ≤M1

}
,

CmM1
(n) :=

{
m ∈ Cm∗M1

: n1/5

∫
D0

(m′(t)−m′0(t))2dt ≤ 1, bn‖m−m0‖D0 ≤ 1
}
,

C∗M1
:=
{

(θ,m) : θ ∈ Θ ∩Bθ0(1/2) and m ∈ Cm∗M1

}
,

Cθ(n) :=
{
θ ∈ Θ ∩Bθ0(1/2) : n1/10|θ − θ0| ≤ 1

}
,

CM1(n) :=
{

(θ,m) : θ ∈ Cθ(n) and m ∈ CmM1
(n)
}
,

W∗M1
:= {Uθ,m : (θ,m) ∈ C∗M1

} ,
WM1(n) := {Uθ,m : (θ,m) ∈ CM1(n)} ,

6As in (A.2), the notations with ∗ denote the classes that do not depend on n while the ones with n denote
shrinking neighborhoods around the truth.
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where Uθ,m(·) is defined in (A.1). As a first step in proving that each term on the right hand side of (A.1)
converges to 0, we study the properties of the classes of functions WM1(n) and W∗M1

. In the following
lemma, proved in Appendix I.2, we find the bracketing numbers and envelope functions for these two classes
of functions. This will be used to prove the results that follow.

Lemma B.1. Fix M1, and δ > 0. Then WM1(n) is a Donsker class and there exists a V ∗ < ∞ such that
supf∈W∗

M1

‖f‖2,∞ ≤ V ∗. Moreover, for some c depending only on M1, we have

N[ ](ε,WM1(n), ‖ · ‖2,Pθ0,m0
) ≤ N[ ](ε,W∗M1

, ‖ · ‖2,Pθ0,m0
) ≤ c exp(c/ε)ε−2d (B.1)

and
sup

f∈WM1
(n)

‖f‖22,Pθ0,m0
≤ K2

Ln
−1/5, (B.2)

where K2
L = 2‖k′‖2∞ + L2‖k′‖2∞T 2 and k(·) is defined in (Step 1).

The study of limiting behaviors of the first three terms on the right hand side of (A.1) (with (θ̂, m̂)
replaced by (θ̌, m̌)) are similar. For every fixed M1 > 0 the first term in the right hand side of (A.1) can be
bounded from above as

P
(
|Gn([m0 ◦ θ0 − m̌ ◦ θ0]Uθ̌,m̌)| > δ

)
≤ P

(
sup

(θ,m)∈CM1
(n)

|Gn([m0 ◦ θ0 −m ◦ θ0]Uθ,m)| > δ
)

+ P
(
(θ̌, m̌) /∈ CM1(n)

)
,

(B.3)

where Uθ̌,m̌ : χ 7→ Rd−1 is defined in (A.1). By Theorem 3.2 we have that θ̌ and m̌ are consistent in
the Euclidean and supremum norms, respectively. Furthermore, by Theorems 3.3 and 3.4, we have that
n1/10|θ̌ − θ0| = op(1) and n1/5

∫
D0
|m̌′(t) −m′0(t)|2dt = op(1), respectively. Thus, it is easy to see that, for

any ε > 0, there exists M1 (depending on ε) such that

P((θ̌, m̌) /∈ CM1(n)) ≤ ε, for all sufficiently large n.

Hence, it is enough to show that for the above choice of M1 > 0 we have the first term on the right hand
side of (B.1) is smaller than ε for sufficiently large n. We prove this in Lemma B.2.

Lemma B.2. Fix M1, and δ > 0. For n ∈ N, let us define

D∗M1
:= {[m0 ◦ θ0 −m ◦ θ0]Uθ,m : (θ,m) ∈ C∗M1

} ,
DM1(n) := {[m0 ◦ θ0 −m ◦ θ0]Uθ,m : (θ,m) ∈ CM1(n)} .

Then DM1(n) is a Donsker class such that

sup
f∈DM1

(n)

‖f‖22,Pθ0,m0
≤ D2

M1
n−1/5,

where DM1 := 2M1KL. Moreover J[ ](δ,DM1(n), ‖ · ‖2,Pθ0,m0
) . δ1/2and

P
(

sup
f∈DM1

(n)

|Gnf | > δ

)
→ 0, n→∞.

The following two lemmas, proved in the Appendices I.5 and I.6, complete the proof of Theorem B.2.

Lemma B.3. Fix M1, and δ > 0. For n ∈ N, let us define

AM1(n) := {[m ◦ θ0 −m ◦ θ]Uθ,m : (θ,m) ∈ CM1(n)} ,
A∗M1

:= {[m ◦ θ0 −m ◦ θ]Uθ,m : (θ,m) ∈ C∗M1
} .

Then AM1(n) is Donsker class and DM1n
−1/10 is an envelope function with respect to the ‖ · ‖2,Pθ0,m0

.

Moreover, J[ ](δ,AM1(n), ‖ · ‖2,Pθ0,m0
) . δ1/2, and, as n→∞, we have

P
(
|Gn

[
(m̌ ◦ θ0 − m̌ ◦ θ̌)Uθ̌,m̌

]
| > δ

)
→ 0.
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Lemma B.4. If (A0)–(A4), (B1)–(B3), and (L1) hold, then

|
√
nPn[εUθ̌,m̌]| = op(1),

√
n
∣∣Pθ0,m0

[
(m0 ◦ θ0 − m̌ ◦ θ0)Uθ̌,m̌

]∣∣ = op(1),
√
n
∣∣Pθ0,m0

[
(m̌ ◦ θ0 − m̌ ◦ θ̌)Uθ̌,m̌

]∣∣ = op(1).

(B.4)

Now that we have shown (θ̌, m̌) is an approximate zero of Pnψθ,m and ψθ0,m0 = `θ0,m0 , asymptotic
normality and efficiency of θ̌ now follows from the theory developed in Section 6.6 of [51]. In the next
theorem, we prove that ψθ̌,m̌ satisfies the “no-bias” (see equation 6.6 of [51]) condition.

Theorem B.3 (Step 3). Under assumptions of Theorem 4.2,
√
nPθ̌,m0

ψθ̌,m̌ = op(1).

In Lemma I.2, stated and proved in Appendix I.8, we prove that ψθ̌,m̌ is a consistent estimator of ψθ0,m0

under L2(Pθ0,m0) norm. The following theorem (proved in Appendix I.9) completes the proof of Theorem
4.2.

Theorem B.4 (Step 4). Under (A0)–(A4) and (B2), we have

Gn(ψθ̌,m̌ − ψθ0,m0) = op(1). (B.5)

The proof of the above theorem is similar to that of Theorem B.2. We first find an upper bound for
the left side of (B.4) and then show that each of the terms converge to zero; see Lemmas I.3 and I.4 in
Appendix I.9.

Appendix C: Additional Simulation Studies

C.1. A simple model

-1 1

-1
2

xTθ0

y

Truth
SmoothGCV
CvxPen
CvxLip
CvxLSE

Fig 4. Function estimates for the model Y = (θ>0 X)2 + N(0, 1), where θ0 = 15/
√

5, X ∼ Uniform[−1, 1]5, and
n = 100.

In this section we give a simple illustrative (finite sample) example. We observe 100 i.i.d. observations
from the following homoscedastic model:

Y = (θ>0 X)2 +N(0, 1), where θ0 = 15/
√

5 and X ∼ Uniform[−1, 1]5. (C.1)

In Figure 4, we have a scatter plot of {(θ>0 xi, yi)}1≤i≤100 overlaid with prediction curves {(θ̃>xi, m̃(θ̃>xi)}1≤i≤100

for the proposed estimators obtained from one sample from (C.1). Table 2 displays all the corresponding
estimates of θ0 obtained from the same data set. To compute the function estimates for EFM and EDR ap-
proaches we used cross-validated smoothing splines to estimate the link function using their estimates of
θ0.
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Table 2
Estimates of θ0, “Theta Error”:=

∑5
i=1 |θ̃i − θ0,i|, “Func Error”:= ‖m̃ ◦ θ0 −m0 ◦ θ0‖n, and “Est

Error”:= ‖m̃ ◦ θ̃ −m0 ◦ θ0‖n for one sample from (C.1).

Method θ1 θ2 θ3 θ4 θ5 Theta Error Func Error Est Error

Truth 0.45 0.45 0.45 0.45 0.45 — — —
SmoothGCV 0.38 0.49 0.41 0.50 0.45 0.21 0.10 0.10
CvxPen 0.36 0.50 0.42 0.47 0.47 0.21 0.12 0.13
CvxLip 0.35 0.50 0.43 0.48 0.46 0.21 0.13 0.15
CvxLSE 0.36 0.50 0.43 0.45 0.48 0.20 0.18 0.15
EFM 0.35 0.49 0.41 0.49 0.47 0.24 0.10 0.11
EDR 0.30 0.48 0.46 0.43 0.53 0.29 0.12 0.15

C.2. Piecewise linear function and dependent covariates

To understand the performance of the estimators when the truth is convex but not smooth, we consider the
following model:

Y = |θ>0 X|+N(0, .12), (C.2)

where X ∈ R6 is generated according to the following law: X1 ∼ Uniform[−1, 1], X2 ∼ Uniform[−1, 1],
X3 := 0.2X1+0.2(X2+2)2+0.2Z1, X4 := 0.1+0.1(X1+X2)+0.3(X1+1.5)2+0.2Z2, X5 ∼ Ber(exp(X1)/{1+
exp(X1)}), and X6 ∼ Ber(exp(X2)/{1 + exp(X2)}). Here (Z1, Z2) ∼ Uniform[−1, 1]2 is independent of
(X1, X2) and θ0 is (1.3,−1.3, 1,−0.5,−0.5,−0.5)/

√
5.13. The distribution of the covariates is similar to the

one considered in Section V.2 of [37]. The performances of the estimators is summarized in Figure 5. Observe
that as the truth is not smooth, the convex constrained least squares estimators (CvxLip and CvxLSE) have
slightly improved performance compared to the (roughness) penalized least squares estimators (CvxPen and
SmoothGCV). Also observe that both EFM and EDR fail to estimate the true parameter θ0.

CvxLip

CvxLSE

CvxPEN

SmoothGCV

EFM

EDR

0.0 0.2 0.4 0.6

Fig 5. Box plots of
∑6
i=1 |θ̃i − θ0,i| for the model (C.2). Here d = 6, n = 200 and we have 500 replications.

Appendix D: Real data analysis

In this following we analyze two real datasets and apply the developed methodology for prediction and
estimation.

D.1. Boston housing data

The Boston housing dataset was collected by [22] to study the effect of different covariates on the real estate
price in the greater Boston area. The dependent variable Y is the median value of owner occupied homes in
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each of the 506 census tracts in Boston standard metropolitan statistical areas. [22] observed 13 covariates
and fit a linear model after taking log transformation for 3 covariates and power transformations for three
other covariates; also see [57] for a discussion of this dataset.

Breiman and Friedman [5] did further analysis to deal with multi-collinearity of the covariates and
selected four variables using a penalized stepwise method. The chosen covariates were: average number of
rooms per dwelling (RM), full-value property-tax rate per 10, 000 USD (TAX), pupil-teacher ratio by town
school district (PT), and proportion of population that is of “lower status” in percentage points (LS). As
in [56] and [60], we take logarithms of LS and TAX to reduce sparse areas in the dataset. Furthermore, we
have scaled and centered each of the covariates to have mean 0 and variance 1. [56] fit a nonparametric
additive regression model to the selected variables and obtained an R2 (the coefficient of determination) of
0.64. [57] fit a single index model to this data using the set of covariates suggested in [7] and obtained a
decreasing and approximately convex link function; see Fig. 2 of [57]. Moreover, we think it is logical that
the “law of diminishing returns” should apply to the median home prices in this dataset. This motivates us
to fit a convex single index model to the Boston housing dataset. Moreover, the convexity constraint adds
interpretability to the estimators of both θ0 and m0. We summarize our results in Table 3. In Figure 6, we
plot the scatter plot of {(θ̂>xi, yi)}506

i=1 (recall that θ̂ denotes the CvxPen) overlaid with the plot of m̃(θ̃>x),
for the SmoothGCV, CvxPen, CvxLip, and CvxLSE. We also observe that the R2 for the convexity constrained
single index models (CvxPen, CvxLip, and CvxLSE), when using all the available covariates, was approximately
0.79. Inclusion of all the extra variables leads to only a minor increase in R2 at the cost of interpretability;
[57] also reached to a similar conclusion.

Table 3
Estimates of θ0 and generalized R2 for the datasets in Appendices D.1 and D.2.

Method
Boston Data Car mileage data

RM log(TAX) PT log(LS) R2 D W A H R2

LM7 2.34 −0.37 −1.55 −5.11 0.73 −0.63 −4.49 −0.06 −1.68 0.71
SmoothGCV 0.44 −0.18 −0.27 −0.83 0.77 0.42 0.18 0.11 0.88 0.76
CvxPen 0.48 −0.19 −0.25 −0.82 0.77 0.45 0.15 0.13 0.87 0.76
CvxLip 0.44 −0.14 −0.18 −0.87 0.77 0.44 0.18 0.12 0.87 0.76
CvxLSE 0.44 −0.14 −0.18 −0.87 0.79 0.39 0.14 0.12 0.90 0.77
EFM 0.48 −0.19 −0.21 −0.83 — 0.44 0.18 0.13 0.87 —
EDR 0.44 −0.14 −0.18 −0.87 — 0.33 0.11 0.15 0.93 —

D.2. Car mileage data

As a second application for the convex single index model, we consider a dataset containing mileages of dif-
ferent cars; which can be found at http://lib.stat.cmu.edu/datasets/cars.data. We model the mileages
(Y ) of 392 cars using the covariates (X): displacement (D), weight (W), acceleration (A), and horsepower
(H). Cheng et al. [10] fit a partial linear model to this this dataset, while [32] fit single index model (without
any shape constraint).

As in Appendix D.1, we have scaled and centered each of covariates to have mean 0 and variance 1 for
our data analysis. It is easy to argue that, as in the previous dataset, “law of diminishing returns” applies
to the millages of cars. The right panel of Figure 6 illustrates this. All index coefficients are positive and
the estimates of m0 are decreasing. We performed a test of significance for θ0 using the plug-in variance
estimate in Remark 4.4. The covariates acceleration, engine displacement, and power output were found to
be significant and each of them had p-value less than 10−5 (for both the PLSE and LLSE). In the right panel
of Figure 6, we have the scatter plot of {(θ̂>xi, yi)}392

i=1 overlaid with the plot of m̃(θ̃>x), for the SmoothGCV,
CvxPen, CvxLip, and CvxLSE. Table 3 lists different estimators for θ0 and their respective R2.

Appendix E: Proof of results in Section 2

The following two lemmas of [32] will be used to prove results of Section 2.

7LM denotes the linear regression model.

http://lib.stat.cmu.edu/datasets/cars.data
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Fig 6. Scatter plots of {(x>i θ̂, yi)}ni=1 overlaid with the plots of function estimates corresponding to CvxPen, CvxLip,
and SmoothGCV estimators for the two real datasets considered. Left panel: Boston housing data (Appendix D.1); right
panel: the car mileage data (Appendix D.2) .

Lemma E.1 (Lemma 4 of [32]). Let m ∈ {g ∈ R : J(g) <∞}. Then |m′(s)−m′(s0)| ≤ J(m)|s− s0|1/2 for
every s, s0 ∈ D.

Lemma E.2 (Lemma 5 of [32]). For any set A ∈ Rk (k ≥ 1), let �(A) denote the diameter of the set A.
Let m ∈ {g ∈ R : J(g) <∞ and ‖g‖∞ ≤M}, where M is a finite constant. Then

‖m′‖∞ ≤ 2M/�(D) + (1 + J(m))�(D)1/2,

where �(D) is the diameter of D. Moreover if �(D) <∞, then

‖m′‖∞ ≤ C(1 + J(m)),

where C is a finite constant depending only on M and �(D).

E.1. Proof of Lemma 2.1

In the following we show that (m0, θ0) is the minimizer of Q and is well-separated, with respect to the
L2(PX) norm, from {(m, θ) : m ◦ θ ∈ L2(PX)} \m0 ◦ θ0. Choose arbitrarily small δ > 0, and pick any (m, θ)
such that m ◦ θ ∈ L2(PX) and ‖m ◦ θ −m0 ◦ θ0‖2 > δ2. Then

Q(m, θ) = E[Y −m0(θ>0 X)]2 + E[m0(θ>0 X)−m(θ>X)]2,

since E(ε|X) = 0. Thus we have that Q(m, θ) > Q(m0, θ0) + δ2.

E.2. Proof of Theorem 2.1

We consider the estimator
(m̌n, θ̌n) = arg min

(m,θ)∈ML×Θ

Qn(m, θ).

Fix θ ∈ Θ. Observe that m ∈ML 7→ Qn(m, θ) is a coercive continuous convex function on a convex domain.
Thus for every θ ∈ Θ, the minimizer of m ∈ML 7→ Qn(m, θ) exists. Let us define
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mθ := arg min
m∈ML

Qn(m, θ) and T (θ) := Qn(mθ, θ). (E.1)

Observe that θ̌n := arg minθ∈Θ T (θ). As Θ is a compact set, the existence of the minimizer θ 7→ T (θ) will
be established if we can show that T (θ) is a continuous function on Θ; see the Weierstrass extreme value
theorem. We will now prove that θ 7→ T (θ) is a continuous function. But first we will show that for every
θ ∈ Θ, ‖mθ‖∞ ≤ C, where C depends only on {(xi, yi)}ni=1, L, and T. Observe that

∑n
i=1(yi−mθ(θ

>xi))
2 ≤∑n

i=1 y
2
i and the constant function 0 belongs to ML. Thus

n∑
i=1

[
mθ(θ

>xi)
]2
≤ 2

n∑
i=1

yimθ(θ
>xi) ≤ 2

(
n∑
i=1

y2
i

)1/2( n∑
i=1

[
mθ(θ

>xi)
]2)1/2

.

Hence, we have |mθ(θ
>x1)| ≤ 2

√∑n
i=1 y

2
i . As mθ is uniformly L-Lipschitz, we have that for any t ∈ D,

|mθ(t)| ≤ |mθ(θ
>x1)|+ L|t− θ>x1| ≤

√√√√4

n∑
i=1

y2
i + LT =: C.

As C does not depend on θ, we have that supθ∈Θ ‖mθ‖∞ ≤ C. To show that θ̂ exists, it suffices to show that
θ 7→ T (θ) is a continuous function. As a first step, we will show that the class of functions

{θ 7→ Qn(m, θ) : m ∈ML, ‖m‖∞ ≤ C}

is uniformly equicontinuous. Observe that for θ, η ∈ Θ, we have

n|Qn(m, θ)−Qn(m, η)| =

∣∣∣∣∣
n∑
i=1

(yi −m(θ>xi))
2 −

n∑
i=1

(yi −m(η>xi))
2

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

(m(η>xi)−m(θ>xi))(2yi −m(θ>xi)−m(η>xi))

∣∣∣∣∣
≤

n∑
i=1

|m(η>xi)−m(θ>xi)| × |2yi −m(θ>xi)−m(η>xi)|

≤ L
n∑
i=1

|η>xi − θ>xi| × 2 (|yi|+ C)

≤ 2nLT
(

max
i
|yi|+ C

)
|θ − η|.

Thus, we have that
sup

{m∈ML: ‖m‖∞≤C}
|Qn(m, θ)−Qn(m, η)| ≤ C3|θ − η|,

where C3 is a constant depending only on {yi}ni=1 and C. Next we show that |T (θ) − T (η)| ≤ 2C3|θ − η|.
Recall that T (θ) = Qn(mθ, θ). By (E.2), we have

Qn(mθ, θ)−Qn(mθ, η) = T (θ)−Qn(mθ, η) ≤ T (θ)− T (η)

and
T (θ)− T (η) ≤ Qn(mη, θ)− T (η) = Qn(mη, θ)−Qn(mη, η).

Thus

|T (θ)− T (η)| ≤ |Qn(mη, θ)−Qn(mη, η)|+ |Qn(mθ, θ)−Qn(mθ, η)| ≤ 2C3|θ − η|.



Kuchibhotla et. al./Convex Single Index Model 32

E.3. Proof or Theorem 2.2

The minimization problem considered is

inf
θ∈Θ,m∈R

Ln(m, θ;λ),

where Ln is defined in (2.3). For any fixed vector θ ∈ Θ, define tθi := θ>xi, for i = 1, . . . , n. Then we have

Ln(m, θ;λ) =

[
1

n

n∑
i=1

(
yi −m(tθi )

)2
+ λ2

∫
D

∣∣m′′(t)∣∣2dt]

and the minimization can be equivalently written as infθ∈Θ infm∈R Ln(m, θ;λ). Let us define

T (θ) := inf
m∈R

Ln(m, θ;λ) and mθ := arg min
m∈R

Ln(m, θ;λ). (E.2)

Theorem 1 of [16] proves that the infimum in (E.3) is attained for every θ ∈ Θ and the unique minimizer
mθ is a natural cubic spline, see Section 5.1.2 for more details. Furthermore [16] note that mθ does not
depend on D beyond the condition that {tθi }1≤i≤n ∈ D. Moreover, m′′θ is zero outside (tθ(1), t

θ
(n)), where for

k = 1, . . . , n, tθ(k) denotes the k-th smallest value in {tθi }ni=1. In the proof of Theorem 1 of [33], they show
that θ 7→ T (θ) is a continuous function if mθ satisfies the above properties. This completes the proof as Θ
is a compact set; see the Weierstrass extreme value theorem.

Appendix F: Proofs of results in Section 3.1

F.1. Proof of Theorem 3.1

To find the rate of convergence of m̌ ◦ θ̌, we use the following modification of Theorem 3.2.5 of [53]. In the
following to avoid measurability difficulties, we use P∗ and E∗, outer probability and outer expectation.

Lemma F.1. Let Mn be stochastic processes indexed by a semimetric set Υ and M : Υ→ R be a deterministic
function, such that for every η ∈ Υ

M(η)−M(η0) . −d2(η, η0), (F.1)

where d(·, η0) : Υ→ R+. Let η̂n := argmaxη∈Υ Mn(η). For each ε > 0, suppose that the following hold:

1. There exists Υε, a subset of Υ, containing η0 in its interior that satisfies

P∗(η̂n /∈ Υε) ≤ ε, ∀n. (F.2)

2. For every n and δ > 0, the centered process Mn −M satisfies

√
nE∗

∣∣∣∣∣∣∣ sup
d(η,η0)<δ,
η∈Υε

|(Mn −M)(η)− (Mn −M)(η0)|

∣∣∣∣∣∣∣ ≤ Cεφn(δ), (F.3)

for functions φn (not depending on ε) such that δ 7→ φn(δ)/δα is decreasing in δ for some constant
α < 2 (not depending on n) and a constant Cε > 0.

Then rnd(η̂n, η0) = O∗p(1) for every rn satisfying r2
nφn(1/rn) ≤

√
n for every n.

Remark F.1. The proof of Lemma F.1 is similar to the proof given in Page 290 of [53]. The only difference
is that in the “peeling” argument the “shells” are now defined as Sj,n := {η : 2j−1 < rnd(η, η0) ≤ 2j and η ∈
Υε} and the first inequality in the proof now reads

P∗
(
rnd(η̂, η0) > 2M

)
≤
∑
j≥M

P∗
(

sup
η∈Sj,n

(Mn(η)−Mn(η0)) ≥ 0

)
+ P∗(η̂ /∈ Υε).
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We will now obtain the desired rate of convergence in Theorem 3.1 by verifying conditions of Lemma F.1.
For the LLSE, Υ =ML ×Θ, η = (m, θ), η0 = (m0, θ0), and

η̂n = (m̌n, θ̌n) = argmax
(m,θ)∈ML×Θ

− 1

n

n∑
i=1

(yi −m(θ>xi))
2.

The stochastic processes Mn and function M are defined as

Mn(m, θ) := − 1

n

n∑
i=1

(yi −m(θ>xi))
2 and M(m, θ) := −E(Y −m(θ>X))2. (F.4)

For any (m1, θ1) and (m2, θ2) in ML ×Θ, we define

d((m1, θ1), (m2, θ2)) := ‖m1 ◦ θ1 −m2 ◦ θ2‖. (F.5)

We first show that M defined in (F.1) satisfies (F.1). Observe that

M(m, θ)−M(m0, θ0)

= E[(Y −m0(θ>0 X))2 − (Y −m(θ>X))2]

= − 2E
[
(Y −m0(θ>0 X))(m0(θ>0 X)−m(θ>X))

]
− E(m0(θ>0 X)−m(θ>X))2

= − E
[
{m(θ>X)−m0(θ>0 X)}2

] (
as E(Y |X) = m0(θ>0 X)

)
= − d2((m, θ), (m0, θ0)).

Next for every ε > 0, we find Υε that satisfies (1). The following result (proved in Appendix F.2) gives the
form of Υε.

Lemma F.2. Under assumption (A2), we have that ‖m̌n‖∞ = Op(1). Moreover, for every ε > 0, there
exists a finite Mε such that

P(m̌n /∈MMε,L) ≤ ε, ∀n,

where for any M > 0, we define

MM,L := {m ∈ML : ‖m‖∞ ≤M}. (F.6)

We can now define Υε :=MMε,L ×Θ. By Lemma F.2, we have

P
(
(m̌n, θ̌n) /∈ Υε

)
≤ ε, ∀n.

To find the rate of convergence of m̌n ◦ θ̌n, we need to find a function φn(δ) that satisfies (2). Recall that
ε = Y −m0(θ>0 X). By definition of Mn and M, we have

√
n|(Mn −M)(m, θ)− (Mn −M)(m0, θ0)|

=
∣∣∣Gn[− 2(Y −m0(θ>0 X))(m0(θ>0 X)−m(θ>X)) + (m0(θ>0 X)−m(θ>X))2]∣∣∣

≤
∣∣∣Gn[2ε(m(θ>X)−m0(θ>0 X))

]∣∣∣+
∣∣∣Gn[(m(θ>X)−m0(θ>0 X))2]∣∣∣ . (F.7)

Now, we find the upper bound φn(δ) by obtaining upper bounds for both the terms in (F.1). Define two
classes of functions

HMε,L(δ) := {m ◦ θ −m0 ◦ θ0 : (m, θ) ∈ Υε and d((m, θ), (m0, θ0)) ≤ δ}

HMε,L(δ) := {f2 : f ∈ HMε,L(δ)},
(F.8)

where d(·, ·) is defined in (F.1). Thus by (F.1), we have

E∗ sup
d((m,θ),(m0,θ0))<δ,

(m,θ)∈Υε

√
n|(Mn −M)(m, θ)− (Mn −M)(m0, θ0)|

≤ E∗ sup
f∈HMε,L(δ)

|Gn[εf ]|+ E∗ sup
f∈HMε,L(δ)

|Gnf | . (F.9)

In the following two lemmas (proved in Appendices F.3.1 and F.3.2, respectively) we show that both the
terms (F.1) are bounded by constant multiples (depending only on L, ε,D,Mε and M0) of δ3/4 +n−1/2δ1/2.
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Lemma F.3. For every ε, ν > 0, we have

logN[ ](ν,HMε,L(δ), L2(Pθ0,m0)) ≤ C∗1ν−1/2 and sup
f∈HMε,L(δ)

‖f‖∞ ≤Mε +M0,

where HMε,L(δ) is defined in (F.1) and C∗1 is a constant that depends only on Mε, L,D, T,M0, d, and the
distribution of ε. Furthermore

E∗ sup
f∈HMε,L(δ)

|Gn[εf ]| . Cε,1

(
δ3/4 +

δ1/2

√
n

)
, (F.10)

where Cε,1 is a constant depending only on C∗1 ,Mε,M0, d, and the distribution of ε.

Lemma F.4. For every ε > 0,

sup
f∈HMε,L (δ)

‖f‖∞ ≤ 4(Mε +M0)2 and sup
f∈HMε,L (δ)

‖f‖ ≤ 2(Mε +M0)δ.

Furthermore, for ν > 0 we have

logN[ ](ν,HMε,L(δ), L2(Pθ0,m0)) ≤
(
Mε + L�(D)

ν

)1/2

and

E∗ sup
f∈HMε,L(δ)

|Gnf | ≤ Cε,2
(
δ3/4 +

δ1/2

√
n

)
, (F.11)

where Cε,2 is a constant that depends only on Mε, L,D, T,M0, and d.

Now by applying the upper bounds (F.3) and (F.4) to (F.1), we have φn(δ) = (Cε,1+Cε,2)
(
δ3/4 + n−1/2δ1/2

)
.

Observe that φn(δ)/δ3/4 is a decreasing function of δ and

n4/5φn(n−2/5) ≤
√
n.

Thus, by Lemma F.1, we have n2/5‖m̌n ◦ θ̌n −m0 ◦ θ0‖ = O∗p(1).

F.2. Proof of Lemma F.2

By the definition of (m̌n, θ̌n), we have

n∑
i=1

(yi − m̌n(θ̌>n xi))
2 ≤

n∑
i=1

(yi −m(θ̌>n xi))
2

for all m ∈ML. Since any constant function belongs to ML, for any fixed real κ, we have

n∑
i=1

(yi − m̌n(θ̌>n xi))
2 ≤

n∑
i=1

(yi − m̌n(θ̌>n xi) + κ)2.

A simplification of the above inequality gives us:

2κ

n∑
i=1

(yi − m̌n(θ̌>xi)) + nκ2 ≥ 0, for all κ⇒
n∑
i=1

(yi − m̌n(θ̌>n xi)) = 0. (F.12)
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Thus for any t ∈ D, we have

|m̌n(t)| ≤

∣∣∣∣∣m̌n(t)− 1

n

n∑
j=1

m̌n(θ̌>n xj)

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
j=1

m̌n(θ̌>n xj)

∣∣∣∣∣
≤ 1

n

n∑
j=1

∣∣∣m̌n(t)− m̌n(θ̌>n xj)
∣∣∣+

∣∣∣∣∣ 1n
n∑
j=1

{m0(θ>0 xj) + εj}

∣∣∣∣∣ (by (F.2))

≤ 1

n

n∑
j=1

L|t− θ̌>n xj |+
1

n

n∑
j=1

|m0(θ>0 xj)|+

∣∣∣∣∣ 1n
n∑
j=1

εj

∣∣∣∣∣
≤ L�(A) +M0 +

∣∣∣∣∣ 1n
n∑
j=1

εj

∣∣∣∣∣ ,
where M0 is the upper bound on m0; see (L1). The third inequality in the above display is true because m̌n

is L–Lipschitz. As ε is uniformly sub-Gaussian, we have that |
∑n
j=1 εj/n| = Op(1). Thus for every ε > 0,

there exists a finite cε (depending only on the distribution of ε and ε) such that P(|
∑n
j=1 εj/n| ≥ cε) ≤ ε,

for all n. Define Mε := L�(A) +M0 + cε. The lemma follows as we have

P(‖m̌n‖∞ > Mε) ≤ ε, ∀n.

F.3. Proofs of Lemmas F.3 and F.4

To prove Lemmas F.3 and F.4, we need the following entropy result.

Lemma F.5. Let
HM,L := {m ◦ θ −m0 ◦ θ0 : m ∈MM,L, θ ∈ Θ},

where MM,L is defined in (F.2). Then there exist positive constants c and ν0, such that, for every M,L > 0
and ν ≤ ν0(M + L�(D))

logN[ ](ν,HM,L, ‖ · ‖∞) = logN[ ](ν, {m ◦ θ : (m, θ) ∈MM,L ×Θ}, ‖ · ‖∞) ≤ K′ν−1/2,

where K′ is a constant depending only on M,L, T,D, and d.

Proof. To prove this lemma, we use the covering number for the class of uniformly bounded and uniformly
Lipschitz convex functions obtained in [18].

Lemma F.6 (Theorem 3.2, [18]). Let F denote the class of real-valued convex functions defined on [a, b]d

that are uniformly bounded in absolute value by B0 and uniformly Lipschitz with constant L. Then there exist
positive constants c and ν0, depending only on the dimension d, such that for every B0, L > 0 and b > a, we
have

logN(ν,F , ‖ · ‖∞) ≤ c
(
B0 + L(b− a)

ν

)d/2
for every ν ≤ ν0(B0 + L(b− a)).

By Lemma F.6 and Lemma 4.1 of [44] for ν ∈ (0, 1), we have

logN[ ](ν,MM,L, ‖ · ‖∞) ≤ c
(
M + L�(D)

ν

)1/2

,

logN(ν,Θ, | · |) ≤ −c log(ν),

where c is a constant that depends only on d.
Recall that supx∈χ |x| ≤ T ; see (A1). Let {θ1, θ2, . . . , θp} be a ν/(2LT )-cover (with respect to the

Euclidean norm) of Θ and {m1,m2, . . . ,mq} be a ν/2-cover (with respect to the ‖ · ‖∞-norm) forMM,L. In
the following we will show that the set of functions {mi ◦ θj −m0 ◦ θ0}1≤i≤q,1≤j≤p form a ν-cover for HM,L
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with respect to the ‖ · ‖∞-norm. For any given m ◦ θ −m0 ◦ θ0 ∈ HM,L, we can get mi and θj such that
‖m−mi‖∞ ≤ ν/2 and |θ − θj | ≤ ν/(2LT ). Therefore, for any x ∈ χ

|m(θ>x)−mi(θ
>
j x)| ≤ |m(θ>x)−m(θ>j x)|+ |m(θ>j x)−mi(θ

>
j x)|

≤ L|x||θ − θj |+ ‖m−mi‖∞ ≤
L|x|ν
2LT

+
ν

2
≤ ν.

Thus for ν ≤ ν0(M + L�(D)), we have

logN(ν,HM,L, ‖ · ‖∞) ≤ c

[
− log(ν) + log(2LT ) + 2

(
M + L�(D)

ν

)1/2
]
≤ K′ν−1/2.

The result now follows as the covering number is equal to the bracketing number for the sup-norm.

F.3.1. Proof of Lemma F.3

Suppose F is a class of real valued functions defined on χ. We first present a result that gives a maximal
inequality for the class of functions

εF := {εf : f ∈ F}

in terms of the bracketing entropy of F , with respect the L2(Pθ0,m0) norm.

Lemma F.7. Suppose F is a class of functions (defined on χ) such that

sup
f∈F
‖f‖∞ ≤ Φ, sup

f∈F
‖f‖ ≤ κ, and logN[ ](ν,F , ‖ · ‖) ≤ ∆ν−α,

for some constant ∆ and 0 < α < 2, where ‖f‖2 :=
∫
χ f

2dPX . Then

logN[ ](K
∗ν, εF , ‖ · ‖B) ≤ ∆ν−α,

where for any g ∈ L2(Pθ0,m0), ‖g‖B (Bernstein “norm”) is defined as

‖g‖B :=
[
2E
(

exp(|g|)− 1− |g|
)]1/2

,

K∗ := supx
(
E
[
ε2 exp(2Φ|ε|)|X = x

])1/2
, and εF := {εf : f ∈ F}. Furthermore for all f ∈ F , ‖εf‖B ≤

K∗‖f‖ and

E∗ sup
f∈F
|Gnεf | .

∆1/2K∗κ1−α/2

(1− α/2)
+

∆κ−α
√
n (1− α/2)2 . (F.13)

Proof. We will use the ‖ · ‖–bracket for F to form a ‖ · ‖B–bracket for F . Fix f ∈ F . Observe that there
exist f1, f2 : χ→ [−Φ,Φ], such that

‖f2 − f1‖ ≤ ν and f1(x) ≤ f(x) ≤ f2(x), ∀x ∈ χ. (F.14)

Define ε+ := max{ε, 0} and ε− := max{0,−ε}. Multiplying ε+ and ε− to the second inequality in (F.3.1),
we have

f1(x)ε+ ≤ f(x)ε+ ≤ f2(x)ε+ and − f2(x)ε− ≤ −f(x)ε− ≤ −f1(x)ε−,

respectively. Combining the above inequalities, we have

f1(x)ε+ − f2(x)ε− ≤ f(x)ε ≤ f2(x)ε+ − f1(x)ε−.
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Moreover,

‖f2(X)ε+ − f1(X)ε− − f1(X)ε+ + f2(X)ε−‖2B
= ‖(f2(X)− f1(X))|ε|‖2B

= 2E
{

exp(|(f2(X)− f1(X))ε|)− 1− |(f2(X)− f1(X))ε|
}

≤ E
{

(f2(X)− f1(X))2ε2 exp
(
|(f2(X)− f1(X))ε|

)}
≤ E

{
(f2(X)− f1(X))2ε2 exp

(
2Φ|ε|

)}
= E

{
(f2(X)− f1(X))2E

[
ε2 exp(2Φ|ε|)|X

] }
≤ (K∗)

2 ‖f2 − f1‖2 ≤ (K∗ν)
2
,

where K∗ is as given in the statement of the lemma.
Thus if (f1, f2) is a ν–bracket (with respect to ‖ · ‖-norm) for f, then (f1ε

+ − f2ε
−, f2ε

+ − f2ε
−) is a

K∗ν–bracket for εf (with respect to ‖ · ‖B-norm). Therefore, we have

logN[ ](K
∗ν, εF , ‖ · ‖B) ≤ logN[ ](ν,F , ‖ · ‖) ≤ ∆ν−α.

Hence, for every ν > 0,

logN[ ](ν, εF , ‖ · ‖B) ≤ ∆
( ν

K∗

)−α
To prove (F.7), we use the following Lemma.

Lemma F.8 (Lemma 3.4.3 of [53]). Let G be a class of measurable functions such that supg∈G ‖g‖B ≤ ρ.
Then

E∗ sup
g∈G
|Gng| . J[ ](ρ,G, ‖ · ‖B)

(
1 +

J[ ](ρ,G, ‖ · ‖B)

ρ2
√
n

)
. (F.15)

We now find an upper bound for supf∈F ‖εf‖B . Observe that

‖εf‖2B = 2E
{

exp(|εf(X)|)− 1− |εf(X)|
}

≤ E
{
ε2f2(X) exp

(
|f(X)ε|

)}
≤ E

{
ε2f2(X) exp

(
Φ|ε|

)}
≤ E

{
f2(X)E

[
ε2 exp(2Φ|ε|)|X

] }
≤ (K∗)

2 ‖f‖2 ≤ (K∗κ)
2
.

Thus, for the class εF , we can apply Lemma F.8 with ρ = K∗κ. By definition

J[ ](K
∗κ, εF , ‖ · ‖B) ≤

∫ K∗κ

0

∆1/2
( ν

K∗

)−α/2
dν = ∆1/2K∗κ1−α/2/(1− α/2).

Therefore by (F.8), we have

E∗ sup
f∈F
|Gn[εf ]| . ∆1/2K∗κ1−α/2

(1− α/2)
+

∆κ−α
√
n (1− α/2)2 .

The proof of Lemma F.3 will now be completed by a simple application of Lemma F.7 with F = HMε,L(δ).
By definition (F.1), we have

sup
f∈HMε,L(δ)

‖f‖∞ < Mε +M0 and sup
f∈HMε,L(δ)

‖f‖ < δ.

As HMε,L(δ) ⊂ HMε,L, by Lemma F.5, we have

logN[ ](ν,HMε,L(δ), ‖ · ‖∞) ≤ logN[ ](ν,HMε,L, ‖ · ‖∞) ≤ K′ν−1/2.
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Thus
logN[ ](ν,HMε,L(δ), ‖ · ‖) ≤ C∗1ν−1/2,

where C∗1 =
√

2K′. By applying Lemma F.7 (see (F.7)) with

Φ = Mε +M0, κ = δ, ∆ = C∗1 , and α = 1/2,

we have

E∗ sup
f∈HMε,L(δ)

|Gn[εf ]| ≤ Cε,1
(
δ3/4 +

δ−1/2

√
n

)
,

where Cε,1 is constant depending only on K′,Mε,M0, L, d, and T.

F.3.2. Proof of Lemma F.4

We proceed as in the proof of Lemma F.3. For any function f ∈ HMε,L , there exist functions f1, f2 : χ →
[−Mε −M0,M0 + Mε] such that f1(x) ≤ f(x) ≤ f2(x) and 0 ≤ f2(x) − f1(x) ≤ ν, for each x ∈ χ; see
Lemma F.5. Observe that for any two real numbers x ≤ y, we have x+ ≤ y+ and y− ≤ x−. Thus, we have

f+
1 ≤ f

+ ≤ f+
2 and f−2 ≤ f

− ≤ f−1 .

The above inequalities lead to a bracket for f2. Observe that

f+
1 + f−2 ≤ |f | ≤ f

−
1 + f+

2 ⇒ (f+
1 + f−2 )2 ≤ f2 ≤ (f−1 + f+

2 )2,

and the length of the above bracket is

(f−1 + f+
2 )2 − (f+

1 + f−2 )2 = (f−1 − f
+
1 + f+

2 − f
−
2 )(f−1 + f+

2 + f+
1 + f−2 )

= (f2 − f1)(|f2|+ |f1|)
≤ 2(Mε +M0)(f2 − f1) ≤ 2(Mε +M0)ν.

Thus, if [f1, f2] is a ν–bracket (with respect to the ‖ · ‖∞-norm) for f then [(f+
1 + f−2 )2, (f−1 + f+

2 )2] is a
(2Mε + 2M0)ν–bracket (with respect to the ‖ · ‖∞-norm) for f2. Therefore, we have

logN[ ](ν,HMε,L(δ), ‖ · ‖∞) ≤ logN[ ](ν/(2Mε + 2M0),HMε,L, ‖ · ‖∞) ≤ C∗2ν−1/2.

Thus

J[ ](ρ,HMε,L(δ), ‖ · ‖) ≤
∫ 2(Mε+M0)δ

0

√
C∗2ν

−1/2dν ≤ 8

3

√
C∗2
[
(Mε +M0)δ

]3/4
.

To complete the proof we use the following lemma.

Lemma F.9 (Lemma 3.4.2 of [53]). Let G be class of measurable functions such that Pg2 < ρ2 and ‖g‖∞ ≤
M for every g in G. Then

E∗ sup
g∈G
|Gng| . J[ ](ρ,G, ‖ · ‖)

(
1 +

J[ ](ρ,G, L2(P ))

ρ2
√
n

M

)
.

Note that for every function f ∈ HMε,L(δ), we have,

0 ≤ f(·) ≤ 4(Mε +M0)2 and Ef2 ≤ ‖f‖∞Ef ≤ 4(Mε +M0)2δ2 =: ρ2.

Moreover

J[ ](ρ,HMε,L(δ), L2(P )) ≤
∫ 2(Mε+M0)δ

0

√
C∗2ν

−1/2dν ≤ 8

3

√
C∗2
[
(Mε +M0)δ

]3/4
.

Thus by Lemma F.9,

E∗ sup
f∈HMε,L(δ)

|Gnf | ≤ Cε,2
(
δ3/4 +

δ−1/2

√
n

)
.
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F.4. Proof of Theorem 3.2

Let (mn, θn) be any sequence inML×Θ. Recall thatML is a class of closed, bounded, and equicontinuous
functions and Θ is a compact set. Thus, by Ascoli-Arzelà theorem, there exists a subsequence {(mnk , θnk )},
θ ∈ Θ, and m ∈ML such that |θnk−θ| → 0 and ‖mnk−m‖D0 → 0. Now suppose that ‖mn◦θn−m0◦θ0‖ → 0.
This implies that ‖m ◦ θ − m0 ◦ θ0‖ = 0. Then the continuity and almost everywhere differentiability of
{mn} implies that m ≡ m0 and θ = θ0. Now recall that in Theorem 3.1 and Lemma F.2, we showed that
‖m̌ ◦ θ̌−m0 ◦ θ0‖ = op(1) and ‖m̌n‖∞ = Op(1), respectively. Thus by taking mn = m̌n and θ = θ̌n, we have
that |θ̌ − θ0| = op(1) and ‖m̌−m0‖D0 = op(1). The following lemma applied to {m̌n} completes the proof
of the theorem by showing that ‖m̌′n −m′0‖C = op(1) for any compact subset C in the interior of D0.

Lemma F.10 (Lemma 3.10, [47]). Let C be an open convex subset of Rd and f a convex functions which is
continuous and differentiable on C. Consider a sequence of convex functions {fn} which are finite on C such
that fn → f pointwise on C. Then, if C ⊂ C is any compact set,

sup
x∈C

ξ∈∂fn(x)

|ξ −∇f(x)| → 0,

where ∂fn(x) represents the sub-differential set of fn at x.

F.5. Proof of Theorem 3.3

We first state and prove a intermediary lemma.

Lemma F.11. Let m0 and θ0 satisfy the assumptions (A1), (A5), and (L1). Furthermore, let {θn} ∈ Θ
and {mn} ∈ ML be two non-random sequences such that

|θn − θ0| → 0, ‖mn −m0‖D0 → 0, and ‖m′n −m′0‖C → 0 (F.16)

for any compact subset C of the interior of D0. Then

PX
∣∣mn(θ>nX)−m0(θ>0 X)− {m′0(θ>0 X)X>(θn − θ0) + (mn −m0)(θ>0 X)}

∣∣2 = o(|θn − θ0|2).

Proof. For any convex function f ∈ ML, denote the right derivative of f by f ′. Note that f ′ is a bounded
increasing function. First, observe that

mn(θ>n x)−m0(θ>0 x)−
[
m′0(θ>0 x)x>(θn − θ0) + (mn −m0)(θ>0 x)

]
= mn(θ>n x)−mn(θ>0 x)−m′0(θ>0 x)x>(θn − θ0).

Now, ∣∣mn(θ>n x)−mn(θ>0 x)−m′0(θ>0 x)x>(θn − θ0)
∣∣2

=

∣∣∣∣∣
∫ θ>0 x

θ>n x
m′n(t) dt−m′0(θ>0 x)x>(θn − θ0)

∣∣∣∣∣
2

(mn is absolutely continuous)

=

∣∣∣∣∣
∫ θ>0 x

θ>n x
m′n(t) dt−m′n(θ>0 x)x>(θn − θ0) +m′n(θ>0 x)x>(θn − θ0)−m′0(θ>0 x)x>(θn − θ0)

∣∣∣∣∣
2

=

∣∣∣∣∣
∫ θ>0 x

θ>n x
m′n(t) dt−m′n(θ>0 x)x>(θn − θ0) + (m′n −m′0)(θ>0 x)x>(θn − θ0)

∣∣∣∣∣
2

≤ 2

∣∣∣∣∣
∫ θ>0 x

θ>n x
m′n(t) dt−m′n(θ>0 x)x>(θn − θ0)

∣∣∣∣∣
2

+ 2
∣∣∣(m′n −m′0)(θ>0 x)x>(θn − θ0)

∣∣∣2 . (F.17)

We will now find an upper bound for the first term on the right hand side of the above display. Observe
that m′n is an increasing function. When x>θn 6= x>θ0, we have

m′n(θ>n x) ∧m′n(θ>0 x) ≤

∫ θ>0 x
θ>n x

m′n(t) dt

x>(θn − θ0)
≤ m′n(θ>n x) ∨m′n(θ>0 x).
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Thus for all x ∈ χ, we have∣∣∣∣∣
∫ θ>0 x

θ>n x
m′n(t) dt−m′n(θ>0 x)x>(θn − θ0)

∣∣∣∣∣ ≤ |m′n(θ>n x)−m′n(θ>0 x)||x>(θn − θ0)|. (F.18)

Note that if x>θn = x>θ0, then both sides of (F.5) are 0. Combine (F.5) and (F.5), to conclude that

PX
∣∣mn(θ>nX)−mn(θ>0 X)−m′0(θ>0 X)X>(θn − θ0)

∣∣2 (F.19)

≤ 2PX

∣∣∣(m′n(θ>nX)−m′n(θ>0 X))X>(θn − θ0)
∣∣∣2 + 2PX

∣∣∣(m′n −m′0)(θ>0 X)X>(θn − θ0)
∣∣∣2 .

As χ is bounded, the two terms on the right hand side of (F.5) can be bounded as

PX

∣∣∣(m′n(θ>nX)−m′n(θ>0 X))X>(θn − θ0)
∣∣∣2 ≤T 2|θn − θ0|2PX

∣∣∣m′n(θ>nX)−m′n(θ>0 X)
∣∣∣2 ,

PX

∣∣∣(m′n −m′0)(θ>0 X)x>(θn − θ0)
∣∣∣2 ≤T 2|θn − θ0|2PX

∣∣∣(m′n −m′0)(θ>0 X)
∣∣∣2 .

We will now show that both PX
∣∣m′n(θ>nX)−m′n(θ>0 X)

∣∣2 and PX
∣∣(m′n −m′0)(θ>0 X)

∣∣2 converge to 0 as
n→∞. First observe that

PX

∣∣∣m′n(θ>nX)−m′n(θ>0 X)
∣∣∣2 . PX

∣∣∣m′n(θ>nX)−m′0(θ>nX)
∣∣∣2 + PX

∣∣∣m′0(θ>nX)−m′0(θ>0 X)
∣∣∣2

+ PX

∣∣∣m′0(θ>0 X)−m′n(θ>0 X)
∣∣∣2 . (F.20)

Recall that m′0 is a continuous and bounded function; see assumption (P1). Bounded convergence theorem

now implies that PX
∣∣m′0(θ>nX)−m′0(θ>0 X)

∣∣2 → 0, as |θn − θ0| → 0. Now consider the first term on the

right hand side of (F.5). As θ>0 X has a density, for any ε > 0, we can define a compact subset Cε in
the interior of D0 such that P(θ>0 X /∈ Cε) < ε/4L. Now note that, by Theorem 3.2 and the fact that
P(θ>nX /∈ Cε)→ P(θ>0 X /∈ Cε), we have

PX

∣∣∣m′n(θ>nX)−m′0(θ>nX)
∣∣∣2 ≤ sup

t∈Cε
|m′n(t)−m0(t)|+ 2LP (θ>nX /∈ Cε) ≤ ε,

as n→∞. Similarly, we can see that

PX

∣∣∣m′0(θ>0 X)−m′n(θ>0 X)
∣∣∣2 ≤ sup

t∈Cε
|m′n(t)−m0(t)|+ 2LP (θ>0 X /∈ Cε) ≤ ε,

as n→∞. Combining the results, we have shown that for every ε > 0

PX
∣∣mn(θ>nX)−m(θ>0 X)−m′0(θ>0 X)X>(θn − θ0)

∣∣2 ≤ T 2|θn − θ0|2ε,

for all sufficiently large n. Thus the result follows.

We will now use the above lemma to prove Theorem 3.3. Let us define, An(x) := m̌n(θ̌>n x) −m0(θ>0 x)
and Bn(x) := m′0(θ>0 x)x>(θ̌n − θ0) + (m̌n −m0)(θ>0 x). Observe that

An(x)−Bn(x) = m̌n(θ̌>n x)−m′0(θ>0 x)x>(θ̌n − θ0)− m̌n(θ>0 x).

= m̌n(θ̌>n x)−m0(θ>0 x)− {m′0(θ>0 x)x>(θ̌n − θ0) + (m̌n −m0)(θ>0 x)}.

We will now show that

Dn :=
1

|θ̌n − θ0|2
PX |An(X)−Bn(X)|2 = op(1). (F.21)

It is equivalent to show that for every subsequence {Dnk}, there exists a further subsequence {Dnkl } that

converges to 0 almost surely; see Theorem 2.3.2 of [15]. We showed in Theorem 3.2, that {m̌n, θ̌n} satisfies
(F.11) in probability. Thus by another application of Theorem 2.3.2 of [15], we have that {m̌nk , θ̌nk} has a

further subsequence {m̌nkl
, θ̌nkl } that satisfies (F.11) almost surely. Thus by Lemma F.11, we have Dnkl

a.s.→
0. Thus Dn = op(1).
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We will now use (F.5) to find the rate of convergence of {m̌n, θ̌n}. We first find an upper bound for
PX |Bn(X)|2. By a simple application of triangle inequality and (F.5), we have

PX |An(X)|2 ≥ 1

2
PX |Bn(X)|2 − PX |An(X)−Bn(X)|2 ≥ 1

2
PX |Bn(X)|2 − op(|θ̌n − θ0|2).

Note that, by Theorem 3.1, we have that PX |An(X)|2 = Op(n
−4/5). Thus we have

PX
∣∣m′0(θ>0 X)X>(θ̌n − θ0) + (m̌n −m0)(θ>0 X)

∣∣2 ≤ Op(n−4/5) + op(|θ̌n − θ0|2).

Now define
g1(x) := m′0(θ>0 x)x>(θ̌n − θ0) and g2(x) := (m̌n −m0)(θ>0 x) (F.22)

and note that by assumption (A3) there exists a λ1 > 0 such that

PXg
2
1 = (θ̌n − θ0)>PX [XX>|m′0(θ>0 X)|2](θ̌n − θ0) ≥ λ1|θ̌n − θ0|2. (F.23)

With (F.5) in mind, we can see that proof of this theorem will be complete if we can show that

PXg
2
1 + PXg

2
2 . PX

∣∣m′0(θ>0 X)X>(θ̌n − θ0) + (m̌n −m0)(θ>0 X)
∣∣2. (F.24)

The following lemma from [41] gives a sufficient condition for (F.5).

Lemma F.12 (Lemma 5.7 of [41]). Let g1 and g2 be measurable functions such that (Pg1g2)2 ≤ cPg2
1Pg2

2

for a constant c < 1. Then
P(g1 + g2)2 ≥ (1−

√
c)(Pg2

1 + Pg2
2).

We now show that g1 and g2 (defined in (F.5)) satisfy the condition of the above lemma. Observe that

PX [g1(X)g2(X)]2 = PX
∣∣m′0(θ>0 X)g2(X)E(X>(θ̌ − θ0)|θ>0 X)

∣∣2
≤ PX

[
{m′0(θ>0 X)}2E2[X>(θ̌ − θ0)|θ>0 X]

]
PXg

2
2(X)

< PX
[
{m′0(θ>0 X)}2E[{X>(θ̌ − θ0)}2|θ>0 X]

]
PXg

2
2(X)

= PX
[
E[{m′0(θ>0 X)X>(θ̌ − θ0)}2|θ>0 X)]

]
PXg

2
2(X)

= PX [m′0(θ>0 X)X>(θ̌ − θ0)]2PXg
2
2(X)

= PXg
2
1 PXg

2
2 .

The strict inequality in the above sequence of inequalities holds under the assumption that the conditional
distribution of X given θ>0 X is nondegenerate.

F.6. Proof of Theorem 3.4

We first show (3.4). Let δn be a sequence of positive numbers decreasing to 0. Let a, b ∈ R such that
D0 = [a, b]. Define Cn := [a+ 2δn, b− 2δn]. By (A5), fθ>0 X

, the density of θ>0 X is bounded away from 0 and

∞. Let K and K′ denote the minimum and the maximum of fθ>0 X
(·) in D0. Also, let κ denote the bound

on m′′0 (t) over t ∈ D0. As the m̌ is a convex function, we have

m̌(t)− m̌(t− δn)

δn
≤ m̌′(t−) ≤ m̌′(t+) ≤ m̌(t+ δn)− m̌(t)

δn
,
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for all t ∈ Cn, where m̌′(t+) and m̌′(t−) denote the right and left derivatives of m̌ at t, respectively. Observe
that∫

t∈Cn

[
m̌(t+ δn)− m̌(t)

δn
− m0(t+ δn)−m0(t)

δn

]2

dt

=
2

δ2
n

∫
t∈Cn

{m̌(t+ δn)−m0(t+ δn)}2dt+
2

δ2
n

∫
t∈Cn

{m̌(t)−m0(t)}2dt

=
2

δ2
n

∫
t∈[a+3δn,b−δn]

{m̌(t)−m0(t)}2dt+
2

δ2
n

∫
t∈Cn

{m̌(t)−m0(t)}2dt

≤ 2

Kδ2
n

∫
t∈[a+3δn,b−δn]

{m̌(t)−m0(t)}2fθ>0 X(t)dt+
2

Kδ2
n

∫
t∈Cn

{m̌(t)−m0(t)}2fθ>0 X(t)dt

=
1

δ2
n

Op(n
−4/5), (F.25)

where the last equality follows from Theorem 3.7. Similarly, it can be shown that∫
t∈Cn

[
m̌(t)− m̌(t− δn)

δn
− m0(t)−m0(t− δn)

δn

]2

dt =
1

δ2
n

Op(n
−4/5). (F.26)

Now observe that, as κ ≥ ‖m′′0‖D0 , we have

∆+
n (t) :=

[
m̌(t+ δn)− m̌(t)

δn
− m0(t+ δn)−m0(t)

δn

]
≥ m̌′(t+)−m′0(xtn)

≥ m̌′(t+)−m′0(t) +m′0(t)−m′0(xtn)

≥ m̌′(t+)−m′0(t)− κδn,

where xtn lies between t and t+ δn. Moreover,

∆−n (t) :=

[
m̌(t)− m̌(t− δn)

δn
− m0(t)−m0(t− δn)

δn

]
≤ m̌′(t+)−m′0(x′tn)

≤ m̌′(t+)−m′0(t) +m′0(t)−m′0(x′tn)

≤ m̌′(t+)−m′0(t) + κδn,

where x′tn lies between t− δn and t. Combining the above two results, we have

∆−n (t)− κδn ≤ m̌′(t+)−m′0(t) ≤ ∆+
n (t) + κδn;

see proof of Corollary 1 of [14] for a similar inequality. Thus for every t ∈ Cn, we have [m̌′(t+)−m′0(t)]2 ≤
2κ2δ2

n + 2 max
{

[∆−n (t)]2, [∆+
n (t)]2

}
. By (F.6) and (F.6), we have∫

t∈Cn
[m̌′(t+)−m′0(t)]2fθ>0 X

(t)dt ≤ 2κ2δ2
n +

1

δ2
n

Op(n
−4/5), (F.27)

as ∫
t∈Cn

max
{

[∆−n (t)]2, [∆+
n (t)]2

}
fθ>0 X

(t)dt

≤
∫
t∈Cn

{∆−n (t)}2fθ>0 X(t)dt+

∫
t∈Cn

{∆+
n (t)}2fθ>0 X(t)dt

≤ K′
∫
t∈Cn

{∆−n (t)}2dt+K′
∫
t∈Cn

{∆+
n (t)}2dt

=
1

δ2
n

Op(n
−4/5),
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where K′ is an upper bound on fθ>X(·) in D0. Moreover, note that ‖m̌′‖∞ ≤ L and ‖m′0‖∞ ≤ L0 ≤ L.
Thus ∫

t∈D0

{m̌′(t+)−m′0(t)}2fθ>0 X(t)dt =

∫
t∈Cn

{m̌′(t+)−m′0(t)}2fθ>0 X(t)dt

+

∫
t∈D0∩Ccn

{m̌′(t+)−m′0(t)}2fθ>0 X(t)dt

= 2κ2δ2
n +

1

δ2
n

Op(n
−4/5) + 4L2P (θ>0 X ∈ D0 ∩ Ccn)

≤ 2κ2δ2
n +

1

δ2
n

Op(n
−4/5) + 16K′L2δn.

The tightest upper bound for the left hand side of the above display is achieved when δn = n−4/15. With
this choice of δn, we have∫

t∈D0

{m̌′(t+)−m′0(t)}2fθ>0 X(t)dt ≤ 2κ2n−8/15 +Op(n
−4/15) + 16K′L2n−4/15 = Op(n

−4/15).

We can find a similar upper bound for
∫
t∈D0
{m̌′(t+)−m′0(t)}2dt :∫

t∈D0

{m̌′(t+)−m′0(t)}2dt =

∫
t∈Cn

{m̌′(t+)−m′0(t)}2dt+

∫
t∈D0∩Ccn

{m̌′(t+)−m′0(t)}2dt(F.28)

≤ 2
κ2δ2

n

K
+

1

Kδ2
n

Op(n
−4/5) + 16L2δn,

where the first term on the right hand side of (F.6) is bounded above via (F.6) and K is the minimum of
fθ>0 X

. When δn = n−4/15, we have∫
t∈D0

{m̌′(t+)−m′0(t)}2dt ≤ 2κ2n−8/15 +Op(n
−4/15) + 16L2n−4/15 = Op(n

−4/15). (F.29)

Recall that by assumption (A5), we have

sup
|θ−θ0|≤n−2/15

‖fθ>X‖D ≤ c <∞,

for large enough n. Now the proof of (3.4) easily follows from (F.6), since

sup
|θ−θ0|≤n−2/15

∫
t∈D0

{m̌′(t+)−m′0(t)}2fθ>X(t)dt ≤ sup
|θ−θ0|≤n−2/15

‖fθ>X‖D
∫
t∈D0

{m̌′(t+)−m′0(t)}2dt

≤ Op(n−4/15),

where the last inequality follows from (F.6). Note that the upper bound in (F.6) is independent of θ. The
proof of (3.4) follows from (3.4) as |θ̌ − θ0| = op(n

−2/15).

Appendix G: Proofs of results in Section 3.2

G.1. Discussion for Proofs of Theorems 3.5, 3.6, and 3.7

Proof of Theorem 3.5 is almost identical to the proof of Theorem 2 of [32]. They propose following estimator
for (m0, θ0) in a similar single index model:

(mkp, θkp) := arg min
(m,θ)∈S×Θ

Ln(m, θ;λ),

where S is defined in Section 2.1. The single index model in [32] does not assume any shape constraint on m0

and mkp is a (possibly non-convex) cubic spline. Under assumptions (A1)–(A4), they prove that (mkp, θkp)
satisfies the properties of Theorem 3.5. The only modification in the proof of Theorem 2 of [32] needed for it
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to be applicable to (m̂, θ̂) is in the definition of BC and Lemma 8 of [32]. For our purposes, we can redefine
BC as follow:

BC :=

{
m ◦ θ −m0 ◦ θ0

1 + J(m0) + J(m)
: m ∈ R, θ ∈ Θ, and

‖m‖∞
1 + J(m0) + J(m)

≤ C
}
.

The rest of the proof of Theorem 2 of [32] will follow if we can show that

logN (δ,BC , ‖ · ‖∞) . δ−1/2. (G.1)

The proof of (G.1) follows from Lemma 8 of [32]. Proofs of Theorems 3.6 and 3.7 are identical to the
proof of Theorems 3 and 4, respectively.

G.2. Proof of Theorem 3.8

We use the following interpolation inequality in [1] to prove this theorem.

Lemma G.1. (Corollary 3.1, [1]) Let f : R → R be a continuously differentiable function on (a, b) and
suppose we can write f ′(x) = f ′(η) +

∫ x
η
f ′′(s)ds for all a < η ≤ x < b. Furthermore, let g : R → R be a

continuous density function and is bounded away from 0, i.e., g(s) > δ > 0 for all s ∈ (a, b). If 0 < ε ≤ 1,
then ∫ b

a

|f ′(s)|2g(s)ds ≤ γ
[
ε

∫ b

a

|f ′′(s)|2g(s)ds+ ε−1

∫ b

a

|f(s)|2g(s)ds
]
,

where γ depends only on δ, a, b, and maxs∈(a,b) g(s).

Take g to be the density of θ>0 X with respect to the Lebesgue measure. By assumption (A5), we have
that g is continuous and bounded away from zero on the bounded set D0. Furthermore, let f = m̂ −m0.
By assumption (P1), we have that m0 has an absolutely continuous first derivative. It can also be seen that
m̂, has an absolutely continuous derivative; see Section 2 of [16]. Thus by an easy application of the Lemma
G.1, we have that

‖m̂′ ◦ θ0 −m′0 ◦ θ0‖2 ≤ γ
[
ε‖m̂′′ ◦ θ0 −m′′0 ◦ θ0‖2 + ε−1‖m̂ ◦ θ0 −m0 ◦ θ0‖2

]
.

By Theorem 3.6, we have that J(m̂) = Op(1). Because g is bounded away from both zero and infinity,
we have that

∫
D0
m̂′′(s)2g(s)ds . J(m̂) and

∫
D0
m′′0 (s)2g(s)ds . J(m0). Fixing ε = λ̂n, by Theorem 3.6, we

have
‖m̂′ ◦ θ0 −m′0 ◦ θ0‖2 ≤ γ

[
λ̂n(J2(m̂) + J2(m0)) + λ̂−1

n Op(λ̂
2
n)
]

= Op(λ̂n).

Appendix H: Proofs of results in Appendix A

Remark H.1 (Quadratic mean differentiability). If the errors are Gaussian random variables then in
the following, we show that the model is quadratic mean differentiable in θ. The proof of quadratic mean
differentiability for any error distribution satisfying assumption (B3) follows similarly. Under Gaussian
error, the density of (Y,X) is

fθ,m(y, x) = exp

(
− 1

2σ2
(y −m(θ>x))2

)
pX(x).

Note that θ 7→ fθ,m(y, x) is differentiable a.e. (y, x). Define

η(y, x, θ,m) =

{
1
2
f ′θ,m(y, x)f

−1/2
θ,m (y, x), fθ,m(y, x) > 0 and f ′θ,m(y, x) exists,

0 otherwise,

where f ′θ,m(y, x) denotes the derivative with respect to θ. Hájek [20] proved that the family of distributions is
quadratic mean differentiable (q.m.d) at θ0 if

Ii,j(θ) :=

∫
ηi(y, x, θ,m)ηj(y, x, θ,m)dPX(x)dy
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is finite and continuous at θ. In the following we prove that Ii,j(θ) is finite and continuous at θ. Observe
that,

Ii,j(θ) =

∫
χ×R

ηi(y, x, θ,m)ηj(y, x, θ,m)dPXdy

=

∫
χ×R

(y −m(θ>x))2[m′(θ>x)]2xixj exp

(
− 1

2σ2
(y −m(θ>x))2

)
dPX(x)dy

= Pθ,m[(Y −m(θ>X))2[m′(θ>X)]2XiXj ]

= Pθ,m
[
E[(Y −m(θ>X))2[m′(θ>X)]2XiXj |θ>X]

]
= Pθ,m

[
m′(θ>X)2E[XiXj |θ>X]

]
.

As both m(·) and E[XiXj |θ>X = ·] are bounded functions, we have that Ii,j(θ) is finite and continuous at
θ0. Thus, the model is differentiable in quadratic mean in θ.

H.1. Proof of Theorem A.1

We will first show that ξt(u; θ, η,m) is a valid submodel. Let us define

ϕθ,η,t(u) := φθ,η,t(u+ (θ − ζt(θ, η))>k(u)). (H.1)

Note that to prove that ξt(u; θ, η,m) is a convex function it is enough to show that kt(·; θ, η,m) is an
increasing function. First observe that

k′(u) = 2h′θ0(u)− m′0(u)m′′′0 (u)

(m′′0 (u))2
h′θ0(u) +

m′0(u)

m′′0 (u)
h′′θ0(u). (H.2)

Hence, by assumptions (P1), (B1), and (B2), we can find M∗ such that ‖k‖SD ≤ M∗. Thus u 7→ u+ (θ −
ζt(θ, η))>k(u) is a strictly increasing function for t in neighborhood of zero as k is a Lipschitz function on
D; see (H.1). As φθ,η,t(·) is a strictly increasing function for t sufficiently close to zero. It now follows that
u 7→ ϕθ,η,t(u) is a nondecreasing function for all t ∈ Rd such that |t− θ| is sufficiently close to zero. Finally,
recall that m′ is an increasing function and

kt(u; θ, η,m) = m′ ◦ ϕθ,η,t(u).

Thus we have that kt(·; θ, η,m) is an increasing function for t ∈ R is close enough to 0. Next we show that
ξt(u; θ, η,m) = m(u) when t = 0. By definition we have

ξt(s
>x; θ, η,m) =

∫ s>x

s0

m′ ◦ϕθ,η,t(u)dy+ (ζt(θ, η)− θ)>
[
(m′0(s0)−m′(s0))k(s0)−m′0(s0)hθ0(s0)

]
+m(s0).

We have that ϕθ,η,0(u) = u, ∀u ∈ D. Hence,

ξ0(ζ0(θ, η)>x; θ, η,m) =

∫ θ>x

s0

m′ ◦ ϕθ,η,0(y)dy +m(s0) =

∫ θ>x

s0

m′(y)dy +m(s0) = m(θ>x)

and ζ0(θ, η) = θ for all η ∈ Sd−2. Now we show that J2(ξt(·; θ, η,m)) <∞. Observe that

J2(ξt(·; θ, η,m)) =

∫
D

{ξ′′t (u; θ, η,m)(u)}2du

=

∫
Dr

[ ∂
∂u

kt(u; θ, η,m)
]2
du

=

∫
D

{m′′ ◦ ϕθ,η,t(u) ϕ′θ,η,t(u)}2du

=

∫
D

{m′′(u)}2ϕ′θ,η,t ◦ ϕ−1
θ,η,t(u)du
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where ϕθ,η,t is defined in (H.1) and ϕ′θ,η,t(u) := ∂
∂u
ϕθ,η,t(u). Thus, we have that J2(ξt(·; θ, η,m)) < ∞

whenever J(m) <∞.
Next we compute ∂kt(u; θ, η,m)/∂t and ∂ξt(ζt(θ, η)>x; θ, η,m)/∂t to help with the calculation of the

score function for the submodel {ζt(θ, η), ξt(·; θ, η,m)}. Observe that

∂

∂t
kt(u; θ, η,m) =

∂

∂t
m′ ◦ φθ,η,t(u+ (θ − ζt(θ, η))>k(u))

= m′′ ◦ φθ,η,t(u+ (θ − ζt(θ, η))>k(u))

[
φ̇θ,η,t(u+ (θ − ζt(θ, η))>k(u))

− φ′θ,η,t(u+ (θ − ζt(θ, η))>k(u))
∂ζt(θ, η)

∂t

>
k(u)

]
,

where φ̇θ,η,t(u) := ∂φθ,η,t(u)/∂t and φ′θ,η,t(u) := ∂φθ,η,t(u)/∂u. Moreover,

∂

∂t
ξt(ζt(θ, η)>x; θ, η,m)

=
∂

∂t

{∫ ζt(θ,η)>x

s0

kt(y; θ, η,m)dy

}
+
∂ζt(θ, η)

∂t

>[
(m′0(s0)−m′(s0))k(s0)−m′0(s0)hθ0(s0)

]
= kt(ζt(θ, η)>x; θ, η,m)

∂ζt(θ, η)

∂t

>
x+

∫ ζt(θ,η)>x

s0

∂kt(y; θ, η,m)

∂t
dy

+
∂ζt(θ, η)

∂t

>[
(m′0(s0)−m′(s0))k(s0)−m′0(s0)hθ0(s0)

]
=
∂ζt(θ, η)

∂t

>[
kt(ζt(θ, η)>x; θ, η,m)x+ (m′0(s0)−m′(s0))k(s0)−m′0(s0)hθ0(s0)

]
+

∫ ζt(θ,η)>x

s0

m′′ ◦ φθ,η,t(u+ (θ − ζt(θ, η))>k(u))

[
φ̇θ,η,t(u+ (θ − ζt(θ, η))>k(u))

− φ′θ,η,t(u+ (θ − ζt(θ, η))>k(u))
∂ζt(θ, η)

∂t

>
k(u)

]
du.

The interchange of derivative and the integral is possible by assumptions (P1), (B1), and (B2). Using the
fact that φ′θ,η,t(u) = 1 and φ̇θ,η,t(u) = 0 for all u ∈ Dθ (follows from the definition (A.1)) and ∂ζt(θ, η)/∂t =

−|η|2t/
√

1− t2|η|2 θ +Hθη, we get

∂

∂t
ξt(ζt(θ, η)>x; θ, η,m)

∣∣∣∣∣
t=0

= η>H>θ
[
m′(θ>x)x+ (m′0(s0)−m′(s0))k(s0)−m′0(s0)hθ0(s0)

]
− η>H>θ

∫ θ>x

s0

m′′(u)k(u)du,

and

−1

2

∂

∂t

[
y − ξt(ζt(θ, η)>x; θ, η,m)

]2∣∣∣∣
t=0

=
(
y −m(θ>x)

)
η>H>θ

[
m′(θ>x)x+

∫ θ>x

s0

m′′(u)[−k(u)]du

+ (m′0(s0)−m′(s0))k(s0)−m′0(s0)hθ0(s0)
]

=
(
y −m(θ>x)

)
η>H>θ

[
m′(θ>x)x+

∫ θ>x

s0

m′(u)k′(u)du−m′(θ>x)k(θ>x)

+m′(s0)k(s0) + (m′0(s0)−m′(s0))k(s0)−m′0(s0)hθ0(s0)
]

= η>Sθ,m(x, y).

(H.3)
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Next, observe that (θ̂, m̂) minimizes Ln(m, θ;λn) and ξ0(ζ0(θ̂, η)>x; θ̂, η, m̂) = m̂(θ̂>x). Hence the function

t 7→ 1

n

n∑
i=1

(yi − ξt(ζt(θ̂, η)>x; θ̂, η, m̂)2 + λ̂2
n

∫
D

{ξt(·; θ̂, η, m̂)′′(u)}2du

is minimized at t = 0 for every η ∈ Sd−2. Observe that (H.1) and the fact that J2(ξt(·; θ, η,m)) is differen-
tiable imply that the above function is differentiable in t on a small neighborhood of 0 (which depends on
η). Hence, we have that

PnSθ̂,m̂ −
λ̂2
n

2

∂J2
(
ξt(·; θ̂, η, m̂)

)
∂t

∣∣∣∣∣
t=0

= 0. (H.4)

Moreover, after some tedious algebra it can be seen that

∂

∂t
J2(ξt(·; θ, η,m)

)∣∣∣∣
t=θ

≤ C
∫
Dθ

k′(p){m′′(p)}2dp, (H.5)

where C is constant independent of η, k is defined in (Step 1). Thus by Theorem 3.5, (Step 1), and (H.1),
we have

∂

∂t
J2(ξt(·; θ̂, η, m̂)

)∣∣∣∣
t=0

≤M∗J(m̂) = Op(1).

Finally, (H.1) and (P2) imply PnSθ̂,m̂ = op(n
−1/2).

Next, we show that Sθ0,m0 = `θ0,m0 . By definition, it is enough to show that,

m′0(θ>0 x)(x− k(θ>0 x)) +m′0(s0)k(s0) +

∫ θ>0 x

s0

m′0(u)k′(u)du−m′0(s0)hθ0(s0) = m′0(θ>0 x)(x− hθ0(θ>0 x))

⇔ m′0(θ>0 x)k(θ>0 x)−m′0(s0)k(s0)−
∫ θ>0 x

s0

m′0(u)k′(u)du+m′0(s0)hθ0(s0) = m′0(θ>0 x)hθ0(θ>0 x)

⇔
∫ θ>0 x

s0

∂
[
m′0(u)k(u)

]
∂u

du−
∫ θ>0 x

s0

m′0(u)k′(u)du+m′0(s0)hθ0(s0) = m′0(θ>0 x)hθ0(θ>0 x)

⇔
∫ θ>0 x

s0

m′′0 (u)k(u)du+m′0(s0)hθ0(s0) = m′0(θ>0 x)hθ0(θ>0 x), (H.6)

which is true by (Step 1). As the score of the sub-model is the efficient score at the truth, we have that
ζt(θ,m) is an approximately least favorable subprovided model.

H.2. Proof of Lemma A.1

From the definitions of Sθ,m and ψθ,m, we have

Sθ,m(x, y)− ψθ,m(x, y)

= {y −m(θ>x)}H>θ
[ ∫ θ>x

s0

m′(u)k′(u)du−m′(θ>x)k(θ>x) +m0
′(s0)k(s0)

−m′0(s0)hθ0(s0) + (m′0 hθ0)(θ>x)
]
.
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Observe that∫ θ>x

s0

m′(u)k′(u)du−m′(θ>x)k(θ>x) +m0
′(s0)k(s0)−m′0(s0)hθ0(s0) + (m′0 hθ0)(θ>x)

=

∫ θ>x

s0

m′(u)k′(u)du−
∫ θ>x

s0

m′0(u)k′(u)du+

∫ θ>x

s0

m′0(u)k′(u)du−m′(θ>x)k(θ>x)

+m0
′(s0)k(s0)−m′0(s0)hθ0(s0) + (m′0 hθ0)(θ>x)

=

∫ θ>x

s0

{m′(u)−m′0(u)}k′(u)du+

∫ θ>x

s0

m′0(u)k′(u)du−m′(θ>x)k(θ>x)

+m′0(s0)k(s0) + (m′0 hθ0)(θ>x)− (m′0 hθ0)(s0). (H.7)

We now analyze the terms in the right hand side of the above display. First observe that∫ θ>x

s0

m′0(u)k′(u)du−m′(θ>x)k(θ>x) +m′0(s0)k(s0)

= m′0(u)k(u)
∣∣∣θ>x
s0

−
∫ θ>x

s0

m′′0 (u)k(u)du−m′(θ>x)k(θ>x) +m′0(s0)k(s0)

= −
∫ θ>x

s0

m′′0 (u)k(u)du+ (m′0(θ>x)−m′(θ>x))k(θ>x).

(H.8)

Finally, by definition (Step 1) and integration by parts, we have∫ θ>x

s0

m′′0 (u)k(u)du =

∫ θ>x

s0

[m′′0 (u)hθ0(u) +m′0(u)h′θ0(u)]du = m′0(u)hθ0(u)
∣∣∣θ>x
s0

. (H.9)

By substituting (H.2) and (H.2) in (H.2), we have that

√
nPn(Sθ̂,m̂ − ψθ̂,m̂) =

√
nPn[(Y − m̂(θ̂>X))Uθ̂,m̂(X)].

In the following, we find an upper bound of
√
nPn[(Y − m̂(θ̂>X))Uθ̂,m̂(X)]:

|
√
nPn[(Y − m̂(θ̂>X))Uθ̂,m̂(X)|

= |
√
nPn[(m0(θ0

>X)− m̂(θ̂>X))Uθ̂,m̂(X)] +
√
nPnεUθ̂,m̂(X)|

≤ |
√
nPn[(m0 − m̂)(θ0

>X)Uθ̂,m̂(X)]|+ |
√
nPn[(m̂(θ0

>X)− m̂(θ̂>X))Uθ̂,m̂(X)]|

+ |
√
nPnεUθ̂,m̂(X)|

≤ |Gn[(m0 − m̂)(θ0
>X)Uθ̂,m̂(X)]|+

∣∣Gn[(m̂(θ0
>X)− m̂(θ̂>X))Uθ̂,m̂(X)]

∣∣
+ |
√
nPnεUθ̂,m̂(X)|+

√
n
∣∣Pθ0,m0 [(m̂(θ0

>X)− m̂(θ̂>X))Uθ̂,m̂(X)]
∣∣

+
√
n
∣∣Pθ0,m0 [(m0 − m̂)(θ0

>X)Uθ̂,m̂(X)]
∣∣.

H.3. Proof of Lemma A.2

We will first show that
N(ε,W∗M1,M2,M3

, ‖ · ‖∞) ≤ c exp(c/ε)ε−4d, (H.10)

where c depends only on M1,M2, and M3. By Theorem 2.4 of [49], we have

N(ε,
{
f ′ : f ∈ Cm∗M1,M2,M3

}
, ‖ · ‖∞) ≤ exp(c/ε),

where c is a constant depending only on M1,M2, and M3. Let us denote the functions in the ε-cover by
l1, . . . , lt. By Lemma 15 of [32], we have that there exists θ1, . . . , θs for s . ε−4d such that {θi}1≤i≤s form an
ε2-cover of Θ ∩ Bθ0(1/2) and satisfies (86) of [32] (with ε2 instead of ε). Fix (θ,m) ∈ C∗M1,M2,M3

. Without
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loss of generality assume that the function nearest to m′ in the ε-cover is l1 and the vector nearest to θ in
the ε2 cover of Θ ∩Bθ0(1/2) is θ1, i.e.,

‖m′ − l1‖∞ ≤ ε, ‖H>θ −H>θ1‖ ≤ ε
2, and |θ − θ1| ≤ ε2.

We define r1 to be the anti-derivative of l1 i.e., l1 = r′1. Let us define

Vθ,m(x) :=

[∫ θ>x

s0

[
m′(u)−m′0(u)

]
k′(u)du+ (m0

′(θ>x)−m′(θ>x))k(θ>x)

]
.

Recall that Uθ,m = H>θ Vθ,m. Now for every x ∈ χ, observe that

∣∣Uθ,m(x)− Uθ1,r1(x)
∣∣

≤
∣∣Uθ,m(x)− Uθ,r1(x)

∣∣+ |(H>θ −H>θ1)Vθ,r1 |+
∣∣H>θ1(Vθ,r1(x)− Vθ1,r1(x)

)∣∣
≤
∣∣∣H>θ ∫ θ>x

s0

[m′(u)− r′1(u)]k′(u)du
∣∣∣+
∣∣∣H>θ (m′ − r′1)(θ>x)k(θ>x)

∣∣∣
+ 4M∗M2(T + 1)

√
d− 1ε2 +

∣∣∣H>θ1[(r′1 −m′0)(θ>x) k(θ>x)− (r′1 −m′0)(θ>1 x)k(θ>1 x)
]∣∣∣

+
∣∣∣H>θ1 ∫ θ>x

θ1>x
[r′1(u)−m′0(u)]k′(u)du

∣∣∣
≤ 2T (1 + |θ0|)M∗‖m′ − r′1‖∞ +M∗‖m′ − r′1‖∞ + 4M∗M2(T + 1)

√
d− 1ε2

+
∣∣∣(r′1 −m′0)(θ>x)k(θ>x)− (r′1 −m′0)(θ>1 x)k(θ>x)

∣∣∣+ 2M2M
∗T |θ − θ1|.

Furthermore, note that ∣∣∣(r′1 −m′0)(θ>x) k(θ>x)− (r′1 −m′0)(θ>1 x)k(θ>1 x)
∣∣∣

≤
∣∣∣(r′1 −m′0)(θ>x)k(θ>x)− (r′1 −m′0)(θ>1 x)k(θ>x)

∣∣∣
+
∣∣∣(r′1 −m′0)(θ>1 x)[k(θ>x)− k(θ>1 x)]

∣∣∣
≤M∗

∣∣∣(r′1 −m′0)(θ>x)− (r′1 −m′0)(θ>1 x)
∣∣∣+ 2M2M

∗T |θ − θ1|

≤ 2M3M
∗T |θ − θ1|1/2 + 2M2M

∗T |θ − θ1|,

where the last inequality in the previous display follows from Lemma E.1. Combining the above two displays,
we have ∣∣Uθ,m(x)− Uθ1,r1(x)

∣∣ ≤M∗‖m′ − r′1‖∞(4T + 1) + 4M∗M2(T + 1)
√
d− 1ε2

+ 2M3M
∗T |θ − θ1|1/2 + 2M2M

∗T |θ − θ1|+ 2M2M
∗T |θ − θ1|.

Thus, {Uθi,lj} form an (constant multiple of) ε-cover (with respect to ‖ · ‖2,∞ norm) of W∗M1,M2,M3
, and we

have (H.3). Moreover, as N[ ](ε,W∗M1,M2,M3
, ‖ · ‖2,Pθ0,m0

) . N(ε,W∗M1,M2,M3
, ‖ · ‖∞) and

WM1,M2,M3(n) ⊂ W∗M1,M2,M3
,

for every n ∈ N, we haveN[ ](ε,WM1,M2,M3(n), ‖·‖2,Pθ0,m0
) . N[ ](ε,W∗M1,M2,M3

, ‖·‖2,Pθ0,m0
). Now we find an

envelope function forWM1,M2,M3(n). Recall that |H>θ x| ≤ |x| for all x ∈ Rd. For every (η, f) ∈ CM1,M2,M3(n)
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and x ∈ χ, observe that

∣∣Uθ,m(x)
∣∣ ≤ ∣∣∣ ∫ θ>x

s0

[m′(u)−m′0(u)]k′(u)du
∣∣∣+
∣∣∣(m′ −m′0)(θ>x)k(θ>x)

∣∣∣
≤
∣∣∣ ∫ θ>0 x

s0

[m′(u)−m′0(u)]k′(u)du
∣∣∣+
∣∣∣ ∫ θ>x

θ>0 x
[m′(u)−m′0(u)]k′(u)du

∣∣∣
+
∣∣∣(m′ −m′0)(θ>x)k(θ>x)

∣∣∣
≤
√
d− 1M∗

(
T‖m−m0‖SD0

+ 2M2T |θ − θ0|+ 2M3

√
T |θ − θ0|

1
2 + ‖m−m0‖SD0

)
≤WM1,M2,M3(n).

Thus, WM1,M2,M3(n) satisfies (A.2).

H.4. Proof of Lemma A.3

For every (θ,m) ∈ CM1,M2,M3(n), note that∣∣(m0 −m)(θ0
>x)Uθ,m(x)

∣∣ ≤ 2M1

∣∣Uθ,m(x)
∣∣ ≤ 2M1WM1,M2,M3(n) = DM1,M2,M3(n).

Furthermore, we have

N(ε,
{

(m0 −m)(θ0
>·) : m ∈ Cm∗M1,M2,M3

}
, ‖ · ‖∞) = N(ε, Cm∗M1,M2,M3

, ‖ · ‖∞) < exp(c/
√
ε),

where the inequality follows from Theorem 2.4 of [49] and c is a constant depending only on M1,M2, and
M3. By Lemma 9.25 of [31] (for entropy of product of uniformly bounded function classes), and Lemma A.2,
we have that

N(ε,D∗M1,M2,M3
, ‖ · ‖2,∞) ≤ cε−4d exp

(
c√
ε

+
c

ε

)
.

Since, N(ε,DM1,M2,M3(n), ‖ · ‖2,∞) ≤ N(ε,D∗M1,M2,M3
, ‖ · ‖2,∞) and N[ ](ε,DM1,M2,M3(n), ‖ · ‖2,Pθ0,m0

) .

N(ε,D∗M1,M2,M3
, ‖ · ‖2,∞), we have J[ ](γ,DM1,M2,M3(n), ‖ · ‖2,Pθ0,m0

) . cγ1/2.

Observe that f ∈ DM1,M2,M3(n) maps χ to Rd−1. For any f ∈ DM1,M2,M3(n), let f1, . . . , fd−1 denote
each of the real valued components, i.e., f(·) := (f1(·), . . . , fd−1(·)). With this notation, we have

P
(

sup
f∈DM1,M2,M3

(n)

|Gnf | > δ

)
≤
d−1∑
i=1

P
(

sup
f∈DM1,M2,M3

(n)

|Gnfi| > δ/
√
d− 1

)
. (H.11)

We can bound each term in the summation of (H.4) using the maximal inequality in Corollary 19.35 of [52].
We have

P
(

sup
f∈DM1,M2,M3

(n)

|Gnf | > δ

)

≤ δ−1
√
d− 1

d−1∑
i=1

E
(

sup
f∈DM1,M2,M3

(n)

|Gnfi|
)

(H.12)

≤ δ−1d
√
d− 1J[ ](‖DM1,M2,M3(n)‖,DM1,M2,M3(n), ‖ · ‖2,Pθ0,m0

)

. δ−1‖DM1,M2,M3(n)‖1/2

.
[
λ̂1/4
n +

1

an

]1/2
→ 0, as n→∞,

where we have used (A.3) and the fact that D2
M1,M2,M3

(n) is non-random in the last inequality.
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H.5. Proof of Lemma A.4

First, note that for every (θ,m) ∈ CM1,M2,M3(n), we have∣∣(m(θ0
>x)−m(θ>x))Uθ,m

(
x)
∣∣ ≤ 2M1

∣∣Uθ,m(x)
∣∣ ≤ DM1,M2,M3(n).

Observe that the proof of Lemma A.4 will be complete (by arguments similar to the proof of Lemma A.3)
if we can show that

logN(ε,A∗M1,M2,M3
, ‖ · ‖2,∞) ≤ c exp

(
c

ε
+

c√
ε

)
ε−4d, (H.13)

where the constant c depends only on M1,M2,M3, and d.
However, arguments similar to the proof of Lemma 8 of [32] will show that

N(ε,
{
m ◦ θ0 −m ◦ θ : (θ,m) ∈ C∗M1,M2,M3

}
, ‖ · ‖∞) < c exp(c/

√
ε)ε−d,

for some constant c depending only on d,M1,M2 and M3. Thus by Lemma 9.25 of [31] and Lemma A.2, we
have (H.5).

H.6. Proof of Lemma A.5

Note that, we have

P(|
√
nPn(εUθ̂,m̂)| > δ)

≤ P
(

sup
(θ,m)∈CM1,M2,M3

(n)

|
√
nPn(εUθ,m)| > δ

)
+ P((θ̂, m̂) /∈ CM1,M2,M3(n))

≤ P
(

sup
f∈WM1,M2,M3

(n)

|
√
nPnεf | > δ

)
+ P((θ̂, m̂) /∈ CM1,M2,M3(n))

= P
(

sup
f∈WM1,M2,M3

(n)

|Gnεf | > δ
)

+ P((θ̂, m̂) /∈ CM1,M2,M3(n)),

where the last equality is due to assumption (A2). Now it is enough to show that for every fixed M1,M2,
and M3, we have

P
(

sup
f∈WM1,M2,M3

(n)

|Gnεf | > δ
)
→ 0, as n→ 0.

By Lemma A.2, we have

N[ ](ε,WM1,M2,M3(n), ‖ · ‖2,Pθ0,m0
) ≤ c exp(c/ε)ε−4d.

Fix (θ,m) ∈ CM1,M2,M3(n). If [~1, ~2] is a bracket (coordinate-wise) for Uθ,m, then [~1ε
+−~2ε

−, ~2ε
+−~1ε

−]
is a bracket for εUθ,m. Therefore, we have

N[ ]

(
ε, {εf : f ∈ WM1,M2,M3(n)}, ‖ · ‖2,Pθ0,m0

)
≤ c exp(c/ε)ε−4d.

Moreover, for every (θ,m) ∈ CM1,M2,M3(n) and x ∈ χ, we have

|εUθ,m(x)| ≤ |ε|WM1,M2,M3(n).

It follows that
J[ ](γ,WM1,M2,M3(n), ‖ · ‖2,Pθ0,m0

) . γ
1
2 .

Thus using the maximal inequality in Corollary 19.35 of [52] and an argument similar to (H.4) and (H.4),
we have

P
(

sup
f∈WM1,M2,M3

(n)

|Gnεf | > δ
)
.δ−1

√
d− 1

d−1∑
i=1

E
(

sup
f∈WM1,M2,M3

(n)

|Gnεfi|
)

.δ−1J[ ]

(
Pθ0,m0

(
|ε2|W 2

M1,M2,M3
(n)
) 1

2 ,WM1,M2,M3(n), ‖ · ‖2,Pθ0,m0

)
.λ̂−1/4

n +
1

an
→ 0 as n→∞,
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where in the first inequality f1, . . . , fd−1 denote each component of f. Now, we prove the second and third
equations in (A.5). First, note that∣∣Pθ0,m0 [(m0 − m̂)(θ0

>X)Uθ̂,m̂(X)]
∣∣ ≤√Pθ0,m0

[
(m0 − m̂)2(θ0

>X)
]
Pθ0,m0

∣∣Uθ̂,m̂(X)
∣∣2

= Op(λ̂n)
[
Pθ0,m0

∣∣Uθ̂,m̂(X)
∣∣2]1/2 , (H.14)

where the inequality is an application of the CauchySchwarz inequality and the equality is due to Theorem
3.7. Similarly, using Theorems 3.6, 3.7, and the mean value theorem we have∣∣Pθ0,m0 [(m̂(θ0

>X)− m̂(θ̂>X))Uθ̂,m̂(X)]
∣∣ ≤√Pθ0,m0 [m̂(θ0

>X)− m̂(θ̂>X)]2Pθ0,m0

∣∣Uθ̂,m̂(X)
∣∣2

≤ ‖m̂′‖∞|θ̂ − θ0|T
[
Pθ0,m0

∣∣Uθ̂,m̂(X)
∣∣2]1/2

= Op(λ̂n)
[
Pθ0,m0

∣∣Uθ̂,m̂(X)
∣∣2]1/2 . (H.15)

Now we find an upper bound for Pθ0,m0 |Uθ̂,m̂(X)|2. Note that

Pθ0,m0

∣∣Uθ̂,m̂(X)
∣∣2 . Pθ0,m0

∣∣H>θ̂ (m̂′ −m′0)(θ̂>X)k(θ̂>X)
∣∣2

+ Pθ0,m0

∣∣∣∣H>θ̂ ∫ θ̂>X

s0

[m̂′(u)−m′0(u)]k′(u)du

∣∣∣∣2
≤M∗2(d− 1)Pθ0,m0

[
(m̂′ −m′0)(θ̂>X)

]2
+ Pθ0,m0

[∫ θ̂>X

s0

[m̂′(u)−m′0(u)]2du

∫ θ̂>X

s0

|k′(u)|2du

]

≤M∗2(d− 1)Pθ0,m0

[
(m̂′ −m′0)(θ̂>X)

]2
+M∗

2
(d− 1)TPθ0,m0

[∫ θ̂>X

s0

[m̂′(u)−m′0(u)]2du

]

≤M∗2(d− 1)Pθ0,m0

[
(m̂′ −m′0)(θ̂>X)

]2
+M∗

2
(d− 1)TPθ0,m0

[∫
D
θ̂

[m̂′(u)−m′0(u)]2du

]
, (H.16)

where M∗ is defined in (Step 1). Since |θ̂ − θ0| = op(1), by assumption (A5), we have that the density of
θ̂>X w.r.t to the Lebesgue measure is bounded away from zero. Thus,∫

D
θ̂

{m̂′(u)−m′0(u)}2du . ‖m̂′ ◦ θ̂ −m′0 ◦ θ̂‖2 = Op(λ̂n).

The theorem now follows, as∣∣Pθ0,m0 [(m0 − m̂)(θ0
>X)Uθ̂,m̂(X)]

∣∣ = Op(λ̂
3/2
n ) = Op(n

−3/5),∣∣Pθ0,m0 [(m̂(θ0
>X)− m̂(θ̂>X))Uθ̂,m̂(X)]

∣∣ = Op(λ̂
3/2
n ) = Op(n

−3/5).

H.7. Proof of Theorem A.3

We start with some notation. Recall that for any (fixed or random) (θ,m) ∈ Θ×R, Pθ,m denotes the joint

distribution of Y and X, where Y = m(θ>X)+ε and PX denotes the distribution of X. Now, let P
(Y,X)|θ>X
θ,m

denote the joint distribution of (Y,X) given θ>X. For any (θ,m) ∈ Θ × R and f ∈ L2(Pθ,m), we have
Pθ,m[f(X)] = PX(f(X)) and

Pθ,m
[(
Y −m0(θ>X)

)
f(X)

]
=PX

[
P

(Y,X)|θ>X
θ,m

[
f(X)

(
Y −m0(θ>X)

)]]
=PX

[
E(f(X)|θ>X)

(
m(θ>X)−m0(θ>X)

)]
.
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By above display, we have that

Pθ̂,m0
ψθ̂,m̂ = H>θ̂ Pθ̂,m0

[
(Y − m̂(θ̂>X))

[
m̂′(θ̂>X)X − (m′0 hθ0)(θ̂>X)

]]
= H>θ̂ PX

[
(m0 − m̂)(θ̂>X)

[
m̂′(θ̂>X)E(X|θ̂>X)− (m′0 hθ0)(θ̂>X)

]]
= H>θ̂ PX

[
(m0 − m̂)(θ̂>X)E(X|θ̂>X)(m̂′ −m′0)(θ̂>X))

]
+H>θ̂ PX

[
(m0 − m̂)(θ̂>X)m′0(θ̂>X)

[
E(X|θ̂>X)− hθ0(θ̂>X))

]]
.

(H.17)

Now we will show that each of the terms in (H.7) are op(n
−1/2). By (A1) and the Cauchy-Schwarz inequality,

for the first term in (H.7) we have∣∣PX [(m0 − m̂)(θ̂>X)E(X|θ̂>X)(m̂′ −m′0)(θ̂>X))]
∣∣

≤ T
√
PX
[
(m0 − m̂)(θ̂>X)2

]
PX
[
(m̂′(θ̂>X)−m′0(θ̂>X))2

]
. ‖m0 ◦ θ̂ − m̂ ◦ θ̂‖ ‖m̂′ ◦ θ̂ −m′0 ◦ θ̂‖. (H.18)

We can bound the two terms on the right side above display as follows. For the first term, note that by
Theorems 3.5, 3.6, and 3.7, we have

‖m0 ◦ θ̂ − m̂ ◦ θ̂‖ ≤ ‖m0 ◦ θ0 −m0 ◦ θ̂‖+ ‖m̂ ◦ θ̂ −m0 ◦ θ0‖

≤ T‖m′0‖∞|θ0 − θ̂|+ ‖m̂ ◦ θ̂ −m0 ◦ θ0‖

= Op(λ̂n).

(H.19)

For the second term in (H.7), observe that by Lemma E.1 and Theorems 3.7 and 3.8, we have

‖m̂′ ◦ θ̂ −m′0 ◦ θ̂‖

≤ ‖m̂′ ◦ θ̂ − m̂′ ◦ θ0‖+ ‖m̂′ ◦ θ0 −m′0 ◦ θ0‖+ ‖m′0 ◦ θ0 −m′0 ◦ θ̂‖

≤ J(m̂)|θ̂ − θ0|
1
2 T 1/2 + ‖m̂′ ◦ θ0 −m′0 ◦ θ0‖+ J(m0)|θ̂ − θ0|

1
2 T 1/2

= Op(λ̂
1/2
n ).

By the Cauchy-Schwarz inequality, the second term in (H.7) can be bounded as∣∣PX [(m0 − m̂)(θ̂>X)m′0(θ̂>X)(E(X|θ̂>X)− hθ0(θ̂>X))]
∣∣

≤ ‖m′0‖∞
√
PX
[
(m0 − m̂)2(θ̂>X)

]
PX
[
|hθ̂(θ̂>X)− hθ0(θ̂>X)|2

]
= ‖m′0‖∞‖m0 ◦ θ̂ − m̂ ◦ θ̂‖ ‖hθ̂ ◦ θ̂ − hθ0 ◦ θ̂‖2,Pθ0,m0

≤ ‖m′0‖∞Op(λ̂n)M̄ |θ̂ − θ0| = Op(λ̂
2
n),

(H.20)

where M̄ is defined in ((B2)). The last inequality in the above display follows from assumption (B2) and
(H.7). The theorem now follows by combining these results.

H.8. Consistency of ψθ̂,m̂

The following lemma is used in the proof of Step 5 in Theorem 4.1; also see [32, Section 10.4].

Lemma H.1. If the conditions in Theorem 4.1 hold, then

Pθ0,m0 |ψθ̂,m̂ − ψθ0,m0 |
2 = op(1), (H.21)

Pθ̂,m0
|ψθ̂,m̂|

2 = Op(1). (H.22)
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Proof. We first prove (H.1). By assumption (B2), we have

Pθ0,m0 |ψθ̂,m̂ − ψθ0,m0 |
2

= Pθ0,m0

∣∣∣(y − m̂(θ̂>X))H>θ̂
[
m̂′(θ̂>X)X − (m′0 hθ0)(θ̂>X)

]
− (y −m0(θ>0 X))H>θ0

[
m′0(θ>0 X)X − (m′0 hθ0)(θ>0 X)

]∣∣∣2
= Pθ0,m0

∣∣∣[(m0(θ>0 X)− m̂(θ̂>X)) + ε
]
H>θ̂
[
m̂′(θ̂>X)X − (m′0 hθ0)(θ̂>X)

]
− εH>θ0

[
m′0(θ>0 X)X − (m′0 hθ0)(θ>0 X)

]∣∣∣2
= Pθ0,m0

∣∣∣[m0(θ>0 X)− m̂(θ̂>X)
]
H>θ̂
[
m̂′(θ̂>X)X − (m′0 hθ0)(θ̂>X)

]∣∣∣2
+ Pθ0,m0

∣∣∣∣ε[H>θ̂ [m̂′(θ̂>X)X − (m′0 hθ0)(θ̂>X)
]
−H>θ0

[
m′0(θ>0 X)X − (m′0 hθ0)(θ>0 X)

]]∣∣∣∣2
≤ Pθ0,m0

∣∣∣[m0(θ>0 X)− m̂(θ̂>X)
][
m̂′(θ̂>X)X − (m′0 hθ0)(θ̂>X)

]∣∣∣2
+ Pθ0,m0

∣∣∣∣εH>θ̂ [m̂′(θ̂>X)X − (m′0 hθ0)(θ̂>X)−m′0(θ>0 X)X + (m′0 hθ0)(θ>0 X)
]∣∣∣∣2

+ Pθ0,m0

∣∣∣∣ε[H>θ̂ −H>θ0][m′0(θ>0 X)X − (m′0 hθ0)(θ>0 X)
]∣∣∣∣2

≤ Pθ0,m0

∣∣∣[m0(θ>0 X)− m̂(θ̂>X)
][
m̂′(θ̂>X)X − (m′0 hθ0)(θ̂>X)

]∣∣∣2
+ ‖σ2(·)‖∞Pθ0,m0

∣∣∣m̂′(θ̂>X)X −m′0(θ>0 X)X + (m′0 hθ0)(θ>0 X)− (m′0 hθ0)(θ̂>X)
∣∣∣2

+ 4M2
1T

2‖σ2(·)‖∞‖Hθ̂ −Hθ0‖
2
2

≤ Pθ0,m0

∣∣∣[m0(θ>0 X)− m̂(θ̂>X)
][
m̂′(θ̂>X)X − (m′0 hθ0)(θ̂>X)

]∣∣∣2
+ 2‖σ2(·)‖∞Pθ0,m0

∣∣∣m̂′(θ̂>X)X −m′0(θ>0 X)X
∣∣∣2

+ 2‖σ2(·)‖∞Pθ0,m0

∣∣∣(m′0 hθ0)(θ>0 X)− (m′0 hθ0)(θ̂>X)
∣∣∣2 + 4M2

1T
2|θ̂ − θ0|2‖σ2(·)‖∞

= I + 2‖σ2(·)‖∞ II + 2‖σ2(·)‖∞ III + 4M2
1T

2‖σ2(·)‖∞|θ̂ − θ0|2. (H.23)

We will now show that each of the first three terms in the above display are op(1). For the second term,
observe that

II ≤ T 2Pθ0,m0

∣∣∣m̂′(θ̂>X)−m′0(θ>0 X)
∣∣∣2

≤ Pθ0,m0

∣∣(m̂′(θ̂>X)− m̂′(θ>0 X))
∣∣2 + Pθ0,m0

∣∣(m̂′(θ>0 X)−m′0(θ>0 X))
∣∣2

≤ J2(m̂)T |θ̂ − θ0|+ ‖m̂′ ◦ θ0 −m′0 ◦ θ0‖2

= op(1).

Here the last inequality follows from Lemma E.1 and the last equality is due to Theorems 3.7 and 3.8. For

I, recall that by Theorem 3.5, we have ‖m0 ◦ θ0 − m̂ ◦ θ̂‖
P→ 0. Thus,

I = Pθ0,m0

∣∣(m0(θ>0 X)− m̂(θ̂>X))(m̂′(θ̂>X)X − (m′0 hθ0)(θ̂>X))
∣∣2

≤ ‖m0 ◦ θ0 − m̂ ◦ θ̂‖2(M2T + L‖hθ0‖2,∞)2 = op(1).

Finally, we have

III = Pθ0,m0

∣∣∣(m′0 hθ0)(θ>0 X)− (m′0 hθ0)(θ̂>X)
∣∣∣2

≤ Pθ0,m0

[
‖m′′0 hθ0 +m′0 h

′
θ0‖2,∞|(θ0 − θ̂)>X|

]2
≤ ‖m′′0 hθ0 +m′0 h

′
θ0‖

2
2,∞T

2|θ0 − θ̂|2 = op(1).
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All these facts combined show that Pθ0,m0 |ψθ̂,m̂ − ψθ0,m0 |2 = op(1). We now prove (H.1). Note that

Pθ̂,m0
|ψθ̂,m̂|

2

≤ Pθ̂,m0

∣∣∣(Y − m̂(θ̂>X))2[m̂′(θ̂>X)X −m′0(θ̂>X)hθ0(θ̂>X)
]∣∣∣2

= Pθ̂,m0

∣∣∣[(m0(θ̂>X)− m̂(θ̂>X)) + ε
] [
m̂′(θ̂>X)X − (m′0 hθ0)(θ̂>X)

]∣∣∣2
= Pθ̂,m0

∣∣∣[(m0(θ̂>X)− m̂(θ̂>X))
] [
m̂′(θ̂>X)X − (m′0 hθ0)(θ̂>X)

]∣∣∣2
+ Pθ̂,m0

∣∣m̂′(θ̂>X)X − (m′0 hθ0)(θ̂>X)
∣∣2

≤ (‖m0‖2∞ + ‖m̂‖2∞)Pθ̂,m0

∣∣m̂′(θ̂>X)X − (m′0 hθ0)(θ̂>X)
∣∣2

+ Pθ̂,m0
|m̂′(θ̂>X)X − (m′0 hθ0)(θ̂>X)|2

≤ (‖m0‖2∞ + ‖m̂‖2∞ + 1)Pθ̂,m0
|m̂′(θ̂>X)X − (m′0 hθ0)(θ̂>X)|2.

(H.24)

The result now follows.

H.9. Proof of Theorem A.4

Recall the definition (Step 1). Under model (1),

ψθ̂,m̂ − ψθ0,m0 = [ε+m0(θ>0 x)− m̂(θ̂>x)]H>θ̂ [m̂′(θ̂>x)x− (m′0 hθ0)(θ̂>x)]

− εH>θ0
[
m′0(θ>0 x)x− (m′0hθ0)(θ>0 x)

]
= εH>θ̂

[
[m̂′(θ̂>x)−m′0(θ0

>x)]x+ [(m′0 hθ0)(θ0
>x)− (m′0 hθ0)(θ̂>x)]

]
+ ε(H>θ̂ −H

>
θ0)
[
m′0(θ>0 x)x− (m′0hθ0)(θ>0 x)

]
+H>θ̂

[
[m0(θ>0 x)− m̂(θ̂>x)][m̂′(θ̂>x)x− (m′0 hθ0)(θ̂>x)]

]
. (H.25)

For every (θ,m) ∈ Θ×R, define functions υθ,m : χ→ Rd−1 and τθ,m : χ→ Rd−1 as follows:

τθ,m(x) := H>θ
{

[m′(θ>x)−m′0(θ0
>x)]x+ [(m′0 hθ0)(θ0

>x)− (m′0 hθ0)(θ>x)]
}

+ (H>θ −H>θ0)
[
m′0(θ>0 x)x− (m′0hθ0)(θ>0 x)

]
,

υθ,m(x) := H>θ [m0(θ>0 x)−m(θ>x)][m′(θ>x)x− (m′0 hθ0)(θ>x)],

(H.26)

and the classes of such functions

ΞM1,M2,M3(n) =
{
τθ,m : (θ,m) ∈ CM1,M2,M3(n)

}
,

ΥM1,M2,M3(n) =
{
υθ,m : (θ,m) ∈ CM1,M2,M3(n)

}
.

Observe that, for every fixed M1,M2, and M3, we have

P(|Gn(ψθ̂,m̂ − ψθ0,m0)| > δ)

≤ P(|Gn(ετθ̂,m̂ + υθ̂,m̂)| > δ, (θ̂, m̂) ∈ CM1,M2,M3(n)) + P((θ̂, m̂) /∈ CM1,M2,M3(n))

≤ P
(
|Gn(ετθ̂,m̂)| > δ

2
, (θ̂, m̂) ∈ CM1,M2,M3(n)

)
+ P

(
|Gnυθ̂,m̂| >

δ

2
, (θ̂, m̂) ∈ CM1,M2,M3(n)

)
+ P

(
(θ̂, m̂) /∈ CM1,M2,M3(n)

)
≤ P

(
sup

f∈ΞM1,M2,M3
(n)

|Gnεf | >
δ

2

)
+ P

(
sup

f∈ΥM1,M2,M3
(n)

|Gnf | >
δ

2

)
+ P

(
(θ̂, m̂) /∈ CM1,M2,M3(n)

)
. (H.27)
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By the discussion following Lemma A.1, we have

P
(
(θ̂, m̂) /∈ CM1,M2,M3(n)

)
→ 0.

Hence to prove Theorem A.4, we only need to show that the first two terms in (H.9) are o(1). We prove this
in Lemmas H.2 and H.3.

Lemma H.2. Fix M1,M2,M3, and δ > 0. For n ∈ N, as n→∞, we have

P
(

sup
f∈ΞM1,M2,M3

(n)

|Gnεf | >
δ

2

)
→ 0.

Proof. The proof of this lemma is similar to the first part of the proof of Lemma A.5. Let us define,

Ξ∗M1,M2,M3
:=
{
τθ,m : (θ,m) ∈ C∗M1,M2,M3

}
.

We will prove that
N(ε,Ξ∗M1,M2,M3

, ‖ · ‖2,∞) ≤ c exp(c/ε)ε−4d, (H.28)

where c depends only on M1,M2, and M3. Fix (θ,m) ∈ CM1,M2,M3(n). By Theorem 2.4 of [49] we have

N(ε,
{
m′ : (·,m) ∈ C∗M1,M2,M3

}
, ‖ · ‖∞) ≤ exp(c/ε),

where c is a constant depending only on M1,M2, and M3. Let us denote the functions in the ε-cover of{
m′ : (·,m) ∈ C∗M1,M2,M3

}
by l1, . . . , lt. By Lemma 15 of [32], we have that there exists θ1, . . . , θs for

s . ε−4d such that {θi}1≤i≤s form an ε2-cover of Θ ∩Bθ0(1/2) and satisfies (86) of [32] (with ε2 instead of
ε). Fix (θ,m) ∈ C∗M1,M2,M3

. Without loss of generality assume that the function nearest to m′ in the ε-cover
is l1 and the vector nearest to θ in the ε2-cover of Θ ∩Bθ0(1/2) is θ1 i.e.,

‖m′ − l1‖∞ ≤ ε, ‖H>θ −H>θ1‖ ≤ ε
2, and |θ − θ1| ≤ ε2. (H.29)

We define r1 to be the anti-derivative of l1 i.e., l1 = r′1. Moreover, let us define

%θ,m(x) := [m′(θ>x)−m′0(θ0
>x)]x+ [(m′0 hθ0)(θ0

>x)− (m′0 hθ0)(θ>x)].

Note that to prove (H.9), it is enough to show that ‖τθ,m − τθ1,r1‖2,∞ ≤ c1ε, where c1 is a constant. For
every x ∈ χ observe that

|τθ,m(x)− τθ1,r1(x)|

≤ |H>θ %θ,m(x)−H>θ1%θ1,r1(x)|+
∣∣(H>θ −H>θ1)

[
m′0(θ>0 x)x− (m′0hθ0)(θ>0 x)

]∣∣
≤ |(H>θ −H>θ1)%θ,m(x)|+ |H>θ1(%θ,m(x)− %θ1,r1(x))|+ ε2

∣∣m′0(θ>0 x)x− (m′0hθ0)(θ>0 x)
∣∣

≤ ε2|%θ,m(x)|+ |%θ,m(x)− %θ1,r1(x)|+ 2M2Tε
2

≤ ε24M2T + |%θ,m(x)− %θ1,r1(x)|+ 2M2Tε
2, (H.30)

where the last two inequalities follow from properties of Hθ (Lemma 1 of [32]), (H.9), and definition of
C∗M1,M2,M3

(see (A.2)). Furthermore, we have

|%θ,m(x)− %θ1,r1(x)|

≤ |(m′(θ>x)− r′1(θ1
>x))x|+ |((m′0 hθ0)(θ1

>x)− (m′0 hθ0)(θ>x))|

≤ |(m′(θ>x)−m′(θ1
>x))x|+ |(m′(θ1

>x)− r′1(θ1
>x))x|

+ |(m′0(θ1
>x)−m′0(θ>x))hθ0(θ1

>x)|+ |m′0(θ>x)(hθ0(θ1
>x)− hθ0(θ>x))|

≤M3T
2|θ − θ1|1/2 + ‖m− r1‖∞T + ‖hθ0‖∞M3|θ − θ1|1/2 +M2‖h′θ0‖∞|θ − θ1|T

. ε

(H.31)

Thus combining (H.9) and (H.9), we have ‖τθ,m − τθ1,r1‖2,∞ ≤ c1ε.



Kuchibhotla et. al./Convex Single Index Model 57

However, bracketing entropy for the ‖ · ‖2,Pθ0,m0
-norm is bounded above by a the covering entropy for

the uniform norm for a class of function. Thus, we have

N[ ](ε,Ξ
∗
M1,M2,M3

, ‖ · ‖2,Pθ0,m0
) ≤ c exp(c/ε)ε−4d . c exp(c/ε).

If [~1, ~2] is a bracket for τθ,m, then [~1ε
+ − ~2ε

−, ~2ε
+ − ~1ε

−] is a bracket (coordinate-wise) for ετθ,m.
Therefore, we have

N[ ]

(
ε, {εf : f ∈ Ξ∗M1,M2,M3

}, ‖ · ‖2,Pθ0,m0

)
. c exp(c/ε).

Now, we find the envelope of ΞM1,M2,M3(n). For every (θ,m) ∈ CM1,M2,M3(n) and x ∈ χ note that,

|τθ,m(x)| ≤
[
|m′(θ>x)−m′(θ0

>x)|+ |m′(θ0
>x)−m′0(θ0

>x)|
]
|x|

+ |m′0(θ0
>x)hθ0(θ0

>x)−m′0(θ>x)hθ0(θ0
>x)|

+ |m′0(θ>x)hθ0(θ0
>x)−m′0(θ>x)hθ0(θ>x)|

+ |θ − θ0||m′0(θ>x)x− (m′0hθ0)(θ>x)|

≤ J(m)|θ>x− θ0
>x|1/2|x|+ ‖m′ −m′0‖SD0

|x|

+ |hθ0(θ0
>x)|J(m0)|θ0

>x− θ>x|1/2

+ |m′0(θ>x)| |hθ0(θ0
>x)− hθ0(θ>x)|+ |θ − θ0|2M2T

≤ λ̂1/4
n (M3T

2 + ‖hθ0‖2,∞M3T +M2‖h′θ0‖2,∞T + 2M2T ) +
1

an
T.

Hence,

|ετθ,m(x)| ≤ |ε|λ̂1/4
n (M3T

2 + ‖hθ0‖2,∞M3T +M2‖h′θ0‖2,∞T + 2M2T ) + |ε| 1

an
T := Wn

Thus using arguments similar to (H.4) and (H.4) and the maximal inequality in Corollary 19.35 of [52] (also
see proof of Lemma A.3), we have

P
(

sup
f∈ΞM1,M2,M3

(n)

|Gnεf | >
δ

2

)
. 2δ−1

√
d− 1

d−1∑
i=1

E
(

sup
f∈ΞM1,M2,M3

(n)

|Gnεfi|
)

. δ−1d
√
d− 1J[ ]

(
‖Wn‖,ΞM1,M2,M3(n), ‖ · ‖2,Pθ0,m0

)
.

[
λ̂1/4
n +

1

an

]1/2

→ 0 as n→∞,

where in the first inequality f1, . . . , fd−1 denote each component of f.

Lemma H.3. Fix M1,M2,M3, and δ > 0. For n ∈ N, we have

P

(
sup

f∈ΥM1,M2,M3
(n)

|Gnf | >
δ

2

)
= op(1).

Proof. The proof of this lemma is similar to the proofs of Lemmas A.3 and A.4. Fix (θ,m) ∈ CM1,M2,M3(n).
We first find an envelope of ΥM1,M2,M3(n). Recall that for every x ∈ χ and θ ∈ Θ, we have |H>θ x| ≤ |x|.
Thus for every x ∈ χ,

|υθ,m(x)| ≤ |m0(θ>0 x)−m(θ0
>x)| · |m′(θ>x)x−m′0(θ>x)hθ0(θ>x)|

+ |m(θ>0 x)−m(θ>x)| · |m′(θ>x)x−m′0(θ>x)hθ0(θ>x)|

≤ ‖m0 −m‖SD0
|m′(θ>x)x−m′0(θ>x)hθ0(θ>x)|

+ ‖m′‖∞T |θ − θ0| · |m′(θ>x)x−m′0(θ>x)hθ0(θ>x)|

≤
[

1

an
+ TM2λ̂

1/2
n

]
2M2T ≤ C

[ 1

an
+ λ̂1/2

n

]
,
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where C is a constant depending only on T,M1,M2, and M3. Let us now define

Υ∗M1,M2,M3
:=
{
υθ,m : (θ,m) ∈ C∗M1,M2,M3

}
.

Thus using arguments similar to the previous lemma, we have

P
(

sup
f∈ΥM1,M2,M3

(n)

|Gnf | >
δ

2

)
. 2δ−1

√
d− 1

d−1∑
i=1

E
(

sup
f∈ΥM1,M2,M3

(n)

|Gnfi|
)

. Cδ−1J[ ]

(
C
[ 1

an
+ λ̂1/2

n

]
,ΥM1,M2,M3(n), ‖ · ‖2,∞

)
. Cδ−1J[ ]

(
C
[ 1

an
+ λ̂1/2

n

]
,Υ∗M1,M2,M3

, ‖ · ‖2,∞
)
,

where C is a constant depending only on M1,M2, and M3 and f1, . . . , fd−1 denote each component of f.
Here, the last inequality is true because ΥM1,M2,M3(n) ⊂ Υ∗M1,M2,M3

. Thus, to prove the theorem it is

enough to show that, J[ ](γ,Υ
∗
M1,M2,M3

, ‖ · ‖2,∞) ≤ γ1/2, for all γ > 0, which is implied by

N[ ](ε,Υ
∗
M1,M2,M3

, ‖ · ‖2,∞) . exp

(
c

ε
+

c√
ε

)
ε−5d, (H.32)

where c is a constant depending only on d,M1,M2, and M3. In the following, we show (H.9). Observe that
by an argument similar to the proof of Lemma 8 of [32], we have

N(ε, {m0 ◦ θ0 −m ◦ θ : (θ,m) ∈ C∗M1,M2,M3
}, ‖ · ‖∞) . exp(c/ε)ε−d.

For simplicity of notation let us define

Vθ,m(x) := m′(θ>x)x− (m′0 hθ0)(θ>x).

Observe that by definition of υθ,m (see (H.9)) and Lemma 9.25 of [31] (for the entropy of product of classes
of uniformly bounded functions) to prove (H.9), it is enough to show that

N(ε, {H>θ Vθ,m : (θ,m) ∈ C∗M1,M2,M3
}, ‖ · ‖2,∞) . ε−4d exp(c/

√
ε). (H.33)

We will prove (H.9) by constructing a cover for {H>θ Vθ,m : (θ,m) ∈ C∗M1,M2,M3
}. By Theorem 2.4 of [49], we

have
N(ε,

{
m′ : (·,m) ∈ C∗M1,M2,M3

}
, ‖ · ‖∞) ≤ exp(c/ε),

where c is a constant depending only on M1,M2, and M3. Let us denote the functions in the ε-cover and
their anti-derivatives by l1, . . . , lt and r1, . . . , rt, i.e., li = r′i for 1 ≤ i ≤ t. By Lemma 15 of [32], we have
that there exists θ1, . . . , θs for s . ε−4d such that {θi}1≤i≤s form an ε2-cover of Θ ∩ Bθ0(1/2) and satisfies
(86) of [32] (with ε2 instead of ε). We now show that {HθiVθi,rj}1≤i≤s,1≤j≤t forms a ‖ · ‖2,∞ cover for

{H>θ Vθ,m(x) : (θ,m) ∈ C∗M1,M2,M3
}.

Fix (θ,m) ∈ C∗M1,M2,M3
, without loss of generality assume that the function nearest to m′ in the ε-cover

is l1 and the vector nearest to θ in the ε2 cover of Θ ∩Bθ0(1/2) is θ1, i.e.,

‖m′ − l1‖∞ ≤ ε, ‖H>θ −H>θ1‖ ≤ ε
2, and |θ − θ1| ≤ ε2.

Observe that

|H>θ Vθ,m(x)−H>θ1Vθ1,r1(x)| ≤ |H>θ Vθ,m(x)−H>θ1Vθ,m(x)|+ |H>θ1Vθ,m(x)−H>θ1Vθ1,r1(x)|

≤ ε2|Vθ,m(x)|+ |Vθ,m(x)− Vθ1,r1(x)|. (H.34)



Kuchibhotla et. al./Convex Single Index Model 59

Furthermore, we have

|Vθ,m(x)− Vθ1,r1(x)|

≤
∣∣m′(θ>x)x− (m′0 hθ0)(θ>x)− r′1(θ>1 x)x+ (m′0 hθ0)(θ>1 x)

∣∣
≤ T

∣∣m′(θ>x)− r′1(θ>1 x)
∣∣+
∣∣(m′0 hθ0)(θ>x)− (m′0 hθ0)(θ>1 x)

∣∣
≤ T

∣∣m′(θ>x)−m′(θ>1 x)
∣∣+ T

∣∣m′(θ>1 x)− r′1(θ>1 x)
∣∣

+
∣∣(m′0 hθ0)(θ>x)− (m′0 hθ0)(θ>1 x)

∣∣
≤ TM3

∣∣θ>x− θ>1 x∣∣1/2 + Tε

+
∣∣(m′0 hθ0)(θ>x)− (m′0 hθ0)(θ>1 x)

∣∣ . ε. (H.35)

Thus combining (H.9), (H.9), and the fact that |Vθ,m(x)| ≤ 2TM2, we have

‖H>θ Vθ,m −H>θ1Vθ1,r1‖2,∞ . ε.

Appendix I: Proof of Results in Appendix B

I.1. Proof of Theorem B.1

We start by the following definition

ϕθ,η,t(u) := φθ,η,t(u+ (θ − ζt(θ, η))>k(u)).

Note that by (A.1), ϕθ,η,t(·) is an increasing function for t ∈ R close to 0. Hence, as m′ is a bounded
increasing function, ξt(·; θ, η,m) is a uniformly Lipschitz convex function for t sufficiently close to 0. Since
|m′|∞ is bounded by L, so is kt. By definition we have

ξt(s
>x; θ, η,m) =

∫ s>x

s0

kt(y; θ, η,m)dy + (ζt(θ, η)− θ)>
[
(m′(s0)−m′0(s0))k(s0) +m′0(s0)hθ0(s0)

]
+m(s0).

We have that φθ,η,0(u+ (θ − ζ0(θ, η))>k(u)) = u, ∀u ∈ D. Hence,

ξ0(ζ0(θ, η)>x; θ, η,m) =

∫ θ>x

s0

k0(u; θ, η,m)du+m(s0) =

∫ θ>x

s0

m′ ◦ φθ,η,0(u)du+m(s0) = m(θ>x).

Observe that,

∂

∂t
ξt(ζt(θ, η)>x; θ, η,m)

=
∂

∂t

{∫ ζt(θ,η)>x

s0

m′ ◦ ϕθ,η,t(u)du

}
+
∂ζt(θ, η)

∂t

>[
(m′(s0)−m′0(s0))k(s0) +m′0(s0)hθ0(s0)

]
(I.1)

We next evaluate the first term on the right hand side of the above display. But first, we introduce some
notations. Let us define,

φ′θ,η,t(u) :=
∂

∂u
φθ,η,t(u), φ′′θ,η,t(u) :=

∂

∂u
φ′θ,η,t(u), φ̇θ,η,t(u) :=

∂

∂t
φθ,η,t(u),

and

ϕ′θ,η,t(y) :=
∂ϕθ,η,t(u)

∂u
= φ′θ,η,t(u+ (θ − ζt(θ, η))>k(u))(1 + (θ − ζt(θ, η))>k′(u)).

Now, observe that
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∂ϕθ,η,t(u)

∂t
= φ̇θ,η,t(u+ (θ − ζt(θ, η))>k(u))− φ′θ,η,t(u+ (θ − ζt(θ, η))>k(u))

∂ζt(θ, η)

∂t

>
k(u),

∂ϕ′θ,η,t(u)

∂t
= (1 + (θ − ζt(θ, η))>k′(u))

[
∂φ′θ,η,t
∂t

(u+ (θ − ζt(θ, η))>k(u))

− φ′′θ,η,t(u+ (θ − ζt(θ, η))>k(u))
∂ζt(θ, η)

∂t

>
k(u)

]
− φ′θ,η,t(u+ (θ − ζt(θ, η))>k(u))

∂ζt(θ, η)

∂t

>
k′(u), (I.2)

∂ϕθ,η,t(ζt(θ, η)>x)

∂t
= φ̇θ,η,t(ζt(θ, η)>x+ (θ − ζt(θ, η))>k(ζt(θ, η)>x))

+ φ′θ,η,t

(
ζt(θ, η)>x+

(
θ − ζt(θ, η)

)>
k(ζt(θ, η)>x)

)∂ζt(θ, η)

∂t

>

[
x− k

(
ζt(θ, η)>x

)
+ (θ − ζt(θ, η))>k′(ζt(θ, η)>x)x

]
.

Now, we evaluate the first term on the right hand side of (I.1). Note that

∂

∂t

{∫ ζt(θ,η)>x

s0

m′ ◦ ϕθ,η,t(u)du

}
=

∂

∂t

{∫ ϕθ,η,t(ζt(θ,η)>x)

ϕθ,η,t(s0)

m′(u)

ϕ′θ,η,t ◦ ϕ
−1
θ,η,t(u)

du

}
=
m′ ◦ ϕθ,η,t(ζt(θ, η)>x)

ϕ′θ,η,t(ζt(θ, η)>x)

∂ϕθ,η,t(ζt(θ, η)>x)

∂t
− m′ ◦ ϕθ,η,t(s0)

ϕ′θ,η,t(s0)

∂ϕθ,η,t(s0)

∂t

−
∫ ϕθ,η,t(ζt(θ,η)>x)

ϕθ,η,t(s0)

m′(u)[
ϕ′θ,η,t ◦ ϕ

−1
θ,η,t(u)

]2 ∂
[
ϕ′θ,η,t ◦ ϕ−1

θ,η,t(u)
]

∂t
du

=
m′ ◦ ϕθ,η,t(ζt(θ, η)>x)

ϕ′θ,η,t(ζt(θ, η)>x)

∂ϕθ,η,t(ζt(θ, η)>x)

∂t
− m′ ◦ ϕθ,η,t(s0)

ϕ′θ,η,t(s0)

∂ϕθ,η,t(s0)

∂t

−
∫ ζt(θ,η)>x

s0

m′ ◦ ϕθ,η,t(u)[
ϕ′θ,η,t(u)

]2 ∂ϕ′θ,η,t(u)

∂t
ϕ′θ,η,t(u)du.

Using the fact that φ′θ,η,t(u) = 1 and φ̇θ,η,t(u) = 0 for all u ∈ Dθ and t close to 0 (follows from the

definition (A.1)) and ∂ζt(θ, η)/∂t = −|η|2t/
√

1− t2|η|2 θ+Hθη, i.e., ∂ζt(θ, η)/∂t|t=0 = Hθη, we get from (I.1)

∂

∂t

{∫ ζt(θ,η)>x

s0

m′ ◦ ϕθ,η,t(u)du
}∣∣∣∣
t=0

= (Hθη)>
[
m′(θ>x)(x− k(θ>x))−m′(s0)[−k(s0)]−

∫ θ>x

s0

m′(y)[−k′(y)]dy

]
.
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We now show that the score function of the sub-model {ζt(θ, η), ξt(·; θ, η,m)} is Sθ,m(x, y), i.e.,

−1

2

∂

∂t

[
(y − ξt(ζt(θ, η)>x; θ, η,m)2]∣∣∣∣

t=0

= (y − ξt(ζt(θ, η)>x; θ, η,m)
∂ξt(ζt(θ, η)>x; θ, η,m)

∂t

∣∣∣∣
t=0

=
(
y −m(θ>x)

)
(Hθη)>

[
m′(θ>x)(x− k(θ>x))−m′(s0)[−k(s0)]−

∫ θ>x

s0

m′(y)[−k′(y)]dy

+ (m′(s0)−m′0(s0))k(s0) +m′0(s0)hθ0(s0)
]

=
(
y −m(θ>x)

)
(Hθη)>

[
m′(θ>x)x−m′(θ>x)k(θ>x) +

∫ θ>x

s0

m′(y)k′(y)dy

+m′0(s0)k(s0)−m′0(s0)hθ0(s0)
]
.

The rest of the proof is similar to the proof of Theorem A.1; see (H.1).

I.2. Proof of Lemma B.1

Recall that Uθ,m : χ → Rd−1 is defined as Uθ,m(x) = H>θ
[ ∫ θ>x
s0

[
m′(u) − m′0(u)

]
k′(u)du + (m0

′(θ>x) −
m′(θ>x))k(θ>x)

]
; see (A.1). Observe thatD is a bounded set, supu∈D(|k(u)|+|k′(u)|) ≤M∗ and ‖m′‖∞ ≤ L.

Hence

|Uθ,m(x)| ≤M∗
∫ θ>x

s0

|m′(u)−m′0(u)|du+M∗|m′0(θ>x)−m′(θ>x)|

≤ 2LM∗|θ>x− s0|+ 2M∗L ≤ 4LM∗T + 2M∗L := V ∗.

Now we will try to find the entropy of WM1(n). As the definition of Uθ,m involves m′ to find entropy of the
class of functions W∗M1

, we need the entropy of

H∗ := {q : χ→ R| q(x) = g(θ>x), θ ∈ Θ and

g : D → R is an increasing function and ‖g‖∞ ≤ S}.

The following lemma, proved in Appendix I.3, does this.

Lemma I.1. If supθ∈Θ ‖fθ>X‖D ≤ c < ∞, where fθ>X denotes the density of θ>X with respect to the
Lebesgue measure. Then logN[ ](ε,H∗, L2(Pθ0,m0)) . ε−1.

Fix (θ,m) ∈ CM1(n). By definition we have that both H>θ k(·) and H>θ k
′(·) are coordinate-wise bounded

functions (see (Step 1)) and H>θ k(u)+M∗1 � 0 and H>θ k
′(u)+M∗1 � 0 (where 1 is the vector of all 1’s and

� represents coordinate-wise inequalities). Using these, we can write Uθ,m(x) = U
(1)
θ,m(x)−U (2)

θ,m(x)+U
(3)
θ,m(x),

where

U
(1)
θ,m(x) :=

∫ θ>x

s0

[m′(u)−m′0(u)](H>θ k
′(u) +M∗1)du,

U
(2)
θ,m(x) := M∗1

∫ θ>x

s0

[m′(u)−m′0(u)]du,

U
(3)
θ,m(x) := (m′0(θ>x)−m′(θ>x))H>θ k(θ>x).

We will find ciη–brackets (with respect to ‖ · ‖2,Pθ0,m0
) for U

(i)
θ,m, i = 1, 2, and 3 separately and combine

them to get a cη–bracket (with respect to L2(Pθ0,m0)) bracket for Uθ,m, where c, c1, c2, and c3 are con-
stants depending only on S, T, d,M∗, L and L0. By Lemma I.1 there exists a N ′η ≤ exp(η−1) such that
{(`k, uk)}1≤k≤N′η form a η–bracket (with respect to L2(Pθ0,m0) norm) for {m′(θ>x) : (θ,m) ∈ C∗M1

}, i.e., for
all x ∈ χ

`k(x) ≤ m′(θ>x) ≤ uk(x), (I.3)
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and ‖uk − `k‖ ≤ Cη for some constant C. Similarly by Lemma 15 of [32], we can find a θ1, θ2, . . . , θNη with
Nη ≤ Cη−2d for some constant C such that for every θ ∈ Θ ∩Bθ0(1/2), there exists a θj such that

|θ − θj | ≤ η/T, ‖Hθ −Hθj‖2 ≤ η/T, and |θ>x− θ>j x| ≤ η, ∀x ∈ χ.

We first find a ‖ · ‖2,Pθ0,m0
bracket for U

(3)
θ,m using Lemma 9.25 of [31]. For this application, we need to

find bracketing entropy for the following two classes of functions,

{H>θ k(θ>·) : (θ,m) ∈ CM1(n)} and {m′0(θ>·)−m′(θ>·) : (θ,m) ∈ CM1(n)}.

As m′0 is an increasing function bounded by L0 (see (L1)), we have that

m′0(θ>j x− η1) ≤ m′0(θ>x) ≤ m′0(θ>j x+ η1).

Thus by (I.2), we have

m′0(θ>j x− η1)− uk(x) � m′0(θ>x)−m′(θ>x) � m′0(θ>j x+ η1)− `k(x).

The length of the above bracket is given by

‖m′0(θ>j ·+η1)− `k −m′0(θ>j · −η1) + uk‖2,Pθ0,m0

≤
[
Pθ0,m0 |m

′
0(θ>j X + η1)−m′0(θ>j X − η1)|2

]1/2
+ ‖uk − `k‖

≤ 2‖m′′0‖∞η + η = (2‖m′′0‖∞ + 1)η.

Thus
N[ ](η, {m′0(θ>·)−m′(θ>·) : (θ,m) ∈ CM1(n)}, ‖ · ‖) . exp(η−1)η−2d (I.4)

Recall that ‖k‖2,∞ + ‖k′‖2,∞ ≤ M∗. To find the ‖ · ‖2,Pθ0,m0
bracket for {H>θ k(θ>x) : (θ,m) ∈ CM1(n)}

observe that

|H>θ k(θ>x)−H>θjk(θ>j x)| ≤ |H>θ k(θ>x)−H>θjk(θ>x)|+ |H>θjk(θ>x)−H>θjk(θ>j x)|

≤ η‖k‖2,∞/T + ‖k′‖2,∞η ≤ 2ηM∗.

This leads to the brackets

H>θjk(θ>j x)− 2ηM∗1 � H>θ k(θ>x) � H>θjk(θ>j x) + 2ηM∗1,

with ‖ · ‖2,Pθ0,m0
–length 4ηM∗

√
d− 1. Thus

N[ ](η, {H>θ k(θ>·) : (θ,m) ∈ CM1(n)}, ‖ · ‖2,Pθ0,m0
) . exp(η−1)η−2d (I.5)

Thus by Lemma 9.25 of [31], (I.2) and (I.2) gives us

N[ ](η, {[m′0(θ>·)−m′(θ>·)]H>θ k(θ>·) : (θ,m) ∈ CM1(n)}, ‖ · ‖2,Pθ0,m0
) . exp(η−1)η−4d

For treating U
(1)
θ,m and U

(2)
θ,m, we take s0 to be the minimum point of the set {θ>x : θ ∈ Θ∩Bθ0(1/2), x ∈

χ}. By Theorem 2.7.5 of [53], we have

logN[ ](η, {m′ : m ∈ Cm∗M1
}, L2(m)) . η−1.

Let [mL,mU ] be the η–bracket of m′, i.e, mL(u) ≤ m′(u) ≤ mU (u) for all u and
∫
D
|mU (t)−mL(t)|2dt ≤ η2.

As θj satisfies |θ − θj | ≤ η/T , by Lemma 1 of [32] we have

|H>θ k′(u)−H>θjk
′(u)| ≤ |k′(u)|η/T ≤M∗η/T.

This implies

H>θjk
′(u) +M∗1 (1− η/T ) � H>θ k′(u) +M∗1 � H>θjk

′(u) +M∗1 (1 + η/T ) .

The ‖ · ‖2,Pθ0,m0
–length of the above bracket is 2M∗η/T . Since H>θ k

′(u) +M∗1 � 0 for all θ and u, we can
take the brackets to be

{H>θjk
′(u) +M∗(1− η/T )1} ∨ 0 � H>θ k′(u) +M∗1 � {H>θjk

′(u) +M∗(1 + η/T )1} ∧ (2M∗).



Kuchibhotla et. al./Convex Single Index Model 63

From the brackets [mL,mU ] of m′, we get that

mL(u)−m′0(u) ≤ m′(u)−m′0(u) ≤ mU (u)−m′0(u).

Combining the above two displays and the fact that θ>x > s0, we see that for every x ∈ χ and θ ∈
Θ ∩Bθ0(1/2), ∫ θ>x

s0

[mL(u)−m′0(u)]({H>θjk
′(u) +M∗(1− η/T )1} ∨ 0)du � U (1)

θ,m(x),

U
(1)
θ,m(x) �

∫ θ>x

s0

[mU (u)−m′0(u)]({H>θjk
′(u) +M∗(1 + η/T )1} ∧ (2M∗))du.

(I.6)

These bounding functions are not brackets since they depend on θ (in the limits of the integral). Since
mL,mU , and m′ are bounded by L, we get that∫ θ>x

θ>j x
|mU (u)−m′0(u)|({H>θjk

′(u) +M∗(1 + η/T )1} ∧ (2M∗))du � 4M∗L|θ>x− θ>j x|1 � 4M∗Lη1,

(coordinate-wise) and similarly,∫ θ>x

θ>j x
|mL(u)−m′0(u)|({H>θjk

′(u) +M∗(1− η/T )1} ∨ 0)du � 4M∗Lη1.

Therefore, from the inequalities (I.2), we get the brackets [M
(1)
L ,M

(1)
U ] for U

(1)
θ,m as

M
(1)
L :=

∫ θ>j x

s0

[mL(u)−m′0(u)]({H>θjk
′(u) +M∗(1− η/T )1} ∨ 0)du− 4M∗Lη1,

M
(1)
U :=

∫ θ>j x

s0

[mU (u)−m′0(u)]({H>θjk
′(u) +M∗(1 + η/T )1} ∧ (2M∗))du+ 4M∗Lη1.

The ‖ · ‖–length of this bracket can be bounded above as follows:

‖M (1)
U −M (1)

L ‖2,Pθ0,m0

≤ 8M∗Lη
√
d− 1 +

∥∥∥∥∥
∫ θ>j ·

s0

[mU (u)−mL(u)]({H>θjk
′(u) +M∗(1 + η/T )1} ∧ (2M∗))du

∥∥∥∥∥
2,Pθ0,m0

+

∥∥∥∥∥
∫ θ>j ·

s0

[mU (u)−m′0(u)]×

[
({H>θjk

′(u) +M∗(1 + η/T )1} ∧ (2M∗1))− ({H>θjk
′(u) +M∗(1− η/T )1} ∨ 0)

]
du

∥∥∥∥∥
2,Pθ0,m0

≤ 8M∗Lη
√
d− 1 +

∥∥∥∥∥2M∗1

∫ θ>j ·

s0

[mU (u)−mL(u)]du

∥∥∥∥∥
2,Pθ0,m0

+

∥∥∥∥∥2L

∫ θ>j ·

s0

[
(H>θjk

′(u) +M∗(1 + η/T )1)− (H>θjk
′(u) +M∗(1− η/T )1)

]
du

∥∥∥∥∥
2,Pθ0,m0

≤ 8M∗Lη
√
d− 1 + 2M∗

√
d− 1

(∫
D

(mU (u)−mL(u))2du

)1/2

+ 4M∗Lη
√
d− 1/T

=
√
d− 1(12M∗Lη + 2M∗η).

Thus, we get that [M
(1)
L ,M

(1)
U ] is a

√
d− 1(12M∗L+2M∗)η–bracket for U

(1)
θ,m with respect to the ‖·‖2,Pθ0,m0

.
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Following very similar arguments, we can show that [M
(2)
L ,M

(2)
U ] forms a bracket for U

(2)
θ,m, where

M
(2)
L (x) :=

[ ∫ θ>j x

s0

[mL(u)−m′0(u)]du− 2Lη
]
1,

M
(2)
U (x) :=

[ ∫ θ>j x

s0

[mU (u)−m′0(u)]du+ 2Lη
]
1.

The ‖ · ‖2,Pθ0,m0
–length of this bracket is

‖M (2)
U −M (2)

L ‖2,Pθ0,m0
≤ 4Lη

√
d− 1 +

√
d− 1

∥∥∥∥∥
∫ θ>j ·

s0

(mU (u)−mL(u))du

∥∥∥∥∥
≤ 4Lη

√
d− 1 + η

√
d− 1 =

√
d− 1(4L+ 1)η.

Thus for both U
(1)
θ,m and U

(2)
θ,m, the bracketing number is bounded by a constant multiple of exp(η−1)η−2d.

Hence we have (B.1).
Next we show (B.1). Observe that

∥∥Uθ,m(x)
∥∥2

2,Pθ0,m0

≤
∥∥∥∫ θ>·

s0

[m′(u)−m′0(u)]k′(u)du
∥∥∥2

2,Pθ0,m0

+
∥∥∥(m′ −m′0)(θ>·)k(θ>·)

∥∥∥2

2,Pθ0,m0

≤
∥∥∥∫ θ>0 ·

s0

[m′(u)−m′0(u)]k′(u)du
∥∥∥2

2,Pθ0,m0

+
∥∥∥∫ θ>·

θ>0 ·
[m′(u)−m′0(u)]k′(u)du

∥∥∥2

2,Pθ0,m0

+
∥∥∥(m′ −m′0)(θ>·)k(θ>·)

∥∥∥2

2,Pθ0,m0

≤ I + II + III.

Observe that

I =

∫
χ

∣∣∣∣∣
∫ θ>0 X

s0

[m′(u)−m′0(u)]k′(u)du

∣∣∣∣∣
2

dPθ0,m0

≤
∫
χ

∫
D0

[m′(u)−m′0(u)]2|k′(u)|2du dPθ0,m0

≤ ‖k′‖22,∞
∫
D0

[m′(u)−m′0(u)]2du ≤ ‖k′‖22,∞n−1/5,

and

II =
∥∥∥ ∫ θ>·

θ>0 ·
[m′(u)−m′0(u)]k′(u)du

∥∥∥2

2,Pθ0,m0

≤ L2‖k′‖22,∞‖(θ0 − θ)> · ‖2 ≤ L2‖k′‖22,∞T 2|θ0 − θ|2,

III =
∥∥∥(m′ −m′0)(θ>·)k(θ>·)

∥∥∥2

2,Pθ0,m0

≤ ‖k′‖22,∞
∥∥∥(m′ −m′0)(θ>·)

∥∥∥2

= ‖k′‖22,∞n−1/5.

Combining the above two displays, we have

sup
(θ,m)∈CM1

(n)

∥∥Uθ,m∥∥2

2,Pθ0,m0

≤ 2‖k′‖22,∞n−1/5 + L2‖k′‖22,∞T 2n−1/5 = K2
Ln
−1/5.

I.3. Proof of Lemma I.1

Observe that by Lemma 4.1 of [44] we can get θ1, θ2, . . . , θNη1
, with Nη1 . η−d1 such that for every θ ∈ Θ,

there exists a j satisfying |θ − θj | ≤ η1/T and

|θ>x− θ>j x| ≤ |θ − θj | · |x| ≤ η1 ∀x ∈ χ.
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Thus for every θ ∈ Θ, we can find a j such that θ>j x − η1 ≤ θ>x ≤ θ>j x + η1, ∀x ∈ χ. For simplicity of

notation, define t
(1)
j (x) := θ>j x− η1, t

(2)
j (x) := θ>j x+ η1, and

G∗ := {g| g : D → R is a uniformly bounded increasing function and ‖g‖∞ ≤ S}.

Recall that m denotes the Lebesgue measure onD. By Theorem 2.7.5 of [53], we have thatN[ ](η2,G∗, L2(m)) .
exp(η−1

2 ), i.e., there exists [l1, u1], . . ., [lMη2
, uMη2

] with li ≤ ui,
∫
D
|ui(t)−li(t)|2dt ≤ η2

2 and Mη2 . exp(η−1
2 )

such that for every g ∈ G∗, we can find a k ∈ {1, . . . ,Mη2} such that lk ≤ g ≤ uk. Without loss of generality
we can assume that both li and ui are increasing and bounded for all 1 ≤ i ≤Mη2 .

Fix any function g ∈ G∗ and θ ∈ Θ. Let |θj − θ| ≤ η1 and [lk, uk] be the η2–bracket for g, then for every
x ∈ χ,

lk(t
(1)
j (x)) ≤ lk(θ>x) ≤ g(θ>x) ≤ uk(θ>x) ≤ uk(t

(2)
j (x)),

where the outer inequalities follow from the fact that both lk and uk are increasing functions. Proof of
Lemma I.1 will be complete if we can show that

{[lk ◦ t(1)
j , uk ◦ t(2)

j ] : 1 ≤ j ≤ Nη1 , 1 ≤ k ≤Mη2},

form a L2(Pθ0,m0) bracket for H∗. To complete the proof, we now choose η1 (the bracket length for Θ) and
η2 (the bracket length for G∗) such that the ‖ · ‖–length of each bracket of H∗ is bounded by ε. Note that
by the triangle inequality, we have

‖uk ◦ t(2)
j − lk ◦ t

(1)
j ‖ ≤ ‖uk ◦ t

(2)
j − lk ◦ t

(2)
j ‖+ ‖lk ◦ t(2)

j − lk ◦ t
(1)
j ‖. (I.7)

Assuming that the density (with respect to the Lebesgue measure) of X>θ is uniformly bounded above (by
C), we get that

‖uk ◦ t(2)
j − lk ◦ t

(2)
j ‖

2 =

∫
[uk(r)− lk(r)]2 dPj(r) ≤ C

∫
[uk(r)− lk(r)]2 dr ≤ Cη2

2 .

For the second term in (I.3), we first approximate the lower bracket lk by a right-continuous increasing step
(piecewise constant) function. Such an approximation is possible since the set of all simple functions is dense
in L2(Pθ0,m0); see Lemma 4.2.1 of [4]. Since lk is bounded (by S say), we can get an increasing step function
A : D → [−S, S], such that

∫
{lk(r) − A(r)}2dr ≤ η2

2 . Let v1 < · · · < vAd denote an points of discontinuity
of A. Then for every r ∈ D, we can write

A(r) = −S +

Ad∑
i=1

ci1{r≥vi}, where ci > 0 and

Ad∑
i=1

ci ≤ 2S.

Using triangle inequality, we get that

‖lk ◦ t(2)
j − lk ◦ t

(1)
j ‖ ≤ ‖lk ◦ t

(2)
j −A ◦ t

(2)
j ‖+ ‖A ◦ t(2)

j −A ◦ t
(1)
j ‖+ ‖A ◦ t(1)

j − lk ◦ t
(1)
j ‖

≤
√
Cη2 + ‖A ◦ t(2)

j −A ◦ t
(1)
j ‖+

√
Cη2,

where C is the (uniform) upper bound on the density of X>θj . Now observe that

‖A ◦ t(2)
j −A ◦ t

(1)
j ‖

2 = E

[
Ad∑
i=1

ci
(
1{X>θj+η1≥vi} − 1{X>θj+η1≥vi}

)]2

≤ 2SE

∣∣∣∣∣
Ad∑
i=1

ci
(
1{X>θj+η1≥vi} − 1{X>θj+η1≥vi}

)∣∣∣∣∣
≤ 2S

Ad∑
i=1

ciP(X>θj − η1 < vi ≤ X>θj + η1)

≤ 2S

Ad∑
i=1

ciP(vi − η1 ≤ X>θj < vi + η1)

≤ 2S

Ad∑
i=1

ci(2Cη1) ≤ 8CS2η1.



Kuchibhotla et. al./Convex Single Index Model 66

Therefore by choosing η2 = ε/(6
√
C) and η1 = ε2/(32CS2), we have

‖uk ◦ t(2)
j − lk ◦ t

(1)
j ‖ ≤ 3

√
Cη2 + 2

√
2CS
√
η1 ≤ ε.

Hence the bracketing entropy of H∗ satisfies

logN[ ](ε,H∗, ‖ · ‖) .
6
√
C

ε
− 2d log ε− d log(32CS2) . ε−1,

for sufficiently small ε.

I.4. Proof of Lemma B.2

For every (θ,m) ∈ CM1(n), note that∥∥(m0 ◦ θ0 −m ◦ θ0)Uθ,m
∥∥2

2,Pθ0,m0

≤ 4M2
1

∥∥Uθ,m∥∥2

2,Pθ0,m0

≤ 4M2
1K

2
Ln
−1/5 = D2

M1
n−1/5.

Furthermore, note that D∗M1
is a class of uniformly bounded functions, i.e.,∣∣(m0 −m)(θ0

>x)Uθ,m(x)
∣∣ ≤ 2M1

∣∣Uθ,m(x)
∣∣ ≤ 2M1V

∗.

and by Lemma F.6 there exists a constant c depending only on M1 and L such that

N(ε,
{

(m0 ◦ θ0 −m ◦ θ0 : m ∈ Cm∗M1

}
, ‖ · ‖∞) = N(ε, Cm∗M1

, ‖ · ‖∞) ≤ c exp(c/
√
ε).

By Lemma B.1 and Lemma 9.25 of [31] (for bracketing entropy of product of uniformly bounded function
classes), we have

N[ ](ε,DM1(n), ‖ · ‖2,Pθ0,m0
) ≤ N[ ](ε,D∗M1

, ‖ · ‖2,Pθ0,m0
) ≤ cε−2d exp

(
c√
ε

+
c

ε

)
.

It follows that
J[ ](γ,DM1(n), ‖ · ‖2,Pθ0,m0

) . γ
1
2 .

Now using arguments similar to (H.4) and (H.4) and the maximal inequality in Lemma 3.4.2 of [53] (for
uniformly bounded function classes), we have

P
(

sup
f∈DM1

(n)

|Gnf | > δ

)

. 2δ−1
√
d− 1

d−1∑
i=1

E
(

sup
f∈DM1

(n)

|Gnfi|
)

. δ−1J[ ](DM1n
−1/10,DM1(n), ‖ · ‖2,Pθ0,m0

)

(
1 +

J[ ](DM1n
−1/10,DM1(n), ‖ · ‖2,Pθ0,m0

)

D2
M1
n−1/5

√
n

2M1V
∗

)

. δ−1

(√
DM1n

−1/20 +
2M1V

∗DM1n
−1/10

D2
M1
n−1/5

√
n

)
→ 0, as n→∞,

where in the first inequality f1, . . . , fd−1 denote each component of f.

I.5. Proof of Lemma B.3

For every (θ,m) ∈ CM1(n), note that∥∥[m ◦ θ0 −m ◦ θ]Uθ,m
∥∥2

2,Pθ0,m0

≤ 4M2
1

∥∥Uθ,m∥∥2

2,Pθ0,m0

≤ 4M2
1KLn

−1/5 = D2
M1
n−1/5.

By Lemmas F.5 and F.6, we have

N[ ](ε, {m ◦ θ0 −m ◦ θ : (θ,m) ∈ CM1(n)}, ‖ · ‖∞) . exp(1/
√
ε).
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By Lemma B.1 and Lemma 9.25 of [31] (for bracketing entropy of product of uniformly bounded function
classes), we have

N[ ](ε,AM1(n), ‖ · ‖2,Pθ0,m0
) ≤ N[ ](ε,A∗M1

, ‖ · ‖2,Pθ0,m0
) ≤ cε−2d exp

(
c√
ε

+
c

ε

)
.

It follows that
J[ ](γ,AM1(n), ‖ · ‖) . γ

1
2 .

The rest of the proof is similar to the proof of Lemma B.2.

I.6. Proof of Lemma B.4

We first prove the first equation of (B.4). Note that, we have

P(|
√
nPnεUθ̌,m̌(X)| > δ)

≤ P
(

sup
(θ,m)∈CM1

(n)

|
√
nPnεUθ,m(X)| > δ

)
+ P((θ̌, m̌) /∈ CM1(n))

≤ P
(

sup
f∈WM1

(n)

|
√
nPnεf | > δ

)
+ P((θ̌, m̌) /∈ CM1(n))

= P
(

sup
f∈WM1

(n)

|Gnεf | > δ
)

+ P((θ̌, m̌) /∈ CM1(n)),

where the last equality is due to assumption (A2). Now it is enough to show that for every fixed M1 and
L, we have

P
(

sup
f∈WM1

(n)

|Gnεf | > δ
)

= o(1). (I.8)

We will prove (I.6) by applying Lemma F.7 with F =WM1(n). Observe that by Lemma B.1, we have

logN[ ](ε,WM1(n), ‖ · ‖2,Pθ0,m0
) . ε−1, sup

f∈W∗
M1

‖f‖2,∞ ≤ V ∗, and sup
f∈WM1

(n)

‖f‖22,Pθ0,m0
≤ K2

Ln
−1/5.

By Markov inequality, we have

P
(

sup
f∈WM1

(n)

|Gnεf | > δ
)
. 2δ−1

√
d− 1

d−1∑
i=1

E
(

sup
f∈WM1

(n)

|Gnεfi|
)
,

where f1, . . . , fd−1 denote each component of f. We can bound each term in the summation of the above
display by Lemma F.7 (see Appendix F.3.1) with Φ = V ∗, κ = KLn

−1/10, and α = −1. Thus by (F.7), we
have

E
(

sup
f∈WM1

(n)

|Gnεfi|
)
.
√
KLn

−1/20 +
1

n1/10
√
n
→ 0, as n→∞.

We now verify the second and third equations in (B.4). The proofs are similar to the proof of Lemma A.5.
Observe that by (H.6), (H.6), and (H.6) (with (m̌, θ̌) instead of (m̂, θ̂)), we have∣∣Pθ0,m0 [(m0 − m̌)(θ0

>X)Uθ̌,m̌(X)]
∣∣ = Op(n

−2/5)
[
Pθ0,m0

∣∣Uθ̌,m̌(X)
∣∣2]1/2 ,∣∣Pθ0,m0 [(m̌(θ0

>X)− m̌(θ̌>X))Uθ̌,m̌(X)]
∣∣ = Op(n

−2/5)
[
Pθ0,m0

∣∣Uθ̌,m̌(X)
∣∣2]1/2 . (I.9)

and

Pθ0,m0

∣∣Uθ̌,m̌(X)
∣∣2 ≤M∗2(d− 1)Pθ0,m0

[
(m̌′ −m′0)(θ̌>X)

]2
+M∗

2
(d− 1)TPθ0,m0

[∫
Dθ̌

[m̌′(u)−m′0(u)]2du

]
.

(I.10)

Finally by (3.4) of Theorem 3.4, we have that∫
Dθ̌

{m̌′(u)−m′0(u)}2du . ‖m̌′ ◦ θ̌ −m′0 ◦ θ̌‖2 = Op(n
−4/15).

The required result now follows by combining (I.6) and (I.6).
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I.7. Proof of Theorem B.3

Proof of this theorem follows along the lines of the proof of Theorem A.3. By calculations similar to (H.7), (H.7),
and (H.7) (with (m̂, θ̂) replaced by (m̌, θ̌)), we have that

|Pθ̌,m0
ψθ̌,m̌| . ‖m0 ◦ θ̌ − m̌ ◦ θ̌‖ ‖m̌′ ◦ θ̌ −m′0 ◦ θ̌‖ (I.11)

+ ‖m′0‖∞‖m0 ◦ θ̌ − m̌ ◦ θ̌‖ ‖hθ̌ ◦ θ̌ − hθ0 ◦ θ̌‖2,Pθ0,m0
.

By Theorem 3.4, we have ‖m̌′ ◦ θ̌ − m′0 ◦ θ̌‖ = Op(n
−2/15). Furthermore, by Theorems 3.1 and 3.3 and

assumption (B2), we have

‖m0 ◦ θ̌ − m̌ ◦ θ̌‖ ≤ ‖m̌ ◦ θ̌ −m0 ◦ θ0‖+ ‖m0 ◦ θ0 −m0 ◦ θ̌‖

≤ ‖m̌ ◦ θ̌ −m0 ◦ θ0‖+ L0T
2|θ0 − θ̌|

= Op(n
−2/5)

and ‖hθ̌ ◦ θ̌− hθ0 ◦ θ̌‖2,Pθ0,m0
≤ M̄ |θ̌− θ0|. Thus the first term on the right hand side of (I.7) is Op(n

−8/15)

and the second term on the right hand side of (I.7) is Op(n
−4/5). Thus |Pθ̌,m0

ψθ̌,m̌| = op(n
−1/2).

I.8. Consistency of ψθ̌,m̌

Lemma I.2. If the conditions in Theorem 4.2 hold, then

Pθ0,m0 |ψθ̌,m̌ − ψθ0,m0 |
2 = op(1), (I.12)

Pθ̌,m0
|ψθ̌,m̌|

2 = Op(1). (I.13)

Proof. Observe that the proof of (I.2) is identical to the proof of (H.1) (with (θ̂, m̂) replaced by (θ̌, m̌)); see
(H.8).

We now prove (I.2). By assumption (B2) and calculations similar to (H.8), we have

Pθ0,m0 |ψθ̌,m̌ − ψθ0,m0 |
2 ≤ I + 2‖σ2(·)‖∞ II + 2‖σ2(·)‖∞ III + 4M2

1T
2‖σ2(·)‖∞|θ̌ − θ0|2,

where

I := Pθ0,m0

∣∣∣[m0(θ>0 X)− m̌(θ̌>X)
][
m̌′(θ̌>X)X − (m′0 hθ0)(θ̌>X)

]∣∣∣2,
II := Pθ0,m0

∣∣∣m̌′(θ̌>X)X −m′0(θ>0 X)X
∣∣∣2,

III := Pθ0,m0

∣∣∣(m′0 hθ0)(θ>0 X)− (m′0 hθ0)(θ̌>X)
∣∣∣2.

It is enough to show that I, II, and III are op(1). By Theorems 3.3 and 3.4, we have

II ≤ T 2Pθ0,m0

∣∣∣m̌′(θ̌>X)−m′0(θ>0 X)
∣∣∣2

≤ T 2Pθ0,m0

∣∣m̌′(θ̌>X)−m′0(θ̌>X)
∣∣2 + T 2Pθ0,m0

∣∣m′0(θ̌>X)−m′0(θ>0 X)
∣∣2 = op(1).

For I, observe that

|m̌′(θ̌>x)x−m′0(θ̌>x)hθ0(θ̌>x)| ≤ |m̌′(θ̌>x)x|+ |m′0(θ̌>x)hθ0(θ̌>x)| ≤ LT + L‖hθ0‖2,∞.

Moreover, by Theorem 3.1, we have ‖m̌ ◦ θ̌ −m0 ◦ θ0‖
P→ 0. Thus,

I = Pθ0,m0

∣∣(m0(θ>0 X)− m̌(θ̌>X))(m̌′(θ̌>X)X − (m′0 hθ0)(θ̌>X))
∣∣2

≤ (LT + L‖hθ0‖2,∞)‖m0 ◦ θ0 − m̌ ◦ θ̌‖2 = op(1).

Finally, we have

III = Pθ0,m0

∣∣∣(m′0 hθ0)(θ>0 X)− (m′0 hθ0)(θ̌>X)
∣∣∣2

≤ Pθ0,m0

[
‖m′′0 hθ0 +m′0 h

′
θ0‖2,∞|(θ0 − θ̌)>X|

]2
≤ ‖m′′0 hθ0 +m′0 h

′
θ0‖

2
2,∞T

2|θ0 − θ̌|2 = op(1).
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I.9. Proof of Theorem B.4

Observe that (H.9) and (H.9) imply that

ψθ̌,m̌ − ψθ0,m0 = ετθ̌,m̌ + υθ̌,m̌.

Thus, for every fixed M1, we have

P(|Gn(ψθ̌,m̌ − ψθ0,m0)| > δ)

≤ P(|Gn(ετθ̌,m̌ + υθ̌,m̌)| > δ, (θ̌, m̌) ∈ CM1(n)) + P((θ̌, m̌) /∈ CM1(n))

≤ P
(
|Gn(ετθ̌,m̌)| > δ

2
, (θ̌, m̌) ∈ CM1(n)

)
+ P

(
|Gnυθ̌,m̌| >

δ

2
, (θ̌, m̌) ∈ CM1(n)

)
+ P

(
(θ̌, m̌) /∈ CM1(n)

)
≤ P

(
sup

(θ,m)∈CM1
(n)

|Gnετθ,m| >
δ

2

)
+ P

(
sup

(θ,m)∈CM1
(n)

|Gnυθ,m| >
δ

2

)
+ P

(
(θ̌, m̌) /∈ CM1(n)

)
. (I.14)

Recall that by Theorems 3.1–3.4, we have P
(
(θ̌, m̌) /∈ CM1(n)

)
= o(1). Thus the proof of Theorem B.4 will

be complete if we show that the first two terms in (I.9) are o(1). Lemmas I.3 and I.4 do this.

Lemma I.3. Fix M1 and δ > 0. For n ∈ N, as n→∞, we have

P
(

sup
(θ,m)∈CM1

(n)

|Gnετθ,m| >
δ

2

)
→ 0.

Proof. Recall that

τθ,m(x) := H>θ
{

[m′(θ>x)−m′0(θ0
>x)]x+ [(m′0 hθ0)(θ0

>x)− (m′0 hθ0)(θ>x)]
}

+ (H>θ −H>θ0)
[
m′0(θ>0 x)x− (m′0hθ0)(θ>0 x)

]
,

Let us define,

ΞM1(n) :=
{
τθ,m

∣∣(θ,m) ∈ CM1(n)
}

and Ξ∗M1
:=
{
τθ,m

∣∣(θ,m) ∈ C∗M1

}
.

We will prove that
N(ε,Ξ∗M1

, ‖ · ‖∞) ≤ c exp(c/ε)ε−10d, (I.15)

where c depends only on M1 and d. We will now try to construct a bracket for Ξ∗M1
. Recall that by Lemma I.1,

we have
N[ ](ε, {m′(θ>·)|(θ,m) ∈ C∗M1

}, ‖ · ‖) . exp(1/ε). (I.16)

Moreover, by Lemma 15 of [32], we can find a θ1, θ2, . . . , θNε with Nε . ε−2d such that for every θ ∈
Θ ∩Bθ0(1/2), there exists a θj such that

|θ − θj | ≤ ε/T, ‖Hθ −Hθj‖2 ≤ ε/T, and |θ>x− θ>j x| ≤ ε, ∀x ∈ χ.

Observe that for all x ∈ χ, we have H>θjx− ε � H
>
θ x � H>θjx+ ε. Thus

N[ ](ε, {f : χ→ Rd|f(x) = H>θ x,∀x ∈ χ, θ ∈ Θ ∩Bθ0(1/2)}, ‖ · ‖2,∞) . ε−2d (I.17)

Similarly as |m′0(θ>x)−m′0(θ>j x)| ≤ L0ε, we have

N[ ](ε, {m′0 ◦ θ : θ ∈ Θ ∩Bθ0(1/2)}, ‖ · ‖) . ε−2d (I.18)

Finally observe that

|H>θ hθ0(θ>x)−H>θjhθ0(θ>j x)|

≤ |H>θ hθ0(θ>x)−H>θ hθ0(θ>j x)|+ |H>θ hθ0(θ>j x)−H>θjhθ0(θ>j x)|

≤ |hθ0(θ>x)− hθ0(θ>j x)|+ ‖H>θ −H>θj‖2‖hθ0‖2,∞
≤ ‖h′θ0‖2,∞|θ − θj |T + ‖H>θ −H>θj‖2‖hθ0‖2,∞ ≤ ε(‖h

′
θ0‖2,∞|+ ‖hθ0‖2,∞/T ) . ε
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and
|H>θ hθ0(θ>0 x)−H>θjhθ0(θ>0 x)| ≤ ‖hθ0(θ>0 x)‖2,∞ε/T.

Thus we have

N[ ](ε, {f : χ→ Rd|f(x) = H>θ hθ0(θ>x), θ ∈ Θ ∩Bθ0(1/2)}, ‖ · ‖2,∞) . ε−2d, (I.19)

N[ ](ε, {f : χ→ Rd|f(x) = H>θ hθ0(θ>0 x), θ ∈ Θ ∩Bθ0(1/2)}, ‖ · ‖2,∞) . ε−2d. (I.20)

Thus by applying Lemma 9.25 of [31] to sums and product of classes of functions in (I.9),(I.9), (I.9), (I.9),
and (I.9) we have (I.9).

Now, we find an upper bound for supf∈ΞM1
(n) ‖f‖2,∞. For every (θ,m) ∈ CM1(n) and x ∈ χ note that,

|τθ,m(x)| ≤
[
|m′(θ>x)−m′(θ0

>x)|+ |m′(θ0
>x)−m′0(θ0

>x)|
]
|x|

+ |m′0(θ0
>x)hθ0(θ0

>x)−m′0(θ>x)hθ0(θ0
>x)|

+ |m′0(θ>x)hθ0(θ0
>x)−m′0(θ>x)hθ0(θ>x)|

+ |θ − θ0||m′0(θ>x)x− (m′0hθ0)(θ>x)|

≤ L|θ>x− θ0
>x||x|+ ‖m′ −m′0‖D0 |x|

+ |hθ0(θ0
>x)|‖m′′0‖∞|θ0

>x− θ>x|

+ |m′0(θ>x)| ‖h′θ0‖2,∞|θ0
>x− θ>x|

+ |θ − θ0||m′0(θ>x)x− (m′0hθ0)(θ>x)|

≤ |θ − θ0|LT 2 + n−1/5T + T 2‖m′′0‖∞T |θ − θ0|+ L0‖h′θ0‖2,∞T |θ − θ0|+ |θ − θ0|L0T.

≤ C11n
−1/10,

where C11 is constant depending only on L,L0, T,m0, and hθ0 . Now observe that,

P
(

sup
f∈ΞM1

(n)

|Gnεf | >
δ

2

)
≤ 2δ−1

√
d− 1

d−1∑
i=1

E
(

sup
f∈ΞM1

(n)

|Gnεfi|
)

where f1, . . . , fd−1 denote each component of f. We can bound each term in the summation of the above
display by Lemma F.7 with Φ = κ = C11n

−1/10, and α = −1. By (F.7), we have

E
(

sup
f∈ΞM1

(n)

|Gnεfi|
)
. n−1/20 + n−4/10 = o(1)

Lemma I.4. Fix M1 and δ > 0. For n ∈ N, we have

P

(
sup

(θ,m)∈CM1
(n)

|Gnυθ,m| >
δ

2

)
= op(1).

Proof. Recall that

υθ,m(x) := [m0(θ>0 x)−m(θ>x)][m′(θ>x)H>θ x−m′0(θ>x) H>θ hθ0(θ>x)].

We will first show that
J[ ](ν, {υθ,m : (θ,m) ∈ CM1(n)}, ‖ · ‖2,Pθ0,m0

) . ν1/2 (I.21)

By Lemmas F.5 and I.1 and (I.9), (I.9), and (I.9), we have

N[ ](ε, {m0(θ>0 ·)−m(θ>·)|(θ,m) ∈ C∗M1
}, ‖ · ‖∞) . exp(1/

√
ε),

N[ ](ε, {m′(θ>·)|(θ,m) ∈ C∗M1
}, ‖ · ‖) . exp(1/ε),

N[ ](ε, {f : χ→ Rd|f(x) = H>θ x, ∀x ∈ χ, θ ∈ Θ ∩Bθ0(1/2)}, ‖ · ‖2,∞) . ε−2d

N[ ](ε, {m′0 ◦ θ : θ ∈ Θ ∩Bθ0(1/2)}, ‖ · ‖) . ε−2d

N[ ](ε, {f : χ→ Rd|f(x) = H>θ hθ0(θ>x), θ ∈ Θ ∩Bθ0(1/2)}, ‖ · ‖2,∞) . ε−2d.

(I.22)
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Thus by applying Lemma 9.25 of [31] to sums and product of classes of functions in (I.9), we have

N[ ](ε, {υθ,m : (θ,m) ∈ C∗M1
}, ‖ · ‖2,Pθ0,m0

) . exp

(
1

ε
+

1√
ε

)
ε−6d.

Now (I.9) follows from the definition of J[ ] by observing that

J[ ](ν, {υθ,m : (θ,m) ∈ CM1(n)}, ‖ · ‖2,Pθ0,m0
) ≤ J[ ](ν, {υθ,m : (θ,m) ∈ C∗M1

}, ‖ · ‖2,Pθ0,m0
).

Now we will find sup(θ,m)∈CM1
(n) ‖υθ,m‖2,∞. For every x ∈ χ observe that,

|υθ,m(x)| ≤ |m0(θ>0 x)−m(θ0
>x)| · |m′(θ>x)x−m′0(θ>x)hθ0(θ>x)|

+ |m(θ>0 x)−m(θ>x)| · |m′(θ>x)x−m′0(θ>x)hθ0(θ>x)|

≤ ‖m0 −m‖D0 |m
′(θ>x)x−m′0(θ>x)hθ0(θ>x)|

+ L|θ>0 x− θ>x||m′(θ>x)x−m′0(θ>x)hθ0(θ>x)|

≤ b−1
n 2LT + 2T 2L2M2|θ − θ0

≤ C[b−1
n + n−1/10],

where C is a constant depending only on T,L, and M1. Thus

sup
(θ,m)∈CM1

(n)

‖υθ,m‖2,Pθ0,m0
≤ sup

(θ,m)∈CM1
(n)

‖υθ,m‖2,∞ ≤ C2[b−1
n + n−1/10].

Now using arguments similar to (H.4) and (H.4) and the maximal inequality in Lemma 3.4.2 of [53] (for
uniformly bounded function classes), we have

P

(
sup

(θ,m)∈CM1
(n)

|Gnυθ,m| >
δ

2

)

. 2δ−1
√
d− 1

d−1∑
i=1

E
(

sup
(θ,m)∈CM1

(n)

|Gnυθ,m,1|
)

. J[ ]([b
−1
n + n−1/10],WM1(n), ‖ · ‖2,Pθ0,m0

) +
J2

[ ]([b
−1
n + n−1/10],WM1(n), ‖ · ‖2,Pθ0,m0

)

[b−1
n + n−1/10]2

√
n

. [b−1
n + n−1/10]1/2 +

[b−1
n + n−1/10]

[b−1
n + n−1/10]2

√
n

. [b−1
n + n−1/10]1/2 +

1

b−1
n
√
n+ n4/10

= o(1),

as bn = o(n1/2), here in the first inequality υθ,m,1, . . . , υθ,m,d−1 denote each component of υθ,m.
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[19] Györfi, L., M. Kohler, A. Krzyżak, and H. Walk (2002). A distribution-free theory of nonpara-
metric regression. Springer Series in Statistics. Springer-Verlag, New York.
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