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ABSTRACT 

 

While there are well-established methods for model selection (e.g., BIC, marginal likelihood), they 

generally condition on an a priori selected data (e.g., SKU-level data) and parameter granularity 

(e.g., brand-level parameters). That is, researchers think they are doing model selection, but what 

they are really doing is model selection conditional on their choices of data and parameter 

granularities. In this research, we propose a Bayesian dual-network clustering method as a novel 

way to make these two decisions simultaneously. To accomplish this, the method represents data 

and parameters as two separate networks with nodes being the unit of analysis (e.g., SKUs). The 

method then (a) clusters the two networks using a covariate-driven distance function which allows 

for a high degree of interpretability and (b) infers the data and parameter granularities that offer 

the best in-sample fit, akin to standard model selection methods. We apply our method to SKU-

level demand analysis. The results show that the choices of data and parameter granularities based 

on our method as compared to those from extant approaches (e.g., latent class analysis) impact the 

demand elasticities and the optimal pricing of SKUs. We conclude by highlighting the 

generalizability of our framework to a broad array of marketing problems.   
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1. Introduction  

One of the fundamental, and academically well researched, decisions that a marketing manager 

routinely makes is how to model the relationship between firm-controlled (e.g., price) and 

exogenous (e.g., macroeconomic) drivers and a specific outcome of interest (e.g., sales). This 

problem is commonly denoted as model selection, for which there have been many solutions 

proposed that compare model fit (e.g., BIC, marginal likelihood) across models to “select the 

winner”. While model selection, as described above, is a laudable goal, we suggest that this is not 

the problem that researchers have been solving; rather they are performing conditional model 

selection, based on a priori chosen levels of data and parameter granularities. The former refers to 

decisions about whether to employ the most granular data (e.g., weekly) or aggregate it to a coarser 

level (e.g., monthly) for model estimation. Similarly, the latter refers to decisions about whether 

to vary parameters across the most granular units (e.g., across individuals) or at a more aggregate 

level (e.g., across zip codes) in a demand model. In this paper, it is the simultaneous selection, 

using Bayesian inference and posterior sampling, of the “big three” (the aforementioned data 

aggregation1 and parameter granularity, our research contribution, and the standard model and 

parameter inference) that we seek to address.   

      We propose a Bayesian dual-network clustering method that allows researchers to select both 

data and parameter granularities. The proposed method, as the name suggests, represents data and 

parameters as two networks with each unit being a node. Then, it probabilistically clusters the 

nodes in the networks to infer the levels of data and parameter granularities. One notable 

contribution is that by representing both data and parameters in a generalized manner (i.e., using 

a network), our method is flexible and can accommodate differing units of analysis with little 

                                                           
1 We utilize the terms data aggregation (which is standard) and data granularity (to make its choice symmetric with 

that of the parameter granularity) interchangeably. 
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modification (e.g., time, space, person, SKU). Equally important is that our method offers a high 

degree of interpretability as to the underlying drivers of data and parameter clusters by relating 

distances between nodes in the respective networks to observed attributes of the unit of analysis 

(e.g., brand or package size for an SKU-level demand analysis).      

      We make the above-mentioned contributions by developing a novel extension of the Bayesian 

non-parametric clustering method, the distance dependent Chinese Restaurant Processes (ddCRP; 

Blei and Frazier 2011), originally used to cluster documents and images (e.g., Arfa, Yusof, and 

Shabanzadeh 2019; Ghosh et al. 2011). Notably, extant methods such as latent class analysis 

(hereafter, LCA) and unsupervised clustering (e.g., K-means) select either parameter or data 

granularity but not both. LCA determines the level of parameter granularity while fixing the level 

of data aggregation (typically, at the most granular level). For instance, Smith, Rossi, and Allenby 

(2019) fixed sales data at the brand level and applied LCA to this data to select the level of 

parameter granularity (e.g., the level of price elasticity). In contrast, unsupervised clustering (e.g., 

K-means) clusters data points that have similar features without accounting for a downstream 

demand model. For instance, Morwitz and Schmittlein (1992) used K-means to segment 

households with respect to their characteristics (e.g., demographics and past purchase behaviors) 

and aggregated the household-level data accordingly. Note also that while many past studies have 

demonstrated that empirical results (e.g., price elasticity) and the corresponding marketing 

decisions (e.g., optimal price) vary based on the chosen levels of data and/or parameter 

granularities (e.g., Christen et al. 1997), how to select their levels jointly is an important gap in the 

literature that our research fills.  

      To assess the performance of our method in comparison to extant methods, we conduct a 

simulation study wherein we vary the signal-to-noise ratio (SNR) in the data generation process. 
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We find that the bias in the coefficients of the estimated demand model (e.g., price elasticity) is 

smaller under our proposed method than under extant methods (e.g., LCA). An in-depth analysis 

reveals that a key driver of these results is that our proposed method performs better in recovering 

the underlying true levels of data and parameter granularities than extant approaches do. For 

example, LCA selects overly granular parameters (too much heterogeneity) when the data is fixed 

at the most granular level. 

      Following the simulation study, we apply our method to a Nielsen scanner data set containing 

SKU-week-level sales of orange juice and marketing actions (price and advertising) and compare 

its performance with that from extant methods. We provide three key findings. First, our method 

provides a significantly better (in-sample and out-of-sample) model fit than the extant methods do. 

This result implies that it is important to select the levels of both data and parameter granularities 

along with the model itself. Second, the levels of data and parameter granularities chosen by our 

method differ from those chosen by the extant methods. It is because unlike our method, the extant 

methods select either data or parameter granularity while conditioning on the other. Lastly, the 

inference of demand parameters (e.g., price elasticity) and optimal marketing decisions (e.g., 

optimal price) based on our method differ substantially from those obtained by employing 

alternative methods. 

      Although we apply the proposed method to SKU-level demand analysis, researchers make 

decisions regarding data and parameter granularities in many other contexts. One example is a 

temporal or spatial analysis of demand, for which researchers select the temporal or spatial unit of 

analysis and build a model conditional on their choices. In most cases, they decide whether to use 

the most granular data (e.g., daily data) or aggregate it to a coarser level (e.g., weekly level) for 

analysis. Another example is customer (or group) level analysis, for which researchers often cluster 
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customers and then aggregate data (and/or parameters) based on the chosen clustering. Our 

framework is flexible (as explained above) and can be easily applied to such contexts.  

      The remainder of the paper is as follows. In Section 2, we propose our Bayesian dual-network 

clustering method as a tool for data and parameter granularities. Section 3 describes a simulation 

study that assesses the performance of our method in selecting data and parameter granularities as 

compared to other extant approaches. In Section 4, we present an application of our method to a 

data set containing SKU-level purchases. Section 5 concludes with limitations and future research 

directions, both from a methodological and applied perspective. 

 

2. Methodological Framework 

We propose a Bayesian dual-network clustering method to provide researchers a method to select 

the levels of data and parameter granularity in their chosen model. The former refers to decisions 

regarding the granularity of the data employed for model estimation (e.g., daily versus weekly 

sales data). In a similar vein, the latter refers to decisions about whether parameters in the model 

should be allowed to vary across the most granular units (e.g., across individuals) or at a more 

aggregate level (e.g., across zip codes). In what follows, we first lay out a general overview of our 

methodological framework (2.1) and the prior distribution chosen (a flexible non-parametric 

distribution) for selecting data and parameter granularities (2.2). We use a modified version of the 

distance dependent Chinese restaurant processes (ddCRP) introduced by Blei and Frazier (2011). 

We then discuss the proposed framework in detail (2.3) and how it compares to, and nests, other 

data and parameter clustering methods (e.g., unsupervised learning and latent class analysis, 

respectively) commonly employed in the statistics and marketing literatures (2.4). 
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2.1. General Overview of the Methodological Framework  

Figure 1 provides an overview of our framework. There are three key steps. First, for a given 

context, we assemble the most granular level of data available (e.g., individual-level purchase data). 

Let 𝑁1 indicate the number of observations in this dataset with the superscript “1” denoting the 

most granular data. Similarly, suppose that the model employed in the analysis is specified with 

parameters at the most granular level (e.g., observation-specific parameters corresponding to the 

most granular data with 𝑁1 observations). One notable contribution of our research is to represent 

the most granular data and parameters as two networks – a data network and a parameter network, 

respectively – with each unit being a node. 

      Second, we probabilistically cluster nodes in both the data and parameter networks. We employ 

Bayesian inference and sample the posterior distribution of the data clustering (denoted as 𝐷) and 

parameter clustering (denoted as 𝑀) which recognizes and utilizes their uncertainty. By doing so, 

we extend typical statistical modeling, which conditions on the choice of 𝐷 and 𝑀. We accomplish 

this dual-network clustering (as per the title of the paper) by building on extant ddCRP-based 

clustering methods.  

      As a last step, we aggregate data and parameters based on the chosen clusters. Specifically, we 

aggregate the data for nodes in the same data cluster and set the parameters equal for nodes in the 

same parameter cluster. We  restrict our data clustering 𝐷 to be at least as granular as the parameter 

clustering 𝑀 as in Figure 1. That is, we do not consider problems of demand estimation with 

aggregated data (e.g., Chen and Yang 2007; Musalem, Bradlow, and Raju 2008) where the 

parameters are more granular than the data. 
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Figure 1: Methodological Framework  

 

 

2.2. Distance Dependent Chinese Restaurant Processes (ddCRP) 

The ddCRP is a non-parametric probability distribution over clusters. It represents the input of 

interest (e.g., an image) as a network with each unit (e.g., a pixel from the image) being a node.  

Then, it clusters the network by iterating across nodes and, for each node, chooses a node to link 

itself to (see Figure 2). Specifically, the ddCRP links node 𝑖 to itself (denoted as 𝑐𝑖 = 𝑖) with a 

probability proportional to a self-link parameter 𝛼, or to another node 𝑖′ (denoted as 𝑐𝑖 = 𝑖′) with 

a probability proportional to a non-increasing function of their distance: 𝑓(𝑑𝑖𝑠𝑡𝑖𝑖′) . These 

assumptions lead to the following multinomial distribution conditional on the self-link parameter 

𝛼, the pairwise distance 𝑑𝑖𝑠𝑡𝑖𝑖′ , and a decay function 𝑓(.)   

𝑝(𝑐𝑖 = 𝑖′| 𝑑𝑖𝑠𝑡𝑖𝑖′ , 𝛼, 𝑓) ∝ {
𝛼                  if 𝑖 = 𝑖′

𝑓(𝑑𝑖𝑠𝑡𝑖𝑖′)   if 𝑖 ≠ 𝑖′                                   (1) 

The decay function is non-negative, non-increasing, and 𝑓(∞) = 0 . Note that several decay 

functions (e.g., exponential decay, logistic decay) meet these conditions.  

Figure 2: Illustration of ddCRP for Parameter Clustering 𝑴 
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      Extant studies have employed the ddCRP for latent class analysis (hereafter, LCA). They 

impose a non-parametric prior on the number of parameter clusters while fixing the level of data 

granularity (e.g., Arfa, Yusof, and Shabanzadeh 2019; Blei and Frazier 2011; Ghosh et al. 2011). 

The ddCRP-based LCA is composed of three steps (see Figure 3). First, given a sampled self-link 

parameter (𝛼) and a set of pairwise distances (𝐃𝐢𝐬𝐭), we sample parameter clustering (𝑀) based on 

Equation (1). Next, we aggregate the parameters given the sampled parameter clustering. 

Specifically, we set the parameters equal for nodes in the same parameter cluster and denote the 

aggregated parameters as 𝜸𝑀 . Finally, we apply a model with the aggregated parameters to the 

observed data (𝒚) at the most granular level.  

Figure 3: Directed Acyclic Graph for the ddCRP-Based LCA 

  
Note. We represent in yellow the parameters – 𝛼 (self-link parameter), 𝑀  (parameter clustering), and 𝜸𝑀  (model 

parameters) – that are sampled in the ddCRP-based LCA.  

      Note that the ddCRP-based LCA has mainly been applied for segmenting documents and 

images. A notable feature of the method is the ease with which prior beliefs relevant for 

segmentation can be accommodated via a distance function. For instance, extant studies use the 

distance between texts (pixels) as an input in a model for determining which texts (pixels) should 

be grouped together (Arfa, Yusof, and Shabanzadeh 2019; Blei and Frazier 2011; see Figures 4[A] 

and 4[B]). Similarly, we employ the ddCRP to capture prior beliefs for how the nodes of a network 

(e.g., parameter network) would be aggregated based on their inter-node distance (see Figure 4[C]). 
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Figure 4: Distances in Text Modeling and Image Segmentation Versus Network Clustering 

         [A] Text Modeling           [B] Image Segmentation            [C] Network Clustering 

 

2.3. Dual-Network Clustering Method 

 

Our proposed dual-network clustering method extends the extant ddCRP-based LCA in three ways. 

Figure 5 illustrates our key extensions (shaded green) as compared to the extant ddCRP-based 

LCA (shaded grey). We will explain each extension (and the corresponding vertices and edges in 

Figure 5) in the remaining part of this section.  

Figure 5: Directed Acyclic Graph for Our Proposed Method 

 

Notes. Figure 5 illustrates key extensions (in green) as compared to the extant ddCRP-based LCA (in grey). We 

represent parameters sampled in our proposed method – e.g., 𝑀 (parameter clustering) – in yellow. We describe the 

role of each parameter in the main text of this section.  

 

(1) Allowing for dual (parameter and data) networks 
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Extant applications of the ddCRP cluster only a single network, the parameter network. To apply 

the ddCRP to two (and if need be, more) networks, as illustrated in Figure 5, we allow for two sets 

of ddCRPs – one for parameter clustering (denoted as 𝑀) and the other for data clustering (denoted 

as 𝐷). Note, as before, that for model identification, we do not allow 𝑀 to be more granular than 

𝐷. We accommodate this relationship (restriction) by linking 𝐷 and 𝑀 via a novel split-merge 

MCMC sampler as follows, which is an additional computational contribution of our research: 

Split sampler. We sample 𝐷 by splitting each parameter cluster in a previously sampled 𝑀. The 

split sampler is composed of three steps as illustrated in Figure 6[A]. First, we treat each parameter 

cluster as an independent data sub-network. Then, within each data sub-network, we induce data 

clustering (𝐷) by iterating over nodes with each node being sampled to form a link (denoted as 𝑐𝑖
D) 

from the following ddCRP distribution: 

𝑝(𝑐𝑖
D|𝑑𝑖𝑠𝑡𝑖𝑖′

D , 𝑓D, 𝛼D) ∝ {
𝛼D                     if 𝑖 = 𝑖′

 𝑓D(𝑑𝑖𝑠𝑡𝑖𝑖′
D )     if 𝑖 ≠ 𝑖′ 

                                    (2) 

Note that Equation (2) is equivalent to the ddCRP prior introduced in Equation (1) except that it 

has the superscript D to denote that the ddCRP prior is imposed for data clustering. 

Merge sampler. We sample 𝑀 by merging data clusters in a previously sampled 𝐷. The merge 

sampler is composed of three steps as illustrated in Figure 6[B]. First, we treat the clustered data 

network (𝐷) as a parameter network and then treat each data cluster as a node in the parameter 

network. For instance, in Figure 6[B], there are three data clusters, and so we treat these three 

clusters as nodes in the parameter network. Then, we induce parameter clustering (𝑀) by iterating 

each data cluster 𝑑 and sample a data cluster to link itself to (denoted as 𝑐𝑑
M) from the following 

ddCRP distribution: 
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𝑝(𝑐𝑑
M|𝑑𝑖𝑠𝑡𝑑𝑑′

M , 𝑓M, 𝛼M) ∝ {
𝛼M                      if 𝑑 = 𝑑′

 𝑓M(𝑑𝑖𝑠𝑡𝑑𝑑′
M )     if 𝑑 ≠ 𝑑′ 

                               (3) 

Note that Equation (3) is equivalent to the ddCRP prior introduced in Equation (1) with two key 

differences. First, it has the superscript M to denote that the ddCRP prior is imposed for parameter 

clustering. Second, since Equation (3) clusters data clusters instead of individual nodes, it uses 

𝑑𝑖𝑠𝑡𝑑𝑑′
M  (distance between data clusters 𝑑 and 𝑑′) instead. Note that 𝑑𝑖𝑠𝑡𝑑𝑑′

M  is a summary (e.g., 

average, median) of the distances between all the pairs of nodes in the clusters 𝑑 and 𝑑′.    

Figure 6: Illustration of the Proposed Split-Merge Sampler 

[A] Split Sampler  

 

 

[B] Merge Sampler 

 
 

 

(2) Modeling distances between nodes and its interpretability 

Extant studies on the ddCRP assume that the pairwise distance between nodes is known a priori 

(see Section 2.1). This assumption is reasonable in applications of text and image segmentation, 

where the actual distance between words and between pixels, respectively, is known. However, 

in other problems relevant for marketers this assumption may not capture all the nuances of the 

context. For instance, consider the problem of how best to segment SKUs. In this context, there 

is no literal distance between two SKUs. Thus, we define the distance between nodes 𝑖 and 𝑖′ 
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(𝑑𝑖𝑠𝑡𝑖𝑖′
D ) as a function of the weighted average of the differences in their observed attributes 

(denoted as diff(𝒛𝑖
D, 𝒛𝑖′

D)) where a vector of weight parameters (𝒘D) is estimated in conjunction 

with the clusterings.  

𝑑𝑖𝑠𝑡𝑖𝑖′
D = 𝑔D(𝒘D ∙ diff(𝒛𝑖

D, 𝒛𝑖′
D))                                           (4) 

Here, a link function 𝑔D(. ) translates the weighted differences into distances; hence, it is a non-

negative and increasing function. Several types of link functions (e.g., exponential) meet these 

conditions. Note that we define a distance between nodes 𝑖 and 𝑖′ in the parameter network in a 

similar way: 

𝑑𝑖𝑠𝑡𝑖𝑖′
M = 𝑔M(𝒘M ∙ diff(𝒛𝑖

M, 𝒛𝑖′
M))                                        (5) 

A notable contribution of our method is that the latent weight parameters in the distance functions 

enhance the interpretability of the results as it helps to explain why certain levels of data and 

parameter granularities are chosen.  

 

(3) Making the likelihood comparable across the levels of data aggregation 

The extant method, the ddCRP-based LCA, fixes the data (e.g., image) at the most granular level 

and clusters parameters in a way that fits the data well. Hence, the posterior probability of choosing 

𝑀 (and aggregating the most granular parameters accordingly) is denoted as:   

𝑝(𝑀|𝒚1, 𝑿1) ∝ 𝜋(𝑀) ∙ 𝑝(𝒚1|𝑿1, 𝑀)                                      (6) 

where 𝜋(𝑀) is the ddCRP prior for 𝑀, and 𝑝(𝒚1|𝑿1, 𝑀) is the marginal likelihood given 𝑀 and 

(𝒚1, 𝑿1), the most granular data (with superscript 1, as before).   

      In our work, we propose to cluster and aggregate both model parameters and the data. The 

latter allows for the possibility that the most granular data may not be the one best fitted for the 

focal analysis conditional on the parameter granularity (𝑀). Hence, the posterior probability of 
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choosing 𝐷 and 𝑀 together (and aggregating the most granular data and parameters, respectively) 

is denoted as:   

𝑝(𝐷, 𝑀|𝒚1, 𝑿1) ∝ 𝜋(𝐷, 𝑀) ∙ 𝑝(𝒚1|𝑿1, 𝐷, 𝑀)                               (7) 

where 𝜋(𝐷, 𝑀) is the ddCRP prior for (𝐷, 𝑀), and 𝑝(𝒚1|𝑿1, 𝐷, 𝑀) is the marginal likelihood 

given (𝐷, 𝑀) and (𝒚1, 𝑿1). 

      It is important to note that the likelihood (and so the posterior probability) in Equation (7) is 

not comparable across different levels of data aggregation (𝐷) and hence cannot be used directly 

in our approach. In particular, the total likelihood multiplies individual likelihood terms over the 

number of observations. Hence, the marginal likelihood (and so the posterior probability) is higher 

for coarser data as it has fewer likelihood terms. To solve this issue, as originally addressed in Kim, 

Bradlow, and Iyengar (2022), we note that 𝑝(𝒚1|𝑿1, 𝐷, 𝑀) in Equation (7) actually represents the 

marginal likelihood for aggregated data (𝒚𝐷, 𝑿𝐷), which aggregates (𝒚1, 𝑿1) based on 𝐷, and so 

can be denoted more formally as 𝑝𝐷(𝒚𝐷|𝑿𝐷 , 𝑀):  

    𝑝(𝐷, 𝑀|𝒚1, 𝑿1) ∝ 𝜋(𝐷, 𝑀) ∙ 𝑝𝐷(𝒚𝐷|𝑿𝐷, 𝑀)                                     (8) 

      Then, to make the marginal likelihood (and so the posterior probability) comparable, we extend 

the ddCRP and scale the marginal likelihood 𝑝𝐷(𝒚𝐷|𝑿𝐷 , 𝑀) in Equation (8) to the same data 

granularity (particularly, to the most granular data): 

𝑝1(𝐷)(𝐷, 𝑀|𝒚1, 𝑿1) ∝ 𝜋(𝐷, 𝑀) ∙ 𝑝1(𝐷)(𝒚𝐷|𝑿𝐷 , 𝑀)                                  (9) 

where 𝑝1(𝐷)(𝒚𝐷|𝑿𝐷 , 𝑀) and 𝑝1(𝐷)(𝐷, 𝑀|𝒚1, 𝑿1) indicate the scaled marginal likelihood and the 

scaled posterior probability, respectively. We further explain the scaling process with an example 

in Online Appendix A. 

 

2.4. Related Methods 
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In Figure 7, we show that our proposed method nests two notable extant clustering methods namely, 

LCA (in grey) and unsupervised data clustering (in green).    

      LCA is typically used to cluster the parameters of a model. Specifically, LCA fixes the data at 

a certain level of data granularity (e.g., the most granular data) and determines the clustering of 

parameters. This objective is exactly what the extant ddCRP-based LCA (in grey in Figure 7) is 

designed for. Hence, our method nests a version of LCA that imposes the ddCRP prior on the 

parameter clustering.    

      Unsupervised data clustering methods (e.g., K-means) combine data points that have similar 

attributes without accounting for a downstream demand model. This objective is what the ddCRP-

based data aggregation would attain (in green in Figure 7). Hence, our method nests (or more 

specifically, accomplishes the same goal but uses a different loss function as) unsupervised 

clustering methods. For instance, unlike our proposed method, K-means uses the sum of the 

squared distances from each node to its nearest cluster as a loss function.  

Figure 7: Directed Acyclic Graph for the Proposed Framework Versus Related Methods 

 

Notes. Our proposed framework nests LCA (in grey) and unsupervised clustering (in green).  We represent in yellow 

the parameters sampled in our proposed method – e.g., 𝐷 (data clustering) and 𝑀 (parameter clustering). We explained 

the role of each parameter in Section 2.3.  
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3. Simulation Study 

We use a simulation study to compare the performance of our proposed method with that of other 

alternatives on two key dimensions: (1) the recovery of data and parameter clusters and (2) bias in 

the parameters of interest. To align the simulation study with our real-data application, we consider 

the context of a researcher who has access to SKU-level sales data for a CPG category (e.g., orange 

juice) and wishes to assess the relationship between sales and prices.  

 

3.1.Simulation Design 

We begin by laying out the data generating process and then comparing our method with other 

alternatives.    

 

(1) Data generating process 

We generate a data set with 100 SKUs of different brands and package sizes in a category. Note 

that ‘brand’ and ‘package size’ are factors that extant studies tend to consider when aggregating 

data and parameters (e.g., Dubé and Gupta 2008; Hoch et al. 1995; Wedel and Zhang 2004). To 

assess the ability (and generalizability) of our method in recovering the drivers of clustering, we 

assume that data and parameters are clustered based on different factors. Specifically, we cluster 

data and parameters based on brands and package sizes, respectively, and generate data based on 

these data and parameter clusterings. We explain the data generating process in four steps: 

 

Step 1: Generate data clustering (𝐷). We generate data clustering by constructing a data network 

in which each node is an SKU and, for each node, drawing a node to link itself to (denoted as 𝑐𝑖
D) 

from the following density:  
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𝑝(𝑐𝑖
D = 𝑖′|𝑑𝑖𝑠𝑡𝑖𝑖′

D , 𝑓D, 𝛼D) ∝ {
 𝛼D                        if 𝑖 = 𝑖′

 𝑓D(𝑑𝑖𝑠𝑡𝑖𝑖′
D )        if 𝑖 ≠ 𝑖′                         (10) 

which is equivalent to Equation (2), the ddCRP distribution that we introduced for data clustering. 

The superscript D denotes that the ddCRP distribution is relevant for data clustering. We set the 

self-link probability parameter 𝛼D = 0.1 and 𝑓D as the exponential decay function.  

      To cluster SKUs in the same brand together, we set the distance between SKUs 𝑖  and 𝑖′ 

(denoted as 𝑑𝑖𝑠𝑡𝑖𝑖′
D ) as an increasing function of whether they are from different brands or not:    

𝑑𝑖𝑠𝑡𝑖𝑖′
D = 𝑔D(𝑤D ∙ 𝟏[𝑧𝑖

D ≠ 𝑧𝑖′
D])                                          (11) 

where 𝑧𝑖
D is SKU 𝑖’s brand. Specifically, we set 𝑔D as the exponential function and the weight 

parameter 𝑤D positive (here, 𝑤D = 2). Hence, Equations (10)–(11) indicate that the SKUs in the 

same brand are likely to be clustered and their data would be aggregated. 

 

Step 2: Generate parameter clustering (𝑀). To ensure that parameter clustering (𝑀) is not more 

granular than data clustering (𝐷) (as described in the split-and-merge sampler in Section 2), we 

generate 𝑀 by constructing a parameter network in which each node is a data cluster and, for each 

node, drawing a node to link itself to (denoted as 𝑐𝑑
M) from the following density:  

𝑝(𝑐𝑑
M = 𝑑′|𝑑𝑖𝑠𝑡𝑑𝑑′

M , 𝑓M, 𝛼M) ∝ {
 𝛼M                         if 𝑑 = 𝑑′

 𝑓M(𝑑𝑖𝑠𝑡𝑑𝑑′
M )        if 𝑑 ≠ 𝑑′                          (12) 

which is equivalent to Equation (3), the ddCRP distribution that we introduced for parameter 

clustering. The superscript M  denotes that the ddCRP distribution is relevant for parameter 

clustering. As in Step 1, we set the self-link probability parameter 𝛼M = 0.1, and 𝑓M  as the 

exponential decay function. We set 𝑑𝑖𝑠𝑡𝑑𝑑′
M  as the average (without loss of generality) of the true 

distances between all the pairs of SKUs in data clusters 𝑑 and 𝑑′.  
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      To cluster SKUs of the same package size together, we set the distance between SKUs 𝑖 and 

𝑖′ (denoted as 𝑑𝑖𝑠𝑡𝑖𝑖′
M ) as an increasing function of whether they are of different sizes or not:    

 𝑑𝑖𝑠𝑡𝑖𝑖′
M = 𝑔M(𝑤M ∙ 𝟏[𝑧𝑖

M ≠ 𝑧𝑖′
M])                                        (13) 

where 𝑧𝑖
M is SKU 𝑖’s package size. As in Step 1, we set 𝑔M as the exponential function and the 

weight parameter 𝑤M positive (here, 𝑤M = 2). Hence, Equations (12)–(13) indicate that the SKUs 

of the same package size are likely to be clustered and their parameters would be the same in the 

demand model. 

 

Step 3: Generate data and parameters given the data clustering (𝐷) and parameter clustering (𝑀). 

We generate data (here, price and unit sales) and parameters (here, intercept and price elasticity) 

based on the data and parameter clustering. Specifically, for each cluster 𝑑 in the data clustering 

𝐷, we draw its price from a 𝑈𝑁𝐼𝐹(1,10) and denote it by 𝑃𝑟𝑖𝑐𝑒𝑑
𝐷 . For each cluster 𝑚 in the 

parameter clustering 𝑀 , we draw its intercept and price elasticity from 𝑈𝑁𝐼𝐹(5,7)  and 

𝑈𝑁𝐼𝐹(−3, −1), respectively, and denote them by 𝛾0,𝑚
𝑀  and 𝛾1,𝑚

𝑀 . Finally, we generate unit sales 

using the price (𝑃𝑟𝑖𝑐𝑒𝑑
𝐷) and parameters (𝛾0,𝑚

𝑀  and 𝛾1,𝑚
𝑀 ). Specifically, for each data cluster 𝑑, we 

generate unit sales from the following log-log demand model, which uses 𝑃𝑟𝑖𝑐𝑒𝑑
𝐷 as a covariate 

and 𝛾0,𝑚
𝑀  and 𝛾1,𝑚

𝑀  as the corresponding parameters, and denote the generated sales by 𝑦𝑑
𝐷.  

log(𝑦𝑑
𝐷) = 𝜇𝑑

𝐷 + 𝜀𝑑
𝐷                                                              (14) 

                                       = 𝛾0,𝑚
𝑀 + 𝛾1,𝑚

𝑀 ∙ 𝑙𝑜𝑔(𝑃𝑟𝑖𝑐𝑒𝑑
𝐷) + 𝜀𝑑

𝐷  

where 𝜀𝑑
𝐷 is normally distributed with mean 0 and variance 𝑉[𝜀𝑑

𝐷]. 

 

Step 4: Disaggregate the generated data to the most granular level. We generate the most granular 

data, which is an input of our method, by disaggregating the aggregated data. Specifically, for each 

data cluster 𝑑, we disaggregate its price (𝑃𝑟𝑖𝑐𝑒𝑑
𝐷) and unit sales (𝑦𝑑

𝐷) to the most granular (here, 
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SKU) level. We disaggregate 𝑃𝑟𝑖𝑐𝑒𝑑
𝐷 by assuming that the price stays the same across SKUs in 

the cluster. We disaggregate 𝑦𝑑
𝐷 by randomly distributing it across SKUs in the cluster:       

𝑦𝑖(𝑑)
𝐷 = 𝑦𝑑

𝐷 ∙ 𝑠ℎ𝑎𝑟𝑒𝑖(𝑑)                                            (15)   

where 𝑦𝑖(𝑑)
𝐷  indicates unit sales for SKU 𝑖 in data cluster 𝑑. By definition, ∑ 𝑦𝑖(𝑑)

𝐷
𝑖 = 𝑦𝑑

𝐷 and hence 

∑ 𝑠ℎ𝑎𝑟𝑒𝑖(𝑑)𝑖 = 1. We draw a vector of 𝑠ℎ𝑎𝑟𝑒𝑖(𝑑) from a symmetric Dirichlet distribution to add 

random noise to the disaggregation process. We set the concentration parameter of the Dirichlet 

distribution small (here, 1) to increase the noise in the process and so in the most granular data.   

  

Finally, when generating the SKU-level sales data, we systematically vary the signal to noise ratio 

(SNR) = 𝑉[𝜇𝑑
𝐷]/𝑉[𝜀𝑑

𝐷] . We vary SNR at two levels – 9 (high) and 1/9 (low). This manipulation 

will help assess the impact of SNR on the performance of our method as well as alternatives.  

 

(2) Methods 
 

Table 1 shows four methods. For each method, we use the most granular data as an input and 

choose data clustering (𝐷) and/or parameter clustering (𝑀). Then, we estimate a log-log demand 

model in Equation (14) with parameters at aggregation 𝑀 to data at aggregation 𝐷.  

Table 1: Comparison of Our Dual-Network Clustering Method (𝑫𝑴-Scaled) with 

Alternatives 

 Choose 𝐷 Choose 𝑀 
Scale the likelihood to the 

finest data granularity 

Unsupervised Clustering V   

LCA  V  

𝐷𝑀-Unscaled V V  

𝑫𝑴-Scaled V V V 
Notes. 

1) Unsupervised clustering chooses 𝐷 only. It uses the SKU features (𝑧𝑖
D and 𝑧𝑖

M)  as inputs. Since the two features 

– brand and size – are categorical variables, we use K-modes that extends K-means to handle the categorical 

inputs (e.g., Huang 1998). We choose K (the number of clusters) using the elbow method. 

2) Latent Class Analysis (LCA) chooses 𝑀 only while fixing data at the most granular level.        

3) 𝐷𝑀-Unscaled chooses both 𝑀 and 𝐷. It still uses the standard likelihood, which is not comparable across the 

levels of data aggregation (as explained in Section 2.3). 
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4) 𝐷𝑀-Scaled is our proposed dual-network clustering method. It chooses both 𝑀 and 𝐷. It also scales the likelihood 

in the sampler to the finest data granularity.  

5) For the last three methods, we impose weakly informative priors on their parameters: 𝐵𝑒𝑡𝑎(1,1) on the self-link 

probability parameters ( 𝛼D  and 𝛼M ), 𝑁𝑜𝑟𝑚𝑎𝑙(0,10)  on the model parameters ( 𝛾0,𝑚
𝑀  and 𝛾1,𝑚

𝑀 ), and 

𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(1, 1) on the error variance (𝑉[𝜀𝑑
𝐷]). We will use the same priors in our real-data application.  

 

(3) Metrics for evaluating the recovery of clusters 

 

We evaluate the performance of the four methods in recovering the true underlying clusters using 

four metrics – Rand Index (RI), Recall-Positive (RP), Recall-Negative (RN), and Normalized 

Mutual Information (NMI). The first three metrics assess the recovery of pairwise clustering while 

the last one is based on mutual information. All four metrics range from 0 (perfect disagreement) 

to 1 (perfect agreement). Online Appendix B contains more details on these metrics, but we note 

that it is important to consider all of them as they reflect true positives, true negatives, and a 

combination thereof.  

 

3.2.Simulation Results   
 

We compare the performance of our method with that of the three related methods on: (1) recovery 

of the underlying true data and parameter clusters and (2) the absolute bias in the parameters of 

interest.       

 

(1) Recovery of data and parameter clusters   
 

Figures 8 and 9 compare our method (𝐷𝑀-Scaled) and the other methods in recovering the true 

data and parameter clusters, respectively, based on the four metrics. Figure 8 shows that all four 

accuracy metrics (RI, NMI, RP, RN) for the data clusters (𝐷) are quite high for our proposed 

method. In comparison, not all metrics are high under the 𝐷𝑀-Unscaled. Specifically, its RP and 

RN reach values close to 1 and 0, respectively. On further inspection, this result indicates that the 
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𝐷𝑀-Unscaled chooses coarser data, because it uses the standard likelihood that increases with the 

decreasing number of data clusters (as explained in Section 2.3).   

Figure 8: Our Method Versus the Alternatives in Recovering the True Data Clustering (𝑫)  

 
Notes.   

1) All the clustering accuracy metrics under K-modes are lower than those under our method (𝐷𝑀-Scaled). Under 

K-modes, RI=0.82, NMI=0.49, RP=0.72, and RN=0.82.     

2) All the plots and the accuracy metrics under K-modes are under high SNR (SNR=9). 

 

 

      Figure 9 shows that all the clustering accuracy metrics (RI, NMI, RP, RN) for the parameter 

clustering (𝑀) are high under our proposed method. In contrast, not all the metrics are high under 

the other methods (𝐷𝑀-Unscaled, LCA). As for the 𝐷𝑀-Unscaled, RP and RN reach values close 

to 1 and 0, respectively. This result implies that the 𝐷𝑀 -Unscaled chooses overly coarse 

parameters, as it chooses overly coarse data (as in Figures 8[C] and 8[D]) and chooses the level of 

parameter granularity conditional on the chosen coarse data. Next, as for the LCA, RP and RN 

reach values close to 0 and 1, respectively. This finding indicates that the LCA chooses overly 

granular parameters, as it fixes the data at the most granular level and chooses the level of 

parameter granularity conditional on the most granular data (as in Table 1).    
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Figure 9: Our Method Versus the Alternatives in Recovering the True Parameter 

Clustering (𝑴) 

 
Note. All the plots are under high SNR (SNR=9). 

 

(2) Bias in the parameters of interest    

 

Figure 10 compares the absolute bias of the posterior mean of price elasticities across methods.  

The absolute bias is smaller for our proposed method than for other methods. It is because our 

method recovers 𝐷 and 𝑀 better than the alternatives (as shown in Figures 8 and 9). The bias for 

our model becomes negligible when SNR is high. 

Figure 10: Our Method Versus the Alternatives in Absolute Bias of the Posterior Mean of 

Price Elasticities 

                       [A] High SNR                                                                    [B] Low SNR 
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4. Application 

4.1. Data  

Our data come from the Nielsen database at the Kilts Center at the University of Chicago. The 

original data contains unit sales, price, the incidence of in-store feature advertising, and the 

incidence of in-store display advertising at the stock keeping unit (SKU)-store-week level. We 

apply our method to the data for the refrigerated orange juice category. SKUs in this category can 

be categorized based on multiple features (i.e., brand, package size, package material, and pulp 

amount). Hence, this category is well suited to assess our proposed method. To remove other 

confounding effects, we make inferences using data from a single store in Philadelphia, 

Pennsylvania, for which in-store advertising information was available, and for a single year 

(2017).2  

      The SKU-weekly data from the chosen product category, store, and year contain 60 SKUs. 

Each week Nielsen collected price and in-store advertising only from SKUs that were sold in that 

week. Hence, we focus on 30 SKUs that were sold every week. Note that the chosen SKUs account 

for 80% of total unit sales in the orange juice category. Hence, the final most granular data is at 

the SKU-week level and consists of 1,560 observations (= 30 SKUs x 52 weeks). 

      Table 2 and Figure 11 summarize the distributions of the variables in the final SKU-weekly 

data. Figure 11 shows that prices differ across brands and package sizes but not so much across 

package materials and pulp amounts. Given this observed variation, a few extant studies on the 

orange juice category allow price elasticity to vary across brands (e.g., Tropicana Premium versus 

Private brand) and package sizes (e.g., 12 oz versus 59 oz) but not across other features (e.g., 

Wedel and Zhang 2004). Other extant studies also noted that they aggregated data to the brand-

                                                           
2 We use the data from the same store for the next year (2018) for out-of-sample prediction. 
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size level for the same reason (e.g., Dubé and Gupta 2008; Hoch et al. 1995). In Section 4.3, we 

assess the performance of this common practice – i.e., aggregating both data and parameters to the 

brand-size level.     

Table 2: Descriptive Statistics of the Final SKU-Week-Level Orange Juice Data 

 Mean SD Min Max 

Unit sales 21.71 27.05 1 298 

Price (cents per oz) 6.11 2.42 1.55 41.67 

Number of feature advertisements 0.33 0.47 0 1 

Number of display advertisements 0.15 0.35 0 1 
Note. The final SKU-week-level data consist of 1,560 observations (= 30 SKUs x 52 weeks). 

 Figure 11: Pricing Patterns of Orange Juice Across SKU Features 
 

                                              [A] Brand                                                       [B] Package Size 

               

                                    [C] Package Material                         [D] Pulp Amount 

               

4.2. Analysis  

4.2.1. Data and parameter clustering methods. We choose data clustering (𝐷) and/or parameter 

clustering (𝑀) using three methods (see Table 1 in Section 3):   
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(1) Proposed method. Our dual-network clustering approach chooses both 𝐷 and 𝑀. To estimate 

the effect of the four observed SKU features on the choice of data/parameter clustering, we set 

the distance between SKUs in the data/parameter network as a function of the weighted average 

of four feature-based indicator variables. The four variables are 1) whether these SKUs are 

from different brands or not, 2) whether their package sizes are different or not, 3) whether 

their package materials are different or not, and 4) whether they contain different amounts of 

pulp or not. The corresponding latent weights allow us to interpret the chosen data/parameter 

clustering with respect to the observed SKU features, as explained in Section 2.3.     

(2) Unsupervised clustering. It chooses 𝐷 only. In this context, we use the four SKU features – 

brand, package size, package material, and pulp amount – as inputs for data clustering. The 

four features are categorical variables (see Figure 11). Hence, we use K-modes, which extends 

K-means to handle categorical inputs (Huang 1998). We expect that 𝐷  chosen by the 

unsupervised clustering method would differ from 𝐷 chosen by the proposed method.  

(3) Latent class analysis (LCA). It chooses 𝑀 only while fixing the data at the most granular 

(here, SKU-weekly) level. Hence, we expect that 𝑀 chosen by LCA would differ from 𝑀 

chosen by our method. Specifically, we expect that 𝑀 based on LCA would be more granular 

than 𝑀 chosen from our method, as previously discussed.     

 

4.1.2. Data and parameter aggregation. We apply a demand model conditional on the chosen 

data and parameter clusterings (𝐷 and 𝑀). First, we aggregate the most granular data based on 𝐷.  

We denote the aggregated variables as sales𝑑𝑡
𝐷 , feature𝑑𝑡

𝐷 , display𝑑𝑡
𝐷 , and price𝑑𝑡

𝐷  with the 

superscript 𝐷 indicating the sampled data clustering. Specifically, sales𝑑𝑡
𝐷  is the total number of 

SKUs in data cluster 𝑑 that were sold in week 𝑡. We use the total unit sales as a dependent variable 
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to estimate price elasticity (i.e., the impact of price change on quantity demand) (e.g., Hoch et al. 

1995; Smith, Rossi, and Allenby 2019). The variables feature𝑑𝑡
𝐷  and display𝑑𝑡

𝐷  refer to the total 

number of feature and display advertisements for SKUs in data cluster 𝑑 in week 𝑡, respectively. 

The variable price𝑑𝑡
𝐷  is the sales-weighted price averaged across SKUs in data cluster 𝑑 in week 

𝑡. We apply the following log-log demand model to the aggregated data. 

log(sales𝑑𝑡
𝐷 )                                                                                                                               (16)  

          = 𝛾1,𝑚
𝑀 log(price𝑑𝑡

𝐷 ) + 𝛾2,𝑚
𝑀 log(feature𝑑𝑡

𝐷 + 1) + 𝛾3,𝑚
𝑀 log(display𝑑𝑡

𝐷 + 1) + 𝛾𝑑
D + 𝜀𝑑𝑡

𝐷   

In the model, we aggregate model parameters – price, feature advertising, and display advertising 

elasticities – based on 𝑀 . We denote the aggregated parameters as 𝛾1,𝑚
𝑀 , 𝛾2,𝑚

𝑀 , and 𝛾3,𝑚
𝑀 , 

respectively, with the superscript 𝑀 indicating the sampled parameter clustering.  

 

4.3.Results  

We use MCMC sampling to fit the proposed method and the LCA. For each method, we run three 

parallel chains with different starting values for 300 iterations each.3 For each chain, we discard 

the first 200 iterations as burn-in and use the last 100 iterations for analysis. We compute the 

Gelman-Rubin statistic (Gelman and Rubin 1992) on the post-burn-in iterations for each parameter. 

The statistic is always less than 1.2, suggesting that the model convergence is satisfactory.     

 

4.3.1. Model fit. We use the log of the in-sample Bayes factor (log BFin) and the in-sample mean 

absolute errors (MAE) to compare the in-sample fit of our method with that of the LCA. First, 

                                                           
3 Rapid mixing and convergence is one notable feature of the ddCRP sampler (Blei and Frazier 2011). This feature 

has been observed in many of its application papers (e.g., Arfa, Yusof, and Shabanzadeh 2019; Ghosh et al. 2011). 

For instance, Ghosh et al. (2011) clustered 1,000 image pixels using the ddCRP sampler, and the sampler was 

converged within 50 iterations. Similarly, Blei and Frazier (2011) clustered around 3,000 texts in articles using the 

ddCRP sampler, and the sampler was converged within 100 iterations.  
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log BFin denotes the difference between the log of the in-sample scaled marginal likelihood of the 

proposed method (SMLin,Proposed) and that of the LCA (SMLin,LCA). We estimate the log of the 

scaled marginal likelihood by taking the harmonic mean of the scaled likelihood in post-burn-in 

MCMC iterations. log BFin greater than 5 is considered as strong evidence for our method over 

LCA (Kass and Raftery 1995). log BFin = log SMLin,Proposed − log SMLin,LCA = 33.0, indicating 

that our method outperforms the LCA model in sample. We also find that the posterior mean of 

the in-sample MAE (in estimating the log of SKU-weekly unit sales) is lower under our method 

than that under the LCA (i.e., 0.827 < 0.903, an 8% reduction).  

      While the primary motivation for our approach is model selection using in-sample fit, 

researchers may wish to use out-of-sample prediction as their primary goal. To this end, we also 

assess the out-of-sample predictive validity. We use the log of the out-of-sample Bayes factor 

(log BFout) and the out-of-sample MAE to compare the out-of-sample performance of our method 

with that of LCA. We find that log BFout = 47.5 , suggesting that our method performs 

significantly better than the LCA model in out of sample as well. The posterior mean of the out-

of-sample MAE is also lower under our method than that under the LCA (i.e., 1.055 <

1.195, a 5% reduction). Hence, the results for both the in-sample and out-of-sample model fit 

demonstrate the importance of selecting the levels of data and parameter granularities (𝐷 and M ) 

simultaneously. 

 

4.3.2. Inference for data and parameter clusterings. Figures 12[A] and 12[B] summarize the 

posterior distributions of data and parameter clusterings. Specifically, each cell in the upper left 

corner captures the proportion of the post-burn-in iterations that each SKU pair was in the same 

data/parameter clusters. The darker colors imply higher clustering probabilities.  
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      In Figure 12[A], the bottom right corner represents the data clustering structure implied by 

using the observed brands, package sizes, package materials, and pulp amount. By comparing the 

top and bottom corner patterns, we find that the data clusterings with high posterior probability are 

consistent with the clusterings based on brands, package sizes, package materials, and pulp amount. 

Our finding suggests that while researchers tend to assume that data variance across brands and 

sizes are solely important in understanding the effects of marketing actions on sales, it is important 

to also include the data variance across package materials and pulp amounts.     

      In Figure 12[B], the bottom right corner represents the parameter clustering structure implied 

by the brands. Here, we find that the parameter clusterings with high posterior probability are fairly 

consistent with groupings based on brands. We find this result particularly interesting because it 

cautions against the aforementioned common practice of setting the parameter granularity at the 

brand-size level. For instance, while researchers tend to assume that price elasticities would differ 

across both brands and sizes, our result suggests that the price elasticities in this context differ 

across the brands and not so much across the sizes.     
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Figure 12: Heatmaps for Data and Parameter Clusterings 

[A] Data Clustering 

          

[B] Parameter Clustering 

        

Notes. The x-axis and y-axis contain labels for the 30 SKUs. Each label consists of the four SKU features: brand, 

package size, package material, and pulp amount. The first feature includes six brands (B1:Tropicana Premium, 

B2:Tropicana, B3:Simply Orange, B4:Florida’s Natural, B5:Minute Maid, B6:Private Brand). The second feature 

includes four package sizes (S1:12oz, S2:59oz, S3:89oz, S4:128oz). The third feature includes two package materials 

(M1:plastic, M2:paper). The last feature includes two pulp amounts (P1:without pulp, P2:with pulp).     
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While the above figures provide one way of interpreting the data and parameter clusterings, large-

scale heatmaps are not always clear particularly when there are many SKUs. To address this 

concern, we compare the posterior means for the latent weights in the corresponding data and 

parameter distance functions. In Figure 13[A], the posterior means for the ‘brand,’ ‘size,’ 

‘package,’ and ‘pulp’ weight parameters are significantly greater than 0, indicating that the data 

for SKUs within the same brand, size, package material, and pulp amount are likely to be 

aggregated together. In Figure 13[B], the posterior mean for the ‘brand’ weight parameter is 

significantly greater than 0, indicating that the parameters for SKUs in the same brand are likely 

to be aggregated together. The results in Figure 13 are in line with the interpretation that we gave 

for our chosen data and parameter clusterings. 

Figure 13: The Posterior Means for the Latent Weights in the Distance Functions  

                   [A] Data Clustering                                                     [B] Parameter Clustering 

 
 

Finally, it is important to note that our chosen data and parameter clusterings (𝐷 and 𝑀) differ 

from those under the extant clustering approaches:  

(1) Unsupervised clustering. The data clustering (𝐷) under our method differs from 𝐷 under 

unsupervised clustering. Specifically, in Figure 14[A], we assign each SKU pair to two groups 

based on whether the corresponding two SKUs are clustered together under K-modes or not. 

Figure 14[A] shows that the posterior data clustering probability under our method is not 
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significantly different between these two groups. This result indicates that the 𝐷 sampled under 

our method differs from 𝐷 chosen under K-modes. It also reinforces the fact that, unlike our 

method, unsupervised clustering selects 𝐷 only.      

(2) LCA. The parameter clustering (𝑀) under our method differs from 𝑀 based on the LCA model.   

Specifically, in Figure 14[B], for each SKU pair, we compare the posterior probability of 

clustering the corresponding SKU pair together under the LCA with that under our method. It 

is worthwhile to note that for 88% of the SKU pairs, the posterior parameter clustering 

probability is greater under our method than under the LCA. That is, the LCA selects more 

granular parameters than our method does.     

Figure 14: Clusterings from Our Proposed Method Versus the Extant Methods 

                      [A] Unsupervised Clustering                                           [B] LCA                          

     

 

4.3.3. Inference for price elasticities. To further highlight our findings, we next compare the price 

elasticities from our proposed method with those from the LCA. We focus on two brands: 

Tropicana Premium (which is in the highest price tier – i.e., 7.89 cents per oz on average) and the 

private brand (which is in the lowest price tier – i.e., 4.02 cents per oz on average). Figure 15[A] 

shows that price elasticities sampled from our method are more elastic for the private brand than 

for Tropicana Premium. Specifically, the price elasticity for the private brand is more elastic than 
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that for Tropicana Premium in 81% of the post-burn-in iterations. Figure 15[B] shows that this 

cross-brand difference becomes less salient under the LCA. Specifically, the price elasticity for 

the private brand is more elastic than that for Tropicana Premium in 69% of the post-burn-in 

iterations. This result suggests that the LCA may lead to imprecise inference because the LCA 

fixes data at the most granular level, which can be noisier as compared to more aggregated data. 

Figure 15: The Posterior Means for the Price Elasticities Across Brands  

                                  [A] Our Method                                       [B] LCA                                      

                                    

To assess the implications of these findings on optimal pricing decisions, we compare the optimal 

prices proposed by our method and those by the LCA. Note that price is defined as “optimal” if it 

maximizes profit:  

max
price𝑑𝑡

𝐷
𝜋𝑑𝑡

𝐷 = (price𝑑𝑡
𝐷 − 𝑐𝑣) ∙ sales𝑑𝑡

𝐷 − 𝑐feature ∙ feature𝑑𝑡
𝐷 − 𝑐display ∙ display𝑑𝑡

𝐷           (17) 

where 𝑐𝑣, 𝑐feature, and 𝑐display capture the variable cost (cents) per oz, the unit price of feature 

advertisement, and the unit price of display advertisement, respectively. We derive the optimal 

price by solving the following: 

∂𝜋𝑑𝑡
𝐷

∂price𝑑𝑡
𝐷 = 0                                                     (18) 

The resulting expression for optimal price is well-known and given by:  

price𝑑𝑡
𝐷,∗ =

𝑐𝑣

1+
1

𝛾1,𝑚
𝑀

                                                     (19)  



31 

 

For the analysis, we assume 𝑐𝑣 = 2.02 cents per oz for SKUs in the higher-price-tier brand and 

𝑐𝑣 = 1.79 cents per oz for SKUs in the lower-price-tier brand (e.g., Kadiyali, Chintagunta, and 

Vilcassim 2000). Note that the resulting optimal prices are within the data bounds – i.e., [1.55, 

41.67] cents per oz. Figure 16[A] shows that the optimal price for Tropicana Premium is higher 

than that for the private brand under our method. Specifically, the optimal price for Tropicana 

Premium is higher than that for the private brand in 94% of the post-burn-in iterations. Figure 

16[B] shows that this cross-brand difference becomes less salient under the LCA. Specifically, the 

optimal price for Tropicana Premium is higher than that for the private brand in 79% of the post-

burn-in iterations. It is because the uncertainty in the price elasticity is higher under the LCA than 

under our method (see Figure 15). Thus, if we assume that our method selects the correct data and 

parameter clusterings, marketers who apply the LCA could (mistakenly) set the price for Tropicana 

Premium closer to the price for the private brand.    

Figure 16: The Posterior Means for Optimal Prices Across Brands 

                                    [A] Our Method                                      [B] LCA                                      

                                    

 

5. Conclusions and Future Research   

Researchers often use well-known model selection tools (e.g., BIC, marginal likelihood) to select 

the best-fitted model. While researchers pay a lot of attention to their model specification, they 
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unknowingly make two important modeling decisions – data and parameter granularities – and 

select a model conditional on these dual decisions. While extant research has applied various 

heuristics to justify the decisions – e.g., using the most granular data and parameters, or following 

a common practice (e.g., Dubé and Gupta 2008; see Section 4) – how to do so is not straightforward.  

      In this research, we propose a Bayesian dual-network clustering method as a novel way to 

select data and parameter granularities jointly. Formally, we represent each unit as a node in two 

networks – data and parameter networks – and cluster the networks to select the best-fitting levels 

of data and parameter granularities. To do so, we propose a novel extension of the Bayesian 

nonparametric clustering method, the distance dependent Chinese Restaurant Processes (ddCRP), 

originally used to cluster texts and images. By representing data and parameters in a generalized 

way (particularly, in a network structure), our proposed method is flexible and allows for many 

different types of units (e.g., SKU, person, time, space). A notable feature of our model is the 

interpretability of the results. By relating distances between nodes (e.g., SKUs) in the two 

networks to their observed attributes (e.g., brand, package size), the proposed method sheds light 

on why certain levels of data and parameter granularities are chosen.   

      We highlight the performance of our proposed method as compared to that from extant 

methods (e.g., LCA, unsupervised clustering) using a simulation study and a real data application. 

In the simulation study, we show that our method recovers the true levels of data and parameter 

granularities better than the extant methods do. It is because unlike our method, the extant methods 

select either data or parameter granularity while conditioning on the other. In particular, the LCA 

chooses overly granular parameters because it fixes the data at the most granular level and chooses 

the level of parameter granularity conditional on the most granular data. We apply our proposed 

method as well as the extant ones to the Nielsen scanner data and confirm several findings from 
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the simulation study. Furthermore, the inference of demand parameters (e.g., price elasticity) and 

optimal marketing decisions obtained by our method differ substantially from those by the extant 

methods.  

      Our proposed framework is flexible (as explained above) and can be applied to a variety of 

contexts relevant to marketers. One example is a temporal or spatial analysis, for which researchers 

often decide whether to use data at the most granular level (e.g., daily) or aggregate it to a coarser 

level (e.g., weekly). This decision becomes particularly important when researchers can readily 

access granular data (e.g., data with a per-second frequency) which can be noisy and sparse. 

Another example is a customer (or group) level analysis where researchers often cluster customers 

and then aggregate data and/or parameters based on the chosen clustering. 

      There are methodological extensions to our modeling framework that are worthy of deeper 

investigation. First, whereas our method aggregates data and parameters each along a single 

dimension, there are contexts where researchers wish to aggregate each along multiple dimensions. 

This can be done by extending our dual-network method to accommodate multiple networks. For 

instance, consider a researcher who wishes to perform a demand analysis using customer-week-

level panel data. The researcher can aggregate the data and parameters across both customers and 

weeks by clustering four (instead of two) networks – i.e., two networks for cross-customer and 

cross-week data aggregation and the other two for parameter aggregation. Second, whereas the 

sampler for estimating our proposed model is reasonable for small-to-moderate data, it can be 

computationally costly for a large data set (e.g., with millions of customers). It will be interesting 

to explore how our sampler can be made computationally more efficient by applying a mini-

batching technique, which has been used to scale up other machine learning algorithms (e.g., De 

Sa, Chen, and Wong 2018; Smolyakov, Liu, and Fisher 2018).  



34 

 

      In summary, we hope that the generality of our method makes it an important tool for 

marketing scholars who have to make critical decisions regarding data and parameter granularities 

across a wide variety of contexts. 
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Online Appendix A. Likelihood Scaling 

We illustrate how we scale the likelihood at data aggregation 𝐷 to the most granular level using a 

simple example. Suppose that we have two observations and want to decide whether to aggregate 

these observations or not. Formally, we want to decide between two levels of data granularity – 

the most granular level (denoted as 1) and the aggregated level (denoted as 𝐷) – while fixing the 

level of parameter granularity at 𝑀. It is important to note that we cannot select data granularity 

by just comparing the standard likelihood at (𝐷, 𝑀) with that at (1, 𝑀) (as explained in Section 

2.3).  

      We address this noncomparability issue by scaling the likelihood at (𝐷, 𝑀) to (1, 𝑀). The 

likelihood scaling that we propose is composed of two steps. First, we disaggregate the aggregated 

data to the most granular level. We denote the aggregated data and disaggregated observations by 

𝑦𝐷 and (�̃�1
1, �̃�2

1), respectively, with the superscript indicating the corresponding data granularity. 

Next, we write the likelihood using the disaggregated observations and denote it by 𝑝1(�̃�1
1, �̃�2

1|𝑀). 

If only a single candidate of (�̃�1
1, �̃�2

1) exists, we can scale the likelihood at (𝐷, 𝑀) – 𝑝𝐷(𝑦𝐷|𝑀) – 

by writing the likelihood with this single disaggregated candidate: 

𝑝1(𝐷)(𝑦𝐷|𝑀) = 𝑝1(�̃�1
1, �̃�2

1 | �̃�1
1 + �̃�2

1 = 𝑦𝐷 , 𝑀)                              (A1) 

where 𝑝1(𝐷)(𝑦𝐷|𝑀) is the scaled likelihood where subscript 1 indicates the most granular data. In 

comparison, if more than a single candidate exists (as in many real empirical cases), we can scale 

𝑝𝐷(𝑦𝐷|𝑀) by taking the probability-weighted average of Equation (A1) across all the possible 

candidates of (�̃�1
1, �̃�2

1):  

 𝑝1(𝐷)(𝑦𝐷|𝑀)                                                                                                                           (A2)      

     = ∫ ∫ Pr(�̃�1
1, �̃�2

1|�̃�1
1 + �̃�2

1 = 𝑦𝐷 , 𝑀) ∙ 𝑝1(�̃�1
1, �̃�2

1|�̃�1
1 + �̃�2

1 = 𝑦𝐷 , 𝑀)
max(�̃�1

1)

min(�̃�1
1)

𝑑(�̃�1
1, �̃�2

1)
max(�̃�2

1)

min(�̃�2
1)
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where Pr(�̃�1
1, �̃�2

1|�̃�1
1 + �̃�2

1 = 𝑦𝐷 , 𝑀)  is a weight term and indicates how likely each candidate 

(�̃�1
1, �̃�2

1) is observed conditional on that �̃�1
1  and �̃�2

1  sum up to 𝑦𝐷 . As �̃�2
1 = 𝑦𝐷 − �̃�1

1 , we can 

simplify Equation (A2) by expressing it with respect to �̃�1
1: 

𝑝1(𝐷)(𝑦𝐷|𝑀) = ∫ Pr(�̃�1
1, 𝑦𝐷 − �̃�1

1 |𝑀) ∙ 𝑝1(�̃�1
1, 𝑦𝐷 − �̃�1

1  |𝑀)
max(�̃�1

1)

min(�̃�1
1)

𝑑(�̃�1
1)           (A3)      

The weight term, as it indicates how likely each candidate (�̃�1
1, 𝑦𝐷 − �̃�1

1)  is observed, is 

proportional to each candidate’s likelihood. Since all the weights sum up to 1, we can express the 

weight term as follows: 

Pr(�̃�1
1, 𝑦𝐷 − �̃�1

1|𝑀) =
𝑝1(�̃�1

1,𝑦𝐷−�̃�1
1|𝑀)

∫ 𝑝1(�̃�1
1,𝑦𝐷−�̃�1

1|𝑀)
max(�̃�1

1)

min(�̃�1
1)

𝑑(�̃�1
1)

                                (A4)  

By replacing Pr(�̃�1
1, 𝑦𝐷 − �̃�1

1|𝑀) in Equation (A3) with the right-hand side of Equation (A4): 

𝑝1(𝐷)(𝑦𝐷|𝑀) = ∫
𝑝1(�̃�1

1,𝑦𝐷−�̃�1
1|𝑀)

∫ 𝑝1(�̃�1
1,𝑦𝐷−�̃�1

1|𝑀)
max(�̃�1

1)

min(�̃�1
1)

𝑑(�̃�1
1)

∙ 𝑝1(�̃�1
1, 𝑦𝐷 − �̃�1

1|𝑀) 𝑑(�̃�1
1)

max(�̃�1
1)

min(�̃�1
1)

         (A5)              

Since the denominator of Equation (A5) – ∫ 𝑝1(�̃�1
1, 𝑦𝐷 − �̃�1

1|𝑀)
max(�̃�1

1)

min(�̃�1
1)

𝑑(�̃�1
1) – does not depend 

on �̃�1
1, we take the denominator outside the integral: 

    𝑝1(𝐷)(𝑦𝐷|𝑀) =
∫ 𝑝1

2(�̃�1
1,𝑦𝐷−�̃�1

1|𝑀)
max(�̃�1

1)

min(�̃�1
1)

𝑑(�̃�1
1)

∫ 𝑝1(�̃�1
1,𝑦𝐷−�̃�1

1|𝑀)
max(�̃�1

1)

min(�̃�1
1)

𝑑(�̃�1
1)

                                    (A6) 

If the integrals in Equation (A6) cannot be evaluated in a closed form, we approximate them using 

a numerical integration technique:  

𝑝1(𝐷)(𝑦𝐷|𝑀) ≅
∑  𝑝1

2(�̃�1
1,𝑦𝐷−�̃�1

1|𝑀) 
�̃�1

1∈𝑆
 

∑  𝑝1(�̃�1
1,𝑦𝐷−�̃�1

1|𝑀) 
�̃�1

1∈𝑆

                                            (A7) 

where 𝑆 is a set of 𝑚 (e.g., 1000) candidates for �̃�1
1. Since this example requires one-dimensional 

integration, we can choose 𝑆 by using traditional integration methods such as a trapezoidal rule.   
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      However, high-dimensional numerical integration is required in many empirical cases, and the 

traditional methods are not applicable. Consider a simple example that we have five observations 

at the most granular level and want to decide whether to aggregate these observations to a single 

observation or not. We can denote the aggregated data as 𝑦𝐷 = ∑ �̃�𝑖
15

𝑖=1  and the corresponding 

scaled likelihood as 𝑓1(𝐷)(𝑦𝐷|𝑀). Even in this simple example, as shown in Equation (A8), we 

should integrate the likelihood functions over four dimensions to compute the scaled likelihood: 

 𝑝1(𝐷)(𝑦𝐷|𝑀) =
∫ ∫ ∫ ∫ 𝑝1

2(�̃�1
1,�̃�2

1,�̃�3
1,�̃�4

1,𝑦𝐷−∑ �̃�𝑖
14

𝑖=1  |𝑀)
max(�̃�1

1
)

min(�̃�1
1)

 𝑑(�̃�1
1,�̃�2

1,�̃�3
1,�̃�4

1)
max(�̃�2

1
)

min(�̃�2
1)

max(�̃�3
1

)

min(�̃�3
1)

max(�̃�4
1

)

min(�̃�4
1)

∫ ∫ ∫ ∫ 𝑝1(�̃�1
1,�̃�2

1,�̃�3
1,�̃�4

1,𝑦𝐷−∑ �̃�𝑖
14

𝑖=1  |𝑀) 
max(�̃�1

1
)

min(�̃�1
1

)
𝑑(�̃�1

1,�̃�2
1,�̃�3

1,�̃�4
1)

max(�̃�2
1

)

min(�̃�2
1

)

max(�̃�3
1

)

min(�̃�3
1

)

max(�̃�4
1

)

min(�̃�4
1

)

         (A8)           

If we use the traditional integration methods (e.g., trapezoidal rule), the number of function 

evaluations grows exponentially as the number of dimensions (𝑑) increases.  

      To overcome this curse of dimensions, we use a standard Monte Carlo integration method in 

which the number of function evaluations is independent of the number of dimensions. In this 

example, we can approximate the integrals in Equation (A8) by randomly selecting just 𝑚 (not 

𝑚𝑑) candidates for (�̃�1
1, �̃�2

1, �̃�3
1, �̃�4

1) and evaluating their likelihood function : 

𝑝1(𝐷)(𝑦𝐷|𝑀) ≅
∑  𝑝1

2(�̃�1
1,�̃�2

1,�̃�3
1,�̃�4

1,𝑦𝐷−∑ �̃�𝑖
14

𝑖=1  |𝑀) 
(�̃�1,1,�̃�1,2,�̃�1,3,�̃�1,4)∈𝑆

 

∑  𝑝1(�̃�1
1,�̃�2

1,�̃�3
1,�̃�4

1,𝑦𝐷−∑ �̃�𝑖
14

𝑖=1  |𝑀) 
(�̃�1,1,�̃�1,2,�̃�1,3,�̃�1,4)∈𝑆

                 (A9) 

where 𝑆 is a set of 𝑚 (e.g., 1000) candidates for (�̃�1
1, �̃�2

1, �̃�3
1, �̃�4

1).   
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Online Appendix B. Clustering Evaluation Metrics 

We evaluate the performance of recovering the true data and parameter clusterings (granularities) 

using four metrics (i.e., Rand index, Recall-Positive, Recall-Negative, and Normalized Mutual 

Information). The first three metrics are based on pairwise clustering comparisons, and the last 

one is based on mutual information. All four metrics range from 0 (perfect disagreement) to 1 

(perfect agreement). We explain their underpinnings using an example (see Figure B1): 

Figure B1: Examples of True Clustering Versus Chosen Clusterings 

                

(1) Rand index (RI) is the proportion of true positives (i.e., node pairs that are correctly clustered 

to the same cluster) and true negatives (i.e., node pairs that are correctly clustered to different 

clusters) among all the node pairs:    

RI =
TP+TN

TP+TN+FP+FN
                                                          (B1) 

where TP, TN, FP, FN are true positives, true negatives, false positives, false negatives, 

respectively. RI for clustering A, B, C, and D is 0.1, 0.6, 1.0, and 0.9, respectively. RI reaches 

1 when a chosen clustering (here, clustering C) is equivalent to the true one and decreases 

toward 0 as a chosen clustering becomes dissimilar to the true one. Since RI considers both 

false positives and false negatives, we cannot infer from RI how much a chosen clustering 

suffers from false positives and how much from false negatives. For this reason, we also use 

the second and third metrics.     
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(2) Recall_Positive (RP) is the proportion of node pairs that are correctly clustered to the “same” 

cluster in the chosen clustering among node pairs that are clustered to the “same” cluster in the 

true clustering:  

RP =
TP

TP+FN
                                                                   (B2) 

If we revisit the example in Figure B1, RP for clustering A, B, C, and D is 1, 1, 1, and 0, 

respectively. RP reaches 1 when a chosen clustering (here, clustering A, B, or C) does not 

suffer from false negatives and decreases toward 0 as the proportion of false negatives 

increases.     

(3) Recall_Negative (RN) is the proportion of node pairs that are correctly clustered to “different” 

clusters in the chosen clustering among node pairs that are clustered to “different” clusters in 

the true clustering: 

RN =
TN

TN+FP
                                                                   (B3) 

RN for clustering A, B, C, and D is 0, 0.5, 1, and 1, respectively.  RN reaches 1 when a chosen 

clustering (here, clustering C or D) does not suffer from false positives and decreases toward 

0 as the proportion of false positives increases. 

(4) Normalized Mutual Information (NMI) is an information-theoretic measure. The numerator, 

I(Chosen, True), indicates mutual information and so measures the amount of information 

shared by the chosen and true clusterings. We normalize the numerator with the average of 

marginal entropies: 

NMI =
I(Chosen,True)

1

2
 ∙(H(Chosen) + H(True))

                                                (B4) 

In Figure B1, NMI for clustering A, B, C, and D is 0, 0.7, 1.0, and 0.8, respectively. Like RI, 

NMI measures overall clustering accuracy and reaches 1 when a chosen clustering (here, 
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clustering C) is equivalent to the true one and decreases as a chosen clustering becomes 

dissimilar to the true one.   

 

It is important to note that the four metrics are monotonically related to the number of clusters 

(e.g., Vinh, Epps, and Bailey 2009). RI, RN, and NMI tend to increase with the increasing number 

of clusters, whereas RP tends to increase with the decreasing number of clusters. In other words, 

RI, RN, and NMI favor granular clustering, whereas RP favors coarse clustering. Hence, only 

using a subset of these metrics can lead to incorrect clustering evaluation. For example, suppose 

that we use RI, RN, and NMI to measure the clustering accuracy of our method and that these 

metrics are high under our method. This result is not sufficient to conclude that our method 

performs well. We need more evidence to reject the possibility that RI, RN, and NMI are high just 

because the chosen clustering is granular. Specifically, we can reject the above possibility if RP, 

which favors coarse clustering, is also high under our method. Therefore, in the simulation section, 

we use all four metrics to evaluate clustering performance accurately.   
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