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Abstract. Consumers’ preferences can often be represented using a multimodal contin-
uous heterogeneity distribution. One explanation for such a preference distribution is
that consumers belong to a few distinct segments, with preferences of consumers in each
segment being heterogeneous and unimodal. We propose an innovative approach for
modeling such multimodal distributions that builds on recent advances in sparse learning
and optimization. We apply the model to conjoint analysis where consumer heterogene-
ity plays a critical role in determining optimal marketing decisions. Our approach uses a
two-stage divide-and-conquer framework, where we first divide the consumer population
into segments by recovering a set of candidate segmentations using sparsity modeling,
and then use each candidate segmentation to develop a set of individual-level heterogene-
ity representations. We select the optimal individual-level heterogeneity representation
using cross-validation. Using extensive simulation experiments and three field data sets,
we show the superior performance of our sparse learning model compared to benchmark
models including the finite mixture model and the Bayesian normal component mixture
model.

History: Preyas Desai served as the editor-in-chief and Joel Huber served as associate editor for this
article.

Supplemental Material: Data and the online appendix are available at https://doi.org/10.1287/
mksc.2016.0992.

Keywords: sparse machine learning • multimodal continuous heterogeneity • conjoint analysis

1. Introduction
Marketing researchers and practitioners frequently use
conjoint analysis to recover consumers’ heterogeneous
preferences (Green and Srinivasan 1990, Wittink and
Cattin 1989), which serve as a critical input for many
important marketing decisions, such as market seg-
mentation (Vriens et al. 1996) and differentiated prod-
uct offerings and pricing (Allenby and Rossi 1998). In
practice, consumer preferences can often be modeled
using a multimodal continuous heterogeneity (MCH)
distribution, where the consumer population is inter-
preted as consisting of a few distinct segments, each
of which contains a heterogeneous subpopulation.
Since in most conjoint applications researchers use
short questionnaires because of concerns over response
rates and response quality, the amount of information
elicited from each respondent is limited; therefore, ade-
quate modeling of MCH becomes critical.
Modeling MCH raises two major challenges. First,

both across-segment and within-segment heterogene-
ity must be accommodated to fully capture preference
variations among consumers. Second, when pooling
data across respondents it is important to impose
an adequate amount of shrinkage to recover the

individual-level partworths. The widely used finite
mixture (FM) model approximates MCH using dis-
crete mass points, each representing a segment of
homogeneous consumers (Kamakura and Russell 1989,
Chintagunta et al. 1991). While such a discrete rep-
resentation of the heterogeneity distribution accom-
modates across-segment heterogeneity, it does not
allow for within-segment heterogeneity. Hierarchical
Bayes (HB) models with flexible parametric specifi-
cations for the heterogeneity distribution have also
been proposed to model MCH. For instance, Allenby
et al. (1998) developed a Bayesian normal component
mixture (NCM)model in which amixture of multivari-
ate normal distributions is utilized to represent con-
sumers’ heterogeneous preferences. While the NCM
model is capable of modeling a variety of hetero-
geneity distributions, it may not be able to impose an
adequate amount of shrinkage to accurately recover
the individual-level partworths (Evgeniou et al. 2007).
Additionally, it faces inferential challenges when con-
ducting a segment-level analysis (Rossi et al. 2005),
including the label switching problem (Celeux et al.
2000, Stephens 2000) and the overlapping mixtures
problem (Kim et al. 2004).1

140

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

16
5.

12
3.

34
.8

6]
 o

n 
26

 J
an

ua
ry

 2
01

7,
 a

t 1
8:

59
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 

http://pubsonline.informs.org/journal/mksc/
mailto:yupengc@wharton.upenn.edu
mailto:riyengar@wharton.upenn.edu
mailto:garud@ieor.columbia.edu
https://doi.org/10.1287/mksc.2016.0992
https://doi.org/10.1287/mksc.2016.0992


Chen, Iyengar, and Iyengar: Modeling MCH in Conjoint Analysis
Marketing Science 36(1), pp. 140–156, ©2017 INFORMS 141

In this paper, we propose an innovative sparse learn-
ing (SL) approach to address both challenges in mod-
eling MCH and apply it in the context of metric and
choice-based conjoint (CBC) analysis. Our SL approach
models MCH using a two-stage divide-and-conquer
framework. In the first stage, we build on recent
advances in sparse learning (Tibshirani 1996, Yuan and
Lin 2005, Argyriou et al. 2008) to “divide” the MCH
distribution and recover a set of candidate segmenta-
tions of the consumer population. We make a simple
observation that any two respondents from the same
segment have identical segment-level partworths. Sup-
pose the population is comprised of a few distinct
segments. Then, a substantial proportion of pairwise
differences of respondents’ segment-level partworths
will be zero vectors; in other words, the pairwise dif-
ferences of respondents’ segment-level partworths will
be sparse. Our model leverages this observation and
learns the sparsity pattern from the conjoint data to
recover informative segmentations of the consumer
population. In the second stage, we use each candi-
date segmentation to develop a set of individual-level
representations of MCH by separately “conquering”
the within-segment heterogeneity distribution of each
segment. In particular, for each segment, we model its
within-segment heterogeneity assuming a unimodal
continuous heterogeneity (UCH) distribution, which is
considerably easier to model compared to MCH. We
select the optimal individual-level representation of
MCH using cross-validation (Wahba 1990, Shao 1993,
Vapnik 1998, Hastie et al. 2001). Using the two-stage
framework, our SL model accounts for both across-
segment andwithin-segment heterogeneity, and is able
to endogenously select an adequate amount of shrink-
age for recovering the individual-level partworths.
Moreover, since our SL model automatically gener-
ates a segmentation of the consumer population, a
segment-level analysis can be readily conducted.

We add to the growing literature of machine learn-
ing-based methods for conjoint estimation (Toubia
et al. 2003, 2004; Evgeniou et al. 2005; Cui and
Curry 2005; Evgeniou et al. 2007). This stream of
research has largely ignored consumer heterogene-
ity, with the exception of Evgeniou et al. (2007), who
proposed a convex optimization (CO) model for cap-
turing UCH. Our work contributes by developing the
first machine learning-based approach to modeling
the more general MCH.

We compare our SL model to the FM model, the
NCM model, and the CO model using extensive sim-
ulation experiments and three field data sets. In sim-
ulations, the SL model shows a consistently strong
performance in terms of both parameter recovery and
predictive accuracy across a wide range of experimen-
tal conditions. The results from the simulations shed
light on when and why the SL model outperforms

other benchmarks. For instance, the performance of
the NCM model relative to the SL model is weak
when the within-segment variance is small or when
the amount of respondent-level data is limited. The
latter highlights the usefulness of our approach in
contexts where researchers prefer to elicit consumer
preferences using short conjoint questionnaires due
to concerns over response rates and response qual-
ity (Lenk et al. 1996). This pattern of results happens
largely because the amount of shrinkage imposed by
the NCM model is influenced by exogenously cho-
sen parameters for the second-stage priors and can be
inadequate depending on the characteristics of a con-
joint data set. In field data, the SL model also shows
strong performance in terms of predictive accuracy,
and its estimates of individual-level partworths display
shapes consistent with MCH. Moreover, in an opti-
mal pricing exercise, the SL model generates a more
plausible revenue-maximizing price compared to that
from other benchmarks, showing the managerial rele-
vance of using our approach tomodelMCH in conjoint
analysis.

The remainder of this paper is organized as follows.
In Section 2 we present our SL model for modeling
MCH in conjoint analysis. We compare the SL model
and the benchmark methods using simulation experi-
ments in Section 3 and three field conjoint data sets in
Section 4. We conclude in Section 5.

2. Model
In this section, we present our SL approach to model
MCH in conjoint analysis. Specifically, we give a
detailed description of our approach in the context of
metric conjoint analysis. We discuss the modifications
needed for choice-based conjoint analysis in the Web
appendix.

2.1. Metric Conjoint Setup
We assume a total of I consumers (or respondents),
each rating J profiles with p attributes. Let the 1 × p
row vector xi j represent the jth profile rated by the
ith respondent, for i � 1, 2, . . . , I and j � 1, 2, . . . , J, and
denote by Xi , [ x>i1 , x>i2 , . . . , x>i J ]> the J×p designmatrix
for the ith respondent. For respondent i, the p × 1 col-
umn vector βi is used to denote her partworths, and her
ratings are contained in the J × 1 column vector Yi ,
(yi1 , yi2 , . . . , yi J)>.We assume additive utility functions,
i.e., Yi � Xiβi + εi , for i � 1, 2, . . . , I, where εi denotes
the random error. The additive specification of the util-
ity functions is a standard assumption in the conjoint
analysis literature (Green and Srinivasan 1990).

2.2. Model Overview
Under a MCH distribution, the consumer popula-
tion is interpreted as consisting of a few distinct
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segments of heterogeneous consumers. To fully cap-
ture such a heterogeneity structure, a model needs to
be sufficiently flexible to accommodate both across-
segment and within-segment heterogeneity. It is also
critical that the model has the capacity to impose
an adequate amount of shrinkage when recovering
the individual-level partworths. These considerations
motivate a divide-and-conquer strategy for modeling
MCH, where the MCH distribution is “divided” into
a collection of within-segment UCH distributions, and
eachUCHdistribution is separately “conquered” using
established estimation methodologies. We implement
this modeling strategy using the following two-stage
framework.
In the first stage, we develop a novel sparse learning

model to divide theMCHdistribution and recover a set
of candidate segmentations of the consumer popula-
tion. Our model is built on the simple observation that
any two respondents from the same segment may have
different individual-level partworths but must share
identical segment-level partworths; i.e., the difference
between their respective segment-level partworths is
the zero vector. Since the consumer population consists
of a few distinct segments, a substantial proportion
of pairwise differences of respondents’ segment-level
partworths are zero vectors; in other words, the pair-
wise differences of respondents’ segment-level part-
worths are sparse. Leveraging this observation, we
use the sparse learning model to learn such sparsity
patterns from conjoint data and recover informative
candidate segmentations of the consumer population.
Each candidate segmentation provides a decomposi-
tion of theMCHdistribution into a collection ofwithin-
segment heterogeneity distributions, which we utilize
in the second stage.

In the second stage, we use each candidate seg-
mentation to develop a set of individual-level repre-
sentations of MCH. Given a candidate segmentation,
we separately model the within-segment heterogene-
ity distribution of each segment assuming a UCH
distribution. UCH provides a reasonable characteri-
zation of the within-segment heterogeneity distribu-
tions and is considerably easier to model than MCH.
We choose the CO model of Evgeniou et al. (2007) to
model the within-segment distributions, which allows
for an effective approach to control the amount of
shrinkage imposedwhenmodelingUCH.We select the
optimal individual-level representation of MCH using
cross-validation (Wahba 1990, Shao 1993, Vapnik 1998,
Hastie et al. 2001). The cross-validation procedure pro-
vides a fully data-driven approach to endogenously
select an adequate candidate segmentation and an ade-
quate amount of shrinkage to recover the individual-
level partworths.

2.3. First Stage: Recovering Candidate
Segmentations

The first stage of our SL model aims at learning a
set of candidate segmentations of the MCH distribu-
tion. To motivate, we consider a standard characteriza-
tion of the data-generating process of MCH (Andrews
et al. 2002a, b). The data-generating process selects the
number of segments L, the segment-level partworths
{β̂S

l }Ll�1, and the segment-membership matrix Q ∈�I×L,
where Qil � 1 if respondent i is assigned to segment l,
and Qil � 0 otherwise. If respondent i belongs to seg-
ment l, she receives a copy of segment-level part-
worths βS

i � β̂S
l , and her individual-level partworths

are determined by βi � βS
i + ξi , where ξi denotes

the difference between respondent i’s segment-level
and individual-level partworths, i.e., the within-
segment heterogeneity. Let B̂S , {β̂S

l }Ll�1, BS , {βS
i }Ii�1,

and B , {βi}Ii�1.
Assuming the above data-generating process, re-

covering candidate segmentations can be achieved by
learning the set of model parameters {L, B̂S ,Q ,BS ,B}
from the conjoint data. A closer examination reveals
that learning {BS ,B} is sufficient, as other model
parameters {L, B̂S ,Q} can be uniquely determined
from {BS ,B}. We highlight the following three
assumptions about the data-generating process that are
relevant to learning {BS ,B}:
Assumption 1 (A1). The ratings vector Yi is generated
based on βi , i.e., Yi � Xiβi + εi .

Assumption 2 (A2). The individual-level partworths βi is
generated based on the segment-level partworths βS

i , i.e.,
βi � β

S
i + ξi .

Assumption 3 (A3). Respondents i and k belong to the
same segment if and only if βS

i − βS
k � 0.

Within an optimization framework with {BS ,B} as
decision variables, A1 (respectively, A2) suggests to
penalize the discrepancy between Yi and Xiβi (respec-
tively, the discrepancy between βi and βS

i ). A3, together
with the observation that for a substantial proportion
of i − k pairs, respondents i and k belong to the same
segment, implies that the pairwise discrepancies of the
true BS are sparse. It thus suggests that we can impose
a sparse structure on the pairwise discrepancies of BS

when learning {BS ,B} and use the sparsity pattern to
learn the underlying segmentation.

Motivated by these considerations, we propose the
following sparse learning problem to recover candi-
date segmentations.
(Metric-SEG)

min
{ I∑

i�1
‖Yi −Xiβi ‖22 + γ

I∑
i�1
(βi − βS

i )>D−1(βi − βS
i )

+ λ
∑

1≤i<k≤I

θik ‖βS
i − βS

k ‖2
}

(1)
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s.t. D is a positive semidefinite matrix
scaled to have trace 1,

βi , β
S
i ∈ �p , for i � 1, 2, . . . , I ,

where γ, λ, and {θik} are the regularization parameters
that control the relative strength of each penalty term
in (Metric-SEG).Wewill discuss the specification of the
regularization parameters in a few paragraphs.
In (Metric-SEG), the first two penalty terms are stan-

dard quadratic functions measuring the discrepancy
between Yi and Xiβi and that between βi and βS

i ,
respectively. We note that the matrix D is a decision
variable and is related to the covariance matrix of
the partworths within each segment (Evgeniou et al.
2007). The third penalty term aims to impose the
sparse structure suggested by A3 and is the key to
the formulation of (Metric-SEG). In particular, it aims
to learn whether respondents i and k belong to the
same segment by penalizing the `2-norm of βS

i − βS
k ,

i.e., ‖βS
i −βS

k ‖2, for all i–k pairs. We choose the `2-norm
to measure the discrepancy between βS

i and βS
k since,

unlike most standard measures of magnitude of vec-
tors, e.g., the sum-of-squares measure, the `2-norm is a
sparsity-inducing penalty function in that it is capable of
enforcing exact zero value in optimal solutions under
a suitable level of penalty.2 Sparsity-inducing penalty
functions play a fundamental role in sparse learning
(Tibshirani 1996, Yuan and Lin 2005, Bach et al. 2011).
Our use of the `2-norm to penalize the pairwise dif-
ferences of BS can be viewed as a generalization of
the overlapping `1/`2-norm (Jenatton et al. 2012, Kim
and Xing 2012) and the fused lasso penalty (Tibshirani
et al. 2004), and was recently introduced in the context
of unsupervised learning (Hocking et al. 2011).
The rationale for assessing whether respondents i

and k belong to the same segment by penalizing the
`2-norm of βS

i − βS
k is as follows. For the purpose of

illustration, suppose we set θik � 1 for all i–k pairs
in (Metric-SEG), and thus homogenize the penalty
imposed on the `2-norm of βS

i −βS
k . For any two respon-

dents i and k, we consider the following components
of the objective function of (Metric-SEG):

Gi , k ,
∑
r�i , k

‖Yr −Xrβr ‖22 + γ
∑
r�i , k

(βr − βS
r )>D−1(βr − βS

r )

+ λ‖βS
i − βS

k ‖2.

Within an optimization framework, the three penalty
terms in Gi , k induce competing shrinkage over the
decision variables {βr , β

S
r }r�i , k : the first term shrinks βr

toward the true individual-level partworths βr(T), and
the second term shrinks βr and βS

r toward each other,
for r � i , k, whereas the third term shrinks βS

i and βS
k

toward each other. Whether βS
i − βS

k � 0 holds in the
optimal solution is largely determined by the trade-
off among the three competing shrinkages, which is,

in turn, determined by the distance between βi(T)
and βk(T) as well as the regularization parameters γ
and λ. If respondents i and k are from the same seg-
ment, the distance between βi(T) and βk(T) is likely
to be small, and a moderate penalty imposed on
‖βS

i − βS
k ‖2, i.e., a small λ, should be sufficient to enforce

βS
i − βS

k � 0 due to the sparsity-inducing property of
the `2-norm. If respondents i and k are from dis-
tinct segments, the distance between βi(T) and βk(T)
is likely to be large, and enforcing βS

i − βS
k � 0 can

only be achieved when a strong penalty is imposed on
‖βS

i − βS
k ‖2, i.e., a large λ is specified. This suggests that

if γ and particularly λ are appropriately specified, it
is possible to recover the underlying segmentation of
the consumer population by solving (Metric-SEG) and
identifying i–k pairs with βS

i − βS
k � 0 in the optimal

solution.
Regularization Parameters. We first discuss the spec-
ification for the regularization parameters {θik}.
A heterogeneous specification for {θik} is useful for
(Metric-SEG) because it allows us to incorporate infor-
mation that could potentially facilitate the recovery of
the underlying segmentation. For example, suppose
there is information suggesting that the pair of respon-
dents i and k aremore likely to be drawn from the same
segment compared to the pair of respondents i′ and k′.
This information can be accommodated in (Metric-
SEG) by setting θik > θi′k′ such that a stronger sparsity-
inducing penalty is imposed to enforce βS

i − βS
k � 0.

In this paper, we specify {θik} as follows:

θik � R(W(β̄i , β̄k)), (2)

where {β̄i}Ii�1 are some initial estimates of the indi-
vidual-level partworths, W( · , · ) is a distance measure
of two vectors, and R( · ) is a positive, nonincreasing
function. The rationale for this specification is that
when the distance between the initial individual-level
partworth estimates β̄i and β̄k is small, it is likely
that respondents i and k belong to the same segment,
and therefore, θik is set to a large value to induce
βS

i − βS
k � 0. The admissible choices for {β̄i}Ii�1, W( · , · ),

and R( · ) are quite flexible. In the empirical implemen-
tation of our SL model, we choose to estimate {β̄i}Ii�1
using the CO model of Evgeniou et al. (2007). We set
W(x , y)� ((x− y)>D̄−1(x− y))1/2, where D̄ is the scaled
covariance matrix of the partworths generated by the
CO model along with {β̄i}Ii�1 (Evgeniou et al. 2007);
such a specification gives more weight to difference
between two initial individual-level partworth esti-
mates along directions in which there is less variation
across respondents. We set R(x)� e−ωx , a positive, non-
increasing function parameterized by a regularization
parameter ω ≥ 0. Consequently, we adopt the follow-
ing specification for {θik}:3 , 4

θik � e−ω((β̄i−β̄k )>D̄−1(β̄i−β̄k ))1/2 . (3)
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In this specification, the regularization parameter ω
controls the extent to which {β̄i}Ii�1 are used to facili-
tate recovering candidate segmentations. When ω � 0,
{β̄i}Ii�1 do not enter the specification of {θik}, and a
homogeneous penalty is imposed on the pairwise dis-
crepancies of BS; as ω increases, {θik} become more
heterogeneous, and pairs of respondents with closer
initial estimates, i.e., those deemed as more likely to
be drawn from the same segment, are penalized more
heavily than those with farther initial estimates.
Given the specification of {θik} in (3), the regulariza-

tion parameters for (Metric-SEG) are now given by the
vector Γ , (γ, λ, ω). Since an appropriate value for Γ
is not known a priori, we specify a finite grid Θ ⊂ �3

and solve (Metric-SEG) for each Γ ∈Θ.5 We denote
(B(Γ),BS(Γ),D(Γ)) as the optimal solution of (Metric-
SEG) given Γ. For each Γ, we use BS(Γ) to recover a
candidate segmentation Q(Γ).
Solution Algorithm. (Metric-SEG) is a convex opti-
mization problem for all regularization parameters
Γ ∈ Θ, which implies that it is efficiently solvable to
global optimum in theory (Boyd and Vandenberghe
2004). However, solving (Metric-SEG) poses an algo-
rithmic challenge since the third penalty term,
λ
∑

1≤i<k≤I θik ‖βS
i − βS

k ‖2, is a nondifferentiable and non-
separable function. Nondifferentiability implies that
standard convex optimization methods requiring a dif-
ferentiable objective function, e.g., Newton’s method,
cannot be applied to solve (Metric-SEG); nonsepara-
bility also adds to the complexity (Chen et al. 2012).
We solve (Metric-SEG) using a special purpose algo-
rithm based on variable splitting and the alternating
direction augmented Lagrangianmethod that was pro-
posed in Qin and Goldfarb (2012). This algorithm is
specifically designed for handling complex sparsity-
inducing penalty functions and is capable of solving
for the global optimum of (Metric-SEG). We provide
a detailed description of the algorithm in the Web
appendix.

Dealing with Small Segments. In many instances of
(Metric-SEG) encountered in our simulation experi-
ments and field applications, we observed that the can-
didate segmentation Q contains a small number of
substantive segments that comprise the majority of the
consumer population, as well as a few segments each
consisting of very few respondents, often one or two.
Since these small segments bear little practical inter-
pretation, we employ a simple procedure to combine
each of the small segments with its closest substantive
segment. Formally, we define a segment in Q as a valid
segment if it contains at least M respondents, where M
is a prespecified threshold, and as an invalid segment
otherwise. Without loss of generality, we assume that
the first L̄ segments of Q are valid. We retain all valid
segments, and for each invalid segment, i.e., the lth

segment with l > L̄, we determine its closest valid seg-
ment by computing c(l), {v ∈ {1, 2, . . . , L̄} | ‖ β̂S

v− β̂S
l ‖2 <

‖ β̂S
v′ − β̂S

l ‖2 , for v′ ∈ {1, 2, . . . , L̄}, v′ , v}, and combine
the lth segment (an invalid segment) and the c(l)th
segment (a valid segment). We define Q̄, the segmen-
tation obtained after this processing, as the candidate
segmentation, but still refer to it using Q for simplic-
ity hereafter.6 We note that it is possible that no valid
segment exists in a segmentation, i.e., L̄ � 0. In such a
case, we simply claim that no candidate segmentation
is identified for this instance of (Metric-SEG).
Summary. The first stage of our SL model recovers a
set of candidate segmentations in the following man-
ner. We specify a finite grid Θ ⊂ �3 from which the
regularization parameters Γ � (γ, λ, ω) are chosen. For
each Γ ∈Θ, we solve (Metric-SEG) and obtain the can-
didate segmentation Q(Γ); Q(Γ) could be an empty
matrix in cases where no candidate segmentation is
identified. We also include the trivial segmentation
where all respondents are in one segment as a can-
didate segmentation, i.e., Q(Trivial) , 1I×1. We denote
the set of candidate segmentations as Φ, i.e., Φ ,
{Q(Γ)}Γ∈Θ: Q(Γ),� ∪ {Q(Trivial)}; Φ is the output of the
first stage of the SL model.7

2.4. Second Stage: Recovering Individual-Level
Partworths

The second stage of our SL model aims at leverag-
ing the set of candidate segmentations Φ to accurately
recover the individual-level partworths. To this end,
we develop a set of individual-level representations of
MCHbased on each candidate segmentation and select
the optimal individual-level representation of MCH
using cross-validation.

Given Q ∈ Φ, we propose to model MCH by sep-
arately modeling the within-segment heterogeneity
distribution for each segment assuming a UCH distri-
bution; that is, Q is interpreted as a decomposition of
the MCH distribution into a collection of UCH distri-
butions that are considerably easier to model. There
are many effective approaches for modeling UCH in
the marketing literature, including the unimodal HB
models (Lenk et al. 1996, Rossi et al. 1996) and RR-Het,
the metric version of the CO model of Evgeniou et al.
(2007). We choose RR-Het to model within-segment
UCH distributions because it outperforms standard
unimodal HBmodels (Evgeniou et al. 2007) and allows
for a direct and parsimonious way for controlling the
amount of shrinkage imposed on the individual-level
partworth estimates that can be readily incorporated in
a cross-validation framework for endogenously select-
ing an adequate amount of shrinkage.

Formally, for a candidate segmentation Q with L
segments, we define a set of modeling strategies {S | S ,
(Q , ψ,COV)}, parameterized by ψ � (ψ1 , ψ2 , . . . , ψL)
and COV� (COV1 ,COV2 , . . . ,COVL), where ψl > 0 and
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COVl ∈ {General(G), Restrictive(R)} for l � 1, 2, . . . , L.
The modeling strategy S models MCH and obtains the
individual-level partworth estimates {β̃i}Ii�1 by solv-
ing a convex optimization problem Metric-HET(Q; l;
ψl ; COVl) for the lth segment of Q, denoted as Υ(Q; l),
for l � 1, 2, . . . , L. When COVl

� G, the optimiza-
tion problem (Metric-HET(Q; l;ψl ; G)) is defined as
follows:
(Metric-HET(Q; l;ψl ; G))

min
{ ∑

i∈Υ(Q;l)
‖Yi −Xi β̃i ‖22

+ψl
∑

i∈Υ(Q;l)
(β̃i − β̃l

0)>(D l)−1(β̃i − β̃l
0)
}

s.t. D l is a positive semidefinite matrix
scaled to have trace 1,

β̃i ∈ �p , for i ∈Υ(Q; l); β̃l
0 ∈ �p .

(4)

When COVl
� R, the optimization problem Metric-

HET(Q; l;ψl ; R) is defined as follows:

(Metric-HET(Q; l;ψl ; R))

min
{ ∑

i∈Υ(Q;l)
‖Yi −Xi β̃i ‖22

+ψl
∑

i∈Υ(Q;l)
(β̃i − β̃l

0)>(I/p)−1(β̃i − β̃l
0)
}

s.t. β̃i ∈ �p , for i ∈Υ(Q; l); β̃l
0 ∈ �p .

(5)

We note that (5) is obtained from (4) by restricting the
decision variable D l � I/p. In both optimization prob-
lems, the regularization parameter ψl provides a direct
and parsimonious way to control the trade-off between
fit and shrinkage. In particular, a larger ψl imposes
more shrinkage on the individual-level partworth esti-
mates in the lth segment toward β̃l

0, which can be
shown to be the segment mean (Evgeniou et al. 2007),
and hence results in more homogenous estimates. The
matrix D l in (4) is related to the covariance matrix
of the partworths within the lth segment (Evgeniou
et al. 2007). Explicitly modeling D l allows for a gen-
eral covariance structure and gives rise to much flex-
ibility in modeling within-segment heterogeneity. On
the other hand, restricting D l � I/p in (5) imposes a
restrictive covariance structure that is less flexible but
is also more parsimonious and robust with respect to
overfitting. We assess the relative strength of the two
optimization problems with different covariance struc-
tures using cross-validation.
We note that each modeling strategy S � (Q , ψ,

COV) gives rise to a distinct individual-level repre-
sentation of MCH. In particular, the segmentation Q
determines the way in which MCH is decomposed
into a collection of UCHs, and ψ and COV control
the amount of shrinkage imposed and the covariance
structure assumed when modeling UCH for each seg-
ment of Q, respectively.

Cross-validation. To endogenously select the optimal
modeling strategy (and hence the optimal individual-
level representation of MCH it implies), we evaluate
the cross-validation error of each modeling strategy S.
Cross-validation is a standard technique used in the
statistics and machine learning literature for model
selection (Wahba 1990, Shao 1993, Vapnik 1998, Hastie
et al. 2001) and has been adopted in the recent lit-
erature of machine learning and optimization-based
methods for conjoint estimation (Evgeniou et al. 2005,
2007). We measure the cross-validation error of a mod-
eling strategy S, CVE(S), identically as in Evgeniou
et al. (2005, 2007). The cross-validation error CVE(S)
provides an effective estimate of the predictive accu-
racy of the modeling strategy S on out-of-sample data
using only in-sample data, i.e., the data available to
the researcher for model calibration. To implement
cross-validation, we prespecify a finite grid Ξ ⊂ �,
and for each Q we consider modeling strategies S �

(Q , ψ,COV) such that ψl ∈ Ξ and COVl ∈ {G,R}, for
l � 1, 2, . . . , L.8 We select S that minimizes CVE(S) as
the optimal modeling strategy and its corresponding
Q as the optimal candidate segmentation, which we
denote by S∗ and Q∗, respectively. Consequently, the
cross-validation procedure allows us to endogenously
select the modeling strategy S∗ that is expected to
have the optimal predictive accuracy on out-of-sample
data. We recover the optimal individual-level part-
worth estimates {β̃∗i}Ii�1 by applying S∗ to the complete
data set {Xi ,Yi}Ii�1.
Confidence Intervals. Besides point estimates for indi-
vidual-level partworths, our SL approach can also be
used to produce confidence intervals for individual-
level partworth estimates via bootstrapping, similar to
the CO model (as detailed in the online appendix of
Evgeniou et al. 2007). To generate the bootstrap esti-
mates for confidence intervals, we first estimate the
optimal modeling strategy S∗ � (Q∗ , ψ∗ ,COV∗). Next,
we generate a large number of (e.g., 1,000) random
bootstrap samples from the original data set and apply
the modeling strategy S∗ to each bootstrap sample;
here the bootstrap samples are obtained by keeping all
respondents and for each respondent randomly sam-
pling her conjoint profiles with replacement. We then
use the empirical distributions of partworth estimates
generated from the bootstrap samples to construct
confidence intervals.

2.5. Summary
We briefly summarize our SL model Metric-SL in the
following. The MATLAB code for Metric-SL is avail-
able from the authors on request.
First Stage.

Step 1a. Obtain the initial estimates {β̄i}Ii�1 and the
scaled covariance matrix of the partworths D̄ using
RR-Het (Evgeniou et al. 2007).
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Step 1b. For each Γ∈Θ, set θik � e−ω((β̄i−β̄k )>D̄−1(β̄i−β̄k ))1/2 ,
and solve (Metric-SEG) (see (1)). Recover the candidate
segmentation Q(Γ) from BS(Γ).

Step 1c. Repeat Step 1b for each Γ ∈ Θ, and obtain
the set of candidate segmentations

Φ� {Q(Γ)}Γ∈Θ: Q(Γ),� ∪ {Q(Trivial)}. (6)

Second Stage.
Step 2a. For each Q ∈ Φ, define a set of model-

ing strategies {S | S � (Q , ψ,COV) s.t. ψl ∈ Ξ, COVl ∈
{G,R}, for l � 1, 2, . . . , L}. A modeling strategy S
recovers the individual-level partworths by solving a
set of L optimization problems {Metric-HET(Q; l;ψl ;
COVl)}Ll�1 defined in (4) and (5).

Step 2b. Select the modeling strategy S∗ � (Q∗ , ψ∗ ,
COV∗) with the minimum cross-validation error, i.e.,
S∗ � argminS CVE(S). We select Q∗ as the optimal
segmentation.

Step 2c. Generate the optimal individual-level part-
worth estimates {β̃∗i}Ii�1 by then applying S∗ to
{Xi ,Yi}Ii�1, i.e., by solving L∗ optimization problems
{Metric-HET(Q∗; l;ψl∗; COVl∗)}L∗l�1. The outputs of the
second stage are ({β̃∗i}Ii�1 ,Q

∗), which are also the final
outputs of the complete Metric-SL model.

2.6. Extension to Choice-Based Conjoint Analysis
CBC has been the dominant conjoint approach
recently (Iyengar et al. 2008). Our SL model can be
readily extended to the context of CBC. In particular,
our SL model can be applied to CBC by simply replac-
ing the squared-error loss functions in all optimization
problems in Metric-SL with the logistic loss functions.
We discuss our SL model for CBC, Choice-SL, in the
Web appendix. The MATLAB code for Choice-SL is
available from the authors on request.

3. Simulation Experiments
In this section we report the results of a set of sim-
ulation experiments designed to test the performance
of our SL model. Simulation experiments have been
widely adopted in the marketing literature to evalu-
ate conjoint estimation methods (Vriens et al. 1996,
Andrews et al. 2002b). We consider both metric and
choice-based conjoint simulation experiments.

3.1. Metric Conjoint Simulation Experiments
We compared Metric-SL, the metric version of our SL
model, to three benchmark methods: (1) the FMmodel
(Kamakura and Russell 1989, Chintagunta et al. 1991),
(2) the Bayesian NCM model (Allenby et al. 1998), and
(3) RR-Het, the metric version of the CO model of
Evgeniou et al. (2007). The FM model represents MCH
using discrete mass points. The NCM model specifies
a mixture of multivariate normal distributions to char-
acterize the heterogeneity distribution and is capable

of representing a wide variety of heterogeneity distri-
butions. RR-Het is not specifically designed to model
MCH; however, we included it as a benchmark method
to assess the improvement made by adopting the more
general Metric-SL model.

The implementation of the three benchmark meth-
ods closely followed the extant literature. In particu-
lar, the FM model was calibrated using the Bayesian
information criterion (BIC) (Andrews et al. 2002b),
and for the NCM model the number of components
was selected using the deviance information criterion
(DIC) (Spiegelhalter et al. 2002, Luo 2011). We provide
the setup of the NCM model, including the specifica-
tion of parameters for the second-stage priors, in the
Web appendix.
3.1.1. Data. Our experimental design and data-
generating process largely followed past work that has
used simulations to evaluate methods for recovering
MCH within metric conjoint settings (Andrews et al.
2002b). See Andrews et al. (2002b) for a discussion
of the experimental design and the data-generating
process.
Experimental design. We experimentally manipu-
lated four data characteristics:

Factor 1. The number of segments: 2 or 3
Factor 2. The number of profiles per respondent

(for calibration): 18 or 27
Factor 3. The error variance: 0.5 or 1.5
Factor 4. The within-segment variances of distribu-

tions: 0.05, 0.10, 0.20, 0.40, 0.60, 0.80, or 1.00
Hence, we used a 23×7 design, resulting in a total of

56 experimental conditions. We randomly generated
5 data sets for each experimental condition and esti-
mated all conjoint models separately on each data set.
Data-generating process. We adopted the conjoint
designs used in Andrews et al. (2002b) in which
six product attributes were varied at three levels
each. Each data set consisted of 100 synthetic respon-
dents and their responses were generated according
to the following three-step process: we (1) gener-
ated the true segment-level partworths, (2) assigned
each respondent to a segment and generated her
true individual-level partworths, and (3) generated
her response vector. More specifically, the true
segment-level partworths for any segment l, βl(S),
were generated as a vector of random numbers
sampled independently from a uniform distribution
over the interval [−1.7, 1.7]. Each respondent was ran-
domly assigned to all segments with equal probabil-
ities, and her true individual-level partworths βi(T)
were generated as βi(T) � βl(S) + σξi if respondent i
was assigned to segment l, where σ2 is the prespeci-
fied within-segment variance (Factor 4) and ξi is a vec-
tor of independent standard normal random variables.
Given βi(T), the response vector Yi was computed as
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Yi � Xiβi(T) + δεi , where δ2 is the prespecified error
variance (Factor 3), and εi is a vector of independent
standard normal random variables. To evaluate the
predictive accuracy of the conjoint estimation meth-
ods, we generated 8 holdout profiles for each respon-
dent regardless of whether 18 or 27 profiles (Factor 2)
were used for calibration.
3.1.2. Results. We compared all four conjoint esti-
mation methods in terms of parameter recovery and
predictive accuracy. Parameter recovery was assessed
using the root mean squared error (RMSE) between
the true individual-level partworths βi(T) and the esti-
mated individual-level partworths βi(E), which we
denote by RMSE(β). Predictive accuracy was mea-
sured using the RMSE between the observed ratings
Yi(O) and the predicted ratings Yi(P) on the hold-
out sample, which we denote by RMSE(Y). Follow-
ing Evgeniou et al. (2007), we computed RMSE(β)
and RMSE(Y) for each respondent in each data set
and report the average RMSE(β) and RMSE(Y) across
respondents and data sets for each experimental
condition.9
Across experimental conditions, we find that Metric-

SL overall outperforms the benchmark models both
in terms of parameter recovery and predictive accu-
racy. In particular, Metric-SL performs best or not sig-
nificantly different from best on RMSE(β) (at p < 0.05)
in 51 out of 56 conditions, and is either the best per-
forming method or indistinguishable from the best
method on RMSE(Y) (at p < 0.05) in 52 out of 56 con-
ditions. The comparisons are based on paired t-tests
over the same 500 respondents, i.e., (100 respondents
per data set) times (5 data sets), in each experimental
condition.
To illustrate, we summarize the results for a subset

of experimental conditions in Table 1, where Num-S
denotes the number of segments in the heterogene-
ity distribution (Factor 1), Num-P denotes the number
of profiles per respondent for calibration (Factor 2),
EV denotes the error variance (Factor 3), and WSV
denotes the within-segment variances of distribu-
tions (Factor 4). We note that for both RMSE(β) and

Table 1. RMSE(β) and RMSE(Y) for a Subset of Experimental Conditions

RMSE(β) RMSE(Y)

Num-S Num-P EV WSV Metric-SL NCM FM RR-Het Metric-SL NCM FM RR-Het

2 18 1.5 0.05 0.2315 0.4074 0.2367 0.3459 1.2656 1.3637 1.2918 1.3377
0.10 0.2959 0.4319 0.3233 0.3889 1.2822 1.3591 1.3423 1.3432
0.20 0.3706 0.4654 0.4534 0.4492 1.3544 1.4062 1.5338 1.4087
0.40 0.4645 0.4956 0.6218 0.4981 1.4359 1.4498 1.7215 1.4597
0.60 0.5039 0.5175 0.7485 0.5254 1.4108 1.4115 1.8227 1.4202
0.80 0.5450 0.5446 0.8737 0.5606 1.4659 1.4584 2.0126 1.4695
1.00 0.5644 0.5635 0.9789 0.5712 1.4590 1.4605 2.1829 1.4630

Note. Bold numbers in each experimental condition for each performance measure indicate best or not significantly
different from best at the p < 0.05 level based on paired t-tests.

RMSE(Y), lower numbers indicate better performance.
The full results for all 56 conditions are reported in the
Web appendix.

Table 1 shows a systematic pattern of RMSE(β) and
RMSE(Y) for the four conjoint estimation methods
with respect to WSV. When WSV is small, e.g., WSV�

0.05 or 0.10, the NCM model and RR-Het perform
substantially worse than Metric-SL, whereas the FM
model shows a good performance. As WSV increases,
the relative performance of the NCM model and
RR-Het gradually improves, and that of the FM model
quickly deteriorates. On the other hand, Metric-SL
demonstrates a consistently strong performance across
the range of WSV. This performance pattern confirms
the importance of explicitly modeling both across-
segment and within-segment heterogeneity, and also
endogenously selecting an adequate amount of shrink-
age to recover individual-level partworths in modeling
MCH. The FMmodel assumes a discrete heterogeneity
distribution that does not allow for within-segment
heterogeneity and hence is not capable of fully cap-
turing the variations in consumer preferences when
within-segment heterogeneity is substantial. RR-Het
models consumer preferences using a UCH distribu-
tion, which does not accommodate across-segment
heterogeneity and thus limits its performance when
the underlying heterogeneity distribution is fairly dis-
crete. The NCM model explicitly models both across-
segment and within-segment heterogeneity, but is
not capable of endogenously selecting the amount
of shrinkage, since it is influenced by exogenously
chosen parameters for the second-stage priors. In
Table 1, the relatively inferior performance of the NCM
model when within-segment heterogeneity is small
or moderate suggests that the amount of shrinkage
imposed by the NCM model is inadequate in these
experimental conditions. This provides evidence that,
consistent with findings in Evgeniou et al. (2007), the
amount of shrinkage imposed by the NCM model
can be inadequate depending on the characteristics
of a conjoint data set. By contrast, our Metric-SL
model addresses both modeling challenges and shows
a robust performance across conditions.
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We conducted a regression analysis to examine the
impact of the experimental factors on RMSE(β) and
RMSE(Y) of the four conjoint estimation methods. For
RMSE(β), we adopted the following specification:

RMSE(β)t � α0 + α1 ×Num-S-Dummyt

+ α2 ×Num-P-Dummyt + α3 ×EV-Dummyt

+ α4 ×WSVt + εt , (7)

where the index t runs over the 56 experimental condi-
tions. The dependent variable RMSE(β)t is the average
RMSE(β) of a method in condition t. For the indepen-
dent variables, we dummy coded the first three exper-
imental factors, Num-S, Num-P, and EV, and used
the original value of the fourth experimental factor,
WSV.10 Table 2 shows the results of the ordinary least
squares (OLS) estimation on RMSE(β) for each of the
four conjoint estimation methods.
We make a few observations from the results in

Table 2. The fact that the coefficients for Num-S are
insignificant for all methods suggests that the num-
ber of segments has little impact on RMSE(β). Num-
P has significant negative coefficients for all methods
except the FM model, implying that more calibra-
tion profiles improve the accuracy of parameter recov-
ery for the three methods other than the FM model.
EV has significant positive coefficients for all meth-
ods, which means that a larger error variance hurts
all methods; we note that the impact of error variance
on the FM model is smaller compared to other meth-
ods. WSV has significant positive coefficients, indicat-
ing that a larger within-segment variance leads to a
higher error in parameter recovery for all methods.
Furthermore, as WSV increases, the FM model deteri-
orates most quickly, followed by Metric-SL, which is in
turn followed by RR-Het and the NCM model. This is
consistent with our previous findings about the rela-
tive performance of the four conjoint estimation meth-
ods with respect to WSV.

We also conducted a regression analysis to under-
stand the impact of the experimental factors on the
relative performance between Metric-SL and the NCM

Table 2. Regression Analysis of RMSE(β) for Metric Simulations

Variable Metric-SL NCM FM RR-Het Metric-SL−NCM

Intercept 0.2033∗∗∗ 0.2884∗∗∗ 0.2392∗∗∗ 0.2582∗∗∗ −0.0851∗∗∗
Num-S 0.0062 0.0068 0.0146 0.0105 −0.0006
Num-P −0.0427∗∗∗ −0.0609∗∗∗ −0.0123 −0.0589∗∗∗ 0.0181∗∗
EV 0.1217∗∗∗ 0.1493∗∗∗ 0.0253∗∗ 0.1471∗∗∗ −0.0277∗∗∗
WSV 0.2254∗∗∗ 0.1106∗∗∗ 0.7622∗∗∗ 0.1539∗∗∗ 0.1147∗∗∗

R2 0.86 0.97 0.98 0.93 0.69

Notes. The dependent variables in the second, third, fourth, and fifth columns are RMSE(β)’s of
Metric-SL, NCM, FM, and RR-Het, respectively; the dependent variable in the sixth column is the
difference between RMSE(β)’s of Metric-SL and NCM.
∗∗p < 0.05; ∗∗∗p < 0.01.

model. In particular, we adopted a specification iden-
tical to (7) except that the dependent variable was
replaced with the difference of RMSE(β) for Metric-SL
and the NCMmodel. The results of the OLS estimation
are reported in the last column of Table 2. The results
show that the performance of Metric-SL relative to
the NCM model improves when there are fewer cali-
bration profiles. This finding highlights the usefulness
of Metric-SL especially in contexts where researchers
prefer to elicit consumer preferences using short con-
joint questionnaires due to concerns over response
rates and response quality (Lenk et al. 1996). We also
find that a larger error variance and a smaller within-
segment variance improve the relative performance of
Metric-SL.

For RMSE(Y), we used a specification identical to (7)
except that the dependent variable was the average
RMSE(Y) of a method in a specified experimental con-
dition. We report the results of the OLS estimation in
Table 3.

The impact of the experimental factors on RMSE(Y)
is largely similar to that on RMSE(β). A couple of
main differences are that for RMSE(Y), Num-S has
significant positive coefficients for all methods except
Metric-SL, and Num-P has the largest impact on the
FM model.

3.2. Choice-Based Conjoint Simulation
Experiments

We compared Choice-SL, the choice version of our SL
model, to three benchmarkmethods: (1) the FMmodel,
(2) the NCM model, and (3) LOG-Het, the choice ver-
sion of the CO model. All benchmark methods were
the choice versions of those in Section 3.1, and the
implementations were similar to their metric version
counterparts.

3.2.1. Data. Our experimental design and data-gener-
ating process largely followed past work that used
simulations to evaluate methods for recovering MCH
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Table 3. Regression Analysis of RMSE(Y) for Metric Simulations

Variable Metric-SL NCM FM RR-Het Metric-SL−NCM

Intercept 0.7662∗∗∗ 0.8154∗∗∗ 0.8861∗∗∗ 0.8024∗∗∗ −0.0492∗∗∗
Num-S 0.0108 0.0119∗∗ 0.0327∗∗ 0.0140∗∗ −0.0012
Num-P −0.0488∗∗∗ −0.0607∗∗∗ −0.1058∗∗∗ −0.0632∗∗∗ 0.0120∗∗
EV 0.5497∗∗∗ 0.5636∗∗∗ 0.3989∗∗∗ 0.5639∗∗∗ −0.0139∗∗∗
WSV 0.1395∗∗∗ 0.0728∗∗∗ 0.9374∗∗∗ 0.0954∗∗∗ 0.0667∗∗∗

R2 0.99 0.99 0.98 0.99 0.67

Notes. The dependent variables in the second, third, fourth, and fifth columns are RMSE(Y)’s of
Metric-SL, NCM, FM, and RR-Het, respectively; the dependent variable in the sixth column is the
difference between RMSE(Y)’s of Metric-SL and NCM.
∗∗p < 0.05; ∗∗∗p < 0.01.

using choice data (Andrews et al. 2002a, Andrews and
Currim 2003).
Experimental design. We experimentally manipu-
lated four data characteristics:
Factor 1. The number of segments: 2 or 3
Factor 2. The number of choice sets per respondent

(for calibration): 16 or 24
Factor 3. The error variance: standard (1.645) or

high (3.290)
Factor 4. The within-segment variances of distribu-

tions: 0.05, 0.10, 0.20, 0.40, 0.60, 0.80, or 1.00
Hence, we used a 23×7 design, resulting in a total of

56 experimental conditions. We randomly generated
5 data sets for each experimental condition and esti-
mated all conjoint models separately on each data set.
Data-generating process. In all data sets, each choice
set consisted of four conjoint profiles, each associated
with a distinct brand. In addition to the three (i.e.,
4− 1 � 3) brand dummies, the attributes also included
one continuous variable and two binary variables. We
created four levels for the continuous variable, each
being a range: “low” ≡ [−1.3,−0.65], “medium-low”
≡ [−0.65, 0], “medium-high” ≡ [0, 0.65], and “high” ≡
[0.65, 1.3]. For each choice set, we randomly selected a
value from each range and assigned the four values to
the profiles such that each profile had an equal chance
to be assigned with the lowest value. For each of the
two binary attributes, we randomly selected a profile
in a choice set and set its value on the attribute to 1.
We note that the design of the continuous attribute
and the two binary attributes was aimed at induc-
ing sufficient variations in the data and is different
from those in Andrews et al. (2002a) and Andrews and
Currim (2003), which consider scanner panel applica-
tions rather than conjoint applications.
In each data set, the choices of 100 synthetic re-

spondents were generated using a three-step process
similar to that in Section 3.1. We closely followed
Andrews et al. (2002a) and Andrews and Currim
(2003) and generated three levels of segment-level
coefficients (low, medium, and high) for each of the
six attributes (i.e., three brand dummies, one continu-
ous variable, and two binary variables). The rationale

for this design with three levels of coefficients was
to have different segments assigned with distinct
levels of coefficients for each attribute and there-
fore create clear separations between segments. The
medium-level coefficients were generated as follows:
the brand-specific constants were sampled from a uni-
form distribution over the interval [−1, 1], the coef-
ficient of the continuous variable was sampled from
a uniform distribution over [−2.5,−2], and the coef-
ficients of the binary variables were sampled from
a uniform distribution over [2, 2.5]. The high-level
(respectively, low-level) coefficients were generated by
adding to (respectively, subtracting from) the corre-
sponding medium-level coefficients a normal random
variable drawn from N(1.5, 0.152), where 1.5 was the
mean separation between segments (Andrews et al.
2002a, Andrews and Currim 2003). In experimental
conditions with three segments (Factor 1), we gener-
ated the true segment-level partworths by assigning
the three levels of coefficients of each attribute ran-
domly to the three segments. In experimental condi-
tions with two segments, we simply retained the true
segment-level partworths of the first two segments
generated in the three-segment conditions. We denote
the true segment-level partworths for any segment l
as βl(S).

Each respondent was randomly assigned to the
available segments with equal probabilities. As in
Section 3.1, respondent i’s true individual-level part-
worths βi(T) were generated as βi(T) � βl(S) + σξi if
respondent i was assigned to segment l, where σ2

is the prespecified within-segment variance (Factor 4)
and ξi is a vector of independent standard normal
random variables. Given βi(T), respondent i’s choices
were stochastically generated according to the logit
model where the variance of the type-I extreme value
random variables was given by the prespecified error
variance (Factor 3). To evaluate the predictive accuracy
of the conjoint estimation methods, we generated 8
holdout choice sets for each respondent regardless of
whether 16 or 24 choice sets (Factor 2) were used for
calibration.
3.2.2. Results. We compared the four conjoint esti-
mation methods in terms of parameter recovery and
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Table 4. RMSE(β) and Holdout-LL for a Subset of Experimental Conditions

RMSE(β) Holdout-LL

Num-S Num-CS EV WSV Choice-SL NCM FM LOG-Het Choice-SL NCM FM LOG-Het

2 16 3.290 0.05 0.5521 0.6760 0.3598 0.7021 −0.8900 −0.9207 −0.8765 −0.9342
0.10 0.4920 0.6692 0.3584 0.6429 −0.9069 −0.9397 −0.8972 −0.9427
0.20 0.5087 0.6829 0.4646 0.6738 −0.9131 −0.9420 −0.9165 −0.9410
0.40 0.6389 0.7773 0.6602 0.7418 −0.8758 −0.8966 −0.9092 −0.8876
0.60 0.7315 0.8512 0.8324 0.7820 −0.9109 −0.9351 −0.9526 −0.9199
0.80 0.7653 0.8053 0.9207 0.8068 −0.9229 −0.9276 −0.9980 −0.9204
1.00 0.8783 0.8791 0.9990 0.9045 −0.9237 −0.9312 −0.9808 −0.9219

Notes. Bold numbers in each experimental condition for each performance measure indicate best or not significantly different
from best at the p < 0.05 level based on paired t-tests.

predictive accuracy. Parameter recovery was assessed
using RMSE(β). Predictive accuracy was measured
using the holdout sample log-likelihood (Andrews
et al. 2002a), which we denote by Holdout-LL. Again,
for each experimental condition, we report the average
RMSE(β) and Holdout-LL across all respondents and
data sets.11

Similar to metric simulation experiments, we find
that Choice-SL overall outperforms the benchmark
models both in terms of parameter recovery and pre-
dictive accuracy. In particular, Choice-SL is the best
performing model or indistinguishable from the best
model on RMSE(β) (at p < 0.05) in 31 out of 56 condi-
tions, and performs best or not significantly different
from best on Holdout-LL (at p < 0.05) in 42 out of 56
conditions.
For the purpose of illustration, we summarize the

results for a subset of experimental conditions in
Table 4, where Num-S denotes the number of segments
in the heterogeneity distribution (Factor 1), Num-CS
denotes the number of choice sets per respondent
for calibration (Factor 2), EV denotes the error vari-
ance (Factor 3), and WSV denotes the within-segment
variances of distributions (Factor 4). We note that for
RMSE(β), lower numbers indicate better performance,
whereas for Holdout-LL, higher numbers indicate bet-
ter performance. The full results for all 56 conditions
are reported in the Web appendix.
We find that results in Table 4 are qualitatively sim-

ilar to those in Table 1 except that the FM model

Table 5. Regression Analysis of RMSE(β) for Choice-Based Simulations

Variable Choice-SL NCM FM LOG-Het Choice-SL−NCM

Intercept 0.4446∗∗∗ 0.6287∗∗∗ 0.3143∗∗∗ 0.6153∗∗∗ −0.1841∗∗∗
Num-S 0.0270∗∗ 0.0668∗∗∗ 0.0364∗∗ 0.0535∗∗∗ −0.0398∗∗
Num-CS −0.0919∗∗∗ −0.1093∗∗∗ −0.0450∗∗∗ −0.0958∗∗∗ 0.0174
EV 0.0426∗∗∗ 0.0658∗∗∗ 0.0070 0.0415∗∗∗ −0.0232
WSV 0.3834∗∗∗ 0.1405∗∗∗ 0.7626∗∗∗ 0.2230∗∗∗ 0.2429∗∗∗

R2 0.94 0.88 0.96 0.93 0.71

Notes. The dependent variables in the second, third, fourth, and fifth columns are RMSE(β)’s of
Choice-SL, NCM, FM, and LOG-Het, respectively; the dependent variable in the sixth column is the
difference between RMSE(β)’s of Choice-SL and NCM.
∗∗p < 0.05; ∗∗∗p < 0.01.

becomes the best performing model when WSV
is small.

As in the metric simulation experiments, we con-
ducted a regression analysis to examine the impact
of the experimental factors on both performance mea-
sures, RMSE(β) and Holdout-LL. The regression spec-
ifications were similar to (7). Tables 5 and 6 report the
results of the OLS estimation.

Table 5 shows that the performance of Choice-SL
relative to the NCM model in terms of parameter
recovery improves with more segments and a smaller
within-segment variance. Table 6 shows that the per-
formance of Choice-SL relative to the NCM model
in terms of predictive accuracy improves with fewer
choice sets for calibration. This finding, consistent with
what we found in the metric simulation experiments,
further emphasizes the usefulness of our model in
contexts in which concerns over response rates and
response quality prompt researchers to use short con-
joint questionnaires. We also find that more segments
and a smaller within-segment variance improve the
relative performance of Choice-SL. In Section 4, we
leverage these findings to explain the relative perfor-
mance among models on field data.

4. Field Data
4.1. Metric Conjoint
We evaluate the performance of our Metric-SL model
using a metric conjoint data set of personal computers
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Table 6. Regression Analysis of Holdout-LL for Choice-Based Simulations

Variable Choice-SL NCM FM LOG-Het Choice-SL−NCM

Intercept −0.7234∗∗∗ −0.7580∗∗∗ −0.7156∗∗∗ −0.7609∗∗∗ 0.0346∗∗∗
Num-S −0.0002 −0.0067 −0.0034 −0.0035 0.0064∗∗∗
Num-CS 0.0117 0.0175∗∗ 0.0059 0.0164∗∗ −0.0058∗∗
EV −0.1888∗∗∗ −0.1899∗∗∗ −0.1713∗∗∗ −0.1874∗∗∗ 0.0011
WSV 0.0058 0.0370∗∗∗ −0.1037∗∗∗ 0.0473∗∗∗ −0.0312∗∗∗

R2 0.91 0.92 0.88 0.92 0.68

Notes. The dependent variables in the second, third, fourth, and fifth columns are Holdout-LL’s of
Choice-SL, NCM, FM, and LOG-Het, respectively; the dependent variable in the sixth column is the
difference between Holdout-LL’s of Choice-SL and NCM.
∗∗p < 0.05; ∗∗∗p < 0.01.

that was first introduced in Lenk et al. (1996). The
same data set was also used in Evgeniou et al.
(2007) to compare conjoint estimation methods. In the
study, 180 respondents each rated 20 hypothetical per-
sonal computers on an 11-point scale (0 to 10). Each
hypothetical profile was represented using 13 binary
attributes and an intercept. The first 16 profiles formed
an orthogonal and balanced design and were used for
calibration, and the last 4 were used for holdout vali-
dation. See Lenk et al. (1996) and Evgeniou et al. (2007)
for details of this data set.
We compared the predictive accuracy of four mod-

els, Metric-SL, the FM model, the NCM model, and
RR-Het using RMSE(Y) and the first choice hits in
the holdout sample (Andrews et al. 2002b), which
we denote by 1stCH. For any respondent, 1stCH
was set to 1 if the holdout profile with the highest
observed rating was correctly predicted and 0 oth-
erwise. We report the average RMSE(Y) and 1stCH
across 180 respondents for each method. Table 7 sum-
marizes the results. We note that for RMSE(Y), lower
numbers indicate better performance, whereas for
1stCH, higher numbers indicate better performance.
Using paired t-tests over the 180 respondents, we

find that Metric-SL and RR-Het perform best or not
significantly different from best (at p < 0.10) both in
terms of RMSE(Y) and 1stCH. This performance com-
parison validates the predictive accuracy of Metric-SL;
it also suggests that the assumption of a UCH distribu-
tion made by RR-Het is not restrictive on this data set.

4.2. Choice-Based Conjoint
4.2.1. Application 1—Hotel Choice. A total of 188 re-
spondents participated in this study, and each of them
was shown 12 choice sets. Each choice set consisted
of three hotel profiles and a no-choice option. Seven
attributes, including brand, room rate, location, restau-
rant, gym, Internet access, and rewards points, were
used to represent the profiles. The brand attribute
was treated as discrete with five levels, e.g., Westin,
whereas all other attributes were treated as continu-
ous. We randomly selected 10 out of the 12 choice

Table 7. Field Conjoint Data Sets

The personal computer data set

Metric-SL NCM FM RR-Het

RMSE(Y) 1.6099 1.6558∗∗∗ 1.8639∗∗∗ 1.6072
1stCH 0.7056 0.6722∗∗ 0.5889∗∗∗ 0.6944

The hotel data set

Choice-SL NCM FM LOG-Het

Holdout-LL −0.9270 −1.0297∗∗ −0.9192 −0.9305
Holdout-HIT 0.6330 0.6410 0.5878∗∗ 0.6090∗

The cell phone plan data set

Choice-SL NCM FM LOG-Het

Holdout-LL −0.9205 −0.9540∗ −0.9944∗∗∗ −0.9389∗
Holdout-HIT 0.6278∗ 0.6407 0.5856∗∗∗ 0.6190∗∗∗

Notes. For RMSE(Y), lower numbers indicate better performance;
for 1stCH, higher numbers indicate better performance; for
Holdout-LL, higher numbers indicate better performance; and for
Holdout-HIT, higher numbers indicate better performance. Bold
numbers indicate best or not significantly different from best at the
p < 0.10 level.
∗Significantly different from best at the p < 0.10 level;

∗∗significantly different from best at the p < 0.05 level; ∗∗∗significantly
different from best at the p < 0.01 level.

sets for each respondent for calibration and used the
remaining 2 choice sets for holdout validation.

We compared the predictive performance of four
models—Choice-SL, the FM model, the NCM model,
and LOG-Het—using Holdout-LL and the holdout
sample hit rate, which we denote by Holdout-HIT.
We report the average Holdout-LL and Holdout-HIT
across all 188 respondents for each method. The
results are summarized in Table 7. We note that for
both Holdout-LL and Holdout-HIT, higher numbers
indicate better performance. Using paired t-tests over
188 respondents, we find that Choice-SL performs best
or not significantly different from best (at p < 0.10) for
both Holdout-LL and Holdout-HIT. The NCM model
performs significantly worse than best on Holdout-LL,
and the FM model and LOG-Het perform significantly
worse than best on Holdout-HIT. Thus, the empirical
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performance comparison validates the predictive accu-
racy of Choice-SL.
4.2.2. Application 2—Cell Phone Plan Choice. A total
of 72 respondents participated in this study, and each
of them was shown 18 choice sets that consisted of
three profiles and a no-choice option. Six attributes
were used for constructing the conjoint profiles: access
fee, per-minute rate, plan minutes, service provider,
Internet access, and rollover of unused minutes. The
same data set was used in Iyengar et al. (2008).
We used the best fitting “nonlinear-effects” specifi-
cation in Iyengar et al. (2008) that adds logarithmic
terms in access fee, per-minute rate, and plan minutes
to the standard conjoint specification.12 We randomly
selected 15 out of the 18 choice sets for each respon-
dent for calibration and used the remaining 3 choice
sets for holdout validation.
We compared the predictive performance of four

models—Choice-SL, the FM model, the NCM model,
and LOG-Het—using Holdout-LL and Holdout-HIT.
Since the sample size of this data set is relatively
small, the paired t-tests among the four models were
insignificant on both performance measures. To tackle
this issue, we adopted the following alternative statis-
tical test procedure. We generated 10 random replica-
tions of the data set. In each replication, we retained
all 72 respondents, randomly selected 15 out of the
18 choice sets for each respondent for calibration, and
used the remaining 3 choice sets for holdout valida-
tion. Each conjoint estimation method was separately
applied to each of the 10 replications, and Holdout-
LL and Holdout-HIT for each respondent were com-
puted in each replication. We computed the average
Holdout-LL and Holdout-HIT across 10 replications
for each respondent and compared the four conjoint
estimation methods using paired t-tests over the 72
respondents. The results are summarized in Table 7.
Recall that for both Holdout-LL and Holdout-HIT,
higher numbers indicate better performance. We see
from Table 7 that Choice-SL performs best (at p < 0.10)
on Holdout-LL and the NCM model performs best
(at p < 0.10) on Holdout-HIT.
4.2.3. Comparison Between the Two Choice-Based
Applications. Table 7 shows that the predictive accu-
racy of Choice-SL compared to the NCM model is
more favorable on the hotel data set than on the cell
phone plan data set. It is instructive to interpret this
comparison using our findings in Section 3.2 regarding
how the predictive performance of Choice-SL relative
to the NCMmodel varies with respect to the data char-
acteristics. First, Choice-SL recovers 2 segments in the
hotel data set as well as in most replications of the cell
phone plan data set, and hence there is no clear evi-
dence suggesting that the two data sets have different
numbers of segments. Second, the number of calibra-
tion choice sets of the hotel data set (i.e., 10) is smaller

than that of the cell phone plan data set (i.e., 15).
Third, we use Choice-SL to infer the within-segment
variances in both data sets and find that the average
inferred within-segment variance for the hotel data
set is smaller than that for the cell phone plan data
set. Recall that in Section 3.2 we found that Choice-
SL is likely to perform better relative to the NCM
model in terms of predictive accuracy when the num-
ber of calibration choice sets is small and the within-
segment variance is small. Therefore, the results in
Table 7 are consistent with our findings in the simula-
tion experiments.

4.3. Graphical Illustration of
Partworth Estimates

In this section, we provide graphical illustrations
of the individual-level heterogeneity representations
recovered by the four methods on the three field
data sets. Given a conjoint estimation method and a
data set, we estimate a density for each partworth by
applying a kernel smoothing density estimator to the
individual-level point estimates of the partworth for
all respondents.

To illustrate, we plot the density estimates for the
following partworths. Figure 1 displays the density of
intercept in the personal computer data set. The den-
sity curves estimated by Metric-SL, the NCM model,
and RR-Het are qualitatively similar and exhibit
largely unimodal continuous shapes, while the FM
model recovers three spikes in the density curve. Fig-
ure 2 shows the density of the partworth correspond-
ing to location in the hotel data set. It is evident
that the density curves estimated by Choice-SL and
the FM model display multimodal continuous shapes,
whereas those estimated by the NCMmodel and LOG-
Het are unimodal. In Figure 3, we plot the density
of the partworth corresponding to plan minutes in
the cell phone plan data set. The density curves of
all methods except LOG-Het show multimodal con-
tinuous shapes, with the multimodality estimated by
Choice-SL and the FM model being more pronounced
than that estimated by the NCM model. Density
estimates for other partworths are available from the
authors on request.

4.4. Comparison on Pricing Implications
We use the hotel data set as an example to compare
the pricing implications of the four conjoint estima-
tion methods. To illustrate, we consider a hotel pro-
file with the following attributes: brand set to Westin,
location and Internet access set to high levels, and
restaurant, gym, and rewards points set to medium
levels. We use the individual-level partworth estimates
obtained from each method to derive the individual-
level willingness to pay (WTP) defined as the price at
which a respondent is indifferent between choosing
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Figure 1. (Color online) Density Plots: Intercept in the Personal Computer Data Set
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this particular hotel profile and the no-choice option
(Jedidi and Zhang 2002). To ensure that the WTP esti-
mates are plausible, we set the minimum (respectively,
maximum) feasible WTP to $0 (respectively, $1,000).

We find that the primary distinguishing charac-
teristic between the WTPs estimated by Choice-SL
and the other three methods is that the latter infer
a large WTP for more respondents. Choice-SL infers
that 34.6% of respondents have a WTP greater than
$300, whereas the NCM model, the FM model, and
LOG-Het estimate this proportion to be 50.5%, 41.0%,
and 43.1%, respectively. This difference in the esti-
mates for the fraction of respondents with large WTPs
has a substantial impact on the revenue-maximizing
prices implied by different methods.13 Choice-SL, the
NCM model, the FM model, and LOG-Het set the
revenue-maximizing prices to $216, $477, $458, and
$790, respectively. Furthermore, Choice-SL, the NCM
model, the FM model, and LOG-Het estimate the pro-
portion of respondents who would prefer the hotel

profile described above to the no-choice option at
the revenue-maximizing prices to be 55.3%, 33.5%,
37.2%, and 17.6%, respectively. Hence, the four con-
joint estimationmethods imply different pricing strate-
gies. Choice-SL recommends using a moderate price
to capture a large chunk of the market, whereas the
other three methods (especially LOG-Het) recommend
using a high price to extract revenue from a smaller
segment of respondents with high WTPs. Given that
the highest price shown in all hotel profiles was $250,
we find that the pricing decision of Choice-SL has
higher face validity.

5. Conclusions
Consumer preferences can often be modeled using an
MCH distribution, and adequate modeling of MCH
is critical for accurate conjoint estimation. In this
paper, we propose an innovative SL approach for
modeling MCH. The SL approach models MCH via
a two-stage divide-and-conquer framework, in which
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Figure 2. (Color online) Density Plots: The Partworth Corresponding to Location in the Hotel Data Set

–1.0 –0.5 0 0.5 1.0 1.5 2.0
0

0.2

0.4

0.6

0.8

1.0
Choice-SL

–3 –2 –1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5
NCM

–0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

0.5

1.0

1.5

2.0
FM

–1.0 –0.5 0 0.5 1.0 1.5 2.0
0

0.5

1.0

1.5
LOG-Het

MCH is decomposed into a small collection of within-
segment UCH distributions using sparse learning
methodology, and each UCH is then modeled sep-
arately. Consequently, we explicitly account for both
across-segment and within-segment heterogeneity in
the SL model. In addition, the amount of shrinkage
imposed to recover the individual-level partworths is
endogenously selected using cross-validation.
We test the empirical performance of our SL

model and compare it to the finite mixture model
(Kamakura and Russell 1989, Chintagunta et al.
1991), the Bayesian normal component mixture model
(Allenby et al. 1998), and the convex optimization
model of Evgeniou et al. (2007) using extensive simu-
lation experiments and three field data sets. We find
that our SL model demonstrates a consistently strong
performance across a wide range of experimental con-
ditions as well as field data sets with distinct char-
acteristics. We also show the managerial relevance
of our SL model using an optimal pricing exercise

in which the SL model generates a more plausible
revenue-maximizing price.

There are several promising avenues for future
research. First, we can consider an extension of our SL
model by incorporating kernel methods (Vapnik 1998),
which were introduced to marketing by Cui and Curry
(2005) and Evgeniou et al. (2005). Second, researchers
can also consider other population-based complexity
controls to improve the capability for modeling MCH.
Third, our SL model, like the finite mixture model
and the Bayesian normal component mixture model,
can be applied to estimate consumers’ heterogeneous
preferences in settings other than conjoint analysis,
e.g., scanner panel data sets, and it may be fruitful
to compare our SL model with benchmark models in
such settings. Finally, an interesting research direc-
tion is to explore the potential of machine learning
methods in modeling other phenomena in marketing
beyond consumer heterogeneity.
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Figure 3. (Color online) Density Plots: The Partworth Corresponding to Plan Minutes in the Cell Phone Plan Data Set
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Endnotes
1Applications of nonparametric Bayesian methods in marketing
include the Dirichlet process mixture model (Ansari and Mela
2003, Kim et al. 2004) and the centered Dirichlet process mixture
model (Li and Ansari 2013). While nonparametric Bayesian meth-
ods provide more flexibility, they still suffer from the same limi-
tations faced by the NCM model. With ongoing research in this
area, we expect to see systematic comparisons between the benefits
of using parametric and nonparametric Bayesian methods. In this
paper, we compare our model with the FM and NCM models,
which are more established modeling frameworks.

2We discuss the rationale behind sparsity-inducing penalty func-
tions in the Web appendix.
3The specification for {θik} in (3) uses only information con-
tained in the conjoint data. Other information sources, e.g., con-
sumers’ demographic variables, can be readily incorporated in the
specification for {θik}, and hence our SL model via a simple exten-
sion of (3). We discuss the extension in the Web appendix.
4We note that in (Metric-SEG), the amount of penalty imposed on
‖βS

i − βS
k ‖2 is controlled by λθik . In the empirical implementation

of our SL model, we normalize θ � (θik) such that | |θ | |2 � 1 and
interpret the regularization parameter λ as controlling the “total”
amount of penalty imposed on ‖βS

i − βS
k ‖2’s.

5The specification for Θ used in simulation experiments and field
applications is summarized in the Web appendix.
6 In the empirical implementation of our SL model, we set
M � 10%I, such that any valid segment contains a nonnegligible
portion of the population. The simulation experiments and field
applications confirm the effectiveness of our choice of M.
7Recall that we also obtain a set of individual-level partworth esti-
mates {B(Γ)} by solving (Metric-SEG). We retain only the set of
candidate segmentations Φ and exclude {B(Γ)} as the output of
the first stage because the latter are biased. We provide a detailed
discussion about the bias in {B(Γ)} in the Web appendix.
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8The specification for Ξ used in simulation experiments and field
applications is summarized in the Web appendix.
9 In addition to parameter recovery and predictive accuracy, we
also compared the computation times of Metric-SL and the NCM
model and report the results in the Web appendix.
10Num-S-Dummyt � 1 when Num-St � 3; Num-P-Dummyt � 1 when
Num-Pt � 27; and EV-Dummyt � 1 when EVt � 1.5.
11 In addition to parameter recovery and predictive accuracy, we
also compared the computation time of Choice-SL and the NCM
model and report the results in the Web appendix.
12We differed from Iyengar et al. (2008) in that we standardized all
continuous attributes, i.e., each continuous attribute was demeaned
and divided by its standard deviation, before model estimation.
The standardization is a widely adopted technique in the statistics
and machine learning literature (Tibshirani 1996) that ensures that
all continuous attributes have similar scales.
13 If cost data were present, we could determine the profit-maxi-
mizing price.
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