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Abstract

A large class of two-sided matching models that include both transferable and non-
transferable utility result in positive assortative matching along a latent index. Data from
matching markets, however, may not exhibit perfect assortativity due to the presence
of unobserved characteristics. This paper studies the identification and estimation of
such models. We show that the distribution of the latent index is not identified when
data from one-to-one matches are observed. Remarkably, the model is non-parametrically
identified using data in a single large market when each agent on one side has at least
two matched partners. The additional empirical content in many-to-one matches can be
illustrated using simulations and stylized examples. We then derive asymptotic properties
of a minimum distance estimator as the size of the market increases, allowing estimation
using dependent data from a single large matching market. The nature of the dependence

requires modification of existing empirical process techniques to obtain a limit theorem.
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1 Introduction

Assortative matching along a variety of dimensions has been well documented in many matching
markets. There has been growing interest in estimating the underlying preferences that generate
these patterns.! This is an important step for quantitatively evaluating economic questions
such as equilibrium effects of policy interventions or changes in market structure. However, a
researcher often has access only to data on matches instead of direct information on preferences
and only on a limited set of characteristics. Unobserved characteristics result in deviations
from the central assortative tendency observed in the data, and they can be important in
understanding the distribution of preferences.

We study the identification and estimation of preferences in a large matching market in which
the attractiveness of agents to the other side of the market can be summarized using a single
dimensional index that aggregates an unobserved characteristic and multidimensional observed
characteristics. We assume that the matching is positive assortative along this latent index.
The positive assortative match is the unique pairwise stable match if utility is non-transferable,
but also if utility is transferable and the total surplus is supermodular. While the single index
model is canonical in the theoretical literature (see Becker, 1973), it is clearly restrictive as it
rules out heterogeneity in preferences. At the cost of this restriction, compared to the large
body of empirical work following Choo and Siow (2006), we present a non-parametric approach
to identification that not only allows for unobserved agent characteristics that are valued by
the other side,? but that is also agnostic about whether utility is transferable. This single-index
assumption has been useful in empirical analyses of the marriage market (see Chiappori et al.,
2009, 2012, for example). The model may also provide an approximation in labor or education
markets in which workers or students are primarily differentiated by skill and firms or colleges
are primarily differentiated by quality. Further, the insights and results from our analysis have

proven useful to empirical approaches in related models (see Agarwal, 2015; Vissing, 2016;

!See Fox (2009) and Chiappori and Salanié (2015) for surveys.

2Choo and Siow (2006) assume that the (pre-transfer) utility of agent i for partner j is given by w;; =
¢ (xi, 2;) + €i (25), where z; and z; are observed. Therefore, characteristics of agent j that are not observed in
the data do not directly affect the utility of agent .



Jiang, 2016; Agarwal, 2017).

Estimates of the distribution of the latent index as a function of observables are useful for
the analysis of many economic questions. For instance, quantitatively evaluating the trade-
off for firms between workers’ experience or education and unobserved productivity, or the
trade-off for workers between wages and the value of amenities such as on-the-job training
may require estimates that account for unobserved characteristics. Similarly, evaluating the
consequences of a market reform (such as policies that place limits on college tuition) can
require estimating the distribution of latent indices on both sides of the market. Identifying
and estimating preferences of agents on both sides of the market may be a challenging exercise
because equilibrium matches are jointly determined by both sets of preferences: when we see
a student enrolling at a particular college, it need not be the case that the college is her most
preferred option because she may have not been accepted at a more preferred institution.

We study these problems assuming that the available data are from a large market. This
approach is motivated by the fact that data from several matching markets with the same
underlying structure are rare compared to data from a few markets with many agents. For
example, public high school markets, colleges, the medical residency market, and marriage
markets have at least several thousand participating agents. For similar reasons, recent papers
in the theoretical matching literature have utilized large market approximations for analyzing
strategic behavior and the structure of equilibria.® In our analysis, large market approximations
highlight and account for important interdependence between matches within a market in the
asymptotic analysis of our estimator.

Even with the stark restriction that preferences are homogeneous, our first result on identifi-
cation is negative. We show that the distribution of the latent index is not identified from data
from a single large market with one-to-one matches. Indeed, we construct an example paramet-
ric family of models of one-to-one matching that are observationally equivalent. This example
illustrates that our non-identification result is not pathological. Intuitively, the observed joint

distribution of agents and their match partners, which we refer to as sorting patterns, does

3See Immorlica and Mahdian (2005); Kojima and Pathak (2009); Azevedo and Budish (2013), for example.



not allow us to condition on unobservables. The non-identification arises because unobservable
characteristics of either side of the market could be driving these sorting patterns. These results
imply limitations on what can be learned using data on one-to-one matches and guide the use of
empirical techniques. For instance, they weigh against estimating the distribution of the latent
index in marriage markets using data from a single market. Nonetheless, data from one-to-one
matches may still be useful for certain questions. We show that the relative value of various
observed characteristics are identified with one-to-one matches. However, this limits the scope
of questions that may be answered with such data.

In contrast to the non-identification result with one-to-one matches, we show that the dis-
tribution of latent indices on both sides of the market is non-parametrically identified from
data on many-to-one matches. The key insight is that the same value of the unobservable char-
acteristic of an agent determines multiple matches for that agent. The formal result requires
that each agent on one side of the market is matched to at least two agents on the other side,
a requirement that is likely satisfied in many education and labor markets. To the best of our
knowledge, this difference between the empirical content of one-to-one matching and many-to-
one matching has not been previously exploited to obtain non-parametric identification results
of a model with unobserved characteristics. Our proof is based on interpreting the matching
model with two-to-one matches in terms of a measurement error model (Hu and Schennach,
2008). This reinterpretation makes the additional empirical content of many-to-one matches
ex-post intuitive: the observable components of a worker’s quality provide a noisy measure of
the overall quality of her colleagues. As in measurement error models, we use the repeated
measurements made available when many workers match with the same firm to identify the
model.

We also use simulations from a parametrized family of models to illustrate the additional
identifying information available in many-to-one matches. Our simulations suggest that mo-
ments that only use information available in sorting patterns are not able to distinguish between
a large set of parameter values. In the context of one-to-one matching, this is the only infor-

mation observed in a dataset from a single large market. In contrast, our simulations also



suggest that additional moments constructed from many-to-one matching can be used to dis-
tinguish parameter values that yield indistinguishable sorting patterns. An objective function
constructed from both sets of moments has a global minimum near the true parameter. These
simulations suggest that using such information is important in empirical applications. For
example, they suggest that moments such as the within-firm variance in worker observables
contain information about primitives beyond what can be learned from the covariance between
worker and firm observables. We therefore recommend empirical strategies that use information
from many-to-one matching, when available.*

We then study the asymptotic properties of a minimum distance estimator for a parametric
model based on a criterion function that uses moments from many-to-one matching as well as
sorting patterns. As in the identification analysis, we develop an asymptotic theory based on
data from a single market with the number of agents growing large. This approach requires
us to deal with technical challenges that arise from the dependence of each match on the
characteristics of all agents in the market. We prove both consistency and v/ N—asymptotic
normality of the estimator. For simplicity, we restrict attention to the case with two-to-one
matching. To our knowledge, ours is the first result on asymptotic theory for an estimator in
a single large matching market.

Our asymptotic theory requires us to confront the fact that the observed matches, as well
as the model predictions, are a non-linear function of the observables and unobservables in the
entire market. We separately analyze the sampling distribution of the moments in the data
and the map from the structural parameters to these moments. To prove a limit theorem for
the sampling distribution of the moments in the data, we use the fact that the distribution
of the observed characteristics of matched pairs depends only on the latent index. Hence, the
conditional distribution of the observables given the latent indices are independent on the two

sides of the market. This insight allows us to derive the asymptotic distribution of the moments

41f data from many-to-one matches is not available, it may be possible to use variation in market composition
to identify the distribution of latent indices. We are not aware of any formal results that show that such variation
is sufficient for identification. This approach may require assuming that the parameters governing the primitives
are constant across the markets.



of the data.

Then, we study the model’s prediction for the moments as a function of the structural para-
meters and the observables in the data. Analyzing this map is challenging because the matches
depend on the characteristics of all agents in the market. This generates dependency that can-
not be analyzed using standard empirical process techniques for i.i.d. data (e.g. van der Vaart
and Wellner, 2000). In particular, deriving the sensitivity of the matches between extremely
desirable or extremely undesirable agents to the parameter requires controlling the tail behav-
ior of the latent index. We make progress by first showing that this map, ignoring the tails of
the latent utilities, is smooth — specifically, Hadamard differentiable — in the sampled observed
characteristics. This allows us to use continuous mapping theorems and the functional delta
method to show convergence properties, except at the tails. When the tails are negligible, the
limit as the size of the tails we ignore goes to zero yields large sample properties of the moment
function.

The dependence inherent in the model also complicates the analysis of these tails. We
show that the tails are negligible by adapting a chaining argument from the empirical process
literature (Pollard, 2002), replacing a tail bound for i.i.d. data used in the existing proof with
a concentration of measure inequality (Boucheron et al., 2003) suitable to the dependent data
in our problem. This method allows us to prove the equicontinuity results necessary for the
limit theorem. For simplicity of exposition in the main text, the technical regularity conditions
on the primitives that justify this approximation are detailed in the appendix. Finally, we use
Monte Carlo simulations to study the property of a simulated minimum distance estimator.

The paper starts with a brief discussion of the related literature, after which we present the
model (Section 2). Section 3 discusses identification with one-to-one and many-to-one matching,
Section 4 presents our asymptotic analysis of the estimator, and Section 5 presents Monte Carlo
results. All proofs are in the Appendix.

Related Literature: Most of the recent literature on identification and estimation of
matching games studies the transferable utility (TU) model, in which the equilibrium governs

the matches as well as the surplus split between the agents with quasi-linear preferences for



money (Choo and Siow, 2006; Sorensen, 2007; Fox, 2010a; Gordon and Knight, 2009; Galichon
and Salanie, 2012; Chiappori et al., 2015, among others). The equilibrium transfers are such
that no two unmatched agents can find a profitable transfer in which they would like to match
with each other. The typical goal in these studies is to recover a single aggregate surplus that
determines the equilibrium matches. A branch of this literature, following the work of Choo
and Siow (2006), proposes identification and estimation of a transferable utility model based
on the assumption that each agent’s utility depends only on observed characteristics and an
unobserved taste shock drawn from a specified distribution. Using this assumption, the papers
propose estimation and identification of group-specific surplus functions (Choo and Siow, 2006;
Galichon and Salanie, 2012; Chiappori et al., 2015). A different approach to identification
in transferable utility models, due to Fox (2010a), is based on assuming that the structural
unobservables are such that the probability of observing a particular match is higher if the total
systematic, observable component of utility is larger than an alternative match. Compared to
these approaches, our study is restricted to a single index model but incorporates both TU and
NTU matching in a non-parametric framework. We also allow for unobserved characteristics
of the partner to affect agent preferences and are interested in identifying the distribution of
unobservable characteristics, which are not considered in the maximum score approach by Fox
(2010a).

In many applications, inflexible monetary transfers or counterfactual analyses that require
estimates of preferences for agents on both sides of the market motivate the use of a non-
transferable utility model (c.f. Roth and Sotomayor, 1992). Previous analysis of NTU models
have resulted in only partial identification. Hsieh (2011) follows Choo and Siow (2006) in
assuming that agents belong to finitely many observed groups and that agents have idiosyncratic
tastes for these groups. The main identification result in Hsieh (2011) shows that the model
can rationalize any distribution of matchings in this setting, implying that the identified set
is non-empty. Menzel (2015) studies identification and estimation in a non-transferable utility
model in a large market where agent preferences are heterogeneous due to idiosyncratic match-

specific tastes with a distribution in the domain of attraction of the Generalized Extreme Value



(GEV) family and in which observable characteristics have bounded support. Menzel (2015)
finds that only the sum of the surplus of both sides obtained from matching is identified from
data on one-to-one matching. The result that identification is incomplete with one-to-one
matching is similar in spirit to our negative result on identification. While these papers focus
on the one-to-one matching case, our results exploit data on many-to-one matches to non-
parametrically identify preferences of both sides of the market, although our results come at
the cost of assuming homogeneous preferences.

With the exception of Chiappori et al. (2012) and Galichon et al. (2014), previous models are
typically restricted to either non-transferable or transferable utility. The objective in Galichon
et al. (2014) is to generalize the Choo and Siow (2006) framework to models of imperfectly
transferable utility. Our framework is closer to that of Chiappori et al. (2012), which studies
a marriage market with positive assortative matching. They also assume a single index model
and allow for both transferable and non-transferable utility matching. They show that the
marginal rates of substitution between two observable characteristics is identified using data on
one-to-one matching. Our identification results with data on one-to-one matching are consistent
with their results, but may also explain why Chiappori et al. (2012) may not have estimated
the distribution of the latent index with their data. Specifically, we show that a many-to-one
matching market is needed for such identification. Agarwal (2015) and Vissing (2016) use our
insight on the information in many-to-one matching to respectively estimate preferences in the
market for medical residents and the market for oil drilling contracts using simulated minimum
distance estimators. This approach is different from work by Logan et al. (2008) and Boyd et al.
(2013), who propose techniques that use only the sorting of observed characteristics of agents as
given by the matches (sorting patterns) to recover primitives. Our result on non-identification of
a single-index model with data only on sorting patterns implies that a more general model with
heterogenous preferences will also not be identified. Therefore, our results suggest that point
estimates obtained using only information in sorting patterns may be sensitive to parametric
assumptions.

A few empirical papers estimate sets of preference parameters that are consistent with pair-



wise stability (Menzel, 2011; Uetake and Watanabe, 2013). The concern that preferences need
not be point identified with one-to-one matches does not necessarily apply to these approaches.
For example, Menzel (2011) uses two-sided matching to illustrate a Bayesian approach for es-
timating a set of parameters consistent with an incomplete structural model. Our results on
non-identification and subsequent simulations that use information on sorting patterns suggest
that a rather large set of parameters are observationally equivalent. While these results im-
ply that the identified set may be large, these approaches may still be informative for certain
questions of interest.

Our finding that data from many-to-one matching is important in identification is related to
work by Fox (2010a,b) on many-to-many matching. In these papers, many-to-many matching
games allow identification of certain features of the observable component of the surplus function
when agents share some but not all partners. This allows differencing the surplus generated
from common match partners to learn valuations. In our setting, many-to-one matching plays
a different role in that it allows us to learn the extent to which unobservable characteristics of
each side of the market drive the observed patterns.

The results on identification with many-to-one matching are based on techniques for iden-
tifying non-linear measurement error models developed in Hu and Schennach (2008). These
techniques have been applied to identify auction models with unobserved heterogeneity (Hu
et al., 2013), and dynamic models with unobserved states (Hu and Shum, 2012). To our knowl-
edge, these techniques have not been previously used to identify matching models.

Finally, we use a novel approach for dependent data to prove our limit theorems because
standard empirical process theories for i.i.d. data are not applicable in our context. This
feature of our model may be shared with other contexts, such as network formation models (c.f.
Graham, 2014; Boucher and Mourifie, 2012; Chandrasekhar and Jackson, 2015; Leung, 2015).
A common technique in the asymptotic analysis of network models is based on assuming that
dependence across links decays with a notion of distance between two nodes. Our application
of concentration of measure inequalities removes the need for an analogous assumption in our

model.



2 Model

We consider a two-sided matching market with one side labelled as workers and the other
labeled firms. Although these labels are suggestive of a labor market, the model may be
applied to other two-sided matching markets, including matching of students to schools, and
the marriage market. Our model does not presume a monetary transfer between the two
sides of the market, and will include both non-transferable and transferable utility cases. We
first describes the latent indices that will be the object of interest in our identification and
estimation analysis before discussing their interpretation in transferable and non-transferable

utility models. Finally, we discuss questions of interest that may be answered in this framework.

2.1 Latent Indices

Most datasets have information on a limited number of characteristics on each side of the
market. Let the observable characteristics of worker ¢ be z; and the observable characteristics
of firm j be z;. Given our focus on positive assortative matching, we posit two latent quality
indices, v; and u;, one for each side of the market. These indices simply order workers and firms
by quality and do not impose cardinal restrictions. For instance, firms may have heterogeneous
production functions that take human capital (v;) as an input. The latent indices can depend
on both observable characteristics as well as unobserved characteristics. Specifically, we assume

that worker 7’s human capital index is given by the additively separable form

V; = h (l’z) + Ei, (1)

where we set the location normalizations h (Z) = 0 for some Z, assume that ¢ is median zero,
and set the scale normalization |Vh (Z)| = 1. Because an additively separable representation of
preferences is unique up to a positive affine transformation, the scale and location normalizations
are without loss of generality. These normalizations ensure that the latent indices in our model

are well defined.



The scalar unobservable ¢; aggregates the effect of all relevant determinants worker quality
that are not observed in the dataset. Additive separability in ¢; implies that the marginal value
of observable traits does not depend on the unobservable.

As for the model for the human capital index, we assume that quality of firm j is given by

uj = g(2) + 1, (2)

with the normalizations g (Z) = 0, n is median zero and |Vg (2)| = 1. The quality of the firm
may reflect productivity differences or on-the-job amenities for workers. For instance, one may
also include wages in this model through one of the characteristics z; if they are not negotiated
during the matching process. This approach may be used to model medical residency markets
or colleges/schools in countries with non-negotiable tuition rates.

We make the following assumptions on the model:

Assumption 1 (i) € and n are independent of X and Z respectively

(it) € and 1 have bounded, differentiable densities, f. and f,, with full support on R, and
non-vanishing characteristic functions

(111) h (-) and g () are differentiable and have full support over R

(iv) The random variables h(X) and g(Z) admit bounded continuous densities f, and f,

Assumption 1 (i) assumes independence of the unobservables. On its own, independence
is not particularly strong, but the restriction of additive separability makes this restrictive.
Additive separability with independence is commonly used in discrete choice literature as it
significantly eases the analysis. Assumption 1 (ii) requires that ¢ and 1 have large support and
imposes technical regularity conditions on their distributions that will be useful in our identifi-
cation analysis. The support conditions in Assumption 1 (iii) ensures that the observables can
trace out the distribution of € and 7 in the tails as well, and Assumption 1 (iv) requires at least

one covariate to be sufficiently smooth while others may be discrete.
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2.2 Positive Assortative Matching

The composition of the market is described by a pair of probability measures, uy . and py,.
Here, . is the joint distribution of workers’ observable traits x € x C R*= and unobservable
traits ¢ € R. Likewise, 114, is the joint distribution of firms’ observable traits z € ¢ C R*- and
unobservable traits 7 € R. This formulation allows us to consider large but finite economies,
as well as a continuum limit in a unified notational framework. For instance, an economy with
N agents on each side can be represented with the measures Ixe)y = % Yo 0(x,e and
M Zmy = zlv Z;L=1 0 (Z3m,)’ where dy is the dirac delta measure at Y.

A one-to-one match is a probability measure p on (x x R) x (¢ x R) with marginals py
and 1z, respectively. The measure p could be used to represent a continuum limit as well as
a finite-economy match. The traditional definition of a finite-market match used in Roth and
Sotomayor (1992) is based on a matching function p* (i) — J U {i}, where J is the set of
firms. For an economy of size N, with probability 1, such a function defines a unique counting
measure of the form py = % Zgjzl 5()(

) where ¢ (x ) > 0 only if 7 is matched to

i€,2,1; +€4,45,1;

J in a finite sample. When 7 and ¢ admit a density, in a finite economy, (z,7) (respectively
(z,€)) identifies a unique firm (respectively worker) with probability 1.> A many-to-one match
with M partners on one side is defined analogously as a measure p on (y X R)M X (¢ x R).

The match p is positive assortative if there do not exist two (measurable) sets S; C xy xR
and S; C ¢ x R in the supports of yix . and p1, respectively, such that sz (h(X) +e)dux,. >
Js, (W(X) +¢e)du(-,Sy) and [g (9(Z) +n)dug, > [s (9(Z)+n)du(Sr,-). This definition
considers two potential sets of agents Sy and S;. If sz (h(X)+e)dux,. > sz (h(X)+e)du(-,Sy),
then the expected value of the latent indices of agents in S are larger than those matched with
Sy. The analogous inequality for agents in S; yields the second condition. Hence, there are no
such sets if these inequalities are not simultaneously satisfied for any pair S; and S, and the

matching is assortative.’

’In addition to a traditional matching function, in a finite sample our definition also allows for fractional
matchings. However, such realizations are not observed in typical datasets on matches.

6We do not consider unmatched agents for two reasons. First, different equilibrium notions matching (TU
or NTU) impose different restrictions on preferences for unmatched agents. Using the implications of positive

11



This formulation presents a unified definition for assortativity in continuum markets as
well as markets with a finite number of agents. In the finite market case, consider a match
in which an agent with characteristics (z,e) (respectively (z’,¢’)) is matched with an agent
with characteristics (z,7) (respectively (2’,7')). Now, consider singleton sets S; = {(x,¢)}
and S; = {(2/,7)}. The inequalities above imply that either h (z) + ¢ < h(z’) + &’ or that
g(Z)+ 1 < g(2) +n. Therefore, there are no such pairs of sets in the finite markets if the
conditions of our definition are satisfied. In what follows, we simply assume that the market
is characterized by positive assortative matching. As we discuss in the next few sections, this
assumption encompasses both transferable and non-transferable utility models.

Further, our model requires that the matching only depends on the latent index. This
assumption is vacuous in finite samples because ties are zero-probability events. Shi and Shum
(2014) formalize this as "random matching" in a continuum version of the Beckerian marriage
model. They note that without this assumption, the distribution of observed characteristics
of matched partners is indeterminate. Our consistency results imply that the moments of the
finite sample data naturally converge to a population analog with this property. Therefore, the

data generating process we consider has the following property in a positive assortative match:

Remark 1 A positive assortative match p has support on (x,e,z,n) only if Fiy (u(z,n)) =
Fy (v(x,¢€)), where Fyy and Fy are the cumulative distributions of u and v respectively. Further,

the latent index is a sufficient statistic for the distribution of match partners.

Hence, the firm with the ¢g-th quantile position of value to the worker is matched with the
worker with the ¢-th quantile of desirability to the firm. The dependence only on the latent
index, in the one-to-one case, implies that pux ., = px 7, if 9(Z) +n = g(Z') + 7' and
Bzmx.e = Hzyx e if h(X)+e=h(X")+¢e. Our paper studies identification and estimation of

the latent utility indices using data from a matching market with this property. As described

assortative matching alone allows us to be agnostic about the nature of transfers. Second, many datasets do
not have information on unmatched agents. For example, typical employer-employee matched datasets do not
contain the number of job openings, and Agarwal (2015) does not have information on medical residents that
were not placed at residency programs.

12



below, it turns out that positive assortative matching on v and u can result from both non-

transferable and transferable utility models.

2.2.1 Non-transferable Utility (NTU) Matching

Models of matching markets in which transfers between the parties are prohibited or restricted
are commonly used in the theoretical literature (c.f. Roth and Sotomayor, 1992). Motivating
examples include marriage markets, public schooling, and colleges. In such a model, the latent
indices v; and u; are interpreted as representing the ordinal preference relation for their match
partners. Because these indices are ordinal, the framework allows for each firm j to have a
separate production function ®; (v) as long as ®; is strictly increasing in v. In the many-to-
one matching case, a focus of this paper, we will assume that ®; is increasing in each of its
components. Specifically, ®; (v1, v2) is increasing in both v; and v, when a firm is matched with
two workers.

The typical equilibrium assumption is that of pairwise stability, which makes two restric-
tions. First, there is no worker-firm pair such that both agents prefer matching with each other
to their current match (where the firm can fire a currently matched worker, if necessary). Sec-
ond, no worker or firm is matched with an unacceptable partner. Existence of a pairwise stable
match follows in a finite market because preferences are responsive (Roth and Sotomayor, 1992)
and uniqueness follows from alignment of preferences as discussed in Clark (2006) and Niederle
and Yariv (2009). Tt is easy to see that the unique pairwise stable match is positive assortative
on the latent indices v; and u;. Given our focus on positive assortative matching, we assume
that all workers and firms are acceptable to the other side.

Although the models are referred to as non-transferable utility models, the model can in-
corporate transfers that are not simultaneously determined with the matching. In this case,
one of the observables includes the salary offered by program j. Estimating the latent index
allows one to measure the willingness to pay for various on-the-job amenities by assuming a
functional form, say

u; = z;f + wj + ;. (3)

13



For instance, Agarwal (2015) uses a similar model to quantify the value for various attributes
of medical residency programs such as size, prestige, and patient mix.

An important restriction in the latent index framework is that agents have homogeneous
ordinal preferences over their match partners. While the theoretical literature assumes very
general preferences when studying the existence of stable matchings, formal identification and

estimation analysis is yet to incorporate significant heterogeneity in preferences.

2.2.2 Transferable Utility (TU) Matching

Our latent index framework fits well into the classical Beckerian model of the marriage market.
This matching model posits men and women differentiated by a one-dimensional characteristics
that split a surplus from marriage given by ® (u;,v;). A matching is pairwise stable if there
are transfers t;; (possibly negative), such that no man-woman pair find it mutually beneficial
to agree to a transfer and match with each other. As is well known, the unique pairwise
stable match is positive assortative on uw and v if ® (u;,v;) is supermodular. This elegant
model has received a considerable amount of attention, and patterns of positive assortative
matching observed along age, income, and education in various marriage markets have been
well documented.

A thrust of our paper is the consideration of many-to-one matching. In this case, we assume
separability of the surplus function across matches in order to maintain positive assortative
matching on the latent indices. Specifically, we assume that the surplus generated by firm with
index u; that is matched with workers v; and vy, is given by

D (v;, Vg, uy) = @(vi,uj) + @ (vg, uj), (4)

where ®. is supermodular. The assumption rules out complementarities across matches but
retains positive assortativity in a pairwise stable match. It also assumes that the multiple
matches for an agent are symmetric. For example, in the worker-firm context, the model is best

suited for a market in which firms are hiring multiple workers with the same job description.
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2.3 Unobserved Characteristics

The lack of perfect positive assortative matching on observable characteristics may be attribut-
able to unaccounted preference heterogeneity or unobserved characteristics. These unobserved
characteristics are important for rationalizing the data. Previous approaches have typically
focussed on the identification of observable components of utility, often under parametric as-

" For instance, Chiappori et al.

sumptions on the distribution of unobserved characteristics.
(2012) study a single index model like ours and obtain identification of the marginal rates of

substitution

Oh (x) /0x4 and g (2) /0=
Oh (x) /O g (2) [0z

These quantities can be used to determine the trade-offs between observables, such as the
trade-off between a worker’s education and experience. Some economic questions, however,
may require an analysis of unobservables. For example, one may be interested in knowing how
much of a worker’s human capital is explained by experience and/or education. This exercise
may require decomposing the variance of human capital into observable and unobservable com-
ponents. Similarly, questions about compensating differentials in labor markets require valuing
on-the-job amenities or training, some components of which may not be observed.

While several objects of interest can be measured through these marginal rates of substitu-
tion between observed characteristics, many economic questions require a deeper understanding
of how agents’ preferences respond to interventions in matching markets. For example, one may
be interested in the effect of a subsidy on college tuition on matches that occur in equilibrium.
To predict the counterfactual matches, one needs to measure the effect of this subsidy on the rel-
ative desirability of various colleges to students. Changes in the relative desirability of colleges
depend on the monetary value students place on unobserved college characteristics. Therefore,

an important objective in this paper is to understand when the distributions of ¢ and 7 are

"For instance, Galichon and Salanie (2012) generalize the model by Choo and Siow (2006) and show that ®,,,
is identified for a separable surplus function of the form ®;; = &, +¢; (2;) +n; (;) with known distributions
of €; (z;) and n; (z;). These models therefore allow for unobserved preferences for observed characteristics,
but do not allow for unobserved characteristics. Menzel (2015) studies an NTU model with a light restriction
on tail behavior of the unobservables to identify the sum of the match surpluses accruing to each side due to
observables.
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identified, which in turn implies identification of the probabilities

P (h (1) +e1 > h(x2) + e2]|21,72) and P (g (21) + 1y > g (22) + myl21, 22) - (5)

These choice probabilities are also fundamental in the analysis of counterfactual changes in
market structure, market composition, and other policy-relevant counterfactuals.

It is important to note that the latent indices we analyze, v and v, are ordinal measures
of the desirability of agents in the market. Identification of the total surplus function in the
transferable utility case, ® (u, v), or a cardinal measure of utilities in the non-transferable utility
case will require additional assumptions. For example, one may simply interpret the latent
index as a utility measure in the NTU case or assume a particular structure for the surplus
function in the TU case if this is desirable for the empirical application being considered. We
avoid these assumptions for simplicity and to retain generality with respect to these choices. In
applications where one of the observed traits presents a natural measure of value, our indices

can be interpreted in units of this metric for value.

3 Identification

This section starts by showing that data from a single matching market are sufficient for iden-
tifying certain features of preferences. Specifically, one can identify the indices h (x) and g (2).
We then show that data from one-to-one matches is unable to identify the distribution of the
latent indices if there are unobserved characteristics on both sides of the market. Next, we
show that data from many-to-one matching restores full identification of the distribution of

preferences. Finally, we illustrate these results using simulations.

3.1 Sorting Patterns, Indifference Curves and a Sign-restriction

We now study what can be learned from the joint distribution py, of observed firm and

worker traits. This is the marginal of 1 on the observables, and it summarizes all information
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available in data from one-to-one matching. It allows the assessment of the sorting of worker
observable traits to firm observables. We therefore refer to features of this distribution as
"sorting patterns." As our first result shows, these features of the data allow us to identify the

indices h () and ¢ (z) up to monotonic transformations.

Lemma 1 Under Assumption 1, the level sets of the functions h () and g (-) are identified from

data on a one-to-one match, i.e. iy, is observed.

Proof. See Appendix A.1. =

The result states that we can determine whether or not two worker types = and z’ are
equally desirable from the sorting patterns observed in a one-to-one matching market (hence,
also if many-to-one matches are observed). Intuitively, if two worker types have equal values
of h(-), then the distributions of their desirability to firms are identical. Consequently, the
distribution of firms they match with are also identical. In a positive assortative match, under
the additive structure of equations (1) and (2) and the independence of unobserved traits, the
distribution of firm observable types these workers are matched with turns out to be identical.
Conversely, if two worker types are matched with different distributions of firm observables,
they cannot be identical in observable quality. This result is similar to those in Chiappori et al.
(2012) that show that differentiability of i (-) and ¢ (-) implies identification of marginal rates
of substitution, which are pinned down by indifference curves.

While the level sets of A (:) and ¢ (-) are known, we cannot yet determine h (-) and g ()
even up to positive monotone transformations. In particular, we cannot tell whether a given
worker trait is desirable or not. Intuitively, assortative matching between, say, firm size and
worker age, may result from either both traits being desirable or both traits being undesirable.
The next result shows that a sign restriction is sufficient for identifying 4 (-) and g (-) up to

positive monotone transformations.

Assumption 2 (i) The functions h (x) and g (z) are strictly increasing in their first arguments
(ii) Further, for each x_1 = (xa,...,zx,) and z_1 = (22,...,2x,), h(z1,2_1) and g (z1,2_1)

have full support on R
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Part (i) imposes a sign restriction that requires that the latent index is strictly increasing in
at least one observable characteristic. It is often natural to impose this restriction in matching
markets. For example, it is reasonable to argue that the desirability of workers is increasing in
education, holding all else fixed. Given such an assumption, our next result shows that A (-)
and ¢ (-) can be determined up to positive monotone transformations. Part (ii) makes a large

support assumption that allows ordering all the level sets of h (x).

Proposition 1 If Assumptions 1 - 2 are satisfied then, h(-) and g(-) are identified up to

positive monotone transformations.

Proof. Identification of h and g up to a positive monotone transformation follows immediately
from Lemma 1 and Assumption 2. =

The sign restriction allows us to order the level sets of h and g.

3.2 Limitations of Sorting Patterns

As mentioned earlier, typical datasets do not contain all relevant characteristics of agents on
both sides of the market. The dispersion around a central positive assortative trend is a
manifestation of these unobservables. Remark 1 reflects the importance of unobservables as

workers with characteristic (z,¢) are matched with firms with characteristics (z,7) if

h(z) = Fy'oFy(g(2) +n) — e (6)

This expression indicates that there are two sources of unobservables that result in imperfect
assortativity, namely 1 and €. Without these unobservables, a researcher would observe perfect
positive assortativity along the estimated indices h (x) and g (z).

A question remains about whether we can learn about the distribution of both these un-
observables with data on one-to-one matches, which only contains information in Flxz. The
following stylized example shows that the answer is negative. A wide range of parameters could

be consistent with the data, even a highly parametric case.
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Example 2 Let h(z) = x and g(z) = z. Assume that X, Z are distributed as N (0,1) and
e, n are distributed as N (0,0%) and N (0,0%) respectively. The distributions of U and V

are therefore N (0, 1+ 0727) and N (0,1 + 0?) respectively. It is straightforward to show that

571/2
), that U|Z ~ N (Z, 0727), and that F‘;loFU = [Hof} . Therefore,

1+o2

X|V:u~N<;v

o2
1402 77 1+02

the distribution of X|Z = z is given by the distribution of

1

P o Ry () e

where ey ~ N (O, %) and n ~ N (0,0727), independently of X and Z. Hence, X|Z = z is

P 1

distributed as

where k = (1+02) (14 0}).
The distribution in equation (7) is identical for all pairs (o.,0,) with (1 + 0%) (1+02) = k.
Thus, the family of matching models with (1 + 0727) (1+ 02) = Kk are observationally equivalent

when only data from one-to-one matches is available.

The example above shows that data on one-to-one matches cannot be used to identify the
distribution of the two latent indices in the presence of unobservables on both sides of the
market. This highlights a central limitation of data from a market with one-to-one matching
such as the marriage market.® Section 3.4 illustrates this limitation using a simulated objective
function.

The failure of identification can be understood by considering the case in which ¢ = 0.
Equation (6) reduces to

h(z)=F,"oFy(g(z)+n).

This expression shows that when ¢ = 0, the model is mathematically identical to the well-

studied transformation model (Ekeland et al., 2004; Chiappori and Komunjer, 2008). Appendix

8This observation suggests one reason why Chiappori et al. (2012) do not estimate the distribution of the
latent index in their paper on the marriage market.
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C.1 uses results from Chiappori and Komunjer (2008) to formally derive conditions under which
any distribution F'y, can be rationalized.

These results imply that a model with unobservables on both sides is under-identified.
This non-identification is despite imposing additional regularity conditions. Hence, empirical
strategies to estimate the distribution of latent preferences using information in sorting patterns
may be suspect. Logan et al. (2008) and Boyd et al. (2013) employ empirical strategies that only
use sorting patterns to estimate preferences for models that include preference heterogeneity.
Our non-identification result suggests that point estimates from this approach, including for
models more general than the single index model, may be sensitive to parametric assumptions.
Such non-identification is problematic for counterfactuals relying on the probability of choices.
For instance, the result implies that the data can be rationalized in a model in which any worker

with trait « is preferred to any worker with trait 2" if h (z) > h (2'), even if this is not the case.

3.3 Identification from Many-to-One Matches

We now show that data from many-to-one matching markets can be used to identify the model.
Consider a dataset in which there are a large number of firms, and each firm has two workers
hired at the same position. Therefore, we may arbitrarily label the slots occupied by each
worker as slots 1 and 2, independently of the firm and worker characteristics. The data are
summarized by the joint distribution F'x, x, z, where X; and X, are the observed characteristics
of the two workers employed at a firm with observable characteristic Z.

To see why multiple matches per partner can be useful for identification, note that the
observed worker/firm characteristics present noisy measures of the true quality of the partners
matched with each other. Remark 1 implies that the following two equalities when workers

with characteristics (z1,¢1) and (z9,£2) are matched with a firm with characteristics (z,7):

hiz)) = FyloFy(g(z)+n) —e

h(ze) = Fy'olFy(g(z)+n) - e
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Agarwal (2015) uses this insight and discusses it in the context of the medical residency market.
The argument is that if the medical school quality of a resident is highly predictive of human
capital, then the variation within programs in human capital should be low. If unobservables
such as test scores and recommendations are important, then residency programs should be
matched with medical residents from medical schools of varying quality. Our result below
formally shows the usefulness of data from many-to-one matching. We therefore recommend

the use of this information when available.

Theorem 3 Under Assumptions 1 - 2, the functions h(-), g (-) and the densities f,, and f. are

identified when data from two-to-one matching is observed, i.e. Fx, x, z is observed.

Proof. See Appendix A.2. =

The proof proceeds by interpreting our model in terms of a nonlinear measurement error
model and employing techniques in Hu and Schennach (2008) to prove identification. To under-
stand the analogy, note that the distribution observables of matched partners depends only on
the latent index. Positive assortative matching implies that all partners have the same quantile
of the latent index. Therefore, to write the joint distributions of the observables given a quan-
tile ¢, we need to consider the conditional densities of the observables X;, X5 and Z given q.
For expositional simplicity, assume that these densities exist. Therefore, the joint distribution

fx1.x2,2,4 can be factored as follows:

fx1,%0,2,0 (X1, 22, 2, 0) = [x100 (2110) frxalg (22]0) fz14 (2]0) fo(q),

where f,(q) = 1 for ¢ € [0,1] and 0 otherwise because quantiles are uniformly distributed,
fx1q (z1]q) is the conditional density at @1 given that h(z1) +e = Fy,' (q), and fx,)q (22]q)
and fz|, (2|q) are defined analogously. Integrating this quantity with respect to ¢ yields the

observable quantity

1
Ix1,%0,2 (561,1’272) :/o le\q (1‘1@ fX2|q (562!(1) fZ\q (ZIQ) dq.
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Intuitively, this simplification arises from the latent index assumption and positive assor-
tative matching on v and u. Mathematically, this equation is identical to the nonlinear mea-
surement error model of Hu and Schennach (2008), with the latent variable ¢ governing the
distribution of the observables.” This formulation clarifies the intuition that the observable
characteristics of matched partners are noisy signals of the underlying latent index, and it al-
lows us to identify the distributions of X and Z conditional on the quantile q. We then identify
the model using the scale and location normalizations on h, g, f., f,, and Assumption 1.

While these results are derived in the specific context of a latent index model with no prefer-
ence heterogeneity, they highlight the fact that data from many-to-one matches has additional
empirical information that cannot be obtained from one-to-one matches. This insight has en-
abled and guided the empirical analyses of more flexible models of the medical match (Agarwal,
2015) and the market for oil drilling rights (Vissing, 2016). An extension of our analogy of a
matching model to a measurement error model has also been used to prove identification results

for and study a labor market model with data on worker productivity (Jiang, 2016).

3.4 Importance of Many-to-one Match Data: Simulation Evidence

The identification results presented in the previous section relied on observing data from many-
to-one matching, and they show that the model is not identified using data from one-to-one
matches. In this section, we present simulation evidence from a parametric version of the model
to elaborate on the nature of non-identification and to illustrate the importance of using infor-
mation from many-to-one matching in estimation. To mimic realistic empirical applications,
our simulations have firms with varying capacity instead of the fixed number of workers per
firm.

We simulate a dataset using known parameters and then compare objective functions of
various minimum distance estimators. Specifically, we compare an objective function that

exclusively uses moments based on sorting patterns to another that also uses information from

9A technical difference with Hu and Schennach (2008) is that we replace Assumptions 1 and 5 in their paper
with implications of Assumptions 1. See appendix for details.
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many-to-one matching. We model the latent indices as

V; = ;00 + g

where z;, z;, €;, n; are distributed as standard normal random variables. These parametric
assumptions are identical to those used in Example 2. We generate a sample using J = 500
firms. Each firm j has capacity ¢; drawn uniformly at random from {1,...,10}. The number
of workers in the simulation is N = > ¢;. A pairwise stable match p: {1,...,N} — {1,...,J}
is computed for « = 1 and § = 1. Using the same dataset of observables and firm capacities,
the variables ¢; and 7; are simulated S = 1000 times, and a pairwise stable match p? can be
computed for each s € {1,...,S} as a function of § = («, ). We then compute two sets of

moments

- 1
zﬂov = Nzxzz,u(z) (8)

U ® = 535 D wi o)

and

, 1 1
ww = X7 Ti = T 17 Lt (10)
N Z =t (e (2))] Z.,@;M(i))
2

~ S 1 1 1
v, (0) = =) — x; — 7 (11)
52w 2 W )] 2

5 ~ S
The first set, 1, and 1, (0), captures the degree of assortativity between the characteristics
x and z in the pairwise stable matches in the generated data and as a function of #. For a
given a > 0 (likewise § > 0), this covariance should be increasing in § (likewise «). The

5 58
second set, ¢, and 1, (f) captures the within-firm variation in the characteristic x. If the
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value of « is large, we can expect that workers with very different values of x are unlikely to
be of the same quantile. Hence, the within-firm variation in x will be small. Using both sets of
moments, we construct an objective function Q° (0) = H{ﬂ — &S (G)HW , where ¢ = (@ov, &w)/,
QLS (0) = @)fv (0) ,{ﬁi (0)>/ and W indexes the norm.

Figure 1(a) presents a contour plot of an objective function that only penalizes deviations of
@OU from 17151] (f). This objective function only uses information on the sorting between z and z
to differentiate values of 6. We see that pairs of parameters, o and 3, with large values of o and
small values of 3 yield identical values of the objective function. These contour sets result from
identical values of {bi (0), illustrating that this moment cannot distinguish between values along
this set. In particular, the figure shows that the objective function has a trough containing the
true parameter vector with many values of 6 yielding similar values of the objective function.

In Figure 1(b), we consider an objective function that only penalizes deviations of QZJw from
{ﬁi (f). The vertical contours indicate that the moment is able to clearly distinguish values of
« because the moment {Di (0) is strictly decreasing in or. However, the shape of the objective
function indicates that this moment cannot distinguish different values of 5.

Finally, the plot of an objective function that penalizes deviations from both @w and @OU
(Figure 1(c)) shows that we can combine information from both sets of moments to identify
the true parameter. Unlike the other two figures, this objective function displays a unique

minimum close to the true parameter. Together, Figures 1(a)-(c) illustrate the importance of

using both these types of moments in estimating our model.

4 Estimation

This section develops an estimator for the latent index model considered above. We then study
the limit properties of this estimator and derive conditions under which the estimator is consis-
tent and asymptotically normal. As in the identification analysis, we consider a dataset from

a single large matching market. This choice is motivated by the fact that researchers typically
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have data on a single (or few) matching markets with many participants.'® This includes appli-
cations in labor markets, marriage markets, and education markets. The analysis of asymptotic
properties in a single large market is technically challenging because the characteristics of any
individual’s match partner depends on the composition of the entire market. To our knowledge,
consistency or asymptotic theory has not been previously established for parametric models,
even with a single latent index.!!

There are several technical insights that allow us to solve this problem. First, we use
the property that we observe a positive assortative match along a single latent index. This
allows us to re-write the dependence of the matches in terms of the latent indices. While
restrictive on the nature of primitives, our model allows for a large parametric class of models
and both transferable and non-transferable utility. Second, the problem can be decomposed
into separately analyzing two distinct pieces. The first problem is to show limit theorems for
the observed moments of the data as the market size increases. Separately, we must show a
uniform limit theorem for the map from structural parameters to these moments. Third, we
find that analyzing this map by first ignoring the behavior in the tails of the latent indices and
then showing that the tails are negligible is the most tractable approach. Finally, to ensure
that tails are negligible, we adapt a chaining argument from the empirical process literature,
using a concentration of measure inequality to replace tail bounds for i.i.d. data that do not
apply in our setting.

In this section, we assume that the latent indices of workers for firms and vice versa are

known up to a finite dimensional parameter # € © C R¥¢. The latent indices are generated by

u(z,m0) = g(z:0)+n

v(z,e;0) = h(x;0)+e,

10Tn cases where many matching markets are observed, it may not always be appropriate to assume that the
underlying preference parameters are the same across all markets.

HEven proving consistency is non-trivial. For example, Dupuy and Galichon (2014) show that the canonical
correlation estimator suggested by Becker (1973) is inconsistent. A previously circulated version of this paper
(Agarwal and Diamond, 2014) shows consistency of the estimator studied here under weaker conditions on the
primitives.
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where g : ( Xx© — R and h : x x © — R are known functions that are Lipschitz continuous in 6
for each = and z with constants grc (2) and hrc (x) respectively. We assume that the densities
fe and f, are known, and ¢ and 7 are independent of x and z respectively.

We adopt a parametric approach for several reasons. First, our identification argument does
not directly suggest a non-parametric estimator. Second, our focus is on solving issues that arise
from the dependent data nature of the problem. Relaxing the parametric assumption would
further complicate the analysis. Finally, computational burden in empirical applications have
often prevented extremely flexible functional forms from being implemented. Similar parametric
assumptions are common in the discrete choice literature where one typically assumes a normal
or an extreme value type I distribution for the unobservable ¢.

We assume that the data contains a sample of .J firms, each with ¢ slots, and consider the
properties of an estimator as J — oo. The number of workers is N = ¢J. The characteristics
of each worker are sampled i.i.d. from the measure /1y . and the characteristics of the firm are

sampled i.i.d. from p,,. For simplicity of analysis and notation, we set ¢ = 2.

4.1 A Minimum Distance Estimator

We propose an estimator based on a minimum distance criterion function. Specifically, let
U (21,29, 2) € RE¥ be a bounded vector-valued moment function, i.e. ||¥|_ < oo, where x;
and x, are the observed characteristics of two workers and z is the observed characteristics
of the firm. We assume that ¥ is symmetric in x; and x5 because the data do not make a
distinction between two workers hired at the same firm (for the same position). The data
consist of matches between N = 2.J workers and J firms. Therefore, we observe N/2 triples

{(@gj_1, 725, zj)};vz/l2 , which can be used to construct empirical moments of the form

| N
Yy = N2 Z U (221, T2, 7) - (12)
j=1

The moments discussed in equations (8) and (10) are given by particular choices for W.

We now describe the value of the moment as a function of §. Instead of writing the sampling
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process as drawing pairs of (z;,¢;) and (zj, 77]-), it will be convenient to rewrite the sampling
distribution via Bayes’ rule as sampling N and J draws from the population distributions
of v; and wu; respectively, and then sampling z;|v; and z;|u; from their respective conditional
distributions. This sampling process has an identical distribution for (z;,¢;) and (zj,nj) as
sampling directly from their respective distributions. This rewriting uses the feature that the
final matches depend on the latent indices rather than directly on observable and unobservable
traits. Further, conditional on the latent indices, the observable traits of two workers matched
to the same firm or different firms are independent. Therefore, given the utilities vy, vy, and wu,
at parameter vector # and any two measures mx and my for the observable traits, the value of

the moment is:

Y [mx,mz| (v1,va,u;0) = /‘I/(Xl,XmZ) Ixpono (X1) fxpuo (X2) f21u0 (Z) dX1dX2dZ,

where fxjo,;0 (X) and fzj,,0 (Z) are the conditional densities (w.r.t. myx and my respectively)
of the observable traits at 6 given latent indices v and u, and mx and mz. These distributions
govern the observed traits of the workers and firms at any given quality.

In the limiting large market match, firms with the ¢g-th quantile of firm quality are matched
with workers on the ¢-th quantile of the worker quality distribution. Hence, the expected value

of the moment of the ¢g-th quantile match is given by 1 evaluated at

(U17 V2, u) - (F\;;le,mx (CI) 7F\;;tl9,mx (Q) 7F(;;é,mz (q)) ’

where Fy.gm, (v) and Fyg.m, (u) are respectively the cumulative distributions of the worker
and firm qualities (given 0, mx and myz). This quantity must be integrated to obtain the

moment as a function of the parameter 6:

1

¥ [mx, mz] (0) = / b [mxc, mz] (Fy gy (@) s Fopmy (0 Forgm, (0):0) dg,— (13)
0

where Fyigm, () = [ F.(v—h(X;0))dmx, Fuom, (w) = [*_F,(u—g(Z;0))dmz. This
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expression can be evaluated at any pair of measures m y and m  governing the distribution of ob-
served traits. Of particular interest are the quantities v [px, p1] (0) and ¢ [pux, , pz, | (9), which
correspond to the values at the population and empirical measures of observables traits respec-
tively. In this notation, the population analog of ¢ in equation (12) is therefore v [y, 1] (0)
evaluated at 6y. For simplicity of notation, when referencing the moment function at popu-
lations measures py and puy,, we will write ¢ (0) = ¥ [uy, 1] (#). Similarly, when referencing
their empirical analog 11y and i, , we will write ¢y (6) = ¢ [y, 1z, ] (6)."

We now define our minimum distance estimator:

On = argreninHwN — N ()l (14)
=)
where 1, are the moments computed from the sample as given in equation (12), ¥, (0) are

computed from the observed sample of firms and workers as a function of 8, ||y — ¥ (0) |l =

[(Wn = (0) W (b — ¥y (0))]

This minimum distance estimator finds the value of # that best predicts the features of the

Y2 and W is a positive definite symmetric weight matrix.

data summarized by the moment function. For example, one can specify ¥ to summarize the
overall sorting patterns and the many-to-one match moments used previously to illustrate the
importance of using this information.

The next section presents conditions under which the estimator above is consistent and

asymptotically normal.

4.2 Limit Properties

In this section, we outline a fairly standard set of convergence conditions on ¢y — 1y (0)
and show that they imply limit properties for the estimator in equation (14). We will verify

these conditions under large market asymptotics. These results are presented in the subsequent

124 v (9) can be approximated by first drawing ¢ and 7 to simulate Fyvie = Fviomyx, and Fnue = Fuomy,
and then using the expression in equation (13). One can also create a simulation analog of ¢ () that uses a
second simulation step to approximate the integral. More specifically, we may independently sample from the
conditional distributions of X and Z given the measures py, and u,, and simulated values of v; and w;.
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sections. We follow this organization to highlight the main ideas in the proof and clarify the
contribution. We separate the conditions needed for consistency, which are weaker than those
necessary for asymptotic normality of our estimator.

We require the following properties for the moment function at the population distribution

of observable and unobservable traits.

Assumption 3 (i) For any € > 0, there exists a 6 > 0 such that ||¢ (8) — 1 (0o)||y, < d =
16— 6ol <e.

(ii) ¥ (0) is continuously differentiable at 0y with an invertible Jacobian, ¥ (0y) .

Part (i) assumes that the distance in the population |[¢) (6) — ¢ (6)||,; is zero only if § = 6.
It implies that ¢ (0) identifies the parameter 6y. Further, it requires that parameter values out-
side a neighborhood of the true value cannot yield a distance arbitrarily close to 0.!* This
assumption, along with the convergence condition below, will guarantee consistency of our
estimator. Part (ii) is used to prove that the estimator is asymptotically normal. The com-
monly made assumption that the Jacobian at the limit is invertible allows us to use Taylor
approximations.

We will derive limiting properties of the estimator by showing conditions under which the

following properties are satisfied:

Condition 1 (i) (Y — ¢ (00)) — (Y (0) — ¢ (6)) converges in probability to 0, uniformly in
6.
(i) a. VN (Y — Py (60)) converges in distribution to N (0,%)

b. for every sequence {bx} of positive numbers that converges to 0,

VN sup (0 (6) =9 (8)) = (¢ (60) = ¢ (60)) ]l = 05 (1)

1060 | <bn

The first conditions would follow from a uniform law of large numbers. The second condition

would follow from a central limit theorem and stochastic equicontinuity. These results are not

13 A sufficient condition for this requirement is that § € © is compact, ¢ (#) is continuous and ¢ (0) = 1 (6o) =
6 = 6.
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obvious a priori because the matches depend on the composition of the entire market. The
following sections prove these results under large market asymptotics. Along with Assumption

3, these conditions imply consistency and asymptotic normality of our estimator:

Theorem 4 Suppose that the parameter space © is compact 0 lies in the interior of ©.

(1) If Assumption 3(i) and Condition 1(i) are satisfied, then Oy converges in probability to

0o.
(i1) If Assumption 3 and Condition 1 are satisfied, then
W(@N—eo) N (0,9),
Q= (¢ (60) C'C (60)) " ¥’ (B0) CEC"Y (8)' (¥ (B0)' C'C’ (6o)) ™
and W = C'C.

Proof. Part (i) follows from the arguments in Newey and McFadden (1994), Theorem 2.1. We
use Theorem 3.3 in Pakes and Pollard (1989) to show part (ii). Let Gy (f) (in the notation of
Pakes and Pollard (1989)) by given by (¢ — ¥y (8)) C’. Assumption 3(ii) and the definition of
the estimator imply requirements (i), (ii) and (v) of Theorem 3.3 in Pakes and Pollard (1989).
Requirement (iii) of Theorem 3.3 in Pakes and Pollard (1989) follows from Condition 1(ii)b.
Requirements (iv) in Theorem 3.3 of Pakes and Pollard (1989) follow from Condition 1(ii)a. m
This theorem shows that Assumption 3 and Condition 1 imply consistency and asymptotic
normality in our setting. Therefore, the main difficulty in obtaining limit properties of our
estimator is verifying Condition 1. This is not straightforward for two reasons. First, the
triples (zg;_1,2j,%;) in the expression for our sample moments ¢, in equation (12) are not
sampled independently. This dependence occurs because their distribution is determined by the
observed and unobserved characteristics of the entire sample. Second, equation (13) shows that
Un (0) = [px, .+ bz, ] (0) is also a function of the entire sample of observed characteristics.
To prove the required properties, we split the argument into two conceptually separate

pieces. The first piece studies the distribution of sample moments 15, and the second studies
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properties of the sample moment function ¢ (f). There are two reasons why this distinction
helps analyze their limit distributions. First, the observed moments, 15, are a function of both
the sampled observed and unobserved characteristics because the realized assortative match
depends on the latent indices of all agents in the market. On the other hand, ¥ (0), is a
function only of observed traits because equation (13) shows that it is an integral with respect
to the (known) distribution of unobservables. Second, 1, depends only on 6y, while 1 (0)
is a stochastic process that must be studied uniformly in 6. The first reason complicates the
analysis of the distribution of 1) 5, while the second reason complicates the analysis of v, (#).!*

Before proceeding, we formally show that is it sufficient to treat ¢y and ¢ [mx, mz] (0) as

scalars.

Proposition 2 (i) Suppose that for each k € {1,..., Ky}, the k-th component of (¢ — ¥ (6p))—
(Y (0) — 0 (8)) converges in probability to 0, uniformly in 8, then (v — 1 (60))— (v y (0) — ¥ (0))
converges in probability to 0, uniformly in 6.

(ii) Suppose that for any a € RX¥, /N (v — vy (60)) - a converges in distribution to

N (0,a'Ya), and for every sequence {by} of positive numbers that converges to 0,

VN sup (% (8) = ¢ (8)) = (¢ (80) — 4 (60))] - a] = 0, (1),

l0—00l|<bn
then, Condition 1(ii) is satisfied.

Proof. Part (i) follows from the definition of convergence in probability. To verify part (ii),
note that Condition 1(ii) a. follows from the Cramer-Wold theorem. Condition 1(ii) b. follows

from the fact that

VN sup (i (8) = (8) — (% (B0) — ¥ (60)) o

1660 <bn
= max VN sup |[(¥y (0) = ¥ (0) — (¢ (60) — ¢ (65))] - al
ac{e1,exy } 10—80||<bn

4 An additional complication for analyzing the limit distribution of VN (¢ 5 — %y (#)) is that our convergence
results must be joint with the empirical processes on X and Z.
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where {ey, ..., ek, } are the standard basis vectors of RXv. m
The following subsections derive regularity properties under which condition Condition 1 is
satisfied, assuming that W is a scalar-valued function. We first analyze the limiting properties

of 1, and then we analyze the properties of the function 1 5 (6).

4.3 Convergence of the Data Generating Process

The first challenge is to study the large sample properties of the sample moments, 15 in
equation (12). The primary technical difficulty arises from the dependence of the observed
matches (X7, X5, Z) on the observable (and unobservable) characteristics of all agents in the
market. We make progress by re-writing the sampling process as one in which the utilities «
and v are drawn first. This allows us to condition on the matches on latent indices in the data.
The observed characteristics of the matched agents are then sampled conditional on these draws
of the latent indices. This sampling process, although identical to drawing the characteristics
directly from py . and py,, allows for a more tractable approach to proving limit properties of
the moments. The proof technique is based on using the triangular array structure implied by
this process: the individual components of the triple (X;, Xs, Z) are independent conditional
on the indices drawn.

Specifically, our approach for obtaining large sample properties of 1, is based on the follow-
ing observations. The observed characteristics X1, Xy, and Z are a sample from fix,,, fix|u,
and fi,, where v1, v2,and u are the latent indices for these agents. The expected value
of W (X1, X, Z) given the latent indices is therefore 9 [1uy, 1] (v1,v2,u; 6y). Equation (13)
shows that 1 [y, s1,] (6o) is the integral of 9 [ix, fu,] (v1,v2, u; 6) over the population values
of matched latent indices. This allows us to show that, 1 ,, which is the sample average of
U (X1, Xy, Z) over the matches in the data, approaches the population quantity ¥ [1 ., 14| (6o)-

Below, we present assumptions under which we will prove our result.

Assumption 4 (i) a. ¥ [y, py] (v1,v9,u;00) is Lipschitz continuous in vy, v and u

b. The random variables € and n have continuous density with full support
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(i) a. The derivative of ¥ [y, jiy] (F‘;;le (q1) ,F‘ZE (go) ,FJ;E (g3);0) with respect to q =
(¢1, G2, q3) is bounded uniformly in q, 0
b. The random variables € and n have continuous density with full support on R

c. The conditional distributions of X (respectively Z ) given any v (respectively u) are not

degenerate

Part (i) presents conditions under which we will show that ¢, converges to ¥ [, 11,] (6o)
in probability. Part (i) a. requires Lipschitz continuity of 9 [1iy, f1,,]. This regularity condition
implies that the conditional expectation of W is smooth with respect to the latent indices. A
more primitive condition is presented in Appendix E.1, which shows that the condition follows

from bounds on the densities of X, ¢ and Z,n and their first derivative.!®

This regularity
condition on the expectation of ¥ given the latent indices allows us to approximate the value
of ¢ at the sampled latent indices for each of the matches. Part (ii) b. is a weak regularity
condition on the distribution of the unobservables.

Part (ii) presents stronger assumptions, which we will use to derive the asymptotic distri-
bution of VN (¢ — ¢ [y, f15] (60)). Part (i) a. is analogous to (i) a., but places stronger
restrictions on the sensitivity of ¢ with respect to the quality of the match. The stronger
assumption ensures that ¢ is not extremely sensitive to tail behavior. Parts (ii) b. and c. are
weak regularity conditions.

Our first result shows that the empirical analog in equation (12) converges at the true

parameter 6y to .

Proposition 3 (i) If Assumption /(1) is satisfied, then 1 — 1 (6y) converges in probability to
0.

(11) If Assumption 4(ii) is satisfied, then for any px— and pu,— Donsker classes I'x and 'y

15See Assumption E.1.8 and Lemma E.1.13.

33



of bounded functions on X and Z respectively,

VN (¢ — 9 (60))
\/N (MXN - MX) )

N/2 (pzy — 1z)

where vV N (MXN — uX) and \/N/2 (,uZN — MZ) are respectively empirical processes indexed by
Ty and Tz, converges to a mean zero Gaussian process (G, Gx, G z) with covariance kernel V

(given in Appendiz B.1).

Proof. See Appendix B.1. =

The result derives the large sample properties of 1 — 1 [ix, 11,] (6o) based on the Assump-
tion 4. The proof is based on studying the large sample properties of [wN\vl, e UNG ULy e uN/ﬂ ,
the expectation of ¢y given the sample of latent utilities vy, ..., vn and wuy,. .., uyn/2. Because
the observed characteristics are drawn independently given these latent indices, we are able
to characterize the large sample properties of ¢y — E WN|U1> C L UNL UL, ,uN/g]. Next, we
show that F [1/1N|1)1, L UN, UL, - ,uN/g] approximates v (fy) by appealing to the regularity
and smoothness conditions in Assumption 4. We do this by relying on smoothness of ¢ and
noting that the empirical quantiles of the latent indices approximate the limit quantiles. There-
fore, the key to the result is that the dependence across the observed matches is only through

the latent indices, and that the matching is assortative on these indices.

4.4 Differentiability of the Moment Function

The large sample results on 15 require evaluating the moment function only at 6. To study the
limit properties of the estimator defined in equation (14), we need to understand the properties
of the sample moment function. In this section, we derive conditions under which this map
is smooth. This will allow us to use a continuous mapping theorem and the functional delta
method for our results.

The approach is based on separately analyzing the behavior of ¢ (0) away from the tails
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of the latent index distribution, then showing that the tails are negligible. This approach is
convenient because deriving the asymptotic distribution of the tails is technically challenging.
Specifically, we will show that the functional

o iz 0) = | Pl i) (7L (0), B (@) B (@) (6) d

) 3

is smooth in py, p, for all § € (0,1/2). The integral above, when evaluated at 6 = 0, is equal
to ¢ [px, 1] (0) in equation. We require the following weak assumption on the distribution of

unobservable traits:

Assumption 5 (i) f. and f, are bounded and have continuous, bounded first derivatives. Fur-
ther, f. and f, are bounded away from zero on any compact interval of R.

(ii) h (X;0) and g (Z;0) are uniformly px— and p,— integrable over all 0 € ©

Part (i) imposes a weak regularity condition that allows us to show that the conditional
distributions of X and Z given the latent indices v and u vary smoothly with 0, except at
extreme quantiles of the latent index distribution. This assumption is satisfied for the most
commonly used parametric forms in applied analysis. Part (ii) places a weak restriction on the
tail behavior of h (X;0) and ¢ (Z; #) by assuming that, uniformly across ¢, with high probability,
these random variables belong to a compact set.

To formally state our result on smoothness of ¥°, we need to define a metric in which to
measure distances in the domain and range of ¢°. We use the Banach space of vector-valued

functions of § € © endowed with the sup-norm, denoted by L2, as the range. We use L.,

oo}

for the domain, which is the space of measures (my, mz) endowed with the sup-norm over the

class of sets I'. We let I' ="'y UI'z, where I'x is a class of sets that includes

L W (21, 22,2) fo (Fyg (q) = h(2130)) fo (Fyg (@) = 7o (22:0)) f (Firg (@) — 9 (230)) and
U (21,22, 2) fL (Fyg (a) = h(2130)) fe (Fyp (@) = h(22;0)) fo (Fp (@) — g (2:0)) indexed

by ('r17zaq70)16

16Gince the functions considered are symmetric in 1 and 2, we have implicitly also included the analogous
class of functions, indexed by (z2, 2, ¢, 0).

35



2. F.(v—"h(x;0)), fe (v —"h(z;0)) and f! (v — h(x;0)) indexed by (v, )
3. 1{c; <z < ¢y} indexed by c¢; and cp!7
and 'z is a class of sets that includes

LW (1,29, 2) [ (Fy (q) — h(21;0)) fo (Fyg (q) — h(2230)) £ (Frp (@) — g (20)) and

) )

W (21,2, 2) f- (Fyh (@) = h@n:0)) fo (Fh (a) — b (2:6)) £} (Fyh (@) — 9 (2:0)) indlexed

)

by (z1,72,4,0)
2. Fy(u—g(20)), fr(u—g(20)) and f; (u— g(2;0)) indexed by (u,0)
3. 1{c; <z < ¢y} indexed by ¢; and ¢y

Therefore, we will consider smoothness of the map v : LL — L2. The class I' defines
a norm in which we measure distances between two pairs (mx,my) and (m'y, m’,). The first
two groups of sets in ['x and I'y arise from Taylor expansions of terms in the expression for
¥°. The last two sets are intersections of half-spaces. To use the continuous mapping theorem
and the functional delta method, we will need to ensure that the empirical measures p1y and
pz, converge to the population measures with distance measured in this norm. The required
properties on the primitives to ensure that I'xy and I'; are respectively py— and p,— Donsker
classes are stated formally in the Online Appendix (Proposition E.3.7).

We are now ready to state the main results in this section.

Proposition 4 If Assumption 5 is satisfied, then for each § € (0, %), o LL — L8 s
Hadamard differentiable tangentially to the space of bounded uniformly continuous functions at

(1x; ftz). The Hadamard derivative at (ji, j1;) in the direction (Gx,Gz) is V(ay.cp 0’ [tix, 1)

(given in Appendiz D.2).

Proof. See Appendix B.2 for a sketch of the proof and Appendix D.2 for details. =
This result formalizes the idea that the small perturbations of the measures py, i, result

in small deviations in the value of the moments (outside the tails) as a function of 6. This is

I7Tf @ and b are vectors, we say that a < b if each element of a is weakly less than each element of b.
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useful because we expect the empirical distributions of X and Z to be close to uy and u, in a
large sample. Assuming that tails are negligible, the result implies that the moment function
in a large sample approximates the population moment function. The next section uses this

result and Proposition 3 to verify Condition 1.

4.5 Veritying Condition 1

We now put together the results in the previous sections to show that Condition 1 is satisfied.
First we show part (i), which implies consistency of the estimator by Theorem 4(i). We will

use a continuous mapping theorem and the following assumption for this result:
Assumption 6 (i) 'y and 'y are respectively px- and p,- Glivenko Cantelli.

This assumption implies that the expectations of functions in 'y and I'y evaluated at
the empirical measures 1y, and ju,  respectively converge (in probability) to the population
values. Further, the Glivenko-Cantelli theorem implies that the convergence is uniform over all
functions in these classes. The assumption is satisfied under weak conditions on the elements of
I'x and I'z.'® We now formally state that Condition 1(i) is satisfied for our model and sketch

the proof.

Proposition 5 (i) If Assumptions 4(i), 5 and 6(i) are satisfied, then 1 — 1y (0) converges

in probability to v — 1) (0), uniformly in 6.

Proof. See Online Appendix D.3, part (i). =

The result shows that the difference between the empirical distance function ¥y — ¥y (6)
and the population analog ¥ —1 (6) converges to zero (in probability) as the sample increases in
size. The proof is proceeds by using the triangle inequality to observe that this difference is at
most [ty — Y|+ |¢y (0) — 1 (0)|. Proposition 3 implies that the first term, which measures the
distance between the empirical and population values of the moments, converges in probability

to zero. The second term, which measures the distance of the sample moment function to

18Proposition E.3.7 formally states conditions on primitives under which I'x and I'; are Donsker classes.
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the population function at 6, is ¢° [pux ., 17, ] (0) — ¥° [y, p1] (0) by definition. To show that
this term also converges in probability to zero (uniformly in @), we approximate ° with Y0,
Specifically, 1y (8) and v (f) can be approximated by ° [tx bz, ] (0) and U [y, 11y] (0),
where the error is of the order of § because ¥ is bounded. Proposition 4 and Assumption 6
imply, by the continuous mapping theorem, that 1° [u Xy M ZN] (f) converges in probability to
V° [pix, jt5] () uniformly in 6. Together, these observations imply the result.

The approach to a limit theorem that verifies Condition 1(ii) is similar in spirit, but tech-
nically more demanding. Proposition 3 provides a result for the term v/N (1 — ). Our next
challenge is to prove a limit theorem for v N <77/} N (9) — (9)), where 0 is our estimator. We
do this by approximating v N (1# N (9) — (9)) with v N (w‘jsv (60) — ¢° (6o)). The functional
delta method and Proposition 4 imply that asymptotic distribution of v/ N (77/}6 (o) — % (60))
is given by Vg (6y) = (Vw‘; o G) (fo), where G is a mean zero Gaussian process on LT. The
remaining term is the approximation error (Vmba — Vc;wo) (0o). Therefore, we need to ensure
that the errors in approximating Vg1/° (6y) with Vgt (6y) and approximating v/ N (¢ (6) — 4 (9))
in a neighborhood of 6§, with v N (w‘;\, (60) —° (f)) are negligible. Ensuring that these er-
rors do not affect the limit distribution of VN (¢ — 1) — (15 (8) — 10 (A))) requires tighter
controls of the tails than our consistency result. Specifically, the limit theorem requires us to

replace Assumption 6(i) with the following stronger requirement:

Assumption 6 (ii) a. I'y and T'z are respectively jix- and p,- Donsker.

b. for every sequence {bx} of positive numbers that converges to 0,

VNE sup |y (0) = ¢ (0)) — (&% (0) — ¢ (0))]

16—60l|<bn

converges to zero as 6 — 0 and N — oo

c. for fixed § € (0, %) and every sequence {by} of positive numbers that converges to 0,

sup ’VGWS (0) — V' (90)|

16—00ll<bn
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converges in probability to zero as N — oo

d. (ngw — ngo) (0o) converges in probability to zero as § — 0.

Part a. strengthens Assumption 6(i) to allow a functional central limit theorem over the
classes I'xy and I';. Parts b. and d. are technical assumptions that ensure that tails are
negligible. Part b. controls the rate at which the dependence of the moment function on the
tails vanishes with the sample size. Part d. assumes that tails have a negligible contribution
to the dependence of the moment function on perturbations of the data. Part c. assumes that
the process Vo)° (0) is well-behaved in a neighborhood of #y. For completeness, the Online
Appendix derives primitive conditions under which each of these requirements are satisfied.
Specifically, Theorem E.2.5 shows that smoothness conditions and bounds on the tail behavior
of the primitives imply these requirements. Assumption c. is relatively straightforward to verify
and is based on showing that Vgt (6) have sample paths continuous in § by bounding the L?
covering numbers of the related Gaussian process. Assumption d. follows from showing that
an upper bound on the variance of (Vm/fs — VG¢O) (0y) converges to 0 as 6 — 0. Verifying
assumption b. is the most difficult technical aspect of proving our limit theorem and requires
relatively novel proof techniques.

The difficulty in verifying assumption b follows from the fact that v/ N (¢ (6) — 1 (8)) is a
nonlinear function of the empirical measures ( Hx s 1 ZN)' Whiile the functional delta method is
a conceptually straightforward approach to proving a limit theorem for v N (1/)}5\, (6) —° (0))
with § € (0,1), showing that the tails are negligible requires a proof by first principles. Al-
though direct computations play a large part in this proof, the conceptual core is a modification
of the method of chaining with adaptive truncation exposited by Pollard (2002), where it is
used to prove Ossiander’s bracketing limit theorem for empirical processes. Our proof tech-
nique follows a similar approach as Pollard (2002) by similarly approximating © using finite
subsets of increasing size and similar truncation techniques. After a suitable truncation, the
moment generating function of the increments of an empirical process can be bounded using

techniques that apply to sums of independent random variables. Because the increments of
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(¥ (6) — 1 (0)) have no simple expression, we use the concentration of measure inequality of
Boucheron et al. (2003) in order to get the needed bound on the moment generating function.
This application of an abstract concentration of measure inequalities within the broader context
of a chaining argument may be a more generally useful technique for proving functional limit
theorems. This approach is necessary due to the dependent data nature of our problem, which
makes standard empirical process techniques for i.i.d. data inapplicable. This feature of our
model may be shared with other contexts such as network formation models.

The control of tail behavior implied by these results allow us to verify Condition 1(ii).

Formally, we have:

Proposition 5 (ii) If Assumptions 4(ii), 5 and 6(ii) are satisfied, then Condition 1(ii) is

satisfied.

Proof. See Appendix D.3, part (ii). m

As discussed earlier, the basic ideas are similar to the consistency result proved earlier, with
a more technically demanding method for handling the approximation in the tails. Proposition
5 shows Condition 1 for our model. Therefore, we can use Theorem 4 to assure consistency and

asymptotic normality of the minimum distance estimator.

5 Monte Carlo Evidence

This section presents Monte Carlo experiments to assess the properties of a method of simulated

moments estimator. The results are presented for a simulation based estimator of the form

~

Oy = arg Tefgél H@/)N — N (Q)HW (15)
= argmin [(iny s (0)) W (v — s )] (16)

where 1 is as defined in equation (12) and 9,4 (0) is computed by averaging over S = 100

simulations as follows. For each simulation s, we sample the unobservables €; and 7;, compute
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the unique pairwise stable match and compute vy, (¢) for the simulated matches, and set
Ung (@) = >,y (0). The moments used are as defined in equations (8) and (10). We
include an "overall moment" of the form in equation (8) for each component of x interacted
with each component of z. A "within moment" of the form in equation (10) is included for
each observed component of z.

Our Monte Carlo experiments vary the number of programs, J € {100,500}, and the max-
imum number of residents matched with each program ¢ € {5,10}. For each program j, the
capacity ¢; is chosen uniformly at random from {1,...,¢}. The number of residents is a random
variable set at N = > ¢;. We will use up to two characteristics for residents and up to four

characteristics for programs. The characteristics z; of program j are distributed as

z; = (2j1, 2j2) ~ N (a, 1),

where a = (1,2) and I5 is a 2 X 2 identity matrix. Similarly, the characteristics of the residents,
x;, are distributed as

T, = (951'17%’2) ~ N (a, ]2)-

For each model specification, we generate 500 samples indexed by b and parameter estimates
0,.1% The confidence intervals are generated by using a parametric bootstrap described in Online
Appendix F.

The preferences are of the form,

v = T+ g (17)

uj = Zjﬁ+nj7 (18)

where ; ~ N (0,1) and n; ~ N (0,1). Table 1 presents results from two specifications. The
specification in Column (1) has a single observable characteristic on each side of the market and

Column (2) has two observable characteristics. With few exceptions, the bias, the root mean

YThe b—th (pseudo-random) sample is generated from a Mersenne Twister algorithm with the seed b.
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squared error (RMSE), and the standard error fall with J and ¢ for both specifications. The
coverage ratios of 95% confidence intervals constructed from the proposed bootstrap approx-
imation are mostly between 90% and 98%, particularly for simulations with a larger sample
sizes. Also notice that estimates for o are more precise than estimates of 3 in both specifications

and all sample size.

6 Conclusion

This paper provides results on the identification and estimation of preferences from data from
a matching market with positive assortative matching on a latent index when data only on
matches are observed. Our results apply to both transferable and non-transferable utility
models of matching. We show that using information available in many-to-one matching is
necessary and sufficient for non-parametric identification if data on a single large market is
observed. These identification results use insights from the analysis of non-linear measurement
error models. Intuitively, the observable characteristics of the multiple agents with the same
match partner can be seen as noisy measures of the quality of the agents in the match.

We then prove consistency and /N —asymptotic normality of an estimator for a parametric
class of models. Our limit theorems are based on several insights in this model. First, we use
the fact that the matches are determined by the latent indices and that the observables are
conditionally independent given these indices. Second, we show that the moment function is
smooth in the distribution of observables, except at the extreme quantiles of the latent index.
Third, we show that approximating this function by ignoring the tails has a negligible effect on
the asymptotic distribution of the estimator using a general concentration of measure inequality
for dependent data. Finally, we present Monte Carlo evidence on a simulation-based estimator.

There are several avenues for future research on both identification and estimation for similar
models. While we show that it is necessary to use information from many-to-one matching for
identification with data on a single large market, it may also be possible to use variation in

the characteristics of participants across markets for identification. This can be particularly
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important for the empirical study of marriage markets. Our results are also restricted to a
single latent index model on each side of the market. Extending this domain of preferences is
particularly important. A treatment of heterogeneous preferences on both sides of the market
may be of particular interest, but it is likely technically challenging. It may be particularly
difficult to analyze both transferable and non-transferable utility models in a single framework.
Finally, we have also left the exploration of computationally more tractable estimators for future

research.
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Appendix: Latent Indices in Assortative Matching Models®
William Diamond, Harvard University
Nikhil Agarwal, MIT and NBER

A Proofs: Identification

A.1 Proof of Lemma 1

We present the argument for the identification of the level sets of h (-) since the proof for g (-) is identical. The
cdf of v conditional on h (x) is given by Fy |,y (v) = F: (v — h(z)) . Note that Fy |,y (v) is increasing in v and
decreasing in h (z). Let Fyp (gl (2)) = Fypnw) (Fy ' (@) — h(2)) be the cdf of the quantile of v given h ().
Since Fy,! is an increasing function of g, Fyih(z) (gl (x)) is increasing in ¢ and decreasing in h (). As noted in
Remark 1, the g-th quantile of each side matches with the ¢-th quantile of the other. Therefore, the density of
g (Z) that h (z) is matched with is given by

1
fo@)n@) (glh) = /0fg(Z)|Q(g‘Q)fq|h(w)(Q|h)dq

= /O fatg (al9) f5 (9) Fainea) (alh) dg

/ Fo (= 9) £o (9) Faniey (Fir () ) du,

where f; () is the density of g(Z). The second equality uses Bayes’ rule. The last equality follows from
a change of variables ¢ = Fy (u) and the fact that f,, (Fu (u)lg) = Mi};ig(g’m. Since fy(g) > 0 for all
g, and f, has a non-vanishing characteristic function, fy(z)n) (:|h) is injective in h. Since Fyp () (qlh) is
decreasing in h, if h(z') > h(z), then fon) (glh (%) # fon@) (qlh(x)) for some g. Hence, we have that
fo2) ) (Glh(2") # foz)n@) (gl (z)) if h(z") # h(x). If Z|x ~ Z|2' then g (Z)|x ~ g(Z)|x'. Therefore, it
must be that the distribution of Z given z differs from the distribution of Z given z’. Therefore, the level sets
of h(-) are identified.

A.2 Proof of Theorem 3

In what follows we treat z and z as single dimensional variable that are uniformly distributed on [0, 1], and A (+)
and ¢ () are increasing. This simplification is without loss of generality given identification of g (z) and h (z)
up to a positive monotone transformation by Proposition 1.

The proof follows from recasting the matching model in terms of the non-classical measurement error
model similar to Hu and Schennach (2008), (henceforth HS) to identify f,, (z|q) and f|, (2|q), which are the
conditional densities of = and z respectively given h (z) +¢ = F;;' (¢) and g (2) +n = F;' (g), where g is the
quantile of the latent index.?! Lemma C.2.2 implies that the primitives  (-), g (-), f, and f-, are identified from
f(zlg) and f (2|q).

We begin by verifying Assumptions HS.2-HS.4. Assumption HS.2 requires f. |4, 4,4 (2|21, %2,q) = f.q (2|q),

and fy,|2,20.q (T1|2,22,9) = fz,)q (z1]g). This is satisfied since the quantile of the latent index ¢ is a sufficient

20Refer to the Online Appendix for Appendices C - F.
21The latent variable z* in HS will be labelled ¢, the outcome 3 in HS is instead z, = in HS is x; and z in HS
is 9.



statistic for the distribution of observable characteristics in any match.

Assumption HS.3 requires that L, and L,,,, are injective, where L, (m) = fol Ja1q (z]g) m (q) dg and
Ly, (M) = fol Jar)zs (T1|T2) M (22) dvo. Lemmas C.2.4 and C.2.5 imply that under Assumption 1, Ly, and
L, |z, are injective.

Assumption HS.4 requires that for all ¢; and gz in [0,1], the set {z: f.|q (2[q1) # f2)q (2]q2) } has positive

probability (under the marginal distribution of z) if ¢; # g2. This assumption is satisfied since

faq (2l0) = JW

= fq|z (Q|Z)
1
= ——— < (F (@) —9(2)
fU(FUl(q)) 77( U )
is complete (Lemma C.2.3). The first equality follows from Bayes’ rule, the second equality uses the fact
that z and ¢ are uniformly distributed, and the third equality transforms u = Fp, ! (¢), using the fact that
For a function m(:), and any z and g, define the operator A..;m (q) = f.q (2lg) m (q) as in HS. Since

f (z,z1]|z2) is observed, for any real valued function m and z, we can compute

1
Lo, (M) = / [ (zz1|w2) m (22) drg = Lg,jq © Azig © Lgja, (M)
0

as shown in HS. They then use Assumption HS.1 to show that (i) L;llmz
(i) T'= L. 2,2, L;11|m2 has a unique spectral decomposition. Lemmas C.2.5 and C.2.6 respectively show that

these results follow under our assumptions (the conditions needed for Lemma C.2.6 are verified in Lemmas

exists and is densely defined, and

C.2.5 and C.2.4). Hence, the conditional densities f.|, (2[q) and f;, (z|q) are identified up to a reindexing via
a bijection @ (-) where § = @ (¢). That is, for every pair fw‘q and fz‘q satisfying our regularity conditions that
can rationalize f (z,z1|z2), the proof of Theorem 1 in HS shows that there exist bijections @, : [0,1] — [0, 1]
and Q. : [0,1] — [0, 1] such that fy)0, () = fx‘q and f.10.(q) = fz|q.

This remaining under-identification issue is referred to as the ordering/indexing ambiguity issue in HS.
They solve this ambiguity by using Assumption HS.5, which assumes that there is a known functional M such
that M [ Jzlq (|q)] = ¢ for all q. Since our model does not deliver such a functional, we instead solve the
ordering/indexing ambiguity by using the fact that in our model, the ¢ indexes the quantiles of the latent index
and fg|, and f, must therefore satisfy certain known properties. Specifically, we use Lemma C.2.7 to show
directly, that @, and @, must be the identity function under the assumptions of our model. To apply Lemma
C.2.7, we need to show that f;, (z[q) = %W and f,|, (z]q) = % where ¢ are quantiles
satisfies Condition C.2.2. Since the proof is symmetric, we show this only for f|, (z|g). Condition C.2.2(i) is
satisfied since f,|, (x|q) is complete (Lemma C.2.3).

To verify condition C.2.2(ii), we compute af%émm. Note that f.q(7|q) = fq=(ql2) fa(2)/fe(q) = fq2(qlz)
by Bayes’ rule and the (normalized) marginal distributions of x and g. Therefore,

dq dq g fv (Fy' ()

fv(Fy (@) FUF ! (@) = hiw)) = fe(Fy " (q) = b)) fiy (Fy " ()
fv(Fyt ()

Therefore, Condition C.2.2(ii) follows from Assumption 1 since each of the terms is finite and fy (v) > 0 since



¢ and h (X) have full support on R.
We can verify Condition C.2.2(iii) by showing that for each ¢ € (0, 1), there exists x such that d%fq‘z(q\x) #
0. Towards a contradiction, for a given ¢ € (0,1), assume that d%fqm(qu) = 0 for all . As shown above,

c(Fy'(g) —h . . oo d f(u—h
d%fqm(th) = d%f (f“j(}(?’i)l(q))(z)) Since fy (v) > 0, diqfq‘z(q|x) = 0 for all z if and only if dvW

evaluated at v = F, ' (q) if zero for all z, It must therefore be that

d fe(v—=h=) _ fv)fi(v=h(z)) = f(v = hz))fi(v)

dv fv(v) fv(v)?

is zero for all = for each v € (—o00, 00). Since fy (v) > 0, it must be that fi (v) fl(v — h(z)) = fe(v — h(z)) fi, (v)
for all . Since h(x) has full support on R, this implies that fl(e) = Kif.(¢) for all ¢ € (00,00). Hence,
fe(e) = Koexp(Kie) for a constants K; and K5. Note that f. is a density with full support, which is a
contradiction with this functional form.

Condition C.2.2(iv) is definitional for the particular model considered since ¢ indexes quantiles. Condition
C.2.2(v) follows from Lemma C.2.4 under Assumption 1. Conditions C.2.2(vi) is also definitional in our case
since f,|, are conditional densities and ¢ indexes quantiles. We have thus verified Condition C.2.2 for f,,. An
identical argument follows for f.,. Therefore, by Lemma C.2.7, Q, and Q. are the identity function. Hence,

we have identified f,, and f),.

B Proofs: Estimation

B.1 Proof of Proposition 3

We first rewrite
Yy — Y= (wN - FE (wNWVNaMUN)) + (E (Q/JNWVN»NUN) - 7/’) :

Proof of Part (i): Lemma D.1.9(i) shows that if Assumption 4(i) is satisfied, E (¢ |y, .1y ) — ¥

converges in probability to 0 as NV — oo. This result is proved by rewriting
N/2
1 o (2k—=1N\ 2K\ ok
Eovier) = w520 (R (55) () o (v
1 & i i i
~ -1 -1 -1
= NZuJ (FVN <N> Ey, (N> Eyy <N>> +R, (B.1.19)
i=1

where Fy, and Fy, are the cdfs representing the empirical measures jy, and pg;, respectively, and R is a

remainder term. We then show that R and

13 (e ()7 () ot (7)) -

converge in probability to zero. Lemma D.1.10(i) shows that 1y — E (¢ 5|ty , iy, ) converges in probability to
zero by bounding its variance by %4 H\Iino Since Yy =t = (Uy — E (U |y, buy ) +(E (UOnliyy, puy ) — )
is the sum of two terms that converge in probability to 0, the result follows directly from Slutsky’s theorem.

Proof of Part (ii): Lemma D.1.9(ii) shows if Assumption 4(ii) is satisfied, then for any bounded p y-



Donsker class I'x and for any bounded p,-Donsker class I'z,

[\/N (E (¢N|MVN7HUN) - ¢) 7\/N(MXN - MX) (vx)sVN/2 (MZN - MZ) (’Yz)}

indexed by vy € I'x and v, € I'; is asymptotically equivalent to

ixe)y — Pxe) (L{h(z500) +e < Fy ' (g

\/Nfol Vi, (¢,4:q) - fix,e) —Hxe) (L{h(z;00) +¢ < Fy' (ax)}) | da
<M(z,n)N —tz,) (1{g(z:00) + 1 < F;' (42)}) ’ (B.1.20)

VN (,UXN - MX) (7x)

N/2 (NZN - NZ) (vz)

>
~—
——
~—

N

which converges weakly to a mean-zero Gaussian process with a covariance kernel V’. This covariance kernel is

derived by using equation (B.1.19) to show that V' NR converges in probability to zero, and then analyzing

VN <]1V iw (7t () 7t () 7t (5)) - w)

using Taylor approximations. Since HV{%H < 00, the expression in (B.1.20) is a sum of py - and py -
Donsker classes because we have added a ﬁn(i?e number of sums of i.i.d. random variables to I'x and I'z. Let
I'x . and I'z, be the index sets for this empirical process. Lemma D.1.11 shows that if Assumption 4(ii) is

satisfied, then for any bounded p x .-Donsker class I'x . and for any bounded p ,-Donsker class I'z,,

[\/N (”l/)N -F (wN‘/U'VNnuUN)) ,\/JV (M(X,s)N - MX,5> (’YX,E) sV IN/2 (ﬂ(z,n)N - Nz,n) (’Yz,n)]

indexed by vx . € I'xc and 75, € I'z, converges weakly to a mean-zero Gaussian process with a covariance
kernel V. To prove this result, we first compute the joint moment generating function for particular elements,
Yx,e and vz, to show that it approaches the moment generating function of a mean-zero normal random
variable, and derive the covariance V" ('y X.e0 Y Z,E). We then verify equicontinuity of the process to show weak
convergence.

Therefore, applying this result to the process indexed by I'x . and I'z,, we have that the process

VN (E (¢N|HVNaNUN) - %/1) =+ \/N("/)N - FE (T/’NWVNaHUN))
VN (ﬂXN - MX) (vx)
N/2 (NZN - MZ) (7z2)

indexed by vx € I'x and v, € I'z converges weakly to a mean zero Gaussian process with covariance kernel V.
We now compute V. Note that V (vg,vz) = V' (vg:72) + V2V (vg,72) and V (vg, vx) = V' (vg, 7x) +
2V" (vg, vx ) since covariance is bilinear. V (vg,vg) =V’ (Yo, 70)+2V" (Yo, 7y ) since Cov (X — E[X|I],E [X|Z] - E[X]) =
0 for any sigma-field Z by the law of iterated expectations. Finally, by definition, V (v x,72) =0, V (vx,7vx) =
V' (vx,7x) and V (v2,7%) = V' (72,7%) - The remaining elements are V (v, 7x) = V' (ve, 7x)+2V" (7w, 7x);

V (ve,ve) =V (Ve ve) + 2V (v, ve) and V (vg,72) =V (e, 72) + V2V (vg,72), where V/ and V" are
as defined in Lemmata D.1.9 and D.1.10 respectively.



B.2 Proof Sketch for Proposition 4

Consider a sequence of measures (/LXN , ,uZN) and scalars A — 0 such that % (,uXN — X, bz — uZ) converges
to G = (Gx,Gz) uniformly in L%, where G is bounded and uniformly continuous. The Hadamard derivative

is the limit of

% W s 112) (0) = & [ 1z ] (9)] (B.2.21)

1 VH SV (21,22,2) 6. (q,2150) b (q,22;0) ¢, (q. 25 0) dpux, dpx,dpiy
)

— dq B.2.22
hy [ 6-(q,71;0) b (¢, 2;0) &, (¢, 2;0) dpux, dpux, dpiy ( )

_ /1_(S f v (1‘1, T2, Z) ¢5,N (Qa L1 0) ¢E,N (qa Z23 0) ¢7],N (Qa Z3 0) d:u‘XN‘ld:uXNvgduZN dq
5 S ben (0:7150) 6.y (¢, 225 0) by v (¢, 230) dpux  dpix, ,dpig,

where
6, (0:2:0) = fy (Fud i, (@) = 9(20)) 6. (0.2:0) = J. (Fr,. (@) = (:0))
by (@0.239) = fy (Fibron, (@ =9(0)) oy (@a:0) = fo (Frla,, (@)= h(w:0)).
in terms of Gx and Gz. The detailed calculations are presented in Appendix D.2. Here, we illustrate
the basic ideas of the argument and the components of the derivative by computing the limit of the following

simplified expression:

1 0 J ¥ (2) o (g, 2:0) d#xd B /1_5 S (x) . n(q,2;0) dpx dg
hy Vs [ e (g2:0) dpx 5 Jen (@ms0)dux, '

We first rewrite the difference

Y (@) 0 (g3 0) dpx ) /” ¥ (@) 6 (4:730) dp,
5 J - (q,2;0) duy 5 J e n (@, 2:0) dpx,,
170 W (2) @, (g, ;0) (dpx — dux,,) Y0 [ (2) @, (g, 50) dpx
- Io. <q,x;§> s [
_ /1_6 SV (2) by (g, 2:0)dpx, [ 6. (q,7;0) dux
5 o (20 dux [ ben (a:2:0)dpx,
/15 [ (2) ¢, (q,2;0) (dux — duXN)dq+ /15 TV () (6. (q,2:0) — 6. x (q,250)) dpux dq
5 [ o (q,2;0) dux 5 J & (q,2;0) dpx
=0 [0 (x) b N (¢, 7;0) dpx J & (g, 2;0) dux
+/5 [ o (q,%;0) dux . (1 [ (.7:0) duxN> a

1-6
_ /6 Ty (q) + T2 (q) + T3 (g) dg

To obtain the limit of ﬁ 5175 T; (q) dg, note that ﬁ (1xy — ix) converges uniformly to Gx € LEX. Therefore,

1-6 1-9 . _

1 L dg— [ L ¥@) % (q,2:0)dCx
hn hn ) f¢5 ((Lx;e) d/J‘X 6 f¢6 (qvm;e) d:uX



To obtain the limit of ﬁTQ (¢), note that

LT ( ) _ f\II (37) ﬁ (¢8 ((Lx;e) - (ba,N (Q7x;9)) d,uXN
hn e N f(,bs (‘Lx;e)dﬂx
S @) L (Fy (a) = h(2:0)) dux,,
" iy (A0 Ei ) f( o (0 w0y Lo ol
[ (z) f F_;l (q) — h(z;0)) du
- % (Fvb (@ = Flo (@) f( ; V(;M) - ) dnx +o(l)

where the second equality follows from a Taylor expansion and the dominated convergence theorem (since
f is bounded), and the last equality follows from the fact that duy, — duyxy — 0 and uniform bounds over
€ (0,1 — 0) on the remaining terms. We then show that

1 _ _
(e (@) - Filo (@) = / Gx (1{n(:60) +e < Byl (0)}) dF. = G5 (0)
N fv e
uniformly in ¢ € (§,1 — ) to obtain the limit
1 1—5T y 1-5 & (0 [ O (z) f! (F‘}j, (q) — h(m;@)) duxd
O/ J 0. (0,%:0) dyix !

Finally, we rewrite

S (x b N q,fedﬂxNX(l J ¢ (q,2;0)dux )
f¢ (q,7;0) dux f¢sN q,7;0) dux

J U (@) 6w (q:2:0) duy, ( ¢ n (q,70)dpx — [ 6. (¢, 9)dux>
f¢sN q, T; 9 dMX f¢e q,x; Q)dNXN

f‘ll e, (q,7;0) du .
qugNNq,mdﬂXX (i@ - T(0)

T3(q) =

_ f\I] Qaz 0) dﬂ: ~ -
f\If qng @30) dixy, [ (), (q,5:0) dp ) )
( f¢E7N (q,;0) dpx f¢ 0.2:0) dyix X) X (—Tl (q) — 1> (q))

where T (q) = Ty (¢) and Tb (¢) = T» (q) evaluated at ¥ (z) = 1. Since i (—Tl (q9) —Tx (q)) is finite, the

second term is negligible. Hence,

LT (¢) — f\If (. 2:0)dpy [ [ ¢.(q,2;0)dGx LT ) [ 1 ( — h(x-@)) dpx
hy° f¢> (q,2;0) dpx J ¢ (q,2:0) dux v f¢ (q,m 0) dpx '
The limit of ;— f s ) + T2 (q) + T3 (q) dg given by the expressions above yields the Hadamard derivative

of interest. Onhne Appendlx D.2 uses a dominated convergence argument to ensure that T3 (¢) + T2 (¢) + 75 (q)

converges uniformly in q.



