
Understanding the Behavior of Distressed
Stocks∗

Yasser Boualam†

João F. Gomes‡

Colin Ward§

January 16, 2020

Abstract

We construct an asset pricing model with explicit default to develop a risk-based
source of the distress anomaly. We show that distress produces sharply countercyclical
betas leading to biased estimates of risk premia and alphas. This effect is amplified
when earnings growth is mean-reverting, so that distressed stocks also have high ex-
pected future earnings. This bias can account for between 39 and 76 percent of the
distress anomaly in a calibrated economy that replicates the key characteristics of these
stocks.

∗We thank Hengjie Ai, Max Croce, Zhi Da, Jan Ericsson, Lorenzo Garlappi, Brent Glover, John Griffin,
Jens Hilscher, Lars-Alexander Kuehn, Xiaoji Lin, Ali Ozdagli, and participants at the AEA meetings, CMU
(Tepper), HEC-McGill Winter Finance workshop, Minnesota Macro-Asset Pricing conference, Minnesota
Junior Finance conference, SFS Cavalcade, University of North Carolina, WFA, and Wharton for several
helpful comments.
†Kenan-Flagler Business School, University of North Carolina at Chapel Hill
‡The Wharton School, University of Pennsylvania
§Carlson School of Management, University of Minnesota



1 Introduction

Understanding the behavior of distressed stocks has proved somewhat challenging for

standard asset pricing theory. Earlier thought, going back to at least Fama and French

(1992), suggested financial distress could be the source of the higher expected returns of

value stocks. Most empirical research, however, indicates that portfolios of highly dis-

tressed stocks tend to severely underperform those of other stocks.1 Equally surprising,

estimated loadings of distress portfolios on standard risk factors are often large, mak-

ing it even more difficult to understand returns to distressed stocks with conventional

multi-factor models.2

In this paper we develop an equilibrium asset pricing model with explicit default

risk to understand the key patterns in the returns of distressed stocks. Our theoretical

starting point is the observation that the possibility of default implies that, as cash

flows and equity value dwindle, a firm’s equity beta becomes more levered, increasing

the risk compensation demanded by shareholders. The model in Section 2 is developed

around this central insight.

We next establish our second main result. Sharp movements in the betas of dis-

tressed firms will, in turn, imply that standard empirical estimates of the expected

returns on portfolios of highly distressed firms will be downward biased. In particular,

we conclude that an unconditional OLS regression, the literature’s standard model of

performance evaluation, will produce a biased estimate of alpha for portfolios of highly

distressed firms.3

The final, and most novel, contribution of our model, however, is to explicitly

link the exact bias in expected returns on distress stocks to the expected growth in

corporate earnings. More precisely, our model implies that the magnitude of the bias in

expected returns increases with the degree of mean reversion in earnings growth. Since

distressed firms naturally exhibit high expected earnings growth relative to safer firms

1Notable examples include Dichev (1998), Griffin and Lemmon (2002), Campbell, Hilscher, and Szilagyi
(2008), and Garlappi and Yan (2011).

2For example Friewald, Wagner, and Zechner (2014) find that firms with a high failure probability have
high equity beta but low, and even negative, stock returns on average.

3Other studies that entertain payoff nonlinearities in producing biases in returns and model misspecifica-
tions are Boguth, Carlson, Fisher, and Simutin (2011) and Korteweg and Nagel (2016).
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in our model, the combined effects of countercyclicality in firm beta and mean reversion

in earnings become stronger as firms near default. Therefore, portfolios constructed and

ranked on their likelihood of distress will be increasingly exposed to these phenomena.

We validate the model and these three key predictions in the data in Section 3. We

begin by empirically defining the distress anomaly as a measure of ex ante probabil-

ity of default using the reduced-form logit approach introduced by Shumway (2001)

and Campbell, Hilscher, and Szilagyi (2008). Market capitalization, volatility, and

market-to-book ratios all play a chief role in predicting default, consistent with our

model. Next, in double-sorted portfolios of distress with several measures of valuations

we show that the distress anomaly is concentrated in portfolios that have high valu-

ation ratios. Therefore, under rational pricing, these portfolios are expected to have

higher-than-average earnings going forward, a fact that we can also confirm empirically.

Last, we demonstrate that betas of the most distressed firms change more drastically

within a portfolio holding period, confirming that equity risk driven by mean reversion

substantially falls after portfolio formation.

Having validated our model, we then provide a quantitative assessment of its main

theoretical mechanisms and key implications in Section 4. To accomplish this we first

calibrate our model to quantitatively match empirical ex-ante probabilities of default

and return volatilities across portfolios as well as quantities of market risk and leverage.

After disciplining the model in this way, we provide a quantitative estimate of the

likely magnitude of the biases in distressed portfolios’ expected excess returns and

alphas. Depending on the considered pricing specification, our bias explains between

39 and 76 percent of the estimated anomaly. The four-factor Carhart (1997) and the

five-factor Fama and French (2015) models, which empirically perform very well in

explaining stock returns, imply that the bias likely accounts for around 70 percent of

the anomaly. We further document how its overall magnitude depends crucially on

the degree of mean reversion in returns and, more subtly, on the portfolio rebalancing

frequency. Here, we find that frequent rebalancing exposes the investor to significantly

more default risk while holding highly distressed stocks which, in turn, exacerbates the

perceived distress anomaly.
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This section also includes some more direct attempts to validate our model’s core in-

sights by comparing some of its predictions with their empirical counterparts. Notably,

we show that, in the model, as in the data, the distress anomaly is indeed especially

concentrated among stocks with above average rates of earnings growth. Moreover,

we also find that the anomaly actually reverses sign for portfolios that are expected to

have below average earnings growth rates, a fact that is difficult to explain were it not

for the forces in the model.

The empirical literature documenting the distress anomaly is quite extensive. Em-

pirical work on distress risk began by documenting its negative pattern in returns with

Dichev (1998) and Griffin and Lemmon (2002), and, more recently, in the work of

Campbell, Hilscher, and Szilagyi (2008), Elkamhi, Ericsson, and Parsons (2012), Hack-

barth, Haselmann, and Schoenherr (2015), and Gao, Parsons, and Shen (2017). Two

exceptions to these findings are Vassalou and Xing (2004) but only to the extent that

distressed firms are small, value stocks and are illiquid (Da and Gao (2010)) and Chava

and Purnanandam (2010) when using the implied cost of capital developed in Pastor,

Sinha, and Swaminathan (2008) as a measure of expected returns.

Friewald, Wagner, and Zechner (2014) explore the link between a firm’s equity

and credit risk by sorting firms on credit default swap spreads, finding that greater

spreads positively correlate with higher expected equity returns. They conclude that

CDS spreads uncover risk not captured by physical default expectations alone, which

is the risk source we focus on. By linking these features they also broaden the per-

spective on the distress anomaly by tying it to the vast literature on credit risk (e.g.,

Collin-Dufresne and Goldstein (2001) and Bai, Collin-Dufresne, Goldstein, and Hel-

wege (2015)). Work by Avramov, Chordia, Jostova, and Philipov (2013) also uncovers

more of the anomaly’s features, partially associating it to momentum.

Several risk-based theories have been developed in response to this evidence, most

of which bear a relation to the classic Leland (1994) model. A partial list includes

George and Hwang (2010), O’Doherty (2012), Ozdagli (2013), Conrad, Kapadia, and

Xing (2014), Eisdorfer, Goyal, and Zhdanov (2018), Opp (2018) and McQuade (2018).

Perhaps closest to us is the theoretical model in Garlappi and Yan (2011), who also
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allow shareholders to partially recover assets upon default. The key distinction between

our work and these papers however is that ultimately they must rely on the fact that

equity betas must fall as firms approach distress, thus making them safer, to produce

low theoretical returns for distressed stocks.

More recently, Chen, Hackbarth, and Strebulaev (2018) modify our basic model to

propose an alternative risk-based explanation driven by procyclical leverage. In their

setup, distressed firms optimally delever by selling assets and therefore reduce their

equity betas over time. As this is more likely to occur during recessions when risk pre-

mia are large, this creates a conditional pricing effect in the spirit of Jagannathan and

Wang (1996). Empirically, however, leverage tends to rise during recessions (Halling,

Yu, and Zechner (2016)), so their mechanism will in practice contribute to amplify

rather than explain the distress puzzle.4

By contrast our approach requires distressed firms to actually be riskier but clearly

ties the estimated underperformance of distressed firms to high measures of risk and

betas. Empirically this seems more plausible since distressed stocks are very volatile

and possess large betas; that is, they observationally appear to be risky. Furthermore,

they also appear to move with aggregate market conditions in the way we would expect

if investors understand them to be risky (Campbell, Hilscher, and Szilagyi (2008) and

Eisdorfer and Misirli (2017)).

We now turn to discuss our methods and findings in more detail.

2 Equilibrium Equity Returns with Default

We begin by developing a partial equilibrium economy with endogenous default that

allows us to derive the implied endogenous process for a representative firm’s expected

stock returns. We next use this framework to characterize analytically the implied

theoretical biases in estimated unconditional risk premia and linear factor models.

4Deconditioning arguments are also unlikely to quantitatively explain anomalies as argued persuasively
in Lewellen and Nagel (2006).
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2.1 Discounting and Risk

Since our goal is to understand relative, not absolute, movements in asset returns, we

adopt a partial equilibrium perspective and simply posit the representative investor’s

stochastic discount factor at time t as:

Λt = exp {−ρt− γwt} , (1)

where wt = logWt denotes log investor wealth, and its dynamics are driven by a

constant drift µ and an aggregate Brownian shock z with volatility σ:

wt − w0 = µt+ σzt. (2)

Intuitively, we can think of ρ as the rate of time preference and γ as the representative

investor’s risk aversion. For simplicity we assume all wealth is invested in the stock

market, so that its return equals that of the overall market. As a result, the covariances

between these returns and those on individual stocks will allow us to construct CAPM

betas.

As is well known, given the above assumptions, Ito’s lemma can be used to derive

the level of the risk-free rate in our economy as:

r = ρ+ γµ− 1

2
γ2σ2 (3)

and, because the wealth portfolio is itself priced, the restriction:

µ− r =
1

dt
Et[dw]− r = − 1

dt
Et
[
dΛ

Λ
dw

]
= γσ2 (4)

requires that the equilibrium price of risk satisfies λ ≡ γσ = µ−r
σ .

2.2 Firms

The model economy is populated by a continuum of firms, indexed by the subscript i.

Each firm generates an instantaneous cash flow (EBITDA) according to a stochastic

process that is mean-reverting at rate κi to a long-run value X and has volatility σi.
5

5Raymar (1991) and Garlappi and Yan (2011) also use mean-reverting cash flow environments to explore
capital structure and bankruptcy decisions.
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Formally, firm cash flows are assumed to follow the Ornstein-Uhlenbeck process:6

dXi = κi(X −Xi)dt+ σi

(
ρidz +

√
1− ρ2

i dzi

)
. (5)

In this expression cash flow is uncertain due to both a firm-specific idiosyncratic Brow-

nian shock dzi and an aggregate shock, dz, with which it has correlation ρi.

Operating the firm requires a (constant) flow payment of Ci per unit of time. We will

think of Ci as the instantaneous coupon payment on an outstanding consol bond, but

a more general interpretation allows for the addition of any operating and depreciation

costs. In either case, Xi − Ci represents firm i’s (instantaneous) earnings before any

taxes. As a result, equity cash flows can become negative, consistent with empirical

evidence (e.g., Griffin and Lemmon (2002)).

In principle, the model allows for firms to be potentially heterogeneous in their cost,

Ci, rate of mean reversion, κi, idiosyncratic volatility, σi, and the correlation with the

market, ρi. We explore some of this heterogeneity in our simulations. All firms are

assumed to face a constant marginal tax rate on earnings, τ .

2.3 Equity Valuation

To construct explicit expressions for the value of the firm it is useful to switch from

physical to risk neutral probabilities. Girsanov’s theorem allows us to do this and

rewrite the distribution of the physical cash flow process under the risk-neutral measure,

dzQ, as:

dXi = κi(Xi −Xi)dt+ σi

(
ρidz

Q +
√

1− ρ2
i dzi

)
. (6)

where Xi = X − λρiσi
κi

. Of course, idiosyncratic risk, dzi, has a zero market price of

risk and is therefore always under the risk-neutral measure.

The market value of equity under risk-neutral pricing can be expressed as:

Ei(Xi0) = sup
τDi

EQ

[∫ τDi

0
e−rs(1− τ) (Xis − Ci) ds+ e−rτ

D
i δΘ(XD

i )

]
, (7)

6All random variables depend on time. However, to save on notation we avoid using time subscripts unless
necessary. Note that the rate of mean reversion of this process is linear in Xi and that the expectation of
dXi/Xi is not defined as the variance term would go to infinity if Xi approached 0.

6



where τDi ≡ inf
{
s : Xis ≤ XD

i

}
is the stopping time corresponding to the firm’s (opti-

mal) decision to default which occurs when the value of cash flows hits the (endogenous)

threshold XD
i , to be computed below. Following Garlappi and Yan (2011) we allow for

possible (small) deviations from the absolute priority rule by assuming shareholders

can recover a fraction 0 ≤ δ < 1 of the firm’s assets in default, Θ(XD
i ).

It follows again from Ito’s lemma that, while in operation, firm i’s equity value

satisfies the ordinary differential equation:

rEi(Xi) =
1

2
E′′i (Xi)σ

2
i + E′i(Xi)κi(Xi −Xi) + (1− τ)(Xi − Ci). (8)

Its solution (described in detail in Appendix A) has the form

Ei(Xi) = (1− τ)

(
Xi − Ci

r
+
Xi −Xi

r + κi

)
+AiH

− r

κi
,−κ(Xi −Xi)√

κiσ2
i

 (9)

where H(n, v) is the generalized Hermite function of order n. The values of Ai > 0 and

XD
i must be computed numerically by using the following value matching and smooth

pasting conditions associated with optimal decision to default:

Ei(X
D
i ) = δΘ(XD

i ) = δ(1− τ)

(
X

r
+
XD
i −X
r + κi

)
(10)

E′i(X
D
i ) = δ

1− τ
r + κi

. (11)

Intuitively, equity holders choose to default when Xi = XD
i because at that point the

value of running the firm equals that of defaulting (value matching) and the rates of

return on the two options are identical (smooth pasting).

2.4 Returns and Betas

Using the valuation equation (8), it is straightforward to express the stock return under

the physical measure as:

dRi =
dEi + (1− τ)(Xi − Ci)dt

Ei
= Et[dRi] +

E′i(Xi)

Ei(Xi)
σi

(
ρidz +

√
1− ρ2

i dzi

)
(12)

where Et[dRi] = (1−τ)(Xi−Ci)
Ei

+
E′

i(Xi)
Ei

κi(X −Xi) + 1
2
E′′

i (Xi)
Ei(Xi)

σ2
i .
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Firm i’s conditional CAPM beta can then be constructed by computing the covari-

ance of this return with the return to overall household wealth:

βit =
Et [dwdRi]

vart [dw]
=
E′i(Xi)

Ei(Xi)

ρiσi
σ
. (13)

Although the mean-reverting earnings process prevents us from isolating its proper-

ties analytically, firm betas will be driven by the same three separate forces identified in

Gomes and Schmid (2010): (i) a firm’s unlevered asset beta; (ii) firm leverage through

the coupon Ci; and (iii) endogenous changes in the value of the equity holders’ option

to default. Crucially, as shown in Garlappi and Yan (2011), a firm’s βit will generally

be decreasing in Xi, so that firms will become increasingly risky as they approach their

default threshold unless δ is large.7

Taking the conditional variance of (12) we get:

1

dt
vart(dRi) = β2

itσ
2︸ ︷︷ ︸

Systematic

+β2
itσ

2(1− ρ2
i )/ρ

2
i︸ ︷︷ ︸

Idiosyncratic

= β2
it

σ2

ρ2
i

. (14)

Thus, as βit rises near default, so does the variance of firm level returns. It follows that

distressed firms will have a high conditional, and therefore also unconditional, variance

of returns. In conclusion, it is symptomatic of firms approaching default to exhibit

high measures of risk.

This is a key result that distinguishes our paper from many other risk driven ex-

planations of the distress puzzle. In many papers, the observed low excess returns on

distress stocks are rationalized by the fact that the expected returns on these stocks

are themselves lower since they become less risky as default approaches. Moreover, our

model’s implication is generally consistent with the evidence in Campbell, Hilscher,

and Szilagyi (2008) and Eisdorfer and Misirli (2017) that portfolios of distressed firms

move in a way that suggests investors perceive them to be risky.

2.5 Conditional and Unconditional CAPM

By construction, theoretical equity returns are both linear in the underlying risk fac-

tor, dz, and conditionally log normal. Hence, the conditional CAPM holds and its

7Garlappi and Yan (2011) use this result to motivate the choice of a high value for δ to rationalize the
low returns on distress stocks. By contrast, our approach is to choose a very low value of δ.
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conditional alpha is zero. Formally, for each firm i, we get that:

αit =

(
1

dt
Et [dRi]− r

)
− βit

(
1

dt
Et [dw]− r

)
= βitγσ

2 − βit(µ− r) = 0, (15)

where the last equality holds from the economic restriction on the price of risk.

In practice, however, empirical studies rely on discrete sampling of a local (instan-

taneous) risk factor model that takes the general form:

Reit = αi + βiR
e
wt + εit. (16)

where Reit is the excess return on stock i over the risk free rate, rt. When the sole risk

factor is the excess return on the market portfolio, Rewt, we can evaluate the CAPM by

running the above time series OLS regression, as is common in the distress literature.

As usual, the assumed economic restriction in testing the CAPM would be that αi = 0

for all i so that pricing errors are zero for every test asset.

However, over a longer enough horizon it is well understood that this discrete

sampling of a local (instantaneous) risk factor model can lead to sizable biases in the

estimated expected returns series (Longstaff (1989)). In our case, under the model’s

true dynamics, the unconditional expected excess return for firm i, over a period of

arbitrary length T > 0, can be decomposed as

E[ReiT ] = E
[∫ T

0
(dRit − rdt)

]
= E

[∫ T

0
βit(dw − rdt)

]
=

µ− r
σ

βi0σ︸ ︷︷ ︸
Discrete CAPM

+
µ− r
σ

E
[∫ T

0
(βit − βi0)σdt

]
︸ ︷︷ ︸

≡Bias

. (17)

As previous studies have shown (for example, Jagannathan and Wang (1996) and

O’Doherty (2012)), when a firm’s market exposure is expected to change over time,

standard (unconditional) factor models will generally produce a bias in estimated ex-

pected returns which manifests itself in a potentially sizable estimate for the value of

αi.
8 However, unlike those earlier papers however, the bias in (17) does not depend on

the covariance of the firm’s beta with the market risk premium.9

8We interpret βi0 as the exposure of firm i to the market risk factor at time 0 (today).
9This bias is general in the sense that it will be relevant even if there are multiple risk factors. Specifically,

the bias would be a linear combination of each risk factor’s beta and price of risk.
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2.6 Understanding The Bias in Expected Returns

To truly understand the fundamental drivers of the theoretical bias in expected returns,

we can take the expectation inside the integral in (17) and apply Ito’s lemma to express

it as function of the dynamics of βit:

Bias ∝ µ− r
σ

∫ T

0

∫ t

0

( ∂βis
∂Xis

κi(X −Xis)︸ ︷︷ ︸
Earnings Bias

+
1

2

∂2βis
∂X2

is

σ2
i

)
σdsdt. (18)

We can see that the bias depends on: (i) the (negative) slope, ∂βis/∂Xis; and (ii)

and the degree of mean reversion in the firm’s earnings process, κi(X − Xis). The

former captures the direct negative impact of systematic shocks on firm β: firms will

become increasingly risky as they become more distressed. Equation (18) shows that

this is crucial to obtain a negative bias in returns.

The magnitude of the bias however depends on the degree of mean reversion in

earnings. This central role of earnings growth is new to our understanding of the puz-

zling behavior of distressed firms. It will only be large for firms with sizable expected

growth rates in earnings. We label it an earnings-induced bias. Equation (18) shows

that when the combined effects of time varying betas, and mean reversion in earn-

ings are large enough, unconditional estimates of portfolio returns may significantly

underperform the market return. Section 4 quantifies these effects in our model.

Figure 1 summarizes the key theoretical predictions of our model by decomposing

estimated mean excess returns into various components. As discussed, the default

probability increases as the firm’s earnings, Xit, fall towards the default boundary. A

firm’s beta, βi(X), rises as profitability falls and its equity becomes increasingly more

levered. Importantly, as the figure shows, not only does the firm’s beta increase, but

the slope of the function increasingly becomes negative. Convexity in expected returns

means that a firm’s beta becomes more sensitive to the aggregate market shocks. This

effect interacts with the expected growth rate of earnings to amplify the earnings bias.

The figure also conveys that our model also generates a number of other interesting

attributes for these firms. In particular, distressed stocks are small and are expected

to have higher-than-average earnings going forward, and therefore should have high
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market-to-book ratios, under rational pricing. Finally, the bottom-right panel shows

that these stocks also exhibit high idiosyncratic return volatility.

3 Empirical Validation

In this section we use the data to validate our model’s central predictions by examining

the role of mean reversion in earnings growth as well as the properties and temporal

behavior of distressed stocks.

Our data covers the period 1950 to 2015, although most of the analysis focuses on

the period from 1970 on. We identify a default event with a stock delisting for any type

of performance-related reason. Appendix B discusses these events, their classifications

and their properties. For the sample period in question our classification yields 5,652

delistings out of over 210,000 firm-year observations.

Detailed firm-level data comes from combining annual and quarterly accounting

data from COMPUSTAT with monthly and daily data from CRSP. We prefer annual

over quarterly accounting data. Details about the data and our approach to construct

the key variables are included in Appendix C.

3.1 Estimating Default Probabilities

A proper quantitative version of our model must first of all match reliable empirical

measures of ex-ante default probabilities. We construct these by estimating the prob-

abilities of a stock delisting, or default event, for firm i at time t over the next year,

denoted pit.

We forecast delisting events using an updated version of the reduced-form logistic

model proposed by Campbell, Hilscher, and Szilagyi (2008) with one significant mod-

ification. Specifically, these authors use monthly regressions and focus on predicting

the probability of defaulting 12 months ahead, conditional on no default occurring in

the 11th month. Instead, we use annual rolling logit regressions that can be interpreted

as estimating the probability of defaulting, at any time within the next year, given the

information available at the beginning of the year. More precisely, we estimate these

rolling regressions on an annual basis to avoid any look-ahead bias.
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We use maximum likelihood methods to estimate a logistic function on eight ex-

planatory variables in a pooled estimation across all firm-years. Formally, we define

pit = 1/(1 + exp(−yit)), where yit can be approximated by the following empirical

specification:

yit = γ0 + γEXRETAV GEXRETAV Git + γSIGMASIGMAit

+γPRICEPRICEit + γNIMTAAV GNIMTAAV Git + γTLMTATLMTAit

+γCASHMTACASHMTAit + γRSIZERSIZEit + γMBMBit (19)

where EXRETAV Git is a measure of average excess returns over the S&P500 in-

dex, SIGMAit is the volatility of equity returns, MBit is the market-to-book ratio,

NIMTAAV Git is a measure of profitability, TLMTAit is a measure of firm leverage,

CASHMTAit is a measure of cash holdings, RSIZEit is the relative size of the firm,

and PRICEit is the log stock price, capped at $15.

The full sample logistic regression results do not differ materially from those in

Campbell, Hilscher, and Szilagyi (2008).10 The McFadden pseudo R-squared for these

firm level estimates is 40% and all of these financial and accounting ratios are immensely

significant. An important observation made by Campbell, Hilscher, and Szilagyi (2008)

is that long-horizon predictions of default are largely driven by three predictors: relative

market capitalization (RSIZE), which enters negatively; and volatility (SIGMA) and

market-to-book ratio (MB), which both enter positively. The fact that these three

variables play an important role in distress is precisely as predicted by the theoretical

analysis developed above.

3.2 Delisting Portfolios

Based on the estimated firm-level probabilities p̂it, each firm is then ranked and assigned

a percentile on a scale of zero to one-hundred in this empirical distribution. We then

form nine portfolios, j = 1, 2, . . . , 9, in December of every year and place each firm in its

appropriate percentile portfolio. We emphasize that our choice of annual rebalancing is

important to accurately estimate the premium investors receive for holding distressed

10The regression coefficients are included in the Online Appendix.
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stocks; otherwise, a monthly rebalancing strategy risks mixing the distress anomaly

with mechanical effects known to reduce returns such as turnover costs and the wider

bid-ask spreads and lower liquidity of small stocks (Campbell, Hilscher, and Szilagyi

(2008) and Da and Gao (2010)).

In univariate analysis, these portfolios are then ranked in a symmetric and increas-

ing order as follows:11

• Portfolio 1: Percentiles between 0% and 5%

• Portfolio 2: Percentiles between 5% and 10%

• Portfolio 3: Percentiles between 10% and 20%

• Portfolio 4: Percentiles between 20% and 40%

• Portfolio 5: Percentiles between 40% and 60%

• Portfolio 6: Percentiles between 60% and 80%

• Portfolio 7: Percentiles between 80% and 90%

• Portfolio 8: Percentiles between 90% and 95%

• Portfolio 9: Percentiles between 95% and 100%

When considering double-sorts, we create 30th and 70th percentile breakpoints to

ensure a sufficient number of firms in each double-sorted portfolio. Although portfolio

composition is fixed over the course of a calendar year, both the probabilities and the

value weights on each stock are allowed to fluctuate monthly over the year with the

change in each firm’s accounting variables and returns, respectively.

Portfolio returns are constructed using value weights. As in Campbell, Hilscher,

and Szilagyi (2008), a stock’s delisting return is incorporated by simply using the CRSP

delisting return when available, or its lagged monthly return otherwise.

Average ex-ante delisting probabilities for each portfolio, denoted p̂jt, are computed

using equal weights. Formally, the year-to-year average predicted probability of default

11As usual there is a degree of arbitrariness about these classifications. In practice, virtually all delistings
come from stocks in the higher percentiles so the breakdowns for the first five or six portfolios are not
particularly important. It is sometimes useful to create finer portfolios for the upper percentiles but there is
also a concern that the number of firms in each of them will become quite low, particularly as so many are
then delisted over the calendar year.
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for portfolio j is given by

p̂jt =
∑
i ∈ j

p̂it/Njt (20)

where Njt is the number of stocks in portfolio j at time t.

As we show below in Section 5, our measure of ex ante propensities of default offers

a very good forecast of delisting events over this period, at least at the portfolio level.

This displays the accuracy of our logistic regression and confirms that our constructed

portfolios do in fact reflect the risk premia attached directly to the distress anomaly.

Table I documents the basic patterns of delisting probabilities, stock returns and

other characteristics across the nine delisting portfolios. As we can see, average delist-

ing probabilities are quite low for the first five portfolios. Average excess returns (over

the market) are negligible for the first six portfolios but turn increasingly negative for

those with high average delisting probabilities. Return volatility and skewness are also

much higher for these stocks. The sharp increase in return skewness is consistent with

our view of delistings as highly non-linear events.

3.3 Distinguishing Evidence

We now turn our attention to the key empirical patterns in these distressed portfolios

that help distinguish our theory. In particular, we examine detailed evidence on the

(i) importance of mean reversion in earnings and (ii) shifts in portfolios’ risk profiles

over a holding period.

3.3.1 Mean Reversion in Earnings

Table II shows that, as implied by our model, firms in distress are smaller and exhibit

higher market-to-book ratios. They are also unprofitable. A central feature of our

theory, however, is the requirement that distressed firms have high expected earnings

growth going forward. Recall that the bias partly arises from an earnings-induced

component that, in our model, is driven by the degree of mean reversion.

Table II reports the results of using earnings data to estimate the mean rever-

sion parameter κ in (5) by running monthly regressions of each portfolio’s operating

profitability, OIMTAAV G, on its lag. We then convert the monthly discrete-time
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autoregressive coefficient estimate (ϕ̂) to an annual parameter in a continuous-time

model with the formula κ̂ = − log(ϕ̂)/(1/12). As we can see there is substantial evi-

dence of mean reversion in earnings across almost all portfolios with annual estimates

of κ clustered around 0.1, the value used in Garlappi and Yan (2011). Interestingly,

the rates of mean reversion also appear higher for the more risky portfolios.

Direct estimates of rates of mean reversion in earnings can be imprecise but in-

formation about them should also be captured in valuation ratios. Under rational

pricing, a high market-to-book ratio signals that a stock is expected to have either

higher-than-average earnings or lower returns going forward.

Table III offers an empirical counterpart to this prediction. It reports both realized

mean excess returns and forward earnings growth rates for portfolios double-sorted

on the alternative valuation ratios and distress. In all panels we rank firms on these

measures and place them into three portfolios (Low, Medium, and High) separated by

the 30th and 70th percentile breakpoints across distress and each valuation ratio.

Panel A shows that, consistent with our model’s key predictions, low average re-

turns are concentrated in the high distress/high M/B portfolio. Additionally across

portfolios of increasingly distressed firms, greater valuation ratios imply lower (more

negative) excess returns. This is because, holding distress probabilities fixed, high valu-

ation ratios imply higher expected earnings growth. The subpanel on the right confirms

this conjecture by showing that M/B portfolios correlate strongly with higher-than-

average earnings growth, here defined as the two-year-ahead annual growth rate in

earnings, log(Xt+24/Xt) for the median firm in each portfolio. These earnings and val-

uation patterns are consistent with rational pricing and also prior empirical evidence

of mean reversion in earnings among distressed firms from Griffin and Lemmon (2002).

The market-to-book ratio is generally preferred by most empiricists, as both cash

flows and operating earnings can become negative. For completeness, however, Panel

B also reports the mean excess returns for portfolios formed using these alternative

ratios. To avoid the impact of negative values in the denominator we replace each flow

variable F (cash flow or operating earnings per share) with exp(F/A), where A is book
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assets.12 The alternative ratios used in these double-sorts produce very similar results.

These results suggest that when a firm enters a distressed state, it does so only

transiently. To confirm this conjecture we directly examine the expected duration of

being in a particular distress portfolio. Specifically, in Table IV we report the transition

probability matrix for all nine portfolios as well as their ex post propensity to delist.

From this estimated matrix, we can compute the conditional probability that a firm

will remain in its current state or improve it the following period, P(State(t + 1) ≤

State(t)|State(t)). For the five riskiest portfolios, 4060 through 9500, these probabilities

are respectively 72, 74, 47, 71, and 85 percent. Thus, firms in the distressed state

generally tend to become healthy rather than further deteriorate, providing evidence

that such state is temporary.

3.3.2 Beta Sensitivity

Another important component of the bias in returns is the sensitivity of a stock’s beta

to its earnings. Because empirical betas need to be estimated using a rolling window,

we test for the magnitude of this effect by studying how betas evolve after portfolio

formation. As equation (17) suggests, the bias in returns requires that betas change

more among distressed firms than otherwise healthy firms.

Our method to estimate beta sensitivity is as follows. For each portfolio we run

rolling factor regressions for every week using the previous 26 weeks of data for the

year following portfolio formation.13 After this, we calculate the difference in average

estimated weekly betas in the fourth quarter and that in the first quarter within every

year and portfolio in our sample. Finally, we average these differences across years to

get the estimated decline in a portfolio’s factor exposure across our one year holding

horizon.

Portfolios that have substantial sensitivity will exhibit large changes in their betas

between the first and fourth quarters. In Figure 2 we depict these estimated averages

12This adjusts for size and keeps firms in the correct tail of the valuation distribution.
13Betas need to be estimated within a narrow window to accurately measure its current sensitivity, while

still allowing for a reasonable number of observations to estimate the coefficient. We prefer weekly data
to daily because of the illiquidity of distressed firms (Campbell, Hilscher, and Szilagyi (2008), Da and Gao
(2010)).
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for various betas in a general Carhart four-factor model. It is apparent from the figure

that there is a decline in beta sensitivity over time. As a portfolio’s riskiness rises, the

magnitude of the change in betas grows. The sign of these changes for each factor is

consistent with a general betterment of prospects for risky firms: over the course of

the year, market betas fall, and firms grow bigger and become more likely winners.

3.3.3 Summary

To recap, equation (18) serves as a guide towards understanding the behavior of dis-

tressed stocks. It predicts the existence of a bias in measured returns that is induced

by two forces: mean reversion and beta sensitivity. We find novel evidence of both

of these forces in the data, providing a new perspective on the distress anomaly. In

the next section, we calibrate and use our model to quantify the degree of bias that is

present in the data. We then show that it can also replicate the key empirical findings

documented in this section.

4 Quantitative Analysis

4.1 Constructing an Artificial Panel

We now use the empirical default probabilities estimated above to quantify the magni-

tude of the predicted theoretical biases in equity returns. To accomplish this, we use

our theoretical model to construct 100 artificial panels of firms that resemble the one

obtained from the CRSP/COMPUSTAT dataset. Specifically, we use the stochastic

process governing firm-level cash flow dynamics Xt described in (5) to generate panels

of 5,000 individual firms across a period of 480 months. We then rely on the theoretical

results derived in Section 2 to compute the corresponding time series for stock returns,

(12), and one-year probabilities of default at the monthly frequency. At any point in

time, t, the default probability of firm i up to time horizon T can be computed from:

pi(T,Xit) ≡
∫ T

t
gi(Xis = XD

i , s|Xit, t)ds, (21)

where gi(Xis = XD
i , s|Xit, t) is the probability density that the first hitting time is at

time s given Xit, which depends on the hitting-time density of our Ornstein-Uhlenbeck
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process. This is constructed using the method proposed by Collin-Dufresne and Gold-

stein (2001) and described in Appendix A.14

Next, we sort our firms at the beginning of each calendar year based on their (es-

timated) default likelihood, and form nine delisting portfolios using the same method-

ology as in our empirical analysis. To keep the sample size constant we assume that

each defaulting stock is replaced by a new one but only at the beginning of the next

rebalancing period. All entering firms start with an initial value of cash flow X0 = 0.

4.2 Model Calibration

To calibrate the model we need to assign values to 10 parameters. The values of µ, σ,

and r capture collectively the market price of risk. We fix the average market return,

µ, to 8 percent, the market volatility, σ, to 14 percent, and the risk-free rate, r, to 2.5

percent.

Our two institutional parameters are the effective tax rate on corporate income,

τ , and the recovery rate upon default, δ. We set τ to 0.3, which is close to the US

statutory corporate income tax rate. The recovery parameter, δ, is calibrated to target

an equal-weighted average delisting return of -28%, which corresponds to the empirical

moment tabulated over the period from 1971 until 2015.15

Given the central role of mean reversion in our model, we explicitly allow firms

to be heterogeneous in their rates of mean reversion in earnings, κi. Specifically for

our baseline calibration we assume that κi is uniformly distributed across firms with

a mean value of κ̄i = 0.08, in line with our empirical estimates and Garlappi and

Yan (2011). Later we also report results when κ̄i is set to 0.06 and 0.10.16 We also

allow firm-specific cash flow volatility σi to be heterogeneous and uniformly distributed

14While we rely on the model-implied default measure to sort our portfolio throughout our simulation
results, we also show in the Online Appendix that such measure is highly correlated to the its empirical
counterpart constructed based on the Campbell, Hilscher, and Szilagyi (2008) methodology, and that sorting
firms based on the latter will generate qualitatively and quantitatively similar results.

15The model-based delisting return is defined as the annualized return observed over the month immedi-
ately preceding a firm default, consistent with the empirical definition.

16As we later show, our baseline calibration is conservative in the sense that it generates a smaller resolution
of the distress anomaly implied by the estimation bias relative to the κ̄i = 0.10 case, all else equal. In
our Online Appendix we also report results obtained for an alternative calibration allowing for a wider
distribution of κi and show that they are overall consistent.

18



across firms with mean value σ̄i = 0.30, and use this parameter to target portfolio-level

volatilities of weighted-average returns in excess of the risk-free rate.17

We target volatilities as our model has only one source of systematic risk that is

driven by variation in the mean-variance frontier, dw. For both model and data, total

portfolio return volatility is an appropriate target as it summarizes variation due to an

arbitrary number of factors. In practice, multiple risk factors may price equity returns

and the linear combinations of these factors approximate the true exposure to the mean-

variance frontier. Recall that our bias term in (17) will continue to hold even in the

presence of multiple factors. Thus, to better bridge our theoretical predictions with

the data we follow the empirical literature and measure over- or under-performance

with both alphas and mean excess returns.

To keep the main calibration exercise straightforward we abstract from other po-

tential sources of ex-ante firm heterogeneity and assume the parameters governing the

dynamics of the firm-specific cash flow process, X and ρ, and the periodic coupon

payment on debt C, to be identical across firms. The long-run mean of cash flows

X is a scaling variable arbitrarily set to 1. The other two parameters are chosen to

match the estimated delisting probabilities of highly distressed stocks and to produce

a cross-sectional average value of market leverage of 23 percent, consistent with the

evidence in Halling, Yu, and Zechner (2016).18

Table V summarizes our parameter choices. Tables VI and VII show the annual

default probabilities, return volatilities, and other targeted moments for both the model

and the data.

4.3 Results

4.3.1 Model Implied Returns on Distress Portfolios

Table VIII contains our main result: it reports the mean excess returns over the market

across delisting portfolios in our artificial dataset and compares them with the data.

17While heterogeneity in the rate of mean reversion and firm-specific cash flow volatility is unnecessary for
most of our simulation results, it is however important in our double-sort tests as it guarantees that firms
are reasonably well distributed across the two sorting dimensions.

18The model-equivalent market leverage at the firm level is defined as the ratio of debt over total firm
value: (Ci/r)/ (Ci/r + Ei(Xi)).
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We can see that the excess returns across the various default portfolios implied by our

baseline quantitative model can be sizable. Notably, our model predicts very substan-

tial negative excess returns for the last four portfolios where delisting probabilities are

also large.

The correct exercise here is to directly compare mean excess returns in both model

and data as these are independent of the true factor structure of returns. An estimate

of the price of distress risk in the model is −5.31 − 0.47 = −5.78 percent while its

data counterpart is −6.68 − 0.92 = −7.60 percent. Thus, our implied theoretical bias

is equal to 5.78/7.60 = 76 percent of the observed anomaly.19

However, as many studies have shown the presence of multiple sources of risk in

the data, controlling for these factors in regressions may better uncover the true per-

formance of these portfolios. For the Carhart and five-factor models, which otherwise

perform very well empirically in explaining stock returns, our estimated bias accounts

for 70 and 74 percent of the anomaly, respectively. If we use the three-factor Fama

and French (1992) specification however, our model-implied bias accounts for only 39

percent of the spread between low and high distress portfolios estimated alpha.

We next examine the roles played by mean reversion and beta sensitivity in gener-

ating this result.

4.3.2 The Role of Mean Reversion

Figure 3 illustrates the theoretical relationship between bias and distress probability for

alternative degrees of mean reversion in earnings growth. It shows that the magnitude

of the bias is amplified for a given distress probability as the mean reversion parameter,

κ, is increased. Intuitively, a larger drift, κ(X̄ − Xi), lowers mean excess returns for

highly distressed stocks. Betas fall more rapidly and thus exacerbate the estimation

bias in returns.

Table IX shows the quantitative impact of using different values for average mean

19While these results rely on portfolio sorts based on the theoretical default probability, (21), we show
in our Online Appendix that such measure is highly correlated to the model-equivalent Campbell, Hilscher,
and Szilagyi (2008) specification, both at the firm and portfolio levels. Furthermore, we show that portfolio
sorts based on either default measure generate similar results, both qualitatively and quantitatively.
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reversion, κ̄i, on the model-implied mean excess returns across distress-sorted portfo-

lios.20 We see that when we raise κ̄i to 0.1, the implied bias in returns for the most

distressed portfolio increases by about 0.9% relative to our baseline estimate.

As before, we can also examine the link between expected future growth in earnings

and the distress anomaly by looking at valuation ratios instead. Expectations of future

earnings growth rates are closely tied to valuation ratios and, empirically, these are far

easier to compute. Table X reports for our baseline calibration the implied return

spreads for independent double sorts based on distress probability and either the drift,

κi(X̄ −Xi), or the price-to-cash flow ratio, Ei(Xi)/ exp(Xi).
21

The top two subpanels of Panel A corroborate our empirical findings: the distress

anomaly is concentrated in stocks exhibiting both high distress risk and large rates of

drift. Drift rates show up directly in the bias equation (18) and provide the cleanest

evidence of our mechanism at play. But we can also look at patterns generated by

valuation ratios as we show in the bottom two subpanels of Panel A. In general, these

double sorts show that the anomaly is concentrated in the high distress and large valu-

ation portfolios. Our price-to-cash flow measure is clearly less than perfect. However,

when fixing distress and reducing drift rates, as in the top panels, we see that the bias

is clearly concentrated among high distress and high valuation stocks.

4.3.3 The Role of Beta Sensitivity

The other main force in generating the earnings bias in (18) is the sensitivity of beta

to changes in earnings, ∂β/∂X. This sensitivity is an important part of our risk-based

argument that differentiates it from most alternative explanations of the distress puzzle.

As discussed earlier, our model implies that betas will be higher near default. High

betas then interact with strong mean reversion to produce drastic changes in betas

during the portfolio holding period.

To quantify the rate of change of betas over time we use our model to replicate

20Higher mean reversion also moves the optimal default threshold, XD
i , to the left, lowering default

frequencies. To ensure these comparisons are appropriate we adjust idiosyncratic volatility, σi, so that
distressed probabilities for portfolio 9500 are nearly unchanged.

21As before in the data, we use exp(Xi) to ensure that the denominator stays positive.
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the empirical exercise in Section 3. Specifically, we run rolling regressions over the

annual portfolio holding period in our artificial panels. Moreover, the model allows us

to also change the estimation window for the rolling regressions to see how it might

impact estimated betas. To do this we compare betas estimated at three different

frequencies: instantaneously, βinst, as in (13); and using either six or twelve months of

(artificial) data, β6M and β12M . While we cannot observe instantaneous betas in the

real applications, this exercise lets us gauge how wider rolling windows could affect our

empirical estimates.

Table XI reports the results. Similar to the data, the most distressed portfolios

display the most sensitive betas, as seen by the sharp declines over the one year holding

period. Interestingly, the measured decline in betas becomes significantly smaller when

we use wider rolling windows, and does so monotonically within portfolios. Intuitively,

a wider window creates a broader average that dulls the precision of the estimated

betas. This suggests that our earlier empirical estimates likely underestimated the

true sensitivity of betas for the most distressed stocks.

5 Additional Implications

In this section we investigate two additional interesting implications of our model re-

garding the importance of portfolio rebalancing and the connection between momentum

and distress stocks.

5.1 Adjusting Rebalancing Frequencies

Equation (18) shows that the theoretical bias also depends on the time horizon between

observations, T . Intuitively, the earnings bias can only matter when there are sizable

gaps between current and expected future cash flows. Formally, since the conditional

expectation of cash flows, assuming no default between times t and T for firm i:

E[XiT |Xit] = X + [Xit −X]e−κi(T−t), (22)
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is monotonically increasing in T , where Xit < X (the distressed stocks), the magnitude

of the bias should increase with the rebalancing horizon.22

Panel A of Table XII examines the effects of rebalancing on the size of the distress

anomaly in the model. Specifically we report the mean excess returns for a variety

of double sorted portfolios, using two rebalancing frequencies: our benchmark annual

rebalancing and more frequent quarterly rebalancing. As we can see, the model implies

that a more frequent rebalancing leads to the greater sampling of highly distressed firms

that generates a larger estimated price of distress risk.

Two distinct, but opposite, forces drive this finding. First, there is a direct effect

that works to accentuate the earnings bias as the holding period increases since the

cash flows of initially distressed firms eventually converge back to their long-run mean.

However, more frequent rebalancing also means more frequent resorting of highly dis-

tressed firms with very sensitive betas and high expected rates of mean reversion. This,

in turn, raises the size of the bias estimated in the unconditional returns. Table XII

shows that the effect of mechanical rebalancing dominates in our simulated model.

In Panel B, we report the effects of using alternative portfolio rebalancing fre-

quencies on our empirical estimates of the mean excess returns on distressed stocks.

Consistent with the model, more frequent rebalancing also exacerbates the empirical

distress puzzle so that the bias appears more pronounced at the quarterly frequency.

5.2 Momentum and Distress

Momentum and distress are often linked in empirical work. However, our model implies

that the source of bias in distressed stock returns is only partially connected to mo-

mentum. This is consistent with what we find in the data in table 8 where controlling

for momentum in the Carhart factors does not explain away the distress anomaly. In

this section we further separate distress from momentum.

We first compare the ability to predict ex-post defaults, pjt using both distress and

momentum. Columns 2 and 3 of Table XIII report the results of regressing ex-post

delisting frequencies, pjt, on the ex-ante average predicted probabilities, p̂j,t−1 across

22Importantly, however, default probabilities must remain constant across the different time horizons.
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each distress portfolios. We can see that, for the high distress portfolios, where ex-post

default is concentrated, the fit is extremely accurate with estimated R-squareds close

to 90 percent and estimated coefficients very close to 1 as we would expect.23

The time series of pjt for the four highest-risk distress portfolios are also shown

in Figure 4 and all exhibit significant variation over time. Visually, the predicted

probabilities, p̂j,t−1, track the realized series remarkably well, confirming again that

our logit-based probability model captures well the realized delisting frequencies.

By contrast, column 5 of Table XIII shows that momentum, as commonly defined

based on the (12-2) returns, is a very inferior predictor of default. As we can see, loser

portfolios, in the lower tails of the momentum factor distribution, exhibit fairly modest

R-squareds when compared with the distress portfolios. Moreover, the correlation

coefficient of ex ante default probability with the (12-2) return across all firm-months

is only -0.21.

To confirm this we next construct independently double-sorted portfolios based

on distress and momentum both in the data and in our artificial panels. Table XIV

tabulates the mean excess returns on these portfolios using the 30th and 70th percentile

breakpoints.

We can see that, for both model and data, the distress anomaly is concentrated in

the losers portfolio. Importantly, however, within a specific momentum portfolio, the

high distress portfolio always performs worse than a low distress one. Still, whereas

the model highlights that the distress anomaly survives within our simulation results

even after controlling for momentum, in the data the distress anomaly concentrates

only in losers.

We conclude that the two phenomena are only partially linked. We see the distress

anomaly as unique and only mechanically correlated with momentum through the

construction of the logistic regression for p̂j,t−1.24

23Although the quality of fit appears statistically poor for the first four portfolios there is virtually no
variation in the dependent variable (defaults) here.

24In particular the fact that our logistic regressions have EXRETAVG as a significant predictor of default.
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6 Conclusion

This paper shows how time variation in expected returns and mean reversion in earnings

induced by endogenous default can affect the inference about the behavior of delisting

stocks. Financial distress naturally produces sharply nonlinear and countercyclical

movements in betas that lead to biases in standard estimates of risk premia and alphas.

These movements are greatly amplified when earnings growth is mean reverting so that

distressed stocks are also those with high expected future earnings.

We show that these effects are sizable in a calibrated economy that replicates the

key characteristics of distressed stocks: they have high betas, volatilities, and market-

to-book ratios consistent with a rational forecast of mean-reversion in earnings. Our

analysis suggests that the bias can explain between 39 and 74 percent of the distress

anomaly, with a greater likelihood centered around 70 percent. In conclusion, our

study cautions against the use of linear performance models when assets likely feature

short-lived, nonlinear movements in expected returns.
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A Appendix: Derivations

Solution to Equity Value

The total value of the firm is the sum of three parts. The first part is the unlevered

value of the firm, one that has neither debt nor operating costs. Its value is simply

EQ
[∫ ∞

0
e−rt(1− τ)Xitdt

]
= (1− τ)

(
Xi

r
+
Xi0 −Xi

r + κi

)
. (A1)

The second part is simply (minus) the present value of operating and fixed costs;

namely −(1−τ)Ci/r. Finally, the value of the default option D(Xi) solves the ordinary

differential equation

rDi(Xi) = D′i(Xi)κi(Xi −Xi) +
1

2
σ2
iD
′′
i (Xi). (A2)

This is a Hermite differential equation whose solution takes the form

Di(Xi) = AiH

− r

κi
,−κ(Xi −Xi)√

κσ2
i

+Bi1F1

(
r

2κi
,
1

2
,
κi(Xi −Xi)

2

σ2
i

)
, (A3)

whereH(v, x) is the generalized Hermite function of order v and 1F1(a, b, x) is the Kum-

mer confluent hypergeometric function of parameters a and b. Imposing the boundary

limXi→∞Di(Xi) = 0 allows us to set Bi to zero. Putting these three pieces together

gives (9).

Default Probability

This follows the derivation in Collin-Dufresne and Goldstein (2001) but allows for a

non-zero default boundary. Define γi(XiT , T |Xit, t) as the free (unabsorbed) transition

density for a continuous Markov process and gi(Xit = XD
i , t|Xi0, 0) as the density of

the first passage time through a constant boundary XD
i occurring at time t. A formula

provided by Fortet (1943) allows us to implicitly define gi(·) in terms of γi(·) as

γi(XiT , T |Xi0, 0) =

∫ T

0
γi(XiT , T |Xit = XD

i , t)gi(Xit = XD
i , t|Xi0, 0)dt, for XiT < XD

i < Xi0,

(A4)

which can be interpreted as saying that Xi0 must pass through XD
i to eventually get

to XiT .
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Since the dynamics of (5) are Gaussian we can construct the terms

Mi(T ) ≡ E[XiT |Xi0] = Xi0e
−κiT +X(1− e−κiT ), (A5)

Li(T − t) ≡ E[XiT |Xit = XD
i ] = XD

i e
−κi(T−t) +X(1− e−κi(T−t)), and (A6)

S2
i (T − t) ≡ vart(XiT ) =

σ2
i

2κi
(1− e−2κi(T−t)). (A7)

Integrating (A4) by
∫ XD

i
−∞ dXit gives

N
(
XD
i −Mi(T )

Si(T )

)
=

∫ T

0
N
(
XD
i − Li(T − t)
Si(T − t)

)
gi(Xit = XD

i , t|Xi0, 0)dt, (A8)

where N (·) is the cumulative standard normal distribution.

To solve for the first passage density, we construct N equal time intervals such that

T = N∆t and approximate the integral by estimating values at the midpoints of these

intervals. Defining mn = (XD
i −M(n∆t))/S(n∆t), ln = (XD

i −L(n∆t))/S(n∆t), and

gin = gi(Xi(n−1/2)∆t = XD
i , (n− 1/2)∆t|Xi0, 0)∆t we get the recursion

N (m1) = N (l1/2)gi1

N (m2) = N (l3/2)gi1 +N (l1/2)gi2

...

Continuing up to the N midpoints gives a system of N equations of the N unknowns

gin, n = 1, . . . , N . The probability of default over the horizon T is then computed as

pi(T,Xi0) =
N∑
n=1

gin. (A9)
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B Appendix: Delistings

We use the following performance-related delisting codes:25

• 500 - Issue stopped trading on exchange - reason unavailable

• 550 - Delisted by current exchange - insufficient number of market makers

• 552 - Delisted by current exchange - price fell below acceptable level

• 560 - Delisted by current exchange - insufficient capital, surplus, and/or equity

• 561 - Delisted by current exchange - insufficient (or non-compliance with rules

of) float or assets

• 574 - Delisted by current exchange - bankruptcy, declared insolvent

• 580 - Delisted by current exchange - delinquent in filing, non-payment of fees

• 584 - Delisted by current exchange - does not meet exchange’s financial guidelines

for continued listing

We remove all delisting returns greater than positive 100%. Less than 1% of the

delisting returns, out of a total 5,652 delisting observations, are missing across the

whole sample period.

25Before 1987, all performance-related and stock-exchange-related delistings were coded 5. After 1987,
CRSP started a more refined breakdown. The original code 5 delistings were initially given 500, and are
considered to be mainly performance-related delistings (there is only a small number of exchange-related
delistings). The 572 delisting code (liquidation at company request), is now discontinued and is replaced
by the 400 delisting series. The average delisting returns on the 400 series is slightly positive, which may
suggest that it does not really reflect negative company performance.
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C Appendix: Firm Level Data and Variables

This appendix describes in detail how our the variables used in the analysis are con-

structed. All variables codes are for the COMPUSTAT annual file. We use all indus-

trial, standard format, consolidated accounts of USA headquartered firms in COMPU-

STAT. From the CRSP monthly and daily file we use all stocks in NYSE, AMEX, and

NASDAQ. The S&P500 index comes from the annual MSI file and data on the Fama

and French and momentum risk factors come from Ken French’s website. We follow

Campbell, Hilscher, and Szilagyi (2008) and align each company’s fiscal year with that

of the calendar year, and then lag the accounting data by two months. Our measure

of book equity follows Davis, Fama, and French (2005).

Our variable definitions are as follows:

• Relative size

RSIZEit = log(SIZEit/TOTV ALt × 1000)

where TOTV ALt is total dollar value of CRSP’s value-weighted portfolio VWRETD

and

SIZEit = PRCit × SHROUTit/1000

• Leverage

TLMTAit = LTit/(SIZEit + LTit)

• Relative cash holdings

CASHMTAit = CHEit/(SIZEit + LTit)

• Market to book ratio

MBit = SIZEit/ADJBEit

• Adjusted book equity (observation set to one if negative)

ADJBEit = BEit + 0.1 ∗ (SIZEit −BEit)

• Stock price

PRICEit = log(min{PRCit, 15})
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• Excess returns

EXRETAV Git = (1− ψ)/(1− ψ12)× (EXRETit + ..+ ψ11EXRETit−11)

where

EXRETit = log(1 +Rit)− log(1 + VWRETDt)

and VWRETD is CRSP’s value-weighted total return. Because of the need for

an uninterrupted series any missing variables are set equal to their cross-sectional

means.

• Return on assets, or profitability

NIMTAAV Git = (1− ψ3)/(1− ψ12) ∗ (NIMTAit,t−2 + ψ3NIMTAit−3,t−5

+ ψ6NIMTAit−6,t−8 + ψ9NIMTAit−9,t−11)

where we use ψ = 2−1/3 and

NIMTAit = NIit/(SIZEit + LTit)

NIMTAit−x,t−x−2 = (NIMTAit−x +NIMTAit−x−1 +NIMTAit−x−2)/3

Because of the need for an uninterrupted series any missing variables are set equal

to their cross-sectional means.

• Operating profitability

We also construct a variable, OIMTAAV Git, of operating profitability. We do

this by repeating the exercise above for profitability (NIMTAAV G) but use

EBITDAit in place of NIit for the construction of OIMTA, where EBITDA is

Compustat’s measure of earnings before before interest and depreciation. EBITDA

is closer to our measure of X in the model.

• Return volatility

SIGMAit =

√
252

N − 1

∑
R2
it

where the summation is of daily returns over the past three months and missing

SIGMA observations (when N < 5) are replaced with the cross-sectional mean.
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Each one of these variables is also winsorized at the fifth and ninety-fifth percentiles

each year and all observations with missing size, profitability, leverage, or excess return

data are dropped. The Online Appendix reports a table of summary statistics for the

variables used in our regressions.

35



Table I: Returns on Distress Portfolios

This table reports summary statistics for the portfolios constructed using the estimated
delisting probabilities using the logistic regression (19). Mean excess returns, MER, are in
excess of CRSP’s value-weighted total returns, VWRETD. The data are monthly and cover
the period from January 1971 until December 2015. Some denoted quantities are annual-
ized. Distress probability p̂, excess returns (MER) and standard deviation are expressed in
percentage terms.

Annual Annual Standard
Portfolio p̂ MER Deviation Skewness

0005 0.04 0.92 1.49 -0.04
0510 0.06 -0.05 1.26 0.06
1020 0.09 0.21 1.47 -0.24
2040 0.20 0.94 2.19 -0.46
4060 0.50 0.70 2.90 0.71
6080 1.48 -0.69 4.14 1.29
8090 3.97 -2.72 5.83 1.89
9095 7.33 -6.29 7.20 2.25
9500 14.05 -6.68 8.71 2.59
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Table II: Properties of Distress Portfolios

This table reports summary statistics for the portfolios constructed using the estimated
delisting probabilities using the logistic regression (19). Definitions of relative size, M/B,
and profitability are in Appendix C. Annual κ is the estimate of the mean reversion parameter
in (5), obtained by running regressions of each portfolio’s operating profitability, on its lag,
and then converting the monthly discrete-time autoregressive coefficient estimate (ϕ̂) to an
annual parameter in continuous-time with the formula κ̂ = − log(ϕ̂)/(1/12). These monthly
data are from January 1971 until December 2015. Some denoted quantities are annualized.
Profitability is expressed in percentage terms.

Relative Market- Annual Annual
Portfolio Size to-Book κ Profitability

0005 -7.30 2.36 0.036 1.16
0510 -7.41 2.45 0.068 0.87
1020 -7.73 2.46 0.117 0.69
2040 -8.67 2.33 0.090 0.59
4060 -9.69 2.40 0.112 0.29
6080 -10.50 2.59 0.124 -0.23
8090 -11.21 2.93 0.170 -1.01
9095 -11.63 3.26 0.132 -1.64
9500 -11.87 3.80 0.215 -2.30
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Table III: Distress and Expected Earnings Growth: Data

This table reports empirical time series averages of independently double-sorted portfolios.
Portfolios are formed on distress probabilities and other stock characteristics: market to book
(M/B), price-to-cash flow (P/CF), price to operating earnings (P/EBITDA). Both P/CF
and P/EBITDA are constructed as P/ exp(X/A) where P is the price per share, X is the
relevant flow per share, and A is book assets. Cash flow is net income plus depreciation and
operating earnings are EBITDA. Low, Medium, and High are separated using the 30th and
70th percentile breakpoints across each characteristic. Mean Excess Return are annualized
value-weighted monthly returns over CRSP’s value-weighted total return. Forward Earnings
Growth is the 24-month forward earnings growth rate, log(Xt+24/Xt), of the median firm in
the portfolio. Portfolios are annually rebalanced. All statistics are in percent.

PANEL A: M/B, Returns and Earnings Growth

M/B M/B

L M H L M H
Distress Mean Excess Return Forward Earnings Growth

L 2.36 1.58 -0.43 -3.29 -1.16 1.42
M 3.08 2.06 -0.96 -4.72 -5.01 1.63
H 1.70 -1.46 -6.54 -7.70 -2.55 3.27

PANEL B: Other Valuation Ratios

P/CF P/EBITDA

L M H L M H
Distress Mean Excess Return Mean Excess Return

L 7.39 5.02 0.28 0.50 5.30 0.28
M 7.53 3.20 -0.97 3.97 3.21 -0.96
H 0.88 -3.50 -3.53 0.73 -3.55 -5.56
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Table IV: Portfolio Transition Matrix: Data

This table reports estimates of portfolio transition probabilities. Actual (ex post) delistings
are listed in the last column. Sample period runs from 1971 until 2015. Portfolios are
annually rebalanced. All probabilities are in percent.

State (t+ 1)

0005 0510 1020 2040 4060 6080 8090 9095 9500 Delist

State (t)

0005 62.61 22.28 10.12 3.90 0.74 0.25 0.06 0.01 0.00 0.03
0510 23.56 35.84 28.58 9.35 1.96 0.54 0.10 0.01 0.01 0.05
1020 5.63 16.07 43.58 28.34 4.58 1.36 0.26 0.09 0.06 0.03
2040 1.14 2.70 16.41 51.96 21.02 5.12 1.03 0.31 0.19 0.11
4060 0.23 0.43 2.61 23.62 44.96 21.71 4.18 1.17 0.78 0.32
6080 0.06 0.10 0.65 5.40 22.62 45.89 16.03 5.06 3.33 0.86
8090 2.65 0.01 0.02 0.21 1.80 8.31 33.76 34.34 16.25 2.65
9095 0.00 0.00 0.09 0.78 3.66 16.88 27.49 22.41 23.23 5.46
9500 0.00 0.04 0.09 0.62 2.24 9.45 17.55 19.56 35.77 14.68
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Table V: Calibration

This table reports the parameter choices for our model. These choices are described in detail
in Section 4.2. The model is simulated at a monthly frequency and the parameters below
are annualized.

Parameter Value Description

Market
µ 0.08 Market return
σ 0.14 Market volatility
r 0.025 Risk-free rate

Institutions
τ 0.3 Tax rate
δ 0.015 Recovery rate

Firms
X 1 Level of long-run cash flows
κi U([0.04, 0.12]) Rate of mean reversion
σi U([0.2, 0.4]) Firm cash flow volatility
ρ 0.7 Correlation with aggregate shock
C 0.05 Dollar coupon
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Table VI: Actual and Simulated Default Frequencies and Volatility Targets

This table reports equal-weighted averages of annual ex-ante default probabilities at the
portfolio level for both actual and simulated data from our calibrated model described in
Section 4.2. It also reports annual average volatilities of portfolio excess returns (relative to
the risk-free rate) for both actual and simulated data. Portfolios in the data are constructed
using the estimated probabilities from the logistic regression in (19). The sample period
runs monthly from 1971 until 2015. Each portfolio in the model is ranked according to the
default probability given in (21). Model results are tabulated based on moment averages
across 100 simulations, each generating an artificial panel of 5,000 firms over a period of 480
months. Portfolios in both model and data are rebalanced annually.

Portfolio pdataj pmodelj σdataj σmodelj

0005 0.04 0.00 5.12 9.94
0510 0.06 0.00 4.32 7.85
1020 0.09 0.00 5.07 5.67
2040 0.20 0.01 7.46 2.42
4060 0.50 0.14 10.09 3.35
6080 1.48 0.96 14.39 9.71
8090 3.97 3.42 20.25 18.05
9095 7.33 7.29 25.07 25.08
9500 14.05 14.05 30.31 30.84

Table VII: Other Targeted Moments

This table reports targeted moments from the model calibration, described in Section 4.2.
Delisting returns are tabulated as equal-weighted averages. In the data, we simply use the
CRSP delisting returns when available and the lagged monthly returns otherwise. Model-
based delisting returns are defined as the annualized returns observed over the month im-
mediately preceding a firm default. Similarly, average market leverage is computed on an
equal-weighted basis. The targeted moment is taken from Table 1 in Halling, Yu, and Zech-
ner (2016) (US-only sample statistics); in the model, it is defined at the firm level as the
ratio of debt over total firm value: C

r
/
(
C
r

+ Ei(Xi)
)
. Model results are tabulated based on

moment averages across 100 simulations, each generating an artificial panel of 5,000 firms
over a period of 480 months.

Moment Data Model

Average Market Leverage 0.23 0.24
Average Delisting Return -0.28 -0.20
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Table VIII: Excess Returns Across Distressed Portfolios

This table reports portfolio’s mean excess return (MER) over the market for the model as
well as measures in the data. The data are tabulated over five specifications: the simple MER
as well as alphas from four empirical models; CAPM, three-factor Fama and French (1992)
model, four-factor Carhart (1997) specification, and the five-factor Fama and French (2015)
regression. In the data, each portfolio is constructed using the estimated distress probabilities
from the logistic regression (19). Sample period runs monthly from January 1971 until
December 2015. Standard errors are OLS. In the model, portfolios are constructed using
the probability of default given in (21) using the parameters summarized in Table V. Model
results are tabulated based on moment averages across 100 simulations, each generating an
artificial panel of 5,000 firms over a period of 480 months. Portfolios in both data and model
are rebalanced annually.

Data
Model CAPM 3-factor Carhart 5-factor

Portfolio MER MER Alpha Alpha Alpha Alpha

0005 0.47 0.92 1.69** 2.33*** 0.49 1.69**
0510 0.58 -0.05 0.31 0.48 0.92 -0.40
1020 0.72 0.21 -0.31 -0.77 0.65 -0.49
2040 0.72 0.94 -0.18 -0.87 0.49 0.65
4060 0.08 0.70 -0.84 -2.35*** -0.45 -0.88
6080 -1.45 -0.69 -2.99 -4.82*** -1.81* -2.96**
8090 -3.52 -2.72 -5.87** -7.77*** -4.05** -4.04**
9095 -4.35 -6.29* -9.61*** -11.38*** -6.33** -6.19**
9500 -5.31 -6.68 -10.26** -12.39*** -7.36** -6.57**
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Table IX: The Impact of Mean Reversion in Earnings

This table reports time series averages of annually rebalanced, distressed-sorted portfolios
in the model for cash flow mean reversion rates κi that are uniformly distributed with a
mean value κ̄i = {0.06, 0.08, 0.10}. Distress probabilities pj are computed on an equal-
weighted basis and reported in percent. Portfolios are constructed using the probability of
default given in (21). The column MER tabulates raw annualized value-weighted mean excess
returns (MER) over the market portfolio returns expressed in percent. Mean idiosyncratic
volatility, σ̄i, is recalibrated to ensure probabilities for the most distressed portfolio remain
(approximately) constant. Model results are tabulated based on moment averages across 100
simulations, each generating an artificial panel of 5,000 firms over a period of 480 months.

Mean Reversion

κ̄i = 0.06 κ̄i = 0.08 κ̄i = 0.10

Portfolio pj MER pj MER pj MER

0005 0.00 -0.43 0.00 0.47 0.00 1.19
0510 0.00 -0.23 0.00 0.58 0.00 1.18
1020 0.00 -0.06 0.00 0.72 0.00 1.20
2040 0.00 0.44 0.01 0.72 0.04 0.89
4060 0.03 0.47 0.14 0.08 0.28 -0.07
6080 0.51 -0.48 0.96 -1.45 1.33 -1.99
8090 2.60 -2.32 3.42 -3.52 4.02 -4.24
9095 6.32 -3.00 7.29 -4.35 7.93 -5.37
9500 14.20 -4.26 14.05 -5.31 14.07 -6.18
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Table X: Distress and Expected Earnings Growth: Model

Panel A in this table reports time series averages of mean excess returns (MER) for annually
rebalanced, independently double-sorted portfolios in the model. The portfolios are formed
based on distress probability and drift, defined as κ(X̄−X), and the price-to-cash flow ratio
(P/CF), E/ exp(X). MERs are annualized value-weighted monthly returns over the market
and expressed in percent. Ex-ante distress probabilities and cash flow drifts are computed
on an equal-weighted basis. All results are tabulated based on moment averages across 100
simulations, each generating an artificial panel of 5,000 firms over a period of 480 months.
All parameter values are shown in Table V. Low, Medium, and High are separated using the
30th and 70th percentile breakpoints across each characteristic.

Earnings Drift
Distress L M H

L 0.67 0.63 0.72
M 0.44 0.03 -0.58
H -1.42 -2.35 -3.86

P/CF
Distress L M H

L 0.77 0.65 0.63
M -0.16 0.09 -0.04
H -3.68 -2.89 -3.14
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Table XI: Sensitivity of Beta by Portfolio

This table reports the estimated differential in market betas of portfolios that are sorted
by ex-ante default probabilities. Portfolio betas are tabulated as value-weighted averages

of firm-level betas constructed as βinst = ρσi
σ

E′
i

E
, as given in (13), or β =

cov(Re
i ,R

e
m)

var(Re
m)

, for 6-
and 12-month rolling windows, and with Re and Re

m in excess of the risk-free rate. Beta
differentials are reported as the average difference between fourth quarter and first quarter
betas across all observations within a quarter. Returns are annualized and in percent. In
the model, portfolios are constructed using the probability of default given in (21). Model
results are tabulated based on moment averages across 100 simulations, each generating an
artificial panel of 5,000 firms over a period of 480 months. Portfolios are rebalanced annually
and all parameter values used to solve the model are shown in Table V.

E[β4th qtr − β1st qtr]
0005 0510 1020 2040 4060 6080 8090 9095 9500

βinst 0.00 0.00 0.00 0.01 -0.00 -0.03 -0.11 -0.23 -0.35
β6M 0.01 0.01 0.02 0.02 0.02 -0.00 -0.06 -0.15 -0.07
β12M 0.01 0.01 0.01 0.01 0.01 0.00 -0.02 -0.06 -0.06
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Table XII: The Impact of Rebalancing

Panel A in this table reports time series averages of mean excess returns (MER) for quarterly
and annually rebalanced, independently double-sorted portfolios in the model. The portfolios
are formed based on distress probability and drift, defined as κ(X̄−X), and the price-to-cash
flow ratio (P/CF), E/ exp(X). MERs are annualized value-weighted monthly returns over
the market and expressed in percent. Ex-ante distress probabilities and cash flow drifts are
computed on an equal-weighted basis. Model results are tabulated based on moment averages
across 100 simulations, each generating an artificial panel of 5,000 firms over a period of 480
months. All parameter values are shown in Table V. Panel B reports empirical time series
averages for independently double-sorted portfolios. These portfolios are formed on distress
probabilities and market to book (M/B), defined in Appendix C. MERs are annualized value-
weighted monthly returns over CRSP’s value-weighted total return. For both model and
data, Low, Medium, and High are separated using the 30th and 70th percentile breakpoints
across each characteristic.

PANEL A: Model

Quarterly Rebalanced Drift Annually Rebalanced Drift

L M H L M H
Distress Mean Excess Return Mean Excess Return

L 0.67 0.68 0.66 0.67 0.63 0.72
M 0.47 0.01 -0.37 0.44 0.03 -0.58
H -1.81 -2.54 -4.08 -1.42 -2.35 -3.86

Quarterly Rebalanced P/CF Annually Rebalanced P/CF

L M H L M H
Distress Mean Excess Return Mean Excess Return

L 0.77 0.69 0.61 0.77 0.65 0.63
M -0.23 0.13 0.08 -0.16 0.09 -0.04
H -4.13 -3.11 -3.82 -3.68 -2.89 -3.14

PANEL B: Data

Quarterly Rebalanced M/B Biennially Rebalanced M/B

L M H L M H
Distress Mean Excess Return Mean Excess Return

L 2.31 1.38 -0.16 1.58 1.75 -0.51
M 1.03 0.85 -1.24 3.93 2.78 -0.91
H -3.85 -5.24 -10.6 4.05 2.04 -5.21
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Table XIII: Actual and Estimated Delisting Frequencies

This table reports R2 and slope coefficients associated with regressing ex-post observed
delisting frequencies on the average estimated probabilities for nine portfolios, indexed by
subscript j:

pjt = bj p̂j,t−1 + εjt.

Each distress portfolio is constructed using the estimated default probabilities using the logis-
tic regression (19). Each momentum portfolio is constructed by using the cumulative return
realized over the previous year excluding the most recent month. The predicted probabil-
ity estimate over the entire following calendar year is paired with the year’s corresponding
realized delisting frequency. These annual data are from 1970 until 2015.

Distress Momentum

Portfolio b̂j R2 b̂j R2

0005 0.68 0.07 1.09 0.59
0510 0.45 0.00 0.70 0.56
1020 0.37 0.07 0.61 0.47
2040 0.80 0.49 0.55 0.63
4060 0.99 0.67 0.60 0.70
6080 0.91 0.79 0.45 0.62
8090 0.96 0.89 0.31 0.29
9095 1.00 0.88 0.41 0.36
9500 0.98 0.87 0.45 0.46
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Table XIV: Distress and Momentum

This table reports time series averages of annually rebalanced, independently double-sorted
portfolios in the model. The portfolios are formed on distress probability and momentum,
defined as the cumulative return realized over the previous year excluding the most recent
month. Low, Medium, and High for distress are separated using the 30th and 70th percentile
breakpoints, as are Losers, Medium, and Winners are for momentum. Mean Excess Returns
are annualized value-weighted monthly returns over the market and expressed in percent.
Ex-ante distress probabilities are computed on an equal-weighted basis. Model results are
tabulated based on moment averages across 100 simulations, each generating an artificial
panel of 5,000 firms over a period of 480 months. All parameter values are shown in Table
V.

PANEL A: Data

Momentum

L M W
Distress Mean Excess Return

L -0.21 0.49 2.15
M -2.89 2.94 2.57
H -5.79 0.04 1.71

PANEL B: Model

Momentum

L M W
Distress Mean Excess Return

L 0.33 0.61 0.86
M -0.16 0.10 0.21
H -3.43 -2.92 -2.70
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Figure 1: Mean Excess Returns Decomposition: Model
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This figure depicts the key properties of our theoretical model, as a function of the current
level of a firm’s cash flows, X. The top two panels show the physical default probability of
the firm, pi(T,Xi0), as well as the firm’s beta (minus the market), βit − 1. The middle-left
panel plots the earnings bias as defined in (18). Earnings drift, plotted in the middle-
right panel, is the time t conditional expectation of the earnings process specified in (5):
Et[dX] = κ(X̄−X). The firm’s relative size is calculated as the log ratio of the firm’s size to
average size: RSIZE = log(E(X)/E(X̄)). Idiosyncratic volatility is defined in (14) and is
the portion of the firm’s return volatility unrelated to systematic risk (βσ) and is shown at
an annual rate. The rate of mean reversion κ is set to 0.1. All remaining parameter values
are shown in Table V.

49



Figure 2: Sensitivity of Factor Betas by Portfolio
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This figure displays the average change of a portfolio’s factor beta across the fourth and first
quarters following portfolio formation. For the following year after portfolio formation, we
run weekly rolling factor regressions for each portfolio using the previous 26 weeks of data.
We then calculate the difference between all weeks in the fourth quarter’s estimate and in
the first quarter’s estimate within every year, portfolio, and factor in our sample. Finally,
we average these differences across years to get the estimated decline in a portfolio’s factor
exposure across our one year holding horizon. This factor model is the Carhart four-factor
model of market (MKT), size (SMB), value (HML), and momentum (WML). The sample
period runs January 1971 until December 2015.
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Figure 3: Bias, Distress Probability, and Mean Reversion

This figure shows the relationship between bias and distress for three mean reversion pa-
rameters: (i) κ = 0.06, (ii) κ = 0.08, (iii) κ = 0.10. Both distress probability and bias are
expressed in percent. The remaining parameter values are shown in Table V.
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Figure 4: Realized Default Frequencies and Estimated Probabilities from the Logistic Model
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This figure shows the ex post delisting frequencies, pjt, and estimated delisting probabilities, p̂jt, for the four high-
risk portfolios: 6080, 8090, 9095, 9500. The estimated delisting probabilities are formed by using the logistic model
in (19) and the details of the estimation are described in Section 3.1. The ex-post delisting frequencies are based on
performance-based delistings, described in Appendix B, and are calculated over the annual period from 1970 until 2015.
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D Internet Appendix: Additional Tables

D.1 Model-Implied and CHS Default Probabilities

In this section, we further deepen the connection between the model and data by

comparing numerically our model-implied default probability to the one implemented

empirically based on Campbell, Hilscher, and Szilagyi (2008) and coefficients reported

in Table A-I. The summary statistics of the variables used in the logistic model are

in Table A-II. In the context of our model, we omit PRICE and CASHMTA from the

logistic specification as these are not identified and define the remaining variables as

follows:

• Relative size

RSIZEit = log

(
Eit/

(∑
i

Eit

))
• Leverage

TLMTAit =
c/r

c/r + Eit

• Market to book ratio

MBit =
Eit

ADJBEit
,

where ADJBEit = 0.1Eit + max(0.9BEit, 0) and BEit = (1− τ)(X/r+ Xit−X
r+κi

−

c/r)

• Excess returns

EXRETit = rit − rmt

• Profitability

NIMTAit =
(1− τ)(Xit − c)

c/r + Eit

• Return volatility, SIGMA, is based on 12 monthly log return observations, instead

of daily raw returns

SIGMAit =

√√√√ 11∑
j=0

r2
i,t−j

Eventually, NIMTAAV G and EXRETAV G are tabulated based on coefficient

ψ = 2−1/3 and each one of these variables is similarly winsorized, as in the data.
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Table A-III gives the comparison. Overall, the theory-based measure of default

probability and that obtained from the Campbell, Hilscher, and Szilagyi (2008) spec-

ification are consistent and highly correlated, both at the firm and portfolio levels.

Indeed, the average correlation at the firm-month level is 66 percent and that across

the most distressed portfolios ranges between 87 and 97 percent based on annual fre-

quency.

In Table A-IV we further show that there is not much difference in using either

default measure for the implications regarding portfolio return performance.

Finally, in Tables A-V and A-VI we show the impact of changing market correlation

on our model’s ability to generate the distress anomaly and the model’s estimated

transition matrix on earnings that mimics what we see in the data.
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Table A-I: Logistic Regression Estimates

This table reports the estimated coefficients from the logistic regression (19)

yit = γ0 + γEXRETAV GEXRETAV Git + γSIGMASIGMAit

+γPRICEPRICEit + γNIMTAAV GNIMTAAV Git + γTLMTATLMTAit

+γCASHMTACASHMTAit + γRSIZERSIZEit + γMBMBit

over the annual period from 1970 until 2015. We describe the estimation procedure in Section
3.1 and the variable definitions are in Appendix C.

Coefficient Estimate

CONSTANT -9.802
(0.230)***

EXRETAVG -7.767
(0.283)***

SIGMA 0.402
(0.041)***

MB 0.172
(0.008)***

NIMTAAVG -12.1
(0.531)***

TLMTA 1.309
(0.059)***

CASHMTA -1.429
(0.139)***

RSIZE -0.433
(0.017)***

PRICE -0.664
(0.021)***

Observations 219,862
Delistings 5,652

Pseudo-R2 0.40

*** p < 0.01, ** p < 0.05, * p < 0.1
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Table A-II: Summary Statistics

This table reports summary statistics for the core variables used in the logistic regressions.
The data are at monthly frequency over the period 1950 to 2015. The variable definitions
are listed in Appendix C.

Variable Mean Median Std. Dev. Minimum Maximum

NIMTA 0.001 0.005 0.025 -0.214 0.044
TLMTA 0.434 0.401 0.276 0.014 0.969
EXRET -0.010 -0.008 0.116 -0.458 0.346
RSIZE -10.693 -10.896 1.952 -14.749 -4.918
SIGMA 0.525 0.441 0.339 0.105 1.963

CASHMTA 0.087 0.048 0.102 0.001 0.681
MB 2.062 1.552 1.666 0.237 102.69

PRICE 2.050 2.507 0.907 -1.407 2.708

Firm-month observations = 2,832,518
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Table A-III: Relationship between Theoretical and CHS Default Measures: Model

This table reports time series averages of annually rebalanced portfolios in the model. The
portfolios are formed based on the theoretical default measure, given in (21). The reported
default probabilities are constructed based on (i) data, (ii) the theoretical model , and (iii)
Campbell, Hilscher, and Szilagyi (2008) specification, and are all computed on an equal-
weighted basis. The CHS default measure is constructed based on the regression coefficients
in Table A-I and section D.1. The table also reports the correlations between model and
CHS default probabilities at the portfolio level and in percentage terms. Model results are
tabulated based on moment averages across 100 simulations, each generating an artificial
panel of 5,000 firms over a period of 480 months. All parameter values are shown in Table
V.

Portfolio pdataj pmodel−Thj pmodel−CHSj corr(pmodel−Thj , pmodel−CHSj )

0005 0.04 0.00 0.16 1.12
0510 0.06 0.00 0.17 20.21
1020 0.09 0.00 0.18 52.61
2040 0.20 0.01 0.28 75.19
4060 0.50 0.14 0.76 86.70
6080 1.48 0.96 2.29 93.52
8090 3.97 3.42 5.21 96.44
9095 7.33 7.29 7.86 96.93
9500 14.05 14.05 8.39 95.38
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Table A-IV: Portfolio Sort Results Based on Theoretical and CHS Default Mea-
sures: Model

This table reports time series averages of annually rebalanced portfolios in the model. The
portfolios are formed based on (i) the theoretical default measure, and (ii) the Campbell,
Hilscher, and Szilagyi (2008) default measure constructed based on the regression coefficients
in Table A-I and section D.1. Mean Excess Returns are annualized value-weighted monthly
returns over the market and expressed in percent. Ex-ante distress probabilities are computed
on an equal-weighted basis. Model results are tabulated based on moment averages across
100 simulations, each generating an artificial panel of 5,000 firms over a period of 480 months.
All parameter values are shown in Table V.

Portfolio pmodel−Theoryj MER pmodel−CHSj MER

0005 0.00 0.47 0.13 0.67
0510 0.00 0.58 0.15 0.84
1020 0.00 0.72 0.18 0.72
2040 0.01 0.72 0.29 0.57
4060 0.14 0.08 0.78 0.01
6080 0.96 -1.45 2.28 -1.31
8090 3.42 -3.52 5.10 -3.31
9095 7.29 -4.35 7.54 -4.65
9500 14.05 -5.31 8.92 -4.85

58



Table A-V: The Impact of Market Correlation

This table reports time series averages of annually rebalanced, distressed-sorted portfolios in
the model for correlation levels ρ = {0.6, 0.7, 0.8}. Distress probabilities pj are computed on
an equal-weighted basis and reported in percent. Portfolios are constructed using the prob-
ability of default given in (21). The column MER tabulates raw annualized value-weighted
mean excess returns (MER) over the market portfolio returns expressed in percent. Model
results are tabulated based on moment averages across 100 simulations, each generating an
artificial panel of 5,000 firms over a period of 480 months. All parameter values are shown
in Table V.

Mean Reversion

ρ = 0.6 ρ = 0.7 ρ = 0.8

Portfolio pj MER pj MER pj MER

0005 0.00 0.64 0.00 0.47 0.00 0.14
0510 0.00 0.72 0.00 0.58 0.00 0.39
1020 0.00 0.80 0.00 0.72 0.01 0.55
2040 0.00 0.81 0.01 0.72 0.09 0.50
4060 0.02 0.32 0.14 0.08 0.54 -0.11
6080 0.32 -1.22 0.96 -1.48 2.01 -1.05
8090 1.88 -4.38 3.42 -3.52 4.91 -1.61
9095 5.30 -7.10 7.29 -4.35 8.28 -1.34
9500 13.78 -9.09 14.05 -5.31 15.01 -2.28
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Table A-VI: Portfolio Transition Matrix: Model

This table reports estimates of portfolio transition probabilities obtained from the model
simulation. Ex post delistings are listed in the last column. Portfolios are annually re-
balanced. All probabilities are in percent. Model results are tabulated based on moment
averages across 100 simulations, each generating an artificial panel of 5,000 firms over a
period of 480 months. All parameter values are shown in Table V.

State (t+ 1)

0005 0510 1020 2040 4060 6080 8090 9095 9500 Delist

State (t)

0005 88.73 11.20 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0510 11.20 67.36 21.28 0.15 0.00 0.00 0.00 0.00 0.00 0.00
1020 0.03 10.65 67.02 22.14 0.16 0.00 0.00 0.00 0.00 0.00
2040 0.00 0.03 11.07 68.68 19.26 0.94 0.01 0.00 0.00 0.00
4060 0.00 0.00 0.07 19.25 57.77 21.95 0.83 0.04 0.00 0.08
6080 0.00 0.00 0.00 0.83 21.63 58.29 16.29 2.04 0.24 0.69
8090 0.00 0.00 0.01 0.12 1.63 31.23 43.18 16.82 4.23 2.78
9095 0.00 0.00 0.01 0.19 0.68 7.54 31.90 33.07 20.34 6.28
9500 0.00 0.00 0.00 0.12 1.09 4.49 10.53 20.49 50.96 12.31
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D.2 An Alternative Calibration

We present below an alternative model calibration that allows for a wider range of

the mean reversion parameter κi, namely [0.04− 0.16], to further match our empirical

mean reversion rate estimates and check the robustness of our results. We show below

the results for single and double sorts, which are overall in line with those obtained for

the benchmark calibration reported in the core paper.
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Table A-VII: Alternative Model Calibration

This table reports an alternative calibration for our model. The model is simulated at a
monthly frequency and the parameters below are annualized.

Parameter Value Description

Market
µ 0.08 Market return
σ 0.15 Market volatility
r 0.025 Risk-free rate

Institutions
τ 0.3 Tax rate
δ 0.015 Recovery rate

Firms
X 1 Level of long-run cash flows
κi U([0.04, 0.16]) Rate of mean reversion
σi U([0.3, 0.4]) Firm cash flow volatility
ρ 0.8 Correlation with aggregate shock
C 0.045 Dollar coupon
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Table A-VIII: Actual and Simulated Default Frequencies and Volatility Targets

This table reports equal-weighted averages of annual ex-ante default probabilities at the
portfolio level for both actual and simulated data from our calibrated model (based on our
alternative calibration in Table A-VII). It also reports annual average volatilities of portfolio
excess returns (relative to the risk-free rate) for both actual and simulated data. Portfolios
in the data are constructed using the estimated probabilities from the logistic regression in
(19). The sample period runs monthly from 1971 until 2015. Each portfolio in the model is
ranked according to the default probability given in (21). Model results are tabulated based
on moment averages across 100 simulations, each generating an artificial panel of 5,000 firms
over a period of 480 months. Portfolios in both model and data are rebalanced annually.

Portfolio pdataj pmodelj σdataj σmodelj

0005 0.04 0.00 5.12 11.09
0510 0.06 0.00 4.32 8.94
1020 0.09 0.00 5.07 6.60
2040 0.20 0.06 7.46 3.01
4060 0.50 0.41 10.09 4.15
6080 1.48 1.56 14.39 11.31
8090 3.97 4.09 20.25 19.81
9095 7.33 7.32 25.07 27.26
9500 14.05 13.99 30.31 34.34

Table A-IX: Other Targeted Moments

This table reports targeted moments from the model calibration (based on our alternative
calibration in Table A-VII). Delisting returns are tabulated as equal-weighted averages. In
the data, we simply use the CRSP delisting returns when available and the lagged monthly
returns otherwise. Model-based delisting returns are defined as the annualized returns ob-
served over the month immediately preceding a firm default. Similarly, average market
leverage is computed on an equal-weighted basis. The targeted moment is taken from Table
1 in Halling, Yu, and Zechner (2016) (US-only sample statistics); in the model, it is defined
at the firm level as the ratio of debt over total firm value: C

r
/
(
C
r

+ Ei(Xi)
)
. Model results

are tabulated based on moment averages across 100 simulations, each generating an artificial
panel of 5,000 firms over a period of 480 months.

Moment Data Model

Average Market Leverage 0.23 0.24
Average Delisting Return -0.28 -0.20
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Table A-X: Excess Returns Across Distressed Portfolios

This table reports portfolio’s mean excess return (MER) over the market for the model as
well as measures in the data. The data are tabulated over five specifications: the simple
MER as well as alphas from four empirical models; CAPM, three-factor Fama and French
(1992) model, four-factor Carhart (1997) specification, and the five-factor Fama and French
(2015) regression. In the data, each portfolio is constructed using the estimated distress
probabilities from the logistic regression (19). Sample period runs monthly from January
1971 until December 2015. Standard errors are OLS. In the model, portfolios are constructed
using the probability of default given in (21) using the parameters summarized in Table A-
VII. Model results are tabulated based on moment averages across 100 simulations, each
generating an artificial panel of 5,000 firms over a period of 480 months. Portfolios in both
data and model are rebalanced annually.

Data
Model CAPM 3-factor Carhart 5-factor

Portfolio MER MER Alpha Alpha Alpha Alpha

0005 0.65 0.92 1.69** 2.33*** 0.49 1.69**
0510 0.68 -0.05 0.31 0.48 0.92 -0.40
1020 0.83 0.21 -0.31 -0.77 0.65 -0.49
2040 0.51 0.94 -0.18 -0.87 0.49 0.65
4060 -0.09 0.70 -0.84 -2.35*** -0.45 -0.88
6080 -1.21 -0.69 -2.99 -4.82*** -1.81* -2.96**
8090 -2.23 -2.72 -5.87** -7.77*** -4.05** -4.04**
9095 -2.76 -6.29* -9.61*** -11.38*** -6.33** -6.19**
9500 -4.57 -6.68 -10.26** -12.39*** -7.36** -6.57**
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Table A-XI: Distress and Expected Earnings Growth: Model

Panel A in this table reports time series averages of mean excess returns (MER) for annually
rebalanced, independently double-sorted portfolios in the model. The portfolios are formed
based on distress probability and drift, defined as κ(X̄−X), and the price-to-cash flow ratio
(P/CF), E/ exp(X). MERs are annualized value-weighted monthly returns over the market
and expressed in percent. Ex-ante distress probabilities and cash flow drifts are computed
on an equal-weighted basis. All results are tabulated based on moment averages across 100
simulations, each generating an artificial panel of 5,000 firms over a period of 480 months.
All parameter values are shown in Table A-VII. Low, Medium, and High are separated using
the 30th and 70th percentile breakpoints across each characteristic.

Earnings Drift
Distress L M H

L 0.84 0.65 0.51
M 0.26 -0.14 -0.61
H -0.47 -1.73 -3.30

P/CF
Distress L M H

L 0.98 0.74 0.58
M 0.09 -0.14 -0.33
H -2.80 -2.55 -3.61
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Table A-XII: Distress and Momentum

This table reports time series averages of annually rebalanced, independently double-sorted
portfolios in the model. The portfolios are formed on distress probability and momentum,
defined as the cumulative return realized over the previous year excluding the most recent
month. Low, Medium, and High for distress are separated using the 30th and 70th percentile
breakpoints, as are Losers, Medium, and Winners are for momentum. Mean Excess Returns
are annualized value-weighted monthly returns over the market and expressed in percent.
Ex-ante distress probabilities are computed on an equal-weighted basis. Model results are
tabulated based on moment averages across 100 simulations, each generating an artificial
panel of 5,000 firms over a period of 480 months. All parameter values are shown in Table
A-VII.

PANEL A: Data

Momentum

L M W
Distress Mean Excess Return

L -0.21 0.49 2.15
M -2.89 2.94 2.57
H -5.79 0.04 1.71

PANEL B: Model

Momentum

L M W
Distress Mean Excess Return

L 0.53 0.62 0.86
M -0.48 -0.09 0.03
H -2.60 -2.39 -2.32
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