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Abstract. This paper subscribes to the view that a key distinguishing feature of a
firm is its social nature. We present a model in which hysteresis arises from the social
interactions between employees. Employees have a simple response to incentives in the
form of the pay available outside the firm relative to that available within the firm.
Allowing for social interaction, whereby employees are influenced by the effort levels
of fellow employees, leads to the distinctive effects, such as lazy relay responses to
incentives, associated with hysteresis.

1. Introduction
There is a huge literature on why some economic activities are conducted by way of
“markets”, and some by “firms”. In this paper we follow the account of “the” firm that
stresses the social nature of the interactions between the employees in that mode of
organizing economic activity. Social relationships obviously pertain to markets as well.
Think of the social interactions between buyers and sellers in an auction market, for
example, as presided over by the entity conducting the auction, which is itself often a
firm. There is a spectrum here, with the firm involving closer, more continuous, social
contacts between employees than is the case with individuals interacting during market
transactions: the “no person is an island” precept applies more strongly to firms than
to markets.



The strongly social nature of the interactions between employees has been taken to be
the distinctive feature of firms in a variety of accounts. Simon has stressed the willingness
to accept authority by a firms employees [1]; Bowles the ability of a firm to shape the
private preferences of its employees into social ones [2]; Casadesus-Masanell the ability of
a firm to imbue a work ethic in employees [3]; Holmstrom and Milgrom the incentives to
multitasking by employees within a firm [4]; and finally, but by no means exhaustively,
Akerlof and Kranton have stressed the sense of identity, or belonging, which a firm can
engender in its employees [5].

In the present paper we take as given that such social forces are central to the fabric
of a firm [6] and ask what happens as a result of such social interactions within a firm.
Our conjecture is that social interactions within a firm give rise to hysteresis in the way
the employees within the firm respond to the incentives offered within the firm relative
to those available outside the firm. A manifestation of this would be that there is a
range of relative pay incentives within which employees will not change their behavioral
responses, in the form of quitting the firm, for example.

The term hysteresis comes from the Greek to be late or come behind, and was
coined by Ewing to describe the behavior of electromagnetic fields in ferric metals
[7]. If a magnetizing force is applied to such metals, then reversed, the metals do
not revert to their previous characteristics: they remain changed. As a general systems
property [8], hysteresis implies that the outputs of a system do not just depend on the
contemporaneous values of the inputs applied, but also retain a memory, such as of
the non-dominated extremum values of the inputs applied in the past. Thus there are
effects that remain after the immediate causes are removed: history is not bunk. If our
conjecture that the social interactions within a firm lead to hysteresis is correct, the firm
will display a form of temporary inertia, in that employees participation decisions will
not respond to all changes to relative pay incentives; and the pool of employees who
opt to remain working within the firm will be shaped by a memory of the relative pay
incentives experienced in the past.

The rest of this paper is structured as follows. In the next section we outline a model
of hysteresis, which arises when employees, who have the same responses to relative pay
rate incentives, can observe the effort levels of fellow employees. We then construct
probabilistic versions of this model and discuss their dynamic properties.

2. A model of hysteresis within a firm
Initially, the term hysteresis was coined to describe results obtained in experiments on
electromagnetic fields in ferric metals. The need for this new term was felt by Ewing
because he thought that hysteresis effects would apply to a wider range of phenomena
[7]. This prophecy has been borne out in the wide range of areas of inquiry in which
hysteresis has been discovered, ranging from physics to biology, materials science to
mechanics and from electronics to economics (see the entries in [9]). In the literature on
firms Ford speculated that organizations might display hysteresis in managerial intensity
when they move from expansionary to contractionary modes [10], but there appears to
have been little by way of follow up to this conjecture in the literature on organizations or
management. Ford suggested that participation decisions were one possible reason why
organizational hysteresis might arise, but did not offer a formal model of such decisions.



The present paper aims to fill this gap by providing a formal model of how hysteresis
can arise in a firm as a result of the social interactions involved when employees can
observe the effort levels of their fellow employees.

The formalization of hysteresis as a general systems property was made by
Krasnosel’skii and Pokrovskii [8]. The most widely used model of hysteresis is that
derived from the work of Preisach [11], in which hysteresis at the aggregate or systems
level arises from elements at the micro level that are heterogeneous and respond non-
linearly to a common input shock. In such a world the aggregate output of the system
displays remanence, in that the application and removal of an input shock will not see
the systems output return to the status quo ante; and the output of the system displays
an erasable, selective memory of the non-dominated extremum values of the shocks
experienced.

A widely used specification of non-linear responses at the micro level is the non-ideal
or lazy relay. In such a relay the individual elements do not respond to an input shock
until some value, α, is reached, in which case the behavior, changes from some state to
another, say low to high; and does not switch from the high to the low state until some
value of the input shock, β, is reached, β < α. Thus there is a range of values for the
input i, β < i < α, inside which behavior will not change in the face of variation in i.
Hence in order to know whether the individual element is in a high or low state it is
necessary to know the history of i, which explains whether the range β < i < α has been
approached from above or below. Heterogeneity can be introduced by allowing the α and
β switching points to be different between the elements. The systems output y would
then depend not just on the contemporaneous value of i, but also on the non-dominated
extremum values of i experienced in the past [12].

The model of hysteresis proposed in the present paper has a more parsimonious
specification of the elements, in this context employees, in the system. We assume
that employees are homogeneous in the sense that they respond in the same way to an
incentive in the form of the pay rate offered by the firm relative to what they could earn
by not being employed by the firm. The rate of pay that pertains outside the firm is
held constant, the relative pay incentive being varied by changing the rate of pay offered
to employees within the firm. The other parsimonious feature is to employ a Heaviside
step function, instead of a non-ideal or lazy relay, to describe how the employees initially
respond to relative pay incentives. Thus there is a single trigger α, for relative pay, with
values of relative pay greater than α, leading the individuals to choose to be employed
within the firm; and values of relative pay less than or equal to α, leading the individuals
to choose not to be employed by the firm. The intriguing result is that if employees within
the firm can observe the effort levels of other employees, and react by raising/lowering
their effort levels in sympathy with the effort levels of fellow employees, hysteresis arises.
This hysteresis takes the form of a lazy relay between incentives and the number of
individuals who elect to remain employed within the firm. If this lazy relay applies, the
way would then be open to use Preisach-type models to analyze conglomerate firms as
composed of operational units characterized by such processes.



3. Hysteresis emerging from interaction
The following construction can be seen as a prototype model for emerging hysteretic
response that results from interaction of non-hysteretic responses [13]. More complex
systems of interacting agents will produce more complex hysteric response to exogenous
stimuli in a similar fashion [14].

Consider two identical agents which respond to incentive i according to the simple
threshold rule. Each agent, at any given time, adopts one of the two states: either the
high performance state s = 1 or the low performance state s = 0. When i ≤ α, the
agents adopt the state s = 0; when i > α, they adopt the state s = 1. In other words, if
we introduce the Heaviside step function

Hα(x) =

{
0, x ≤ α
1, x > α

,

we simply have
s = Hα(i) (1)

at all times, where s is the state of either agent. Here α is a threshold, which presents
a sufficient level of incentive for an agent to adopt the high performance state. As i
(the input) is varied, both agents switch from one state to the other each time the input
crosses the threshold value α, see Fig. 1(b). There is no hysteresis or memory in this
response. A counterpart of such response, which allows the performance to increase
continuously with incentive, can be modeled by the piecewise linear function

s =

 0, i ≤ α
k−1(i− α), α < i < α+ k

1, i ≥ α+ k
, (2)

see Fig. 1(a).
The above agents act independently. However, if agents affect each other, hysteresis

may emerge. Suppose that the “percepted incentive” (or, the total incentive) for the
first agent is

ĩ1 = i+ ks2,

where k > 0 is some coefficient, which is smaller than α. Similarly, assume that the total
incentive for the second agent is

ĩ2 = i+ ks1.

Now, the switching rules become

s1 = Hα(̃i1), s2 = Hα(̃i2).

In other words, the response of the agents to variations of the applied incentive i is
determined by the implicit coupled equations

s1 = Hα(i+ ks2), s2 = Hα(i+ ks1). (3)

We need to find a solution s1, s2 of this system as a “function” of the given input i
(although, as a matter of fact, this is not a function, but an operator with memory).



(a) (b) (c)

Figure 1. (a) Piecewise linear response. (b) Heaviside step function. (c) Non-ideal
relay response (rectangular hysteresis loop).

The first observation is that if s1 = s2 at some moment in time, then the states of the
two agent will remain equal at all later times. Therefore, we can consider the common
state s = s1 = s2 of the two agents, and the system reduces to one implicit equation

s = Hα(i+ ks). (4)

It turns out that this equation defines the non-ideal relay with two thresholds, also
known as an elementary rectangular hysteresis loop [13, 15]. That is, i is the input and
s is the output of the non-ideal relay, with s switching from 0 to 1 and backwards at two
different threshold values of i, see Fig. 1(c).

Indeed, assume that initially i = 0 and s = 0, and let i increase. As i exceeds the
value α, the right hand side becomes equal to 1, hence the state s becomes s = 1. That
is, one switching threshold remains equal to α. From this moment (and until the state
switches to zero again), the input ĩ = i+ ks of Hα becomes equal to ĩ = i+ ks = i+ k,
hence s = Hα(i+ k). The right hand side will become zero when the sum i+ k reaches
the value α, i.e. when i reaches the value α−k. Hence, the second switching threshold is
β = α−k. There is a difference between the switching thresholds for the transitions from
0 to 1 and backwards, and this difference equals to k. As k measures the strength of the
affect of one agent on the other, we can say that a stronger interaction results in a larger
separation of thresholds in the response—the more interaction, the more hysteresis.

4. A stochastic switching model
It seems realistic to assume that thresholds in individuals are not deterministic, but
rather transitions of an individual between the states are a stochastic process. That is,
given a certain input (e.g. pay rate), switching the state is a random event characterized
by a certain transition probability rate. Here we develop the model described in the
previous subsection to include uncertainty in switching events. A simple Markov chain
model with transition probability rates depending on the pay rate i is suitable for our
purposes.

Assume that the probability rate for the transition from state s = 0 to state s = 1 for
an individual is p0,1(i). This probability rate should naturally be an increasing function



of i. Similarly, let us assume that the probability rate p1,0(i) for the transition from
state s = 1 to s = 0 decreases with i. We treat i as a control variable (input) that can
change with time, i.e. i = it, hence the transition probability rates become functions of
time. This defines a continuous time Markov chain with two states and time-dependent
transition probability rates. Denoting by πst the probability to find the agent in state s at
time t, we can write the master equation for the evolution of the probability distribution
vector πt = (π0t , π

1
t ):

dπt
dt

= πtP (it), (5)

where

P (i) =

(
−p0,1(i) p0,1(i)
p1,0(i) −p1,0(i)

)
(6)

and π0t + π1t = 1 at all times.

i-Α

p1,0HiL p0,1HiL

Α iΑ

p1,0HiL p0,1HiL

-Α

(a) α < 0 (b) α > 0

Figure 2. Probability of transition from state s = 0 to state s = 1 (blue) and vice versa
(red) as a function of the stimulus i for one individual.

Next, we need to define the functions p0,1(i) and p1,0(i). As before, we assume that
there are no transitions from state s = 0 to state s = 1 if the pay rate stays below a
threshold value α. For the values of i exceeding α, we simply assume that the transition
probability increases linearly with i. This leads to the law

p0,1(i) = γ (i− α)Hα(i) (7)

with the steepness coefficient (slope) γ > 0. Again, for simplicity, we assume symmetry
in the law of transitions between the states by setting

p1,0(i) = p0,1(−i) = γ (−i− α)Hα(−i), (8)

see Fig. 2. The stochastic model (5)–(8) with α ≤ 0 replaces and extends the simple
deterministic switching rule (1). The non-positive α corresponds to the absence of
hysteresis in individuals. The same model with α > 0 extends the deterministic switching



rule based on the non-ideal relay [8]. That is, a positive α corresponds to the hypothesis
that hysteresis is present in the response of individuals to the incentive, for example,
due to interaction of individuals within a firm.

The model (3) of two interacting agents can be extended to include uncertainty in
decision making along the same lines. Here, we have a Markov chain with four states,
(0, 0), (0, 1), (1, 0), (1, 1), with the first digit denoting the state of the first agent and the
second digit standing for the state of the second agent. Assuming that decision making
of an agent is affected by the other agent, we define the transition probability rates from
state (0, s) to state (1, s) and from state (s, 0) to state (s, 1) by

p(0,s),(1,s)(i) = p(s,0),(s,1)(i) = γ (i+ ks− α)Hα(i+ ks), (9)

where s is either 0 or 1 (cf. (3)). Similarly, the probability rates for transitions from
state (1, s) to (0, s) and from state (s, 1) to (s, 0) are defined by

p(1,s),(0,s)(i) = p(s,1),(s,0)(i) = γ (−i− ks− α)Hα(−i− ks). (10)

Finally, we set

p(0,0),(1,1)(i) = p(0,1),(1,0)(i) = p(1,0),(0,1)(i) = p(1,1),(0,0)(i) = 0. (11)

Then, the evolution of the four-dimensional probability distribution vector πt =

(π
(0,0)
t , π

(0,1)
t , π

(1,0)
t , π

(1,1)
t ) is determined by the master equation

dπt
dt

= πtP̂ (it), (12)

where the non-diagonal entries p(s1,s2),(σ1,σ2) of the 4× 4 transition rate matrix P̂ (i) are
defined by equations (9)–(11) and the diagonal entries are determined by the condition

that the row sum for each row of P̂ is zero. System (12) serves as a probabilistic analog
of the deterministic model (3).

5. Dynamics of the stochastic model
The following results illustrate the response of the stochastic model presented in the
previous section to a periodically varying incentive and highlight the dependence of this
response on the model and input parameters.

Fig. 3 presents time varying probabilities π0t and π1t to find an agent in state s = 0
(black) and state s = 1 (red), respectively, generated by master equation (5) with the
periodic input i = sin t for a positive threshold value α and a steep slope γ.

Fig. 4 shows the response of model (5) to a slowly varying periodic input depending
on the threshold parameter α (see Fig. 2). An agent spends part of the period in the
“pure” state s = 0 (π0 = 1), part of the period in the “pure” state s = 1 (π0 = 0), and
part in a “mixed” state. Each loop with α > 0 departs from the line π0 = 0 at the point
i = α and lands at the line π0 = 1 for a slightly larger value of i; similarly, it departs
from the line π0 = 1 when i = −α and lands at the line π0 = 0 for a slightly lower value
of α. Hence, for α > 0, we observe an almost rectangular hysteresis loop (brown, red),
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Figure 4. Input-output loops of model (5) (with γ = 15) generated by the slowly
varying periodic input i = sin(0.01t) for different values of the threshold α.

which widens with α. For α < 0, the loop degenerates to a piecewise linear curve (blue,
purple) shown in Fig. 7(a), and no hysteresis is observed.

The shape of the input-output loop depends on the rate of change of the input, see
Fig. 5 where the input is i = 1.3 sin(wt). The left and right panels correspond to α < 0
and α > 0, respectively. One can see that the slower the input (smaller frequency w),
the narrower the loop is. In particular, one can notice the “fake” hysteresis for higher
frequencies on the left panel, which disappears for lower frequencies when the loop shrinks
to almost a line (red). The “true” hysteresis is manifested by the low frequency loop
(red) on the right panel. In the limit of low frequencies, the loop approaches the shape
shown in Fig. 7—the piecewise linear (non-hysteretic) saturation function for α < 0, and
the rectangular hysteresis loop for α > 0.

The slope γ of the transition probability rates (7) and (8) controls the shape of the
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Figure 5. Input-output loops of model (5) (with γ = 15) generated by the periodic
input i = 1.3 sin(wt) for different frequencies w.
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Figure 6. Input-output loops of model (5) generated by a periodic input i(t) = sin(0.1t)
for different slopes γ of the functions p01(i), p10(i) shown in Fig. 2.

loop in a similar fashion. As Fig. 6 shows, the steeper the slope γ, the closer the loop
to the limit case shown in Fig. 7 is. That is, increasing γ results in the same effect as
decreasing the input frequency w.

The limit shapes of the plots in Figs. 5 and 6 as w → 0 and γ → 0 are shown in
Fig. 7 (cf. Fig. 1). For α < 0, the probability π0 to find an agent in state s = 0 is a
piecewise linear function π0(i) shown on panel (a). There is no hysteresis. For α > 0,
the dependence of π0 on i is described by the non-ideal relay operator (an elementary
rectangular hysteresis loop) with two different thresholds ±α for switching from state
s = 0 (π0 = 1) to s = 1 (π0 = 0) and vice versa.

Fig. 8 presents the periodic solution of model (5) with the periodic input i(t) =



(a) α < 0 (b) α = 0 (c) α > 0

Figure 7. Response of model (5) to a slowly varying input i(t) in the limit when γ →∞
and i′(t)→ 0.
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Figure 8. Input-output loops of model (5) (with γ = 15) generated by the periodic
input i(t) = B +R sin t for different values of B.

B + R sin t for different values of B. The maximum and the minimum of the input are
equal to xM = B + R and xm = B − R, respectively. When xM < α, the agent resides
at the pure state s = 1 (π0 = 0) at all times. For xM > α, a loop appears and grows
with xM (which grows with B), see red, orange, brown, green curves on both panels.
For larger values of B, the loop resides in each of the pure states s = 0, 1 for part of the
period (blue, purple, and gray curves). Black loops that remain in the mixed state for
all times, that is they do not touch the lines s = 0, 1, correspond to inputs with B = 0
and a sufficiently small amplitude R.

Finally, in Fig. 9, we consider the behavior of model (12) with two interacting agents
for different values of the interaction strength k. The figure shows the dependence of the

probability π
(1,1)
t on the slowly varying input i(t) = sin(wt). The probabilities π

(0,1)
t and

π
(1,0)
t are close to zero at all times, hence π

(0,0)
t + π

(1,1)
t ≈ 1 for all t. In the case α < 0



k=0

k=0.2

k=0.4

k=0.65

k=1

-1.0 -0.5 0.5

0.2

0.4

0.6

0.8

1.0

i

Π
H1,1L

Α

k=0

k=0.2

k=0.4

k=0.65

-1.0 -0.5 0.5

0.2

0.4

0.6

0.8

1.0

i

Π
H1,1L

Α

(a) α = −0.2 (b) α = 0.2

Figure 9. Input-output loops of model (12) of two interacting agents generated for
different values of the interaction strength k. The figure shows the dependence of the

probability π
(1,1)
t on the slowly varying input i(t) = sin(wt) with w = 0.01.

(left panel), for smaller values of k, the dependence is described by a sigmoid saturated
function π(1,1)(i), no hysteresis is observed (blue and purple lines). For larger k, the
hysteresis loop appears due to interaction of the agents. The right (ascending) segments
of all the loops almost coincide, while the width of the loop grows with k (green, brown,
and red lines). In the case α > 0 (right panel), the hysteresis loop is present for all
k ≥ 0. Again the right segment of the loop is almost the same for all k, and the loop
grows wider with increasing interaction strength k.

6. Conclusions
We have proposed a probabilistic switching system, which can potentially be used for
modeling the behavioral response of employees to the incentives offered within a firm.
Variants of the model include or ignore social interactions between the employees as
a factor that can affect their behavior. In the limit of slow variations of the input,
the model either reduces to a memoryless instantaneous functional relationship between
the input and the output or gives rise to hysteresis in the form of a non-ideal relay
operator (rectangular hysteresis loop), depending on the parameters used. In particular,
a sufficiently strong interaction between the agents can induce hysteresis, which is not
observed in non-interacting individuals. On the other hand, if hysteresis is present in
individuals, the interaction can enhance it. Faster variations of the input produce wider
input-output loops, which look like a hysteretic response but may shrink to a memoryless
functional response curve as the rate of input variations slows down.
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[11] Preisach F 1935 Über die magnetische Nachwirkung Zeitschrift fur Physik 94 277–302
[12] Mayergoyz I D 1991 Mathematical Models of Hysteresis (Berlin: Springer-Verlag)
[13] Visintin A 1994 Differential Models of Hysteresis (Berlin: Springer)
[14] Sethna J. P., Dahmen K., Kartha S., Krumhansl J. A., Roberts B. W. and Shore J. D. 1993

Hysteresis and hierarchies: Dynamics of disorder-driven first-order phase transformations Phys.
Rev. Lett. 70 3347–3350

[15] Pokrovskii A and Rachinskii D 2013 Effect of positive feedback on Devil’s staircase input-output
relationship Discrete and Continuous Dynamical Systems S 6:4 1095–1112
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