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Performance-based compensation is gaining popularity as a mechanism for incentivizing providers of health-

care services to improve the quality of patient care. This paper investigates the effects of introducing

performance-based incentives in a competitive healthcare market. In particular, we consider a market in

which a payer (e.g. a government agency) applies a compensation contract to competing healthcare service

providers in order to achieve a certain level of patient access to care, as measured by the expected time

patients have to wait to receive care. In our model, we use M/M/1 queueing dynamics to describe patient

service processes and assume that patient demand for care delivered by a particular provider is increasing

in the level of access to care the provider ensures and decreasing in the levels of access to care at competing

providers. Our analysis indicates that the presence of competition between providers may significantly alter

the intended effect of performance-based incentives. In particular, we show that the joint effect of incen-

tives and competition depends on two factors: 1) the aggressiveness of patient access targets that the payer

imposes on providers, and 2) patient sensitivity to the level of access to care.

When the payer uses a “soft” approach to performance-based compensation by incentivizing but not

requiring that providers reach an access-level target, the incentives and competition can produce opposing

effects on patient access to care when aggressive service-level targets are used in the presence of access-

sensitive patients or when moderate service-level targets are introduced in environments where patients a

exhibit low degree of sensitivity to the level of access to care. In particular, we show that while moderate

service-level targets can lead to an improvement in patient access to care when applied to a monopolistic

provider, competition in settings with access-insensitive patients may diminish or even reverse this improve-

ment. Under the “strict” approach to performance-based compensation, when the payer designs performance

incentives to minimize the cost of imposing a common access-level target on all providers, the impact of

competition on the level of incentivization required is also influenced by the patient population type: for

access-sensitive patients, competitive pressure lowers the level of incentivization required to achieve a par-

ticular level of patient access to care, while for patients with low access sensitivity the effect of competition

is to increase the incentivization level required. At the same time, the reduction in payers’ costs resulting

from the presence of competition is more pronounced in environments with access-insensitive patients.
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1. Introduction and Literature Review

Faced with increasing pressure to contain rising costs while maintaining high-quality care, health-

care systems in the US and other developed countries are experimenting with policies that incen-

tivize care providers to compete for patients and tie provider compensation to the quality of care

delivered. In the US, the Patient Protection and Affordable Care Act (also known as the Affordable

Care Act or ACA) introduced in 2010 (PPACA 2010) has created a way for tens of millions of new

patients to access care and, at the same time, introduced a number of new approaches designed to

slow down the rise in the overall cost of care.

It has long been argued that both the “prices” charged for healthcare services in the US and

the“volume” of services delivered per capita could be the main culprits behind overall healthcare

costs as well as their growth.

On the “price” side, while growth in health expenditure per capita in the US has slowed from an

annual average of 2.3% over 2005–2009 to 1.5% over 2009–2013, health expenditure of more than

$8,700 per capita in the US continues to be the highest among the Organization for Economic

Cooperation and Development (OECD) countries and is about 40% higher than that of closest

rival Switzerland and 2.5 times higher than the OECD average, adjusted for purchasing power

(OECD 2015). In one of most influential articles on the subject, Anderson et al. (2003) argue that

the concentration of bargaining power on the provider side of the market may be one of leading

reasons for this phenomenon: “Although the huge federal Medicare program and the federal-state

Medicaid programs do possess some monopsonistic purchasing power, and large private insurers

may enjoy some degree of monopsony power as well in some localities, the highly fragmented buy

side of the US health system is relatively weak by international standards.”

On the “volume” side, the research conducted by the Dartmouth Atlas Project (DAP) over

the last two decades has identified persistent geographical variability in the utilization of health-

care service capacity for treating the same medical conditions (for some of the latest reports, see

Wennberg et al. 2006 and Bynum et al. 2016). John Wennberg, the founder and driving force of

the DAP, and his colleagues argue that much of this variability is “unwarranted,” stemming from

the underutilization of evidence-based practices, shortage of informed patient choices, and prolif-

eration of “supply-driven” diagnostic and treatment decisions (see, for example, Wennberg 2002).

In particular, Fisher et al. (2003) estimate that the reduction in “unwarranted” variability of care

can lead to a substantial decrease in the volume of services delivered, and an up to 30% reduction

in Medicare expenses, without affecting the quality of or access to care.

Of course, these “price” and “volume” metrics are connected, and with the adoption of the ACA

a series of approaches designed to affect both have been gaining popularity. Payers (Medicare as

well as private insurers) are experimenting with a number of approaches focused on incentivizing



Jiang, Pang and Savin: Performance Incentives and Competition in Healthcare Markets
Article submitted to ; manuscript no. (Please, provide the mansucript number!) 3

both patients and providers to reduce their use of unwarranted services. On the patient side, the

proliferation of high-deductible insurance plans has increased the patient role in making informed

care-related choices. On the provider side, the new approaches include encouraging the formation of

accountable care organizations (ACOs) to ensure the coordination and continuity of care (PPACA

2010, Berwick 2011) and the introduction of “bundled” payments associated with “episodes of

care” (BPCI 2016).

One of the key features of the rapidly changing incentive landscape that affects both patients

and providers is the growing number of performance-based incentive programs that condition

payments to providers on the quality of care delivered (for a detailed review of performance-

based incentive programs in OECD countries see Cashin et al. 2014). Currently, one of the largest

performance-based programs in the US is the hospital value-based purchasing (VBP) program

authorized in the ACA and run by the Centers for Medicare and Medicaid Services (CMS) since

2012 (VBP 2016). Under the VBP program, the CMS withholds a percentage (currently 1.75%) of a

“base” diagnostic-related group (DRG) payment under the Medicare program and redistributes the

withheld funds among approximately 3,500 participating hospitals based on their total performance

scores (TPS). TPS are calculated using hospital performance in four categories: clinical process

of care, clinical outcomes, patient experience, and efficiency measures. Within each category, the

TPS for a particular hospital is calculated based on its performance relative to the median and the

95th percentile of performance levels across all hospitals, inducing hospitals to compete on service

quality. At the same time, to further raise competitive pressure on hospitals, an increasing amount

of performance and cost data is being collected and made available to the public through the

Hospital Compare program to help patients make informed choices when selecting a care provider

(Hospital Compare 2016).

The notion of “service quality” is central to any healthcare initiative that aims to align payment

for services with desired performance targets. Healthcare service quality has multiple dimensions

and, in the hospital context, includes both clinical outcomes and clinical process measures. For

example, the clinical outcomes used by the Medicare VBP and Hospital Compare programs include

30-day mortality rates from acute myocardial infarction, heart failure, and pneumonia as well

as complication and infection rates. On the process side, the quality metrics include adherence

to evidence-based medical procedures (such as the prophylactic administration of antibiotics to

surgical patients and their discontinuance within 24 hours of surgery or the continuation of pre-

admission beta-blocker therapy for surgical patients during the perioperative period) as well as

metrics characterizing timely access to and delivery of care (such as the initiation of fibrinolytic

therapy within 30 minutes of hospital arrival for a patient with acute myocardial infarction or

the average time patients spend in the emergency department before being seen by a healthcare
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professional). Timely access to care, in particular, plays an important role in shaping care outcomes

in both inpatient and outpatient settings. In the US, the adoption of the ACA has helped to

substantially lower the barrier for patients to access care “in principle,” shifting the emphasis to

patients’ accessing care “on time.” Following a substantial increase in the number of patients who

are eligible for care, the “timeliness” component of healthcare delivery is likely to become one of

the front-and-center issues in the US, as it has been for some time in a number of OECD countries.

Data on patient waiting times in the US are not yet collected in a comprehensive fashion, but the

limited available evidence (Thomson et al. 2013) indicates that patients in the US may have to

wait longer for a primary care or specialist appointment than, for example, those in the UK. As

a recent report by Merritt Hawkins indicates, appointment waiting times for both primary and

specialist care in 15 major metropolitan markets in the US can be substantial and show significant

regional variation: for example, the average wait to see a physician (for five physician specialties)

is around 18 days, ranging from around 10 days in Dallas to more than 45 days in Boston (Merritt

Hawkins 2014).

An important example of performance incentives based on patient waiting time targets is pro-

vided by the UK’s public National Heath Service (NHS). The NHS is a monopsonist buyer of

healthcare services that keeps track of not only how soon the necessary care is delivered after a

patient arrives at a hospital in an emergency or for a scheduled elective procedure but also how

many weeks or months a patient must wait before receiving elective care. In 2004, the NHS intro-

duced a series of waiting time targets that included an 18-week target for the maximum waiting

time from referral by a primary care physician to hospital treatment and a four-hour target for

a patient arriving in an emergency department to be treated and either admitted or discharged.

These targets have become one of the key indicators of hospital performance reported to the public

(Lewis and Appleby 2006). Based on these targets, a set of performance incentives was introduced

in the service purchasing contracts signed between hospitals and the NHS. For example, the 2008–

2009 NHS Standard Contract allowed the NHS to withhold 0.5% of revenue paid to a hospital

for every percent of patients that had to wait more than 18 weeks to receive elective care up to

a maximum reduction of 5% (Department of Health 2008). Propper et al. (2008b) and Propper

et al. (2010) provide empirical evidence that the introduction of waiting time targets has led to

a significant fall in patient waiting times without impacting other aspects of patient care. Along

with the introduction of performance-based incentives, the NHS has also injected an element of

competition between hospitals by ensuring that every patient requiring treatment has the choice

of several hospitals from which to receive care (NHS Choice 2016).

In the rapidly changing landscape of the US healthcare system, the large payers (such as Medi-

care) apply new performance-based incentive schemes to providers that are facing increasing com-

petition for patients. A growing number of urgent care centers as well as pharmacies compete with
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both primary care providers and emergency rooms (Lee et al. 2013). Road signs advertise low

waiting times at hospital emergency rooms (O’Reilly 2010), and TV channels are filled with direct-

to-consumer hospital advertising (Schenker et al. 2014). This new competitive dynamic is largely

based on the quality of care provided rather than the cost to a patient. This is not surprising since

the pricing of healthcare services in the US remains complex and is often not transparent, with the

cost of care often not known to a patient until some time after the care has been delivered (HFMA

2014). As a reaction to the increase in competitive pressure, care providers are undergoing consol-

idation at record rates, which, in turn, prompts the consolidation of private insurance companies

(Vaida and Weiss 2015). Despite this provider consolidation, however, competition for patients is

likely to remain a significant factor that, along with performance-based incentives, influences the

process of care delivery and health outcomes.

The simultaneous presence of competition and performance-based incentives in healthcare mar-

kets motivated us to focus on a set of questions about the nature of interaction between these two

factors. More specifically, in this paper we analyze how a payer for healthcare services, such as a

government agency (Medicare in the US or the NHS in the UK), should design performance-based

contracts for providers (hospitals) that use service quality to compete for patients. We look at

the setting where a payer uses patient access to care as a measure of service quality and aims to

achieve a certain level of service quality as measured by the expected time patients must wait to

receive care. In order to achieve this level of access, the payer imposes a compensation contract on

all care providers that ties hospital compensation to the level of access a hospital delivers to its

patients. Following the service operations management literature (e.g. Allon and Federgruen 2007,

Allon and Federgruen 2008), we model the patient service dynamics at each hospital as that of an

M/M/1 queue. This assumption is often used in the literature due to the analytical tractability

it generates. While being decidedly simplistic, this assumption, in our opinion, still adequately

captures the uncertain nature of demand for hospital services and the uncertain load such demand

places on hospital resources in a qualitative manner. Similar to Allon and Federgruen (2008), we

assume that the patient demand rate for a particular hospital is a function of its own service level

as well as the service levels of its competitors. On the side of service capacity, we assume that each

hospital faces an increasing convex cost of providing service capacity and determines its capacity

level to maximize its expected profit. The payer influences hospitals’ capacity decisions through a

performance-based payment contract that is designed to minimize the payer’s cost of achieving a

certain service-level target.

We begin our analysis by looking at the hospital Nash equilibrium capacity decisions under a

fixed performance-based incentive scheme represented by a payment function monotone in hospital

service levels. In particular, we identify a set of regularity and sufficient conditions for the existence
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of a unique set of Nash equilibrium hospital service levels. In our model, we assume that hospital

demand rates are submodular functions of service levels. This assumption, combined with the con-

vexity of hospital capacity costs, allows for hospital profit functions that are neither supermodular

nor submodular in service levels. This feature of the service-level game that we study complicates

the equilibrium analyses compared to the supermodular games considered in Allon and Federgruen

(2007) and Allon and Federgruen (2008). Nevertheless, we identify the sufficient conditions for

performance incentives to improve service levels as well as the conditions, such as the use of overly

aggressive service-level targets, under which service levels deteriorate upon the introduction of

performance incentives. Similarly, we provide an analytical description of settings where provider

competition is beneficial for patient service as well as where competition may reduce patient access

to care.

On the payer’s side, we provide an analysis of the optimal contracting problem for the special

case of a duopoly where the cost of capacity for each competing hospital is quadratic in hospital

service rate and the performance-based hospital compensation functions and demand rates are

linear in the hospital service level.

To the best of our knowledge, our paper is the first to study the performance-based contracting

problem in a healthcare market where there is competition on service levels. The performance

indicators, such as waiting time targets, used in performance-based programs in healthcare settings

have not yet been the focus of otherwise extensive theoretical economics and regulation literature

on incentive design (see, e.g. Chalkley and Malcomson 1998, Laffont and Tirole 1993, De Fraja

2000). The operations management literature, on the other hand, contains a number of papers that

focus on performance-based incentives in services in general (Akan et al. 2011) as well as in call

centers (Ren and Zhou 2008, Hasija et al. 2008) and in healthcare settings (So and Tang 2000,

Fuloria and Zenios 2001, Jiang et al. 2012, Lee and Zenios 2012, Andritsos and Aflaki 2015). These

papers, with the exception of Andritsos and Aflaki (2015), analyze settings with a monopolistic

service provider. In Andritsos and Aflaki (2015), a comparison between the monopolistic and two

duopolistic settings reveals that the introduction of competition can hamper a hospital’s ability

to achieve economies of scale and can also increase waiting times. Our paper focuses on a more

complex setting where competition between providers occurs in the presence of performance-based

incentives imposed by a payer that is focused on achieving a certain service-level target.

In the health economics literature, a significant number of studies focus on the effects of compe-

tition on the quality of care delivered (see Gaynor and Town 2012 for a detailed review). On the

empirical side, the evidence on the impact of competition on the quality of care is nuanced. Cooper

et al. (2011), Bloom et al. (2011), and Gaynor et al. (2013) provide evidence that the introduction

of non-price competition in the NHS in 2000s led to improved patient choices and increased quality
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of care, as measured by outcomes such as survival rates and patient waiting times. Propper et al.

(2004) and Propper et al. (2008a), on the other hand, show that the price-based competition in the

NHS internal market in 1990s reduced the quality of care (i.e. increased hospital mortality rates)

as well as increased patient waiting times. On the theoretical side, Brekke et al. (2008) developed a

model that describes competition between hospitals in the presence of “high-benefit” patients, who

choose between hospitals based on waiting times and travel costs, and “low-benefit” patients, who

go to the nearest hospital. It has been shown, in particular, that inter-hospital competition may

lead to longer waits if the “high-benefit” patient segment is sufficiently large. Note that Brekke et

al. (2008) do not model uncertainty in care demand or supply or the impact of performance-based

incentives.

In the operations management domain, there is substantial literature on price- and service-

level competition (see, e.g. Cachon and Harker 2002, Bernstein and Federgruen 2004, Allon and

Federgruen 2007, Allon and Federgruen 2008, Allon and Federgruen 2009). Our hospital service

modeling follows Allon and Federgruen (2007) in that we use M/M/1 queueing dynamics to

describe hospital service dynamics and define the reciprocals of expected patient waiting time as

measures of hospital service levels. Our analysis, however, has two distinguishing features that

reflect the unique reality of healthcare markets. First, we focus on non-price competition and

include performance-based incentives as an important factor governing the service-level equilibrium.

Second, our study of the impact of competition includes the analysis of settings with varying

degrees of competitive pressure, i.e. it presents a comparison of settings with different numbers of

competitors.

The rest of the paper is organized as follows. In the next section, we introduce our model and

a number of assumptions related to patient demand and provider cost structure. In Section 3, we

analyze the hospital service level-selection problem in both monopolistic and competitive settings

and investigate the effect of competition and performance-based incentives on hospital service

levels. In Section 4, we look at the Nash equilibrium service levels and optimal performance contract

parameters in a special duopoly setting. Finally, we discuss our results in Section 5.

2. The Model

We consider a healthcare system consisting of a single payer (for example, a government agency)

and n competing medical facilities (hospitals), indexed by i= 1, ..., n. In such a system, the payer

acts as a Stackelberg leader by using a performance-based contract to induce hospital investment

in patient service capacity in order to improve patient access to care.

Actual patient service dynamics in a hospital are complex, and in our analysis we focus on a

simplistic model frequently used in the literature (see, for example, Allon and Federgruen 2008
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and references therein) that treats the patient care dynamic in each hospital as that in an M/M/1

queue. We assume that patients form a single group with homogeneous treatment needs and service

times. The level of simplification in our model reflects a “macro” view of patient service that

ignores a number of operational details, but this also allows us to gain insight into the effect of

performance-based incentives on the time patients have to wait before receiving care. We denote the

expected patient waiting time at hospital i by wi, i= 1, ..., n and, following Allon and Federgruen

(2008), use

θi =
1

wi
, i= 1, ..., n (1)

as a set of “service levels” that drive patient demand for hospital services. We note that the waiting

times we model are designed to reflect the appointment delay patients experience before receiving

care, i.e. the delay between the time a patient joins a queue (schedules her appointment) and the

time her service is completed.

We assume that the service-level value for hospital i, θi is non-negative and limited from above

by the upper bound θ̄i, representing the highest service level the hospital can provide. We let

λ
(n)
i (θ) denote the daily patient demand for hospital i in a setting with n hospitals on the market

delivering service levels θ = (θ1, ..., θn), θ ∈ Θ, where Θ = [0, θ1] × ... × [0, θn]. In what follows

we also use the notation θ−i to designate the (n − 1)-dimensional vector obtained from θ by

dropping θi and (θ−i, θi) as an alternative designation for θ. Similar to Θ, we use Θ−i to denote

[0, θ1] × ... × [0, θi−1] × [0, θi+1] × ... × [0, θn]. Finally, λ
(1)
i (θi) designates the demand rate for a

monopolistic hospital i.

We make the following assumptions about the general shape of the demand function for each

hospital i= 1, ..., n on Θ.

Assumption 1. λ
(n)
i (θ) is nonnegative and λ

(n)
i (θ) = 0 if and only if θi = 0.

Assumption 2. λ
(n)
i (θ) is strictly increasing in θi and is strictly decreasing in θj for θi > 0:

∂λ
(n)
i (θ)

∂θi
> 0, (2)

∂λ
(n)
i (θ)

∂θj
< 0, θi > 0, j 6= i, j = 1, ..., n. (3)

Assumption 3. λ
(n)
i (θ) is twice continuously differentiable, strictly concave in θi, and submod-

ular in θi and θj:

∂2λ
(n)
i (θ)

∂θ2
i

< 0, (4)

∂2λ
(n)
i (θ)

∂θi∂θj
< 0, j 6= i, j = 1, ..., n. (5)
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Assumption 4.
∂λ

(n)
i (θ)

∂θi
>
∑
j 6=i

∣∣∣∣∣∂λ(n)
i (θ)

∂θj

∣∣∣∣∣ . (6)

Assumption 5.

λ
(n−1)
i (θ−j) = λ

(n)
i (θ−j,0) , j 6= i, j = 1, ..., n. (7)

We consider Assumptions 1–3 to be intuitive. In particular, Assumption 1 indicates that patients

do not patronize a hospital that does not provide a service. The second-order properties of the

demand functions expressed by Assumption 3 state that a hospital’s ability to attract new patients

by improving service it provides declines with its own service level as well as the service levels of

its competitors.

The term “diagonal dominance” is often associated with Assumption 4. This Assumption indi-

cates that the impact of an increase in a hospital’s service level on its demand outweighs the

combined effect of a similar increase in the service levels of its competitors. Such an assumption

is commonly used in the game-theoretical literature (see, e.g. Kolstad and Mathiesen 1987, Vives

2001, Bernstein and Federgruen 2004, Allon and Federgruen 2007, Allon and Federgruen 2008,

Allon and Federgruen 2009). Similarly to these papers, we require Assumption 4 to prove the

uniqueness of the Nash equilibrium arising in a market of competing hospitals.

Finally, Assumption 5 is necessary in order to study the effects of a hospital’s exit from the

market on the remaining competitors. In particular, this assumption states that upon a hospital’s

market exit, the demand functions for the remaining competitors can be evaluated by setting the

service level of the exiting hospital to 0.

For notational convenience, we define the following non-negative parameters for all i, j 6= i:

γii =
∂λ

(n)
i

(
θ̄1, ..., θ̄n

)
∂θi

, (8)

γ̄ii =
∂λ

(n)
i (0, ...,0)

∂θi
, (9)

γij = − min
θ−i∈Θ−i

∂λ
(n)
i

(
θ−i, θ̄i

)
∂θj

, (10)

γ̄ij = − max
θ−i∈Θ−i

∂λ
(n)
i (θ−i,0)

∂θj
, (11)

δii = −max
θ∈Θ

∂2λ
(n)
i (θ)

∂θ2
i

, (12)

δij = −min
θ∈Θ

∂2λ
(n)
i (θ)

∂θi∂θj
, (13)

δ̄ij = −max
θ∈Θ

∂2λ
(n)
i (θ)

∂θi∂θj
. (14)
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Here, γii and γ̄ii reflect the minimum and maximum “degrees,” respectively, of the monotonicity

of the arrival rate for hospital i, λi, with respect to its own service level θi, while γij and γ̄ij reflect

the minimum and maximum “degrees,” respectively, of the monotonicity of the arrival rate for

hospital i, λi, with respect to the service level of its j-th competitor. Furthermore, δii indicates the

minimum “degree” of concavity of λi with respect to θi, and δij and δ̄ij indicate the minimum and

maximum “degrees,” respectively, of submodularity of λi with respect to (θi, θj), j 6= i.

In terms of supplying service capacity, we assume that each hospital i can set its daily patient

service rate, µi, at a cost Ci (µi). Note that the stability of the resulting queue requires that

µi >λ
(n)
i (θ). We make an assumption that the hospital capacity cost functions are increasing and

convex (Allon and Federgruen 2009, Brekke et al. 2008):

Assumption 6. Ci(µi) is twice continuously differentiable and

∂Ci
∂µi

> 0,
∂2Ci
∂µ2

i

≥ 0, i= 1, ..., n. (15)

Note that under M/M/1 patient service dynamics, the expected patient waiting/sojourn time is

given by wi = 1

µi−λ
(n)
i (θ)

, so that µi = λ
(n)
i (θ)+θi. Thus, the service rates for all hospitals are deter-

mined by the set of their service levels θi. Similar to the patient demand functions, we introduce

the following positive constants to characterize the hospitals’ cost functions:

ci = C ′i (0) , (16)

c̄i = C ′i

(
λ

(1)
i

(
θ̄i
)

+ θ̄i

)
, (17)

di = min
0≤µi≤λ

(1)
i (θ̄i)+θ̄i

C ′′i (µi) . (18)

In (16) and (17), ci and c̄i are the minimum and maximum “degrees” of the monotonicity of the

cost function with respect to the service rate, respectively, and di in (18) is the minimum “degree”

of convexity of the cost function with respect to the service rate.

The performance-based compensation contract focuses on incentivizing hospitals to deliver a

certain level of patient service as measured by the expected time patients have to wait before

receiving care. Such incentives can be implemented via “sliding-scale” compensation Ri (θi, T,ξ)

that a hospital i operating at the service level θi receives for serving a patient, with T ≥ Tl > 0

describing the expected waiting time target with a positive lower bound and ξ describing the set

of other performance parameters imposed on all competing hospitals. Since Ri (θi, T,ξ) must be a

non-decreasing, non-negative function of θi on [0, θ̄i] for any choice of T and ξ, we use

Ξ (T ) = (ξ|Ri (0, T,ξ)≥ 0) (19)

to denote the set of feasible values of ξ for given T ≥ Tl.
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One example of such a compensation scheme is the “standard contract” used by the NHS in the

UK (Department of Health 2008). Under this contract, a penalty is imposed on a hospital when

the delay for patients to access hospital services exceeds a threshold of T = 18 weeks. The overall

penalty is calculated as a product of the penalty rate η= 0.5, the per-patient “base” revenue, and

the number of patients who had to wait longer than 18 weeks to be treated. Under M/M/1 patient

service dynamics, the expected patient waiting time is given by wi = 1

µi−λ
(n)
i (θ)

and the fraction of

patients served at hospital i whose wait exceeds the target T > 0 is given by e−
T
wi = e−θiT . Thus, on

a per-patient basis, if ri is the “base” revenue a hospital receives, the “sliding-scale” compensation

function under such a contract can be expressed as R(θi, T, η) = ri (1− ηe−θiT ). In this example,

ξ = (η), Ξ(T ) = [0,1] and Ri is a monotone increasing, concave function of θi and a monotone

increasing function of T .

In our analysis, we consider the compensation functions Ri(θi, T,ξ) that have the same properties

as the functions in the NHS example:

Assumption 7. Ri(θi, T,ξ) is twice continuously differentiable in θi on [0, θ̄i] and is continuously

differentiable in T on [Tl,+∞) and

∂Ri
∂θi
≥ 0,

∂2Ri
∂θ2

i

≤ 0,
∂Ri
∂T
≥ 0, i= 1, ..., n,∀ξ ∈Ξ(T ). (20)

Based on Assumption 7, we use the following values to describe the fee function for any T ∈

[Tl,+∞) and ξ ∈Ξ(T ):

Ri (T,ξ) = Ri (0, T,ξ) , (21)

R̄i (T,ξ) = Ri
(
θ̄i, T,ξ

)
, (22)

R′i (T,ξ) =
∂Ri
∂θi

(
θ̄i, T,ξ

)
, (23)

R̄′i (T,ξ) =
∂Ri
∂θi

(0, T,ξ) . (24)

In the following section, we use parameters (8)–(14), (16)–(18), and (21)–(24) to characterize

the sufficient conditions for the existence and uniqueness of Nash equilibrium service levels for

competing hospitals.

Given the structure of the performance-based contract, demand model, and service capacity cost

function, we treat each hospital as a risk-neutral profit-maximizing entity. The choice of profit as

a hospital objective is justified in many practical settings. For example, in the UK, NHS hospitals

are funded by the public; however, they have substantial managerial and financial flexibility. In

particular, hospitals can retain surplus cash and sell property and retain cash from any sale. As

a result, hospitals are often described as profit maximizers (De Fraja 2000, Miraldo et al. 2011).
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Note that the general form of the fee function Ri also allows us to model the behavior of hospitals

that, in addition to profit, assign some altruistic, non-monetary value to treating patients (Brekke

et al. 2008).

In our model, for any combination of performance-based parameters T ∈ [Tl,+∞) and ξ ∈Ξ(T )

and given set of competitors’ service levels θ−i, the optimal response problem for hospital i is

expressed as

max
θi

π
(n)
i (θ, T,ξ), λ(n)

i (θ)Ri (θi, T,ξ)−Ci
(
λ

(n)
i (θ) + θi

)
(25)

s.t. 0≤ θi ≤ θ̄i. (26)

In Section 3 we describe the set of sufficient conditions that ensures the existence and uniqueness of

the Nash equilibrium service levels θNE (T,ξ) = (θNE
1 (T,ξ) , ..., θNE

n (T,ξ)) for the problems defined

by (25) and (26) for each i= 1, ..., n.

We assume that the risk-neutral payer selects the performance-based contract parameters T and

ξ to minimize the overall expected payment required to achieve a certain level of patient access to

care. Specifically, the payer’s optimization problem can be expressed as

min
T,ξ

n∑
i=1

λ
(n)
i

(
θNE (T,ξ)

)
Ri
(
θNE (T,ξ) , T,ξ

)
(27)

s.t. θNE
i (T,ξ)≥ 1

T
, i= 1, ..., n, (28)

π
(n)
i

(
θNE (T,ξ)

)
≥ 0, i= 1, ..., n, (29)

Tl ≤ T ≤ Th,ξ ∈Ξ(T ). (30)

The objective function (27) represents the expected daily compensation that the payer distributes

to all hospitals, while the constraint (28) ensures that patients do not have to wait more than T

on average before receiving care at any hospital. The “participation” constraint (29) ensures that

hospitals cannot lose money under the imposed performance-based contract. The upper bound

Th on the value of the waiting time target T reflects the maximum clinically acceptable expected

duration a patient must wait before receiving care, while the lower bound Tl > 0 reflects the highest

level of patient service that a payer can realistically request from a hospital.

3. Nash Equilibrium Analysis: Incentives and Competition

In this section we formulate sufficient conditions that ensure the existence and uniqueness of

the service-level Nash equilibrium for fixed values of performance-based parameters T ∈ [Tl, Th)

and ξ ∈ Ξ(T ). We also analyze how the equilibrium service levels that emerge in the presence

of performance-based incentives are affected by the competitive environment and by the overall

strength of the pressure of incentives on competitors’ revenues.
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3.1. Nash Equilibrium Service Levels: Existence and Uniqueness

Consider a setting described by (25)–(26) where a performance-based contract described by the fee

function Ri (θi, T,ξ) is applied to each of n competing hospitals. To begin with, we are interested

in identifying conditions that guarantee the existence of a unique set of Nash equilibrium service

levels under this performance-based contract.

Proposition 1. Suppose that

Ri (T,ξ)> c̄i, i= 1, ..., n (31)

and

R̄′i (T,ξ)<
di
3
−

(
−δii +

∑
j 6=i δij

)+ (
R̄i (T,ξ)− ci

)
3γii

, i= 1, ..., n, (32)

where x+ = max(x,0). Then, there exists a unique set of Nash equilibrium service levels for com-

peting hospitals.

Proposition 1 assumes that the per-patient revenue that hospitals receive from the payer is

higher than hospitals’ marginal costs for any service level they choose to provide (this assumption

is expressed by (31)) and specifies an upper bound on the “strength” of the performance-based

incentives (as expressed by the value of the marginal revenue improvement rate) that ensures

that the service-level competitive dynamics is “well-behaved,” i.e. that service-level competition

between hospitals results in a unique equilibrium. In the absence of performance-based incentives

(R̄′i = 0, i = 1, ..., n) the sufficient condition (32) holds; specifically, if δii >
∑

j 6=i δij, i = 1, ..., n, a

condition that implies the second-order “diagonal dominance” property of the arrival rates for all

hospitals: ∣∣∣∣∣∂2λ
(n)
i (θ)

∂θ2
i

∣∣∣∣∣>∑
j 6=i

∣∣∣∣∣∂2λ
(n)
i (θ)

∂θi∂θj

∣∣∣∣∣ ,θ ∈Θ, i= 1, ..., n. (33)

Conditions similar to (33) are often used in oligopoly pricing literature to ensure the uniqueness

of the Nash equilibrium (see, for example, Vives 2001). In this regard, the sufficient condition (32)

is less restrictive than that implied by (33).

In the example of the performance-based contract used by the NHS in the UK, the hospital

compensation function is Ri (θi, T, η) = ri− ηrie−θiT . Under this contract, the sufficient conditions

(31) and (32) can be expressed as

η < η?i (T ) = min

1− c̄i
ri
,

 1

3T

di
ri
−

[
−δii +

∑
j 6=i δij

]+ [
1− ci

ri

]
γii



 , i= 1, ..., n. (34)

Thus, in this case, for each value of the expected waiting time target T Proposition 1 imposes the

maximum value of the penalty rate η that guarantees the existence and uniqueness of the Nash

equilibrium.
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3.2. Effect of Incentives on Nash Equilibrium Service Levels

The main rationale for a payer to use performance-based incentives is to improve the level of service

patients receive. While it is reasonable to assume that the introduction of incentives that discourage

excessive patient waiting times should increase the service levels provided by competing hospitals,

the actual effect of performance-based compensation depends on the shape of the compensation

function and its relation to the compensation level hospitals received prior to the introduction of

incentives. Let Ri,b be the “base” compensation value provided by the payer to all competitors in

the absence of performance-based incentives and Ri (θi, T,ξ) be the compensation function applied

to any competitor i, i = 1, ..., n under the performance-based contract defined by the expected

waiting time target T and other contract parameters ξ ∈Ξ(T ). We assume that the introduction of

incentives cannot lead to compensation that is higher than or lower than Ri,b for all feasible values

of service level for hospital i= 1, ..., n. In other words, we assume that Ri (T,ξ)≤Ri,b ≤ R̄i (T,ξ)

for all i= 1, .., n.

Below, we look at the potential impact of performance-based incentives in a setting with identical

competitors. For a competitive setting with n identical hospitals, define

γ = γii, γ̄ = γ̄ii, δ= δii, c= ci, c̄= c̄i, d= di, i= 1, ..., n, (35)

Γ = γij, Γ̄ = γ̄ij,∆ = δij, ∆̄ = δ̄ij, i, j = 1, ..., n, j 6= i. (36)

On the compensation side, we define “symmetric” versions of (21)–(24) as follows:

R̄ (T,ξ) = R̄i (T,ξ) ,R (T,ξ) =Ri (T,ξ) , R̄′ (T,ξ) = R̄′i (T,ξ) ,R′ (T,ξ) =R′i (T,ξ) , i= 1, ..., n. (37)

The following proposition outlines the effect of introducing performance-based incentives into a

symmetric competitive setting.

Proposition 2. Suppose that

R (T,ξ) > c̄, (38)(
R̄ (T,ξ)− c

) (
−δ+ (n− 1)∆̄

)+
< dγ, (39)

R̄′ (T,ξ) <
dγ− (−δ+ (n− 1)∆)

+ (
R̄ (T,ξ)− c

)
3γ

. (40)

Then, there exist unique symmetric Nash equilibria θ
(n)
b =

(
θ

(n)
b , ..., θ

(n)
b

)
in the absence of

performance-based incentives and θ(n) =
(
θ(n), ..., θ(n)

)
in the presence of performance-based incen-

tives. In addition, θ(n) ≥ θ(n)
b if R

(
θ

(n)
b , T,ξ

)
≥Rb, or,

∂R
(
θ
(n)
b

,T,ξ
)

∂θi

Rb−R
(
θ

(n)
b , T,ξ

) ≥ ∂λ(n)
(
θ
(n)
b

,...,θ
(n)
b

)
∂θi

λ(n)

(
θ

(n)
b , ..., θ

(n)
b

) , i= 1, ..., n, (41)

and θ(n) ≤ θ(n)
b otherwise.
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As Proposition 2 indicates, the ability of the performance-based contract to induce improvements

in the service levels provided by competing hospitals depends on the nature of the performance-

based incentives. Consider a general, non-symmetric setting where the sufficient conditions for

the existence and uniqueness of the Nash equilibrium hold in both the absence and presence of

performance-based incentives. In order to rationalize the results of Proposition 2, consider the

following definition:

Definition 1. A contract (T,ξ) is penalty-based (bonus-based) if, for all i = 1, ..., n,

Ri

(
θ

(n)
i,b , T,ξ

)
< Ri,b (Ri

(
θ

(n)
i,b , T,ξ

)
> Ri,b). A contract (T,ξ) is neutral if, for all i = 1, ..., n,

Ri

(
θ

(n)
i,b , T,ξ

)
=Ri,b.

This definition is rather intuitive: The introduction of a penalty-based (bonus-based) contract

reduces (increases) the compensation for all competing hospitals if they keep their service levels

unchanged. The neutral contract, on the other hand, leaves hospital compensation unchanged

if hospitals maintain the Nash equilibrium service levels attained in the absence of incentives.

Proposition 2 states that in a symmetric setting, neither bonus-based nor neutral contracts can

result in a decrease in patient service levels, while penalty-based contracts may indeed reduce the

resulting service levels.

As an example, consider the performance-based contract (T,η) used by the NHS. Under such a

contract, Ri,b = ri, and Ri (θi, T, η) =Ri,b (1− η exp (−θiT ))<Ri,b. As such, it is a penalty-based

contract. For such a contract, assuming that (34) holds, note that

∂Ri

(
θ
(n)
i,b

,T,ξ
)

∂θi

Ri,b−Ri
(
θ

(n)
i,b , T,ξ

) = T (42)

and that the service level in a symmetric setting can increase upon the introduction of the contract

if T is sufficiently high, i.e. if

T ≥ T ∗, (43)

where

T ∗ =

∂λ(n)
(
θ
(n)
b

,...,θ
(n)
b

)
∂θi

λ(n)

(
θ

(n)
b , ..., θ

(n)
b

) . (44)

For this contract, the left-hand side of (41) is the reciprocal of the service-level target that such a

contract aims to achieve. Thus, the payer must select moderate service-level targets for the incentive

contract to result in an increase in patient service levels. Note that for a general “penalty-based”

contract, the higher the difference in the numerator of the expression on the left-hand side of (41),

the more aggressive the service-level target that such a contract aims to achieve.

The specific form of the compensation function used in this contract allows for a more general

result on the monotonicity of the Nash equilibrium service levels with respect to the penalty rate
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parameter η. Consider a setting where an NHS-type performance-based contract characterized by

parameters η and T is applied to a setting with n identical hospitals characterized by (35)–(36),

and let η?(T ) = η?i (T ), i= 1, ..., n denote an upper bound from (34). Then, the monotonicity of the

Nash equilibrium service levels can be characterized as follows.

Proposition 3. In a symmetric setting with n hospitals, let

η̄(T ) =
(δ+ (n− 1)∆̄)

(
1− c̄

r

)
+ d

r
(γ+ 1)

(2γ̄− (n− 1)Γ̄)T + (δ+ (n− 1)∆̄)
. (45)

Suppose that

η <min(η?(T ), η̄(T )) . (46)

Then, there exists a unique Nash equilibrium that is symmetric, θ(n)(T,η) =(
θ(n)(T,η), ..., θ(n)(T,η)

)
, where θ(n)(T,η) is a non-increasing (non-decreasing) function of η for

T ≤ T ? (T > T ?), with T ? given by (44).

As the statement for Proposition 3 indicates, the value of T may play a key role in shaping the

effect of the NHS-type contract on competing hospitals. In particular, the low values of T may lead

to counterproductive results in terms of the impact of the performance-based incentives: Stronger

incentives can lead to lower patient service levels.

3.3. Effect of Competition on Nash Equilibrium Service Levels

The effect of competitive pressure on hospital service levels may vary depending on the interplay

between the patient demand and capacity cost functions. In particular, as competitive pressure

increases, hospitals may respond by improving patient service levels and reducing expected waiting

times. However, it is also possible for the competition to result in increased waiting times.

The following proposition illustrates each of these outcomes for the case of two competing hos-

pitals in the presence of a performance-based contract characterized by compensation functions

Ri (θi, T,ξ), i= 1,2. We assume that the compensation function satisfies (31) and (32) such that

the unique Nash equilibrium exists. Specifically, let θ
(1)
1 and θ

(1)
2 be the optimal service levels of hos-

pitals 1 and 2, respectively, in a monopolistic setting and let θ
(2)
1 and θ

(2)
2 be the Nash equilibrium

service levels of hospitals 1 and 2, respectively, in a duopoly.

Proposition 4. (a) Suppose the cost functions Ci(·) are linear for both i= 1,2. Then,

θ
(2)
i ≤ θ

(1)
i , i= 1,2. (47)

(b) Suppose that

di >
δij

γ̄ij (γii + 1)

(
R̄i (T,ξ)− ci

)
, i, j = 1,2, j 6= i (48)
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and

R̄′i (T,ξ)<di (γii + 1)− δij
γ̄ij

(
R̄i (T,ξ)− ci

)
, i, j = 1,2, j 6= i. (49)

Then,

θ
(2)
i ≥ θ

(1)
i , i= 1,2. (50)

Proposition 4 indicates that the onset of competition may depress service levels in settings where

the marginal costs of increasing provider capacity do not depend on the service level achieved.

On the one hand, in a setting where the marginal costs of service improvement increase with the

service rate (di > 0, i= 1,2), competitive pressure may lead to service level improvement provided

that patients exhibit a substantial degree of sensitivity to the service levels they are subjected to,

i.e. provided that γii, i= 1,2 are high enough.

Under the NHS-type performance-based contract, Ri (θi, T, η) = ri−riηe−θiT and conditions (48)

and (49) become di ≥
δij

γ̄ij(γii+1)
(ri− ci) and η <mini

(
1
riT

(
di (γii + 1)− δij

γ̄ij
(ri− ci)

))
, respectively.

For this type of contract, the results of Proposition 4 can be extended, in part, beyond the duopoly

setting. Consider an oligopoly setting with n > 2 competing hospitals and let θ
(n)
i (η,T ) be the

Nash equilibrium service level of hospital i, i= 1, ..., n in such oligopoly. By comparison, consider

an oligopolistic setting with n− 1 competing hospitals resulting from the n-hospital setting after

hospital j = 1, ..., n “exits” the market; let θ
(n−1,j)
i (η,T ) be the Nash equilibrium service level of

hospital i 6= j in such an oligopoly with n − 1 competing hospitals. The following proposition

compares the Nash equilibrium service levels in these two settings.

Proposition 5. (a) Consider a symmetric oligopoly with γii = γ, γij = Γ, γ̄ii = γ̄, γ̄ij = Γ̄,

δii = δ, δij = ∆, δ̄ij = ∆̄, ci = c, c̄i = c̄, di = d, and η?(T ) = η?i (T ), i, j = 1, ..., n, j 6= i. Suppose that

the hospitals’ cost function C(·) is linear and η < η?(T ). Then,

θ
(n)
i (η,T )≤ θ(n−1,j)

i (η,T ), i, j = 1, ..., n, j 6= i. (51)

(b) Consider a general, non-symmetric oligopoly setting and let

Di = max
j 6=i

(
δij
γ̄ij

)
, i= 1, ..., n, (52)

η̂i(T ) =
1

riT
(di (γii + 1)−Di (ri− ci)) , i, j = 1, ..., n, j 6= i. (53)

Suppose that

di >
Di

(γii + 1)
(ri− ci) , i= 1, ..., n (54)

and

η < min
i∈{1,...,n}

(min (η?i (T ), η̂i(T ))) . (55)

Then,

θ
(n)
i (η,T )≥ θ(n−1,j)

i (η,T ), i, j = 1, ..., n, j 6= i. (56)
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Proposition 5 provides a more specific characterization of the effect of competition on service

levels in the case of an NHS-type contract. In particular, it emphasizes the need for the penalty

rate parameter η to stay low for the increase in the number of competitors in the presence of

performance-based incentives to result in a decrease in expected patient waiting times.

In the following section we consider the example of a duopoly where the demands of competing

hospitals are linear functions of their respective service levels and the costs are quadratic functions

of their respective arguments. These specific forms of the demand and cost functions allow for

sharper analytical characterizations of the Nash equilibrium service levels and optimal performance

contract parameters.

4. Special Case: Duopoly with Linear Demand, Quadratic Cost, and
Linear Compensation Functions

Consider a duopoly in which the demand functions for hospital i= 1,2 are given by

λ
(2)
1 (θ1, θ2) = α1θ1− ρ12θ1θ2, (57)

λ
(2)
2 (θ1, θ2) = α2θ2− ρ21θ1θ2, (58)

the cost functions are

C1 (θ1, θ2) = b1 (λ1 (θ1, θ2) + θ1)
2
, (59)

C2 (θ1, θ2) = b2 (λ2 (θ1, θ2) + θ2)
2
, (60)

with αi, bi > 0, i= 1,2, and the “sliding-scale” compensation function is given by

Ri (θi, T, η) = ri

(
1 + η

(
θi−

1

T

))
, θi ∈ [0, θ̄i], i= 1,2, (61)

where T ≥ 1
θ̄i
, i= 1,2, ξ = η, and Ξ(T ) = [0,min(1, T )]. Note that (61) satisfies Assumption 7 and

that Assumptions 1–6 are satisfied as long as

αi− ρij
(
θ̄i + θ̄j

)
> 0, i, j = 1,2, j 6= i. (62)

Below, we conduct an analysis of the Nash equilibrium service levels in this setting.

4.1. Nash Equilibrium Service Levels: Analytical Characterization

In the presence of performance incentives, the service level with which hospital i= 1,2 responds to

the service level of its competitor j = 1,2, j 6= i is expressed by the following result.

Lemma 1. Assume that, in addition to (62),

η < T. (63)
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Let θj, j = 1,2, j 6= i be the service level of the hospital competing with hospital i= 1,2 and

θs
i(θj) =

(αi− ρijθj)(1− η/T )
(
ri
bi

)
2
[
(1 +αi− ρijθj)2− (αi− ρijθj)η

(
ri
bi

)] . (64)

Then, the optimal response for hospital i is to set its service level to

θri = min
(
θs
i , θ̄i
)
. (65)

In Section 3 we showed that (31) and (32) ensure the existence and uniqueness of the Nash

equilibrium service levels for general compensation, demand, and cost functions. Below, we provide

sharper conditions for the case of a duopoly with compensation, demand, and cost functions given

by (61), (57)–(58), and (59)–(60), respectively.

Proposition 6. Suppose that, in addition to (62), the following conditions hold:

αi >

(√
ρijri
2bi
− 1

)+

, i, j = 1,2, j 6= i, (66)

η < η? (T ) = min

(
T, (αi + 1)

bi
ri

)
, i, j = 1,2, j 6= i, (67)

θ̄i ≤
1

ρji

1 +αj −
ηrj
2bj
−

√(
ηrj
2bj

)2

+

(
ρjirj
2bj

)(
1− η

T

) , i, j = 1,2, j 6= i, (68)

2θ̄i + θ̄j <
1

ρij

(
1 +αi−

ηri
bi

)
, i, j = 1,2, j 6= i. (69)

Then, there exist unique Nash equilibrium service levels θ̂NE
1 (T,η) and θ̂NE

2 (T,η).

The results of Proposition 6 indicate that the competition between two hospitals produces a

well-defined outcome in terms of service levels if several main conditions are satisfied. First, as

(66) implies, patients’ sensitivity to changes in their hospital’s service level must be substantially

stronger than their sensitivity to changes in a competitor’s service level, beyond what is implied

by (62). Second, as indicated by (67), the incentive fee parameter η is limited from above by a

threshold η? (T ) that is increasing in the expected patient waiting time target T for small values of

T and decreasing in T for large values of T . Finally, the service levels provided by competitors must

be limited from above, which effectively limits the set of waiting times achievable by an incentive

contract of the type described by (61).

In many settings, conditions (66)–(69) are less restrictive than the general conditions of Propo-

sition 1. As an illustrative example, consider a symmetric setting with r1 = r2 = r, b1 = b2 = b,

ρ12 = ρ21 = ρ, α1 = α2 = α, and θ̄i = θ̄j = θ̄. Then, (66)–(69) become

α >

(√
ρr

2b
− 1

)+

, (70)
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η < min

(
T, (1 +α)

b

r

)
, (71)

θ̄ ≤ min

 1

3ρ

(
α+ 1− ηr

b

)
,
1 +α− ηr

2b
−
√(

ηr
2b

)2
+
(
ρr
2b

) (
1− η

T

)
ρ

 . (72)

On the other hand, for the demand and cost functions (57)–(60) and fee function (61), the problem

parameters in the conditions of Proposition 1 can be expressed as

Ri (T,ξ) = r
(

1− η

T

)
, (73)

c̄i = 2b (α+ 1)
2
θ̄, (74)

R̄′i (T,ξ) = rη, (75)

di = 2b, (76)

δii = 0, (77)

δij = ρ, (78)

R̄i (T,ξ) = r

(
1 + η

(
θ̄− 1

T

))
, (79)

ci = 0, (80)

γii = α− ρθ̄, i, j = 1,2, j 6= i. (81)

Thus, (31) and (32) are equivalent to

r
(

1− η

T

)
> 2b (α+ 1)

2
θ̄ (82)

and

rη <
2b

3
− ρ

3
(
α− ρθ̄

)r(1 + η

(
θ̄− 1

T

))
. (83)

Note that to both sets of conditions we must also add (62), or

θ̄ <
α

2ρ
. (84)

In addition, the general conditions (82) and (83) must be augmented by η < T , which ensures that

the compensation function is positive for any service-level value.

In the case of a monopoly (ρ= 0), the sufficient conditions of Proposition 6 reduce to

η < min

(
T, (1 +α)

b

r

)
, (85)

while the sufficient conditions of Proposition 1 become

η < min

(
T,

2b

3r

)
, (86)

θ̄ ≤
r
2b

(
1− η

T

)
(α+ 1)

2 . (87)
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Note that the sufficient conditions (86)–(87) are “tighter” than (85); specifically, for each combi-

nation of parameters T , α, r, and b, the right-hand side of (85) is greater than or equal to the

right-hand side of (86).

The optimal response expressions of Proposition 1 do not allow closed-form analytical charac-

terization of the Nash equilibrium except in special cases. Below, we look at the Nash equilibrium

service levels in the case of a symmetric duopoly with ri = r, bi = b, αi = α, θ̄i = θ̄, ρij = ρ, i, j = 1,2.

Proposition 7. Suppose that (62) and (66)–(68) hold and consider a duopoly setting with ri =

r, bi = b, αi = α, θ̄i = θ̄, i= 1,2, and ρij = ρ, i, j = 1,2. For b > 0, define

û =
ρr

6b
−
(
α+ 1

3

)2

+
(ηr

3b

)(α+ 1

3
+ 1− ρ

2T

)
−
(ηr

3b

)2

(88)

v̂ =
ρr

4b

(
α+ 1

3
− 1

)
−
(
α+ 1

3

)3

,

+
3

2

(ηr
3b

)(ρr
6b

+
ρ

2T
−
(
α+ 1

3

)(
2 +

ρ

2T

)
+

(
α+ 1

3

)2
)

+
3

2

(ηr
3b

)2
((

1− ρ

2T

)
+

(
α+ 1

3

))
−
(ηr

3b

)3

, (89)

and

θ̂(η,T ) =
2

ρ

(
α+ 1

3

)
− 1

3ρ

(ηr
b

)
+

1

ρ

((√
(û)

3
+ (v̂)

2
+ v̂

) 1
3

−
(√

(û)
3

+ (v̂)
2− v̂

) 1
3

)
. (90)

Then, the unique Nash equilibrium service level for the competing hospitals is given by

θNE(η,T ) = min
(
θ̂(η,T ), θ̄

)
. (91)

As the results of Proposition 7 indicate, while the presence of competition and introduction of

incentives can improve patient service levels, they may also have a detrimental effect.

In order to gain insight into the types of problem settings where competition and incentives

combine to improve patient service as well as settings in which these factors are detrimental to

patient service, we select a base-case parameter set that corresponds to the realistic values for

patient service levels and demand rates in the monopolistic setting without incentives that we use

as a reference. Note that, as implied by (64), a monopolistic hospital in the absence of incentives

will set its service level at θM = α

(1+α)2
r
2b

when there is no upper bound on the service level values,

with the resulting daily demand rate of αθM =
(

α
1+α

)2
r
2b

. For the base case, we select a setting with

θM = 0.01 (corresponding to an expected patient waiting time for an appointment of 100 days) and

αθM = 100 patients per day and use the basic fee-for-service compensation rate of r = 200. These

values result in α= 10000 and b= 0.9998. Figure 1 shows how the service levels in a monopoly and
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Figure 1 : The Nash equilibrium service levels in a monopoly and symmetric duopoly as functions of the incentive

fee parameter η (r= 200, b= 0.9998, α= 10000, ρ= 50000) for T = 80 (a) and T = 40 (b).

symmetric duopoly depend on the incentive fee parameter η for T = 80 (Figure 1a) and T = 40

(Figure 1b). In this figure, the values for η are limited to the range [0, ηcr (α,ρ, r, b, T )], where

ηcr (α,ρ, r, b, T ) = min
(
η|θ̂ (α,ρ, r, b, η,T ) = θ̄

)
. (92)

In addition, for each η ∈ [0, ηcr (α,ρ, r, b, T )], θ̄ is set at

θ̄max (α,ρ, r, b, T, η) = min

 1

3ρ

(
α+ 1− ηr

b

)
,
1 +α− ηr

2b
−
√(

ηr
2b

)2
+
(
ρr
2b

) (
1− η

T

)
ρ

 , (93)

which is the right-hand side of (72).

Note that for T = 80, both monopoly and duopoly service levels are increasing functions of η for

η < ηcr(α,ρ, r, b, T ), in agreement with the results of Proposition 2. Indeed, for the problem setting

we consider, (41) is equivalent to
1

1
T
− θ(n)

b

≥ 1

θ
(n)
b

, (94)

or

θ
(n)
b ≥

1

2T
, (95)

where θ
(n)
b = θ̂(η= 0, T ). (95) holds for T = 80 for both ρ= 0 (monopoly) and ρ= 50000 (duopoly).

As Figure 1a indicates, setting η≈ 13 in a duopoly and η≈ 20 in a monopolistic setting “lifts” the

respective service levels to the target value 1
T

.

On the other hand, (95) is violated for T = 40 for both ρ= 0 and ρ= 50000 and both monopoly

and duopoly service levels are decreasing functions of η for η < ηcr(α,ρ, r, b, T ), as shown in Fig-

ure 1b. Thus, incentive contracts involving overly aggressive expected waiting time targets may

actually result in a deterioration in patient waiting times.

As Figure 1 indicates, the base-case parameter set results in an increase in the service-level value

when an identical competitor is added to a monopoly setting for all values of the incentive fee
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Figure 2 : The Nash equilibrium service levels in a monopoly and symmetric duopoly as functions of the incentive

fee parameter η (r= 200, b= 800, α= 0.5, ρ= 3) for T = 35 (a) and T = 15 (b).

parameter η below ηcr(α,ρ, r, b, T ). In order to understand why this is the case, note that, as follows

from (64), in the absence of an upper bound on the service level values the monopoly service level

is given by

θM =
r

2b

(
1− η

T

) α

(α+ 1)
2−
(
ηr
b

)
α
, (96)

while the corresponding Nash equilibrium symmetric duopoly service rate satisfies

θ̂=
r

2b

(
1− η

T

) α− ρθ̂(
α+ 1− ρθ̂

)2

−
(
ηr
b

)(
α− ρθ̂

) . (97)

The function

h(x) =
x(

(x+ 1)
2−
(
ηr
b

)
x
) (98)

is monotone increasing in x for 0 < x < 1 and monotone decreasing in x for x > 1. Thus, for

α−ρθ̂ > 1, θ̂ > θM, as is the case in the examples in Figure 1. On the other hand, if ρθ̂ < α< 1, then

the duopoly service level θ̂ is below the service level in monopoly θM. This last condition is achieved

for any α< 1 and sufficiently low value of ρ. Figure 2 illustrates the case (r= 200, b= 800, α= 0.5,

ρ= 3) where the presence of competition leads to a decrease in the service rate. Note that, as in

the base case, setting high performance targets in terms of expected waiting times may further

decrease the service rate patients experience in a duopoly in the presence of performance-based

incentives: While T = 35 represents an achievable goal in both the monopoly and duopoly settings,

T = 15 is too aggressive to be achieved under the performance-based contract defined by (61).

In the examples shown in Figures 1 and 2, both the monopoly and duopoly service rates move

in “unison” upon the introduction of performance-based incentives: They both either increase or

decrease as functions of η. It is interesting to note that, as implied by Proposition 2, it is possible

to have monopoly and duopoly service levels that “move” in the opposite directions under the
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Figure 3 : The Nash equilibrium service levels in a monopoly and symmetric duopoly as functions of the incentive

fee parameter η (r= 200, b= 0.9998, α= 10000, ρ= 50000, T = 49 in (a)) and (r= 200, b= 800, α= 0.5,

ρ= 3, T = 18.5 in (b)).

influence of incentives, as shown in Figure 3. For example, Figure 3a uses problem parameters from

Figure 1 and T = 49. In this case, the monopoly service level in the absence of incentives, θM, is

less than 1
2T

. As a consequence, the monopoly service level decreases with incentives. On the other

hand, the service level in the duopoly without incentives, θ̂, is greater than 1
2T

. As a result, the

stronger the incentives, the higher the duopoly service level. In such cases, the effect of incentives

in a monopoly setting is not indicative of a potential effect of the same incentive contract in the

presence of competition. Another example of this phenomenon, illustrated in Figure 3b, uses the

problem parameters from Figure 2. In this example, the monopoly service level in the absence of

incentives is greater than 1
2T

. As a consequence, the monopoly service level increases as incentives

strengthen. The service level in the duopoly without incentives, on the other hand, is less than 1
2T

,

and the stronger the incentives, the lower the duopoly service level. In such cases, evaluating the

impact of a performance-based contract while ignoring the competitive nature of the healthcare

market may lead to the selection of contract parameters that will increase rather than decrease

patient waiting times when applied in a competitive setting.

Motivated by the observations on the effects of incentives and competition from the above two

examples, we formally summarize these properties in the following corollary and proposition.

Corollary 1. Consider a symmetric duopoly and suppose that (62) and (66)–(69) hold. For a

fixed T , let θM(0) be the optimal service level for the monopoly hospital and let (θNE(0), θNE(0)) be

the unique and symmetric Nash equilibrium for the symmetric duopoly when η= 0. Then,

(a) θM(η,T ) is increasing in η if and only if T ≥ 1
2θM(0)

,

(b) θNE(η,T ) is increasing in η if and only if T ≥ 1
2θNE(0)

.

Note that neither θM(0) nor θNE(0) depend on T . The monotonicity results in Corollary 1

have important practical implications: They show that the introduction of incentives may improve
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patient services only when the waiting time target associated with the incentive policy is suffi-

ciently weak compared to the waiting time already achieved in the absence of incentives, i.e. if T

is higher than or equal to 1
2θM(0)

( 1
2θNE(0)

). Otherwise, introducing incentives may have the unin-

tended consequence of lowering patient service levels, with a more detrimental effect for stronger

incentives.

Proposition 8. Consider a symmetric duopoly and suppose that (62) and (66)–(69) hold. For

any fixed waiting time target T and incentive parameter η, let θNE (η,T ) and θM (η,T ) be the optimal

Nash equilibrium service levels in the symmetric duopoly and monopoly settings, respectively.

(a) If α≥ 1 + ρθ̄, then competition increases service levels: θNE(η,T )≥ θM(η,T ).

(b) If α≤ 1, then competition decreases service levels: θNE(η,T )≤ θM(η,T ).

The sufficient conditions of Proposition 8 are much simpler than those outlined in Proposition 4

as they rely only on demand parameters to characterize the effect of competition on service levels:

When the demand-sensitivity parameter α is sufficiently large, competition increases service levels,

and when α is sufficiently small, competition is detrimental to patient service.

In summary, when a fixed-incentive scheme defined by the waiting time target T and incentive

parameter η is applied to a competitive setting, patient access to care will improve if T and α are

sufficiently large but may also deteriorate if T and α are sufficiently small.

4.2. Optimal Performance-based Contract in a Symmetric Duopoly

We re-express the payer’s problem in a duopoly setting as

min
T,η

Π(T,η)≡
2∑
i=1

λ
(2)
i

(
θNE (T,η)

)
Ri
(
θNE (T,η) , T, η

)
(99)

s.t. θNE
i (T,η)≥ 1

T
, i= 1,2, (100)

π
(2)
i

(
θNE (T,η)

)
≥ 0, i= 1,2, (101)

Tl ≤ T ≤ Th, (102)

0≤ η≤ ηmax(T ), (103)

where θNE (T,η) is the vector of Nash equilibrium service levels for the duopoly when the waiting

time target is T and the incentive parameter is η and

ηmax(T ) = min

(
T, b

r

(
α+ 1− ρθ̄

)
− ρ

2(α+1−ρθ̄)
, b
r

(
α+ 1− 3ρθ̄

))
. (104)

The first, second, and third terms on the right-hand side of (104) are obtained from (67), (68)

(by letting T → +∞), and (69), respectively. This bound on the value of η, together with (62)

and (66), ensures the existence and uniqueness of the Nash equilibrium service levels. Below, we
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consider (99)–(103) in the monopoly and symmetric duopoly settings. Note that in the symmetric

duopoly setting, the Nash equilibrium service level θNE (η,T ) is given by (91). The following result

describes the optimal performance-based contract in the symmetric duopoly setting.

Proposition 9. Consider the payer’s problem in the symmetric duopoly setting. Assume that

(62) and (66)–(69) hold and define

ηmin(T ) =
2b

r

(
α+ 1− ρ

T

)2(
α− ρ

T

) −T (105)

and

T =
(
T |T ∈ [Tl, Th] , ηmin(T )≤ ηmax(T )

)
. (106)

(a) If T =∅ or if Th <
1

2θNE(0)
, then the payer’s problem has no feasible solution.

(b) If T 6=∅ and Tl >
1

θNE(0)
, the optimal solution for the payer’s problem is

T opt ∈ [Tl, Th], ηopt = 0 (107)

and the optimal value of the payer’s cost is

Πopt = Π(T opt, ηopt) = 2r
(
αθNE(0)− ρ

(
θNE(0)

)2
)
. (108)

(c) If T 6=∅, Tl ≤ 1
θNE(0)

and Th ≥ 1
2θNE(0)

, then the optimal solution for the payer’s problem is

T opt = T ∗, ηopt = ηmin (T ∗) , (109)

where

T ∗ = max(T |T ∈ T ) (110)

and the optimal value of the payer’s cost is

Πopt = Π(T opt, ηopt) = 2r

(
α

T ∗
− ρ

(T ∗)
2

)
. (111)

Proposition 9 indicates that aggressive waiting time targets are incompatible with the incentive

structure given by (61), while “loose” waiting time targets do not require performance incentives.

On the other hand, when the payer has substantial flexibility in choosing the waiting time target

(i.e. Tl is not too high and Th is not too low), it will select the highest available waiting time

T ∗. The rationale for the payer to choose the highest waiting time target is that it minimizes

the difference between the service level achieved in the absence of incentives and the service-level

target, resulting in the lowest cost for the payer. Note that if Tl ≥
√

2bρ
r

and T 6=∅, then T ∗ = Th,

since ηmin(T ) is monotone decreasing in T and ηmax(T ) is monotone increasing in T .

One important special case for Proposition 9 is when the waiting time target is set by the

payer using medical rather than financial considerations, such as the 18-week access target used

by NHS. In this case, Tl = Th = T . The impact of the demand-sensitivity parameters α and ρ can

be summarized as follows.
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Figure 4 : The optimal incentives in a monopoly and symmetric duopoly as functions of the waiting time target T

(r= 200, b= 0.9998, α= 10000, ρ= 50000 in (a) and r= 200, b= 800, α= 0.5, ρ= 3 in (b)).

Corollary 2. Consider the payer’s problem in the symmetric duopoly setting with Tl = Th = T

and assume that (62) and (66)–(69) hold. For 1
2T
≤ θNE(0)≤ 1

T
and ηmin(T )≤ ηmax(T ), the optimal

value for the incentive parameter η is increasing in α and decreasing in ρ if and only if α≥ ρ
T

+ 1.

Corollary 2 demonstrates that the effect of the competitive pressure parameter ρ on the optimal

strength of incentives required to ensure a certain level of performance depends on patients’ sensi-

tivity to the level of access to care, α. For access-sensitive patients (α≥ 1), the optimal incentive

strength initially decreases as a new provider enters the market but eventually begins to increase

as competitive pressure grows. On the other hand, if patients are not overly sensitive to the level

of access to care (α< 1), the market entrance of a competitor results in an increase in the required

strength of the performance-based incentives. Figure 4 illustrates the dependence of the optimal

value of the incentive parameter η as a function of the waiting time target T = Tl = Th for the

two different parameter settings used in Figure 3. In both settings, higher service-level target val-

ues require higher incentive levels, but the effect of competition on the strength of the required

incentives depends on the degree of patient sensitivity to the level of access to care: In the case

of access-sensitive patients (Figure 4(a)) the level of incentives required is lower in a symmetric

duopoly, while in the case of patients with low access sensitivity (Figure 4(b)) the presence of

competition requires stronger incentives.

Figure 5 compares the optimal cost values for the payer in the cases of a monopoly and symmetric

duopoly. For the monopoly case, we use the set of problem parameters that describes the access-

sensitive setting in Figure 4(a), with the exception that ρ is set to 0, and calculate the optimal

payer’s cost value associated with two monopolistic hospitals, ΠM = 2Π(ηopt, T opt), for each set

of parameter values. For the symmetric duopoly case, we calculate the optimal payer’s cost value

associated with a symmetric duopoly, ΠD = Π(ηopt, T opt), for the corresponding set of parameter

values (with ρ now set at 50000). In other words, the ratio of ΠD/ΠM represents the reduction in
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Figure 5 : The ratio of optimal payer cost values for a monopoly and symmetric duopoly as a function of the highest

allowed waiting time target value Th (r= 200, b= 0.9998, α= 10000, ρ= 50000).

the payer’s cost introduced by competition between two identical hospitals, with the strength of

competition described by ρ= 50000. Figure 5 plots the ratio of ΠD/ΠM as a function of the highest

allowed waiting time target value Th for different levels of patient access sensitivity parameter

α. As Figure 5 indicates, the relative cost savings that the payer realizes due to the presence of

competition are lower for more access-sensitive patients and further diminish as the waiting time

target becomes weaker.

5. Discussion

The US healthcare system is experimenting with a growing number of performance-based incen-

tive programs, which are being tested on providers competing for patients in an environment of

increasing transparency about care quality. This combination of performance incentives and com-

petition is likely to remain a dominant factor shaping healthcare delivery as payers expand the use

of performance targets and, at the same time, patients, faced with increasing insurance deductibles

and the increasing availability of data on provider performance, become increasingly discerning

consumers of healthcare services. In our work, we examine how incentives set by a payer focused on

achieving adequate patient access to care interact with the competitiveness of healthcare delivery

settings.

Our analysis is based on a simple approach that models patient service dynamics at each com-

peting provider facility, as in an M/M/1 queue. Patient demand for care delivered by a particular

provider increases with the level of access to care the provider ensures and decreases with the level

of access to care at competing facilities. It is intuitive to expect that competitive and incentive
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pressures work hand in hand to improve patient access to care. Our analysis demonstrates, how-

ever, that there may be settings where this intuition does not hold. In our analysis, we look at

two approaches to applying performance-based incentives to competing providers. Under the first,

“soft” approach, providers are encouraged but not required to reach an access-to-care target. One

example of such an approach is the contract based on waiting time targets used by the NHS in the

UK (Department of Health 2008). Under the second, “strict” approach, the access-to-care target

must be reached by all providers and the payer selects performance incentives to minimize the cost

of achieving this target.

Using a symmetric duopoly as an example of a competitive setting, we show that under the

“soft” approach, incentives and competition do indeed enhance the effect of the other in improving

patient service levels when a moderate service-level target is used in an environment where patients

are sensitive to the level of access to care. However, under the same approach, when an aggressive

service-level target is applied in an environment where patients’ care provider choices are not

strongly affected by how long they must wait before accessing care, both incentives and competitive

pressure may push down patient service levels. In “mixed” settings, where moderate incentives

are applied to providers serving access-insensitive patients or aggressive incentives are used for

providers facing access-sensitive patients, competition and incentives may move service levels in

opposite directions. In the former case, in particular, the potential gain in patient service levels

that incentives achieve when applied to a monopolistic provider are diminished and even reversed

if used in a competitive setting.

Under the “strict” approach, all providers must reach the same access-to-care target irrespective

of the degree of competition. Here, competition affects the strength of incentives and the spending

required to achieve the desired performance outcomes. In particular, in the case of access-sensitive

patients, competition reduces the level of incentives required, while in the case of patients with low

access sensitivity, competition leads to the need for stronger incentives to achieve the same level

of patient access to care. At the same time, competition benefits the payer by reducing the cost of

achieving the desired level of access for either type of patient; however, the cost reduction is more

pronounced in patients with low access sensitivity.

While our quantitative results rely on specific models of the demand and supply processes in

healthcare settings, our qualitative conclusions, which provide detailed analysis of competitive

factors in designing and implementing incentive-based programs for healthcare service providers,

are based on fairly general assumptions that are likely to be broadly applicable. In particular,

since many incentive-based programs are more likely to employ a “soft” approach to provider

compensation than strict target enforcement, the careful matching of performance targets with
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patient population type could be an important factor in generating improvements in patient access

to care.
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Appendix: Proofs
Proof of Proposition 1

In the proof below, we omit the dependence of fee and profit functions on T and ξ to simplify the

notation. As follows from Theorem 1 and Theorem 5, respectively, in Cachon and Netessine (2004),

a Nash equilibrium exists if π
(n)
i (θ) is concave in θi for any hospital i, and such an equilibrium is

unique if the Hessian matrix of π
(n)
i (θ) is diagonally strictly dominant. Thus, the sufficient condition

for the existence and uniqueness of the Nash equilibrium is

∂2π
(n)
i (θ)

∂θ2
i

+
∑
j 6=i

∣∣∣∣∣∂2π
(n)
i (θ)

∂θi∂θj

∣∣∣∣∣< 0,∀i, j 6= i, θ ∈Θ. (A1)

We proceed to derive the conditions that ensure that (A1) holds. For the expression on the

left-hand side of (A1), we get

∂2π
(n)
i (θ)

∂θ2
i

+
∑
j 6=i

∣∣∣∣∣∂2π
(n)
i (θ)

∂θi∂θj
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∂2λ

(n)
i (θ)

∂θ2
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[Ri(θi)−C ′i(λ
(n)
i (θ) + θi)]−C

′′

i (λ
(n)
i (θ) + θi)
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i (θ)

∂θi
+ 1
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where the second inequality follows from the concavity of Ri, the third, from Assumption 4, the

fourth, from Assumption 4, which implies 1 +
∑

k

∂λ
(n)
i (θ)

∂θk
≥ 1, and the last, from (12), (13), (18)

and (31). The right-hand side of (A2) is negative if δii ≥
∑

j 6=i δij and di > 3R̄′i.

On the other hand, if δii <
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j 6=i δij and di > 3R̄′i, we have[
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δij
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Note that [
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[R̄i− ci]− γii[di− 3R̄′i]< 0 (A4)

if and only if
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[R̄i− ci], (A5)

or
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]
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. (A6)

Note that this condition is a stronger version of di− 3R̄′i > 0. (A6) is equivalent to

3R̄′i < di−

[
−δii +

∑
j 6=i δij

]
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, (A7)

or
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. (A8)



Jiang, Pang and Savin: Performance Incentives and Competition in Healthcare Markets
Article submitted to ; manuscript no. (Please, provide the mansucript number!) 3

Using (−δii+
∑

j 6=i δij)
+ = max(−δii+

∑
j 6=i δij,0), we can combine the results for −δii+

∑
j 6=i δij ≤ 0

and −δii +
∑

j 6=i δij > 0 as

R̄′i <
di
3
−

[
−δii +

∑
j 6=i δij

]+

[R̄i− ci]

3γii
. (A9)

�

Proof of Proposition 2

First, note that (38)–(40) ensure the existence and uniqueness of the symmetric Nash equilibrium

in settings both with and without performance-based incentives. Because we analyze a symmetric

setting, in the following we drop the index i for the functions associated with a particular hospital.

We also omit the dependence on T and ξ. To facilitate the analysis, define Ψ
(n)
i (t) as the first-order

derivative of π
(n)
i :

Ψ
(n)
i (t) =

∂λ(n)(t, ..., t)

∂θi

[
R(t)−C ′(λ(n)(t, ..., t) + t)

]
−C ′(λ(n)(t, ..., t) + t) +λ(n)(t, ..., t)R′(t).(A10)

The concavity of the objective function and symmetry imply that if the equilibrium service level

is an interior point of the interval
[
0, θ̄
]
, it must satisfy the first-order condition:

Ψ
(n)
i (t) = 0. (A11)

If Ψ
(n)
i (θ(n))< 0, then the concavity of π

(n)
i in θi implies that θ(n) = 0; and if Ψ

(n)
i (θ(n))> 0, then

the concavity of π
(n)
i in θi implies that θ(n) = θ̄.

Next, we show that Ψ
(n)
i (t) is a strictly decreasing function of t.

dΨ
(n)
i (t)

dt
=

[
∂2λ(n)(t, ..., t)

∂θ2
i

+
∑
j 6=i

∂2λ(n)(t, ..., t)

∂θi∂θj

]
[R(t)−C ′(λ(n)(t, ..., t) + t)]

−C
′′
(λ(n)(t, ..., t) + t)

[
∂λ(n)(t, ..., t)

∂θi
+ 1

][
∂λ(n)(t, ..., t)

∂θi
+
∑
j 6=i

∂λ(n)(t, ..., t)

∂θj
+ 1

]

+ λ(n)(t, ..., t)R
′′
(t) +

[
2
∂λ(n)(t, ..., t)

∂θi
+
∑
j 6=i

∂λ(n)(t, ..., t)

∂θj

]
R′(t)

≤ −(δ+ (n− 1)∆̄) [R− c̄]− d [γ+ 1] + (2γ̄− (n− 1)Γ̄)R̄′, (A12)

where the inequality is due to Assumption 4 and the fact that ∂2λ(n)(t,...,t)

∂θ2i
≤−δ, ∂2λ(n)(t,...,t)

∂θi∂θj
≤−∆̄,

R(t)−C ′(λ(n)(t, ..., t) + t)≥R− c̄ > 0, C
′′
(λ(n)(t, ..., t) + t)≥ d, γ ≤ ∂λ(n)(t,...,t)

∂θi
≤ γ̄, R is concave in

t, and −Γ≤ ∂λ(n)(t,...,t)

∂θj
≤−Γ̄. The last expression in (A12) is strictly smaller than zero if and only

if

R̄′ <
(δ+ (n− 1)∆̄) [R− c̄] + d [γ+ 1]

2γ̄− (n− 1)Γ̄
.
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The strict monotonicity of Ψ(n)(t) implies that if Ψ(n)(0)< 0, then θ(n) = 0, and otherwise, θ(n) can

be chosen as the greatest value of t in [0, θ̄] such that Ψ(n)(t)≥ 0.

We now explore the effect of introducing performance-based incentives. The first derivative of

the profit function in the absence of incentives is

Ψ̃
(n)
i (t) =

∂λ(n)(t, ..., t)

∂θi

[
Rb−C ′(λ(n)(t, ..., t) + t)

]
−C ′(λ(n)(t, ..., t) + t). (A13)

Similarly to the analysis for Ψ
(n)
i , we can show that Ψ̃

(n)
i (t) is also strictly decreasing in t.

The strict monotonicity of Ψ
(n)
i and Ψ̃

(n)
i implies that θ(n) ≥ θ(n)

b if Ψ
(n)
i

(
θ

(n)
b

)
≥ Ψ̃

(n)
i

(
θ

(n)
b

)
and

θ(n) ≤ θ(n)
b otherwise.

Note that

Ψ
(n)
i

(
θ

(n)
b

)
− Ψ̃

(n)
i

(
θ

(n)
b

)
=
∂λ(n)

(
θ

(n)
b , ..., θ

(n)
b

)
∂θi

[
R
(
θ

(n)
b

)
−Rb

]
+λ(n)

(
θ

(n)
b , ..., θ

(n)
b

)
R′
(
θ

(n)
b

)
, (A14)

which is nonnegative if

R′(θ
(n)
b )≥

∂λ(n)(θ
(n)
b

,...,θ
(n)
b

)

∂θi

λ(n)(θ
(n)
b , ..., θ

(n)
b )

[
Rb−R

(
θ

(n)
b

)]
(A15)

and nonpositive otherwise, which leads to the desired results. �

Proof of Proposition 3

Assumption η ≤ η?(T ) ensures the existence and uniqueness of the symmetric Nash equilibrium.

Similarly to the Proof of Proposition 2, we drop the index i for the hospital demand and cost

functions. The concavity of the objective function and symmetry imply that if the equilibrium

service rate is an interior point of the interval
[
0, θ̄
]
, it must satisfy the first-order condition:

∂λ(n)(t, ..., t)

∂θi

[
r−C ′(λ(n)(t, ..., t) + t)

]
−C ′(λ(n)(t, ..., t)+t)+

[
λ(n)(t, ..., t)T − ∂λ

(n)(t, ..., t)

∂θi

]
ηre−tT = 0.

(A16)

Define Ψ
(n)
i (t|η) as the first-order derivative of π

(n)
i :

Ψ
(n)
i (t|η) =

∂λ(n)(t, ..., t)

∂θi

[
r−C ′(λ(n)(t, ..., t) + t)

]
−C ′(λ(n)(t, ..., t) + t)

+

[
λ(n)(t, ..., t)T − ∂λ

(n)(t, ..., t)

∂θi

]
ηre−tT . (A17)

Next, we show that Ψ
(n)
i (t|η) is a strictly decreasing function of t.

dΨ
(n)
i (t|η)

dt
=

[
∂2λ(n)(t, ..., t)

∂θ2
i

+
∑
j 6=i

∂2λ(n)(t, ..., t)

∂θi∂θj

]
[r− ηre−tT −C ′(λ(n)(t, ..., t) + t)]

−C
′′
(λ(n)(t, ..., t) + t)

[
∂λ(n)(t, ..., t)

∂θi
+ 1

][
∂λ(n)(t, ..., t)

∂θi
+
∑
j 6=i

∂λ(n)(t, ..., t)

∂θj
+ 1

]
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−λ(n)(t, ..., t)T 2ηre−tT +

[
2
∂λ(n)(t, ..., t)

∂θi
+
∑
j 6=i

∂λ(n)(t, ..., t)

∂θj

]
Tηre−tT

≤ −(δ+ (n− 1)∆̄) [r− ηr− c̄]− d [γ+ 1] + (2γ̄− (n− 1)Γ̄)Tηr

=
[
(2γ̄− (n− 1)Γ̄)T + (δ+ (n− 1)∆̄)

]
ηr− (δ+ (n− 1)∆̄)[r− c̄]− d [γ+ 1] , (A18)

where the first inequality is due to Assumption 4 and the fact that ∂2λ(n)(t,...,t)

∂θ2i
≤−δ, ∂2λ(n)(t,...,t)

∂θi∂θj
≤

−∆̄, r− ηre−tT −C ′(λ(n)(t, ..., t) + t)≥ r− ηr− c̄ > 0, C
′′
(λ(n)(t, ..., t) + t)≥ d, γ ≤ ∂λ(n)(t,...,t)

∂θi
≤ γ̄,

and −Γ≤ ∂λ(n)(t,...,t)

∂θj
≤−Γ̄. The last expression in (A18) is strictly smaller than zero if and only if

η <
(δ+ (n− 1)∆̄)

[
1− c̄

r

]
+ d

r
[γ+ 1]

(2γ̄− (n− 1)Γ̄)T + (δ+ (n− 1)∆̄)
. (A19)

The strict monotonicity of Ψ(n)(·|η) implies that θ(n)(η)> 0 if and only if Ψ(n)(0|η)> 0 and that

θ(n)(η)< θ̄ if and only if Ψ(n)
(
θ̄|η
)
< 0.

We now derive sufficient conditions for the monotonicity of θ(n)(η) with respect to η. As follows

from (41) and (42), θ(n)(η)≥ θ(n)(0) = θ
(n)
b if T ≥ T ? and θ(n)(η)≤ θ(n)(0) = θ

(n)
b otherwise.

Note that λ(n)(t, ..., t)T − ∂λ(n)(t,...,t)

∂θi
is increasing in t. Then, it follows from Assumption 3 and

Assumption 4 that for T ≥ T ?,

λ(n)(θ(n)(η), ..., θ(n)(η))T − ∂λ
(n)(θ(n)(η), ..., θ(n)(η))

∂θi

≥ λ(n)(θ(n)(0), ..., θ(n)(0))T − ∂λ
(n)(θ(n)(0), ..., θ(n)(0))

∂θi
, (A20)

while for T < T ?, we have

λ(n)(θ(n)(η), ..., θ(n)(η))T − ∂λ
(n)(θ(n)(η), ..., θ(n)(η))

∂θi

< λ(n)(θ(n)(0), ..., θ(n)(0))T − ∂λ
(n)(θ(n)(0), ..., θ(n)(0))

∂θi
. (A21)

For any η > η′, we have

Ψ
(n)
i (θ(n)(η)|η)−Ψ

(n)
i (θ(n)(η)|η′)

=

[
λ(n)(θ(n)(η), ..., θ(n)(η))T − ∂λ

(n)(θ(n)(η), ..., θ(n)(η))

∂θi

]
(η− η′)re−θ

(n)(η)T . (A22)

If T ≥ T ∗, then the fact that (A20) holds shows that

Ψ
(n)
i (θ(n)(η)|η)−Ψ

(n)
i (θ(n)(η)|η′)

=

[
λ(n)(θ(n)(η), ..., θ(n)(η))T − ∂λ

(n)(θ(n)(η), ..., θ(n)(η))

∂θi

]
(η− η′)re−θ

(n)(η)T

≥
[
λ(n)(θ(n)(0), ..., θ(n)(0))T − ∂λ

(n)(θ(n)(0), ..., θ(n)(0))

∂θi

]
(η− η′)re−θ

(n)(η)T

= λ(n)(θ(n)(0), ..., θ(n)(0))(T −T ∗)(η− η′)re−θ
(n)(η)T ≥ 0. (A23)
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If T < T ∗, then the fact that inequality (A21) holds implies that

Ψ
(n)
i (θ(n)(η)|η)−Ψ

(n)
i (θ(n)(η)|η′)

=

[
λ(n)(θ(n)(η), ..., θ(n)(η))T − ∂λ

(n)(θ(n)(η), ..., θ(n)(η))

∂θi

]
(η− η′)re−θ

(n)(η)T

≤
[
λ(n)(θ(n)(0), ..., θ(n)(0))T − ∂λ

(n)(θ(n)(0), ..., θ(n)(0))

∂θi

]
(η− η′)re−θ

(n)(η)T

= λ(n)(θ(n)(0), ..., θ(n)(0))(T −T ∗)(η− η′)re−θ
(n)(η)T ≤ 0. (A24)

Thus, we have proved that

Ψ
(n)
i (θ(n)(η)|η)−Ψ

(n)
i (θ(n)(η)|η′) (A25)

is greater than or equal to zero if T ≥ T ? and less than or equal to zero otherwise. The monotonicity

of Ψ
(n)
i (·|η) implies that θ(n)(η)≥ θ(n)(η′) if T ≥ T ?, and θ(n)(η)≤ θ(n)(η′) otherwise. To see this,

when T ≥ T ?, we consider two cases. If θ(n)(η) < θ̄, the monotonicity of Ψ
(n)
i (·|η) implies that

Ψ
(n)
i (θ(n)(η)|η)≤ 0 and then Ψ

(n)
i (θ(n)(η)|η′)≤ 0. The uniqueness of the solution and monotonicity

of Ψ
(n)
i (·|η′) immediately imply that θ(n)(η′)≤ θ(n)(η). On the other hand, if θ(n)(η) = θ̄, it is trivial

that θ(n)(η′)≤ θ(n)(η). Following a similar logic, when T < T ?, we know that θ(n)(η′)≥ θ(n)(η). The

desired result holds. �

Proof of Proposition 4

First, we know that under (31) and (32) there exists a unique Nash equilibrium. In the proof below

we omit the contract parameter designations (T,ξ) for notational simplicity.

a) Taking the cross derivative for π
(n)
i (θ) with respect to θi and θj, i, j = 1,2, j 6= i, yields

∂2π
(n)
i (θ)

∂θi∂θj
=
∂2λ

(n)
i (θ)

∂θi∂θj
[Ri(θi)−C ′i(µi)] +

∂λ
(n)
i (θ)

∂θj
R′i(θi)−C

′′

i (µi)
∂λ

(n)
i (θ)

∂θj

[
∂λ

(n)
i (θ)

∂θi
+ 1

]

=
∂2λ

(n)
i (θ)

∂θi∂θj
[Ri(θi)−C ′i(µi)]−

∂λ
(n)
i (θ)

∂θj

[
C
′′

i (µi)

(
∂λ

(n)
i (θ)

∂θi
+ 1

)
−R′i(θi)

]
.

If Ci is linear (i.e. C
′′
i (µi) = 0, i= 1,2), then

∂2π
(n)
i

∂θi∂θj
=
∂2λ

(n)
i (θ)

∂θi∂θj
[Ri(θi)−C ′i(µi)] +

∂λ
(n)
i (θ)

∂θj
R′i(θi)≤ 0,

where the inequality follows from Assumptions 2 and 3 and also from (31). In this case, π
(n)
i

is submodular in θ, which implies that the optimal-response service level of hospital i, θi(θj) is

decreasing in θj (Topkis 1998, Theorem 2.8.1). Hence, when hospital j exits the market, which is

equivalent to reducing its service level to zero, the monotonicity of the optimal-response service

level of hospital i implies that the θ
(2)
i ≤ θ

(1)
i .
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b) Suppose now that (48) is satisfied, so that di > 0 for i= 1,2 and the cost functions for both

hospitals are strictly convex. Then,

∂2π
(n)
i (θ)

∂θi∂θj
≥ −δij

[
R̄i− ci

]
− ∂λ

(n)
i (θ)

∂θj

[
C
′′

i (µi)

(
∂λ

(n)
i (θ)

∂θi
+ 1

)
−R′i(θi)

]

≥ −δij
[
R̄i− ci

]
− ∂λ

(n)
i (θ)

∂θj

[
di(γii + 1)− R̄′i

]
≥ −δij

[
R̄i− ci

]
+ γ̄ij

[
di(γii + 1)− R̄′i

]
≥ 0, (A26)

where the first inequality follows from (13) and (16), the second, from Assumption 2, (18), and

(8), the third, from (11), and the last, from (48) and (49). Thus, π
(n)
i (θ) is supermodular in θ,

which implies that the optimal-response service level of hospital i is increasing in θj (Topkis 1998,

Theorem 2.8.1). Hence, when hospital j exits the market, which is equivalent to reducing its service

level to zero, the monotonicity of the optimal-response service level of hospital i implies that the

θ
(2)
i ≥ θ

(1)
i . �

Proof of Proposition 5

a) The condition η < η? (T ) ensures the existence and uniqueness of a symmetric Nash equilibrium.

Suppose that the cost function for any hospital is linear, i.e. C(µi) = cµi, where µi = λ
(n)
i (θ) + θi

is the service rate of i-th hospital. For convenience, define

Ψ
(n)
i (t) =

∂πi(t, ..., t)

∂θi
=
∂λ

(n)
i (t, ..., t)

∂θi
[r− c− ηre−tT ]− c+λ

(n)
i (t, ..., t)Tηre−tT , (A27)

where we have dropped the subscript i for the revenue and cost parameters. Taking the derivative

of (A27) with respect to t, we have

dΨ
(n)
i (t)

dt
=

[
∂2λ

(n)
i (t, ..., t)

∂θ2
i

+
∑
j 6=i

∂2λ
(n)
i (t, ..., t)

∂θi∂θj

]
[r− ηre−tT − c]

−

[
λ

(n)
i (t, ..., t)T − 2

∂λ
(n)
i (t, ..., t)

∂θi
−
∑
j 6=i

∂λ
(n)
i (t, ..., t)

∂θj

]
Tηre−tT (A28)

<

[
∂2λ

(n)
i (t, ..., t)

∂θ2
i

+
∑
j 6=i

∂2λ
(n)
i (t, ..., t)

∂θi∂θj

]
[r− ηre−tT − c]

+

[
2
∂λ

(n)
i (t, ..., t)

∂θi
+
∑
j 6=i

∂λ
(n)
i (t, ..., t)

∂θj

]
Tηr (A29)

≤ −(δ+ ∆̄)[r− ηre−tT − c] + (2γ̄− (n− 1)Γ̄)Tηr (A30)

≤ −(δ+ ∆̄)[r− ηr− c] + (2γ̄− (n− 1)Γ̄)Tηr (A31)

< 0, (A32)

where the first inequality is due to the assumption that
∂λ

(n)
i (t,...,t)

∂θi
≥ 0 and

∂λ
(n)
i (t,...,t)

∂θi
+∑

j 6=i
∂λ

(n)
i (t,...,t)

∂θj
> 0, the second, to the assumption that

∂2λ
(n)
i (t,...,t)

∂θ2i
≤ −δ, ∂2λ

(n)
i (t,...,t)

∂θiθj
≤ −∆̄,
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∂λ
(n)
i (t,...,t)

∂θi
≤ γ̄, and

∂λ
(n)
i (t,...,t)

∂θj
≤−Γ̄, and the last, to the assumption that η < (δ+∆̄)(r−c)

(2γ̄−(n−1)Γ̄)Tr+(δ+∆̄)r
.

The strict monotonicity ensures that the symmetric equilibrium must be the smallest nonnegative

value of θ such that Ψ
(n)
i (θ) ≤ 0. If the Nash equilibrium service level is 0, the result of part a)

obviously holds. Consider a strictly positive symmetric equilibrium, denoted by θ(n) (here and in

the following we drop the dependence on η and T ). Then,

0 = Ψ
(n)
i

(
θ(n)
)

=
∂λ

(n)
i (θ(n), ..., θ(n))

∂θi

[
r− c− ηre−θ

(n)T
]
− c+λ

(n)
i (θ(n), ..., θ(n))Tηre−θ

(n)T .(A33)

Without loss of generality, suppose that hospital n exits the market, i.e. θn = 0. Setting θ1 = ...=

θn−1 = θ(n), for any i < n we have

Ψ
(n−1)
i

(
θ(n)
)

= =
∂π

(n−1)
i

(
θ(n), ..., θ(n)

)
∂θi

=
∂π

(n)
i

(
θ(n), ..., θ(n),0

)
∂θi

=
∂λ

(n)
i

(
θ(n), ..., θ(n),0

)
∂θi

[
r− c− ηre−θ

(n)T
]
− c+λ

(n)
i

(
θ(n), ..., θ(n),0

)
Tηre−θ

(n)T

≥
∂λ

(n)
i

(
θ(n), ..., θ(n), θ(n)

)
∂θi

[
r− c− ηre−θ

(n)T
]
− c+λ

(n)
i

(
θ(n), ..., θ(n), θ(n)

)
Tηre−θ

(n)T

= Ψ
(n)
i

(
θ(n)
)

= 0, (A34)

where the inequality is due to the submodularity of λ
(n)
i (θ) in (θi, θn) and the fact that λ

(n)
i (θ) is

decreasing in θn.

Since Ψ
(n−1)
i (t) is strictly increasing in t, (A34) implies that the symmetric Nash equilibrium

service level for the oligopoly setting with n − 1 hospitals, θ(n−1,n) (i.e. the value that satisfies

Ψ
(n−1)
i

(
θ(n−1,n)

)
= 0) cannot be less than θ(n).

b) The proof is similar to that in part b) of Proposition 4. Specifically, under (54) the cost

functions for all hospitals are strictly convex. Then,

∂2π
(n)
i (θ)

∂θi∂θj
=
∂2λ

(n)
i (θ)

∂θi∂θj
[ri− ηrie−θiT −C ′i(µi)]−

∂λ
(n)
i (θ)

∂θj

[
C
′′
i (µi)

(
∂λ

(n)
i (θ)

∂θi
+ 1

)
− ηrTe−θiT

]

≥ −δij [ri− ci]−
∂λ

(n)
i (θ)

∂θj

[
C
′′

i (µi)

(
∂λ

(n)
i (θ)

∂θi
+ 1

)
− ηriTe−θiT

]

≥ −δij [ri− ci]−
∂λ

(n)
i (θ)

∂θj
[di(γii + 1)− ηriT ]

≥ −δij [ri− ci] + γ̄ij [di(γii + 1)− ηriT ]≥ 0, (A35)

where the first inequality follows from (13) and (16), the second, from Assumption 2, (18), and

(8), the third, from (11), and the last, from (54) and (55). Thus, π
(n)
i (θ) is supermodular in θ. As

Theorem 2.8.1 in Topkis (1998) implies, the optimal-response service level of hospital i is increasing

in the service level of hospital j, θj. Thus, when hospital j exits the market, the monotonicity of

the optimal-response service level of hospital i implies that the θ
(n)
i (η,T )≥ θ(n−1,j)

i (η,T ). �
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Proof of Lemma 1

When the service level of the competitor of hospital i= 1,2 is set at θj, j 6= i, the profit function

for hospital i is given by

π
(2)
i (θ) = ri

(
1 + η

(
θi−

1

T

))
(αiθi− ρijθiθj)− bi ((αi + 1)θi− ρijθiθj)2

= ri

(
1 + η

(
θi−

1

T

))
(αi− ρijθj)θi− bi ((αi + 1)− ρijθj)2

θ2
i

= ri

(
1− η

T

)
(αi− ρijθj)θi +

(
riη (αi− ρijθj)− bi ((αi + 1)− ρijθj)2

)
θ2
i . (A36)

Thus,

∂π
(2)
i

∂θi
= ri

(
1− η

T

)
(αi− ρijθj) + 2

(
ηri (αi− ρijθj)− bi ((αi + 1)− ρijθj)2

)
θi. (A37)

Note that θs
i(θj) is the solution to

∂π
(2)
i

∂θi
= 0. As (A37) implies, π

(2)
i (θ) is a quasiconcave function of

θi under (63) and (62). Indeed,
∂π

(2)
i

∂θi
is positive at θi = 0. If ηri (αi− ρijθj)− bi ((αi + 1)− ρijθj)2 ≥

0, π
(2)
i is monotone increasing in θi and is quasiconcave. If, on the other hand, ηri (αi− ρijθj)−

bi ((αi + 1)− ρijθj)2
< 0, π

(2)
i is strictly concave in θi. Thus, the optimal response of hospital i is

either θ̄i or θs
i(θj), whichever value is lower. �

Proof of Proposition 6

Note that if (67) holds, then η < T . Since π
(2)
i (θ) is quasiconcave in θi and π

(2)
j (θ) is quasiconcave

in θj, there exists a Nash equilibrium, as follows from Theorem 1 in Cachon and Netessine (2004).

The uniqueness of the Nash equilibrium is guaranteed if the profit functions of the competing

hospitals satisfy a strict “diagonal dominance” condition:∣∣∣∣∂2πi (θi, θj, T, η)

∂θ2
i

∣∣∣∣ > ∣∣∣∣∂2πi (θi, θj, T, η)

∂θi∂θj

∣∣∣∣ , θi ∈ [0, θ̄i] , i, j = 1,2, j 6= i. (A38)

Note that

∂2πi (θi, θj, T, η)

∂θ2
i

= −2bi

((
αi− ρijθj + 1− ηri

2bi

)2

+

(
1− ηri

4bi

)
ηri
bi

)

≤ −2bi

((
αi− ρijθj + 1− ηri

2bi

)2

−
(
ηri
2bi

)2
)

= −2bi (αi− ρijθj + 1)

(
αi− ρijθj + 1− ηri

bi

)
< 0, i, j = 1,2, j 6= i, (A39)

where the last inequality follows from η < bi
ri

(1 +αi) and from θ̄j <
1
ρij

(
αi + 1− ηri

bi

)
(both implied

by (69)).
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The partial cross-derivative of the profit function is given by

∂2πi (θi, θj, T, η)

∂θi∂θj

= ρij

(
−ri

(
1− η

T
+ 2ηθi

)
+ 4biθi (1 +αi− ρijθj)

)
, (A40)

so that we have ∣∣∣∣∂2πi (θi, θj, T, η)

∂θ2
i

∣∣∣∣− ∣∣∣∣∂2πi (θi, θj, T, η)

∂θi∂θj

∣∣∣∣
≥ 2bi

((
αi− ρijθj + 1− ηri

2bi

)2

−
(
ηri
2bi

)2
)

− ρij

∣∣∣−ri (1− η

T
+ 2ηθi

)
+ 4biθi (1 +αi− ρijθj)

∣∣∣ . (A41)

Note that for θi ∈
[
0, θ̄i

]
,∣∣∣−ri (1− η

T
+ 2ηθi

)
+ 4biθi (1 +αi− ρijθj)

∣∣∣
=

∣∣∣∣−ri (1− η

T

)
+ 4biθi

(
1 +αi− ρijθj −

ηri
2bi

)∣∣∣∣
= max

(
ri

(
1− η

T

)
,

∣∣∣∣−ri (1− η

T

)
+ 4biθ̄i

(
1 +αi− ρijθj −

ηri
2bi

)∣∣∣∣) , (A42)

since −ri
(
1− η

T

)
+ 4biθi

(
1 +αi− ρijθj − ηri

2bi

)
is a linear function of θi.

The right-hand side of (A41) is positive if

2bi

((
αi− ρijθj + 1− ηri

2bi

)2

−
(
ηri
2bi

)2
)

− ρij max

(
ri

(
1− η

T

)
,

∣∣∣∣−ri (1− η

T

)
+ 4biθ̄i

(
1 +αi− ρijθj −

ηri
2bi

)∣∣∣∣)> 0. (A43)

For (A43) to hold we need, specifically, that

2bi

((
αi− ρijθj + 1− ηri

2bi

)2

−
(
ηri
2bi

)2
)
− ρijri

(
1− η

T

)
> 0, (A44)

which is ensured if

2bi

((
αi− ρij θ̄j + 1− ηri

2bi

)2

−
(
ηri
2bi

)2
)
− ρijri

(
1− η

T

)
> 0. (A45)

(A45) follows from

η <
b

r
(1 +α) (A46)

and

θ̄j <
1

ρij

1 +αi−
ηri
2bi
−

√(
ηri
2bi

)2

+

(
ρijri
2bi

)(
1− η

T

) , (A47)
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or (68).

In order to ensure that (A43) holds we need that

2bi

((
αi− ρijθj + 1− ηri

2bi

)2

−
(
ηri
2bi

)2
)
>ρij

(
−ri

(
1− η

T

)
+ 4biθ̄i

(
1 +αi− ρijθj −

ηri
2bi

))
(A48)

and

2bi

((
αi− ρijθj + 1− ηri

2bi

)2

−
(
ηri
2bi

)2
)
>ρij

(
ri

(
1− η

T

)
− 4biθ̄i

(
1 +αi− ρijθj −

ηri
2bi

))
. (A49)

Note that (A49) follows from (A44). Focusing on (A48), we can express it as

z2
i − 2ρij θ̄izi +

riρij
2bi

(
1− η

T

)
−
(
ηri
2bi

)2

> 0, (A50)

where zi = αi−ρijθj+1− ηri
2bi

, so that αi−ρij θ̄j+1− ηri
2bi
≤ zi ≤ αi+1− ηri

2bi
. Evaluating the derivative

of the left-hand side of (A50) with respect to zi at the lower-bound value αi− ρij θ̄j + 1− ηri
2bi

, we

get

2

(
αi− ρij θ̄j − ρij θ̄i + 1− ηri

2bi

)
, (A51)

which is positive under (69). Since the derivative of the left-hand side of (A50) at zi = αi−ρij θ̄j +

1− ηri
2bi

is positive, the left-hand side of (A50) is positive on αi− ρij θ̄j + 1− ηri
2bi
≤ zi ≤ αi + 1− ηri

2bi

if αi − ρij θ̄j + 1− ηri
2bi

is greater than the larger root of z2
i − 2ρij θ̄izi +

riρij
2bi

(
1− η

T

)
−
(
ηri
2bi

)2

, if it

exists. This largest root, if it exists, is given by

ρij θ̄i +

√(
ρij θ̄i

)2
+

(
ηri
2bi

)2

− riρij
2bi

(
1− η

T

)
. (A52)

Note that (69) implies

αi− ρij θ̄j − ρij θ̄i + 1− ηri
2bi

>
ηri
2bi

+ ρij θ̄i >

√(
ηri
2bi

)2

+
(
ρij θ̄i

)2
. (A53)

Thus, under (69),

αi− ρij θ̄j + 1− ηri
2bi

>ρij θ̄i +

√(
ηri
2bi

)2

+
(
ρij θ̄i

)2
>ρij θ̄i +

√(
ρij θ̄i

)2
+

(
ηri
2bi

)2

− riρij
2bi

(
1− η

T

)
,

(A54)

and (A48) holds. �

Proof of Proposition 7

As Proposition 6 states, under (62) and (66)-(68) there exists a unique Nash equilibrium. From

the symmetric version of (64) we have the following expression for a symmetric Nash equilibrium

service level in the absence of any constraints on the service level values:

θ̂=
(α− ρθ̂)(1− η/T )

(
r
b

)
2

[(
1 +α− ρθ̂

)2

− (α− ρθ̂)η
(
r
b

)] . (A55)
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Denoting x̂= α− ρθ̂, we can express (A55) as

x̂= α−
x̂
(
ρr
2b

) (
1− η

T

)(
(x̂+ 1)

2− x̂
(
ηr
b

)) , (A56)

or

(x̂)
3

+
(

2−α− ηr
b

)
(x̂)

2
+
(

1− 2α+
ρr

2b
+
ηr

b

(
α− ρ

2T

))
x̂−α= 0. (A57)

We can express (A57) as

(x̂)
3

+ p (x̂)
2

+ qx̂−α= 0, (A58)

where

p = 2−α− ηr
b
, (A59)

q = 1− 2α+
ρr

2b
+
ηr

b

(
α− ρ

2T

)
. (A60)

The left-hand side of (A58) can be expressed as(
x̂+

p

3

)3

− 3x̂
(p

3

)2

−
(p

3

)3

+ qx̂−α

=
(
x̂+

p

3

)3

+ x̂

(
q− p

2

3

)
−α−

(p
3

)3

=
(
x̂+

p

3

)3

+
(
x̂+

p

3

)(
q− p

2

3

)
− p

3

(
q− p

2

3

)
−α−

(p
3

)3

=
(
x̂+

p

3

)3

+
(
x̂+

p

3

)(
q− p

2

3

)
−α− pq

3
+

2p3

27

= t3 +ut+ v, (A61)

with t= x̂+ p
3

and

u = q− p
2

3
= 1− 2α+

ρr

2b
+
ηr

b

(
α− ρ

2T

)
− 1

3

(
2−α− ηr

b

)2

= 1− 2α+
ρr

2b
− 1

3
(2−α)

2
+
ηr

b

(
α− ρ

2T
+

2

3
(2−α)

)
− 1

3

(ηr
b

)2

=
ρr

2b
− (α+ 1)

2

3
+
ηr

b

(
α− ρ

2T
+

2

3
(2−α)

)
− 1

3

(ηr
b

)2

=
ρr

2b
− 3

(
α+ 1

3

)2

+
ηr

b

(
α+ 1

3
+ 1− ρ

2T

)
− 1

3

(ηr
b

)2

(A62)

and

v = −α− pq
3

+
2p3

27
=−α− 1

3

(
2−α− ηr

b

)(
1− 2α+

ρr

2b
+
ηr

b

(
α− ρ

2T

))
+

2

27

(
2−α− ηr

b

)3

= −α− 1

3
(2−α)

(
1− 2α+

ρr

2b

)
+

2

27
(2−α)

3

+
(ηr
b

)(1

3

(
1− 2α+

ρr

2b

)
− 1

3
(2−α)

(
α− ρ

2T

)
− 2

9
(2−α)

2

)
+
(ηr
b

)2
(

1

3

(
α− ρ

2T

)
+

2

9
(2−α)

)
− 2

27

(ηr
b

)3

. (A63)
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Note that

−α− 1

3
(2−α)

(
1− 2α+

ρr

2b

)
+

2

27
(2−α)

3

= − (α+ 1) + 1− 1

3
(3− (1 +α))

(
3− 2(1 +α) +

ρr

2b

)
+

2

27
(3− (1 +α))

3

= 1− 3− ρr
2b

+ 2 + (α+ 1)

(
−1 +

1

3

(
3 +

ρr

2b

)
+ 2− 2

)
+ (α+ 1)2

(
−2

3
+

2

3

)
− 2

27
(1 +α)

3

=
ρr

2b

(
α+ 1

3
− 1

)
− 2

(
α+ 1

3

)3

(A64)

and

1

3

(
1− 2α+

ρr

2b

)
− 1

3
(2−α)

(
α− ρ

2T

)
− 2

9
(2−α)

2

=
1

3

(
3− 2(1 +α) +

ρr

2b

)
− 1

3
(3− (1 +α))

(
(α+ 1)− 1− ρ

2T

)
− 2

9
(3− (1 +α))

2

= 1 +
ρr

6b
+ 1 +

ρ

2T
− 2 + (α+ 1)

(
−2

3
− 1− 1

3

(
1 +

ρ

2T

)
+

4

3

)
+

1

9
(α+ 1)2

=
ρr

6b
+

ρ

2T
+ (α+ 1)

(
−2

3
− ρ

6T

)
− 2

9
(α+ 1)2

=
ρr

6b
+

ρ

2T
−
(
α+ 1

3

)(
2 +

ρ

2T

)
+

(
α+ 1

3

)2

. (A65)

Finally,

1

3

(
α− ρ

2T

)
+

2

9
(2−α) =

1

3

(
α+ 1− 1− ρ

2T

)
+

2

9
(3− (1 +α))

=
1

3

(
1− ρ

2T

)
+

1

9
(α+ 1) , (A66)

so that (A63) becomes

v =
ρr

2b

(
α+ 1

3
− 1

)
− 2

(
α+ 1

3

)3

+
(ηr
b

)(ρr
6b

+
ρ

2T
−
(
α+ 1

3

)(
2 +

ρ

2T

)
+

(
α+ 1

3

)2
)

+
(ηr
b

)2
(

1

3

(
1− ρ

2T

)
+

1

9
(α+ 1)

)
− 2

27

(ηr
b

)3

. (A67)

The only real root of the equation

t3 +ut+ v= 0 (A68)

is

t̂=

(√(u
3

)3

+
(v

2

)2

− v
2

) 1
3

−

(√(u
3

)3

+
(v

2

)2

+
v

2

) 1
3

. (A69)
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Defining

û =
u

3
=
ρr

6b
−
(
α+ 1

3

)2

+
(ηr

3b

)(α+ 1

3
+ 1− ρ

2T

)
−
(ηr

3b

)2

, (A70)

v̂ =
v

2
=
ρr

4b

(
α+ 1

3
− 1

)
−
(
α+ 1

3

)3

+
3

2

(ηr
3b

)(ρr
6b

+
ρ

2T
−
(
α+ 1

3

)(
2 +

ρ

2T

)
+

(
α+ 1

3

)2
)

+
3

2

(ηr
3b

)2
((

1− ρ

2T

)
+

(
α+ 1

3

))
−
(ηr

3b

)3

, (A71)

we get

t̂=

(√
(û)

3
+ (v̂)

2− v̂
) 1

3

−
(√

(û)
3

+ (v̂)
2

+ v̂

) 1
3

. (A72)

Note that the solution to (A55) is connected to t̂ as follows:

θ̂=
1

ρ

(
α− t̂+

p

3

)
. (A73)

Since

α+
p

3
= α+

1

3

(
2−α− ηr

b

)
=

2

3
(α+ 1)− 1

3

(ηr
b

)
, (A74)

we get (90). Next, we prove that when θ̂≥ θ̄, (θ̄, θ̄) is the unique Nash equilibrium.

As follows from (A37), the symmetric equilibrium (θ, θ) satisfies the following equation

∂π
(2)
i

∂θi
(θ, θ) = r

(
1− η

T

)
(α− ρθ) + 2

(
ηr (α− ρθ)− b ((α+ 1)− ρθ)2

)
θ= 0, i= 1,2. (A75)

Note that limθ→∞
∂π

(2)
i

∂θi
(θ, θ) =−∞. Recall that for a given η, (A75) has a unique solution, θ̂. Thus,

∂π
(2)
i

∂θi
(θ, θ) “crosses” the zero value only once. Moreover, when θ < θ̂,

∂π
(2)
i

∂θi
(θ, θ)> 0 and when θ > θ̂,

∂π
(2)
i

∂θi
(θ, θ) < 0. For convenience, let us denote these results, collectively, as the “single-crossing

property.”

Consider the case of θ̂ ≥ θ̄ and suppose that there exist θ1 and θ2 such that (θ1, θ2) is a Nash

equilibrium. Then, it is not possible that θ1 = θ2 unless θ1 = θ2 = θ̂ because (A75) has a unique

solution θ̂. Without loss of generality, we assume that 0< θ1 < θ2 ≤ θ̄ < θ̂. Since (θ1, θ2) is a Nash

equilibrium, we must have

∂π
(2)
i

∂θi
(θ1, θ2) = 0, i= 1,2, (A76)

ηr (α− ρθ2)− b ((α+ 1)− ρθ2)
2
< 0. (A77)

Then, using (A76)–(A77) and the single-crossing property, we get

0 =
∂π

(2)
1

∂θ1

(θ1, θ2)
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= r
(

1− η

T

)
(α− ρθ2) + 2

(
ηr (α− ρθ2)− b ((α+ 1)− ρθ2)

2
)
θ1

> r
(

1− η

T

)
(α− ρθ2) + 2

(
ηr (α− ρθ2)− b ((α+ 1)− ρθ2)

2
)
θ2

=
∂π

(2)
2

∂θ2

(θ2, θ2)>
∂π

(2)
2

∂θ2

(θ̂, θ̂) = 0, (A78)

which is a contradiction. Thus, the only candidate for the Nash equilibrium is (θ̄, θ̄). Indeed, θ̄ is

the best response for hospital i when the service level for hospital j is θ̄ since

∂π
(2)
i

∂θi
(θ̄, θ̄)≥ ∂π

(2)
i

∂θi
(θ̂, θ̂) = 0. (A79)

Therefore, (θ̄, θ̄) is a unique Nash equilibrium. �

Proof of Proposition 8

(a) Note that the Nash equilibrium satisfies the following reformulated best-response equation:

θNE(η) =
(α− ρθNE(η))

(
1− η

T

)
r
b

2
(
− (α− ρθNE(η)) rη

b
+ (α+ 1− ρθNE(η))

2
)

=

(
1− η

T

)
r
b

2

(
− rη

b
+

(
2 + (α− ρθNE(η)) + 1

(α−ρθNE(η))

)) . (A80)

If α− ρθ̄≥ 1, then α≥ 1 and α− ρx+ 1
α−ρx is decreasing in x over [0, θ̄]. This shows that

α+
1

α
>α− ρθNE(η) +

1

α− ρθNE(η)
. (A81)

It follows from (A80) and the fact that θNE(η)∈ [0, θ̄] that

θNE(η) =

(
1− η

T

)
r
b

2

(
− rη

b
+

(
2 + (α− ρθNE(η)) + 1

(α−ρθNE(η))

))
≥

(
1− η

T

)
r
b

2
(
− rη

b
+
(
2 +α+ 1

α

))
= θM(η). (A82)

Therefore, we have shown that θNE(η)≥ θM(η), i.e. competition increases service levels.

(b) If α≤ 1, then α−ρθM(η)≤ 1 and α−ρx+ 1
α−ρx is increasing in x over [0, θ̄]. This shows that

α+
1

α
<α− ρθNE(η) +

1

α− ρθNE(η)
. (A83)

It follows from (A80) and the fact that θNE(η)∈ [0, θ̄] that

θNE(η) =

(
1− η

T

)
r
b

2

(
− rη

b
+

(
2 + (α− ρθNE(η)) + 1

(α−ρθNE(η))

))
≤

(
1− η

T

)
r
b

2
(
− rη

b
+
(
2 +α+ 1

α

))
= θM(η). (A84)
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Therefore, we have shown that θNE(η)≤ θM(η), i.e. competition decreases service levels. �

Lemma A1

Lemma A1. Consider the payer problem in the symmetric duopoly setting. Assume that (62)

and (66)–(69) hold. The payer problem is equivalent to the following optimization problem:

min
T,η

2r
(
αθNE− ρθNEθNE

)(
1 + η

(
θNE− 1

T

))
(A85)

s.t. η≥ ηmin(T )≡ 2b

r

(
(α+ 1)− ρ

T

)2(
α− ρ

T

) −T (A86)

η≤
−r
(
α− ρθ̄

)
+ 2b

(
(α+ 1)− ρθ̄

)2
θ̄

r
(
α− ρθ̄

) (
2θ̄− 1

T

) (A87)

Tl ≤ T ≤ Th, (A88)

0≤ η≤ ηmax(T ). (A89)

Furthermore, constraints (A86) and (A87) are compatible.

The equivalence result in Lemma A1 is significant because in the reformulation simple and

explicit constraints replace implicit and complicated service-level and participation constraints.

We show that the service-level constraint is replaced by (A86) and the participation constraint is

automatically satisfied. Moreover, the inclusion of the redundant constraint (A87) does not alter

the optimal solution for the payer problem but does allow us to develop monotone properties of the

objective function for the payer problem. It is trivial to see that the payer problem in the monopoly

setting can be obtained from the payer problem defined in Lemma A1 by letting ρ= 0 and replacing

θNE with θM. It is important that constraints (A86) and (A87) are compatible. Otherwise, the

feasible region for the equivalent payer problem is empty. On the other hand, constraints (A86)

and (A89) are not always compatible.

Proof of Lemma A1

First, we show that the participation constraint is automatically satisfied. For any given service

level θj for hospital j, the profit function for hospital i is equal to zero at θi = 0. Therefore, the

profit function for hospital i is greater than or equal to zero at the best response. For any η, the

best response may not be greater than the minimum service level 1
T

that the payer intends to

impose. However, we prove that the payer can force hospital i to meet the minimum service level is

equivalent to choosing η that is greater than or equal to a threshold. Therefore, once this threshold

for η is imposed, the participation constraint is automatically satisfied.
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Second, we show that the service level constraint can be replaced by (A86). Since θ̄ ≥ 1
T

, con-

straint (100) is equivalent to θ̂≥ 1
T

. As follows from the single-crossing property, constraint (100)

is equivalent to the following inequality:

0 =
∂π

(2)
i

∂θi
(θ̂, θ̂)

≤ ∂π
(2)
i

∂θi
(

1

T
,

1

T
)

= r
(

1− η

T

)(
α− ρ 1

T

)
+ 2

(
ηr

(
α− ρ 1

T

)
− b
(

(α+ 1)− ρ 1

T

)2
)

1

T

=
ηr

T

(
α− ρ

T

)
+ r
(
α− ρ

T

)
− 2b

(
(α+ 1)− ρ

T

)2 1

T
, (A90)

which is equivalent to (A86).

Third, we show that it does alter optimal solution for the payer problem to include the redundant

constraint (A87). Note that the Nash equilibrium is bounded above by θ̄. If for a given value for

η such that θ̂ ≥ θ̄, then the Nash equilibrium service level for hospitals should be equal to θ̄. On

the other hand, checking the payer’s objective function shows that the payer would incur lower

costs when η takes a new value such that θ̂ = θ̄. That is, optimal solutions for the payer problem

are retained even if we impose the constraint θ̂≤ θ̄. Based on the single-crossing property, θ̂≤ θ̄ is

equivalent to the following condition:

0 =
∂π

(2)
i

∂θi
(θ̂, θ̂)

≥ ∂π
(2)
i

∂θi
(θ̄, θ̄)

= r
(

1− η

T

)(
α− ρθ̄

)
+ 2
(
ηr
(
α− ρθ̄

)
− b
(
(α+ 1)− ρθ̄

)2
)
θ̄

= ηr
(
α− ρθ̄

)(
2θ̄− 1

T

)
+ r
(
α− ρθ̄

)
− 2b

(
(α+ 1)− ρθ̄

)2
θ̄, (A91)

which is equivalent to (A87).

Fourth, in order to avoid an empty feasible region for the above equivalent optimization problem

in Lemma A1, it is necessary to ensure that the right-hand-side of (A86) is less than or equal to

the right-hand side of (A87). Assume T ≥ 1
2θNE(0)

. Proposition 2 shows that θNE(T,η) is monotone

increasing in η. Define η 1
T

as the right-hand side of (A86) and ηθ̄ as the right-hand side of (A87).

Then, compatibility between constraints (A86) and (A87) is equivalent to the following constraints:

η 1
T
≤ η≤ ηθ̄. (A92)

Note that η 1
T

and ηθ̄ are derived from the best response equation
∂π

(2)
i

∂θi
(θ, θ) = 0 by assuming θ= 1

T

and θ = θ̄, respectively. Since the Nash equilibrium is unique and symmetric,
∂π

(2)
i

∂θi
(θ, θ) = 0 has
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a unique root that corresponds to the unique Nash equilibrium. Furthermore, this unique Nash

equilibrium must satisfy θNE(T,η 1
T

) = θ̂= 1
T

when η= η 1
T

because θ= 1
T

is a root of
∂π

(2)
i

∂θi
(θ, θ) = 0,

and this unique Nash equilibrium must satisfy θNE(T,ηθ̄) = θ̂ = θ̄ when η = ηθ̄ because θ = θ̄ is a

root of
∂π

(2)
i

∂θi
(θ, θ) = 0. Suppose η 1

T
> ηθ̄. Then, Proposition 2 shows that θNE(T,η 1

T
)> θNE(T,ηθ̄).

Hence, 1
T
> θ̄, which is a contradiction. Hence, we have η 1

T
≤ ηθ̄ and constraints (A86) and (A87)

are compatible. �

Proof of Proposition 9

(a) Assume T ∈ [Tl, Th]. Then, we have T ≤ Th < 1
2θNE(0)

. Corollary 1 shows that θNE is decreasing

in η. Therefore, for any fixed T , there does not exist any η such that the corresponding unique

Nash equilibrium (θNE, θNE) for the hospital problem satisfies the service-level constraint θNE ≥ 1
T

.

Because Th <
1

2θNE(0)
, there is no feasible solution for the payer problem.

(b) In order to prove the result, we decompose the payer problem into a nested optimization

problem with two layers. In the inner layer, T is fixed and η is the decision variable, and in the outer

layer, T is the only decision variable and η takes the optimal solution of the inner optimization

problem when T is fixed. Once the inner optimization problem is solved, it is straightforward to

solve the outer optimization problem. Hence, we focus on solving the inner optimization problem.

Assume T ∈ [Tl, Th]. Then, we have T ≤ Tl > 1
θNE(0)

. Because of constraints (A86) and (A87),

Lemma A1 shows that the unique Nash equilibrium (θNE, θNE) for the symmetric duopoly satisfies

θNE = θ̂, where θ̂ ∈ [ 1
T
, θ̄]. This fact enables us to include the following redundant constraint

1

T
≤ θi, (A93)

for hospital i in the hospital problem. Recall that θ̂ satisfies the optimal response equation (64),

which shows that θ̂ is differentiable in η and ∂θNE

∂η
is well defined. Let us take the partial derivative

of the objective function for the payer problem with regard to η:

∂Π

∂η
= 2r

(
α
∂θNE

∂η
− 2ρθNE∂θ

NE

∂η

)[
1 + η

(
θNE− 1

T

)]
+2r

(
αθNE− ρθNEθNE

)[
θNE− 1

T
+ η

∂θNE

∂η

]
= 2r

(
α− 2ρθNE

) ∂θNE

∂η

[
1 + η

(
θNE− 1

T

)]
+2r

(
α− ρθNE

)
θNE

[
θNE− 1

T
+ η

∂θNE

∂η

]
. (A94)

We claim that when T ≥ 1
2θNE(0)

, ∂Π
∂η
≥ 0 for the following arguments. First, when (A86) is satisfied,

θNE ≥ 1
T

, and when (A87) is satisfied, θNE ≤ θ̄. Second, α− 2ρθNE ≥ α− 2ρθ̄ holds because of (62).

Third, ∂θ
NE

∂η
≥ 0 because Corollary 1 shows that when T ≥ 1

2θNE(0)
, θNE is increasing in η. Therefore,
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we have proved that for any fixed T , the objective function for the payer problem is increasing in

η when (A86) and (A87) are satisfied. In other words, the optimal solution for the payer problem

is to take the minimum value that satisfies all constraints.

We now show that constraint (A86) is redundant if T > 1
θNE(0)

because the right-hand side of

constraint (A86) is non-positive. First, T > 1
θNE(0)

implies that θNE(0)> 1
T

and θ̂(0)> 1
T

because

θNE(0) = min(θ̂(0), θ̄). Second, the optimal response equation and single-crossing property show

that

r
(
α− ρθ̂(0)

)
− 2b

(
α+ 1− ρθ̂(0)

)2

= 0

r

(
α− ρ 1

T

)
− 2b

(
α+ 1− ρ 1

T

)2

> 0, (A95)

where the second inequality is equivalent to the following

0 >
2b

r

(
α+ 1− ρ 1

T

)2

α+ 1− ρ 1
T

−T. (A96)

Therefore, the optimal solution for the payer problem is η = 0 and the optimal solution for the

hospital problem is (θNE(0), θNE(0)).

Because for any T ∈ [Tl, Th], the optimal solution for the inner optimization problem is η= 0 and

the optimal Nash equilibrium is θNE(0). Thus, the objective function for the outer optimization

problem does not depend on the decision variable T . Therefore, we conclude that the optimal

solution for the payer problem is that η= 0 and T can take any value in [Tl, Th].

(c) Similarly to the proof for (b), we decompose the payer problem into the same nested opti-

mization problem and focus on the inner optimization problem, for which T is a fixed parameter

and η is the decision variable.

Assume 1
2θNE(0)

≤ T ≤ 1
θNE(0)

. If ηmin(T )> ηmax(T ), then there is no feasible solution for the payer

problem. Thus, we assume that ηmin(T )≤ ηmax(T ), which implies that there is a feasible solution

for the payer problem. First, T ≤ 1
θNE(0)

implies that θNE(0) ≤ 1
T

and θ̂(0) ≤ 1
T

because θNE(0) =

min(θ̂(0), θ̄) and 1
T
≤ θ̄. Second, the optimal response equation and single-crossing property show

that

r
(
α− ρθ̂(0)

)
− 2b

(
α+ 1− ρθ̂(0)

)2

= 0

r

(
α− ρ 1

T

)
− 2b

(
α+ 1− ρ 1

T

)2

≤ 0, (A97)

where the second inequality is equivalent to the following

0 ≤ 2b

r

(
α+ 1− ρ 1

T

)2

α+ 1− ρ 1
T

−T. (A98)
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Thus the right-hand side of constraint (A86) is non-negative.

In (b) we have shown that the objective function for the inner optimization problem is increasing

in η and that the optimal solution for the payer problem is achieved at the value for η such

that (A86) becomes binding. Recall that Lemma A1 shows that θNE = 1
T

when (A86) is binding.

Therefore, for any given value of T , the optimal value of η for the payer problem is to make θNE = 1
T

and to make (100) binding. Thus, we have proved

η=
2b

r

(
(α+ 1)− ρ

T

)2(
α− ρ

T

) −T, θNE =
1

T
. (A99)

We now consider the outer optimization problem. For any fixed T , the results in (b) show that

the optimal Nash service level is θNE = 1
T

and the optimal objective function value for the outer

optimization problem is

Π(η(T ), T ) = 2
(
αθNE− ρθNEθNE

)
r

[
1 + η(T )

(
θNE− 1

T

)]
= 2r

(
α− ρ 1

T

)
1

T
. (A100)

Taking the derivative of Π with respect to T , we obtain

∂Π(η(T ), T )

∂T
= −2r

(
α− 2ρ

1

T

)
1

T 2

< 0, (A101)

where the inequality follows from (62), θ̄≥ 1
T

and 0<α− 2ρθ̄≤ α− 2ρ 1
T

. Therefore, the objective

function for the outer optimization problem is decreasing in T , where η(T ) is the optimal value for

η for the payer problem when T is given and θNE is the unique Nash equilibrium for the hospital

problem when both η and T are given. However, the payer problem may not have a feasible solution

for some T ∈ [Tl, Th]. Thus, it is straightforward to show the optimal value for T is T ∗, where T ∗

is defined in (110). The desired results follow. �

Proof of Corollary 2

Following Proposition 9 (c), we have

∂η

∂α
=

2b

r

(
1− 1(

α− ρ
T

)2

)
. (A102)

This shows that the optimal value for the incentive parameter η is increasing in the demand-

sensitivity parameter α if and only if α≥ ρ
T

+1. Proposition 9 (b) shows that the Nash equilibrium

service level remains 1
T

even if α increases.

Assume α ≥ ρ
T

+ 1 (α ≤ ρ
T

+ 1) holds. The service level θNE remains 1
T

. The demand increases

(decreases) because the demand is equal to αθNE − ρθNEθNE. The cost for the payer increases
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(decreases) following from the formula for the payer’s objective function and that θNE = 1
T

. The

cost for hospitals increases (decreases) following from the formula for the hospital’s cost function

and that θNE = 1
T

.

Following Proposition 9 (c), we have

∂η

∂ρ
=

2b

rT

(
−1 +

1(
α− ρ

T

)2

)
. (A103)

This shows that the optimal value for the incentive parameter η is decreasing in the demand-

sensitivity parameter ρ if and only if α≥ ρ
T

+ 1. Proposition 9 (c) shows that the Nash equilibrium

service levels remain 1
T

even if ρ increases.

Assume α ≥ ρ
T

+ 1 (α ≤ ρ
T

+ 1) holds. The service level θNE remains 1
T

. Demand decreases

(increases) because demand is equal to αθNE−ρθNEθNE. The cost for the payer decreases (increases)

following from the formula for the payer’s objective function and that θNE = 1
T

. The cost for hos-

pitals decreases (increases) following from the formula for the hospital’s cost function and that

θNE = 1
T

. �


