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Abstract

Less than you think. Relative to the data, standard macro-finance term structure models rely
too heavily on the volatility of expected inflation news as a source for variations in nominal yield
shocks. In this paper, I develop a nonlinear Bayesian state-space model that accounts for several
bond market features, without resorting to an expected inflation channel that counterfactually
dominates the variation in nominal yield shocks. The estimation of the model suggests that, for the
last two decades, inflation-related risk factors have not played an important role in driving either
expected excess bond returns or the term premium component of the nominal yield curve. (JEL

C11, C32, C58, E43, E44, G12)
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1 Introduction

Understanding the role of inflation expectations on the nominal yield curve is of key interest
for financial and economic decisions, such as risk management, bond pricing, and public policy.
Macro-finance term structure models are useful in identifying the economic mechanism behind
the substantial variations of nominal yields and their macroeconomic underpinnings. To this end,
economists have used long-run risk (e.g.,|Piazzesi and Schneider|2007; Bansal and Shaliastovich(2013;
Song|2016), New Keynesian (e.g., Rudebusch and Swanson||2012; [Kung|2015)), and habit formation
(e.g., [Wachter| |2006) models. However, as pointed out by Duffee| (2016), these models require a
counterfactually high volatility of expected inflation news to match the empirical volatility of nomi-
nal yield shocks. In the data, the variance of expected inflation news accounts for around 20 percent
of the variance of nominal yield shocks, which is strongly at odds with model-implied ratios that,
in the case of long-run risk and New Keynesian models, often exceed 100 percentﬂ

In this paper, I develop a nonlinear Bayesian state-space macro-finance endowment model
that closely matches the inflation variance ratios proposed by [Duffee (2016)E| The model features
time preference shocks, recursive preferences, inflation nonneutrality, multiple stochastic volatility
processes, and time-aggregation of consumption. Specifically, I build on the long-run risks setup of
Bansal and Shaliastovich (2013) and Schorfheide, Song, and Yaron| (2016) in which time variation in
expected consumption and inflation and their respective volatilities are key in accounting for bond
risk premia dynamics and several other bond market features. The time rate of preference shocks
included in the model, on the other hand, primarily affects real rate fluctuations and thus limits
the role of expected inflation shocks in driving nominal yield innovations. To assess the empirical
validity of these different channels, I estimate the model using a Bayesian MCMC particle filter
approach as in [Shaliastovich! (2015]), |Schorfheide et al.| (2016), and Song| (2016). To the best of

"While habit formation models fare better with values of around 50 percent, they have problems along other
dimensions. For instance, habit models are not able to simultaneously explain the evidence of predictability of
bond and currency returns. Wachter| (2006]) requires a counter-cyclical interest rates to account for bond return
predictability, while [Verdelhan| (2010) relies on a pro-cyclical interest rates to account for the violations of uncovered
interest parity in currency markets.

2To compute the data-implied inflation variance ratios for long horizons, [Duffee| (2016) relies on a statistical
model of inflation and bond yields. I extend Duffee’s analysis by assuming heteroskedasticity in innovations (instead
of splitting the estimation in different subperiods) and conclude that the model fit improves significantly and produces
ratios of around 30 percent. Nevertheless, the 95 percent of the confidence intervals are around 50 percent, which is
still at odds with model-implied values.



my knowledge, this model is the first one that does not rely heavily on the volatility of inflation
expectations to match the empirical volatility of yield shocks.

Even though variations in innovations to expected inflation play a limited role in driving
yield shocks, the model is able to match the unconditional level, slope, and standard deviation
of the nominal interest rates in the data. In addition, it generates sizable variation in bond risk
premia, that is, it is able to generate time-varying term premium that mimics the estimates based
on reduced-form Gaussian affine term structure models without distorting its macroeconomic fit
or requiring a large coefficient of relative risk aversion (roughly 10). Moreover, it qualitatively
and quantitatively accounts for the evidence of bond return predictability documented in |[Cochrane
and Piazzesi (2005) and for the failure of the expectation hypothesis, as identified in |Campbell
and Shiller| (1991)). Overall, the estimation of the model suggests that inflation expectations are
no longer the predominant macroeconomic force behind nominal yield curve variations. While
term premium on long-term bonds and expected excess bond returns are positive on average due
mostly to inflation-related risk premia, they have been negative for the last decade, driven by real
uncertainties.

As in the long-run risks literature, variations in bond risk premia are driven entirely by time-
varying conditional volatilities of the predictable components of consumption growth and inflation
(e.g., Bansal and Shaliastovich/ 2013; Doh/[2013)). My model differs from this literature in adding
the time preference shocks channel as an important source of nominal yield shocks. In this model,
time preference shocks arise from stochastic changes in agents’ discount factor. I show that they
are crucial for generating volatile and persistent fluctuations in expected short-term real rates,
which in turn allow the model to match the empirical volatility of nominal yield shocks without
requiring counterfactually high volatility of inflation expectations innovations. Time preference
shocks determine the attitudes of the representative household towards saving and they are, by
assumption, orthogonal to the real and nominal economy affecting financial decisions of households.
In line with this reasoning, the filtered time preference shocks variable is highly correlated with
the adjusted National Financial Conditions Index published by the Federal Reserve of Chicagoﬂ

which measures risk, liquidity, and leverage in money, debt, and equity markets uncorrelated with

3The Adjusted National Financial Conditions Index is provided by the Federal Reserve Bank of Chicago published
at https://alfred.stlouisfed.org/series?seid=ANFCI.
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economic conditions. |Albuquerque, Eichenbaum, Luo, and Rebelo (2016)), and [Schorfheide et al.
(2016), also include time preference shocks in their model specification to account for the weak
correlation between stock returns and measurable fundamentals. For instance, the latter show
that they are crucial to generate a weak correlation between consumption growth and the risk-free
rate as observed in the data. In addition, the former show that they are also able to produce an
upward-sloping nominal yield curve. These features are preserved in this model.

While innovations to the time preference shocks are key drivers of yields shocks, they do not
play a role in driving fluctuations in bond risk premiaﬁ With preferences for early resolution of
uncertainty, an increase in real uncertainty lowers bond risk premia, whereas inflation uncertainty
raises it, provided that expected inflation shocks negatively affect expected consumption growth. In
this setting, nominal shocks are priced, which makes long-term bonds particularly risky since inno-
vations that produce a persistent increase in expected inflation generate persistently low real yields
and low expected consumption growth. This is a second complementary mechanism generating a
positive slope in the nominal yield curve.

Regarding the other model ingredients, additional time-varying volatilities in the #d com-
ponent of consumption growth and inflation, and time-aggregation of consumption are negligible
for the nominal yield curve but are important for tracking the macroeconomic series. Moreover,
monthly measurement errors in the process of consumption that average out at the quarterly fre-
quency aid the identification of the persistent parameter of expected consumption growth. In fact,
the estimate is remarkably similar with or without considering bond prices in the estimation. Fi-
nally, I show that there is enough information in the macroeconomic series, over the sample period
1960 to 2014, to identify a significant negative nonneutral effect of inflation on growth.

This paper is organized as follows. In Section [2] I introduce the model and cast it into a
state-space form. Section [3] describes the Metropolis-Hastings sampler used for Bayesian inference,
the data set, and prior and posterior distribution of model parameters. Section [] analyzes the im-
portance of inflation expectations for the nominal yield curve. Finally, Section 5] provides concluding

remarks.

4This result is based on the assumption of homoskedastic innovations in the time preference shocks.



2 Model specification

In this section, I present the macro-finance model and cast it into a state-space form. In Section 2.1
I describe the preference of the representative household. In Section [2.2] I present the exogenous
dynamics of consumption growth and inflation. In Section [2.3] I characterize the model solution
and the equilibrium nominal yield curve. Finally, in Section [2.4] I cast the model into a state-space

form.

2.1 Preferences

The representative household has |[Epstein and Zin| (1989) recursive preferences and maximizes life-
time utility which is a function of current utility and the certainty equivalent of future utility V% ;:

1 1

Vi = mazl(1— NG, ¥ +8(Vi) T (1)

t

where C} denotes consumption at time t, 1 is intertemporal elasticity of substitution, ¢ is the
discount factor, and A; denotes a time-varying preference parameter. The certainty equivalent of
future utility is the guaranteed value of lifetime utility at time ¢ + 1 given by V| = (Etl/ifﬂ)ﬁ,
where the parameter v represents the coefficient of relative risk aversion.

As in |Albuquerque et al.| (2016]) and Schortheide et al.| (2016), I also allow for time preference
shocks to the time rate of preferences given by the ratio x); = A¢y1/A\¢, which determines how the

household trades off current versus future utility. These shocks evolve according to:

LU)\7t+1 = p>\$)\7t + O')\’I’])\7t+1 with 7’]/\7t+1 ~ Z’LdN(O, 1) (2)

and can be thought of as demand shocks that capture changes in the household attitudes towards
savings. The representative household is subject to the following budget constraint: Wiy, = (W —
Ct)Rc 41, where W, denotes its wealth at time ¢t and R4 is the return on an asset that pays

aggregate consumption as dividends.



2.2 Consumption and inflation dynamics

C

41
Ct

The exogenous dynamics of the logarithm of consumption growth, Ac,11 = log , and the loga-

rithm of the inflation rate, w41, are written as follows:

Acir1 = e + Tet + OctNet+1

M4l = Por + Trt + Ox N p4+1

where the process of conditional expectations is given by

Tet+l = PecTet + Pern@rt + OxetNoe,t+1

Trt+1 = +p7r7r$7r,t + Oxm tTem t+1

and volatilities evolve according to exponential Gaussian processes

oip = pioexp(hig), with  hip1r = pphie + onwiirt-

I normalize ¢, = 1 and all innovations are distributed according to

Mittls Witl, €Eigp1 ~ 0.0.d.N(0,1) for i={c,m zc, am}.

Specification is based on Bansal and Yaron| (2004), Piazzesi and Schneider| (2007, and
Bansal and Shaliastovich (2013), and decomposes real consumption growth and inflation into pre-
dictable (2, o) and transitory (ocfei+1, OriMr1+1) components. I assume that the predictable
components, that is expected consumption growth, z., and expected inflation, z,, follow a bivari-
ate VAR(1) process, with time-varying volatilities given by Ugcjt and JU,%M, respectively. I allow
for expected inflation to directly feed into expected consumption growth via the parameter pc.
This parameter characterizes the nonneutrality of inflation. In contrast to|Bansal and Shaliastovich
(2013), I consider four separate volatility processes. The long-run stochastic volatilities U§c7t and
agmt are the drivers of bond risk premia, while the short-run volatilities ag’t and afr’t are negligible

for bond prices, but are important for tracking the consumption growth and inflation series. Fur-

thermore, the logarithm of the volatility process is assumed to be normal, which guarantees that



o0t is positive throughout.

2.3 Model solution

The Euler equation associated with any continuous real return, r;;1, can be written as

Eilexp(mii1 +1i41)] = 1 (4)

where the logarithm of the real stochastic discount factor (SDF) implied by the assumed household

preferences is

0
miy1 = 0logd + Oz ¢ — gACtH + (0 — 1)reesa with

Note that when v = i the utility function is of the constant relative risk aversion form and the SDF
becomes independent of the log return on the consumption claim denoted by 7¢ ;41 = log(Re¢+1)-
To price nominal payoffs it is useful to specify the nominal discount factor which is equal to the

real one minus the inflation rate:

mf_i,_l = M1 — Te41 (6)

To entertain an analytical model solution I use two different approximations. The first,

proposed by |Campbell and Shiller| (1988]), involves a log-linear Taylor expansion r.ty1 ~ ko +
exp(pc)

1 + exp(pe)
determined endogenously by the unconditional mean of the price-consumption ratio, pcey1, defined

K1pcir1 — pct + Acyt1, where kg = log(1 + exp(pe)) — kipe and k1 = are constants
as pc. The second follows [Schortheide et al.| (2016) and takes a linear approximation of the volatility
process around the unconditional mean of h;, given by azt R 020 + ui(a,it — 020) + 0w, wi 41 for
i ={c,m xc,xm} with v; = py,, 012,0 = (p;0)?, and o, = 2(p;0)%0p,.

The first approximation allows me to write innovations to the real SDF as a linear combination



in shocks,

M1 — Eymyq = _)\cac,tnc,t—I—l _)\waw,tnﬂ,t-i-l —)\AUA,m/\,tH
~———

short-run consumption risk short-run inflation risk preference risk

_Axcaxc,tnxc,t—&-l _Axﬂo'xw,tnmr,t—i-l

long-run consumption risk long-run inflation risk

— E NiOo,; Wi t+1

iE{Uc:Uﬂ' 7UIC7U:E‘H'}

Volatility risk

which determine the sources and compensation for risks. The As denote the equilibrium market

prices of risk and are equal to

1 14,2
_ - D N— )k
Ac:'Y, )\71' :O, )\/\ = w7 )\zc: %7 Azﬂ':pcﬂ' ( U’) ! 5 (8)
1—Kipa 1 — Ki1pee (1 — K1pec)(1 — K1prr)
e pleye 0 (=) — )k N (v = 5)(1 =)k
7 20 —kive) 0 T T T T (1 — Kapee)2(1 — Kivge) TTT T Pex 2(1 — k1pee)?(1 — K1pan)2(1 — K1Var)

Note that the market price of short-run consumption risk, A., is equal to the coefficient of
relative risk aversion. Since current inflation is independent from the real economy, the prices of risk
associated with it (A, Ay, ) are zero. In addition, when agents have preference for early resolution of
uncertainty (y > i), the market price of expected consumption growth risk, A, is positive and Az
is negative whenever expected inflation is bad news for the real economy (p.r < 0). Furthermore,
the market prices of short-, A,,, and long-run, A, ., real uncertainties are negative, as well as the

market price of the long-run inflation volatility, A The price of the time preference shocks risk,

Oum-
Ay, is guaranteed to be positive whenever § < 0 provided that py > 0. Note that when v = i all
prices with the exception of A\. and \) are zero. Finally, the nominal market prices of risk are all
equal to their real counterparts except for )\;s;, which now equals one.

I proceed to price the equilibrium nominal bond yields, while Appendix[A.2]provides a solution

to pc; and shows an analytical expressions for the equilibrium nominal SDF in terms of the state

variables of the economy.

2.3.1 Equilibrium nominal bond yields. Let PEn be the price at time ¢ of an n-period zero-

coupon nominal bond that pays one unit of the numeraire in n periods. Using the Euler equation,



the price can be written recursively as
$ $ $
Pt,n = Et[Mt+1Pt+1,n—1] (9)

and can be solved by conjecturing that the logarithm of the nominal bond yields, yfn = —%logPEn,

is linear in the state variables:
$ 1 ns $ $ $ s 2 s 2 $ 2 $ 2
Yin = E((Bo,n + Bc,nxl«',t + B‘/r,nxﬂ',i + Bk,n‘r)\,t + Bac,nac,t + Bo',(,no-ﬂ',t + Bo'mc,no':cc,t + Bo'mﬂ-,no'zﬂ',t)‘ (]'O)

In Appendix [A-4] I provide an analytical expression for the Bs, which measure the sensitivity of
bond prices to systemic risks. In order to develop economic intuition in terms of the size and sign
of each of these coefficients, Figure [l shows the equilibrium nominal bond yield loadings (evaluated

at the posterior median estimates) as a function of bond maturity n.
[Place Figure (1| about here]

Nominal bonds hedge expected consumption risk. A higher expected consumption growth
today decreases bond prices and increases nominal yields (Bf’n>0), due to the agent’s motive to
smooth consumption intertemporally. In this scenario, the agent wants to borrow to increase today’s
consumption and since bonds are in zero net supply, aggregate borrowing cannot increase. In
equilibrium, returns on bonds must increase to induce the agent to borrow less. Alternatively, with
preference for early resolution of uncertainty (y > i% shocks to expected consumption growth
are priced. An increase in real volatility increases the agent’s uncertainty about future growth
and as a result wants to hedge by buying risk-free assets, and in equilibrium, bond yields fall
(Bgmn, Bgmn < 0). Since shocks to expected consumption growth have larger long-term effects, the
sensitivity of bond prices to this risk is an order of magnitude larger (in absolute value) than the
beta of short-run real volatility risk (see the straight black line in panels (b) and (c) of Figure [1)).
Furthermore, the longer the bond maturity, the higher the insurance the bond provides against these
types of risks and hence the higher its price. This mechanism generates a downward-sloping nominal
yield curve. In contrast, the nominal and preference risk channels counteract this mechanism and

generate an upward-sloping yield curve.

To understand the nominal channel as described by Bansal and Shaliastovich| (2013)) and



Eraker, Shaliastovich, and Wang| (2016)), it is useful to consider the following Fisher-type equation:

5, 1 11
4 ™) = yt(") + EEtﬂ't—n‘—i-n — ——Varymi4n + Ecovt(mt—)t—i-na Tist4n),

Y 2n

The expected inflation term, FEymi_tyn, directly impacts the valuation of nominal bond prices;
nominal yields rise with positive shocks to expected inflation (B;s;’n>0). In addition, if expected
inflation reduces expected consumption growth (p.r < 0), times of high long-term inflation rates are
times of low consumption growth. Hence, the covariance term in the above equation is positive and
increases with maturity. This term captures the inflation premium in the economy. With preference
for early resolution of uncertainty, shocks to expected inflation are also priced, which makes long-
term bonds particular risky since shocks that produce a persistent increase in this component
generate persistently low real yields and low expected consumption growth. This mechanism is
crucial for generating an upward-sloping nominal yield curve.

In contrast to Bansal and Shaliastovich| (2013)), in this model I include an extra state variable
determined by the time preference shocks. As shown in panel (a) of Figure nominal yields
are decreasing functions of x;. When x, rises, the representative household values tomorrow’s
consumption more, relative to the present, and wants to increase savings. In equilibrium, bond
prices have to rise (B;S{n < 0) to clear bond markets. This model is also able to generate an upward-
sloping nominal yield curve (note that Bf’m > Bin if m > n) via the time preference shocks risk,
given that longer maturity bonds have a higher exposure to it. This implies that the model does
not need to rely entirely on the expected inflation channel to reproduce this feature of the data.
Furthermore, time preference shocks are a promising mechanism to drive volatile and persistent
fluctuations in expected short-term real rates which in turn might generate sizable variations in
nominal yield shocks without requiring large fluctuations in expected inflation news. I turn to this

issue next.

2.3.2 Inflation variance ratios. Following Campbell and Ammer| (1993) and Duffee (2016), I
decompose an n-period yield into expectations of average ex-ante real rates, future average inflation,

and average expected excess returns over the life of the bond:

1< 1 < 1<
Yin = - > Eiripioin+ - > Eimigi+ - Y Erw i (11)
=1 =1 =1

10



where the ex-ante real rate is defined as the yield on a one period nominal bond minus expected
inflation r; = yf 1 — Eymip1. The last term on the right is often described as the bond’s nominal
term premium, which I write as tpgn.

Innovations to the n-maturity yield from ¢t — 1 to ¢ are equal to the sum of news about these

three components:

(n) _ (n) (n) (n)
€y$,t - ET,t + E7r,t + etp$,t (12)
where the shocks are defined as
ezg)’t = Etyf,n - Et—lyf,na 65:? = % Z?:l Et"“t—‘—i—l,l - % Z?:l Et—l"“t—‘—i—l,l-
Eips.t — LttPin t—11P¢ €nt = 3 2ui=1 T4+ — 5 2 =1 Lt—1Tt+i-

In Appendix [A7]I provide an analytical expression for these shocks in terms of model parameters.
Duffee (2016) defines the unconditional inflation variance ratio of an n-period nominal bond as the

ratio of variance of inflation news to the variance of yield shocks:

s variamce ratio < VAT
inflation variance ratio = IR (13)

Var(eyss’t)

and measures the size of expected inflation shocks relative to nominal yield shocks. As shown
by |Duffee| (2016), at quarterly frequency, variances of news about expected inflation account for
around 20 percent of variances of yield shocks. This percentage is strongly at odds with standard
macro-finance model-implied ratios which often exceed 100 percent. The main problem is that these
models do not allow for a large real-rate or excess return channel to generate variations in yield
shocks.

This model generates variations in shocks to real rates via four components. To see this it is
(n)

useful to explicitly write the model-implied expressions for €, as
o 111—pn 1 per 1 - n e
'(r,t> — Eil_izzza'xc,t—l'r]xc,t + Elfipua[(l — Pce 1) + pﬂ'ﬂ'(l — Pcec 2) 4.+ pﬂ_ﬂ_Q(l — pcc)]a'ggn-,t—l'r];cﬂ',t
n n 14)
1 s 1-u 1 1-p0 (
+ Z il 7, ° $Wist+1 npkl—p)\o—/\nk’t

i€{c,m,xc,xm}

The first component is related to persistent movements in expected consumption growth. If o1
is small and the intertemporal elasticity of substitution, 1, is high, then short-term real rates do not

vary much via this component. The second component is associated with the nonneutral effect of

11



expected inflation on expected consumption growth. Bad news for expected inflation translates into
bad news for expected consumption growth, which in turn lowers expected future real rates. Hence,

variations in nominal yields via this component are mitigated by the negative covariation that it

provided that p.r < 0 (i.e., cov(e(n) e(n)) < 0). In some

rt o mt

(n)

shares with expected inflation shocks, €; 7,

models, this negative covariance is able to decrease the volatility of nominal yield shocks below the
volatility of inflation news, which generates inflation variance ratios above 100 percent. The third
component comes from shocks to the volatility processes and affects shocks to real rates through the
precautionary savings channel. However, since oy, are usually small, they cannot contribute much
to variations in nominal yield shocks. Finally, the last component is associated with innovations
to the time preference shocks. Innovations to x) affect the agents’ decisions towards saving, which
in turn move short-term real rates. If these innovations are volatile and persistent, then they will
generate similar movements in real rates. In Section [£.:2]1 show that this is an important mechanism
to match the observed volatility of yield shocks without requiring a counterfactually high volatility

of inflation expectations innovations.

2.3.3 Expected excess bond returns. The presence of stochastic volatility gives rise to time
variations in bond risk premia. To see this, consider the one-period excess log return on buying an

n-period bond at time ¢ and selling it at time £ + 1 as an n — 1 period bond:

$ _ $ $ $
TTr st41m = MWt — (n— 1)yt+1,n71 —Yia

The one-period expected excess return on nominal bonds is determined by the negative of the
covariance between the innovations to excess log returns and the innovations to the nominal SDF:
$ 1 $ $ $
Etrxr—)t+1,n + §Vt7”50r_>t+1m - _covt(mt+17rxr—>t+1,n)

Z $ 2 $ 2 $ 2 $ 2
= - Bi,nflkiawi _B)\,n—lAko—k _Bc,nfle‘Co—mc,t _Bﬂ',nfl)\"l)ﬂo—zﬂ',t

i€{oc,0nm,00c,Onr}

Preference risk long-run growth risk long-run inflation risk

Volatility risk

(15)
Hence, the one-period conditional excess return on nominal bonds can be attributed to (i) short- and
long-run volatility risks, (ii) preference risk, iii) long-run growth risk, and (iv) long-run inflation risk.
The bond risk premium is time-varying and driven by compensations for expected consumption and

inflation shocks. Note that nominal bond risk premium decreases with real uncertainty (Bfn >0

12



and A\;c > 0) and increases at times of high inflation uncertainty (Bfn > 0 and A\yr < 0). In

addition, long-term bonds also command a constant positive risk premium induced by the time

preference shocks risk (B;s{ 1 < 0and Xy > 0).

2.3.4 Term premium. Solving tpfvn in equation delivers an expression for the n-maturity

nominal bond term premium:

1 1-v2
tp, = const + —(B® - B3 Vze
’ n

Oxc,N Ozc,l 1
— Vxec

1
)Ugct+ﬁ(3$ n_B$

The term premium measures the additional compensation a risk averse investor needs to be indif-
ferent between purchasing an n-period bond and holding it until maturity or rolling over one-period
bonds for a total of n periods. Under the expectation hypothesis the term premium is constant.
In this model, the term premium is time-varying due to variations in bond risk premia driven by
long-run real and nominal uncertainties. In Section [f-4] I show that the term premium implied by
the model is able to account for the evidence of bond return predictability documented in |Cochrane
and Piazzesi (2005) and for the failure of the expectation hypothesis, as identified in |(Campbell and
Shiller| (1991)). Furthermore, in Section I show that the model is able to generate sizable vari-
ations in term premium. Finally, note that from this expression it is straight forward to compute
(n)

n .
5., given by

the term premium shocks component, €ip

(n) _l E (B$ _B$ 1_Vin) W
etp$,t - n oi,n O’i,l 1 — U O-Wi Z7t+1' (17)
ie{zc,am} !

This channel cannot contribute much to the variance of yield shocks, since, as described before, o,
is usually small. Moreover, note that time preference shocks do not contribute to the term premium

given the assumption of homoskedastic innovations in agents’ rate of preferences.

2.4  State-space representation of the model

The state-space representation of the model consists of two equations. The first is the measurement
equation, which links the observed variables with the model-implied ones and adds measurement

errors to capture discrepancies that might be present between these two components. In addition,

13



measurement errors account for the stochastic singularity problem that arises when the number
of observables is greater than the number of state variables. The second is the state transition

equation, which describes the law of motion of the state variables.

2.4.1 Measurement equation. To distinguish observed variables from model-implied ones, I
use the superscript o. The observables are consumption growth, Ac®, inflation, 7°, and zero-coupon
nominal bond yields, y%°.
Measurement equation for consumption growth. To aid the identification of time-varying
volatilities, I use the highest frequency available which is monthly (e.g., Drost and Nijman||1993).
However, monthly consumption data has nontrivial measurement errors masking the actual dy-
namics of consumption (e.g., (Wilcox|[1992). Following Schorfheide et al.| (2016), I include monthly
measurement errors in the process of consumption that average out at the quarterly frequency
and which allow the identification of the persistent component of consumption growth as well as
time-varying short- and long-run volatilities.

Let the subscript t represent the monthly time as t = 3(j — 1) + m, where m indexes the

month within quarter j and m = 1,2, 3. Specifically, I assume that:

Acgj_1yp1 = Besn)41 + oe(€3(-1)41 — €3(-2)+3)

3
Z Oe(€3(j—1)+m — €3(j—2)+m) T 03(6@) - 6((Zj_1)) (18)

m=1

W =

Acg(j_1)+m = Acs(j_le + 06(63(j,1)+m - 63(]-,2)+m,1) for m =2,3 and ¢,¢? ~ N(0,1).

o and o denote the standard deviation of monthly and quarterly consumption measurement errors.
Note that under this specification, aggregating the monthly consumption series to the quarterly

frequency according to

5

3—|r—3|

q,0 __ 4,0 4,0 __ (o)

Acj” =c¢;" — il = E 3 A%
=1

averages out the monthly measurement errors; ch-’o = Ac? +od (e‘gj) — 6((13‘71))' Under this specifica-

tion, the levels of monthly consumption are constructed by distributing quarterly consumption over

the three months of a quarter; this distribution is based on a noisy monthly proxy series. Further-

14



more, monthly consumption growth rates are proportional to the growth rates of the proxy series
and monthly consumption adds up to quarterly consumption. At quarterly frequency, consumption
growth is strongly positively autocorrelated, while, at the monthly frequency, it exhibits a significant
negative autocorrelation, which provides evidence for a negative moving average component. The
assumed measurement error model for consumption is able to reconcile these features.
Measurement equation for inflation. I assume that inflation is measured without any errors
and define

TSG—1)4m = T3(j—1)+m (19)

because, at the estimation stage, there was no clear way to disentangle the measurement errors from
the transitory #id shocks.
Measurement equation for Nominal bond yields. I assume that nominal bond yields are

contaminated by 7id measurement errors and define

yf,’f; =yf, oy eyait, With ey i1~ N(0,1) (20)

where o, denotes the standard deviation of the yields measurement error. Assuming small yield

measurement errors is not a strong modeling assumption, since zero-coupon Treasury yields are not

directly observed for long maturities and have to be bootstrapped from observed bond prices.
Altogether, the measurement equation of the state-space representation stacks each particular

measurement equation and is given by:

Yo = Au1t(D + Zspir + ZVsY 1 (b)) + S ug1),  with wgpq ~ N(0,1) (21)

where the vector of observables Y% ; contains consumption growth, Ac?, inflation, 7?, and nomi-
nal bond yields, y®°. The assumed measurement errors and the model solution provide the link
between Y% ; and the vectors of state variables s;y1 and s +1(ht+1)- Broadly, s;11 includes the
predictable components of consumption growth, z.;, and inflation, x, ¢, as well as the time prefer-
ence shocks, x);, innovations to fundamentals, and the measurement errors of consumption. The
vector sy, (hit1) is a function of the log volatilities hyy1 = [hac i1, hamirt, heir1, hrgr1] and

stacks the short-, and long-run real and nominal uncertainties. The vector w;41 consists of bond-
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specific measurement errors where the diagonal of 3% contains the standard deviation of the yields
measurement errors, oy, . Finally, A;11 is a selection matrix that accounts for changes in the data

availability induced by the specification of the measurement error model of consumption growth.

2.4.2 State transition equation. The state transition equation provides the dynamics of the
state variables broadly given by the assumed process of the time preference shocks in and by

the predictable component of consumption growth and inflation in . It can be written as:

Str1 = sy + ’Ut+1(ht), and  hpp = Uhy + Xpwipr with wypq ~ N(O, I) (22)

where the variance of v;41(h;) depends on the log volatilities at time ¢. In Appendix [B] I describe
each particular component of the state-space representation in detail. I now proceed to describe the

estimation procedure and results.

3 Estimation

In Section and I present the estimation procedure and the data set used. In Section I
analyze the prior and posterior distribution of the model parameters, while in Section I describe

the smoothed latent state estimates.

3.1 Estimation procedure

I use a Metropolis-Hastings sampler for posterior inference. I make inference on two different sets of
parameters. One set corresponds to the assumed process for the macroeconomic dynamics denoted
by:

Omacro = {607r7 @h} with

@cn' = {HCa 0, Pxc, Pecs Perry My Py Py Py Oey 03}7 and @h = {Phca Ohes Phoy Ol s Phzes Ohges Phars Ohgr }

The second set of parameters is related to the preference of the representative household:

@pref = {57 "7[)7 Yy PXs O, Uy"}
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I included the yields measurement errors in this second set. I define the union of ©,,4¢r0 and Opqy

as follows:

6= {Gmacrm ®pref}-

It is important to differentiate these two sets of parameters since I estimate ©,,,4¢r0 With and with-
out considering bond prices in the estimation. If ©,,4.-, does not change much between these two
different informational contends, this suggests that there is enough information in the macroeco-
nomic variables to price the nominal yield curve. However, if the difference in parameter estimates
is large, the estimation might be achieving a better fit for bond yields while sacrificing the fit of
consumption growth and inflation.

To make Bayesian inference about © and the latent state vectors, I adopt the econometric
approach proposed by Schortheide et al. (2016). I specify a prior distribution p(©) and update my
a priori beliefs about the parameter vector O, in view of the sample information Y°. The state
of knowledge regarding © is summarized by the posterior distribution p(©]Y") and Bayes Theorem

provides the formal link:
p(Y?|©)p(©)

pelr?) = 7o

(23)

Given the presence of nonlinearities induced by the volatility states it is not possible to directly
evaluate the likelihood function, p(Y°|©), via the Kalman filter. Instead, I use a sequential Monte
Carlo filter to approximate p(Y°|©). In essence, I represent the distribution of volatilities using a
swarm of particles; conditional on these particles, the model has a linear and Gaussian state-space
representation that allows me to apply the Kalman filter to equation and . Once I am able
to draw from the posterior distribution p(©|Y°), I use a random-walk Metropolis-Hasting algorithm
to draw the parameter vector {6(5)}?31’” as in |Fernandez-Villaverde and Rubio-Ramirez (2007) and
Andrieu, Doucet, and Holenstein| (2010]). Detailed steps of the algorithm are available in Appendix
and for further reference regarding the implementation of the particle filter see Herbst and
Schortheide (2015).

3.2 Data

The data is standard in the literature and consists of monthly observations of real per-capita con-

sumption growth, inflation, and nominal bond yields with maturities of between one and five years.
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The sample period is determined by the availability of the consumption growth series and spans
from 1960:M1 to 2014:M12E| Specifically, I use the per-capita series of real consumption expendi-
ture on nondurables and services from the National Income and Product Account published by the
Bureau of Economic Analysis. I downloaded CPI inflation from the Federal Reserve Bank of St.
Louis. I constructed growth rates for consumption and inflation by computing the differences of
the log series. Lastly, monthly nominal bond yields were obtained from the CRSP Fama-Bliss zero

coupon bond files.

3.3 Prior and posterior distribution

I will first describe my choice of priors and then I proceed to analyze the posterior estimates.

3.3.1 Prior distribution. In general, I attempted to restrict the parameter space to econom-
ically plausible values while at the same time be as uninformative as possible. The first columns
of Table [I] show the assumed prior distribution, as well as the 5 and 95 percentiles. I will first
discuss the priors of the macroeconomic parameters, ©,,4cr0, and then continue with the priors of
the preference parameters O, .

The priors for the persistence parameters of the predictable components of consumption
growth, p.., and inflation, pr r, as well as the prior for the parameter that measures the non-
neutral effect of inflation on growth, p.r, are distributed uniformly over the interval (—1,1). This
range includes magnitudes that imply a zero effect of expected inflation on expected consumption
growth, as well as a near iid or unit root process for the macroeconomic variables. The parameter
or sets the standard deviation of the itd component of inflation relative to consumption growth.
Here I use a prior that is uniform on the interval (0,3) and encompasses values that allows m; to be
more or less volatile than Ac¢;. A similar logic applies for ¢, and ¢, with respect to the conditional
means of consumption, x.;, and inflation, z ;, respectively. The priors for average annualized con-
sumption growth, ., and inflation, p,, are normally distributed with a 90 percent interval ranging
from £10 percent.

Regarding the preferences parameters, ©,.r, my priors are quite agnostic in that they cover

values commonly reported in other studies and try not to affect the asset pricing implications of

®Monthly consumption growth starts in 1959:M2. However, to have non-missing values for all years I decided to
start in 1960:M1.
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the model. For instance, I do not restrict the preference of the representative household to have
early, 6 < 0, or late, 8 > 0 , resolution of uncertainty: the prior for the intertemporal elasticity of
substitution, 1, and the risk aversion coefficient, 7, cover values below and above one. The prior for
the discount factor, §, covers steady state annualized values for the one period risk free rate between
0.5 and 5 percent. Furthermore, the priors for py and ¢, have the same support as the persistence
and standard deviation parameters of the macroeconomic dynamics, where I defined o)\ = )0 in
(2). Finally, I fixed the standard deviation of the yields measurement error, oyn, at 10 percent of
the yields’ sample standard deviation, a value consistent with the work of [Bekaert, Hodrick, and

Marshall| (1997).

[Place Table [1| about here]

3.3.2 Posterior distribution. The last six columns of Tableshow the 5, 50, and 95 percentiles
of the posterior distribution under two different scenarios. Columns 5 to 7 show the posterior
distribution if bond prices are included in the estimation, while columns 8 to 10 only consider the
information contained in macro dataﬁ It is important to highlight that the posterior intervals are
much narrower if bond prices are considered in the estimation, suggesting that bond yields provide
additional information that reduces the parameters posterior uncertainty. I will first describe the
parameters related to the agent’s preference, ©p,..r, and then proceed to analyze the parameter
estimates in O,,qcr0-

The coefficient of risk aversion, -, and the intertemporal elasticity of substitution, 1, have
a posterior median value of around 10 and 1.55, respectively. These estimates are consistent with
the parameter values highlighted in the long-run risk literature and imply preferences for early
resolution of uncertainty. It is also worth noting that the time preference shocks, ), are highly
persistent with a posterior median value of 0.95. Furthermore, a value of ¢ &~ 0.22 suggests that

they are considerable less volatile than consumption growth.

5To estimate the model that only includes macro data in the estimation, I cast equation [3|into a state-space form
and use Metropolis-within-Gibbs sampler for posterior inference iterating over the three conditional distributions. In
Appendix [C.3] I provide detailed steps of the Metropolis-within-Gibbs sampler algorithm. I also assume a common
stochastic volatility process (i.e., he,t = hae,r and hx ¢ = hor¢). Allowing for four different stochastic volatilities, the
90 percent confidence interval increased considerably for most of the parameters and the log marginal data density
decreased from 6055 to 5761. With these evidence, I conclude that there is not enough information in consumption
growth and inflation to identify four different stochastic volatilities.
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With respect to the parameters associated with the macroeconomic dynamics, ©,,,4cr0, I found
several features worth noting. The posterior median estimates of (pec, Pers Prar) are remarkably
similar with (0.948, —0.146, 0.983) or without (0.946, —0.209, 0.982) considering bond prices in
the estimation, suggesting that there is enough information in the macro data to identify them.
This result is driven by the measurement error model of consumption and the assumed stochastic
volatility processes for consumption growth and inflation. Appendix [B4] shows that accounting for
measurement errors in consumption reveals a persistent component in consumption growth: In the
absence of measurement errors p.. drops to -0.20 (See Table [BI)). Appendix also shows that
adding stochastic volatility to the process of the macro variables improves the model fit considerably
(measured by the log marginal data density) and decreases the posterior uncertainty of the parameter
estimates (measured by the 90 percent credible interval). Furthermore, there is enough information
in the macro data to identify p.,, which is negative and significant as suggested by the 95 percentile
in column 10 of Table [I] This negative nonneutral effect of inflation on growth is consistent with
Piazzesi and Schneider| (2007) and Bansal and Shaliastovich| (2013), who used bond yields to identify
Per-

In the model, time-variation in term premia is driven by the stochastic volatilities of expected
consumption growth and expected inflation. Once bond prices were included in the estimation, the
parameters governing the persistence and standard deviation of the long-run volatility processes
increased considerably in order to match the large variations observed in the term premia dynamics
-an implicit moment in the likelihood specification. Starting from an agnostic prior, o, and oy,
increased from an approximate value of 0.01 and 0.1 to 0.20 and 0.22, respectively. Similarly, pp,.
and pp, . increased from 0.97 and 0.81 to approximately 0.98. Alternatively, since the high-frequency
movements in consumption growth and inflation are negligible for asset prices but important for
tracking the macroeconomic data, we should not expect similar changes in the posterior parameter
estimates governing these dynamicsm Consistent with this idea, the posterior median estimates of
(Ph.,on.) and (pp,.,0p, ) were quite similar between these two scenarios. Finally, the scale variance

parameters associated with consumption growth and inflation decreased in order to counteract

"By adding short-run conditional heteroskedasticity by allowing for time variation in o.; and o, and shutting
down the variation in ozc+ and ozx ¢, the log marginal data density increased from 5870 to 6054, which is almost as
high as the value obtained by assuming a common stochastic volatility process (i.e., he,t = hgc,t and hr i = hyr i)
equal to 6055. Hence, short-run conditional heteroskedasticity improves considerably the model fit of the assumed
process of the macro variables.
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the increased variation of the predictable components of consumption growth and inflation: The
posterior median of .., Yzr, and @, decreased from 0.22, 0.22, and 0.98 to 0.18, 0.08, and 0.79,
respectively.

Misspecification Test. The documented difference in the posterior distribution between these
two different scenarios raises the concern that there might be a trade off between an improved fit for
bond yields and the fit of macroeconomic variables. To assess the extent to which, for instance an
increase in py,,, leads to a decrease in fit of the joint process of consumption growth and inflation,
I re-estimated model conditional on the value of pj,, that delivers the highest posterior value
under the distribution that includes bond prices in the estimation. Finally, to measure the change in
model fit, I computed the log marginal data density of this constraint specification and standardized
it using the mean and standard deviation of the log marginal data densities computed from 30
different estimations of the unconstrained version of model . I carried out this same procedure
for each parameter in 0,,4cr0, and in Appendix I report the estimates in detail. Overall, the

drop in the log marginal data densities is small. With the exception of the value for pp__, all

)

values are inside one standard deviation, suggesting that there is no tension between the parameter

estimates obtained with our without including bond prices in the estimationﬂ

3.4 Latent state variables

Now I turn to describe the filtered estimates of the latent state variables. In panels (a) and (b) of
Figure [2] I show the 90 percent confidence interval of the smoothed expected consumption growth,
Zct, and expected inflation, x,;, variables adjusted by their corresponding unconditional mean
estimate. I also overlay the observed monthly consumption growth and inflation series. In addition, I
include the posterior median values of z.; and x ; filtered from the model that only considers macro
data in the estimation, as well as the National Bureau of Economic Research (NBER) recession
dates. The pattern for z.; is similar to the one reported in |Schortheide et al.| (2016)): z.; exhibits
declines during each recession, with the largest decline during the recent financial crisis. Notably,
this pattern does not change significantly if I do not consider bond prices in the estimation to
extract the latent state variable. This last point is also true for x,¢; the lines follow each other

very closely. xr; has its highest point during the Great Inflation period and decreases afterwards.

8ph,.. is almost 6 standard deviations away. See Table
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Note that recessions during the 1970s and 1980s were accompanied by an increase in the expected
inflation component, and that this behavior suddenly reversed during the last three crises, where

Zr ¢ exhibits a sharp decline.
[Place Figure [2| about here]

In panels (c) and (d) of Figure , I plot the volatilities of the long-run growth, A,., and inflation
rate, hyr, respectively. Both series vary considerably: h,. starts high and shows a decreasing trend
with spikes during the crises of 1975 and 1980. It remained at low levels until the late 1990s,
after which it started to increase and has stayed at relatively high levels ever since. h,, displays
different properties. In the 1960s it was at low levels; it jumped around during the 1970s with peaks
between 1980 and 1985 and remained at high values until 1990, when it started to decrease with
wide fluctuations around 2000. Similarly, in panels (e) and panel (f), I plot the smoothed series
for the high frequency components of consumption growth, h., and inflation, h;. The first thing to
note is that the magnitude of both series is remarkably smaller. Also of note is that h. captures
the drop in growth volatility that occurred around the 1980s, also known as the Great Moderation
period and it shows a decreasing pattern from that date onwards. On the other hand, h, practically

spikes at every recession, but periods of an increase in h, also occur during expansions.
[Place Figure |3| about here]

Time preference shocks capture the attitudes of the representative household towards savings
and they are, by assumption, orthogonal to the real and nominal economy. With this in mind, an
interesting candidate to correlate the smoothed demand shocks estimates is the adjusted National
Financial Conditions Index (adjusted FCI) published by the Federal Reserve of Chicago. This
index measures risk, liquidity, and leverage in money, debt, and equity markets, and isolates a
component of financial conditions uncorrelated with economic conditions’] Figure [, shows the
90 percent confidence interval of the smoothed time preference shocks along with the negative
value of the adjusted FCI multiplied by a constant to have similar magnitudesm Given these

adjustments, a positive value of the adjusted FCI index suggests loose financial markets relative

9The Adjusted National Financial Conditions Index is provided by the Federal Reserve Bank of Chicago; the series
starts in 1973 and can be downloaded at https://alfred.stlouisfed.org/series?seid=ANFCI
%Tn sum, I multiplied the original adjusted FCI series by -1200.
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to an historical average. The correlation between these series is remarkably high, with a value of
around 50 percentE suggesting that tighter financial conditions today are associated with a lower
willingness of the agents to save for future periods.

I assume that the time preference shocks are orthogonal to consumption growth and to its
predictable component. In a general equilibrium framework this will not likely be the case, since
innovations to the time preference parameter will affect the household decisions towards consump-
tion, saving, and investment, which in turn will affect production outcomes and the expected path of
consumption growth. To address this concern, I computed the 90 percent confidence interval of the
correlation between innovations to the time preference shocks, oxny (41, and shocks to consumption
growth, o1 +1, and between oxny 141 and shocks to expected consumption growth, ouc 1Mzc,i+1-
These correlations are small, ranging from -0.08 to 0.10 and from 0.09 to 0.2, respectively. These
results are consistent with Schorfheide et al. (2016)), who also assume uncorrelated shocks between
the preference shocks and the cash flow components and conclude that there is no strong evidence
against the assumption of orthogonal preference shocks.

Overall, the model estimation fits the bond yields, without sacrificing the fit of the macroe-
conomic variables. In addition, the latent state variables are directly linked to macroeconomic risk
factors or are correlated to measures of risk, liquidity, and leverage in financial markets uncorrelated
with economic conditions. In lieu of these findings, I now turn to analyze the importance of inflation

expectations for the nominal yield curve.

4 Asset pricing implications

In Section 4.1} I analyze how well the model implied moments match macro and bond yield moments.
In Section[4.2] I quantify to what extent the volatility of nominal yield shocks is due to the volatility
of expected inflation news. In Section [.3] I analyze the relative contribution of each risk factor to
movements in nominal bond yields. In Section [£:4] I study the bond predictability results implied
by the model. Sections and show the relative contribution of risk factors to movements in

expected excess bond returns and term premium, respectively.

1This correlation increases to 65 percent if I remove the high frequency components of the series by taking a twelve
month moving average.
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4.1 Model Implications for macro and bond yield moments

While I am targeting the joint distribution of macroeconomic and bond yield variables, it is in-
formative to document how close the model-implied moments are to those observed in the data.
Table [2| shows the percentiles of the posterior predictive distribution for several sample momentsB
based on parameters drawn from the posterior distribution that considers bond prices (columns 3
to 5), and from that which only considers macro data (columns 6 to 8). For the latter, I use the
posterior medians of the preference parameters ©,,.¢. Finally, in the second column, I show the

same moments computed from the observed series. All moments are annualized.
[Place Table |2/ about here]

The model does a good job of reproducing the macro moments while at the same time ac-
counting for the level and slope of the nominal yield curve as well as the standard deviation of
nominal yields. All of the data moments are well within the 90 percent credible interval. In the
results of the estimation that includes bond prices, the model performs well along the lines of
macroeconomic moments: the model-implied posterior median values are fairly close to their data
estimates. Regarding the bond yield moments, the model-implied posterior medians match the
decreasing pattern in the standard deviation of bond yields across maturities and at the same time
captures the upward-sloping unconditional mean of the nominal term-structure. It also mimics the
difference between the long and the short end (i.e., slope) of the yield curve: in the data and in the
model it is around 60 and 50 basis points, respectively. In the results of the estimation that does not
include bond prices, the model is still able to match these features of the data and generate credible
intervals that contain the sample data moments, as shown in the last three columns of Table 2]
although the standard deviation of the nominal yields is lower relative to the estimates obtained by

also including bond prices in the estimation.

1276 this end, I sampled M draws of © from its posterior distribution and simulated the model for 660 periods,
which corresponds to the number of monthly observations in my estimation sample. This gave me M simulated
trajectories of Y°. For of them, I computed several statistics. In the implementation I set M = 10, 000.
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4.2 Model implications for inflation variance ratios

To compute the data-implied inflation variance ratios for long horizons, Duffee (2016) relies on
a statistical model for expected inflation and bond yields. In Section I extend Duffee’s
analysis by assuming heteroskedasticity in both inflation news and yield shocks instead of splitting
the estimation in different subperiods, and I increase the frequency of the data from quarterly to

monthly observations. In Section I present the model-implied inflation variance ratios.

4.2.1 Inflation variance ratios: Data. Since survey inflation forecasts are focused at relatively
short horizons (usually less than one year), I obtained data estimates of the inflation variance ratios

from a statistical model. For consistency, and following Stock and Watson| (2007)), I extracted one-
(n)

=i+ irom the process of inflation specified in equation (13))-

to five-year inflation forecast innovations, €
Following Duftee| (2016]), I also included information from the surveys of market practitioners that
are released at a different (quarterly) frequency. As argued by Ang, Bekaert, and Wei (2007)), survey-

based inflation forecasts are more accurate than model-based ones, which sharpens the inference

n)

about 67(r,t' Specifically, I used the CPI forecast from the Survey of Professional Forecasters (SPF)

of one to four quarters ahead. The series starts in 1983Q3 .

Similarly, to compute shocks to the n-period yield, e;g)t, I follow Duffee (2016|) and assume

that bond yields follow martingales

u =y + Ty gy g1 and My yyq ~ 20dN(0,1)  where (24)

Oyn) ¢ = Oy(n) exp(hys),  hytr1 = pr,hye + on,wyir1, and  wy 1 ~00.d.N(0, 1),

(n) _
$

where ¢ =
Yot

Tyy(n) 4 My(m) 441 For bond yields, the martingale assumption generates lower forecast
errors than both, survey based (e.g., |Cieslak| 2016) and parametrized models (e.g., Duffee|[2002).

Note that I am assuming a common volatility structure for the bond yields since it produces the
(n)

xi and

best mode fit in terms of the log marginal data density Finally, given an estimate of
(n)
$

6y !

it is straightforward to compute the inflation variance ratios

131 estimated different versions of the model, and assuming a common volatility structure for bond yields delivers
the best model fit.

14Regarding the estimation procedure, I cast the statistical model of expected inflation and bond yields (including
the quarterly information of CPI forecast from SPF) into a mix-frequency state-space model and used a Metropolis-
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[Place Table [3| about here]

Table (3| shows the inflation variance ratios along with the 90 percent confidence interval for
maturities of one to five years. For the sake of completeness, I also report the estimates based on
the homoskedastic version of the model and, in Appendix [C.3] I provide the parameter estimates
together with the assumed prior distribution. In the case of homoskedastic innovations, the pos-
terior medians of the unconditional inflation variance ratios for all bond maturities were below 20
percent whereas the 95 percentiles were below 26 percent. These results are by and large consistent
with the estimates reported by Duffee (2016), and can be viewed as a corroboration of his findings.
Nevertheless, a careful inspection of the innovations suggests that these vary through time and
exhibit heteroskedasticity. Therefore, instead of doing subperiod analysis, in the last three columns
of Table [3] I report the estimates of the model that allows for stochastic volatility. Allowing for
heteroskedasticity in inflation shocks and innovations to bond yields improves the model fit signifi-
cantly, as evidenced by the log marginal data density reported at the end of the table. It also shifts
the distribution of the unconditional inflation variance ratios towards higher values: the posterior
medians were around 37 percent for a one-year bond and 28 percent for a five-year bond. However,
the 95 percentiles were below 53 percent. These ratios are still strongly at odds with corresponding
values from standard macro-finance term structure models[™]

Robustness. As a robustness check on my findings, I repeated the same exercise for a quarterly
version of the statistical model considering different measures of inflation expectations reported by

SFP. In Appendix [C4] I report the estimates in detail, while briefly describing the results here.

within-Gibbs sampler for posterior inference, where I iteratively sampled from three conditional posterior distribu-
tions. I assume that the survey consensus forecasts are measured with errors where the standard deviation of the
measurement errors are free parameters. Similar to the measurement equation for nominal bond yields in Section
24 I set the standard deviation of the yield’s measurement error at 10 percent of its sample standard deviation. In
Appendixg I provide further details.

15The inflation variance ratios are expected to increase under the stochastic volatility case due to a Jensen’s term,
provided that the correlation between Vart(e:?t)) and Vart(e;:)t) is not too high. To see this, note that

Var(Vary (")) ElVar: (5;g)t)]

Vart(esst)) N E[Vart(e("))} E[Vart(eg:fg)] .
)) E[Vare(e))]

,t
Vart(e;gft) E[Var ()] E[Var, (™ )]

€
yS,t y8,t

" Var(Vart(e;g?t)) 1-— Pe(m) ()

28 \| Var(Var(e ’

t
(n)
yS.t
where pm) () denotes the correlation between the corresponding variance terms. The first term on the right hand

TS
side corresponds to the inflation variance ratios under homoskedastic shocks. By assumption, I set p_n) (n) equal
7, t°€ ¢
y®,t
to zero, and as a result, in my estimation, the inflation variance ratios are expected to increase relative to the
homoskedastic case. This exercise can be seen as a best case scenario for the contribution of the Jensen’s term to the

inflation variance ratios, provided that Pm) () is nonnegative.
LI AR I
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Overall, for all bond maturities considered, expected inflation news does not contribute much to
the variation of bond innovations. The posterior medians were around 12 percent. Allowing for
stochastic volatility almost doubles the inflation variance ratios relative to the homoskedastic case,
improves the model fit; furthermore, the 95 percentile of the inflation variance ratios for all SFP

measures considered are below 50 percent.

4.2.2 Inflation variance ratios: Model-implied. In panel (a) of Figure , I plot the 90
percent confidence interval of the posterior predictive distribution of the model-implied inflation
variance ratiosm I also include the posterior median population values implied by the macro-
finance model, and those implied by the statistical model reported in Table |3 Note that the data
sample moments based on homoskedastic (Data) and heteroskedastic (Data SV) innovations are
within the 5 and the 95 percentiles of the posterior predictive distribution for all bond maturities.
The macro-finance model produced posterior median population variance ratios of around 12 and
30 percent for short- and long-maturity bonds. Based on this evidence, I conclude that the model
is able to generate measures of inflation uncertainty that are close to the data and well below 50
percent. In Appendix[C.5] I also show that the model not only matches the inflation variance ratios,

but also the standard deviation of inflation and bond yields innovations.
[Place Figure |4| about here]

In panel (b) of Figure [4f I show the same estimates as in panel (a), but based on a model
that does not consider time preference shocks.lzl If T turn off the time preference shocks channel,
the 90 percent confidence interval of the posterior predictive distribution does not contain the data-
implied sample moments based on homoskedastic news and misses two out of five moments based
on the heteroskedastic case. Furthermore, the posterior median population values implied by this
model are too high, ranging from 51 to around 80 percent. These values are somewhat smaller

than the ones implied in the estimation of |[Bansal and Shaliastovich| (2013]), which range from 76

16gpecifically, I sample M draws of © from its posterior distribution and simulate the models for 660 periods,
which corresponds to the number of monthly observations in my estimation sample. For each one of these simulated
trajectories and for each time period ¢ I computed the implied inflation variance ratio and took the average across
time for a total of M inflation variance ratios. I set M = 10, 000.

17To this end, I solved the model without time preference shocks, cast it into the state-space form, and estimated
it under the same estimation procedure. I made sure that the model estimation matched the same data moments
and predictability results as the model that assumes time preference shocks. Results available upon request.
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to 113 percent. This result is consistent with Duffee’s claim regarding the inability of standard
macro-finance models to generate plausible yield shocks without relying heavily on the inflation
expectation channel.

Allowing for time preference shocks generates the extra persistent fluctuation in real rates
needed to match the empirical volatility of yield shocks without requiring counterfactually high
volatility of innovations in inflation expectations. Overall, in the data and in the model, shocks
to expected inflation are not the main driver of yield innovations. I now proceed to analyze the

relative contribution of each risk factor to movements in the nominal yield curve.

4.3 Model implications for bond yield dynamics

The estimation of the model matches the yields well. The mean absolute pricing errors range from
4.3 to 6.3 basis points for the different bond yields considered. These values are comparable with
the pricing errors reported in the literature on macro-finance term structure models (e.g., [Bikbov
and Chernov2010; Doh/2013). To highlight the importance of each state variable, in Figure |5} I

show the contribution of expected consumption growth, z.;, expected inflation x ;, time preference

2
xc,tr

2

shocks, ¢, and long-run real, o b
b

and nominal, o uncertainties to the 5-Year bond yield. I

2

7.¢» uncertainties

do not explicitly show the contribution of the short-run real, aat, and nominal, o

because their share is too small (less than 0.5 percent) to distinguish them clearly in the graph.
[Place Figure [5/about here]

The unconditional mean of the 5-Year bond yield is 5.97 percent; however, the yield exhibits
substantial variations induced by movements in the state variables. The constant %Bg,n sets the
level at roughly 5.93 percent, and from there on the yield goes up or down depending on the relative
contribution of each risk factor. In the 1970s, the decade of inflation in the United States, the
5-Year bond yield was primarily above 5.93 percent due to a rise in inflation expectations (recall
that BS > 0). In the 1980s, inflation expectations began to decline (see Figure [2) as a result

of the program of disinflation under Chairman Volcker; however, nominal uncertainty, o2

xm,t) was

$

Oz

at an historic high level which moved the long-term yields (B .n > 0 for high n) in the opposite
direction. During that period, time preference shocks were big and negative (see Figure [3)), probably

related to tighter financial conditions, which increased the nominal yield even more. The 1990s and
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2000s were periods of relative stability in prices and, as such, zr; and afmt took a secondary role
in explaining movements in bond prices. The 2000s were characterized by high real volatility (see
Figure |2) which increased the uncertainty about future growth. To hedge this risk, the demand for
risk-free assets increased, and in equilibrium, pushed the yield below 5.93 percent. agc’t was the
dominant risk factor during the 2000s. A similar reasoning applies to the remaining bond maturities.

Now I proceed to analyze the model implications for bond risk premia.

4.4 Model implications for bond return predictability

The model is also able to match the bond predictability results documented in |Campbell and Shiller
(1991) and |Cochrane and Piazzesi (2005). Table {4| shows that the model-implied distribution of the
slope coefficients in the term spread regression of (Campbell and Shiller| (1991) are in line with
the estimates based on observed data. The posterior median estimates are negative, decline with
maturity, and are remarkably close to the actual point estimates. Furthermore, I ran the same
regressions as in |Cochrane and Piazzesi (2005) and concluded that the model-simulated yields also
exhibit excess bond return predictability. The posterior median coefficients were able to match the
sign, pattern, and magnitude of the point estimates based on observed bond yields. The same holds
for the R?, although the posterior median estimates are somewhat larger than the ones based on

observed yields.
[Place Table |4] about here]

In Section I document that in order to match the large variations observed in the term
premium dynamics, the parameters governing the standard deviation of the volatility process in-
crease considerably. To assess the asset pricing implications of these parameter differences, the
last three columns of Table [] replicate the same set of regressions considering only information
contained in the macroeconomic VariablesE Regarding the Campbell-Shiller regressions slope, the
model is unable to replicate the sign nor the increasing pattern (in absolute value) observed in the
data estimates. In fact, the posterior median estimates are close to one, which is exactly the value

predicted by the expectation hypothesis. However, the model is still able to generate some excess

18To this end, I use the posterior medians of the preference parameters Opres along with the posterior distribution
of Oacro Obtained by only considering macro data in the estimation.
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return predictability as evidenced by the R?, though the level is considerably smaller than the one
estimated with bond prices. The inclusion of asset prices in the estimation alleviates these prob-
lems by generating the extra variability needed in the stochastic volatilities of expected consumption

growth and expected inflation to match the term premium dynamics.

4.5 Model implications for expected excess returns

In the model, movements in the one-period expected excess nominal bond returns reflect compen-
sation for innovations to expected consumption growth and to expected inflations driven by their
stochastic volatilities. Figure [6] depicts the posterior median contribution of preference risk, long-
run real and inflation risk for a one-period expected excess return on a 5-Year bondlr_g] The total
annualized unconditional expected excess return is positive at around 0.062 percent. However, the
conditional return varies substantially in the time period considered, ranging from -0.23 percent to
0.43 percent. In the 1980s to early 1990s the major source of risk premium for holding long maturity
bonds was long-run inflation risk, which accounted for approximately 71 percent of the expected
excess bond returns. However, inflation-related risk premia has been practically zero since 1995.
In the 1960s and 2000s the risk premium was negative and driven mostly by long-run real risk.
In a stable inflation environment, interest variation comes mostly from changes in the real rates
which makes long-term bonds safer assets for long-term investors. Short term bonds have higher
exposure to the reinvestment risk caused by changes in the short-term real rates, and as such, they
should bear a bond risk premia. As explained in the model section, bonds also command a positive
risk premium driven by the preference shocks. This source of risk is constant across time and its

contribution to the expected excess return is around 0.065 percent.

[Place Figure [6] about here]

4.6 Model implications for bond term premium

As inBansal and Shaliastovich! (2013]), this model generates variability in term premia through time-

varying quantity of risk driven by the long-run real and inflation volatilities. Conversely, reduced

19T do not explicitly show the contribution of volatility risk since its share is too small (less than 0.55 percent) to
distinguish it clearly in the graph.
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form Gaussian affine term structure models (ATSM) produce time-variation in term premia via
time-varying prices of risk (e.g., Kim and Wright||2005; Bauer, Rudebusch, and Wu 2012; |Adrian,
Crump, and Moench!|2013). Central banks around the world rely on reduced form models because of
their tractability and reliability. It is still an empirical open question whether time-varying quantity
of risk is able to mimic the term premia dynamics based on reduced form models.

In panel (a) of Figure 7} I start by plotting the one- to five-years estimated posterior median
term premiums. As expected, the level and variation of the term premium increases with the
maturity of the bond. During most of the 1960s the term premium component was practically zero;
it increased throughout the 1970s, peaked in the early 1980s, and then began a declining trend for
the rest of the time period. According to my estimates, the term premium became negative since
the onset of the financial crisis which might be traced back to a flight to quality effect or to the
large-scale asset purchases by the Federal Reserve. In this environment, negative term premium
makes sense. We should expect a positive term premium in periods with unstable inflation and
relative constant real rates such as during the 1970s and 1980s, since short-term bonds have a lower
exposure to the former and a higher loading on the latter (see Figure . In this environment, it is

safer to roll over short-term bonds that adapt faster to inflation news, than to buy long term bonds.
[Place Figure (7| about here]

In panel (b), I plot the 5-Year term premium from the model along with the estimates of
Adrian et al.|[2013 (ACM) and Kim and Wright||2005 (KW) for the same bond maturity. These last
two models belong to ATSM class and are published by the Federal Reserve Banks of New York
and St. Louis, respectivelym Panel (b) shows that the model is able to account for the level and
variability of the term premium and even matches the estimates of reduced form ATSM. In fact, the
correlation between the long-run risk model-implied term premium and the estimates of ACM and
KW is about 80 and 98 percent, respectively. The correlation between ACM and KW is 69 percent.
Note that the ACM estimate has been considerably higher since the last crisis, which implies a lower
future path of short-term interest rates, relative to KW or my estimates. Alternatively, the term

premium based on the long-run risk model is considerably higher during the 1980s.

29The term premium based on Adrian et al. 2013 can be found here:
https://www.newyorkfed.org/research/data indicators/term premia.html, while the the term premium based
on [Kim and Wright||2005| can be found here: https://fred.stlouisfed.org/series/ THREEFYTP5
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An advantage of using a macro-finance model is that I am able trace back the movements in the

term premium to changes in macroeconomic risks, while ACM and KW have to rely on correlations.

2

ze,t» and nominal

With this in mind, panel (c) of Figure |7}, depicts the contribution of long-run real, o

2

zr.t, 10 the 5-Year nominal term premium. Without stochastic volatilities, the term

uncertainties, o
premium is constant at around 1 percent. From the 1970s to the late 1990s, long-run inflation
uncertainty increased the term premium above that threshold, while real uncertainties decreased
it to below 1 percent during the 1960s and even to negative values in the late 2000s. Finally, in
panel (d) I show the decomposition of the 5-Year yield into the term premium component and the
expected path of short-term Treasury yields over the next five years. On average, the term premia
is positive and accounts for 6 percentage of the 1-Year bond yield; it goes up to 18 percent for
the 5-Year bond yield. It is instructional to note that the term premium for all bond maturities
considered strongly co-moves with observed yields, which can be seen as a graphical and informal
way to corroborate the failure of the expectations hypothesis presented in Table [4

Overall, recursive preference with time-varying quantity of risk is able to generate plausible
term premia dynamics without compromising the fit of the macroeconomic variables. The term
premium is driven by real and nominal uncertainties and the key driver is time dependent. For the

last two decades, however, nominal uncertainties have not played an important role in driving bond

risk premia dynamics, while real uncertainties have played the predominant role.

5 Conclusion

I developed a nonlinear Bayesian state-space model in which time preference shocks, inflation non-
neutrality, multiple stochastic volatility processes, and time-aggregation of consumption generate
bond yield dynamics largely consistent with the data without sacrificing the fit of the macroeco-
nomic variables. The model accounts for bond return predictability, and mimics the term premia
estimates based on reduced form Gaussian affine term structure models without the need to rely
on a big inflation expectations channel. The model-implied inflation variance ratios are consistent
with the corresponding values based on monthly U.S. data. I find that inflation-related risk factors
have not played an important role in term premia dynamics and expected excess bond returns for

the last two decades: The main driver comes from the real side of the economy.
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Appendix

A Economic Model

Appendix [A] is organized as follows. In Section I introduce the model set-up. In Section
I present the solution to the price-consumption ratio. In Section I write the equilibrium real
and nominal stochastic discount factor (SDF). In Section , I solve the equilibrium nominal bond
yield loadings. In sections and I derive the equilibrium expected excess bond returns and
the term premium dynamics. Finally, in Section [A.7] I solve the model-implied inflation variance

ratios.

A.1 Model set-up

In this section, I provide a solution for the economic model. The assumed stochastic process for the

logarithm of consumption growth, Acir1 = log Cétl, and the logarithm of the inflation rate, m 41

are:

Aciy1 = fle + Tep + TctNei+1
(A.1)

M4l = Pg + Trt + OrtNr 41

where the process for the predictable components and the stochastic volatilities are given by:

Tet+l = PecTet + Pern@rt + OxetNre,t+1

(A.2)

Trt41 = FPraZrt + Oonm tNam t+1

and

oit = wioexp(hit), with  higr1 = pphie + onwiirt

All innovations are distributed according to

Nig+1, Witrl, €ie1  ~0.0.d.N(0,1) for i={c,m xc,am}
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Given the assumed preference for the representative agent, the logarithm of the real stochastic

discount factor (SDF) is given by

0
my1 = 0logd + 0y, — JACtJrl + (0 — Dreps (A.3)
with 6 defined as
1 _
o= —1
=3

and where the time preference shocks evolve as:

Tat+1 = PATAL + O t+1 With 1 ~ 40.d.N(0,1) (A4)

To entertain an analytical model solution I rely on two different approximations. The first, proposed

by (Campbell and Shiller| (1988), involves a log-linear Taylor expansion to r¢ 41 :

Tet+1 = Ko + K1PCiy1 — P + Aciiq (A.5)

where pc;11 is the log price-to-consumption ratio, and kg and x; are constants determined endoge-
nously by the unconditional mean of the price-consumption ratio, pc, in the economy and are given

by
exp(pc)

=———"— and &g =1log(l+ exp(pc)) — k1pc
e ) 0 = log( p(pe)) — K1p

The second approximation, considers a linear approximation of the volatility process around the

unconditional mean of h as in Schorfheide et al.| (2016):

Uz'2,t+1 ~ (9io)? + 2(9i0)higs1
= (%‘0)2 =+ 2(90i‘7)2/7h¢hi,t + 2(‘Pi0)20hiwi,t+1
(A.6)
~ (pio)? + pn, (07, — (9i0)?) + 2(pi0) op,wi 1

2 2 2 :
=0, +vi(o;, —0ig) + owwirr1 for i={c,m xc a7}

where I defined

Vi = ph,, 0io=(pi0)?, and ou, =2(pi0)%on,
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The Euler equation is

Eylexp(mis1 + repv1)] =1 (A7)

which can be used to price any asset in the economy.

A.2 Solution for the price-consumption ratio

In equilibrium, the price-consumption ratio is linear in the state variables:

pe = AO + Acxcvt + Aﬂwﬂ—vt + A)\flf)\’t + Aacait + A0'7r0-72'r,t + AchUC%C,t + AUJCW U;%Tl’,t (A8>

To solve for the coefficients As I use the log-linear approximation for r. 41 in ([A.5)) and substitute
it along with the SDF in ([A.3)) in the Euler equation in (A.7). Using the method of undetermined

coefficient it follows that:

1-1 1-—1
Ac = 71#7 A7r = R1Pcr ¥ s Ay = p7>\ (Ag)
1 — Ki1pee 1P (1 - ﬁlpcc)(]- - ’ilpﬂ'w) A 1 — Kipx
1—~)(1—-41 2 2
4, =t 7= 3) A 0 4, —g A (Al
¢ 2(1 — kive) i e 2(1 — vge) o 2(1 — vgr)

and the constant is given by

_ 1 1 1
Ao = (1 — k1) {logd + (1 — i)uc + Ko + 50(1 + k14N 03 + ki Z (1 —v;)Ajog; + §n19A?af,i}}
i€{0c,0n,00¢,00x}
(A.10)
To complete the derivation of the equilibrium price-consumption ratio I need to solve for steady

state value of pc. To this end, I need to solve the following system of equations:

pc = Ao(lil, Ho) + Z Ai(ml)azo
ie{UuUW,UJ;cﬂ'wﬂ}
= cappe)
1 + exp(pc)

ko = log(1 + exp(pc)) — K1pe

which can be done numerically. Having solved these constants, I now proceed to derive an expression

for the SDF which we will use to price the term structure of interest rates.
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A.3 Expression for the real and nominal SDF

Evaluating 741 with the solution that I just derived for pc; in (A.9) and (A.10) and using the
assumed process for consumption growth I can rewrite the real SDF in terms of the state variables

and the underlying shocks (risk). In particular, I have:

2 2 2 2
Myl = Mo + Melet + MrZrt + MAT )\t + macax,t + mUwaﬂ',t + mUch:Ec,t + mUmexﬂ,t

— AcOetNet+l — AnOr tNrt+1 — AN t+1 — AzcOzetNaet+l — AerOzr t N t+1 (A.11)

- E NiOw; Wi t+1

ie{dc,ﬂw 7UIC7O-I7I'}

Where the \’s represent the market price of each source of risk. The discount factor parameters
and market price of risks are equal to:

, mye =0, my=p, My, = (1 — 9)(1 — Klyc)Aaca my. =0 (A12)

™

me = —

<

Mo, = (1 —0)(1 — K1vge)Agyes Moy, = (1 —0)(1 — K1vgr)A

Ozm

the constant is given by

1 1 1
mo = logd — J,uc + 5(1 —0)0(1 + HlA)\)20'§\ + 5(1 — 9)9/1%[ Z A?o‘%i] (A.13)

iE{UmUW 7a'zca0'z7'r}

and the market prices of risk are

K1px — 0

)\c:’}/a )\71':07 )\/\: 5
1 —K1pa

Aze = (1= 0)k1Ace, Agr = (1 —0)r1 Az (A.14)

Ao. = (1= 0)k1As., Ao, =0, A

™

Ozc = (1 - Q)KJIAO'ZC; )\Uzﬂ- = (1 —_ G)HIAU:C#

To price nominal payoffs is useful to specify the nominal discount factor which is equal to the real

one minus the inflation rate:

My = M1 — T (A.15)

I can derive a similar expression for my ; as in equation (A.11), where the nominal discount

factor parameters and the nominal market price of risks are equal to the real counterparts with the
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exception of mg, mfr and )\fr, which are equal to:
my =mg — S =my—1 and A=) +1
0 =M — fbp, My =My an = Ar+

For convenience, it is useful to express the nominal version of equation (A.11)) in terms of a time ¢

expected component and innovations to the nominal SDF:

$ $ $ $ $
Miy1 — Eymiyq = —Ae0c,tMe, t+1 — A Ot t41 —AXON TN t+1
—_—

short-run consumption risk<0 short-run inflation risk>0 preference risk <0

Al A
—AgcOxc,tNxe,t+1 —ApnOzxm,tNem,t+1

(A.16)

long-run consumption risk<0 long-run inflation risk>0

$
— g A7 Ow, Wi t41

i€{0c,0x,00¢c,00m}

Volatility risk>0

Using the nominal discount factor in equation (A.15]), I can solve the equilibrium nominal yields

in the economy.

A.4 Solution for equilibrium nominal bond yields

In this section I solve the yields of nominal zero-coupon bonds of different maturities. Let PEH be
the time-t price of an n-period zero-coupon nominal bond that pays one unit of numeraire in n

periods. Using the Euler equation I can write the price in logs recursively as

pf,n = logEtea:p(me +Pf+1,n—1) (A17)

where I define pin = logPEn. Conjecture that pin is a linear function of the state variables

$ $ $ $ $ $ 2 $ 2 $ 2 $ 2
Ptn = _(BO,n + Bc,n$c»t + Bw,nxﬂ'i + B)\,nx/\ﬂf + Bac,nax,t + Baw,no-w,t + Baxc,no-mc,t + Ba;m,na;mr,t)
(A.18)
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To solve the Bs I again use the method of undetermined coefficients and it follows that:

3 3 $
Bc,n = Bc,n—lpcc — Me

$ $ $ $
Bw,n = Bc,nflpc‘n' + Bﬂ',nflp‘n’ﬂ — Mg

$ $ $
BA,n = Bx,n—mA —my

$ $ 1,182 $
Bo'c,n = Bo'c,n—lyc - 5()\0) - mo'c

$ $ 1 .s\2 $
Bo’,r,n = Ba'.,r,nfll/’/r - 5()\7!') — Mo

$ $ 1..s $ 2 $
Bg,..;n = By n—1Vac — 5()‘c + Bc,nfl) — Moy,

$ $ 1.y $ 2 $
Ba$ﬂ,n = Bo'm.,r,n—lyzw - 5()\# + B7r,n—1) - mo'T,-,.-

1 1
Bg,n = Bg,nfl - §(>‘/\ + Bf,n—1)20§ - Z [(B’?,nfl)o-?,o(l - Vi) + E(Al + Bf,nfl))2o-ii} - mg
i€{oc,0n,00c,00m}
(A.19)
with initial conditions Bf, = BS , = BY =BS , =BS ,=BS , =BS . =Bj, =0 Given
: : $ _ 1 $
the price of a zero-coupon bond, bond yields are defined y;,, = —InF;,,. Hence,
1
yf,n = 7(B(H);,n + Bg,n Te,t + Bi,n Tt + Bf,n m)\,t + Bfn,n O’E,t + Bi,\-,n 0721',t + Bgmc,n Uzc,t + Bgm,{,n Uz‘n,t)
n —~—~ —— —~— —— —— —— ——
>0 >0 <0 <0 <0 <0 >0 for high n

A.5 Expected excess bond returns

Define the excess log return on buying an n period bond at time ¢t and selling it at time ¢ 4+ 1 as an
n — 1 period bond:

T it = Wem — (0= VY11 — Yia
As we did for the nominal SDF, the excess log return can be expressed in terms of a time ¢ expected

component and return innovations:

$ $ $ $ $ $
TTr i1 — BerTr i1 n = —Ben_10sctNuc,t+1 — Brn_10wm tNer 41 — BX n_10amx 041 — E B n—10w,witt1

i€{0c,0x,00c,Tan}
In the model, one-period expected excess return on nominal bonds is determined by the negative
covariation between the innovations to excess log returns and the innovations to the nominal SDF
in equation ({A.16]):
Etrmf_)tﬂ,n + %Vtr:vf_)tﬂm = 7CO'Ut(mt+1,7’ZC;si_>t+1’n)

2 : $ 2 $ 2 $ 2 $ 2
= - Bi,n—l)‘iawi —B)\,7L,1)\)\0')\ _Bc,n—l/\zcazc,t _Bﬂ',n—l)‘ZWUZTr,t

i€{oc,0m,00c,00m}

Preference risk long-run growth risk long-run inflation risk

Volatility risk

(A.20)
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A.6 Term Premium

I can decompose the n-period yield into expectations of average expected future short rates and

average excess returns over the life of the bond:

1< 1<

5 $ $

Yin = > B+ - P (A.21)
=1 =1

The last term on the right is often described as the bond’s nominal term premium, and we will
denote it as tpfm. In this model, the term premia is time-varying due to variations in bond risk
premia driven by short and long-run real and inflation volatilities. Specifically,

$ $ RS $
Pt = Yton — E ZEtyt+i—l,l
=t (A.22)

lps _ps 1 S B 1—VZL) 2 1 S (B B 1—1’?) 2
= - n - o n—v g; - oi,n — Poy 0;
" 0, 0,1 n is1 11—y ,0 n is irl 11—y st

ie{c,m,xc,xmw} i€{xc,zmw}

A.7 Inflation variance ratios: Model-implied

Equation (A.21]) decomposes an n-period yield into expectations of average expected future short
rates and a term premium component. If I define the ex-ante real rate as the yield of a one-period

nominal bond minus expected inflation,

Tt = y§,1 — Eymi
I can further decompose the bond yield as
1 < 1<
yfn = z; Eyrevioi + " z; Eymivi + tpin (A.23)
1= 1=

From this last equation it is clear that innovations in the n- maturity yield from ¢ — 1 to t are equal

to the sum of news about ex-ante real rates, expected average inflation and term premium shocks:

€y$,t - er,t + 777r,t + thss,t (A.24)
with
ef;)t = Ejiin = Be-1¥in, ) =15 Eirgicia = 20 Bearepioa.
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,E = Eutp},, — Ev1tp} G;nt) =23 B — 230 BT

Given the equilibrium solution of bond yields and the assumed process for the inflation rate I am

able to derive analytical expressions for each one of this shocks. In particular, ex-ante real rates are

given by

RN 1, 8 5 11— e, "
R B = LBt 3 B s et + 1B I e LB T

i€{c,m,zc,xm}

1 cm
L1p

nl— Pcc

1 Z $ -
+ — Baz, Ji,t
n — U

B, [(1 - p?Zl) + pan(L— i) 4 P2 (L= P2 o+ 22 (1 — pec) ]t

1

i€{c,m,xc,xm}

Thus, we can write the innovations to this component as

€ = 2B8, = Pec et 1Mser + EBil - Pi AN
1 per n— n=3
* nlip Beal(l = pec ) + prr (L= pic ) o pn (L= e ®) oo+ (1= pec)lowmetilens  (A.25)
1 1—v
4+ = E BfiJ T Oy Wi t+1

i€{c,m,xc,xm}

Similarly, expected average inflation is equal to
1< 1 1-—
- Z Etﬂ't-l—z Ur + *Bi 17— pﬂﬂ— LTyt
n = 1—prn

with shocks given by

1 _n
grg e ﬁB;s;,l ]‘_ﬂaxﬂ’tflnxﬂ-yt <A26)

Furthermore, equation (|A.22)) provides an expression for the term premia. It follows that shocks

to this component are

n 1 $ $ 1 - l/'n
e =3 2 (Boon = Boig— )ouwinn (A.27)

ie{xc,xm}
It is straightforward to show that the sum of efn t), 7(”) and i 3? (given by equations (A.25)), (A.26)
and (|A.27)) is equal to innovations in the n- maturity yield:

s s s s
e;}f)t = B! w0ue,t—1Met + By nOumt—1Memt + Blaoame + Y Bi n0uwiin (A.28)

i€{c,m,zc,xm}

Finally, the model-implied inflation variance ratios are equal to the variance of (A.26)) divided by

the variance of (|A.28]).
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B State-space representation of the macro-finance model

In this section I describe a state-space representation of the model and its estimation procedure. In
Section I derive the measurement equation, while in Section I show the state transition

equation. In Section [B.3] I describe the algorithm for posterior inference.

B.1 Measurement equation

The goal of this section is to derive the coefficients of the measurement equation described in Section

given by:
Yo =Am(D+ Zspr + 28] 1 (hegr) + Zupqr),  with  wq ~ N(0,1) (B.1)

To have an expression of the observed variables in terms of model parameters and measurement
errors, recall the assumed process for the macroeconomic variables and the equilibrium solutions
for bond yields presented in section [A] together with the measurement-error structure described in

Section In particular suppose that ¢ + 1 is the last month of quarter m and write:

Ac?+1 = pe + Tet + Oe,tNe,t+1 + (€141 — €1)

Aci = pe + Te,t—1 + Tep—1Mct + o€ — €4-1)

. 1 2 2 1 0 a .

Ac{_1 = pe + Tejp—2 + Ocrt—2Mc,t—1 — gUe(€t+1 +e) + 30c€i—1 = FOcEt—2 + gge(6t73 +ea) +od(ef ) +els)

7T§+1 = lrx + Tt + Or,tNr,t+1

$, 1 s $ $ $ $ 2 $ 2 $ 2 $ 2
yt+01,n = g((BO,n + Bc,nxC,tJﬁl + B'/r,nx‘lf,t*kl + B)\,nx%t-kl + Boc,ngc,t+l + Bo,r,no-w,t-ﬁ-l + Bazc,naacc,t+1 + Buxﬂ-,ngxw,t-&-l) + Oypn Cyn,t+1

. . . $ .
where to simplify, the notation yt_fl ,, denotes the one- to five-year zero-coupon bonds. Given these
b

expressions, it is just a matter of ordering all the pieces adequately. The state vector s;41 and sy, ¢

are given by:

St41 = [Ec,t+1, Teyty Tet—1y Ley,t—2 Ocytle,t+1y Oct—1Te,ty Oc,t—2Tc,t—15 Oe€t+1, Oec€ty, Oc€t—1, Oc€t—2, Oc€t—3, Oc€t—4,
q_q q.q q.q q.q /
Oc€iy1y Oc€ty Oc€ 1, Oc€ o, Tmit+l, Trmt, Ontlmwt+1, TXt+1, x/\t] ;
and
v .2 2 2 2 ’
St+1 = [Owc,t+17 Ozrt+1y Oc,t+1; Ow,t+1] .

Given these state vectors, I write the matrices D, Z, Z¥ and X" as follows:
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0 1001001 -1 0 0 0 0O0O0O0GO0 O 0 0 0 0
0 0100100 1 -1 0 0 0UO0O0O0GO0 O 0o 0 0 0
Z=| 0 0010010 - -4 2 -2 1 11 00 -1 o 0 0 0
0 0000O0OO0OOTO O 0 0 0O0O0O0TO0 O0 1 1 0 0
1B, 0o 0o 0000 0O 0O O 0 0 O0OOO 0 B o 1B} o
e 0 0 0 0 0000 0
e 0 0 0 0 0000 0
D=| pe |, 2" = 0 0 0 0 |, =000 0 0
fin 0 0 0 0 0000 0
+ B3 i1BY..n iBi.n =Bi. =Bl . 00 0 0 oy,
Finally, the vector of observables Y, ; and the selection matrix A;1 can be written as:

e If t+1 is the last month of the quarter:
AC?-H-
Acy
Vi = [Ac |, A1 =
7Tf+1

(el eI il
oSO oo
[Nl e N
o= o oo
— O O OO

Yi+1,n |

e If t+1 is not the last month of the quarter:
Y= S A1 = [
Yt+1,n]

00 0 1 0
0o 0 0 0 1|°

[y

B.2 State transition equation

The goal of this section is to derive the coefficients of the measurement equation described in Section
given by:
st+1 = sy + v (he) (B.2)

and

hiy1 = Uhy + Spwist, Bt = [Pactrts Pampits hett1, Pagi1) with  wiq ~ N(0,1). (B.3)
The state variables evolve according to

Tett+1l = PecXet T PenZrt + OxetNrct+1
Trt+1 = FPrrTrt + Opxm tNem,t+1
Tat+1 = PATAE T OANAt+1

Hence, ® and vy41(ht) just make sure that these dynamics are preserved with zeros and ones in the

adequate places:
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fpee 0 00 0O O OO O O 0 0 0 0 0 0 per 0 0 0 0 [ CuwetNec,tt1 ]
1 00 0O0O0O0OO0OOOOOO0O0O0O0O0 0 0O0 0 0 0
01 00 00O0O0OOOOOOOOOO 0 0O0 0 0 0
0O 01 00 0O0ODO0OOUO0OO0OO0O0O0O0O0OO0O 0 00 0 0 0
0O 000 0OOUOOOUO0OO0OO0OO0OO0OO0O 0 00 0 0 Cealett
0O 00010O0O0OUO0ODO0O0O0O0OO0O0OO0O 0 0O0 0 0 0
0O 000010O0UO0OUO0UO0O0O0GO0O0O0OO0O 0 00 0 0 0
0 000 0O0OOUOOOUO0OO0O0GO0O0O0OO0O 0 00 0 0 Te€it
0O 0000O0ODOT1UO0UO0UO0O0O0GO0OO0O0OO0O 0 0O0 0 0 0
0O 0000O0OOOT1U0UO0O0O0GO0O0O0OO0O 0 00 0 0 0
<I>:0000000001000000000000v(h): 0
0 000 O0OUOUOOO0OT1IO0O0O0UO0O0OGO0O 0O 00 0 o0f "= 0
0O 0000O0ODOOUOUOO0OT1IO0O0O0O0OGO0O 0 00 0 0 0
0O 000 0O0OOUOOUOUO0OO0O0O0O0O0OO0O 0 00 0 0 odel,
0O 000 0O0OOOOOO0OOOT10UO0UO0O 0O 0O0 0 O 0
0O 000 0O0OOUOOOO0OO0OO0GO0OT10UO0 O 0O0 0 O 0
0 000 0OOOOOO0OO0O0O0O0T10 0 0O0 0 0 0
0 00 0 0O0O0O0OO0O0O0O0UO0TO0O0O0O0 pix 00 0 0 Owm it Nom,t+1
0O 0000O0OOOOO0OO0OO0O0O0OO0O0OO0O 1 00 0 0 0
0O 0000OOOOUOUOUO0OO0O0O0O0O0OO0O 0 00 0 0 Ot i1
0 000 O0OOOUOUO OO OOUODOOO0GO0OO 0 00 pr O 0
L0 000 OO OODOOOO0OO0OO0O0O0OO0O O 00 1 0 L oanaitl
Finally, W, ¥, and w41 can be written as
Phge 0 0 0 Ohye 0 0 0 Wae,t41
0 opn,. O 0 0 on, O 0 | wem et
=19 0 o o Y =0 0 on 0| T wein
0 0 0 pu, 0 0 0 on, W, t+1

with

ot = pioexp(hy), for i={c,mac,xn}

and I normalized ¢, = 1.

B.3 Posterior inference

For posterior inference I use a Bayesian MCMC particle filter to the state-space representation
described by equations and which is linear conditional on the log volatilities h;. I
briefly summarize the main steps below; for further details, refer to Algorithm 13 in [Herbst and

Schortheide (2015).

1. 1 initialize the Markov Chain at some parameter values ©°.
2. Given OF

(a) Initialization. At time ¢ = 0, I draw M particles {hé}jj\il from the unconditional
distribution of equation Conditional on each particle hé, I generate sg) from the
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unconditional distribution of equation I set each particle weight to 7'('6 = ﬁ, j =
1,..., M.
(b) Recursion. Fort=1,...,T:
i. Forecasting s;. I propagate each particle hj , using the law of motion in equation

to get hl. Given s/_, and (hJ_,,h!) I run one iteration of the Kalman filter
using the state-space system given by equatlons [B:I] and [B:2] which is condltlonally
linear. This step delivers the distribution of s/, denoted by p(s¢|yf, sl 1, h 4, h 1),

which is normal with mean s’,, and variance P’ Hence,

Ll tlt

P]

sp ~ N(s] t|t)

t|t’
ii. Forecasting y;. I compute the incremental weights (Z)g according to
7 =y X DT s Fly )

where the Kalman filter step in i delivers gjt't and Ft|t 1~ The likelihood p(yf |yt\t 17
is conditionally Gaussian and follows from the measurement equation [B:I}

iii. Updating. I define the normalized weights by

§ 4
t\t—l)

, ~j
J ¥

™ T SM ~;
Zi:1 i

and resample the particles h{ and states s{ using multinomial resampling with
weights 7] .
(c) Likelihood Approximation. The approximation of the log-likelihood function is given

by
M

Inp(y? [Y1%—1) = Inp(yi_1|Y1%—2) + ln(z i)
i=1

(d) Metropolis-Hastings algorithm Once I am able to approximate the likelihood func-
tion, I use a standard random walk Metropolis-Hastings algorithm to obtain a new pa-
rameter draw ©%+1. See Algorithm 18 in [Herbst and Schorfheide| (2015) for further
details regarding this step.

(e) I repeat steps (a) to (b) Ngip, times.

In the implementation, I used 10,000 particles (M = 10,000), generated 50, 000 draws (N, =
50,000) and set the burn in period at 25,000. I targeted an acceptance rate of approximately 30

percent. In addition, I checked that the results do not changed if I increase the number of particles.

B.4 Role of measurement error model of consumption and stochastic volatility

In Section of the main text, I documented that the posterior median estimates of {pcc, pers Prr }
are remarkably similar with or without including bond prices in the estimation. The result is mostly

driven by the assumed measurement error model for consumption. To see this, in Table[BI}I show the
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5, 50, 95 percentiles of the posterior distribution of the persistent parameters under three different
specifications of the consumption growth and the inflation process. In (a) I assume homoskedastic
innovations and that consumption growth is measured without any errors, (i.e., ¢ = ¢;). In (b) I add
the measurement error model of consumption, while in (c), I assume the measurement error model
of consumption and consider short- and long-run stochastic volatility. In the last specification, I
impose a common stochastic volatility process (i.e., het = hget and byt = hyr ). Furthermore, in
the last column of the table, I report the log marginal data densities to provide formal support in

terms of model fit for each specification. In all cases I only consider macro data in the estimation.
[Place Table about here]

Without the measurement error model, the posterior median p.. is equal to —0.20 in order to
match the monthly negative autocorrelation observed in the data of —0.17. Nevertheless, this version
of the model cannot reconcile the monthly negative autocorrelation with a positive autocorrelation
observed at a quarterly or annual frequency. Accounting for measurement errors in consumption
that average out every quarter alleviates this problem. Under this specification, the posterior
median of pe. jumps to 0.90, and the fit of the model measured by the log marginal data density
improves significantly from 5855 to 5870. At the same time, the persistence parameter associated
with expected inflation, prr, remains largely unchanged at a value of 0.91, while the parameter
that measures the effect of expected inflation on expected growth, p.r, increases from -0.13 to
-0.02. Adding stochastic volatility to the process of the macro variables improves the model fit
considerably, the posterior uncertainty decreases (tighter credible intervals) and the persistence
parameters p.. and prr jump to 0.94 and 0.98, respectively@ per Temained at -0.02. In terms of
model fit, adding stochastic volatility increases the log marginal data density from 5870 to 6055@
Finally, it is important to highlight that under the three different specification, p.r, is negative and

significant as suggested by the 90 percent credible interval.

21The intuition for why the pe. and prr increases goes as follows. The presence of stochastic volatility allows for
sharp fluctuations in Acy,; and 7¢,; by incurring in similar movements in their conditional variance without the
need of large temporary shocks by increasing o and ¢, and reducing the estimates of the persistent parameters.

22In specification (Me. Sv.) I impose a common stochastic volatility process (i.e.hc,t = hue,t and Rrt = hary). If
I allow for four different stochastic volatility processes, the confidence interval for most of the parameters increased
considerably and the log marginal data density decreases to 5761. With these evidence, I conclude that there is not
enough information in consumption growth and inflation to identify four different stochastic volatilities
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B.5 Misspecification test

To assess the extent to which the documented change in the parameter estimates documented
in Section leads to a decrease in fit of the macroeconomic variables, I re-estimated model
(3) conditional on different parameter values and re-computed the marginal data densities. In
particular, I took the set of parameters that deliver the highest posterior value under the model
that includes and excludes bond prices in the estimation and fixed one parameter at a the time.
From these estimations, I obtain constraint log marginal data densities and I standardize those
values using the mean and standard deviation of the log marginal data densities computed from
30 different estimations of the unconstrained version of the model. The results are summarized in
Table where I report the values only for the parameters that are most relevant for matching the
nominal yield curve distribution. As expected, all standardized marginal data densities related to
the high posterior macro parameters (Macro data) are positive or less than one and a half standard
deviations away from the unconstrained model. The key finding here is that if I move to the high
posterior parameters associated with the information contained in bond prices, the drop in the log

marginal data densities is small. With the exception of pp__, all values are inside one standard

xT )

deviation, indicating that there is essentially no or a small tension between the parameter estimates

obtained with our without bond yield data.

[Place Table about here]

C Inflation variance ratios: Data

In this section I provide further details on how to compute the inflation variance ratios from the
data. In Section I show how to compute news to expected average inflation and to nominal
bond yields, which are the main ingredients for the inflation variance ratios derived from the data.
In Section [C:2] I write the state-space representation of the model, while in Section [C.3] I present
the estimation procedure and the prior and posterior distribution of the model parameters. Finally,

in Section [C.4] I carry out some robustnesses checks based on a quarterly version of the model.
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C.1 News to expected average inflation and to nominal bond yields

From equation in Section I showed that innovations to the n- maturity yield from ¢ — 1
to t are equal to the sum of news about ex-ante real rates, expected average inflation and term
premium shocks:

e;;f?t = eg;) + 67(:2 + 6£Z$?,t (C.1)

Next I provide further details on how to obtained an estimate of €, ;

For consistency, I extracted

one- to five-year inflation forecasts from the same model assumed in the macro-finance model:

M1 = Mg + Ty + OngNrt

(C.2)
Ty = PTy—1 + OgtNat
with
T]ﬂ—,t, na:,t ~ ZZdN(O, 1)
Given this process for inflation, time ¢ inflation expectations for j months ahead is given by
Eymsj = pn +p 'y
Hence the expected inflation innovation from t to ¢t + 1 in period ¢ + j can be written as
By — Eymy = p' L og e
From here, I can express the innovations to expected average inflation as
m n
(n) _ 1 _11-p
€xt = Ery1 — Etﬁ Z;Wtﬂ' = 1= ’ Ot Nt t+1 (C.3)
1=

)

,» 1 assume that bond yields follow

Alternatively, to compute shocks to the n-period yield, 65;
martingales

™ = t(ﬁ)ﬁgy(n),tny(n),m with 1, 44 ~ i.1.d.N(0,1) (C.4)
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where

() (C.5)

€yst = Ty tlly(mot i1

Finally, the process for the stochastic volatilities is also the same as in the baseline model

oir = oiexp(hit), with  hj1 = prhie + onwipr1 and w41 ~ 4.4.d.N(0,1) for i = {m,z,y}
assuming a common volatility structure for the bond yields.

C.2 State-space representation

The state-space representation is given by the measurement equation:

Y;‘,0+1 = At+1 (D + Zat+1 + H€t+1) with €41 ™~ N(O, I) (06)

and the state transition equation is

Aty = TOét + 77t+1(ht) and ht+1 = \I/ht + Ehthrl with W41 N(O, I) (07)

with hep1 = [Rrit1, Ropr1, Rysra]’.

Following Duffee (2016), I include information from the surveys of market practitioners that
are released in a different (quarterly) frequency to sharpen inference. In particular, I consider the
CPI forecasts from the Survey of Professional Forecasters of one to four quarters ahead. To this end,
I assume that the forecasts are published at the second month of the quarter, which is consistent
with the release date of the Federal Reserve Bank of Philadelphia. To gain some insight into how to
include this information, let ¢ be the second month of the quarter. Then the market practitioners
make an inflation forecast for say, one quarter ahead, starting from period ¢ 4+ 1, which I label as

ﬁfj&l. Using the process for inflation in equation the following relation follows:

70 = Eymis + iy + Topa) = Spp + prae
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where to simplify the notation I defined p; = p+ p?+ p3. The same applies for the inflation forecasts

of two frtofl, three ﬁff’l and four ﬁffl quarters ahead. Following this notation, the observed variables

in terms of the state variables are given by

Tl = M+ T + Ox ¢t 41

o1 _ . 11
Typ1 = 3K+ P12+ oceryy

02 _ ~ 2 2
Ty = 3p 4 P2y + oc€ry

~03 _ ~ 3.3
Ty = 3p+ p3xe + o €4

~o04 _ ~ 4.4
Tyhq = 3+ pare + o €y

$,0

_ .3
yt-}-l,n - yt+1,n + Ue:yn 6yn,t+1

where to simplify the notation yffl , denotes the one- to five-year zero-coupon bonds and I as-

sumed that the survey consensus forecasts are measured with errors. The standard deviation of

the measurement errors are free parameters given by o!. To be consistent with the macro-finance

model, I set the standard deviation of the yield’s measurement error, oc,,, at 10 percent of their

sample standard deviation, similar to the assumed value for the macro-finance model. Furthermore,

I defined

pa=p"+p"+p% ps=p"+p°

The state vector can be written as
_ 1.1
Qi1 = [$t+1 Tt Omtlrt+1  Oc€q1

Hence, the D, Z and H can be written as

" 01 100 0
31 0 pr 01 0 0
~|3u 1o s 0 0 1 0
D=13l> % 1o 5 00 0 1
31 0 ps 0 0 0 0
0 0 0 0000

o

400 and  jy = p'0 4 plt 4 pl2,

2 2 33 4.4
Oc€t41 Oc€i41 Oc€iq41 Yt+ln

—oooo
—ococooo
coocooo

=

Il
coocooo
coocooo
coocooo
coococoo

yt,n]/ .

OO OO OO

OO O oo

Oe,y

n

Finally, the vector of observables Y, ; and the selection matrix A;;1 can be written as:
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o If t-+1 is the last month of the quarter:

7 /

.
o t+1
}/;H»l = ﬁ_lj,é ) At+1 =

O OO OO
SO OO~ O
OO O~k OO
OO~ O OO
O~ OO OO
— O O O OO

$,0

Yit1,nd

e If t+1 is not the last month of the quarter:

Ve — i1 A _
t+1 = |, $ ) t+1 =
Yt+1,n]

o~
oo
oo
oo
=)
o

Regarding the coefficients associated with the state transition equation, I write 7" and 741 (h¢) as

follows ) )
7 0 0 0 0 0 0 0 0 TNt
1 00 0O0O0GO0U 0O 0
0000 0O0O0O0O Tt 41
000 0O0O0O OO0 O olety
T=10 0 0 0 0 0 0 0 O, myi(he) = olet iy
00 00 O0OOTUO0TO 0O oled
000 O0O0OTU OO OO oletiq
000 0O0O0TO 010 Tym) 4Ty 411
0 00000 0 1 0l

Finally, the matrices associated with the log volatility process are:

Phr 0 0 Oh, 0 0 W t41
=0 pn 0], v =10 on 0|, Wit1 = W41
0 0 phy 0 0 Uhy Wy, t+1

with

oir = ozexp(hiy), for = {m,z, y(”)}.

C.3 Posterior inference

I use a Metropolis-within-Gibbs sampler for posterior inference. To this end, it is useful to sample
from the conditional distributions for a subset of parameters and latent variables conditional on all
the remaining ones. In particular, I iterate over three conditional distributions. I summarize the

parameters and latent volatilities accordingly:

1 2 3 4
671' = {,U/7 Om, P, Og, Uy(12)7 Uy(24)7 Uy(36)7 Uy(48)7 Uy(60)7 Ocs O¢y Ocs O¢y s (C8)

On = {Phr+ Ohrs Phos Ohes Phys Onyts HYT = {hET hyT hy T}
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I use Markov chain Monte Carlo (MCMC) algorithm that iterates over the three conditional distri-

butions to generate a sequence of draws
{0, (1)), o))
from the posterior distribution defined by Bayes’ Theorem as:

P(Or, O, H'TY?) o p(Y°|Or, O, H' )p(H" |0, ©1)p(O, O5)

The main steps of the Metropolis-within-Gibbs sampler are as follows:

1. T initialize the sample starting from{(H"T)©), @20)}.

2. I use a random walk Metropolis-Hastings step to draw from the posterior of ©, conditional
on {Y°, (HVT)(s=1) @;LS_I)}. For the covariance matrix of the proposal distribution, I follow
Schorfheide (2005) and use the negative inverse of the posterior density Hessian evaluated at
the mode. I target an acceptance rate of approximately 30 percent by adjusting the scaling
factor of the proposal distribution accordingly.

3. I sample the stochastic volatilities using the procedure of Kim, Shephard, and Chib| (1998)

conditioning on {Y°, @ﬁf), @gs_l)}.

4. 1 draw Oy, using a standard Gibbs sampling approach conditional on {(HT)(®)}. T retain
draws that imply roots inside the unit circle.

I generated 50,000 draws and I set the burn in period at 25,000. Table [CI] shows the prior

and posterior distribution.

[Place Table about here]

C.4 Robustness

As a robustness check, I repeated the same exercise for a quarterly version of the homoskedastic
and heteroskedastic model considering three different measures of inflation expectations reported
by SFP. Table shows the estimated inflation variance ratiosﬁ In panel (a) I replicate the same
exercise as in Table |3 but using quarterly frequency instead of using mix-frequency data. In panel

(b), T use the GDP deflator (PGDP) as the measure of the inflation rate and I use the survey

2 . .
3Parameter estimates are available upon request.
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consensus forecasts of current-quarter inflation (nowcasts) rather than actual observed inflation as
my measure of 7°. In panel (c), I repeated the same exercise as in panel (b) with CPI inflation
instead of PGDP. Overall, expected inflation news does not contribute much to the variation of bond
innovations (below 30 percent) for all bond maturities considered. Allowing for stochastic volatility
almost doubles the inflation variance ratios relative to the homoskedastic case, and increases the

model fit; furthermore, all inflation variance ratios are below 50 percent.

[Place Table about here]

C.5 Inflation variance ratios

Table [C3] reports the model-implied unconditional standard deviation of monthly shocks to both
expected inflation and to bond yields as well as the inflation variance ratios. I report values implied
by the macro-finance model and the "data" assuming homoskedastic (No sv) and heteroskedastic
(sv) innovations. I report the posterior median values of the population estimates. The macro-
finance model produces population variance ratios of around 12 percent at short maturities and
less than 30 percent at long maturities. Hence, the model is able to generate measures of inflation
uncertainty that are close to the data and well below a half. It is important to highlight that
the model not only matches the inflation variance ratios, but also the standard deviation of the

innovations in inflation and bond yields.

[Place Table about here]
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Figure 1.

Equilibrium nominal bond yield loadings. This figure shows model implied nominal bond
yield loadings evaluated at posterior median values reported in Table . Panel (a) shows the loadings

with respect to expected consumption growth, z.;, expected inflation, xz; and time preference
shocks, x;, respectively. Panel (b) shows the loadings with respect to long-run real, Ugc,t, and
fm’t, uncertainties. Panel (c¢) shows the loadings with respect to short-run real, ait and

2 ,, uncertainties. Maturity is in months.
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Figure 2.

Macroeconomic latent state variables. This figure shows the smoothed mean and volatility
states filtered from the macro-finance model. In panels (a) and (b), I overlay the smoothed states
z. and z, obtained without bond prices (dashed line) along with the observed series of consumption
growth and inflation, respectively. Dark gray shaded areas correspond to the 90 percent credible
intervals. Light shaded bars represent recessions as defined by the National Bureau of Economic
Research. The estimation sample is from 1960:M1 to 2014M12.
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Figure 3.

Time preference shocks and financial condition Index. This figure shows the latent time
preference shocks state variable filtered from the macro-finance model along with the adjusted
National Financial Conditions Index published by the Federal Reserve Bank of Chicago. Dark gray
shaded areas correspond to 90 percent credible interval. Light shaded bars represent recessions as
defined by the National Bureau of Economic Research. The estimation sample is from 1960:M1
to 2014M12. The adjusted National Financial Conditions Index starts in 1973 and is published at
https:/ /alfred.stlouisfed.org/series?seid=ANFCI.
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Figure 4.

Inflation variance ratios: Data and model. This figure shows the inflation variance ratios
implied by different assumed models. The black and white circles denote the posterior median
population values from the statistical model under the assumption of homoskedastic (Data) and
heteroskedastic (Data SV) shocks, respectively. The black squares represent the posterior median
value of the macro-finance model with (panel (a)) and without (panel (b)) time preference shocks.
I also include the 90 percent confidence interval of the macro-finance models to account for finite
sample uncertainty.
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Figure 5.

Decomposition of the 5-Year bond. This figure shows the model-implied nominal bond yields. I
show the posterior median contribution of each state variable to the 5-Year bond yield. Light shaded
bars represent recessions as defined by the National Bureau of Economic Research. The annualized
mean absolute pricing errors E(|uy||Y ) in basis points are equal to 5.66 (for the 1-Year bond, 1y),
5.97 (2y), 5.71 (3y), 4.26 (4y) and 6.26 (5y). The estimation sample is from 1960:M1 to 2014M12.
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Figure 6.

Decomposition of one period expected excess bond returns for the 5-Year bond. This
figure shows the contribution of long-run growth risk, long-run inflation risk, and preference risk
to the one-period expected excess bond returns for the 5-Year bond. Light shaded bars represent
recessions as defined by the National Bureau of Economic Research. The estimation sample is from
1960:M1 to 2014M12.
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Model-implied term premium. This figure
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(b) 5-Year term premium: Different models
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: Expected rates and term premium

shows the model-implied bond term premium.

Panel (a) shows the posterior median term premium for different bond maturities. Panel (b) shows
the posterior median model-implied term premium for the 5-Year bond together with the term
premium estimated by Kim and Wright| (2005) (gray line, Federal Reserve Bank of St. Louis) and
|Adrian et al| (2013) (black dashed line, Federal Reserve Bank of New York) for the same bond
maturity. Panel (c) decomposes the posterior median of the 5-Year bond term premium into its
different sources of risk. Panel (d) decomposes the 5-Year bond into expected average short-term
rates and the term premium component. Light shaded bars represent recessions as defined by the
National Bureau of Economic Research. The estimation sample is from 1960:M1 to 2014M12.
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Prior Distribution

Macro data

and bond prices

Macro data

Distr. 5% 95% 5% 50% 95% 5% 50% 95%
Household Preferences
0 B 0.99679  0.99997 0.99916  0.99939  0.99946 - - -
v G 0.52277  3.69669 1.53386  1.55565  1.57737 - - -
v G 2.73680  15.49909 9.63995  9.85970 10.08695 - - -
Time preference shocks
ey U -0.90013 0.90010 0.95096  0.95142  0.95276 - - -
px U 0.14972  2.85078 0.22062  0.22581  0.22872 - - -
Consumption growth
e N -0.00667 0.00984 0.00160  0.00164  0.00167 0.00011  0.00133  0.00203
o. IG 0.00079 0.00612 0.00149  0.00151  0.00153 0.00124  0.00162  0.00207
Vze U 0.15065  2.85003 0.18402  0.18774  0.19145 0.14766  0.22489  0.34413
pec U -0.89950 0.90028 0.94698  0.94815  0.94995 0.89076  0.94603  0.97630
per U -0.89978  0.90014 -0.01512 -0.01467 -0.01382 -0.04398 -0.02090 -0.00209
Inflation
ur N -0.00512 0.01132 0.00308  0.00314  0.00322 0.00122  0.00284  0.00403
pr IG 0.14966  2.84986 0.78484  0.79180  0.80489 0.75878  0.98835  1.26624
e IG 0.15010  2.85092 0.07602  0.07799  0.08162 0.16288  0.22976  0.33315
prr U -0.89968  0.89992 0.98304 0.98347  0.98389 0.96405 0.98199  0.99485
Long-run volatility
ph.. NT 0.81766  0.98222 0.97952  0.98222  (.98881 0.85926  0.97316  0.99478
oh,. G 0.00334  0.19515 0.20044  0.20186  0.20352 0.00349  0.01367 0.12274
Ph.. NT 0.81761  0.98231 0.98437  0.98700  0.98979 0.70757  0.81366  0.89535
oh,.IG 0.00333  0.19458 0.21894  0.22100  0.22226 0.04830  0.09609 0.16833
Short-run Volatility
pn. NT 0.81768  0.98224 0.99649  0.99864  0.99956 0.85926  0.97316  0.99478
on, IG 0.00334  0.19426 0.01079  0.01425  0.01768 0.00349  0.01367 0.12274
pn. NT 0.81781  0.98229 0.79965 0.81893  0.84364 0.70757  0.81366  0.89535
on, IG 0.00334  0.19567 0.10019  0.10196  0.10771 0.04830  0.09609  0.16833
Consumption measurement errors
oe IG 0.00079 0.00613 0.00138  0.00139  0.00140 0.00129  0.00155 0.00175
ol IG 0.00067 0.03877 0.00126  0.00131  0.00133 0.00119 0.00145 0.00164
Table 1.

Prior and posterior model estimates. This table reports the 5 and 95 percentiles of the prior
distribution of the model parameter along with the 5, 50, and 95 percentiles of their posterior
distribution. I present the posterior distribution with (Macro data and bond prices) and without
(Macro data) bond prices included in the estimation. The assumed prior distributions are the
following: B - beta , G - gamma , IG - inverse gamma, N -normal , N7 - truncated normal outside
of the (—1,1) interval and U - uniform. I assume that the measurement errors of consumption
average out every quarter. I assume a common stochastic volatility process (i.e., het = hyeyr and
hzt = hgxt) in the estimation with only considering macro data. The estimation sample is from

1960:M1 to 2014M12.
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Parameters Estimates are based on

Macro data &
and bond prices

Macro data

Macroeconomic Moments

Ac Data 5%  50%  95% 5%  50% 95%
Mean 1.95 0.05 196 3.82 0.11 1.68 3.05
Std. Dev. 1.31 1.04 223 6.54 0.85 1.37 241
AC(1) 0.52 0.40 0.67 0.84 0.37 0.64 0.85
T

Mean 3.84 1.09 3.77 646 0.39 3.26 5.75
Std. Dev. 2.76 0.68 196 8.44 145 2.14 3.57
AC(1) 0.73 0.36 0.74 0.90 0.52 0.74 0.89
Corr(Ae,7) -0.04 -0.65 -0.18 0.22 -0.68 -0.30 0.15

Bond Yield Moments

Mean Data 5%  50%  95% 5%  50% 95%
ly 5.31 0.95 5.00 7.34 2.04 445 6.60
2y 5.51 0.60 5.16 7.72 2.55 480 6.84
3y 5.70 0.41 530 8.06 2.86 5.06 7.06
4y 5.86 0.43 541 8.35 3.11 524 7.24
Sy 5.97 0.54 550 8.52 3.28 537 740
Std. Dev.

ly 3.18 1.38 3.06 16.77 1.48 2.04 3.19
2y 3.13 1.17  3.02 22.02 1.18 1.70 2.90
3y 3.04 1.03 3.00 25.40 096 146 2.70
4y 2.96 0.93 295 27.25 0.80 1.27 2.54
Sy 2.88 0.84 287 27.86 0.67 1.13 241

Table 2.

Moments of macroeconomic variables and bond yields:
reports descriptive statistics for consumption growth, inflation, and nominal yields. I included the
sample data moments and the 5, 50, and 95 percentiles of the model-implied moments based on
10,000 parameter draws of the posterior distribution with and without bond prices in the estimation.
I simulated the series for 660 periods, which equals the number of periods in the sample. To compute
the bond yield moments with only considering macroeconomic data, I set the preference parameters
d, %, v, px and @y to the posterior median estimates from Table [I} The estimation sample is from

1960M1 to 2014M12.
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Data and model.

This table



Homoskedastic Heteroskedastic

n 5%  50%  95% 5%  50%  95%
ly 0.148 0.193 0.245 0272 0.371 0.526
2y 0.148 0.193 0.255  0.264 0.347 0.480
3y 0.152 0.198 0.253  0.244 0.329 0.453
4y 0.137 0.177 0.226  0.216 0.293 0.407
5y 0.138 0.177 0239  0.212 0.287 0.385
Inp(Y®) 18410 19075

Table 3.

Unconditional inflation variance ratios: Data. This table reports the population values of
inflation variance ratios obtained from the statistical model of inflation and bond yields. I include
the 5, 50, and 95 percentiles based on 10,000 parameter draws of the posterior distribution. The
statistical model assumes that inflation is the sum of a constant and an AR(1) component. Shocks to
bond yields are computed assuming they are martingales. The table reports inflation variance ratio
under the assumption of homoskedastic and heteroskedastic innovations. The estimation sample is
from 1983M7 to 2014M12.
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Parameters Estimates are based on
Macro data Macro data
and bond prices

n  Data 5%  50% 95% 5%  50% 95%
Campbell-Shiller Regression: Slope

2y -0.67 -2.96 -0.78 1.09 0.32 1.00 1.83
3y -1.07 -4.04 -1.02 1.23 0.40 1.12 2.05
4y -1.47 -5.22  -1.19 1.32 043 1.15 2.12
5y -1.50 -6.46 -1.26 1.42 045 1.16 2.15
Cochrane-Piazzesi Regression: Slope

2y 0.45 0.35 0.44 0.56 0.50 0.60 0.71
3y 0.86 0.77 0.85 0.92 0.86 0.94 1.03
4y 1.25 1.16 1.20 1.23 1.08 1.16 1.23
5y 1.44 1.36  1.51 1.66 1.15 1.30 1.46
Cochrane-Piazzesi Regression: R?

2y 0.21 0.04 0.38 0.76 0.00 0.03 0.10
3y 0.23 0.05 0.37 0.69 0.00 0.03 0.10
4y 0.26 0.06 0.34 0.63 0.00 0.03 0.10
by 0.24 0.06 0.31 0.58 0.00 0.03 0.10

Table 4.

Bond risk premia: Data and model. This table reports bond return predictability evidence.
I included the 5, 50, and 95 percentiles of the model-implied estimates based on two different
regressions as well as the estimates obtained from observed bond yields. The model-implied bond
yield series is based on 10,000 parameter draws of the posterior distribution with and without
considering bond prices in the estimation. I simulated the series for 660 periods, which equals the
number of periods in the sample. To compute the model-implied bond yields based only on macro
data, I set the preference parameters §, ¥, v, pn and ) to the posterior median estimates from
Table [l For the Campbell-Shiller regression I report the slope, 8, from the following regression:
Yt+12,n—12 — Ytn = Qp + ﬁn%(yt,n —ye12) + ep12 for n € {24,36,48,60}. For the Cochrane-
Piazzesi regression I report the slope, b,, and R? from the following regression: rmf St12n =
ap + byrxy + €441, Where 7y is the fitted value from i Ziy:% T‘ZL‘EHtJan =7 + vlf,fly + 'Y2f32y +

V3f15$3y + ’74ft$4y + 75ft$5y + €t41. T‘ZL‘?HFA ,, denotes the excess log return on buying an n period

bond at time ¢ and selling it at time ¢ + las an n — 1 period bond defined by T‘ZE?%HLTL = nyf’n —

(n— 1)yf+1’n71 - yil for n € {24,36,48,60}. f* denotes the corresponding forward rates. The
estimation sample is from 1960M1 to 2014M12.
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Macro data
Posterior Distribution

Pce Pen Prr lnp(Yo)
5%  50% 95% Width 5%  50% 95%  Width 5% 50% 95% Width

(a) No Me. -0.286 -0.206 -0.130 0.156 -0.223 -0.128 -0.0392= 0.184 0.849 0.912 0.963 0.1139 5855
(b) Me. 0.828 0.892 0.941 0.112 -0.041 -0.019 -0.0008 0.040 0.873 0.9363 0.972 0.098 5870
(c) Me. Sv. 0.890 0.946 0.976 0.085 -0.044 -0.021 -0.002 0.041 0.964 0.9820 0.994 0.030 6055

Table B1.

Posterior estimates of the persistence parameters. This table reports the 5, 50, and 95
percentiles of the posterior distribution for the persistent parameters pec, per and prr for the monthly
version of the model. T also include the 90% confidence width and the log marginal data density. I
consider three different specifications of the process of consumption growth and inflation. No Me.,
consumption growth is measured without any errors, (i.e., ¢f = ¢;), and homoskedastic innovations;
Me. assumes the measurement error model of consumption; Me. Sv., assumes the measurement error
model of consumption and short- and long-run stochastic volatility imposing a common stochastic
volatility process (i.e.hcy = hger and hry = hgry ). The estimation sample is from 1960:M1 to
2014M12.

Time Period: 1960 to 2014

Fixed  Macro data Std. Macro data Std.
Param and bond prices MDD MDD
Persistence parameters
Pee 0.9504 -0.6905 0.9001 -0.1828
Pen -0.0139 1.8419 -0.0152 2.7896
Prr 0.9833 -0.8736 0.9702 -1.4128
Scale volatility parameters
Oc 0.0015 -0.2544 0.0012 0.4817
Pac 0.1858 0.5237 0.2250 0.9632
O 0.7817 1.1512 1.2921 0.5140
Pam 0.0785 0.1980 0.2974 0.0722
Long-run Volatility
Phae 0.9853 -0.9074 0.8292 1.1632
Ohye 0.2028 1.1607 0.2509 1.2429
Phan 0.9873 -5.8628 0.7099 1.2272
Ohopn 0.2218 4.3508 0.1482 1.8991
No Constrains: Inp(Y): 6055  Std. Dev. inp(Y): 6.05

Table B2.

Standardized marginal data densities for macroeconomic model. This table reports stan-
dardized log marginal data densities for the process of consumption growth and inflation conditional
on different parameter values. To standardize the values, I used the mean and standard deviation
of the log marginal data density from the unconstrained version of the model based on 30 different
values computed from the same number of unconstrained estimations. The estimation sample is
from 1960:M1 to 2014M12.
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Prior Distribution Homoskedastic Heteroskedastic
Distr. 5% 95% 5% 50% 95% 5% 50% 95%
Inflation
uw N -5.12e-03 1.13e-02 5.75e-03  6.90e-03 8.36e-03 5.91e-03 6.91e-03 8.06e-03
or IG 7.94e-04 6.10e-03 2.42e-03 2.56e-03 2.71e-03 1.72e-03  1.83e-03 1.95e-03
p U -0.900 0.900 0.995 0.996 0.998 0.995 0.996 0.997
o, IG 7.94e-04 6.14e-03 1.29e-04 1.44e-04 1.65e-04 1.16e-04 1.31e-04 1.52e-04
Bond yields
o2 IG  7.94e-04  6.09e-03 3.01e-04 3.22e-04 3.43e-04 1.96e-04 2.12e-04 2.28e-04
o4 IG 7.96e-04  6.12¢-03 2.96e-04 3.16e-04 3.36e-04 2.01e-04 2.14e-04 2.30e-04
o6 IG 7.94e-04  6.11e-03 2.86e-04 3.03e-04 3.25e-04 2.01e-04 2.16e-04 2.32e-04
oy IG 7.96e-04  6.11e-03 2.95e-04 3.15e-04 3.37e-04 2.09e-04 2.23e-04 2.42¢-04
oyo IG 7.94e-04  6.09e-03 2.84e-04 3.01e-04 3.24e-04 2.06e-04 2.23e-04 2.38e-04
Stochastic volatilities
Phae NT 0.523 0.982 - - - 0.697 0.953 0.990
oh,. IG 0.010 0.584 - - - 0.002 0.005 0.031
Phor NT 0.523 0.982 - - - 0.812 0.894 0.947
oh,. IG 0.010 0.584 - - - 0.031 0.056 0.102
Phor NT 0.523 0.982 - - - 0.498 0.603 0.707
oh,. IG 0.010 0.584 - - - 0.237 0.310 0.393
Measurement errors SPF
ol IG 7.93e-04 6.11e-03 6.73e-04 7.59e-04 8.43e-04 6.74e-04 7.48e-04 8.26e-04
o2 IG 7.94e-04 6.11e-03 2.72e-04 3.16e-04 3.65e-04 2.70e-04 3.16e-04 3.67e-04
o IG 7.94e-04 6.12¢-03 2.00e-04 2.39e-04 2.87e-04 2.04e-04 2.43e-04 2.84e-04
ot IG 7.93e-04 6.11e-03 3.42e-04 3.88e-04 4.49e-04 3.46e-04 3.85e-04 4.34e-04
Inp(Y°) 18410.781 19075.976
Table C1.

Prior and posterior estimates from the statistical model of inflation and bond yields.
This table reports the 5 and 95 percentiles of the prior distribution of the model parameter models
along with the 5, 50, and 95 percentiles of their posterior distribution. I present the posterior distri-
bution with (Homoskedastic) and without (Heteroskedastic) stochastic volatility in the innovations
of inflation, expected inflation and bond yields. The assumed prior distributions are the following:
IG - inverse gamma, N -normal , NT - truncated normal outside of the (-1,1) interval and U -
uniform. The estimation sample is from 1983M7 to 2014M12.
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Quarterly Frequency

Homoskedastic Heteroskedastic
5% 50%  95% 5% 50%  95%

(a) m - SPF for observed quarter CPI

Time period 1981Q3-2014Q4
ly 0.075 0.103 0.142 0.164 0.236 0.327
2y 0.082 0.108 0.145 0.164 0.230 0.333
3y 0.091 0.119 0.163 0.167 0.225 0.325
4y 0.087 0.121 0.168 0.145 0.203 0.292
5)% 0.084 0.120 0.167 0.136 0.193 0.274
Inp(Y?) 7088.304 7422.010
(b) m - PGDP

Time period 1968Q1-2014Q4
ly 0.095 0.124 0.162 0.188 0.274 0.394
2y 0.102 0.134 0.174 0.208 0.292 0.420
3y 0.102 0.139 0.182 0.198 0.285 0.402
4y 0.101 0.137 0.181 0.165 0.242 0.352
oy 0.097 0.131 0.174 0.141 0.211 0.307
Inp(Y°) 9499.774 10115.738
(c) 7 - SPF for current quarter CPI

Time period 1981Q3-2014Q4
ly 0.078 0.104 0.137 0.163 0.240 0.342
2y 0.080 0.110 0.145 0.161 0.235 0.341
3y 0.090 0.120 0.158 0.157 0.226 0.328
4y 0.087 0.122 0.163 0.1561 0.213 0.299
oy 0.087 0.118 0.158 0.139 0.201 0.288
Inp(Y°) 7197.171 7558.242

Table C2.

Unconditional inflation variance ratios. This table reports the population values of inflation
variance ratios for three different measures of inflation forecasts. The inflation variance ratio is
computed as the ratio of the variance of shocks to expected inflation to the variance of yield shocks.
I include the 5, 50, and 95 percentiles of the moments based on 10,000 parameter draws of the
posterior distribution. The model assumes that inflation is the sum of a constant and an AR(1)
component. Shocks to the yields are computed assuming they are martingales. The table reports
inflation variance ratio under the assumption of homoskedastic and heteroskedastic innovations.
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Std. Dev. of Inflation News  Std. Dev. of Yield News Inflation Variance Ratios

Data Model Data Model Data Model
No sv  sv Nosv sv Nosv sv
ly 0.169 0.155 0.129 0.386 0.254 0.366 0.193 0.371 0.125
2y 0.166 0.152 0.118 0.379 0.257 0.289 0.193 0.347 0.165
3y 0.162 0.148 0.107 0.364 0.259 0.236 0.198 0.329 0.206
4y 0.159 0.145 0.098 0.378 0.268 0.198 0.177 0.293 0.245
5y  0.156 0.142 0.090 0.362 0.267 0.170 0.186 0.287 0.280

Table C3.

Estimates of inflation variance ratios: Data and model. This table reports the posterior
median population values of the standard deviation of expected inflation innovations and bond yield
news as well as the inflation variance ratios. I include the estimates based on the homoskedastic
(No sv) and heteroskedastic (sv) version of the statistical model of inflation and bond yields (Data).
I also show the model-implied estimates of the macro-finance model (Model). The median is based
on 10,000 parameter draws of the posterior distribution for each particular model.
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